LIMITED PHASE 2 ENVIRONMENTAL SITE INVESTIGATION

Geotechnical Engineering

Engineering Geology

Hydrogeology

Contaminated Site Assessment

Construction Materials Testing

Environmental Monitoring

BANK STREET PYRMONT SYDNEY

Prepared for Aurecon

Prepared by RCA AUSTRALIA

RCA ref 8535-401/1

JUNE 2011

RCA AUSTRALIA

ABN 53 063 515 711

92 Hill Street, CARRINGTON NSW 2294

Telephone: +61 2 4902 9200 Facsimile: +61 2 4902 9299 Email: administrator@rca.com.au Internet: www.rca.com.au

This document is and shall remain the property of RCA Australia. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission supplied at the time of proposal. Unauthorised use of this document in any form whatsoever is prohibited.

	DOCUMENT STATUS													
Rev No	Comment	Author	Reviewer	Approved	for Issue (Project Man	ager)								
NO				Name	Signature	Date								
/0	Final	N Hills	F. Brooker			27.05.11								
/1	Revised	N Hills	F. Brooker	F Brooker	PSB	01.06.11								

	DOCUMENT DISTRIBUTION											
Rev No	Copies	Format	Issued to	Date								
/0	1	Electronic (email)	Aurecon Group – Nick Hearfield – hearfieldn@ap.aurecongroup.com	27.05.11								
/0	1	Electronic report	RCA – job archive	27.05.11								
/1	1	Electronic (email)	Aurecon Group – Nick Hearfield – hearfieldn@ap.aurecongroup.com	01.06.11								
/1	1	Electronic (CD)	Aurecon Group – Nick Hearfield	01.06.11								
/1	1	Bound report	Aurecon Group – Nick Hearfield	01.06.11								
/1	1	Electronic report	RCA – Job archive	01.06.11								
/1	1	Bound report	RCA – job archive	01.06.11								

Contents

1	INTRO	DUCTION	.1
2	SITE I	DESCRIPTION AND LOCATION	. 2
3	PREV	OUS REPORTS (REF [1])	. 2
4	FIELD	WORK	.3
5	QUAL	ITY ASSURANCE/QUALITY CONTROL	.3
6	SITE	GUIDELINES	.5
	6.1	6.1.1 NEPM – NATIONAL ENVIRONMENT PROTECTION (ASSESSMENT OF SITE CONTAMINATION) MEASURE (1999)	. 5
	6.2	APPROPRIATENESS OF THE GUIDELINES	
7	RESU	LTS	. 6
8	DISCU	ISSION	.7
9	CONC	LUSIONS	.9
10	LIMIT	ATIONS	.9
REF	ERENC	ES	10
GLO	SSARY	,	10
APP	ENDIX	A	

DRAWINGS

APPENDIX B

TEST PIT LOG SHEETS

APPENDIX C

EXTERNAL QUALITY ASSURANCE

APPENDIX D

LABORATORY REPORT SHEETS

APPENDIX E

EXPOSURE SCENARIOS

APPENDIX F

SUMMARY OF RESULTS

RCA ref 8535-401/1

RCA AUSTRALIA GEOTECHNICAL • ENVIRONMENTAL

Geotechnical Engineering

Engineering Geology

Environmental Engineering

Hydrogeology

Construction Materials Testing

Environmental Monitoring

Noise & Vibration

Occupational Hygiene

1 June 2011

Aurecon Group Level 2 116 Military Road Neutral Bay NSW 2089

Attention: Mr Nick Hearfield

LIMITED PHASE 2 ENVIRONMENTAL SITE INVESTIGATION AURECON CONSTRUCTION COMPOUND, ANZAC BRIDGE MAINTENANCE PYRMONT, SYDNEY

1 INTRODUCTION

RCA Australia (RCA) was commissioned by Aurecon to undertake a limited phase 2 environmental site investigation at Bank Street, Pyrmont, Sydney.

The site has been divided into two (2) individual sites according to proposed site use, as shown on **Drawing 1**, **Appendix A**, to be used for:

- construction compound for Bridge Solutions Alliance (BSA) during bridge maintenance works;
- storage and access for Dragon boat equipment by NSW Maritime.

This report details the findings of the soil investigation conducted on the NSW Maritime portion of the site.

As part of their lease agreement for the compound, BSA are planning to undertake minor earthworks in order to grade the NSW Maritime portion of the site; including the filling of minor depressions, and to provide drainage infrastructure at the site. Aurecon has estimated the depth of disturbance will be between 0.5 and 1.0m below ground level, with deeper excavations to occur for a proposed boat ramp at the site.

The purpose of this investigation is to determine the contamination status of the site prior to the commencement of earthworks for due diligence and OH&S purposes.

2 SITE DESCRIPTION AND LOCATION

The site is located beneath the Anzac Bridge on Bank Street, Pyrmont, NSW. The site covers an area of approximately 0.56ha and is relatively flat, and unpaved. It is bound to the north by commercial development, to the east by commercial/industrial development and the Western Distributor, to the south by Blackwattle Bay, and to the west by Anzac Bridge and Blackwattle Bay.

The closest environmental feature is Blackwattle Bay, as shown on **Drawing 1**, **Appendix A**. The closest sensitive site is KU Maybanke preschool, located approximately 400m east of the site.

3 PREVIOUS REPORTS (REF [1])

As requested by BSA, no site history assessment has been undertaken due to the tight time frame associated with the works. However a previous assessment report completed by Noel Arnold & Associates was provided for consideration in the derivation of the scope of works.

RCA has undertaken a brief review of this report, which adopted the Health Investigation Level 'E' (HIL 'E') which is applicable to parks, recreational open space and playing fields; including secondary schools due to the proposed use of the site as a public boat ramp. Given the understanding that the site will now be fully capped, the use of these guidelines is considered conservative.

A total of eight (8) testpits were excavated in the central portion of the site, considered to be largely within the area of the Aurecon compound. Samples were collected of the shallow soils (<0.6m) and analysed for a suite of total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc, mercury), volatile organic compounds (VOC) and asbestos. The investigation found two (2) samples (TP5-0.4m and TP7-0.3m) to exceed the adopted guidelines for TPH C_{10} - C_{36} and five (5) samples (TP3-0.3m, TP5-0.4m, TP6-0.5m, TP7-0.3m, TP8-0.3m) to exceed the guidelines for benzo (a) pyrene and total PAH. The B(a)P and PAH concentrations reported are significantly over the acceptable concentrations for a commercial/industrial site and in excess of the criteria for acceptance as restricted solid waste at a licensed waste facility (ie, hazardous waste).

These sample locations are shown on **Drawing 2**, **Appendix A**.

The findings of this report indicate there is strong potential for contamination to be present at the site in the fill material, especially PAH. Noel Arnold recommended that this material be excavated and undergo additional waste classification prior to disposal. RCA understand that this work has not been undertaken.

In addition to the report above, RCA has considered the potential contamination based on the proximity of the site next to the harbour, and the potential for maritime related industries, as well as the potential for uncontrolled filling to have impacted the site.

4 FIELDWORK

An environmental scientist experienced in the handling of potentially contaminated soil undertook the fieldwork on the 29 April 2011.

A total of nine (9) test pits were excavated across the site to a maximum depth of 0.8m. Soil samples were collected from 0-0.3m at all locations, with TP11b having an additional sample taken from 0.6-0.8m as field staff indicated a boat ramp was proposed in this location. All samples were analysed for total recoverable hydrocarbons (TRH); benzene, toluene, ethylbenzene and xylenes (BTEX); polycyclic aromatic hydrocarbons (PAH) and metals (As, Cd, Cr, Cu, Ni, Pb, Zn, Hg). An additional shallow sample (0-0.3m) was collected from four (4) of the locations to create two (2) composite samples, which had the additional analysis of organochlorine pesticides (OCP) and polychlorinated biphenols (PCB). Samples TP3a and TP11b had the additional analysis for tributyl tin (TBT).

The collection of all soil samples was undertaken in compliance with RCA methodology, which forms part of our accreditation. Soil sample collection methods comprised disturbed soil samples from the bulk of soil within the excavator bucket. These soil collection methods were chosen for the site due to the difficult digging conditions at the site and the requirement for full inspection of the site's strata.

No decontamination of the excavator bucket was undertaken, however the collection of the sample from within the bulk of the excavated material (rather than against the side of the bucket) is considered to prevent potential cross contamination.

The upper 1m of the subsurface at the site generally consisted of fill material containing clayey sand with concrete/brick/tile cobbles and fine to course gravel. Natural materials were encountered only in TP11b from 0.6-0.8m. All pits were logged by a qualified scientist and all samples were described for future reference. Test pit logs are attached in **Appendix B**.

5 QUALITY ASSURANCE/QUALITY CONTROL

All samples were preserved as recommended by the analytical laboratory and stored in the field in an Esky on ice (at approximately 4°C). Samples were sent to the laboratory the day of sampling.

All samples were sent under Chain of Custody (COC) documentation detailing the sample identification, required analysis, the name of the sampler and date released from custody. The laboratory acknowledged the receipt of samples by signature and date and returned the COC with a sample receipt notice indicating the condition of the samples received upon receipt.

A total of one (1) soil duplicate sample was submitted blind to the laboratory for analysis. This represents a percentage of 10%, in accordance the Australian Standard and RCA protocol.

Results are summarised in **Appendix C**.

Results indicate that no soil analyses reported an RPD in excess of the acceptance criteria.

The field blank reported an arsenic concentration of 3.9mg/kg. This blank was obtained from the laboratory and was requested to be of suitable quality for metals analysis. It is considered that either this blank was suitable for organic analysis only or that there has been some cross contamination during the sampling process. Due to the non-volatile nature of the contaminant it is considered that the arsenic is more likely to be from source and not a result of cross contamination. The field blank and all samples collected reported arsenic concentrations well below the primary HIL 'E' guidelines (200mg/kg) and it is therefore considered that this minor non-compliance has no significant impact on results.

MGT Labmark was chosen as the primary laboratory; this laboratory is NATA accredited and are experienced in the analytical requirements for potentially contaminated soil.

MGT Labmark undertook internal quality assurance testing. Results are contained within the laboratory report sheets, **Appendix D**. **Table 1** presents a summary of their review.

 Table 1
 Internal Quality Assurance Review

	Number Samples (including QA)	Laboratory Duplicates	Spikes	Laboratory Control Samples	Laboratory Blanks
Requiren	nent	10%	5%	One every batch	One every batch
Soil					
Metals (As, Cd, Cr, Cu, Pb, Ni, Zn, Hg)	11 (2)	2	1	1	1
TRH C ₆ -C ₉	13 (2)	2	1	1	1
TRH C ₁₀ -C ₃₆	11 (2)	2	1	1	1
BTEX	13 (2)	2	1	1	1
PAHs	10 (2)	2	1	1	1
OCP/PCB	1 (1)	0 (1)	0 (1)	1	1

Numbers in brackets refer to the tests undertaken on samples not from this project but within the same laboratory batch

Examination of the above table reveals that MGT Labmark has undertaken laboratory quality assurance testing in accordance with the NEPM:

- Recoveries of Surrogates were within acceptance criteria of 70-130%.
- Holding Times were within laboratory specified timeframes.
- Recoveries of laboratory control samples were within the acceptance criteria of 70-130%.
- Recoveries of Spikes were within acceptance criteria of 70-130%.

- Relative Percentage Differences for duplicates were within acceptance criteria.
- No laboratory blank was detected above the PQL.

It is therefore considered that the data obtained from this testing is accurate and reliable in as far as it can be ascertained.

6 SITE GUIDELINES

6.1 SOIL

6.1.1 NEPM – NATIONAL ENVIRONMENT PROTECTION (ASSESSMENT OF SITE CONTAMINATION) MEASURE (1999)

The guidelines used for the assessment of the soil on site were sourced from the National Environment Protection Measure (NEPM) for the Assessment of Site Contamination, 1999 (Ref [2]). Schedule B (1) of this measure provides a table for the investigation concentrations for contaminants based on human health risk and certain exposure scenarios due to site use.

Legislative requirements prescribe assessment on the basis of the most sensitive allowable site use.

Currently the site is undeveloped and based on information provided to RCA, the proposed use consists of dragon boat storage, access and a proposed dragon boat ramp, and development of a park by NSW Maritime. RCA therefore considers the following guidelines to be appropriate for site assessment:

- HIL 'E' Parks, recreational open space and playing fields, including secondary schools.
- HIL 'F' Commercial/industrial, no poultry, no fruit or vegetable consumption, no groundwater consumption: includes premises such as shops and offices as well as factories and industrial sites. Thirty years is the assumed duration of exposure.

Refer to **Appendix E** for a copy of the exposure scenarios for the derivation of the above guidelines.

The NEPM sets out an acceptance procedure by which sites can be considered as suitable for use depending on the sample results. The mean of the sample results can be compared to the guidelines as long as:

- no single value exceeds 250% of the chosen guidelines;
- the standard deviation of the results for each analyte is less than 50% of the guideline.

However, this approach does not allow for sampling and analytical variability, therefore the Sampling Design Guidelines (Ref [3]) recommends the use of the 95%UCL $_{\rm ave}$, calculated for a site using samples collected from the same lithology, for comparison with the guidelines.

6.1.2 NSWEPA – SERVICE STATION GUIDELINES

The guidelines adopted for TPH C_6 - C_9 , TPH C_{10} - C_{36} and BTEX were the "Guidelines for Assessing Service Station Sites" produced by the NSWEPA, December 1994, (Ref [4]). These guidelines are applicable for soil and water concentrations on all sites where fuel has been stored.

6.2 APPROPRIATENESS OF THE GUIDELINES

The NEPM document has been approved by the NSWEPA for use on potentially contaminated sites and supersedes most of the preceding reference documents. This document is currently being reviewed. The HIL 'E' criteria are considered conservative for the site in the event that it is sealed and so the HIL 'F' criteria has been included.

The Service Station Guidelines are still current for TPH and BTEX concentrations. Due to changes pending in the NEPM document, laboratory analysis is now being undertaken for total recoverable hydrocarbons (TRH). This analysis includes all forms of hydrocarbons, not just petroleum hydrocarbons and therefore can be considered a conservative measure against the TPH criteria.

The exposure settings on which the NEPM guidelines are based directly affect the investigation concentration used to assess the contamination status of the site. While the development appears to fit into the listed categories it is possible that a change in the development may designate the site into a more sensitive land use.

7 RESULTS

All soil results are compared to the relevant guidelines in **Appendix F**. In summary:

- All samples analysed for BTEX reported concentrations below the laboratory limit of detection, and therefore below the site guidelines.
- All samples analysed of TRH $C_6 C_{10}$ reported concentrations below the laboratory limit of detection, and therefore below the site guidelines.
- All samples analysed for TRH C_{10} C_{36} reported concentrations below the site guideline, with the exception of TP1a and TP11b which reported elevated concentrations.
- All samples analysed for PAHs reported concentrations below the site guideline, with the exception of:
 - TP1a which reported elevated concentrations of benzo(a) pyrene; and

- TP11b and TP5a which reported elevated concentrations of benzo(a) pyrene and total PAHs.
- All samples analysed for metals reported concentrations below the primary HIL 'E' site guidelines.
- All samples analysed for OCPs reported concentrations below the laboratory limit of detection and therefore below the primary HIL 'E' site guidelines.
- All samples analysed for PCBs reported concentrations below the laboratory limit of detection and therefore below the primary HIL 'E' site guidelines.
- All samples analysed for TBT reported concentrations below the laboratory level of detection, which is <1ng/g. There are currently no guidelines for TBT in soil, however the absence of detectable concentrations is considered to indicate a low risk to human health or the environment.

8 DISCUSSION

Significant TRH and PAH contamination was identified in samples TP1a, TP5a and TP11b.

Samples TP1a and TP5a are both contained within a fill layer that includes construction materials within a clayey sand matrix. Results of other samples in this material, by RCA and by Noel Arnold (Ref [1]), indicate a wide range of contaminant concentrations. It is therefore considered that contamination is randomly distributed throughout fill material and that there are possibly higher concentrations that have not been identified.

Sample TP11b is contained within the natural soils below the fill material, suggesting that contamination at this location appears to have taken place before the fill material was placed on site and that the contamination has been interacting with the environment for a significant amount of time. This sample is the only one of the deeper soils and so no conclusions regarding the extent of contamination can be made. It is likely however, in the absence of any known historical point source of contamination, that the detected concentrations may have resulted from interaction with the Harbour where there is a high volume of shipping or harbourside commercial/industrial activities where historical discharges may have caused hydrocarbon contamination. Therefore it is possible that all the natural soils which have historically interacted with the Harbour may be similarly contaminated.

The identified contamination is semi volatile and biodegradable, however PAH are less amenable to these processes and the depth to TP11B would significantly restrict the biodegradation processes. It would not be expected that significant decrease of the identified concentrations would occur without active intervention and augmentation.

In its current condition, there is unlikely to be any significant exposure to human health as there is no active use of the site and only transient occupants (passersby) enter the site. The proposed increased use of the site may increase the possible exposure to human health from soils contact. During any construction works of the site prior to sealing, OH&S measures should be implemented to ensure that exposure is minimised. These measures could include minimising dust during earthworks, masks to prevent dust inhalation, and minimising dermal contact with soils.

Similarly the potential risk to the environment in the site's current state is considered low. The concentrations identified the shallow fill and the deeper natural material may be leaching into the groundwater or into the surface water and Blackwattle Bay, however the concentrations from this material are unlikely to be significantly impacting the quality of the receiving waters.

RCA recommends the following:

- Capping of the site, concrete/bitumen/marker layer and grass, such that an effective barrier between potential receptors (environment or users of the site) and the potentially contaminated fill is created.
- Implementation of a site environmental management plan which identifies that the site
 is potentially contaminated and details controls to ensure the protection of human
 health and the environment. These controls should include the following:
 - OH&S controls for any works being undertaken prior to capping of the site and any works beneath the cap on the site when complete. These should include, but not necessarily be restricted to, dust mitigation, restriction of contact with potentially contaminated soils and strict hygiene standards prior to eating or drinking.
 - A requirement that all materials requiring offsite disposal are placed in stockpiles of similar appearance for waste characterisation sampling, in order to be accepted by a licensed waste facility. Currently all samples of the fill material are classified as restricted solid waste with the exception of TP5A which is hazardous waste. Waste classification guidelines are two tiered and if leachable concentrations are acceptable, the total concentrations identified in the fill material during this investigation could be classified as general solid waste. The natural material (as characterised by TP11b) would be classified as hazardous waste and would require a specialised contractor to remove and treat the waste prior to disposal.
- Minimising disturbance of all natural soils due to the detected contamination at TP11:
 - If excavation in the vicinity of TP11 is required, it is recommended that a construction management plan be compiled to implement measures to protect human health and the environment. This plan should include all site management plan conditions and consider what additional measures may be required due to additional exposure by the works.

9 CONCLUSIONS

This report presents the findings of an environmental site investigation undertaken at a site beneath the Anzac Bridge, Pyrmont.

The investigation comprised the sampling of shallow (<1m) soils from a total of nine (9) test pits across the site. Samples were analysed from a suite of contaminants including TRH, BTEX, PAH, metals, OCP, PCB and TBT.

Results of this sampling, and previous sampling in the other portion of the site, indicates that contamination is randomly distributed throughout the fill material and this entire layer should be considered potentially contaminated. There is insufficient information to determine the distribution of contamination through the natural soils, however based on the presumption that the contamination is historically associated with the Harbour water quality and previous Harbourside activities, RCA recommends that the natural soils also be considered potential contaminated.

RCA considers the site suitable for its proposed use of Dragon boat storage and access after being sealed. RCA considers that a management plan for the site, and in particular all construction work, is required to take into account potential human health and environmental risk associated with potentially contaminated material. All materials to be taken offsite will require waste classification before being able to do so, and based on the results it is likely that this material would be classified as hazardous waste.

10 LIMITATIONS

The services performed by RCA has been conducted in a manner consistent with that generally exercised by members of its profession and consulting practice.

This report has been prepared for the sole use of Bridge Solutions Alliance (BSA) and NSW Maritime. The report may not contain sufficient information for purposes of other uses or for parties other than BSA and NSW Maritime. This report shall only be presented in full and may not be used to support objectives other than those stated in the report without written permission from RCA.

The information in this report is considered accurate at the date of issue with regard to the current conditions of the site. Conditions can vary across any site that cannot be explicitly defined by investigation.

Environmental conditions including contaminant concentrations can change in a limited period of time. This should be considered if the report is used following a significant period of time after the date of issue.

Yours faithfully

RCA AUSTRALIA

Nathan Hills Environmental Scientist

~ Has

Fiona Brooker Associate Environmental Engineer

mooker

REFERENCES

- [1] Noel Arnold & Associates, Soil Contamination Investigation, June 2010.
- [2] NEPC, National Environment Protection (Assessment of Site Contamination) Measure, 1999.
- [3] NSWEPA, Sampling Design Guidelines, September 1995.
- [4] NSWEPA, Guidelines for Assessing Service Station Sites, December 1994.

GLOSSARY

95%UCL_{ave} A statistical calculation – 95% Upper Confidence Limit of the mean

concentration.

EMP Environmental Management Plan.

HIL 'E' Parks, recreational open space and playing fields Health Based

Investigation Level, pg 9 Schedule B1, National Environment Protection (Assessment of Site Contamination) Measure.

HIL 'F' Commercial/industrial Health Based Investigation Levels, pg 9

Schedule B1 National Environment Protection (Assessment of Site

Contamination) Measure.

Hotspot A sample, or location, where contaminant concentrations exceed

250% of the appropriate guideline.

In Situ In place, without excavation.

Intralaboratory Prefix intra – as meaning within. A sample sent twice to the

sample laboratory for comparative analysis.

kg kilogram, 1000 gram.

Leachate Fluid that has passed through a soil stratum, possibly collects

contaminants.

 μg microgram, 1/1000 milligram.

mg milligram, 1/1000 gram.

NEPC National Environment Protection Council.

NEPM National Environment Protection Measure.

PPE Personal Protective Equipment.

PQL Practical Quantitation Limit.

QA Quality Assurance.

QC Quality Control.

RPD Relative Percentage Difference.

TCLP Toxicity Characteristic Leaching Procedure. An analysis designed

to mimic the transfer of contaminants from soil into water.

Undertaken in acidic environment and used to determine impact in

landfill conditions.

Chemical Compounds

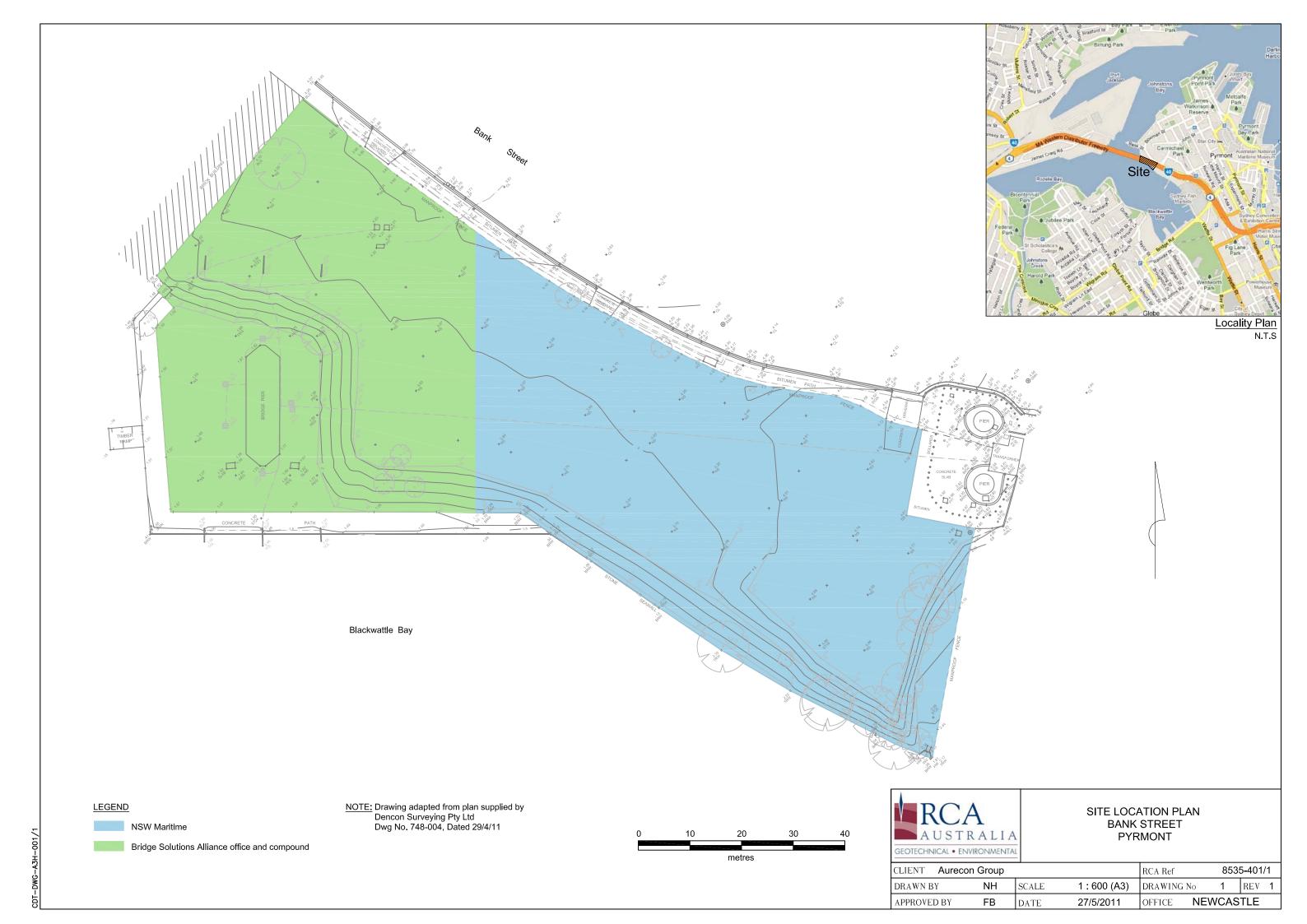
BTEX Benzene, Toluene, Ethylbenzene, Xylene.

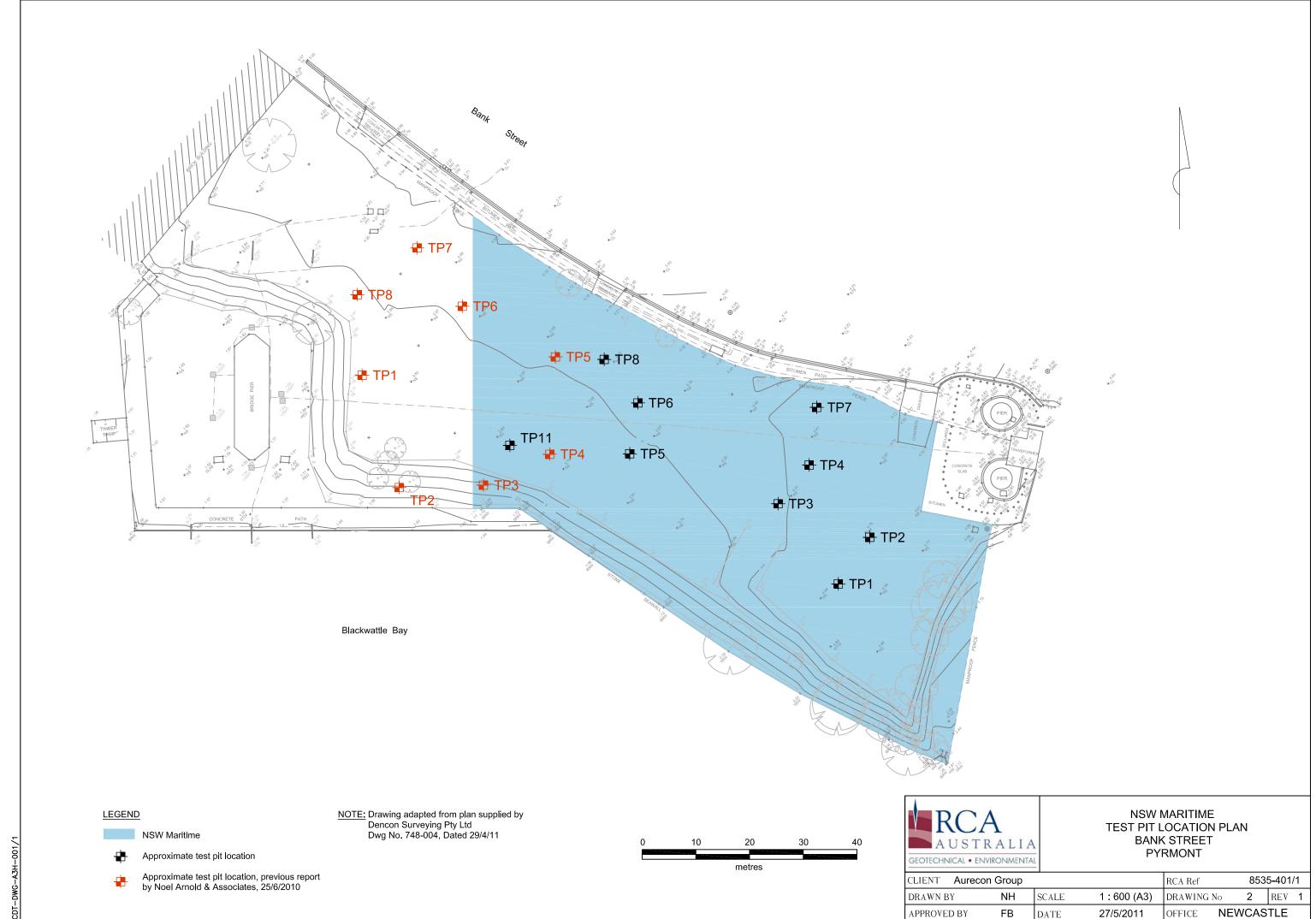
OCPs Organochlorin Pesticides.

PAH Polycyclic Aromatic Hydrocarbons. Multi-ring compounds found in

fuels, oils and creosote. These are also common combustion

products.


PCBs Poly Chlorinated Biphenyls.


TRH Total Recoverable Hydrocarbons.

Appendix A

Drawings

Appendix B

Test Pit Log Sheets

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	Test Pit In	Bank Stre		I		EXCAVATION METHOD: 3t Excavator Field Material Information							
WATER	FIELD	SAMPLE	DEPTH (m)	GRAPHIC LOG	(SOII shape (ROCK		SCRIPTION I/grain size, colour, ponents, minor consti		PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AI ADDITIONAL OBSERVATION	
Not Encountered		0.30m D-TP1a	- 0.10 -			te and brick cobblete and brick cobblete in brown/beige cla	es, tile fragments es, tile fragments, wit ayey sand matrix	h fine to		M		FILL	
		0.40m	-0.40		TEST DIT TD	1 TERMINATED A	T 0.40 m						
					ILSTTTT II	I ILIWIINAILD A	(1 0.40 III						
			-0.5										
			-										
			-										
			-										
			-										
			- 1.0										
			-										
			-										
			-										
			- 1.5										
			_										
			-										
			-										
LO	GGED: NI	1				CHECKED: F	⁼B		[DATE:	20/05/20	011	

IPZ SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

LOCATION: Bank Street, Pyrmont EXCAVATION METHOD: 3t Excavator Test Pit Information Field Material Information								78101						
	rest Pit Ir	ntormatio	n I		Field Material Info	Field Material Information								
WATER	FIELD	SAMPLE	DEРТН (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION					
Not Encountered		0.10m D-TP2a 0.20m			FILL, Clayey SAND, brown, with fine to coarse gravel		W		FILL					
			-0.30		TEST PIT TP2 TERMINATED AT 0.30 m									
			-0.5											
			_											
			-											
			- 1.0											
			-											
			_											
			- -1.5											
			-											
			_											
			_											
LO	GGED: NI	Н			CHECKED: FB		DATE:	20/05/2	011					

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

		Sank Stre		I	EXCAVATION METHOD: 3t Excavator Field Material Information						
WATER	Test Pit In	SAMPLE	БЕРТН (m)	GRAPHIC LOG	(SOIL shape (ROCK	DESCRIF L NAME; plasticity/grain s , secondary components, NAME; grain size, colour	PTION	(mdd) QIA	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION
Not Encountered		0.20m D-TP3a	-		FILL. GRAVE	L, fine to coarse, concreterown clayey sand matrix			M	Ö	FILL
		0.30m	0.30		TEST PIT TP3	3 TERMINATED AT 0.30	m				
			_								
			-0.5								
			_								
			_								
			_								
			- 1.0								
			−1.5								
			-								
			_								
			_								
10	GGED: NI	-				CHECKED: FB		 		20/05/2	011

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

LOCATION: Bank Street, Pyrmont EXCAVATION METHOD: 3t Excavator Test Pit Information Field Material Information								rator	
	Test Pit Ir	nformatio	n I		Field Material Inform	nation	(0	<u> </u>	
WATER	FIELD	SAMPLE	DEPTH (m)	GRAPHIC LOG	DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)	PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION
Not Encountered		0.20m D-TP4a QA1 0.30m	-		FILL, Clayey SAND, brown, with concrete and brick cobbles, tile fragments and fine to coarse gravel		M		FILL
			-0.30	,,,,,,	TEST PIT TP4 TERMINATED AT 0.30 m				
			-0.5						
			-						
			-						
			- 1.0						
			-						
			-						
			-						
			- 1.5 -						
			-						
			-						
LO	GGED: NI	 			CHECKED: FB		DATE.	20/05/2	011

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	Test Pit In	Bank Stre		I	EXCAVATION METHOD: 3t Excavator Field Material Information							
WATER	FIELD	SAMPLE	ОЕРТН (m)	GRAPHIC LOG	(SOII shape (ROCk	DES L NAME; plasticity/ s, secondary compo K NAME; grain size	SCRIPTION grain size, colour, part ments, minor constitue colour, minor constitu		PID (mdd) OIA	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION
Not Encountered		0.20m D-TP5a	- 0.10 -			te and brick cobble	s, tile fragments fine to coarse gravel t	throughout		M		FILL
		0.30m	—0.30—		TEST PIT TPS	5 TERMINATED A	⊺ 0.30 m					
			- 0.5 -									
			- - 1.0									
			-									
			−1.5 -									
			- -									
LO	GGED: NI	1	-	!		CHECKED: F	В	l	1	DATE:	20/05/20	011

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	Test Pit In			t, Pyrmont EXCAVATION METHOD: 3t Excavator Field Material Information								
WATER	FIELD	SAMPLE	ОЕРТН (m)	GRAPHIC LOG	(SOII shape (ROCk	DESC L NAME; plasticity/gra , secondary compone (NAME; grain size, co	CRIPTION ain size, colour, particle ents, minor constituents olour, minor constituent		PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATIONS
Not Encountered		0.20m D-TP6a 0.30m	- 0.10 -			te and brick cobbles, SAND, brown, with co	tile fragments	es and		M		FILL
		0.3011		XXXX	TEST PIT TP	6 TERMINATED AT 0	.30 m					
			-0.5									
			- 1.0									
			-									
			−1.5 -									
			-									
LO	gged: Nh	+	l	<u> </u>		CHECKED: FB			DA	ATE: 2	20/05/20	D11

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	Test Pit Information Field Material Information Field Material Information										
WATER	FIELD	SAMPLE	ОЕРТН (m)	GRAPHIC LOG	(SO shap (ROC		CRIPTION ain size, colour, particle ents, minor constituents) olour, minor constituents)	(acc)	MOISTURE/	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION
Not Encountered		0.20m D-TP7a 0.30m	- 0.10 - - 0.20 - - 0.30 -		FILL, Clayey and fine to co FILL, Silty S. extremely we	oarse gravel	with concrete and brick cob k, with fine to coarse gravel roughout		M		FILL
			0.40 0.5		TEST PIT TF	P7 TERMINATED AT (0.40 m				
			- - -1.0								
			-								
			1.5 								
LO	GGED: NI	1	_			CHECKED: FB			DATE:	20/05/20	011

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	Test Pit In			Pyrmont EXCAVATION METHOD: 3t Excavator Field Material Information								
WATER	FIELD	SAMPLE	ОЕРТН (m)	GRAPHIC LOG		L NAME; plasticity/gra e, secondary compone (NAME; grain size, c	CRIPTION ain size, colour, particle ents, minor constituents olour, minor constituent		PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AN ADDITIONAL OBSERVATION
Not Encountered		0.20m D-TP8a 0.30m	- 0.10 -			te and brick cobbles, SAND, brown, with co	tile fragments oncrete and brick cobbl	les and		M		FILL
		0.3011	0.30 -	XXXX	TEST PIT TP	8 TERMINATED AT 0	0.30 m					
			- 0.5 -									
			- 1.0									
			-									
			1.5 									
			- -									
LO	GGED: NH	+				CHECKED: FB				ATE:	20/05/20	011

SHEET 1 OF 1

PROJECT No: 8535
CLIENT: Aurecon
PROJECT: Environmental Site Investigation
LOCATION: Bank Street, Pyrmont

DATE: 29/04/2011 SURFACE RL: COORDS:

	OCATION: Bank Street, Pyrmont Test Pit Information					EXCAVATION METHOD: 3t Excavator								
	Test Pit In	formation	n			Field Material Information								
WATER	FIELD	SAMPLE	DEРТН (m)	GRAPHIC LOG	shape.	DESCRI NAME; plasticity/grain secondary component NAME; grain size, colo	size, colour, particle s. minor constituents)	PID (ppm)	MOISTURE/ WEATHERING	CONSISTENCY/ RELATIVE DENSITY/ STRENGTH	STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS			
Not Encountered		0.30m D-TP11a 0.40m 0.70m D-TP11b	- 0.5 - 0.60 -		fine to coarse	6AND, brown, with cond gravel	rete and brick cobbles a	and	M		FILL -			
		0.80m	-0.80-		TEST DIT TO	1 TERMINATED AT 0.8	20							
			- 1.0 -								- - -			
LOO			- 1.5 - -								- - -			
LO	GGED: NH	ł	ı	1		CHECKED: FB			DATE:	20/05/20	011			

Appendix C

External Quality Assurance

Sample Identification	TP4a	QA1		TB110427.7	TS110427.7
Sample Depth (m)	0.2-0.3		1	/MTB27041	13110427.7
Date	29/4/	11	1	29/4/11	29/4/11
Duplicate Type			RPD %		
Sample Profile	clayey sand, brown			Trip Blanks	Trip Spike
Sample Purpose	Investig	gation		THP Blatiks	Trip Spike
Sample collected by	NH	1			
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)					
Benzene	0.25	<u>0.25</u>	0.0	< 0.5	99
Toluene	0.25	<u>0.25</u>	0.0	< 0.5	83
Ethylbenzene	<u>0.25</u>	<u>0.25</u>	0.0	< 0.5	72
meta- and para-Xylene	0.5	<u>0.5</u>	0.0	< 1	72
ortho-Xylene	<u>0.25</u>	<u>0.25</u>	0.0	< 0.5	72
Total Xylenes	<u>0.75</u>	<u>0.75</u>	0.0	< 1.5	
Total Recoverable Hydrocarbons (TRH)					
TRH C6-C9	<u>5</u>	<u>5</u>	0.0	< 10	91
TRH C10-C14	<u>25</u>	<u>25</u>	0.0	-	
TRH C15-C28	<u>50</u>	<u>50</u>	0.0	-	
TRH C29-C36	<u>50</u>	<u>50</u>	0.0	-	
TRH C10-C36	<u>125</u>	<u>125</u>	0.0		
Metals					
Arsenic	3.3			3.9	
Cadmium	< 0.1			< 0.1	
Chromium	40			< 2	
Copper	11			< 2	
Nickel	25			< 1	
Lead	29			< 2	
Zinc	35			< 5	
Mercury	< 0.05			< 0.05	

Note all units in mg/kg except for trip spikes results in % recovery Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

>50	where both sample results exceed ten x PQL
>75	where both sample results are within 5 to 10 x PQL
>100	where both sample results are within 2 to 5 x PQL
AD>2.5 * PQL	where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix D

Laboratory Report Sheets

Robert Carr and Associates Pty Ltd PO Box 175 Carrington NSW 2294

Attention: Fiona Brooker

 Report
 297703-S

 Client Reference
 8535/1

 Received Date
 Apr 29, 2011

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID			TP1A	TP2A	ТРЗА	TP4A
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S11-Ap32408	S11-Ap32409	S11-Ap32410	S11-Ap32411
Date Sampled			Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	10	mg/kg	< 10	< 10	< 10	< 10
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	< 50	< 50	< 50
TRH C15-C28 Fraction by GC	100	mg/kg	180	< 100	< 100	< 100
TRH C29-C36 Fraction by GC	100	mg/kg	1500	< 100	< 100	< 100
TRH C10-36 (Total)	100	mg/kg	1700	< 100	< 100	< 100
ВТЕХ						
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total m+p-Xylenes	1	mg/kg	< 1	< 1	< 1	< 1
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Xylenes(ortho.meta and para)	0.15	mg/kg	< 0.15	< 0.15	< 0.15	< 0.15
Total BTEX	1	mg/kg	< 1	< 1	< 1	< 1
4-Bromofluorobenzene (surr.)	1	%	82	97	92	102
Tributyl Tin (as Sn)	0.005	ng/g	-	-	NMI report	-
% Moisture	0.1	%	9.8	12	18	14
Polyaromatic Hydrocarbons (PAH)						
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	1.2	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	2.2	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	2.9	< 0.5	< 0.5	< 0.5
Benzo(b)fluoranthene &						
Benzo(k)fluoranthene	1	mg/kg	4.5	< 1	< 1	< 1
Benzo(g.h.i)perylene	0.5	mg/kg	3.0	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	2.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	4.8	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.8	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	2.7	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	4.9	< 0.5	< 0.5	< 0.5
Total PAH	1	mg/kg	31	< 1	< 1	< 1
2-Fluorobiphenyl (surr.)	1	%	78	89	89	88
p-Terphenyl-d14 (surr.)	1	%	73	88	85	81

Client Sample ID			TP1A	TP2A	ТР3А	TP4A
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S11-Ap32408	S11-Ap32409	S11-Ap32410	S11-Ap32411
Date Sampled			Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit				
Mercury	0.05	mg/kg	< 0.05	0.06	< 0.05	< 0.05
Arsenic	1	mg/kg	1.7	5.1	4.8	3.3
Cadmium	0.1	mg/kg	0.4	< 0.1	< 0.1	< 0.1
Chromium	2	mg/kg	4.7	11	8.8	40
Copper	2	mg/kg	46	21	9.2	11
Nickel	1	mg/kg	6.2	4.8	4.6	25
Zinc	5	mg/kg	15	46	53	35
Lead	2	mg/kg	19	35	49	29

Client Sample ID			TP5A	TP6A	ТР7А	TP8A	
Sample Matrix			Soil	Soil	Soil	Soil	
mgt-LabMark Sample No.			S11-Ap32412	S11-Ap32413	S11-Ap32414	S11-Ap32415	
Date Sampled			Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9 Fraction by GC	10	mg/kg	< 10	< 10	< 10	< 10	
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	< 50	< 50	< 50	
TRH C15-C28 Fraction by GC	100	mg/kg	140	110	< 100	< 100	
TRH C29-C36 Fraction by GC	100	mg/kg	110	190	140	120	
TRH C10-36 (Total)	100	mg/kg	250	300	140	120	
втех							
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Total m+p-Xylenes	1	mg/kg	< 1	< 1	< 1	< 1	
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Xylenes(ortho.meta and para)	0.15	mg/kg	< 0.15	< 0.15	< 0.15	< 0.15	
Total BTEX	1	mg/kg	< 1	< 1	< 1	< 1	
4-Bromofluorobenzene (surr.)	1	%	92	96	103	94	
· ,							
% Moisture	0.1	%	2.6	8.7	4.8	5.6	
Polyaromatic Hydrocarbons (PAH)							
Acenaphthene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5	
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Anthracene	0.5	mg/kg	2.6	< 0.5	< 0.5	< 0.5	
Benz(a)anthracene	0.5	mg/kg	5.2	< 0.5	1.1	1.0	
Benzo(a)pyrene	0.5	mg/kg	3.7	< 0.5	1.3	1.2	
Benzo(b)fluoranthene &							
Benzo(k)fluoranthene	1	mg/kg	7.1	< 1	2.4	2.0	
Benzo(g.h.i)perylene	0.5	mg/kg	3.2	< 0.5	1.8	1.3	
Chrysene	0.5	mg/kg	5.4	< 0.5	1.4	1.1	
Dibenz(a.h)anthracene	0.5	mg/kg	1.2	< 0.5	0.6	0.6	
Fluoranthene	0.5	mg/kg	19	< 0.5	2.7	2.1	
Fluorene	0.5	mg/kg	0.8	< 0.5	< 0.5	< 0.5	
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	3.0	< 0.5	1.5	1.2	
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	
Phenanthrene	0.5	mg/kg	12	< 0.5	0.8	< 0.5	
Pyrene	0.5	mg/kg	15	< 0.5	2.3	1.9	
Total PAH	1	mg/kg	79	< 1	16	12	
2-Fluorobiphenyl (surr.)	1	%	89	87	75	75	
p-Terphenyl-d14 (surr.)	1	%	77	81	71	71	
Heavy Metals							
Mercury	0.05	mg/kg	< 0.05	< 0.05	< 0.05	0.06	
Arsenic	1	mg/kg	3.2	3.8	5.4	5.1	
Cadmium	0.1	mg/kg	0.1	< 0.1	0.1	0.1	
Chromium	2	mg/kg	7.4	9.2	6.1	5.8	
Copper	2	mg/kg	15	14	20	16	
Nickel	1	mg/kg	9.1	4.0	8.9	4.6	
Zinc	5	mg/kg	57	47	80	80	
Lead	2	mg/kg	31	19	43	73	

Client Sample ID			TP9A	TP11A	TP11B	TP2A+TP6A (COMPOSITE)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S11-Ap32416	S11-Ap32417	S11-Ap32418	S11-Ap32419
Date Sampled			Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9 Fraction by GC	10	mg/kg	< 10	< 10	< 10	-
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	< 50	< 50	-
TRH C15-C28 Fraction by GC	100	mg/kg	< 100	< 100	3000	-
TRH C29-C36 Fraction by GC	100	mg/kg	< 100	< 100	2000	-
TRH C10-36 (Total)	100	mg/kg	< 100	< 100	5000	-
BTEX		0 0				
Benzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Toluene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Ethylbenzene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	_
Total m+p-Xylenes	1	mg/kg	< 1	< 1	< 1	_
o-Xylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
Xylenes(ortho.meta and para)	0.15	mg/kg	< 0.15	< 0.15	< 0.15	_
Total BTEX	1	mg/kg	< 1	< 1	< 1	_
4-Bromofluorobenzene (surr.)	1	%	90	103	113	_
	<u>'</u>	,,				
Tributyl Tin (as Sn)	0.005	ng/g	-	-	NMI report	-
% Moisture	0.1	%	3.3	9.2	4.9	11
Polychlorinated Biphenyls (PCB)	0.1	70	3.3	9.2	7.5	- ''
Aroclor-1016	0.5	mg/kg	_	_	-	< 0.5
Aroclor-1232	0.5	mg/kg	_			< 0.5
Aroclor-1242	0.5	mg/kg				< 0.5
Aroclor-1248	0.5	mg/kg				< 0.5
Aroclor-1254	0.5	mg/kg	-	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	-	< 0.5
Dibutylchlorendate (surr.)	1	// // // // // // // // // // // // //	-	-	-	109
Organochlorine Pesticides (OC)		70	-	-	-	109
4.4'-DDD	0.05	ma/ka	_	_	_	< 0.05
		mg/kg	-	-	-	
4.4'-DDE	0.05	mg/kg				< 0.05
4.4'-DDT	0.2	mg/kg	-	-	-	< 0.2
a-BHC	0.05	mg/kg	-	-	-	< 0.05
a-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
o-BHC	0.05	mg/kg	-	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	-	< 0.05
g-Chlordane	0.05	mg/kg	-	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	-	< 0.2
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	90

Client Sample ID			ТР9А	TP11A	TP11B	TP2A+TP6A
						(COMPOSITE)
Sample Matrix			Soil	Soil	Soil	Soil
mgt-LabMark Sample No.			S11-Ap32416	S11-Ap32417	S11-Ap32418	S11-Ap32419
Date Sampled			Apr 29, 2011	Apr 29, 2011	Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit				
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	9.6	-
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	1.4	-
Anthracene	0.5	mg/kg	< 0.5	< 0.5	40	-
Benz(a)anthracene	0.5	mg/kg	1.5	< 0.5	150	-
Benzo(a)pyrene	0.5	mg/kg	1.7	0.5	120	-
Benzo(b)fluoranthene &						
Benzo(k)fluoranthene	1	mg/kg	2.7	< 1	220	-
Benzo(g.h.i)perylene	0.5	mg/kg	1.8	0.6	110	-
Chrysene	0.5	mg/kg	1.6	0.5	130	-
Dibenz(a.h)anthracene	0.5	mg/kg	0.6	< 0.5	41	-
Fluoranthene	0.5	mg/kg	3.4	1.2	490	-
Fluorene	0.5	mg/kg	< 0.5	< 0.5	7.8	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	1.4	0.5	96	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	1.1	-
Phenanthrene	0.5	mg/kg	1.1	< 0.5	170	-
Pyrene	0.5	mg/kg	3.0	1.0	450	-
Total PAH	1	mg/kg	19	4.3	2000	-
2-Fluorobiphenyl (surr.)	1	%	90	88	78	-
p-Terphenyl-d14 (surr.)	1	%	83	83	77	-
Heavy Metals						
Mercury	0.05	mg/kg	< 0.05	0.13	< 0.05	-
Arsenic	1	mg/kg	7.4	3.0	3.1	-
Cadmium	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Chromium	2	mg/kg	6.0	6.0	9.9	-
Copper	2	mg/kg	21	16	21	-
Nickel	1	mg/kg	14	5.9	12	-
Zinc	5	mg/kg	86	88	63	-
Lead	2	mg/kg	54	42	42	-

Client Sample ID			TS110427.7	MTB270411.2	TB110427.7	QA1	
Sample Matrix			Soil	Soil	Soil	Soil S11-Ap32423	
mgt-LabMark Sample No.			S11-Ap32420	S11-Ap32421	S11-Ap32422		
Date Sampled			Apr 27, 2011	Apr 27, 2011	Apr 27, 2011	Apr 29, 2011	
Test/Reference	LOR	Unit					
Total Recoverable Hydrocarbons							
TRH C6-C9 Fraction by GC	10	mg/kg	91	-	< 10	< 10	
TRH C10-C14 Fraction by GC	50	mg/kg	-	-	-	< 50	
TRH C15-C28 Fraction by GC	100	mg/kg	-	-	-	< 100	
TRH C29-C36 Fraction by GC	100	mg/kg	-	-	-	< 100	
TRH C10-36 (Total)	100	mg/kg	-	-	-	< 100	
ВТЕХ							
Benzene	0.5	mg/kg	99	-	< 0.5	< 0.5	
Toluene	0.5	mg/kg	83	-	< 0.5	< 0.5	
Ethylbenzene	0.5	mg/kg	72	-	< 0.5	< 0.5	
Total m+p-Xylenes	1	mg/kg	72	-	< 1	< 1	
o-Xylene	0.5	mg/kg	72	-	< 0.5	< 0.5	
Xylenes(ortho.meta and para)	0.15	mg/kg	72	-	< 0.15	< 0.15	
Total BTEX	1	mg/kg	< 1	-	< 1	< 1	
4-Bromofluorobenzene (surr.)	1	%	126	-	90	87	
% Moisture	0.1	%	-	< 0.1		14	
Heavy Metals	0	,,,		, , , , ,			
Mercury	0.05	mg/kg	_	< 0.05	_	_	
Arsenic	1	mg/kg	_	3.9	-	-	
Cadmium	0.1	mg/kg	_	< 0.1	_	-	
Chromium	2	mg/kg	_	< 2	_	-	
Copper	2	mg/kg	-	< 2	-	-	
Nickel	1	mg/kg	-	< 1	-	-	
Zinc	5	mg/kg	-	< 5	-	-	
Lead	2	mg/kg	_	< 2	-	-	

Client Sample ID			TP13A	TP9A+TP13A
Comple Metrix			Soil	(COMPOSITE)
Sample Matrix				Soil
mgt-LabMark Sample No.			S11-Ap32424	S11-Ap32425
Date Sampled	1.00	1.1	Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons	10		10	
TRH C6-C9 Fraction by GC	10	mg/kg	< 10	-
TRH C10-C14 Fraction by GC	50	mg/kg	< 50	-
TRH C15-C28 Fraction by GC	100	mg/kg	< 100	-
TRH C29-C36 Fraction by GC	100	mg/kg	210	-
TRH C10-36 (Total)	100	mg/kg	210	-
BTEX				
Benzene	0.5	mg/kg	< 0.5	-
Toluene	0.5	mg/kg	< 0.5	-
Ethylbenzene	0.5	mg/kg	< 0.5	-
Total m+p-Xylenes	1	mg/kg	< 1	-
o-Xylene	0.5	mg/kg	< 0.5	-
Xylenes(ortho.meta and para)	0.15	mg/kg	< 0.15	-
Total BTEX	1	mg/kg	< 1	-
4-Bromofluorobenzene (surr.)	1	%	105	-
% Moisture	0.1	%	13	8.2
Polychlorinated Biphenyls (PCB)				
Aroclor-1016	0.5	mg/kg	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	107
Organochlorine Pesticides (OC)				
4.4'-DDD	0.05	mg/kg	-	< 0.05
4.4'-DDE	0.05	mg/kg		< 0.05
4.4'-DDT	0.2	mg/kg	-	< 0.2
a-BHC	0.05	mg/kg	-	< 0.05
a-Chlordane	0.05	mg/kg	-	< 0.05
Aldrin	0.05	mg/kg	-	< 0.05
b-BHC	0.05	mg/kg	-	< 0.05
d-BHC	0.05	mg/kg	-	< 0.05
Dieldrin	0.05	mg/kg	-	< 0.05
Endosulfan I	0.05	mg/kg	-	< 0.05
Endosulfan II	0.05	mg/kg	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	< 0.05
Endrin	0.05	mg/kg	_	< 0.05
Endrin aldehyde	0.05	mg/kg	-	< 0.05
Endrin ketone	0.05	mg/kg	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	< 0.05
g-Chlordane	0.05	mg/kg	-	< 0.05
y-Chlordane Heptachlor	0.05	mg/kg	-	< 0.05
Heptachlor epoxide	0.05			< 0.05
<u> </u>		mg/kg	-	
Hexachlorobenzene Methoxyablor	0.05	mg/kg	-	< 0.05
Methoxychlor Tetrachloro m vylono (qurr.)	0.2	mg/kg	-	< 0.2
Tetrachloro-m-xylene (surr.)	1	%	-	92
Polyaromatic Hydrocarbons (PAH) Acenaphthene	0.5	mg/kg	< 0.5	

Client Sample ID			TP13A	TP9A+TP13A
				(COMPOSITE)
Sample Matrix			Soil	Soil
mgt-LabMark Sample No.			S11-Ap32424	S11-Ap32425
Date Sampled			Apr 29, 2011	Apr 29, 2011
Test/Reference	LOR	Unit		
Acenaphthylene	0.5	mg/kg	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-
Benzo(b)fluoranthene &				
Benzo(k)fluoranthene	1	mg/kg	< 1	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-
Total PAH	1	mg/kg	< 1	-
2-Fluorobiphenyl (surr.)	1	%	86	-
p-Terphenyl-d14 (surr.)	1	%	82	-
Heavy Metals				
Mercury	0.05	mg/kg	< 0.05	-
Arsenic	1	mg/kg	2.8	-
Cadmium	0.1	mg/kg	0.3	-
Chromium	2	mg/kg	6.1	-
Copper	2	mg/kg	11	-
Nickel	1	mg/kg	4.7	-
Zinc	5	mg/kg	55	-
Lead	2	mg/kg	26	_

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons	Sydney	May 02, 2011	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
BTEX	Sydney	May 02, 2011	14 Day
- Method: E029/E016 BTEX			
% Moisture	Sydney	May 02, 2011	28 Day
- Method: E005 Moisture Content	Sydney	May 02, 2011	14 Dav
Polychlorinated Biphenyls (PCB) - Method: E013 Polychlorinated Biphenyls (PCB)	Syuney	Way 02, 2011	14 Day
Organochlorine Pesticides (OC)	Sydney	May 02, 2011	14 Dav
- Method: E013 Organochlorine Pesticides (OC)	Gyanoy	Way 52, 2511	1 1 Day
Polyaromatic Hydrocarbons (PAH)	Sydney	May 02, 2011	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)		•	•
Mercury	Sydney	May 02, 2011	28 Day

ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 9564 7055 NATA # 1261 & 1645 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 8215 6222
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600

Company Name: Address: Robert Carr and Associates Pty Ltd PO Box 175 Carrington NSW 2294 Apr 29, 2011 12:00 May 6, 2011 05:58 Order No.: Received: Report #: 297703 02 4902 9200 Due:

Priority: 5 Day Fiona Brooker Phone: Fax: 0249029299 Contact name:

8535/1 Client Job No.: mgt-LabMark Client Manager: Leanne Knowles

Sample Detail Laboratory where analysis is conducted						Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	TRH C6-C9 Fraction by GC	Tributyl Tin (as Sn)	Zinc	Total Recoverable Hydrocarbons	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)
Melbourne Laboratory - NATA Site #1261														Х						
Sydney Labo	ratory - NATA S		1		Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID																
TP1A	Apr 29, 2011		Soil	S11-Ap32408	Х	х	х	х	х	Х	Х	Х	Х		х	х	Х			х
TP2A	Apr 29, 2011		Soil	S11-Ap32409	Х	Х	Х	х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP3A	Apr 29, 2011		Soil	S11-Ap32410	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х
TP4A	Apr 29, 2011		Soil	S11-Ap32411	Х	Х	х	х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP5A	Apr 29, 2011		Soil	S11-Ap32412	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP6A	Apr 29, 2011		Soil	S11-Ap32413	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP7A	Apr 29, 2011		Soil	S11-Ap32414	Х	Х	Х	х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP8A	Apr 29, 2011		Soil	S11-Ap32415	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP9A	Apr 29, 2011		Soil	S11-Ap32416	Х	Х	Х	х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP11A	Apr 29, 2011		Soil	S11-Ap32417	Х	Х	Х	х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP11B	Apr 29, 2011		Soil	S11-Ap32418	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			Х

ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au web: www.mgtlabmark.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 9564 7055 NATA # 1261 & 1645 Site # 1254 & 14271 Sydney
Unit F6, Building F
16 Mars Road
Lane Cove West NSW 2066
Phone: +61 2 8215 6222
NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600

Company Name: Address: Apr 29, 2011 12:00 May 6, 2011 05:58 Order No.: Received: Report #: Due:

Robert Carr and Associates Pty Ltd PO Box 175 Carrington NSW 2294 297703 02 4902 9200 Priority: 5 Day Fiona Brooker Phone: Fax: 0249029299 Contact name:

8535/1 Client Job No.: mgt-LabMark Client Manager: Leanne Knowles

Sample Detail Laboratory where analysis is conducted					% Moisture	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	TRH C6-C9 Fraction by GC	Tributyl Tin (as Sn)	Zinc	Total Recoverable Hydrocarbons	втех	Polychlorinated Biphenyls (PCB)	Organochlorine Pesticides (OC)	Polyaromatic Hydrocarbons (PAH)
-	-													V						
	boratory - NAT				.,	.,	,,	.,	.,		.,	.,	.,	Х	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
Sydney Labor	ratory - NATA S	ite #1645	Т	1	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х
TP2A+TP6A (COMPOSITE)	Apr 29, 2011		Soil	S11-Ap32419	Х													X	х	
TS110427.7	Apr 27, 2011		Soil	S11-Ap32420									Х				Х			
MTB270411.2	Apr 27, 2011		Soil	S11-Ap32421	Х	Х	х	х	Х	Х	Х	Х			х					
TB110427.7	Apr 27, 2011		Soil	S11-Ap32422									Х				Х			
QA1	Apr 29, 2011		Soil	S11-Ap32423	Х								Х			Х	Х			
TP13A	Apr 29, 2011		Soil	S11-Ap32424	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х			Х
TP9A+TP13A (COMPOSITE)	Apr 29, 2011		Soil	S11-Ap32425	х													х	х	
TSLAB110427.	Apr 27, 2011		Soil	S11-Ap32426									Х				Х			

mgt-LabMark Internal Quality Control Review General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples
 are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis.
- 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001)

For samples received on the last day of holding time, notification of testing requirements should have been received at least

6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as an RPD

UNITS

mg/kg:milligrams per Kilogram mg/L:milligrams per litre

µg/l: micrograms per litre ppm: Parts per million

ppb: Parts per billion %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

TERMS

Dry: Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR: Limit Of Reporting.

SPIKE: Addition of the analyte to the sample and reported as percentage recovery.

RPD: Relative Percent Difference between two Duplicate pieces of analysis.

LCS: Laboratory Control Sample - reported as percent recovery.

CRM: Certified Reference Material - reported as percent recovery.

Method Blank: In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate: The addition of a like compound to the analyte target and reported as percentage recovery.

Duplicate: A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate: A second piece of analysis from a sample outside of the client's batch of samples but run within the laboratory batch of analysis. **Batch SPIKE:** Spike recovery reported on a sample from outside of the client's batch of samples but run within the laboratory batch of analysis.

USEPA: U.S Environmental Protection Agency
APHA: American Public Health Association

ASLP: Australian Standard Leaching Procedure (AS4439.3)

TCLP: Toxicity Characteristic Leaching Procedure

COC: Chain Of Custody
SRA: Sample Receipt Advice

QC - ACCEPTANCE CRITERIA

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-20%

Surrogate Recoveries: Recoveries must lie between 50-150% - Phenols 20-130%.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data below the LOR with a positive RPD
- eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

Quality Control Results

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifyin Codes
Method Blank					
Total Recoverable Hydrocarbons E004 F	Petroleum	Hydrocarbor			
TRH C6-C9 Fraction by GC	mg/kg	< 10	10	Pass	
TRH C10-C14 Fraction by GC	mg/kg	< 50	50	Pass	
TRH C15-C28 Fraction by GC	mg/kg	< 100	100	Pass	
TRH C29-C36 Fraction by GC	mg/kg	< 100	100	Pass	
Method Blank					-
BTEX E029/E016 BTEX	ma/ka	< 0.5	0.5	Pass	
Benzene Toluene	mg/kg mg/kg	< 0.5	0.5	Pass	
Ethylbenzene	mg/kg	< 0.5	0.5	Pass	
Total m+p-Xylenes	mg/kg	< 1	0.5	Pass	
o-Xylene	mg/kg	< 0.5	0.5	Pass	
Xylenes(ortho.meta and para)	mg/kg	< 0.15	0.15	Pass	
Total BTEX	mg/kg	< 1	1	Pass	
Method Blank	9,9			1 . 000	
Polychlorinated Biphenyls (PCB) E013 F	Polychlorin	nated Biphen			
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	1
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	1
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides (OC) E013 O	rganochlo	rine Pesticid			
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.2	0.2	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
a-Chlordane	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg mg/kg	< 0.05 < 0.05	0.05 0.05	Pass Pass	-
g-Chlordane	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	+
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	+
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.03	0.03	Pass	
Method Blank	9/119	7 0.2	0.2	1 400	
Polyaromatic Hydrocarbons (PAH) E007	Polvarom	atic Hydroca			
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	1
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b)fluoranthene & Benzo(k)fluorar	mg/kg	< 1	1	Pass	1
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifyin Codes
Mercury	mg/kg	< 0.05	0.05	Pass	
Arsenic	mg/kg	< 1	1	Pass	
Cadmium	mg/kg	< 0.1	0.1	Pass	
Chromium	mg/kg	< 2	2	Pass	
Copper	mg/kg	< 2	2	Pass	
Nickel	mg/kg	< 1	1	Pass	
Zinc	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 2	2	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons E004 Petroleun	Hydrocarbor	Result 1			
TRH C6-C9 Fraction by GC	%	75	70-130	Pass	
TRH C15-C28 Fraction by GC	%	88	70-130	Pass	
LCS - % Recovery					
BTEX E029/E016 BTEX		Result 1			
Benzene	%	70	70-130	Pass	
Toluene	%	89	70-130	Pass	
Ethylbenzene	%	97	70-130	Pass	
Total m+p-Xylenes	%	91	70-130	Pass	
o-Xylene	%	87	70-130	Pass	
Xylenes(ortho.meta and para)	%	90	70-130	Pass	
LCS - % Recovery					
Polychlorinated Biphenyls (PCB) E013 Polychlor	inated Biphen	Result 1			
Aroclor-1254	%	108	70-130	Pass	
Aroclor-1260	%	88	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides (OC) E013 Organochlo	orine Pesticide	Result 1			
4.4'-DDD	%	110	70-130	Pass	
4.4'-DDE	%	106	70-130	Pass	
4.4'-DDT	%	107	70-130	Pass	
a-BHC	%	108	70-130	Pass	
a-Chlordane	%	108	70-130	Pass	
Aldrin	%	104	70-130	Pass	
b-BHC	%	107	70-130	Pass	
d-BHC	%	87	70-130	Pass	
Dieldrin	%	113	70-130	Pass	
Endosulfan I	%	109	70-130	Pass	
Endosulfan II	%	104	70-130	Pass	
Endosulfan sulphate	%	82	70-130	Pass	
Endrin	%	107	70-130	Pass	
Endrin aldehyde	%	84	70-130	Pass	
Endrin ketone	%	103	70-130	Pass	
g-BHC (Lindane)	%	110	70-130	Pass	
g-Chlordane	%	109	70-130	Pass	
Heptachlor	%	111	70-130	Pass	
Heptachlor epoxide	%	109	70-130	Pass	
Hexachlorobenzene	%	82	70-130	Pass	
Methoxychlor	%	110	70-130	Pass	
LCS - % Recovery					
Polyaromatic Hydrocarbons (PAH) E007 Polyaro					
Acenaphthene	%	86	70-130	Pass	
Acenaphthylene	%	87	70-130	Pass	
Anthracene	%	87	70-130	Pass	
Benz(a)anthracene	%	78	70-130	Pass	
Benzo(a)pyrene	%	74	70-130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluora		70	70-130	Pass	
Benzo(g.h.i)perylene	%	80	70-130	Pass	
Chrysene	%	84	70-130	Pass	
Dibenz(a.h)anthracene	%	90	70-130	Pass	
Fluoranthene	%	80	70-130	Pass	
Fluorene	%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	85	70-130	Pass	
Naphthalene	%	88	70-130	Pass	
Phenanthrene	%	81	70-130	Pass	
	%			Pass	

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyir Codes
		Result 1					
Mercury	%	88			70-130	Pass	
Arsenic	%	117			70-130	Pass	
Cadmium	%	100			70-130	Pass	
Chromium	%	103			70-130	Pass	
Copper	%	105			70-130	Pass	
Nickel	%	101			70-130	Pass	
Zinc	%	113			70-130	Pass	
Lead	%	105			70-130	Pass	
Duplicate of S11-Ap32408]							
Total Recoverable Hydrocarbons		Result 1	Result 2	RPD			
TRH C6-C9 Fraction by GC	mg/kg	< 10	< 10	<1	30%	Pass	
TRH C10-C14 Fraction by GC	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C15-C28 Fraction by GC	mg/kg	180	200	10	30%	Pass	
TRH C29-C36 Fraction by GC	mg/kg	1500	1400	1.9	30%	Pass	
Duplicate of S11-Ap32408]							
BTEX		Result 1	Result 2	RPD			
Benzene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total m+p-Xylenes	mg/kg	< 1	< 1	<1	30%	Pass	
o-Xylene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes(ortho.meta and para)	mg/kg	< 0.15	< 0.15	<1	30%	Pass	
Duplicate of S11-Ap32408]							
Polyaromatic Hydrocarbons (PAH)		Result 1	Result 2	RPD			
Acenaphthene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	mg/kg	1.2	1.1	15	30%	Pass	
Benz(a)anthracene	mg/kg	2.2	1.9	16	30%	Pass	
Benzo(a)pyrene	mg/kg	2.9	2.6	12	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoran	mg/kg	4.5	3.9	13	30%	Pass	
Benzo(g.h.i)perylene	mg/kg	3	2.8	4	30%	Pass	
Chrysene	mg/kg	2.5	2.3	6	30%	Pass	
Dibenz(a.h)anthracene	mg/kg	0.8	0.9	4	30%	Pass	
Fluoranthene	mg/kg	4.8	4.1	15	30%	Pass	
Fluorene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	1.8	2.2	20	30%	Pass	
Naphthalene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	mg/kg	2.7	2.5	9	30%	Pass	
Pyrene	mg/kg	4.9	4.4	10	30%	Pass	
Duplicate of S11-Ap32408]							
		Result 1	Result 2	RPD			
Mercury	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Arsenic	mg/kg	1.7	2.1	24	30%	Pass	
Cadmium	mg/kg	0.4	0.2	<1	30%	Pass	
Chromium	mg/kg	4.7	4.6	2	30%	Pass	
Copper	mg/kg	46	40	13	30%	Pass	
Nickel	mg/kg	6.2	6.6	6	30%	Pass	
Zinc	mg/kg	15	14	8	30%	Pass	
Lead	mg/kg	19	17	9	30%	Pass	
Duplicate of S11-Ap32417]							
		Result 1	Result 2	RPD			
		0.13	0.14	14	30%	Pass	
Mercury	mg/kg				_		1
Arsenic	mg/kg	3	3.2	9	30%	Pass	
Arsenic Cadmium	mg/kg mg/kg	3 < 0.1	3.2 0.2	<1	30%	Pass	
Arsenic Cadmium Chromium	mg/kg mg/kg mg/kg	3 < 0.1 6	3.2 0.2 5.5	<1 9	30% 30%	Pass Pass	
Arsenic Cadmium Chromium Copper	mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16	3.2 0.2 5.5 12	<1 9 30	30% 30% 30%	Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead	mg/kg mg/kg mg/kg	3 < 0.1 6	3.2 0.2 5.5	<1 9	30% 30%	Pass Pass	
Arsenic Cadmium Chromium Copper Lead Duplicate of S11-Ap32418]	mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16 42	3.2 0.2 5.5 12 41	<1 9 30	30% 30% 30%	Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Duplicate of S11-Ap32418] Total Recoverable Hydrocarbons	mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16	3.2 0.2 5.5 12	<1 9 30	30% 30% 30%	Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Duplicate of S11-Ap32418]	mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16 42 Result 1 < 10	3.2 0.2 5.5 12 41 Result 2 < 10	<1 9 30 2	30% 30% 30%	Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Duplicate of S11-Ap32418] Total Recoverable Hydrocarbons	mg/kg mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16 42 Result 1	3.2 0.2 5.5 12 41	<1 9 30 2	30% 30% 30% 30%	Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Copper Lead Copplicate of S11-Ap32418] Cotal Recoverable Hydrocarbons TRH C6-C9 Fraction by GC	mg/kg mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16 42 Result 1 < 10	3.2 0.2 5.5 12 41 Result 2 < 10	<1 9 30 2 RPD <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass	
Arsenic Cadmium Chromium Copper Lead Duplicate of S11-Ap32418 Fotal Recoverable Hydrocarbons TRH C6-C9 Fraction by GC TRH C10-C14 Fraction by GC	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	3 < 0.1 6 16 42 Result 1 < 10 < 50	3.2 0.2 5.5 12 41 Result 2 < 10 < 50	<1 9 30 2 RPD <1 <1	30% 30% 30% 30% 30%	Pass Pass Pass Pass Pass Pass	

Sample, Test, Result Reference	Units	Result 1			Acceptance Limits	Pass Limits	Qualifyin Codes
Benzene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Toluene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Ethylbenzene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Total m+p-Xylenes	mg/kg	< 1	< 1	<1	30%	Pass	
o-Xylene	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Xylenes(ortho.meta and para)	mg/kg	< 0.15	< 0.15	<1	30%	Pass	
[Duplicate of S11-Ap32418]							
Polyaromatic Hydrocarbons (PAH)		Result 1	Result 2	RPD			
Acenaphthene	mg/kg	9.6	11	13	30%	Pass	
Acenaphthylene	mg/kg	1.4	1.3	3	30%	Pass	
Anthracene	mg/kg	40	42	3	30%	Pass	
Benz(a)anthracene	mg/kg	150	150	2	30%	Pass	
Benzo(a)pyrene	mg/kg	120	140	17	30%	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoran	mg/kg	220	250	12	30%	Pass	†
Benzo(g.h.i)perylene	mg/kg	110	130	18	30%	Pass	
Chrysene	mg/kg	130	140	4	30%	Pass	
Dibenz(a.h)anthracene	mg/kg	41	49	17	30%	Pass	+
Fluoranthene	mg/kg	490	500	3	30%	Pass	+
Fluorene	mg/kg	7.8	8.4	8	30%	Pass	+
Indeno(1.2.3-cd)pyrene	mg/kg	96	110	17	30%	Pass	+
Naphthalene	mg/kg	1.1	1.1	3	30%	Pass	+
Phenanthrene	mg/kg	170	180	3	30%		+
		450	180 460	3	_	Pass	+
Pyrene PATOLIA	mg/kg	450	460	3	30%	Pass	-
[Duplicate of S11-My30136 - BATCH]		D 11.4	D 1: 0	200			4
Polychlorinated Biphenyls (PCB)		Result 1	Result 2	RPD			
Aroclor-1016	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1232	mg/kg	< 0.5	< 0.5	<1	30%	Pass	1
Aroclor-1242	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1248	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1254	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Aroclor-1260	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
[Duplicate of S11-Ap32270 - BATCH]							
Organochlorine Pesticides (OC)		Result 1	Result 2	RPD			
4.4'-DDD	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
a-BHC	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-Chlordane	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	mg/kg	< 0.05	< 0.05	<1	30%	Pass	1
Endosulfan II	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
Endosulfan sulphate	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
Endrin	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
Endrin aldehyde	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
Endrin ladenyde Endrin ketone	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
g-BHC (Lindane)	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
g-Chlordane		< 0.05	< 0.05		30%	Pass	+
ŭ .	mg/kg			<1			+
Heptachlor	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	mg/kg	< 0.05	< 0.05	<1	30%	Pass	+
Hexachlorobenzene	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
[Spike of S11-Ap32408] - % Recovery					1		4
Total Recoverable Hydrocarbons		Result 1					
TRH C6-C9 Fraction by GC	%	91			70 - 130	Pass	
TRH C15-C28 Fraction by GC	%	80			70 - 130	Pass	
Spike of S11-Ap32408] - % Recovery							
BTEX		Result 1					
Benzene	%	83			70 - 130	Pass	
Toluene	%	98			70 - 130	Pass	
	%	91			70 - 130	Pass	
Ethylbenzene	70	"					
Ethylbenzene Total m+p-Xylenes	%	97			70 - 130	Pass	
-					70 - 130 70 - 130	Pass Pass	-

Sample, Test, Result Reference	Units	Result 1	Acceptance Limits	Pass Limits	Qualifyin Codes
Spike of S11-My30136 - BATCH] - % Re	covery				
Polychlorinated Biphenyls (PCB)		Result 1			
Aroclor-1254	%	105	70 - 130	Pass	
Aroclor-1260	%	88	70 - 130	Pass	
Spike of S11-Ap32270 - BATCH] - % Rec	covery			<u> </u>	
Organochlorine Pesticides (OC)		Result 1			
4.4'-DDD	%	115	70 - 130	Pass	
4.4'-DDE	%	116	70 - 130	Pass	
4.4'-DDT	%	103	70 - 130	Pass	
a-BHC	%	120	70 - 130	Pass	
a-Chlordane	%	113	70 - 130	Pass	
Aldrin	%	108	70 - 130	Pass	
b-BHC	%	102	70 - 130	Pass	
d-BHC	%	86	70 - 130	Pass	
Dieldrin	%	119	70 - 130	Pass	
Endosulfan I	%	116	70 - 130	Pass	
Endosulfan II	%	113	70 - 130	Pass	
Endosulfan sulphate	%	117	70 - 130	Pass	
Endrin	%	112	70 - 130	Pass	
Endrin aldehyde	%	113	70 - 130	Pass	
Endrin ketone	%	111	70 - 130	Pass	
g-BHC (Lindane)	%	107	70 - 130	Pass	
g-Chlordane	%	114	70 - 130	Pass	
Heptachlor	%	108	70 - 130	Pass	
Heptachlor epoxide	%	118	70 - 130	Pass	
Hexachlorobenzene	%	83	70 - 130	Pass	
Methoxychlor	%	119	70 - 130	Pass	
Spike of S11-Ap32408] - % Recovery					
Polyaromatic Hydrocarbons (PAH)		Result 1			
Acenaphthene	%	111	70 - 130	Pass	
Acenaphthylene	%	116	70 - 130	Pass	
Anthracene	%	104	70 - 130	Pass	
Benz(a)anthracene	%	94	70 - 130	Pass	
Benzo(a)pyrene	%	92	70 - 130	Pass	
Benzo(b)fluoranthene & Benzo(k)fluoran	%	91	70 - 130	Pass	
Benzo(g.h.i)perylene	%	88	70 - 130	Pass	
Chrysene	%	105	70 - 130	Pass	
Dibenz(a.h)anthracene	%	97	70 - 130	Pass	
Fluoranthene	%	101	70 - 130	Pass	
Fluorene	%	111	70 - 130	Pass	
Indeno(1.2.3-cd)pyrene	%	92	70 - 130	Pass	
Naphthalene	%	117	70 - 130	Pass	
Phenanthrene	%	101	70 - 130	Pass	
Pyrene	%	96	70 - 130	Pass	
Spike of S11-Ap32409] - % Recovery					
	0.	Result 1			1
Mercury	%	97	70 - 130	Pass	-
Arsenic	%	101	70 - 130	Pass	
Cadmium	%	91	70 - 130	Pass	-
Chromium	%	80	70 - 130	Pass	
Copper	%	79	70 - 130	Pass	
Nickel	%	89	70 - 130	Pass	1

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Organic samples had Teflon liners

Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

Yes

Authorised By

Dr. Bob Symons

NATA Signatory

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

mgt-LabMark shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall mgt-LabMark be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

REPORT OF ANALYSIS

Page: 1 of 2 Report No. RN855493

Client : MGT-LABMARK ENVIRONMENTAL PTY LTD Job No. : MGTL02/110502

UNIT F6, BUILDING F

: QT-01665 Quote No.

16 MARS ROAD

Order No.

LANE COVE WEST NSW 2066

Date Sampled:

Date Received : 2-MAY-2011

Attention : LEANNE KNOWLES Sampled By

Project Name:

Your Client Services Manager : BRIAN WOODWARD

Phone : (02) 94490151

Lab Reg No.	Sample Ref	Sample Description
N11/013292	TP3A	SOIL 11AP32410
N11/013293	TP11B	SOIL 11AP32418

Lab Reg No.		N11/013292	N11/013293		
Sample Reference		TP3A	TP11B		
	Units				Method
Organotins					
Monobutyltin as Sn	ng/g	1.0	< 0.5		NR_35
Dibutyltin as Sn	ng/g	< 0.5	< 0.5		NR_35
Tributyltin as Sn	ng/g	< 0.5	< 0.5		NR_35
Surrogate Tripropyltin Rec.	%	105	114		NR_35
Dates					
Date extracted		10-MAY-2011	10-MAY-2011		
Date analysed		14-MAY-2011	14-MAY-2011		

Luke Baker, Analyst Organics - NSW

Accreditation No. 198

17-MAY-2011

Lab Reg No.		N11/013292	N11/013293		
Sample Reference		TP3A	TP11B		
	Units				Method
Trace Elements					
Total Solids	%	88.9	95.7		NT2_49

Nasir Shikdar, Analyst Inorganics - NSW Accreditation No. 198

17-MAY-2011

National Measurement Institute

REPORT OF ANALYSIS

Page: 2 of 2 Report No. RN855493

All results are expressed on a dry weight basis. This reporr supersedes report RN855415: Client details amended.

This report is issued in accordance with NATA's accreditation requirements.

Accreditated for compliance with ISO/IEC 17025.

This report shall not be reproduced except in full.

Results relate only to the sample(s) tested.

This Report supersedes reports: RN853655 RN855379

CHAIN OF CUSTODY RECORD

2434223734 IIII 6 Las Marie K ENVIRONMENTAL LABORATORIES

				CLIE	NT DE	TAIL!	s	1	•				Page	<u></u> of	2					
	Company Name : RCA		<u> </u>	1	t Name :		alho	H CK	1115	ľ	urchase Or			,			COC Num	iber:		
	Office Address: 92 Hill St	Corcin	490	Projec	Manage	ر: ل	مأدمأوم	1310	sher	Ρ	ROJECT N	umber ;	853	\$//	,		mgt QUO	TE ID :		
	NSV- 2294			e.mail	for result	\$@)/co ₁ ()	moust	Voni elle L	1021	ourier Con	signment	#:	′ —						
				ļ				/A	nalytes	CONCO	~~·~i					i i i i i i i i i i i i i i i i i i i			ACCOUNT.	
	Special Directions & Comments	7			BTEX 7/58							Laboratory Addrasa:			mgt-LabMark Unit 1/ 8 Leighton Piece Asquith 2077 NSW, Australia Phone : +612 9476 6533					
	TPGa+2a double	e som	rple upl.	p_O	ScP Sep		1 1.3	787												
	please composing	e of each	8	ماه	o	7 2										Fax : +0		6 8219 Symons		
	and analyse ocp/,		19	8	ठ्ठी	\$ \\ \gamma \\ \	14	7 4							. 238 . THE NE	*	263	bmark.com.au		
	Sample ID	Date	Matrix	X	\sim				 					1LP	250P	125P	Container 1LA		100mL A	OTHER
11Ap32408	TOICE	29/4/11	Soi.1																	
11Ap32408	2 TP29																			
11 46221110	1 TP 2 Ca							\times												
11 26-2241	1 TP4a																	L		
11Ab32412	5 TP 59			Ш				2				ļļ.							ļ!	
11 A 532413	1 TP4a 5 TP5a 6 TP6a													_					<u> </u>	
112632414	, TP 70			\sqcup				<u> </u>				1		-				<u> </u>		
11A632415	8 TP 8a				_													<u> </u>	<u> </u>	
11 AD32416	s TPGa						_		-			\sqcup		ļ	<u> </u>		-	 		
11 Ab 324 17	10 TP//C1								_ _			\vdash						<u> </u>	<u> </u>	
11AD 32418	11 TP/16	L.V.	V	V		1		X	1+e					+	-		ļ	├─	ļ!	
11AP 324 19	12 TP 36 + TP Ga	•			<u> </u>		\bigcirc	1/43	775)	-		-		+	+		<u> </u>			
11Ab32420	13 75110427.7			_		_ /		<u> </u>	1		_			+			ļ			
11 Ap 324 21	14 MT13270411-2	<u> </u>	Laboratory Stat		, 	·		ب بستان				+					1			L
f	6 77 69 7 77 70 8 77 80 9 77 90 10 77 1/0 11 77 1/6 12 77 32 + 77 60 13 75110427. 7 14 MT137 70411-2 Refinquished By: 11 11 11 11 11 11 11 11 11 11 11 11 11	u	Laboratory Stal Received By: Date & Time :	<u>ک</u>	کورن ۱۰	<u>ال</u>	<u>a u</u>	40 CON	Eab No	otes :			round Ti				`	l	Of Shipmen	ıt
	Date & Time :	٣			215	; '	ii Ça	て オ ^ 2,	-Ue			Comme	irs 48	Hrs	5 Days	10 Da	<i>y</i> *	J	Courier Hand Deli	ivered
	Signature:		Signature: Report Number		7							Somme	in o					l —	Postal	
			TOPON NAMED																	

NOTES:

297703

CLIENT DETAILS

CHAIN OF CUSTODY RECORD

Page 2 o

	Company Name :																COC Num	lumber:									
	Office Address :	Project Manager : PROJEC								03.03/							mgt QUO	QUOTE ID:									
						e.mail for results : Co								Courier Consignment #:													
						Analytes														77] []
				_	Γ.					T													id inikalla Mendabili				ś
	Special Directions & Comments: TP9a + TP13a				^														Labora	lory Adic	íresa:			nton Pla	ce		
	double samples	vol. k	slease	$ \otimes$	0	_	la															NSW,	Austral	9			
	compact on	aluce	Par OCP/PCB	TR2H + 1	3	2	3	3															+612 9476 6633 12 9476 8219				
	double samples vol. please Composite - analyse for OCP/PCB Codded from Projections, 8535/2 as instr. By clear Hathar Hills AR 29/4/11				Combo	0	PcB	1														Contac	it : Bob	Symon nons@la		om.au	April Williams
	Sample ID	Date	Matrix	+						╁	_								41.0	LOZAD	125P	Containe		100mL A		OTHER	1
44 6 0 - 1-00			C0 1	∇	†				┢	 				-					ILF	2301	1251	+ <u>''</u>	VIAL	TOURILY	`	THER	1
11 Ap32422	1 T/3110427.7	\delta \frac{1}{2}	Soil	$\langle \cdot \rangle$		-		 		\vdash				\vdash						ļ <u>.</u>		 	 		 		-
11 Ap 324 23	2 QA\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\vdash			ļ		\vdash				-								+	\vdash	 	<u> </u>		-
			,	↓	<u> </u>		<u> </u>	<u> </u>	_			ļ			_			•		<u> </u>			_	-			┨,
11 Ap 324 24	, TP13a	29 4 11	Sod	<u>Ļ</u> .	X	a	dđ	ud	1	<u>pon</u>	h P.	roje	crr	ر د	953	5	29	s u	16/2	by	lier	Nal	<u>han</u>	Hulb	.,	-8R29/L	4\' '
	5								i		ŀ	l.												1	1.		
11A632125	6 TP9a+7P13a	29/4/11	800			X	Х	10	€ο	mt	OS	u	[)	ad	de	7	2	<u>n`(</u>	rou	cr	353 :	12 a	i une	str. b	che	nt Hath	do
,, , , , , , , ,		1 ' 1								7						. }			9			1		'			8
	8			+	\vdash				\vdash	-													†	1			1
	9			╁─		-		1-		╁┈	ļ <u>. </u>			 						 		+	 				1
	10			 	\vdash	-		 	\vdash	╀		\vdash		┢								+-	+	 	ļ <u> </u>		1
	11			1_	ļ	_	_	-		<u> </u>	ļ	ļ	<u> </u>								-	 	\vdash		ļ		-
	12					<u> </u>		<u> </u>	ļ	_	_	<u> </u>		ļ								—	 	-	ļ		4
	13				<u>L</u>				L.	<u> </u>			<u> </u>	L.	ļ							ــــــ	ļ				_
	14				١,																		<u></u>				
	Relinquished Buy Athan H	i115	Laboratory Sta Received By:	f-3	au	De		مرده	ef.	<i>(al</i>	ھىر	c Lab N	otes :			Turn	aroun	d Tim	e :				Method	Of Shipme	nt		
	Relinquished By: Northum H Date & Time: 29/4/// Signature: 1		Laboratory Sta Received By: Date & Time : Signature:		291	۲	lu	à	۲	2 ¦ ع	Sh	_					Hrs	48 F				ays		Courier			
	Signature: 22		Signature			6	<u></u>		•		71		Comments						venje lewnje				$\dashv \Box$				
	eignavarer	`	Report Number					_																Postal			
										_																	

NOTES:

Appendix E

Exposure Scenarios

Table 6-E E. PARKLANDS/RECREATIONAL LAND USE

Default Exposure Ratio: 0.5

Exposure Period: 2 hours/day

365 days/year

70 years' occupancy duration

Assumptions: Soil contact opportunities arise during recreational activities.

Children will usually be the key exposure concern.

Refer Langley & Sabordo (1996) for specific exposure

factors

Exclusions: Home-grown fruit, vegetables, poultry etc

Groundwater consumption

Volatile contaminants, unless already accounted for in

setting HIL for that contaminant

Direct Soil Exposure Pathways: Direct soil and dust ingestion

Direct soil dermal contact Direct soil particulate inhalation

Indirect Soil Exposure Pathways: Nil applicable.

Table 6-F F. COMMERCIAL/INDUSTRIAL LAND USE

Default Exposure Ratio: 0.2

Exposure Period: 8 hours/day

5 days/week 48 weeks/year 30 years' duration

Assumptions: Soil contact opportunities arise during course of site

utilisation by public and workers.

Adults will usually be the key exposure concern allowing a lower default exposure ratio than for Parklands/Recreational

Land Use.

No residential land use occurring.(NB creches and day-care

centres belong in category A).

Refer Langley & Sabordo (1996) for specific exposure

factors

Exclusions: Home-grown fruit, vegetables, poultry etc.

Groundwater consumption

Volatile contaminants, unless already accounted for in

setting HIL for that contaminant

Direct Soil Exposure Pathways: Direct soil ingestion

Direct soil dermal contact

Direct soil particulate inhalation

Indirect Soil Exposure Pathways: Nil applicable

Appendix F

Summary of Results

Sample Identification	Guideline*		*	TP1A	TP2A	TP3A	TP4A	TP5A	TP6A	TP7A	TP8A	TP11A	TP11B	TP2A+TP6A (COMPOSITE)	
Sample Depth (m)	PQL	<u> </u>	<u>, </u>	P	0.3-0.4	0.1-0.2	0.2-0.3	0.2-0.3	0.2-0.3	0.2-0.3	0.2-0.3	0.2-0.3	0.3-0.4	0.7-0.8	(COMPOSITE)
Date		HIL 'E' <i>'</i>	AHIL 'F' A	S/Stn B	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11	29/4/11
Sample Profile				concrete and brick cobbles, tile fragments in clayey sand matrix, brown/beige	clayey sand, brown, with fine to coarse gravel	gravel, fine to coarse, concrete and brick cobbles, tile fragments in clayey sand matrix, brown	clayey sand, brown, with concrete and brick cobbles, tile fragments and fine to coarse gravel	clayey sand, brown, with fine to coarse gravel throughout	clayey sand, brown, with concrete and brick cobbles and fine to coarse gravel throughout	silty sand, dark brown/black, with fine to coarse gravel and extremely weathered sandstone	clayey sand, brown, with concrete and brick cobbles and fine to coarse gravel	clayey sand, brown, with concrete and brick cobbles and fine to coarse gravel	clayey sand, dark brown/black with fine to coarse gravel	composite	
Sample Purpose Sample collected by		Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH	Investigation NH			
Benzene, Toluene, Ethylk	enzei	ne, Xyler	ne (BTEX)		<u> </u>		<u> </u>		L	l.			L		
Benzene	0.5			1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Toluene	0.5			1.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Ethylbenzene meta- and para-Xylene	0.5			3.1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	
ortho-Xylene	0.5				< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Total Xylenes	1.5			14	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	<u>0.75</u>	
Total Petroleum Hydroca		(TPH)	1						1	1			1		
TPH C6-C9 TPH C10-C14	10 50			65	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	< 10 < 50	
TPH C15-C28	100		1		180	< 100	< 100	< 100	140	110	< 100	< 100	< 100	3000	
TPH C29-C36	100				1500	< 100	< 100	< 100	110	190	140	120	< 100	2000	
TPH C10-C36	250			1000	1705	<u>125</u>	<u>125</u>	<u>125</u>	275	325	215	195	<u>125</u>	5025	
Polycyclic Aromatic Hydi Naphthalene	0.5	ons (PA	(H)		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Acenaphthylene	0.5		1		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.1	
Acenaphthene	0.5				< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	9.6	
Fluorene	0.5				< 0.5	< 0.5	< 0.5	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	7.8	
Phenanthrene Anthracene	0.5				2.7 1.2	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	12 2.6	< 0.5 < 0.5	0.8 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	170 40	
Fluoranthene	0.5				4.8	< 0.5	< 0.5	< 0.5	19	< 0.5	2.7	2.1	1.2	490	
Pyrene	0.5				4.9	< 0.5	< 0.5	< 0.5	15	< 0.5	2.3	1.9	1	450	
Benz(a)anthracene	0.5				2.2	< 0.5	< 0.5	< 0.5	5.2	< 0.5	1.1	1	< 0.5	150	
Chrysene Benzo(b)&(k)fluoranthene	0.5				2.5 4.5	< 0.5 < 1	< 0.5 < 1	< 0.5 < 1	5.4 7.1	< 0.5 < 1	1.4 2.4	1.1 2	0.5 < 1	130 220	
Benzo(a) pyrene	1	2	5		2.9	< 0.5	< 0.5	< 0.5	3.7	< 0.5	1.3	1.2	0.5	120	
Indeno(1,2,3-c,d)pyrene	0.5				1.8	< 0.5	< 0.5	< 0.5	3	< 0.5	1.5	1.2	0.5	96	
Dibenz(a,h)anthracene	0.5				0.8	< 0.5	< 0.5	< 0.5	1.2	< 0.5	0.6	0.6	< 0.5	41	
Benzo(g,h,i)perylene Sum of reported PAH	0.5 8	40	100		3 32.3	< 0.5	< 0.5 4	< 0.5 4	3.2 79.5	< 0.5 <u>4</u>	1.8 17.15	1.3 13.9	0.6 6.8	110 2036.9	
Metals		40	100		32.3	<u>±</u>	1 =	<u> </u>	19.5	<u> </u>	17.13	13.9	0.0	2030.9	
Arsenic	1	200	500		1.7	5.1	4.8	3.3	3.2	3.8	5.4	5.1	3	3.1	
Cadmium	0.1	40	100		0.4	< 0.1	< 0.1	< 0.1	0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	
Chromium Copper	2	200	500 5000		4.7 46	11 21	8.8 9.2	40 11	7.4 15	9.2 14	6.1 20	5.8 16	6 16	9.9 21	
Nickel	1	600	3000		6.2	4.8	4.6	25	9.1	4	8.9	4.6	5.9	12	
Lead	2	600	1500		19	35	49	29	31	19	43	73	42	42	
Zinc	5	14000	35000		15	46	53	35	57	47	80	80	88	63	
Mercury Organochlorine Pesticide	0.05	30 CP)	75		< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.13	< 0.05	
alpha-BHC		J. ,	I												<0.05
HCB															<0.05
b-BHC															<0.05
g-BHC (Lindane) d-BHC															<0.05 <0.05
Heptachlor		10	25												<0.05
Aldrin															<0.05
Heptachlor epoxide Chlordane - trans															<0.05 <0.05
Endosulfan 1															<0.05
Chlordane - cis															<0.05
Dieldrin															<0.05
DDE Endrin															<0.05 <0.05
Endrin Endosulfan 2															<0.05
DDD															<0.05
Endosulfan sulfate															<0.05
DDT Methoxychlor															<0.2 <0.2
Endrin aldehyde															<0.2
Endrin ketone															<0.05
DDT+DDD+DDE		200	500												<u>0.15</u>
Aldrin + Dieldrin Chlordane		10 50	25 125												0.05 0.05
Polychlorinated Bipheny	ls (PC		120												0.05
Aroclor 1016															< 0.5
Aroclor 1232															< 0.5
Aroclor 1242 Aroclor 1248															< 0.5 < 0.5
Aroclor 1248 Aroclor 1254															< 0.5
Aroclor 1260															< 0.5
Total PCBs		10	25												<u>1.5</u>
Tributyltin (TBT)	I	I		ı			-0.0000005			1				-0.0000005	
Tributyltin (TBT) an SN		L		<u> </u>			<0.0000005							<0.0000005	

All results are in units of mg/kg.

Blank Cell indicates no criterion available

Results shown in shading are in excess of the HIL F acceptance criteria

Where summation required (Xylene, TPH, PAH, OCP, PCB) calculation includes components reported as non detected as 1/2 PQL. <u>Underlined</u> summations are those not detected

PQL = Practical Quantitation Limit.

A NEPM 1999 HIL 'E' (Parks/Open space), HIL 'F' (Commercial/Industrial)

 $^{^{\}rm B}$ NSWEPA Guidelines for Assessing Service Station Sites, 1994

^{*} Guideline adjusted for number of discrete samples within composite

Guidelines reported for Chromium are for Chromium VI
Results shown in **BOLD** are in excess of the HIL E or the Service Stations acceptance criteria