MUNDAMIA TRAFFIC IMPACT STUDY

FOR

SET CONSULTANTS

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377

W: www.bitziosconsulting.com.au

Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 E: admin@bitziosconsulting.com.au

Sydney

Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

Project No: P1110 Version No: 002 14 December 2012 Issue date:

DOCUMENT CONTROL SHEET

Issue History

Report File Name	Prepared by	Reviewed by	Issued by	Date	Issued to
P1110.001R Mundamia TIS	A.Bitzios	A.Eke	A.Bitzios	19.10.12	David Cannon (SET Consultants)
P1110.002R Mundamia TIS	A.Bitzios	A.Eke	A.Bitzios	14.12.12	David Cannon (SET Consultants)

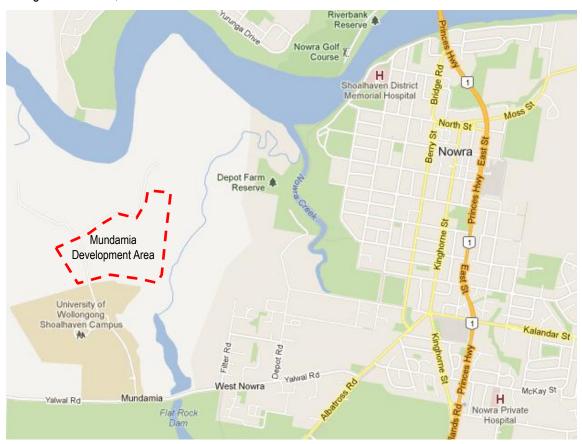
Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

CONTENTS

		Page
1.	Introduction	1
1.1	Purpose	1
1.2	LOCATION	1
1.3	PROPOSED DEVELOPMENT	1
1.4	SCOPE	3
1.5	CONSULTATION WITH COUNCIL	3
1.5.1	Assessment Scope	3
1.5.2	to the first term of the first	3
1.5.3	and the state of t	3
1.5.4		4
2.	TRAFFIC DEMANDS	5
2.1	TRAFFIC COUNT DATA	5
2.2	BACKGROUND TRAFFIC GROWTH	5
2.3	DEVELOPMENT TRAFFIC	9
2.4	DEVELOPMENT TRIP DISTRIBUTION	11
2.5	DEVELOPMENT TRIP APPORTIONMENT	15
2.6	LINK VOLUMES	17
2.6.1		17
2.6.2 2.6.3		17
		18
3.	TRAFFIC MODELLING	19
3.1	INTERSECTION CONFIGURATIONS	19
3.2	HEAVY VEHICLE PROPORTIONS	21
3.3	INTERSECTION ASSESSMENT CRITERIA	21
3.4	EXISTING INTERSECTION MODEL OUTPUTS	22
3.5	INTERSECTION UPGRADES	25
3.5.1		25
3.5.2		25
3.5.3 3.5.4		25 26
3.5.5	· · · · · · · · · · · · · · · · · · ·	27
3.5.6		28
3.6	Upgraded Intersection Model Outputs	29
3.7	COST APPORTIONMENT	29
1	CONCLUSION	30

Tables	
Table 1.1:	Proposed Development Yields
Table 2.1:	Background Traffic Growth Assumptions
Table 2.2:	In/Out Trip Distribution
Table 2.3:	Mundamia Traffic Generation
Table 2.4:	Link Volume Summary
Table 3.1:	Intersection Configurations Modelled
Table 3.2:	Heavy Vehicle Percentages
Table 3.3:	Performance Criteria
Table 3.4:	AM Peak SIDRA Outputs – Existing Intersection Configurations
Table 3.5:	PM Peak SIDRA Outputs – Existing Intersection Configurations
Table 3.6:	Sidra Outputs – Upgraded Intersection Configurations
Figures	
Figure 1.1:	Mundamia Development Area Location
Figure 1.2:	Land Ownership Details
Figure 2.1:	2008/2009 Manual Intersection Count Data
Figure 2.2:	2012 Traffic Demands
Figure 2.3:	2022 Traffic Demands
Figure 2.4:	Mundamia Development Traffic Only
Figure 2.5:	2012 Traffic Demands with Mundamia Development
Figure 2.6:	2022 Traffic Demands with Mundamia Development Traffic
Figure 2.7:	2022 Mundamia Development Trip Apportionments
Figure 2.8:	Intersection Treatment Warrants
Figure 3.1:	AUR Treatment (Austroads Guide to Road Design - Part 4A)
Figure 3.2:	Albatross Road / Yalwal Road Proposed Intersection Configuration
Figure 3.3:	Albatross Road / Berry Street Proposed Intersection Configuration
Figure 3.4:	Albatross Road / Kinghorne Street Proposed Intersection Configuration
Figure 3.5:	Albatross Road / Kinghorne Street Proposed Signal Phasing
Figure 3.6:	Bypass Route Option

Appendices
Appendix A: Sidra Outputs – Existing Intersection Configurations Sidra Outputs – Upgraded Intersection Configurations Appendix B:


1. INTRODUCTION

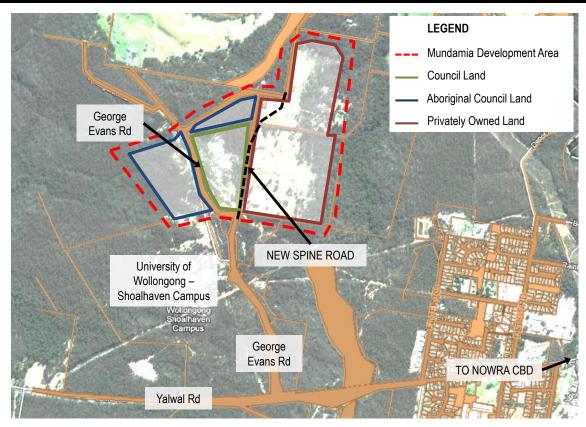
1.1 PURPOSE

Bitzios Consulting have been commissioned by SET Consultants to prepare a Traffic Impact Study for the Mundamia development. SET Consulting are responsible for preparing independent planning documentation to be submitted to the Department of Planning for approval for the Council owned land within the sub-division being Lot 1 DP1021332.

1.2 LOCATION

The location of the entire Mundamia development area is shown in Figure 1.1. The site is located west of Nowra's CBD and immediately north of the University of Wollongong- Shoalhaven Campus (UOW) at George Evans Road, Mundamia.

Source: Google Maps


Figure 1.1: Mundamia Development Area Location

1.3 PROPOSED DEVELOPMENT

The Structure Plan identified the Mundamia living area (Area 5) as having an area of 53ha, of which the Council land component comprises 9.495ha. There are two other land holders within the development area which are:

- Aboriginal Land Council: and
- Private Land Owner.

Figure 1.2 shows the land ownership within the development area.

Source: Google Maps and Shoalhaven Council Mapping

Figure 1.2: Land Ownership Details

The proposal (on Council's land) seeks approval to undertake a residential subdivision which also includes the proposed village centre (shops and public open space).

The main access to the proposed development area is proposed to be provided via a realigned George Evans Road. A roundabout will be provided at the entrance to the development. The new spine road will reside within an existing 20m wide road reservation situated on Crown Land. It is proposed to widen the reservation by 5m into Council's land, to provide a 25m wide road reservation for the main village centre spine road.

Beyond Council's land ownership the spine road is proposed to deviate to the east to provide a direct link to Jonsson Road.

The proposed development yields are summarised in Table 1.1.

Table 1.1: Proposed Development Yields

Development Area Land Use	Unit	Qty									
Council Land (Lot 1 DP 1021332)	•										
Low Density Res Each 65											
Medium Density Res	Each	69									
Retail/Commercial GFA	m²	5,697									
Child Care	Children	55									
Aboriginal Council North (Lot 458 DP 1063107)											
Low Density Res	Each	33									
Aboriginal Council West (Lot 473 DP1102909)											
Low Density Res	Each	60									
Twynam Property Group (Lot 384 DP 755952 & Lot 3 DP588613)		_									
Low Density Res	Each	285									
Medium Density Res	Each	59									

1.4 SCOPE

The scope of work for this project included:

- preparation of a traffic impact study generally following the RTA Guide to Traffic Generating Developments;
- assessment of the suitability of key junctions to accommodate the proposed development;
- justification of traffic volumes and directional splits adopted;
- completion of SIDRA assessments during the AM and PM peak periods with consideration of a 10 year design horizon; and
- identification of suitable treatments required to ameliorate any traffic impacts associated with the proposal.

1.5 CONSULTATION WITH COUNCIL

1.5.1 Assessment Scope

Council was contacted during the development of the scope of work back in August 2009. Council identified the need to conduct SIDRA assessments at the following intersections:

- UOW Access and George Evans Road;
- Yalwal Road and George Evans Road;
- Albatross Road and Yalwal Road;
- Albatross Road and Berry Street; and
- Albatross Road and Kalandar Street.

1.5.2 Traffic Demand Assumptions

Council was again consulted in September 2012 to discuss the proposed traffic assessment assumptions to ensure consistency in approach with Council's previous strategic planning in the area. The final assumptions adopted in the development of traffic demands and traffic distribution is discussed in Section 2.

1.5.3 Traffic Generation – Development Area

As there are multiple developments occurring within the precinct, it was decided that the 'with' and 'without' development scenarios would include the entire Mundamia development. Once the development traffic

impacts are understood, a cost apportionment would be undertaken to distribute the costs across each development/land release areas.

1.5.4 Traffic Assessment Years

The Mundamia development area was assessed in the base year being 2012 and the design year being 2022. The assessment focussed on a typical Thursday during normal business and university periods and subsequent assessment of the impacts during both the AM and PM peak periods.

2. TRAFFIC DEMANDS

2.1 TRAFFIC COUNT DATA

Manual intersection count data was obtained at each of the assessment intersections in October 2008. The George Evans Road and Yalwal Road intersection was again counted in March 2009 as the original traffic count was outside of University session periods. All intersection counts were undertaken on a typical Thursday. The March 2009 count data was used for the George Evans Road intersections as it contained more traffic data that was more typical of the university's operations.

The George Evans Road and UOW Access intersection count data was derived from the George Evans Road / Yalwal Road intersection count data, as there are only a couple of properties currently generating trips from the Mundamia area.

Figure 2.1 summarises the 2008/2009 manual intersection traffic count data.

2.2 BACKGROUND TRAFFIC GROWTH

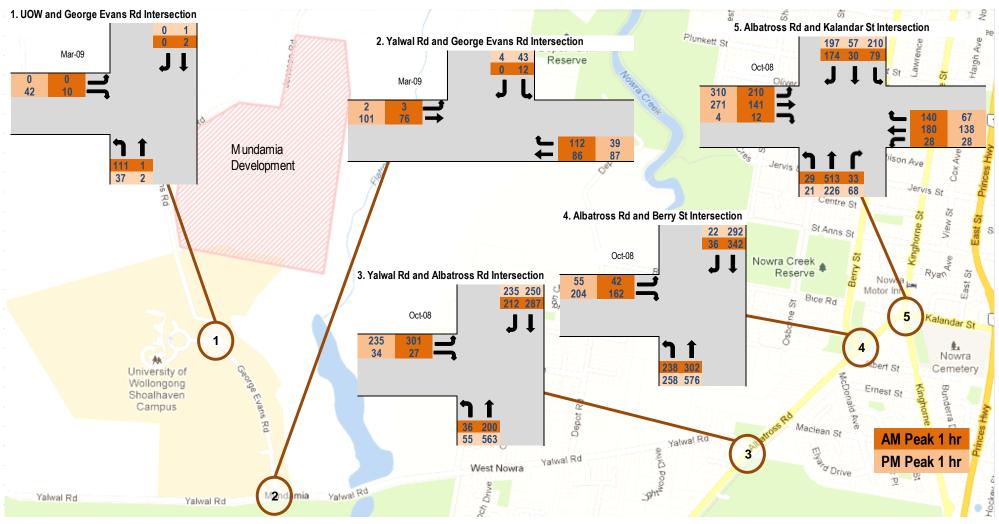
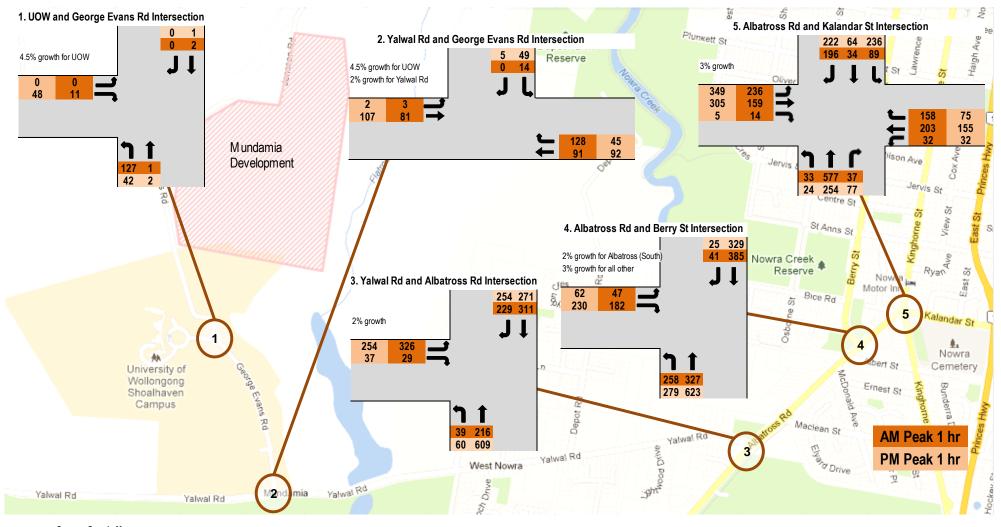

The background traffic growth assumptions adopted for the traffic study are shown in Table 2.1.

Table 2.1: Background Traffic Growth Assumptions

Location	Traffic Growth (per annum)
George Evans Rd	4.5% to 2012 and 2% to 2022
Yalwal Rd	2.0%
Albatross Rd (south of Berry St)	2.0%
Albatross Rd (north of Berry St)	3.0%
Berry St	3.0%
Kinghorne St	3.0%
Kalandar St	3.0%


The traffic growth for the UOW Access onto George Evans Road was derived from actual traffic count data comparisons made between the 2009 typical Thursday manual intersection count data and recent tube count data obtained in April 2012. Only the Thursday traffic count data was used from the tube count data to ensure a 'like for like' comparison. The adopted growth rate on George Evans Road reduces to 2% beyond 2012, as it is assumed that the localised development within Mundamia will attract some university student accommodation (at this stage assumed to be in the order of 2.5% of the 4.5% demand). This assumption is based on the remaining assumptions provided by Council that the forecast background growth in the area is 2% per annum.

Adopting the growth rates from Table 2.1, Figure 2.2 and Figure 2.3 show the forecast traffic demands for the 2012 and 2022 assessment periods respectively.

Source: Google Maps

Figure 2.1: 2008/2009 Manual Intersection Count Data

Source: Google Maps

Figure 2.2: 2012 Traffic Demands

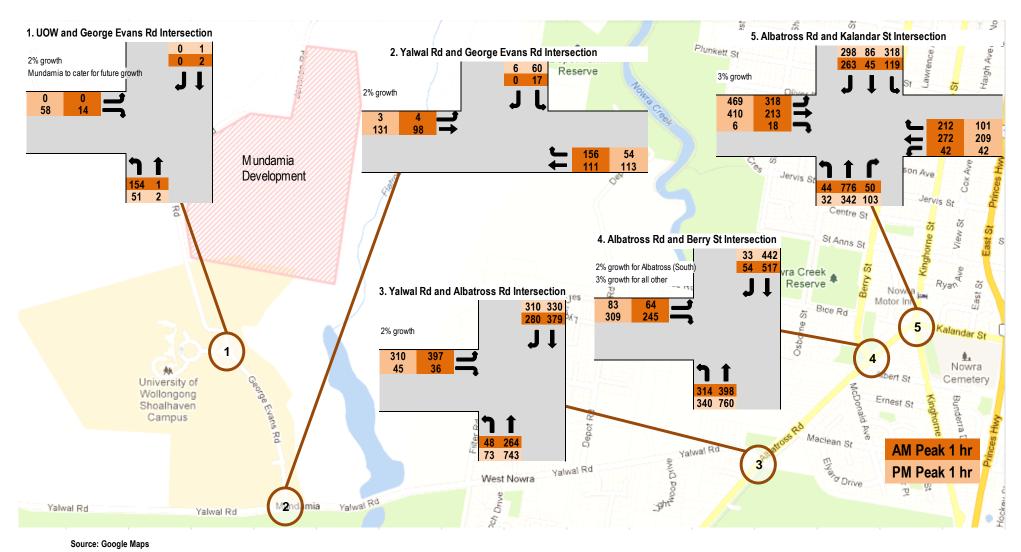


Figure 2.3: 2022 Traffic Demands

2.3 DEVELOPMENT TRAFFIC

The development traffic distribution from the Mundamia development onto George Evans Road is shown in Table 2.2.

Table 2.2: In/Out Trip Distribution

	A	M	PM			
Land Use	In	Out	In	Out		
Residential	30%	70%	60%	40%		
Retail/Commercial	50%	50%	50%	50%		
Child Care Centre	50%	50%	50%	50%		

As agreed with Council, it was assumed that 50% of the child care centre demand and 70% of the retail/commercial demand would be generated internal to the Mundamia development.

The RTA Guide to Traffic Generating Developments has mostly been adopted in determining the subdivisions traffic generation. The trip rate for the Child Care Centre was increased to reflect Council's current development assessment practices, which is based on two trips per child in the morning peak and one trip per child in the evening peak. Council currently requests additional trips for staff members in the PM peak, however in our experience, these rarely coincide.

It is agreed that children are usually dropped off between 7:30am and 9:00am and they are picked up between 3:00pm and 5:30pm. Child care staff typically work on shift arrangements where there is a morning shift and afternoon shift. The morning shift workers arrive before the peak period and leave in the mid-afternoon, whilst the afternoon shift workers arrive at around lunch-time and leave after the evening peak period (ie 5:30pm-6:30pm).

Using the above trip generation assumptions, the traffic generated by the Mundamia development area is shown in Table 2.3.

Table 2.3 shows that the Mundamia development will generate around 560 trips in the peak periods. Based on the forecast land use, the traffic impacts are also noted to be apportioned as follows:

- Council Land 36%;
- Aboriginal Council Land 14%; and
- Privately Owned Land 50%.

Table 2.3: Mundamia Traffic Generation

				Development Trip Assumptions					AM	Peak	PM	Peak
Development Area	Land Use	Unit	Qty	Peak Hour Trip Rate	AM Peak Trips	PM Peak Trips	Average Peak Trips	% Trips	ln	Out	ln	Out
Council Land												
Low Density Res	3	Each	65	0.85 per dwelling	55.3	55.3	55.3		17	39	33	22
Medium Density R	es	Each	69	0.65 per dwelling	44.9	44.9	44.9		13	31	27	18
Retail/Commercia	al	m²	5697	- AM - 8.61 trips per 100m ² ; - PM - 12.3 trips per 100m ² : - 35% of area considered GFA; and - Plus 70% reduction based on internalisation of trips	51.5	73.6	62.5	36%	26	26	37	37
Child Care Cl		Children	55	- AM - 2 trips per child; - PM - 1 trip per child; - Plus 50% reduction based on internalisation of trips	55.0	27.5	41.3		28	28	14	14
	Sub-Total				206.6	201.2	203.9		83	123	111	91
Aboriginal Council North								5%				
Low Density Res	3	Each	33	0.85 per dwelling	28.1	28.1	28.1		8	20	17	11
Aboriginal Council West								9%				
Low Density Res	3	Each	60	0.85 per dwelling	51.0	51.0	51.0		15	36	31	20
Twynam Property Group												
Low Density Res	3	Each	285	0.85 per dwelling	242.3	242.3	242.3	50%	73	170	145	97
Medium Density R	es	Each	59	0.65 per dwelling	38.4	38.4	38.4		12	27	23	15
	Sub-Total				280.6	280.6	280.6		84	196	168	112
		1	TOTAL		566.3	560.8	563.5	100%	191	375	326	234

2.4 DEVELOPMENT TRIP DISTRIBUTION

Adopting the trips generated by the development as shown in Table 2.3, the trips were then distributed to the road network. The following assumptions were adopted in developing the trips distribution:

- 10% to be attracted to/from the UOW Access;
- 5% of the remaining traffic to be attracted to/from Yalwal Road (west);
- 20% of the remaining traffic to be attracted to/from Albatross Road (south);
- 60% of the remaining traffic to be attracted to/from Berry Street (higher assumption due to likely congestion avoidance at the Kalandar Street roundabout); and
- 55% of the remaining traffic to be attracted to/from Kinghorne Street (north), 40% to/from Kalander Street, and 5% to/from Kinghorne Street (south).

The resultant development trips only are shown in Figure 2.4, whilst the 2012 and 2022 with development scenarios are shown in Figure 2.5 and Figure 2.6.

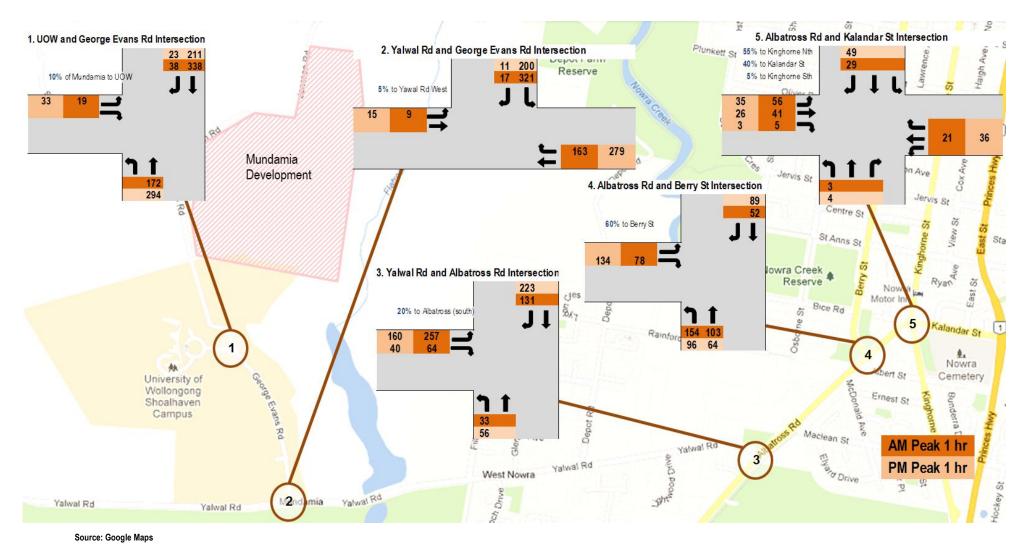


Figure 2.4: Mundamia Development Traffic Only

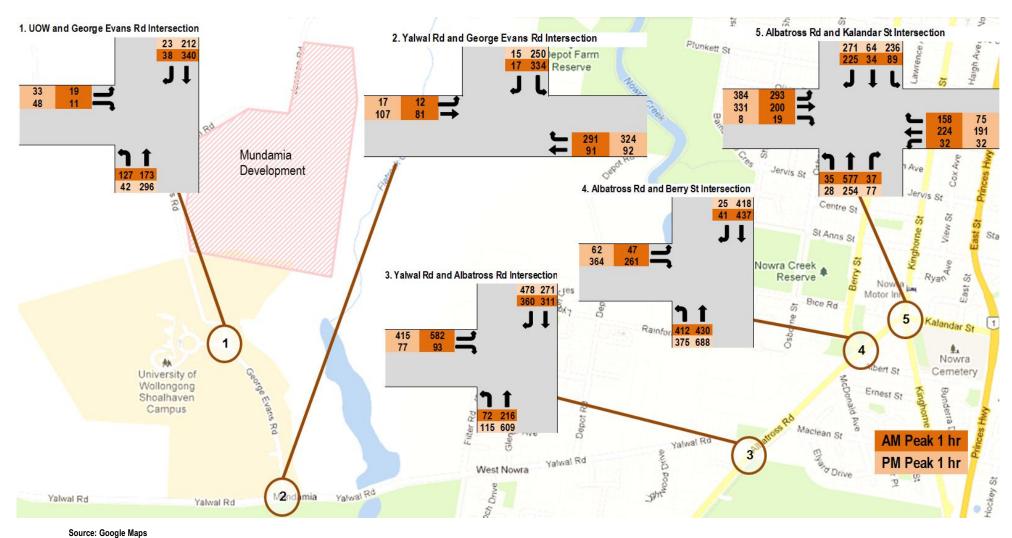


Figure 2.5: 2012 Traffic Demands with Mundamia Development

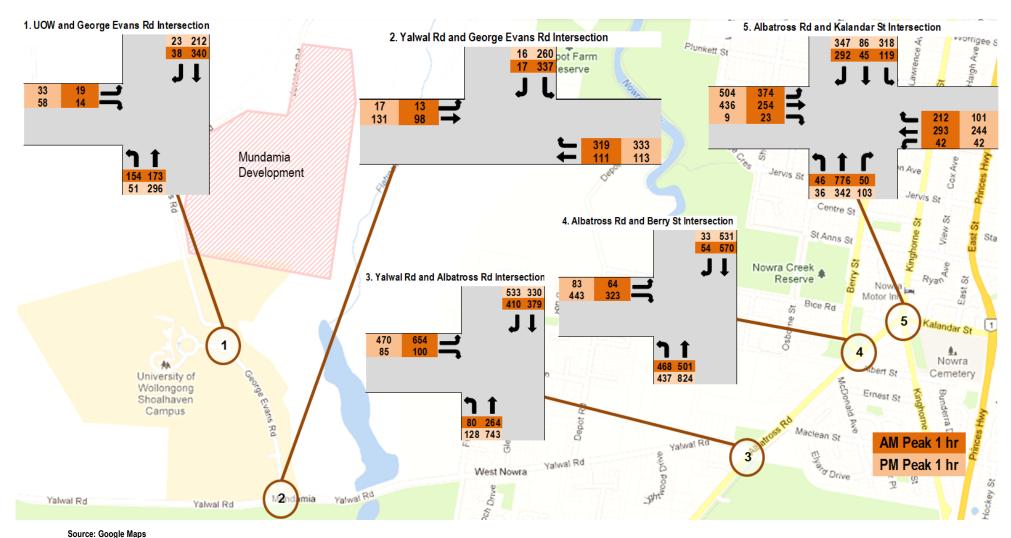


Figure 2.6: 2022 Traffic Demands with Mundamia Development Traffic

2.5 DEVELOPMENT TRIP APPORTIONMENT

To better understand the contributing impact the Mundamia development will have on the local road environment, a comparison between the Mundamia trips and the remaining background traffic has been undertaken for each movement and for each intersection for the 2022 design year scenario. The resultant findings are shown in Figure 2.7.

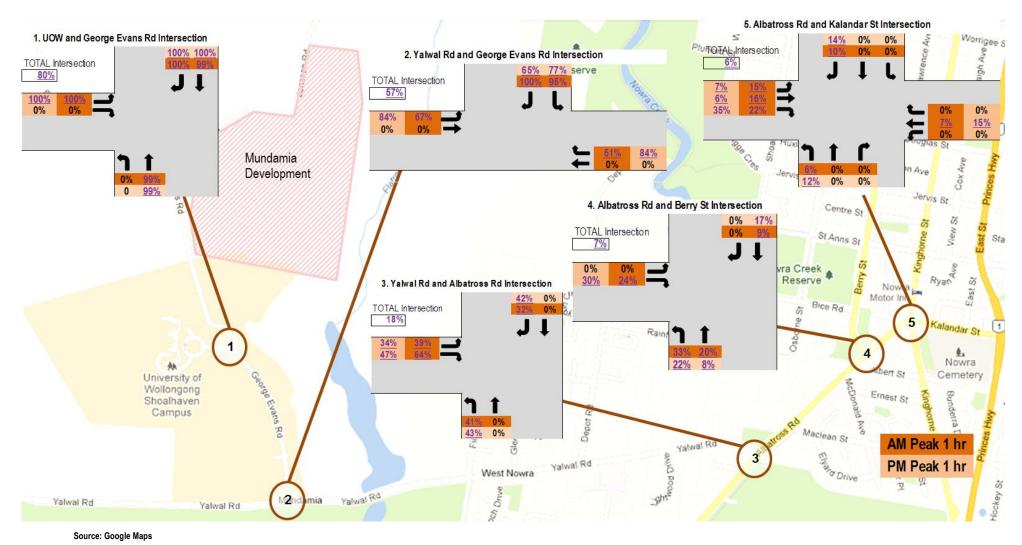


Figure 2.7: 2022 Mundamia Development Trip Apportionments

2.6 LINK VOLUMES

2.6.1 Overview

The warrants for improved intersection turning treatments are shown in Figure 2.8. Considering most of the residential side streets are not expected to attract turning movements greater than 15 vehicles in the peak hour (apart for from Depot Road), one-way link volumes above approximately 450 vehicles in the peak hour is likely to require channelised intersection treatments.

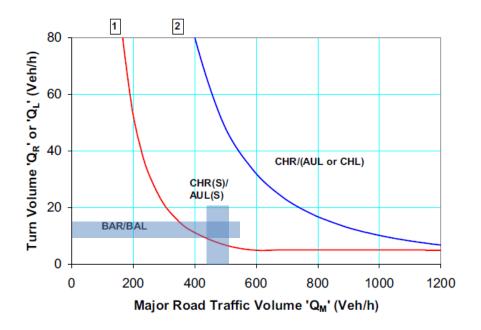


Figure 2.8: Intersection Treatment Warrants

Summarising the traffic count data from each of the intersection movements, the forecast mid-block link volumes are shown in Table 2.4. The 'red' text highlights the scenario where the link volume exceeds the capacity threshold.

Table 2.4: Link Volume Summary

	7 1 (1		AM	PM			
Scenario	Direction	Yawal Rd	Albatross Rd	Yawal Rd	Albatross Rd		
2012	To Nowra	88	501	144	798		
2012	From Nowra	198	499	126	485		
2042 with Davelanment	To Nowra	415	799	357	1024		
2012 with Development	From Nowra	383	671	416	748		
2022	To Nowra	115	661	190	1053		
2022	From Nowra	267	658	167	640		
2022 with Development	To Nowra	436	918	391	1213		
	From Nowra	431	789	446	863		

2.6.2 Yalwal Road

The outputs from Table 2.4, along with the warrants specified within Figure 2.8 suggest that Yalwal Road should mostly operate satisfactorily without dedicated turn lanes. The only intersection is likely to require dedicated turn lanes is the intersection of Depot Road.

It is not usual for a development to fund infrastructure for a side street movement not relating specifically to the development outside of its own development footprint area. Depot Road currently services in the order of 100 residential dwellings. The Depot Road subdivision should have been required to provide an appropriate treatment to facilitate safe access from its primary access intersection.

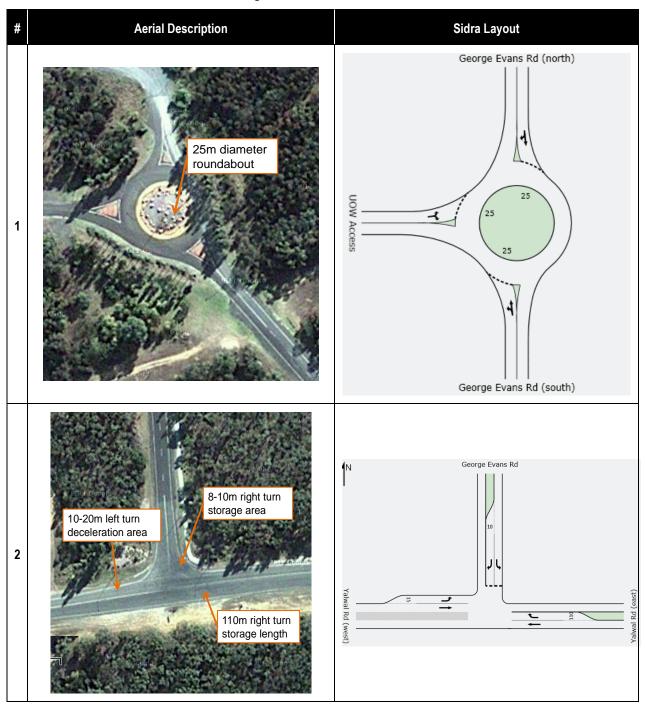
The Depot Road intersection will be required to be upgraded by 2022 with or without the development at Mundamia. However, the introduction of the Mundamia development will bring forward the need to upgrade this intersection. It is likely that when Mundamia is 20-40% developed, the intersection will require to be upgraded.

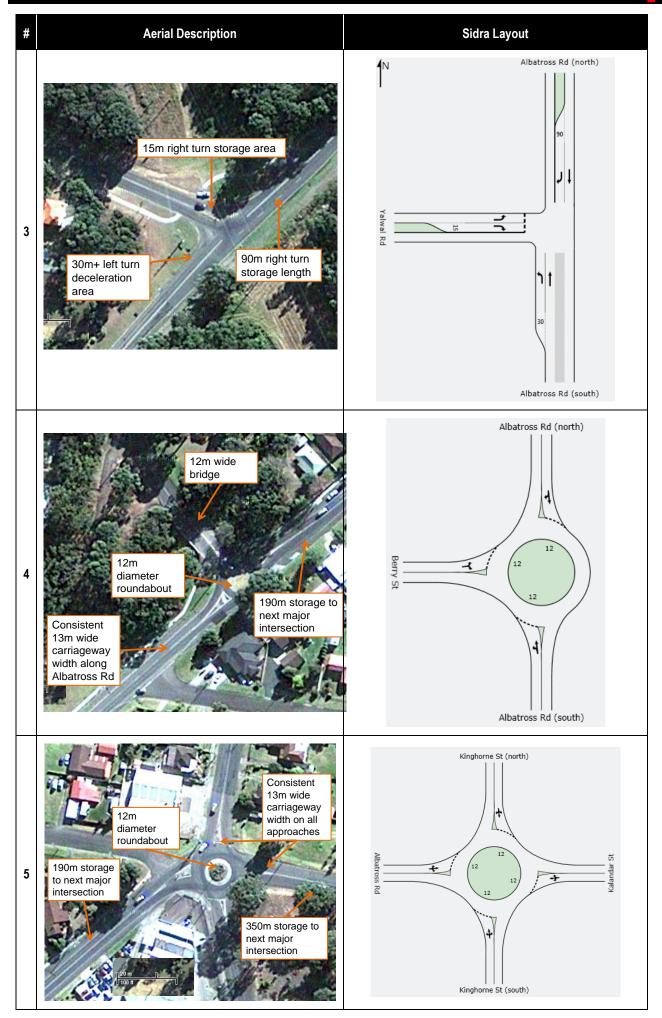
2.6.3 Albatross Road

The outputs from Table 2.4, along with the warrants specified within Figure 2.8 suggest that Albatross Road between Yalwal Road and Berry Street will require a plan of management. Whilst the right turn movements into the side streets are expected to be very low, the left turn movements 'in' and right turn movement 'out' of the side streets are expected to be high.

The capacity issues for the side streets along Albatross Road are existing issues and will be exacerbated by future traffic growth regardless of the Mundamia development.

Consideration may be given to installing a roundabout at the Yalwal Road intersection with a centre median for the entire section length. Alternatively, installing signalised intersections at Yalwal Road and/or Berry Street may provide suitable gaps in traffic for side street traffic to safely turn onto Albatross Road.


The provision of left turn lanes into the side streets is likely to be required unless the plan of management proposes to restrict all access from Albatross Road.


3. TRAFFIC MODELLING

3.1 Intersection Configurations

The intersection configurations and the Sidra layouts adopted for the intersection assessments are shown in Table 3.1 below.

Table 3.1: Intersection Configurations Modelled

3.2 HEAVY VEHICLE PROPORTIONS

The heavy vehicle proportions used in the Sidra Assessment were initially based on the manual intersection traffic count data obtained in 2008/2009.

The heavy vehicle percentages were adjusted for the 'with development' scenario acknowledging that the overall proportion of heavy vehicles would have reduced as a result of the residential /village centre development.

Table 3.2 shows the assumptions used in the Sidra assessments.

Table 3.2: Heavy Vehicle Percentages

Road	Without Development	With Development
UOW Access	2%	2%
George Evans Rd	4%	2%
Yalwal Rd	10%	8%
Albatross Rd	8%	6%
Berry St	3%	2%
Kinghorne St	6%	5%
Kalandar St	6%	5%

3.3 Intersection Assessment Criteria

The Sidra "RTA NSW" model configuration setting was adopted for this assessment. The Level of Service (LOS) outputs are solely based on 'Average Delay' which often mis-represents the true operating condition of the intersection.

To accurately define the performance output of the scenarios modelled the 'Degree of Saturation', 'Average Delay' and '95%ile Back of Queue' output data has been captured for each approach lane. This enables a true understanding of the likely operational performance of each of the intersection approaches each of the scenarios tested.

Typically LOS is adopted to determine when the intersection has failed. Based on our experience the following criteria shown in Table 3.3 are considered to be more practical, considering the local road environment and current financial climate:

Table 3.3: Performance Criteria

Performance Measure	Degree of Saturation (DOS)	Average Delay (s)	95%ile Queue (m)
Approaching Failure	0.8-1.0	120-240	120-240
Requires Upgrade	>1.0	>240	>240

Intersections approaching failure typical revolve around vehicles have to wait more than 2 minutes with a queue of more than 20 vehicles (noting that the average delay at a typical signalised intersection is in the order of 2 minutes). Intersections in regional towns that require replacement normally experience more than a four minute delay and more than 40 queued vehicles during the peak periods.

It should re-iterated that the assessment is based on a future design horizon, where a certain level of peak spreading would be expected prior to funding being justified to be spent on an infrastructure upgrade. It is rare in the current economic climate that an intersection upgrade would be funded based on a 30 minute peak congestion issue. The above performance criterion acknowledges these issues and provides a realistic and practical assessment framework for this project.

3.4 EXISTING INTERSECTION MODEL OUTPUTS

Detailed outputs from the Sidra assessments of the existing intersection configurations are included in Appendix A.

A summary of the morning peak and evening peak operating performance is included in Table 3.4 and Table 3.5 respectively.

Table 3.4: AM Peak SIDRA Outputs – Existing Intersection Configurations

			201	2	2	012 with de	velopment		202	2	20)22 with de	velopment
Approach	Lane	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)
				1	. UOW	and Georg	e Evans Rd						
George Evans Rd (south)	LT	0.08	6	3	0.21	6	8	0.09	6	3	0.23	6	9
George Evans Rd (north)	TR	0	7	0	0.24	6	11	0	7	0	0.24	6	11
UOW Access	LR	0	11	0	0.03	9	1	0.01	11	0	0.03	9	1
				2. \	'alwal I	Rd and Geo	rge Evans Rd						
Valuel Dd (aget)	T	0.05	0	0	0.05	0	0	0.06	0	0	0.06	0	0
Yalwal Rd (east)	R	0.1	9	3	0.23	9	8	0.13	9	4	0.26	9	9
Coorne Evene Dd	L	0.01	9	0	0.32	9	11	0.02	9	0	0.33	9	11
George Evans Rd	R	0	11	0	0.06	14	1	0	12	0	0.07	16	1
Yalwal Rd (west)	L	0	8	0	0.01	8	0	0	8	0	0.01	8	0
raiwai Ru (west)	Т	0.05	0	0	0.05	0	0	0.06	0	0	0.06	0	0
				3	. Albat	ross Rd and	d Yalwal Rd						
Albatross Rd (south)	L	0.02	9	0	0.04	9	0	0.03	9	0	0.05	9	0
Albatioss Ru (soutii)	T	0.12	0	0	0.12	0	0	0.15	0	0	0.15	0	0
Albatross Rd (north)	Т	0.18	0	0	0.17	0	0	0.22	0	0	0.21	0	0
Albatioss Ru (Hortil)	R	0.23	10	8	0.37	11	15	0.31	11	11	0.45	12	23
Yalwal Rd	L	0.4	11	17	0.7	14	65	0.52	13	29	0.85	20	117
Tulwai ita	R	0.16	26	4	0.64	50	23	0.29	40	8	>1.0	81	37
					4. Alba	tross Rd ar	nd Berry St						
Albatross Rd (south)	LT	0.43	7	26	0.6	7	48	0.54	8	39	0.71	8	74
Albatross Rd (north)	TR	0.42	9	22	0.51	9	29	0.6	10	40	0.71	13	63
Berry St	LR	0.26	13	11	0.38	14	17	0.37	13	17	0.52	16	30
				5.	Albatr	oss Rd and	Kalandar St						
Kinghorne St (south)	LTR	0.93	37	169	0.97	49	211	1.62	579	1744	1.69	648	1851
Kalandar St	LTR	0.46	11	24	0.49	11	26	0.67	15	54	0.71	16	62
Kinghorne St (north)	LTR	0.34	11	17	0.37	12	19	0.47	12	27	0.49	12	29
Albatross Rd	LTR	0.87	39	105	1.05	103	299	1.06	105	329	1.17	187	604

Table 3.5: PM Peak SIDRA Outputs – Existing Intersection Configurations

		2012			20	012 with de	velopment		202	2	20	022 with de	velopment
Approach	Lane	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)
					1. UOW	/ and Georg	ge Evans Rd						
George Evans Rd (south)	LT	0.03	6	1	0.23	5	9	0.03	6	1	0.23	5	10
George Evans Rd (north)	TR	0	8	0	0.17	6	7	0	8	0	0.18	6	7
UOW Access	LR	0.03	11	1	0.08	11	3	0.04	11	1	0.09	11	3
				2.	Yalwal	Rd and Ge	orge Evans Rd						
Value Dd (coet)	T	0.05	0	0	0.05	0	0	0.07	0	0	0.06	0	0
Yalwal Rd (east)	R	0.04	9	1	0.27	9	9	0.05	9	1	0.28	9	10
Coores Evens Dd	L	0.05	9	1	0.25	9	8	0.06	9	2	0.26	9	8
George Evans Rd	R	0.02	11	0	0.06	16	1	0.02	12	0	0.07	17	1
Valual Dd (wast)	L	0	8	0	0.01	8	0	0	8	0	0.01	8	0
Yalwal Rd (west)	Т	0.06	0	0	0.06	0	0	0.08	0	0	0.07	0	0
				;	3. Alba	tross Rd an	nd Yalwal Rd						
Albatross Rd (south)	L	0.04	9	0	0.07	9	0	0.04	9	0	0.08	9	0
Albatross Ru (south)	T	0.35	0	0	0.34	0	0	0.42	0	0	0.42	0	0
Albatross Rd (north)	T	0.15	0	0	0.15	0	0	0.19	0	0	0.23	0	0
Albatross Ru (Hortii)	R	0.45	16	19	0.87	29	85	0.69	23	37	1.04	90	222
Yalwal Rd	L	0.56	19	25	0.94	41	115	0.86	35	62	1.35	348	712
i aiwai Ku	R	0.5	76	13	>1.0	162	37	>1.0	212	37	>1.0	167	37
					4. Alba	atross Rd a	nd Berry St						
Albatross Rd (south)	LT	0.63	7	53	0.72	7	81	0.77	7	101	0.87	8	184
Albatross Rd (north)	TR	0.38	9	20	0.55	11	35	0.56	10	37	0.73	15	69
Berry St	LR	0.43	16	21	0.67	23	52	0.7	26	58	1.09	137	363
	-			5	. Albatı	ross Rd and	d Kalandar St						
Kinghorne St (south)	LTR	0.46	12	24	0.5	13	29	0.74	21	67	0.8	27	85
Kalandar St	LTR	0.34	11	16	0.4	11	20	0.52	13	31	0.59	14	40
Kinghorne St (north)	LTR	0.67	15	54	0.74	18	69	0.9	28	146	0.95	36	197
Albatross Rd	LTR	0.84	20	105	0.89	24	139	1.35	340	1283	1.4	384	1468

The Sidra modelling suggests that an upgrade to the Albatross Road and Yalwal Road intersection will be required to be brought forward as a result of the proposed development.

Operational failure of the Berry Street and Albatross Road intersection is expected to fail in the evening peak period only with the development in place. Mitigation measures will be required at this intersection.

The Albatross Road and Kinghorne Street intersection is nearly failing in the current year even without the development. This intersection will be required to be upgraded in the near future regardless of the proposed development.

The following section describes the intersection treatments required to manage background traffic growth to 2022, including the entire Mundamia land release.

3.5 Intersection Upgrades

3.5.1 UOW Access / George Evans Road

No intersection upgrade is required at this intersection.

3.5.2 Yalwal Road / George Evans Road

Whilst the Sidra assessment suggests that no intersection upgrade is required, it is recommended that the configuration be modified from an AUR configuration to a CHR(Short Lane) configuration. Figure 3.1 shows the current AUR arrangement and reference in Austroads that a CHR(Short Lane) is preferred. The main reason for preference of a CHR(Short Lane) is that turning traffic moves out of the through traffic lane. Research conducted in Queensland suggests that a CHR(Short Lane) intersection is 30 times safer in this regard than an AUR treatment.

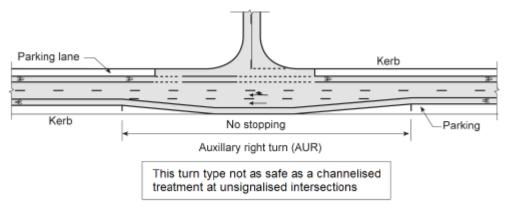


Figure 3.1: AUR Treatment (Austroads Guide to Road Design - Part 4A)

The works to convert the AUR treatment to a CHR(Short Lane) is expected to be minimal and will be subject to the pavement condition of the outer lane with some possible minor widening works to the roadside shoulders.

3.5.3 Albatross Road / Yalwal Road

The proposed configuration for the Albatross Road / Yalwal Road intersection is shown in Figure 3.2.

A roundabout is considered to be the preferred treatment as it will safely allow for u-turn manoeuvres should turn restrictions be implemented mid-block along Albatross Road. In addition, the roundabout will cause less driver frustrations outside of the peak period with motorists having to wait unnecessarily outside the peak periods under a signalised intersection arrangement.

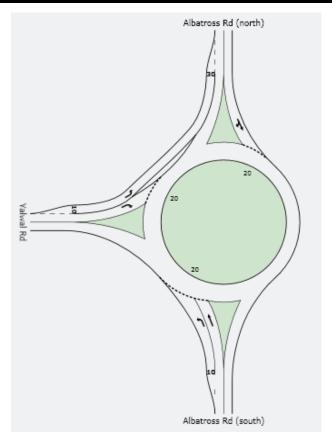


Figure 3.2: Albatross Road / Yalwal Road Proposed Intersection Configuration

3.5.4 Albatross Road / Berry Street

The proposed configuration for the Albatross Road / Berry Street intersection is shown in Figure 3.3.

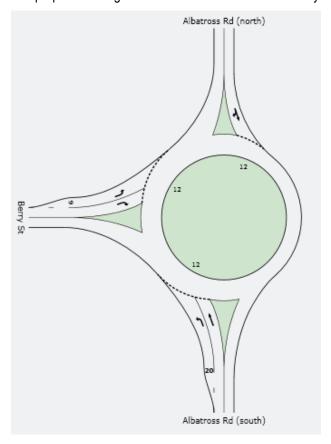


Figure 3.3: Albatross Road / Berry Street Proposed Intersection Configuration

Only minor additions to the existing roundabout are required to ensure the intersection operates under capacity with full development by 2022.

Traffic signals options were tested; however a substantial intersection footprint would be required to maintain a suitable level of operation during the peak periods. As the minor modifications to the existing roundabout addressed the traffic capacity issues, it has been recommended as the preferred treatment. The management of pedestrians using the main shared path along Albatross Road may need further signposting / delineation / lighting measures for safety purposes, particularly in the vicinity of the road crossing areas near intersections.

3.5.5 Albatross Road / Kalandar Street / Kinghorne Street

The proposed configuration for the Albatross Road / Kinghorne Street intersection is shown in Figure 3.4.

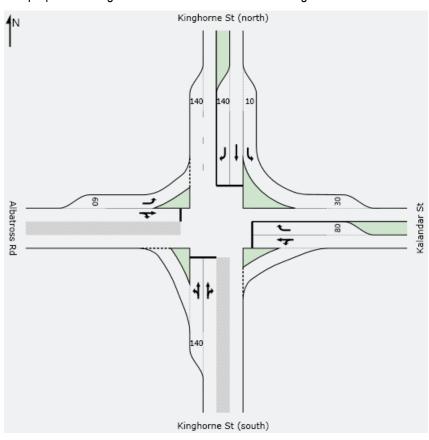


Figure 3.4: Albatross Road / Kinghorne Street Proposed Intersection Configuration

The proposed signal phasing details for the above intersection is shown in Figure 3.5.

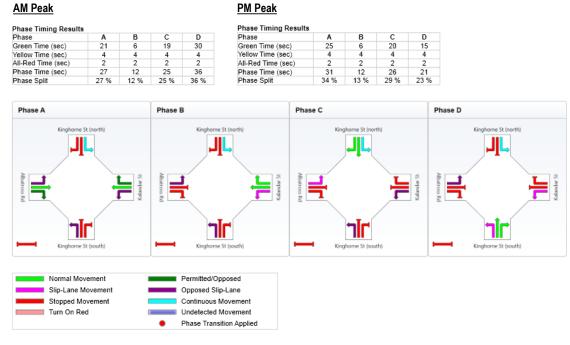


Figure 3.5: Albatross Road / Kinghorne Street Proposed Signal Phasing

3.5.6 Alternative Option

Given the likely costs to upgrade the above mentioned intersections, in the longer term Council may see it more beneficial to consider implementing a series of 'bypass routes'. One possible low cost option to deviate traffic into the Nowra town centre area via Bice Road is shown in Figure 3.6.

Source: Google Maps

Figure 3.6: Bypass Route Option

3.6 Upgraded Intersection Model Outputs

Detailed outputs from the Sidra Assessments of the proposed intersection upgrade configurations are included in Appendix B.

A summary of the morning peak and evening peak operating performance is included in Table 3.6

Table 3.6: Sidra Outputs – Upgraded Intersection Configurations

			AN		PM					
Approach	Lane	DOS	Average Delay (s)	95%ileQueue (m)	DOS	Average Delay (s)	95%ileQueue (m)			
3. Albatross Rd and Yalwal Rd										
Albetroes Del (courte)	L	0.28	11	6	0.53	16	13			
Albatross Rd (south)	Т	0.27	8	14	0.86	23	134			
Albetrees Dd (north)	Т	0.64	7	55	0.68	7	70			
Albatross Rd (north)	R	0.64	13	55	0.68	13	70			
Valued Del	L	0.39	6	0	0.28	6	0			
Yalwal Rd	R	0.11	13	5	0.19	18	10			
		4. Alb	atross Rd	and Berry St						
Albatross Rd (south)	LT	0.6	8	20	0.6	8	42			
Albatross Rd (north)	TR	0.7	13	61	0.77	17	77			
Berry St	LR	0.34	14	16	0.63	22	50			
-		5. Alba	tross Rd ar	nd Kalandar St						
	L	0.69	46	125	0.68	50	69			
Kinghorne St (north)	Т	0.88	43	206	0.88	46	104			
	R	0.88	55	206	0.88	58	104			
	L	0.56	37	102	0.39	27	65			
Kalandar St	Т	0.56	29	102	0.39	19	65			
	R	0.86	59	84	0.48	46	33			
	L	0.07	8	0	0.18	8	0			
Kinghorne St (south)	T	0.13	37	14	0.21	31	24			
	R	0.88	61	125	0.89	57	139			
	L	0.68	15	57	0.56	10	36			
Albatross Rd	Т	0.89	55	122	0.91	49	185			
	R	0.89	64	122	0.91	58	185			

3.7 COST APPORTIONMENT

Ultimately the cost apportionment for any impacts associated with the proposed Mundamia development resides with Council. Based on the Sidra assessments undertaken it would be considered appropriate for the development to fund the suggested infrastructure improvements at the Yalwal Road / George Evans Road intersection, Yalwal Road / Albatross Road intersection and the Albatross Road / Berry Street intersection. The capacity absorbed by background traffic on these intersection improvements would balance out any monetary contribution required for the Albatross Road / Kinghorne Street intersection.

It would also be considered appropriate that the cost to deliver the infrastructure requirements be apportioned based on the proportion of traffic generated by each land owner within the Mundamia subdivision (refer Table 2.3).

4. CONCLUSION

Bitzios Consulting were commissioned by SET Consultants to prepare a Traffic Impact Study for the Mundamia development. SET Consulting are responsible for preparing independent planning documentation to be submitted to the Department of Planning for approval for the Council owned land within the sub-division being Lot 1 DP1021332.

The traffic assessment considered the impacts from the entire Mundamia development area which consists of three separate land owners.

The external trips generated by the development at full completion are expected to be in the order of 560 vehicle trips within the peak hour.

The development area is expected to introduce noticeable traffic impacts at the Yalwal Road / Albatross Road intersection. Minor impacts directly related to the development are expected at the Albatross Road / Berry Street intersection and the Albatross Road / Kinghorne Street intersection. The main concern relating to the latter two intersections is the fact that the early introduction of the Mundamia development could bring forward intersection capacity issues at these locations.

Based on the Sidra assessments undertaken it would be considered appropriate for the development to fund the suggested infrastructure improvements at (refer Section 3.5 for details):

- the Yalwal Road / George Evans Road intersection;
- the Yalwal Road / Albatross Road intersection; and
- the Albatross Road / Berry Street intersection.

The capacity absorbed by background traffic on these intersection improvements would balance out any monetary contribution required for the Albatross Road / Kinghorne Street intersection.

It would also be considered appropriate that the cost to deliver the infrastructure requirements be apportioned based on the proportion of traffic generated by each land owner within the Mundamia subdivision (refer Table 2.3).

The costs to upgrade the Albatross Road / Berry Street intersection and the George Evans Road / Yalwal Road intersection are not expected to be high with the majority of the works able to be catered for within the existing pavement formation. Some minor localised road widening or pavement strengthening may however be required.

The upgrade to the Yalwal Road / Albatross Road intersection is expected to be more costly as it involves the re-construction of an intersection under traffic.

Consideration should be given to further planning for a 'bypass' route from Yalwal Road to Bice Road to provide a more robust longer term solution. The construction of the 'bypass' route may remove the need to complete any upgrades to the Albatross Road intersections.

APPENDIX A

SIDRA OUTPUTS – EXISTING INTERSECTION CONFIGURATIONS

Site: 2012AM with Development

MOVEMENT SUMMARY

UOW and George Evans Rd - 2012AM Roundabout

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: George Evans Rd (south)									KIII/I		
1	L	134	2.0	0.078	6.0	LOS A	0.4	2.6	0.01	0.51	51.5
2	Т	1	4.0	0.078	4.8	LOSA	0.4	2.6	0.01	0.39	52.9
Approac	ch	135	2.0	0.078	6.0	LOSA	0.4	2.6	0.01	0.51	51.5
North: George Evans Rd (north)											
8	Т	2	4.0	0.002	4.8	LOSA	0.0	0.1	0.06	0.39	52.5
9	R	1	2.0	0.002	11.2	LOS A	0.0	0.1	0.06	0.84	46.5
Approac	ch	3	3.3	0.002	6.9	LOSA	0.0	0.1	0.06	0.54	50.2
West: U	IOW Acce	ss									
10	L	1	2.0	0.008	5.9	LOS A	0.0	0.2	0.01	0.46	51.5
12	R	12	2.0	0.008	11.2	LOS A	0.0	0.2	0.01	0.71	46.5
Approac	ch	13	2.0	0.008	10.8	LOSA	0.0	0.2	0.01	0.69	46.9
All Vehi	cles	151	2.0	0.078	6.4	LOSA	0.4	2.6	0.02	0.52	51.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:44:51 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

Site: 2012AM

MOVEMENT SUMMARY

UOW and George Evans Rd - 2012AM with Development Roundabout

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	George Ev	vans Rd (south		V/ O			VO.1			per veri	1311/11
1	L	134	2.0	0.210	6.1	LOSA	1.2	8.2	0.15	0.51	50.7
2	Т	182	2.0	0.210	5.0	LOSA	1.2	8.2	0.15	0.40	51.8
Approa	ch	316	2.0	0.210	5.5	LOSA	1.2	8.2	0.15	0.45	51.3
North: 0	North: George Evans Rd (north)										
8	Т	358	2.0	0.241	4.9	LOSA	1.5	10.5	0.08	0.40	52.4
9	R	40	2.0	0.241	11.3	LOSA	1.5	10.5	0.08	0.90	46.5
Approa	ch	398	2.0	0.241	5.5	LOSA	1.5	10.5	0.08	0.45	51.7
West: L	JOW Acce	ss									
10	L	20	2.0	0.026	6.7	LOSA	0.1	0.9	0.32	0.49	49.3
12	R	12	2.0	0.026	12.0	LOSA	0.1	0.9	0.32	0.70	45.8
Approa	ch	32	2.0	0.026	8.6	LOSA	0.1	0.9	0.32	0.57	47.9
All Vehi	cles	745	2.0	0.241	5.6	LOSA	1.5	10.5	0.12	0.46	51.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:35:32 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

UOW and George Evans Rd - 2012PM Roundabout

Movem	ent Per	formance - Ve	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: 0	George E	vans Rd (south		.,,			7011			po: vo::	
1	L	44	2.0	0.028	6.0	LOS A	0.1	0.9	0.01	0.51	51.5
2	Т	2	4.0	0.028	4.8	LOS A	0.1	0.9	0.01	0.39	52.9
Approac	ch	46	2.1	0.028	5.9	LOSA	0.1	0.9	0.01	0.50	51.6
North: George Evans Rd (north)											
8	Т	1	4.0	0.002	5.0	LOS A	0.0	0.0	0.15	0.37	51.6
9	R	1	2.0	0.002	11.3	LOS A	0.0	0.0	0.15	0.75	46.3
Approac	ch	2	3.0	0.002	8.2	LOSA	0.0	0.0	0.15	0.56	48.7
West: U	OW Acce	ess									
10	L	1	2.0	0.031	5.9	LOS A	0.1	1.0	0.02	0.46	51.4
12	R	51	2.0	0.031	11.2	LOS A	0.1	1.0	0.02	0.70	46.5
Approac	ch	52	2.0	0.031	11.1	LOSA	0.1	1.0	0.02	0.69	46.6
All Vehic	cles	100	2.1	0.031	8.6	LOSA	0.1	1.0	0.02	0.60	48.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:44:53 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

Site: 2012PM

MOVEMENT SUMMARY

UOW and George Evans Rd - 2012PM with Development Roundabout

Moven	nent Per	formance - Ve	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	George Ev	vans Rd (south		VIC	300		VOII	- '''		per veri	KIII/II
1	L	44	2.0	0.227	6.1	LOS A	1.3	9.3	0.12	0.52	51.0
2	Т	312	2.0	0.227	4.9	LOS A	1.3	9.3	0.12	0.41	52.1
Approa	ch	356	2.0	0.227	5.1	LOSA	1.3	9.3	0.12	0.42	51.9
North: 0	George Ev	ans Rd (north)									
8	Т	223	2.0	0.171	5.1	LOS A	1.0	7.1	0.19	0.41	51.5
9	R	24	2.0	0.171	11.4	LOSA	1.0	7.1	0.19	0.85	46.5
Approa	ch	247	2.0	0.171	5.7	LOSA	1.0	7.1	0.19	0.45	50.9
West: L	JOW Acce	ss									
10	L	35	2.0	0.078	7.4	LOS A	0.4	2.8	0.44	0.55	48.5
12	R	51	2.0	0.078	12.6	LOSA	0.4	2.8	0.44	0.71	45.2
Approa	ch	85	2.0	0.078	10.5	LOSA	0.4	2.8	0.44	0.65	46.5
All Vehi	icles	688	2.0	0.227	6.0	LOSA	1.3	9.3	0.18	0.46	50.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:35:32 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

UOW and George Evans Rd - 2022AM Roundabout

Movem	nent Per	formance - Ve	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: 0	George E	vans Rd (south		V/C	300		VOII	- ''		per veri	KIII/II
1	L	162	2.0	0.094	6.0	LOS A	0.5	3.3	0.01	0.51	51.5
2	Т	1	4.0	0.094	4.8	LOSA	0.5	3.3	0.01	0.39	52.9
Approac	ch	163	2.0	0.094	6.0	LOSA	0.5	3.3	0.01	0.51	51.5
North: George Evans Rd (north)											
8	T	2	4.0	0.002	4.8	LOSA	0.0	0.1	0.07	0.38	52.4
9	R	1	2.0	0.002	11.2	LOS A	0.0	0.1	0.07	0.84	46.5
Approac	ch	3	3.3	0.002	7.0	LOSA	0.0	0.1	0.07	0.53	50.2
West: U	IOW Acce	ess									
10	L	1	2.0	0.010	5.9	LOS A	0.0	0.3	0.01	0.46	51.5
12	R	15	2.0	0.010	11.2	LOS A	0.0	0.3	0.01	0.71	46.5
Approac	ch	16	2.0	0.010	10.9	LOSA	0.0	0.3	0.01	0.69	46.8
All Vehic	cles	182	2.0	0.094	6.4	LOSA	0.5	3.3	0.02	0.52	51.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:56:58 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022AM

MOVEMENT SUMMARY

UOW and George Evans Rd - 2022AM with Development Roundabout

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	George Ev	vans Rd (south		VIC	300		VOII	- '''		per veri	KITI/TI
1	L	162	2.0	0.228	6.1	LOSA	1.3	9.1	0.16	0.51	50.7
2	Т	182	2.0	0.228	5.0	LOSA	1.3	9.1	0.16	0.40	51.7
Approa	ch	344	2.0	0.228	5.5	LOSA	1.3	9.1	0.16	0.45	51.2
North: 0	George Ev	ans Rd (north)									
8	Т	358	2.0	0.244	4.9	LOSA	1.5	10.7	0.09	0.40	52.3
9	R	40	2.0	0.244	11.3	LOSA	1.5	10.7	0.09	0.89	46.5
Approa	ch	398	2.0	0.244	5.5	LOSA	1.5	10.7	0.09	0.45	51.6
West: L	JOW Acce	ss									
10	L	20	2.0	0.029	6.7	LOSA	0.1	1.0	0.32	0.49	49.3
12	R	15	2.0	0.029	12.0	LOSA	0.1	1.0	0.32	0.69	45.7
Approa	ch	35	2.0	0.029	8.9	LOSA	0.1	1.0	0.32	0.58	47.7
All Vehi	icles	777	2.0	0.244	5.7	LOSA	1.5	10.7	0.13	0.46	51.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:35:32 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

UOW and George Evans Rd - 2022PM Roundabout

Movem	nent Per	formance - Ve	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: 0	George E	vans Rd (south		.,,			7011			po: vo::	1,11,11
1	L	54	2.0	0.033	6.0	LOS A	0.2	1.1	0.01	0.51	51.5
2	Т	2	4.0	0.033	4.8	LOS A	0.2	1.1	0.01	0.39	52.9
Approac	ch	56	2.1	0.033	5.9	LOSA	0.2	1.1	0.01	0.50	51.6
North: G	George E	vans Rd (north)									
8	Т	1	4.0	0.002	5.0	LOS A	0.0	0.1	0.17	0.37	51.5
9	R	1	2.0	0.002	11.4	LOS A	0.0	0.1	0.17	0.74	46.3
Approac	ch	2	3.0	0.002	8.2	LOSA	0.0	0.1	0.17	0.55	48.7
West: U	IOW Acce	ess									
10	L	1	2.0	0.038	5.9	LOS A	0.2	1.2	0.02	0.46	51.4
12	R	61	2.0	0.038	11.2	LOS A	0.2	1.2	0.02	0.70	46.5
Approac	ch	62	2.0	0.038	11.1	LOSA	0.2	1.2	0.02	0.69	46.6
All Vehic	cles	120	2.1	0.038	8.7	LOSA	0.2	1.2	0.02	0.60	48.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:57:19 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022PM

MOVEMENT SUMMARY

UOW and George Evans Rd - 2022PM with Development Roundabout

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	George E	vans Rd (south		V/ O	300		VOI1			per veri	1311/11
1	L	54	2.0	0.232	6.1	LOS A	1.4	9.7	0.12	0.52	50.9
2	Т	312	2.0	0.232	4.9	LOS A	1.4	9.7	0.12	0.41	52.1
Approa	ch	365	2.0	0.232	5.1	LOSA	1.4	9.7	0.12	0.42	51.9
North: 0	George Ev	ans Rd (north)									
8	Т	223	2.0	0.175	5.1	LOS A	1.0	7.2	0.21	0.42	51.3
9	R	24	2.0	0.175	11.5	LOSA	1.0	7.2	0.21	0.84	46.5
Approa	ch	247	2.0	0.175	5.7	LOSA	1.0	7.2	0.21	0.46	50.8
West: L	JOW Acce	ss									
10	L	35	2.0	0.087	7.4	LOS A	0.4	3.1	0.44	0.55	48.4
12	R	61	2.0	0.087	12.6	LOSA	0.4	3.1	0.44	0.71	45.2
Approa	ch	96	2.0	0.087	10.7	LOSA	0.4	3.1	0.44	0.65	46.3
All Vehi	icles	708	2.0	0.232	6.1	LOSA	1.4	9.7	0.20	0.47	50.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:35:33 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_UOW Access.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2012AM Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Oueue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/h
East: Y	alwal Rd (east)									
5	Т	96	10.0	0.052	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
6	R	135	4.0	0.104	8.8	LOS A	0.4	3.1	0.20	0.63	48.0
Approa	ich	231	6.5	0.104	5.2	NA	0.4	3.1	0.12	0.37	52.3
North: (George Ev	ans Rd									
7	L	15	4.0	0.013	8.7	LOS A	0.0	0.3	0.19	0.61	48.1
9	R	1	4.0	0.003	11.4	LOS A	0.0	0.0	0.46	0.62	45.6
Approa	ıch	16	4.0	0.013	8.9	LOSA	0.0	0.3	0.20	0.61	48.0
West: Y	/alwal Rd	(west)									
10	L	3	4.0	0.002	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	85	10.0	0.047	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	88	9.8	0.047	0.3	NA	0.0	0.0	0.00	0.02	59.
All Vehi	icles	335	7.2	0.104	4.0	NA	0.4	3.1	0.09	0.29	53.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:56:17 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

8000283, BITZIOS CONSULTING, FLOATING

Site: 2012AM

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2012AM with Development Giveway / Yield (Two-Way)

Move	ment Perf	ormance - V	ehicles								
Mov IE) Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
East: Y	′alwal Rd (/0	V10	300		VOII	- '''		per veri	1(11)/11
5	Т	96	8.0	0.052	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
6	R	306	2.0	0.233	8.8	LOSA	1.1	7.9	0.24	0.64	47.8
Approa	ach	402	3.4	0.233	6.7	NA	1.1	7.9	0.18	0.48	50.3
North:	George Ev	ans Rd									
7	L	352	2.0	0.322	8.9	LOSA	1.5	10.9	0.25	0.63	47.8
9	R	18	2.0	0.063	14.4	LOSA	0.2	1.1	0.56	0.79	43.0
Approa	ach	369	2.0	0.322	9.1	LOSA	1.5	10.9	0.27	0.64	47.6
West: \	Yalwal Rd ((west)									
10	L	13	2.0	0.007	8.3	LOSA	0.0	0.0	0.00	0.67	49.0
11	Т	85	8.0	0.046	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ach	98	7.2	0.046	1.1	NA	0.0	0.0	0.00	0.09	58.3
All Veh	icles	869	3.2	0.322	7.1	NA	1.5	10.9	0.20	0.51	49.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:42:57 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:IP1110 Mundamia TIAlTechnical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2012PM Giveway / Yield (Two-Way)

Mover	nent Per	formance - \	/ehicles								
Marris		Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Y	alwal Rd (east)									
5	Т	97	10.0	0.053	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
6	R	47	4.0	0.037	8.9	LOS A	0.1	1.1	0.22	0.63	47.9
Approa	ch	144	8.0	0.053	2.9	NA	0.1	1.1	0.07	0.21	55.4
North:	George Ev	ans Rd									
7	L	52	4.0	0.049	8.9	LOS A	0.2	1.3	0.22	0.63	48.0
9	R	5	4.0	0.015	11.0	LOS A	0.0	0.2	0.42	0.65	46.2
Approa	ch	57	4.0	0.049	9.1	LOSA	0.2	1.3	0.24	0.63	47.8
West: \	/alwal Rd	(west)									
10	L	2	4.0	0.001	8.2	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	113	10.0	0.062	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	115	9.9	0.062	0.2	NA	0.0	0.0	0.00	0.01	59.8
All Veh	icles	316	8.0	0.062	3.0	NA	0.2	1.3	0.08	0.21	55.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 3 October 2012 3:58:52 PM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

8000283, BITZIOS CONSULTING, FLOATING

Site: 2012PM

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2012PM with Development Giveway / Yield (Two-Way)

Movem	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	alwal Rd	` '									
5	Т	97	8.0	0.052	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	341	2.0	0.268	9.0	LOS A	1.3	9.3	0.29	0.65	47.6
Approac	ch	438	3.3	0.268	7.0	NA	1.3	9.3	0.22	0.50	49.9
North: G	George E	vans Rd									
7	L	263	2.0	0.249	9.0	LOS A	1.1	7.7	0.27	0.64	47.7
9	R	16	2.0	0.060	15.6	LOS B	0.1	1.1	0.59	0.82	42.0
Approac	ch	279	2.0	0.249	9.4	LOSA	1.1	7.7	0.29	0.65	47.4
West: Ya	alwal Rd	(west)									
10	L	18	2.0	0.010	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	113	8.0	0.061	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	131	7.2	0.061	1.1	NA	0.0	0.0	0.00	0.09	58.2
All Vehic	cles	847	3.5	0.268	6.9	NA	1.3	9.3	0.21	0.49	50.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:42:57 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2022AM Giveway / Yield (Two-Way)

Moven	nent Per	formance - \	/ehicles								
	_	Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Ya	alwal Rd (east)									
5	Т	117	10.0	0.064	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	164	4.0	0.127	8.9	LOS A	0.5	3.9	0.23	0.64	47.8
Approa	ch	281	6.5	0.127	5.2	NA	0.5	3.9	0.13	0.37	52.3
North: 0	orth: George Evans Rd										
7	L	18	4.0	0.017	8.8	LOS A	0.1	0.4	0.21	0.62	48.0
9	R	1	4.0	0.003	12.4	LOSA	0.0	0.1	0.50	0.64	44.7
Approa	ch	19	4.0	0.017	9.0	LOSA	0.1	0.4	0.23	0.62	47.8
West: Y	'alwal Rd	(west)									
10	L	4	4.0	0.002	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	103	10.0	0.056	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	107	9.8	0.056	0.3	NA	0.0	0.0	0.00	0.03	59.5
All Vehi	cles	407	7.2	0.127	4.1	NA	0.5	3.9	0.10	0.29	53.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:13:14 AM SIDRA INTERSECTION 5.1.12.2089

www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

8000283, BITZIOS CONSULTING, FLOATING

Site: 2022AM

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2022AM with Development Giveway / Yield (Two-Way)

Movem	ent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delav	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
WICV ID		veh/h		v/c	sec	Service	verlicies	Distance	Queueu	per veh	km/h
East: Ya	alwal Rd (,,	.,,						por voi:	1,11,711
5	Т	117	8.0	0.063	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
6	R	336	2.0	0.261	9.0	LOS A	1.3	9.0	0.27	0.64	47.7
Approac	ch	453	3.5	0.261	6.6	NA	1.3	9.0	0.20	0.48	50.4
North: George Evans Rd											
7	L	355	2.0	0.331	9.0	LOSA	1.6	11.2	0.28	0.64	47.7
9	R	18	2.0	0.068	15.7	LOS B	0.2	1.2	0.60	0.83	41.9
Approac	ch	373	2.0	0.331	9.3	LOSA	1.6	11.2	0.30	0.65	47.4
West: Ya	alwal Rd	(west)									
10	L	14	2.0	0.007	8.3	LOSA	0.0	0.0	0.00	0.67	49.0
11	T	103	8.0	0.056	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	117	7.3	0.056	1.0	NA	0.0	0.0	0.00	0.08	58.5
All Vehic	cles	942	3.4	0.331	7.0	NA	1.6	11.2	0.21	0.49	50.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:42:58 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd Yalwal Rd.sip

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2022PM Giveway / Yield (Two-Way)

		Demand		Deg.	Average	Level of	95% Back	of Ougue	Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delav	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/h
East: Y	alwal Rd (
5	Т	119	10.0	0.065	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	57	4.0	0.045	9.0	LOS A	0.2	1.3	0.25	0.63	47.7
Approa	ich	176	8.1	0.065	2.9	NA	0.2	1.3	0.08	0.20	55.4
North: George Evar		ans Rd									
7	L	63	4.0	0.061	9.0	LOS A	0.2	1.6	0.25	0.63	47.8
9	R	6	4.0	0.019	11.7	LOS A	0.0	0.3	0.46	0.68	45.4
Approa	ıch	69	4.0	0.061	9.3	LOSA	0.2	1.6	0.27	0.64	47.6
West: \	alwal Rd	(west)									
10	L	3	4.0	0.002	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	138	10.0	0.075	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ich	141	9.9	0.075	0.2	NA	0.0	0.0	0.00	0.01	59.
All Veh	icles	386	8.0	0.075	3.1	NA	0.2	1.6	0.09	0.21	55.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:14:49 AM SIDRA INTERSECTION 5.1.12.2089

www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd_Yalwal Rd.sip

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

8000283, BITZIOS CONSULTING, FLOATING

Site: 2022PM

MOVEMENT SUMMARY

Yalwal Rd and George Evans Rd - 2022PM with Development Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
IVIOV ID		Flow veh/h		Satn v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: Y	alwal Rd (70	V/C	sec		veh	m		per veh	km/h
5	T	119	8.0	0.064	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	351	2.0	0.283	9.2	LOS A	1.4	9.9	0.32	0.65	47.5
Approa	ch	469	3.5	0.283	6.9	NA	1.4	9.9	0.24	0.49	50.1
North: 0	George Ev	/ans Rd									
7	L	274	2.0	0.266	9.2	LOS A	1.2	8.3	0.31	0.65	47.6
9	R	17	2.0	0.068	16.8	LOS B	0.2	1.2	0.64	0.86	41.0
Approa	ch	291	2.0	0.266	9.6	LOSA	1.2	8.3	0.33	0.67	47.2
West: Y	'alwal Rd	(west)									
10	L	18	2.0	0.010	8.3	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	138	8.0	0.074	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	156	7.3	0.074	0.9	NA	0.0	0.0	0.00	0.08	58.5
All Vehi	icles	916	3.7	0.283	6.7	NA	1.4	9.9	0.23	0.47	50.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:42:58 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 George Evans Rd Yalwal Rd.sip

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2012AM Giveway / Yield (Two-Way)

Movem	nent Per	formance - \	/ehicles								
	_	Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: A	Albatross	Rd (south)									
1	L	41	10.0	0.024	8.6	LOS A	0.0	0.0	0.00	0.67	49.0
2	T	227	8.0	0.123	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	268	8.3	0.123	1.3	NA	0.0	0.0	0.00	0.10	58.0
North: A	Ibatross	Rd (north)									
8	Т	327	8.0	0.177	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	241	10.0	0.233	10.2	LOSA	1.0	8.0	0.42	0.71	47.1
Approac	ch	568	8.8	0.233	4.3	NA	1.0	8.0	0.18	0.30	53.8
West: Y	alwal Rd										
10	L	343	10.0	0.398	10.9	LOSA	2.2	16.7	0.47	0.76	46.5
12	R	31	10.0	0.156	26.4	LOS B	0.5	4.0	0.80	0.94	34.9
Approac	ch	374	10.0	0.398	12.2	LOSA	2.2	16.7	0.50	0.77	45.2
All Vehic	cles	1211	9.1	0.398	6.1	NA	2.2	16.7	0.24	0.40	51.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Thursday, 18 October 2012 10:29:10 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip

8000283, BITZIOS CONSULTING, FLOATING

Site: 2012AM

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2012AM with Development Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Albatross	Rd (south)	/0	V/C	366		VEII	- '''		per veri	KIII/II
1	L	76	8.0	0.043	8.5	LOSA	0.0	0.0	0.00	0.67	49.0
2	Т	227	6.0	0.121	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
Approa	ch	303	6.5	0.121	2.1	NA	0.0	0.0	0.00	0.17	56.8
North: A	Albatross I	Rd (north)									
8	Т	327	6.0	0.174	0.0	LOSA	0.0	0.0	0.00	0.00	60.0
9	R	379	8.0	0.370	10.7	LOSA	2.0	15.2	0.49	0.75	46.6
Approa	ch	706	7.1	0.370	5.7	NA	2.0	15.2	0.26	0.40	52.0
West: Y	′alwal Rd										
10	L	613	8.0	0.703	14.3	LOSA	8.6	64.6	0.67	0.98	43.3
12	R	98	8.0	0.640	49.5	LOS D	3.0	22.6	0.93	1.14	25.4
Approa	ch	711	8.0	0.703	19.1	LOS B	8.6	64.6	0.71	1.00	39.5
All Vehi	icles	1720	7.4	0.703	10.6	NA	8.6	64.6	0.40	0.61	46.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:55:49 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.3.2093 www.sidrasolutions.com Roject: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatros Rd.sip

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2012PM Giveway / Yield (Two-Way)

Movem	nent Per	formance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec		veh			per veh	km/h
South: A	Albatross	Rd (south)									
1	L	63	10.0	0.036	8.6	LOSA	0.0	0.0	0.00	0.67	49.0
2	Т	641	8.0	0.346	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	704	8.2	0.346	0.8	NA	0.0	0.0	0.00	0.06	58.8
North: A	Ibatross	Rd (north)									
8	Т	285	8.0	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	267	10.0	0.449	16.0	LOS B	2.5	19.0	0.70	1.01	41.9
Approac	ch	553	9.0	0.449	7.8	NA	2.5	19.0	0.34	0.49	49.6
West: Y	alwal Rd										
10	L	267	10.0	0.555	18.7	LOS B	3.2	24.6	0.75	1.07	39.9
12	R	39	10.0	0.504	75.9	LOS F	1.8	13.4	0.95	1.06	19.4
Approac	ch	306	10.0	0.555	25.9	LOS B	3.2	24.6	0.78	1.07	35.2
All Vehic	cles	1563	8.8	0.555	8.2	NA	3.2	24.6	0.27	0.41	49.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: Thursday, 18 October 2012 10:32:53 AM

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2012PM

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2012PM with Development Giveway / Yield (Two-Way)

Movem	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	lbatross	Rd (south)	70	.,,						por 1011	1011011			
1	L	121	8.0	0.069	8.5	LOS A	0.0	0.0	0.00	0.67	49.0			
2	Т	641	6.0	0.342	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	:h	762	6.3	0.342	1.3	NA	0.0	0.0	0.00	0.11	57.9			
North: A	lbatross I	Rd (north)												
8	Т	285	6.0	0.152	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
9	R	503	8.0	0.869	28.7	LOS C	11.3	84.6	0.92	1.65	33.6			
Approac	:h	788	7.3	0.869	18.3	NA	11.3	84.6	0.58	1.05	40.0			
West: Ya	alwal Rd													
10	L	458	8.0	0.939	40.6	LOS C	15.4	114.8	0.96	1.97	28.4			
12	R	<mark>60</mark>	8.0	1.000 ³	161.9	LOS F	5.0	37.3	1.00	1.28	11.0			
Approac	:h	518	8.0	1.000	54.7	LOS D	15.4	114.8	0.96	1.89	24.0			
All Vehic	cles	2068	7.1	1.000	21.2	NA	15.4	114.8	0.46	0.91	38.0			

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: Wednesday, 12 December 2012 10:55:49 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2022AM Giveway / Yield (Two-Way)

Moven	nent Per	formance - \	/ehicles								
Mov ID		Demand Flow veh/h		Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	Albatross	Rd (south)	/0	V/C	300		VOIT	- '''		per veri	KIII/II
1	L	51	10.0	0.029	8.6	LOSA	0.0	0.0	0.00	0.67	49.0
2	Т	278	8.0	0.150	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	328	8.3	0.150	1.3	NA	0.0	0.0	0.00	0.10	58.0
North: A	Albatross	Rd (north)									
8	Т	399	8.0	0.215	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	295	10.0	0.305	10.7	LOSA	1.4	10.8	0.49	0.75	46.6
Approac	ch	694	8.8	0.305	4.6	NA	1.4	10.8	0.21	0.32	53.5
West: Y	alwal Rd										
10	L	418	10.0	0.518	12.6	LOSA	3.8	29.0	0.57	0.89	44.8
12	R	38	10.0	0.288	40.2	LOS C	1.0	7.6	0.89	1.00	28.6
Approac	ch	456	10.0	0.518	14.9	LOS B	3.8	29.0	0.60	0.89	42.8
All Vehi	cles	1478	9.1	0.518	7.0	NA	3.8	29.0	0.28	0.45	50.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

Processed: Thursday, 18 October 2012 10:35:11 AM SIDRA INTERSECTION 5.1.12.2089

www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

SIDRA INTERSECTION

Site: 2022AM

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2022AM with Development Giveway / Yield (Two-Way)

Moven	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID		Demand Flow		Deg. Satn	Average Delay	Level of Service	Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed			
South: /	Albatross	veh/h Rd (south)	%	v/c	sec		veh	m		per veh	km/h			
1	L	84	8.0	0.048	8.5	LOSA	0.0	0.0	0.00	0.67	49.0			
2	Т	278	6.0	0.148	0.0	LOSA	0.0	0.0	0.00	0.00	60.0			
Approa	ch	362	6.5	0.148	2.0	NA	0.0	0.0	0.00	0.16	57.0			
North: A	Albatross I	Rd (north)												
8	T	399	6.0	0.213	0.0	LOSA	0.0	0.0	0.00	0.00	60.0			
9	R	432	8.0	0.450	11.8	LOSA	3.1	22.8	0.56	0.85	45.5			
Approa	ch	831	7.0	0.450	6.1	NA	3.1	22.8	0.29	0.44	51.5			
West: Y	alwal Rd													
10	L	691	8.0	0.847	19.7	LOS B	15.6	116.6	0.86	1.37	39.1			
12	R	103	8.0	1.000 ³	81.4	LOS F	5.0	37.3	1.00	1.19	18.5			
Approa	ch	794	8.0	1.000	27.7	LOS B	15.6	116.6	0.87	1.35	34.2			
All Vehi	cles	1986	7.3	1.000	14.0	NA	15.6	116.6	0.47	0.75	43.5			

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: Wednesday, 12 December 2012 10:55:49 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd Albatross Rd.sip

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2022PM Giveway / Yield (Two-Way)

woven	ient rei	formance - \	venicles				050/ 0				
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		v/c	sec	Service	veriicies	m		per veh	km/h
South: A	Albatross	Rd (south)	,,	.,,			7011			po: 10:1	1,11011
1	L	77	10.0	0.044	8.6	LOSA	0.0	0.0	0.00	0.67	49.0
2	T	782	8.0	0.422	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	859	8.2	0.422	8.0	NA	0.0	0.0	0.00	0.06	58.8
North: A	Albatross I	Rd (north)									
8	Т	347	8.0	0.187	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	326	10.0	0.691	23.1	LOS B	4.9	37.0	0.86	1.23	36.8
Approac	ch	674	9.0	0.691	11.2	NA	4.9	37.0	0.42	0.59	46.0
West: Y	alwal Rd										
10	L	326	10.0	0.859	35.1	LOS C	8.2	62.0	0.93	1.54	30.6
12	R	47	10.0	1.000 ³	211.8	LOS F	4.9	37.3	1.00	1.28	8.8
Approac	ch	374	10.0	1.000	57.5	LOS E	8.2	62.0	0.94	1.51	23.3
All Vehi	cles	1906	8.8	1.000	15.6	NA	8.2	62.0	0.33	0.53	42.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: Thursday, 18 October 2012 10:36:28 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com Www.sdrasoldions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022PM

MOVEMENT SUMMARY

Albatross Rd and Yalwal Rd - 2022PM with Development Giveway / Yield (Two-Way)

Movem	Movement Performance - Vehicles Demand Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h			
South: A	lbatross	Rd (south)	/0	V/C	300		VC11	- '''		per veri	KIII/II			
1	L	135	8.0	0.077	8.5	LOS A	0.0	0.0	0.00	0.67	49.0			
2	Т	782	6.0	0.417	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
Approac	ch	917	6.3	0.417	1.2	NA	0.0	0.0	0.00	0.10	58.1			
North: A	Ibatross	Rd (north)												
8	T	428	6.0	0.231	0.0	LOS A	0.0	0.0	0.00	0.00	60.0			
9	R	481	8.0	1.042	89.6	LOS F	29.7	222.3	1.00	2.93	17.3			
Approac	ch	908	7.2	1.042	47.4	NA	29.7	222.3	0.53	1.55	26.1			
West: Ya	alwal Rd													
10	L	524	8.0	1.354	348.0	LOS F	95.2	712.4	1.00	5.84	5.7			
12	R	<mark>60</mark>	8.0	1.000 ³	166.7	LOS F	5.0	37.3	1.00	1.32	10.7			
Approac	:h	584	8.0	1.354	329.4	LOS F	95.2	712.4	1.00	5.38	6.0			
All Vehic	cles	2409	7.1	1.354	98.2	NA	95.2	712.4	0.44	1.92	16.2			

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements. SIDRA Standard Delay Model used.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Processed: Wednesday, 12 December 2012 10:55:50 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Albatross Rd and Berry St -2012AM Roundabout

Movem	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	Albatross	Rd (south)									
1	L	272	3.0	0.433	7.7	LOSA	3.5	25.5	0.24	0.58	48.8
2	Т	344	8.0	0.433	7.0	LOSA	3.5	25.5	0.24	0.50	49.4
Approac	ch	616	5.8	0.433	7.3	LOSA	3.5	25.5	0.24	0.53	49.2
North: A	Ibatross	Rd (north)									
8	Т	405	8.0	0.415	8.2	LOSA	3.0	22.1	0.51	0.61	47.9
9	R	43	3.0	0.415	12.4	LOSA	3.0	22.1	0.51	0.78	45.7
Approac	ch	448	7.5	0.415	8.6	LOSA	3.0	22.1	0.51	0.63	47.7
West: B	erry St										
10	L	49	3.0	0.256	9.7	LOSA	1.5	10.5	0.55	0.69	46.9
12	R	192	3.0	0.256	13.3	LOSA	1.5	10.5	0.55	0.77	44.4
Approac	ch	241	3.0	0.256	12.5	LOSA	1.5	10.5	0.55	0.75	44.9
All Vehic	cles	1305	5.9	0.433	8.7	LOSA	3.5	25.5	0.39	0.61	47.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:39:12 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2012AM

MOVEMENT SUMMARY

Albatross Rd and Berry St -2012AM with Development Roundabout

Moven	nent Perf	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Courth	Albotropo	veh/h Rd (south)	%	v/c	sec		veh	m		per veh	km/h
South.	Alballoss	, ,									
1	L	434	2.0	0.604	7.8	LOSA	6.6	48.1	0.32	0.56	48.5
2	T	453	6.0	0.604	7.0	LOSA	6.6	48.1	0.32	0.49	48.9
Approa	ch	886	4.0	0.604	7.4	LOSA	6.6	48.1	0.32	0.52	48.7
North: A	Albatross F	Rd (north)									
8	Т	460	6.0	0.506	8.9	LOSA	3.9	28.8	0.66	0.69	47.1
9	R	43	2.0	0.506	13.2	LOSA	3.9	28.8	0.66	0.81	45.2
Approa	ch	503	5.7	0.506	9.3	LOSA	3.9	28.8	0.66	0.70	46.9
West: E	Berry St										
10	L	49	2.0	0.378	10.7	LOS A	2.4	17.1	0.67	0.77	46.0
12	R	275	2.0	0.378	14.3	LOSA	2.4	17.1	0.67	0.83	43.5
Approa	ch	324	2.0	0.378	13.7	LOSA	2.4	17.1	0.67	0.82	43.8
All Vehi	icles	1714	4.1	0.604	9.1	LOSA	6.6	48.1	0.49	0.63	47.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:25:19 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Albatross Rd and Berry St -2012PM Roundabout

Moven	nent Per	formance - V	ehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/r
South: A	Albatross	Rd (south)									
1	L	294	3.0	0.625	7.7	LOSA	7.2	53.2	0.25	0.57	48.8
2	Т	656	8.0	0.625	7.0	LOSA	7.2	53.2	0.25	0.49	49.4
Approac	ch	949	6.5	0.625	7.2	LOSA	7.2	53.2	0.25	0.51	49.2
North: A	North: Albatross Rd (nort										
8	Т	346	8.0	0.378	8.5	LOSA	2.6	19.7	0.57	0.65	47.6
9	R	26	3.0	0.378	12.8	LOSA	2.6	19.7	0.57	0.80	45.5
Approac	ch	373	7.6	0.378	8.8	LOSA	2.6	19.7	0.57	0.66	47.4
West: B	erry St										
10	L	65	3.0	0.429	13.4	LOSA	3.0	21.3	0.79	0.90	43.5
12	R	242	3.0	0.429	16.9	LOS B	3.0	21.3	0.79	0.93	41.4
Approac	ch	307	3.0	0.429	16.2	LOS B	3.0	21.3	0.79	0.93	41.8
All Vehi	cles	1629	6.1	0.625	9.2	LOSA	7.2	53.2	0.42	0.62	47.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:43:27 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2012PM

MOVEMENT SUMMARY

Albatross Rd and Berry St -2012PM with Development Roundabout

Mov ID T			ehicles								
ו עו ייסועו		Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: Alb	atross	veh/h Rd (south)	%	v/c	sec	_	veh	m		per veh	km/h
1	L	395	2.0	0.723	7.7	LOSA	11.1	80.6	0.32	0.54	48.5
2	Т	724	6.0	0.723	6.9	LOSA	11.1	80.6	0.32	0.47	48.9
Approach		1119	4.6	0.723	7.2	LOSA	11.1	80.6	0.32	0.49	48.8
North: Alba	atross I	Rd (north)									
8	Т	440	6.0	0.548	10.6	LOSA	4.8	35.1	0.79	0.82	46.4
9	R	26	2.0	0.548	14.9	LOS B	4.8	35.1	0.79	0.89	43.9
Approach		466	5.8	0.548	10.8	LOSA	4.8	35.1	0.79	0.82	46.3
West: Berr	y St										
10	L	65	2.0	0.672	19.7	LOS B	7.2	51.6	0.94	1.15	38.5
12	R	383	2.0	0.672	23.3	LOS B	7.2	51.6	0.94	1.16	37.0
Approach		448	2.0	0.672	22.8	LOS B	7.2	51.6	0.94	1.15	37.2
All Vehicle	s	2034	4.3	0.723	11.5	LOSA	11.1	80.6	0.57	0.72	45.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:28:15 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Albatross Rd and Berry St -2022AM Roundabout

Movem	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	Albatross	Rd (south)	/0	V/C	300		VOII	- '''		per veri	KIII/II
1	L	331	3.0	0.539	7.9	LOSA	5.2	38.5	0.34	0.57	48.4
2	Т	419	8.0	0.539	7.2	LOSA	5.2	38.5	0.34	0.50	48.8
Approac	ch	749	5.8	0.539	7.5	LOSA	5.2	38.5	0.34	0.53	48.6
North: A	lbatross	Rd (north)									
8	T	544	8.0	0.597	9.4	LOSA	5.4	40.1	0.71	0.71	46.8
9	R	57	3.0	0.597	13.7	LOSA	5.4	40.1	0.71	0.81	44.8
Approac	ch	601	7.5	0.597	9.8	LOSA	5.4	40.1	0.71	0.72	46.6
West: B	erry St										
10	L	67	3.0	0.372	10.5	LOSA	2.4	17.0	0.66	0.76	46.2
12	R	258	3.0	0.372	14.1	LOSA	2.4	17.0	0.66	0.82	43.7
Approac	ch	325	3.0	0.372	13.4	LOSA	2.4	17.0	0.66	0.80	44.2
All Vehic	cles	1676	5.9	0.597	9.5	LOSA	5.4	40.1	0.53	0.65	47.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:45:25 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022AM

MOVEMENT SUMMARY

Albatross Rd and Berry St -2022AM with Development Roundabout

Movem	nent Per	formance - V	ehicles								
		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: A	Albatross	Rd (south)									
1	L	493	2.0	0.713	8.0	LOS A	10.1	73.5	0.48	0.54	47.8
2	Т	527	6.0	0.713	7.3	LOS A	10.1	73.5	0.48	0.49	47.9
Approac	ch	1020	4.1	0.713	7.7	LOSA	10.1	73.5	0.48	0.51	47.9
North: A	Albatross I	Rd (north)									
8	Т	600	6.0	0.708	12.4	LOSA	8.6	63.3	0.88	0.89	44.8
9	R	57	2.0	0.708	16.7	LOS B	8.6	63.3	0.88	0.93	42.4
Approac	ch	657	5.7	0.708	12.8	LOSA	8.6	63.3	0.88	0.89	44.6
West: B	erry St										
10	L	67	2.0	0.520	12.8	LOSA	4.2	30.1	0.80	0.90	43.9
12	R	340	2.0	0.520	16.4	LOS B	4.2	30.1	0.80	0.93	41.8
Approac	ch	407	2.0	0.520	15.8	LOS B	4.2	30.1	0.80	0.93	42.1
All Vehi	cles	2084	4.2	0.713	10.9	LOSA	10.1	73.5	0.67	0.71	45.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:49:58 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Albatross Rd and Berry St -2022PM Roundabout

Movem	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: A	Albatross	Rd (south)	70	V/C	Sec		ven	m		per veri	KIII/II
1	L	358	3.0	0.774	7.9	LOSA	13.6	100.7	0.43	0.52	48.0
2	Т	800	8.0	0.774	7.2	LOSA	13.6	100.7	0.43	0.46	48.3
Approac	ch	1158	6.5	0.774	7.4	LOSA	13.6	100.7	0.43	0.48	48.2
North: A	Albatross	Rd (north)									
8	Т	465	8.0	0.560	10.1	LOSA	5.0	37.0	0.77	0.78	46.5
9	R	35	3.0	0.560	14.3	LOSA	5.0	37.0	0.77	0.86	44.3
Approac	ch	500	7.7	0.560	10.4	LOSA	5.0	37.0	0.77	0.78	46.4
West: B	erry St										
10	L	87	3.0	0.704	23.5	LOS B	8.0	57.8	0.99	1.21	36.1
12	R	325	3.0	0.704	27.1	LOS B	8.0	57.8	0.99	1.21	34.9
Approac	ch	413	3.0	0.704	26.3	LOS B	8.0	57.8	0.99	1.21	35.1
All Vehic	cles	2071	6.1	0.774	11.9	LOS A	13.6	100.7	0.63	0.70	44.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:47:00 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.12.2089 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

SIDRA INTERSECTION

Site: 2022PM

MOVEMENT SUMMARY

Albatross Rd and Berry St -2022PM with Development Roundabout

Moven	nent Perf	formance - V	ehicles								
Marris		Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 41 4	\ 4	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: A	Albatross	Rd (south)									
1	L	460	2.0	0.871	8.1	LOSA	25.2	183.5	0.64	0.46	47.1
2	Т	867	6.0	0.871	7.4	LOSA	25.2	183.5	0.64	0.43	47.1
Approac	ch	1327	4.6	0.871	7.7	LOSA	25.2	183.5	0.64	0.44	47.1
North: A	Ibatross F	Rd (north)									
8	Т	559	6.0	0.733	14.7	LOS B	9.4	68.7	0.96	1.02	42.8
9	R	35	2.0	0.733	19.0	LOS B	9.4	68.7	0.96	1.03	40.7
Approac	ch	594	5.8	0.733	15.0	LOS B	9.4	68.7	0.96	1.02	42.6
West: B	erry St										
10	L	87	2.0	1.089	134.4	LOS F	51.0	363.1	1.00	2.87	12.7
12	R	466	2.0	1.089	138.0	LOS F	51.0	363.1	1.00	2.87	12.8
Approac	ch	554	2.0	1.089	137.4	LOS F	51.0	363.1	1.00	2.87	12.8
All Vehi	cles	2475	4.3	1.089	38.4	LOS C	51.0	363.1	0.80	1.12	28.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:30:41 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

Albatross Rd and Kalandar St - 2012AM Roundabout

Movem	ent Per	formance - \	/ehicles								
Marrido	T	Demand	1.15.7	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Caudhill	/i.a.a.la.a.u.a.	veh/h e St (south)	%	v/c	sec		veh	m		per veh	km/h
	KINGHOITIE	35	0.0	0.000	07.0	LOS C	00.0	400.5	4.00	4.04	00.7
1	L T		8.0	0.930	37.8		22.9	168.5	1.00	1.64	29.7
2	T	607	6.0	0.930	36.8	LOSC	22.9	168.5	1.00	1.64	29.8
3	R	39	6.0	0.930	41.2	LOS C	22.9	168.5	1.00	1.64	29.1
Approac	ch	681	6.1	0.930	37.1	LOS C	22.9	168.5	1.00	1.64	29.8
East: Ka	alandar S	t									
4	L	34	6.0	0.457	10.0	LOSA	3.2	23.8	0.62	0.72	47.0
5	Т	214	8.0	0.457	9.1	LOSA	3.2	23.8	0.62	0.68	47.0
6	R	166	6.0	0.457	13.5	LOSA	3.2	23.8	0.62	0.80	44.7
Approac	ch	414	7.0	0.457	11.0	LOSA	3.2	23.8	0.62	0.73	46.0
North: K	inghorne	St (north)									
7	L	94	6.0	0.336	9.1	LOSA	2.3	16.9	0.54	0.65	47.1
8	Т	36	6.0	0.336	8.2	LOSA	2.3	16.9	0.54	0.61	47.2
9	R	206	8.0	0.336	12.7	LOSA	2.3	16.9	0.54	0.74	44.9
Approac	h	336	7.2	0.336	11.3	LOSA	2.3	16.9	0.54	0.70	45.7
West: Al	batross l	Rd									
10	L	248	8.0	0.869	38.8	LOS C	14.1	105.3	1.00	1.45	29.2
11	Т	167	8.0	0.869	37.9	LOS C	14.1	105.3	1.00	1.45	29.2
12	R	15	8.0	0.869	42.3	LOS C	14.1	105.3	1.00	1.45	28.5
Approac	h	431	8.0	0.869	38.5	LOS C	14.1	105.3	1.00	1.45	29.2
All Vehic	cles	1861	7.0	0.930	27.0	LOS B	22.9	168.5	0.83	1.22	34.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 9:56:07 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2012AM

MOVEMENT SUMMARY

Site: 2012AM with Development

Albatross Rd and Kalandar St - 2012AM with Development Roundabout

Moven	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
MOV ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: k	(inahorn	veh/h e St (south)	%	v/c	sec		veh	m		per veh	km/h
1	L	37	6.0	0.966	49.7	LOS D	28.8	210.5	1.00	1.88	25.5
2	T	607	5.0	0.966	48.8	LOS D	28.8	210.5	1.00	1.89	25.6
3	R	39	5.0	0.966	53.2	LOS D	28.8	210.5	1.00	1.89	25.1
			5.1	0.966	49.1	LOS D		210.5	1.00		
Approac	CH	683	5.1	0.900	49.1	LOS D	28.8	210.5	1.00	1.89	25.6
East: Ka	alandar S	St									
4	L	34	5.0	0.492	10.2	LOSA	3.6	26.1	0.67	0.74	46.8
5	Т	236	6.0	0.492	9.4	LOSA	3.6	26.1	0.67	0.71	46.7
6	R	166	5.0	0.492	13.8	LOSA	3.6	26.1	0.67	0.82	44.4
Approac	ch	436	5.5	0.492	11.1	LOSA	3.6	26.1	0.67	0.75	45.8
North: k	Kinghorne	St (north)									
7	L	94	5.0	0.374	9.4	LOSA	2.6	19.2	0.59	0.68	46.8
8	Т	36	5.0	0.374	8.5	LOSA	2.6	19.2	0.59	0.64	46.8
9	R	237	6.0	0.374	13.0	LOSA	2.6	19.2	0.59	0.75	44.8
Approac	ch	366	5.6	0.374	11.6	LOSA	2.6	19.2	0.59	0.72	45.5
West: A	lbatross	Rd									
10	L	308	6.0	1.049	103.6	LOS F	40.6	299.0	1.00	2.48	15.6
11	T	211	6.0	1.049	102.7	LOS F	40.6	299.0	1.00	2.48	15.6
12	R	20	6.0	1.049	107.2	LOS F	40.6	299.0	1.00	2.48	15.6
Approac	ch	539	6.0	1.049	103.4	LOS F	40.6	299.0	1.00	2.48	15.6
All Vehi	cles	2024	5.5	1.049	48.6	LOS D	40.6	299.0	0.85	1.59	25.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:24 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip

Albatross Rd and Kalandar St - 2012PM Roundabout

Movem	nent Perf	formance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: k	Kinahorne	veh/h St (south)	%	v/c	sec	_	veh	m	_	per veh	km/h
1	L	25	8.0	0.463	11.9	LOSA	3.3	24.4	0.75	0.85	45.8
2	T	267	6.0	0.463	10.9	LOSA	3.3	24.4	0.75	0.82	46.1
3	R	81	6.0	0.463	15.3	LOS B	3.3	24.4	0.75	0.90	43.4
Approac	ch	374	6.1	0.463	11.9	LOSA	3.3	24.4	0.75	0.84	45.4
East: Ka	alandar St	t									
4	L	34	6.0	0.338	10.1	LOSA	2.2	16.3	0.63	0.74	47.0
5	Т	163	8.0	0.338	9.3	LOSA	2.2	16.3	0.63	0.70	47.0
6	R	79	6.0	0.338	13.6	LOSA	2.2	16.3	0.63	0.82	44.6
Approac	ch	276	7.2	0.338	10.6	LOSA	2.2	16.3	0.63	0.74	46.3
North: K	Kinghorne	St (north)									
7	L	248	6.0	0.666	14.0	LOSA	7.3	53.8	0.88	0.94	43.3
8	T	67	6.0	0.666	13.1	LOSA	7.3	53.8	0.88	0.93	43.5
9	R	234	8.0	0.666	17.6	LOS B	7.3	53.8	0.88	0.97	41.3
Approac	ch	549	6.9	0.666	15.4	LOS B	7.3	53.8	0.88	0.95	42.4
West: A	lbatross F	Rd									
10	L	367	8.0	0.835	20.3	LOS B	14.1	105.3	1.00	1.17	38.8
11	Т	321	8.0	0.835	19.4	LOS B	14.1	105.3	1.00	1.17	38.9
12	R	5	8.0	0.835	23.8	LOS B	14.1	105.3	1.00	1.17	37.4
Approac	ch	694	8.0	0.835	19.9	LOS B	14.1	105.3	1.00	1.17	38.9
All Vehic	cles	1893	7.2	0.835	15.7	LOS B	14.1	105.3	0.86	0.98	42.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 10:40:42 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2012PM

MOVEMENT SUMMARY

Site: 2012PM with Development

Albatross Rd and Kalandar St - 2012PM with Development Roundabout

Movem	nent Per	formance - V	/ehicles								
Mov ID		Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back of Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
Courth: k	Vinahorna	veh/h St (south)	%	v/c	sec		veh	m		per veh	km/h
1	Kiligilorie	29	6.0	0.503	13.2	LOSA	4.0	29.0	0.81	0.92	44.4
2	T	29 267	5.0	0.503	12.3	LOSA	4.0	29.0	0.81	0.92	44.4
	r R					LOS A		29.0			
3		81	5.0	0.503	16.7		4.0		0.81	0.97	42.2
Approac	ch	378	5.1	0.503	13.3	LOSA	4.0	29.0	0.81	0.92	44.1
East: Ka	alandar S	t									
4	L	34	5.0	0.400	10.6	LOSA	2.7	20.2	0.70	0.78	46.8
5	Т	201	6.0	0.400	9.7	LOSA	2.7	20.2	0.70	0.75	46.6
6	R	79	5.0	0.400	14.1	LOSA	2.7	20.2	0.70	0.85	44.3
Approac	ch	314	5.6	0.400	10.9	LOSA	2.7	20.2	0.70	0.78	46.0
North: K	Kinghorne	St (north)									
7	L	248	5.0	0.735	15.9	LOS B	9.3	68.5	0.95	1.03	41.6
8	Т	67	5.0	0.735	15.0	LOS B	9.3	68.5	0.95	1.02	41.8
9	R	285	6.0	0.735	19.5	LOS B	9.3	68.5	0.95	1.04	39.8
Approac	ch	601	5.5	0.735	17.5	LOS B	9.3	68.5	0.95	1.03	40.8
West: A	Ibatross F	₹d									
10	L	404	6.0	0.890	24.2	LOS B	18.9	138.8	1.00	1.28	36.3
11	Т	348	6.0	0.890	23.3	LOS B	18.9	138.8	1.00	1.28	36.4
12	R	8	6.0	0.890	27.7	LOS B	18.9	138.8	1.00	1.28	35.1
Approac	ch	761	6.0	0.890	23.8	LOS B	18.9	138.8	1.00	1.28	36.3
All Vehic	cles	2054	5.6	0.890	18.1	LOS B	18.9	138.8	0.90	1.06	40.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:25 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:/P1110 Mundamia TIAlTechnical WorklModels/P1110 Albatross Rd_Kalandar St_Kinghorne St.sip

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.s 8000283, BITZIOS CONSULTING, FLOATING

Albatross Rd and Kalandar St - 2022AM Roundabout

Movem	nent Pe	rformance - \	/ehicles								
		Demand	107	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
0 11 1	<i>c</i> : 1	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•	e St (south)									
1	L	46	8.0	1.615	579.9	LOS F	236.8	1744.3	1.00	7.55	3.5
2	T	817	6.0	1.615	578.9	LOS F	236.8	1744.3	1.00	7.59	3.5
3	R	53	6.0	1.615	583.3	LOS F	236.8	1744.3	1.00	7.59	3.6
Approac	ch	916	6.1	1.615	579.2	LOS F	236.8	1744.3	1.00	7.59	3.5
East: Ka	alandar S	St									
4	L	44	6.0	0.673	13.8	LOSA	7.3	54.0	0.84	0.92	43.7
5	Т	286	8.0	0.673	12.9	LOSA	7.3	54.0	0.84	0.90	44.0
6	R	223	6.0	0.673	17.3	LOS B	7.3	54.0	0.84	0.95	41.6
Approac	ch	554	7.0	0.673	14.8	LOS B	7.3	54.0	0.84	0.92	43.0
North: K	(inghorne	e St (north)									
7	L	125	6.0	0.467	9.7	LOSA	3.6	26.5	0.65	0.70	46.5
8	Т	47	6.0	0.467	8.8	LOSA	3.6	26.5	0.65	0.67	46.5
9	R	277	8.0	0.467	13.3	LOSA	3.6	26.5	0.65	0.77	44.6
Approac	ch	449	7.2	0.467	11.8	LOSA	3.6	26.5	0.65	0.74	45.3
West: A	Ibatross	Rd									
10	L	335	8.0	1.055	104.8	LOS F	44.0	329.2	1.00	2.60	15.4
11	Т	224	8.0	1.055	103.9	LOS F	44.0	329.2	1.00	2.60	15.5
12	R	19	8.0	1.055	108.3	LOS F	44.0	329.2	1.00	2.60	15.5
Approac	ch	578	8.0	1.055	104.5	LOS F	44.0	329.2	1.00	2.60	15.5
All Vehi	cles	2497	7.0	1.615	242.0	LOS F	236.8	1744.3	0.90	3.72	7.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 10:43:02 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022AM

MOVEMENT SUMMARY

Site: 2022AM with Development

Albatross Rd and Kalandar St - 2022AM with Development Roundabout

Movem	nent Per	formance -	Vehicles								
	_	Demand	1.0.7	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Caudhall	/i	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•	e St (south)	0.0	4.004	0.40.7		050.5	1051.1	4.00		0.0
1	L	48	6.0	1.691	648.7	LOS F	253.5	1851.1	1.00	7.77	3.2
2	Т	817	5.0	1.691	647.8	LOS F	253.5	1851.1	1.00	7.79	3.2
3	R	53	5.0	1.691	652.2	LOS F	253.5	1851.1	1.00	7.79	3.2
Approac	ch	918	5.1	1.691	648.1	LOS F	253.5	1851.1	1.00	7.79	3.2
East: Ka	alandar S	St									
4	L	44	5.0	0.711	15.0	LOS B	8.4	61.5	0.89	0.97	42.7
5	Т	308	6.0	0.711	14.1	LOSA	8.4	61.5	0.89	0.97	42.9
6	R	223	5.0	0.711	18.5	LOS B	8.4	61.5	0.89	1.00	40.7
Approac	ch	576	5.5	0.711	15.9	LOS B	8.4	61.5	0.89	0.98	42.0
North: K	Kinghorne	e St (north)									
7	L	125	5.0	0.496	9.8	LOSA	3.9	28.7	0.68	0.72	46.4
8	Т	47	5.0	0.496	8.9	LOSA	3.9	28.7	0.68	0.68	46.3
9	R	307	6.0	0.496	13.4	LOSA	3.9	28.7	0.68	0.77	44.5
Approac	ch	480	5.6	0.496	12.0	LOSA	3.9	28.7	0.68	0.75	45.1
West: A	lbatross	Rd									
10	L	394	6.0	1.167	186.8	LOS F	82.0	603.5	1.00	3.85	9.7
11	Т	267	6.0	1.167	185.9	LOS F	82.0	603.5	1.00	3.85	9.8
12	R	24	6.0	1.167	190.3	LOS F	82.0	603.5	1.00	3.85	9.9
Approac	ch	685	6.0	1.167	186.6	LOS F	82.0	603.5	1.00	3.85	9.8
All Vehic	cles	2659	5.5	1.691	277.4	LOS F	253.5	1851.1	0.92	4.03	7.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:25 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip

MOVEMENT SUMMARY

Albatross Rd and Kalandar St - 2022PM Roundabout

Moven	nent Per	formance - \	/ehicles								
Marrido	т	Demand	1.157	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth: I	Vinghorn	veh/h e St (south)	%	v/c	sec	_	veh	m	_	per veh	km/h
	•	, ,	0.0	0.740	00.0	1.00 B	0.4	07.0	0.00	4.00	20.5
1	L T	34	8.0	0.740	20.9	LOS B	9.1	67.3	0.98	1.20	38.5
2		360	6.0	0.740	20.0	LOS B	9.1	67.3	0.98	1.20	38.6
3	R	108	6.0	0.740	24.4	LOS B	9.1	67.3	0.98	1.21	37.0
Approac	ch	502	6.1	0.740	21.0	LOS B	9.1	67.3	0.98	1.20	38.2
East: Ka	alandar S	st .									
4	L	44	6.0	0.516	12.3	LOSA	4.2	31.0	0.80	0.88	45.2
5	Т	220	8.0	0.516	11.5	LOSA	4.2	31.0	0.80	0.86	45.4
6	R	106	6.0	0.516	15.8	LOS B	4.2	31.0	0.80	0.92	42.9
Approac	ch	371	7.2	0.516	12.8	LOSA	4.2	31.0	0.80	0.88	44.6
North: k	Kinghorne	St (north)									
7	L	335	6.0	0.900	26.2	LOS B	19.7	146.1	1.00	1.31	34.8
8	Т	91	6.0	0.900	25.3	LOS B	19.7	146.1	1.00	1.31	34.9
9	R	314	8.0	0.900	29.8	LOS C	19.7	146.1	1.00	1.32	33.7
Approac	ch	739	6.8	0.900	27.6	LOS B	19.7	146.1	1.00	1.32	34.4
West: A	Ibatross I	Rd									
10	L	494	8.0	1.352	340.3	LOS F	171.6	1283.3	1.00	6.10	5.8
11	Т	432	8.0	1.352	339.4	LOS F	171.6	1283.3	1.00	6.11	5.8
12	R	6	8.0	1.352	343.8	LOS F	171.6	1283.3	1.00	6.10	5.9
Approac	ch	932	8.0	1.352	339.9	LOS F	171.6	1283.3	1.00	6.10	5.8
All Vehi	cles	2543	7.2	1.352	138.5	LOS F	171.6	1283.3	0.97	2.98	12.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, 4 October 2012 10:45:15 AM SIDRA INTERSECTION 5.1.12.2089

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: P:P1110 Mundamia TIAlTechnical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

Site: 2022PM

MOVEMENT SUMMARY

Albatross Rd and Kalandar St - 2022PM with Development Roundabout

Movem	nent Per	rformance -	Vehicles								
	_	Demand	1.0.7	Deg.	Average	Level of	95% Back		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Courth: k	/inghorn	veh/h e St (south)	%	v/c	sec	_	veh	m	_	per veh	km/h
	•	38	0.0	0.000	00.7	1.00.0	44.0	04.7	1.00	4.04	04.0
1	L T		6.0	0.803	26.7	LOS B	11.6	84.7		1.31	34.9
2	•	360	5.0	0.803	25.8	LOS B	11.6	84.7	1.00	1.32	35.0
3	R	108	5.0	0.803	30.2	LOSC	11.6	84.7	1.00	1.32	33.8
Approac	ch	506	5.1	0.803	26.8	LOS B	11.6	84.7	1.00	1.31	34.7
East: Ka	alandar S	St									
4	L	44	5.0	0.588	13.9	LOSA	5.4	39.7	0.87	0.96	43.7
5	Т	257	6.0	0.588	13.1	LOSA	5.4	39.7	0.87	0.95	43.9
6	R	106	5.0	0.588	17.5	LOS B	5.4	39.7	0.87	0.99	41.7
Approac	ch	407	5.6	0.588	14.3	LOSA	5.4	39.7	0.87	0.96	43.3
North: K	Kinghorne	e St (north)									
7	L	335	5.0	0.947	34.0	LOS C	26.8	196.5	1.00	1.51	30.9
8	Т	91	5.0	0.947	33.2	LOS C	26.8	196.5	1.00	1.51	31.0
9	R	365	6.0	0.947	37.6	LOSC	26.8	196.5	1.00	1.51	30.1
Approac	ch	791	5.5	0.947	35.6	LOS C	26.8	196.5	1.00	1.51	30.5
West: A	lbatross	Rd									
10	L	531	6.0	1.403	384.5	LOS F	199.5	1468.2	1.00	6.65	5.2
11	T	459	6.0	1.403	383.6	LOS F	199.5	1468.2	1.00	6.65	5.2
12	R	9	6.0	1.403	388.1	LOS F	199.5	1468.2	1.00	6.65	5.3
Approac	ch	999	6.0	1.403	384.2	LOS F	199.5	1468.2	1.00	6.65	5.2
All Vehic	cles	2703	5.6	1.403	159.5	LOS F	199.5	1468.2	0.98	3.29	11.2

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:25 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:/P1110 Mundamia TIAlTechnical WorklModels/P1110 Albatross Rd_Kalandar St_Kinghorne St.sip

Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.s 8000283, BITZIOS CONSULTING, FLOATING

APPENDIX B

SIDRA OUTPUTS - UPGRADED INTERSECTION CONFIGURATIONS

Site: 2022AM with Development - Roundabout

Albatross Rd and Yalwal Rd - 2022AM with Development - Roundabout Roundabout

Movement Performance - Vehicles													
	_	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average		
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
		veh/h	%	v/c	sec		veh	m		per veh	km/h		
South: A	Albatross	Rd (south)											
1	L	84	8.0	0.276	10.8	LOS A	0.7	5.5	0.66	0.72	46.5		
2	Т	278	6.0	0.268	8.1	LOSA	1.9	14.1	0.68	0.67	47.7		
Approac	ch	362	6.5	0.276	8.7	LOSA	1.9	14.1	0.67	0.68	47.4		
North: A	Albatross I	Rd (north)											
8	Т	399	6.0	0.638	6.8	LOSA	7.4	54.7	0.58	0.50	47.7		
9	R	432	8.0	0.638	12.6	LOSA	7.4	54.7	0.58	0.67	45.3		
Approac	ch	831	7.0	0.638	9.8	LOSA	7.4	54.7	0.58	0.59	46.4		
West: Y	'alwal Rd												
10	L	688	8.0	0.392	6.1	X	X	X	X	0.51	51.6		
12	R	105	8.0	0.111	13.2	LOSA	0.7	5.1	0.53	0.69	44.4		
Approac	ch	794	8.0	0.392	7.1	LOSA	0.7	5.1	0.07	0.53	50.5		
All Vehi	cles	1986	7.3	0.638	8.5	LOSA	7.4	54.7	0.39	0.58	48.1		

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:55:50 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: 2022PM with Development - Roundabout

Albatross Rd and Yalwal Rd - 2022PM with Development - Roundabout Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h			sec					per veh	km/l
South: A	lbatross	Rd (south)									
1	L	135	8.0	0.525	16.3	LOS B	1.8	13.3	0.78	0.92	41.
2	Т	782	6.0	0.859	23.0	LOS B	18.3	134.4	1.00	1.30	36.
Approac	:h	917	6.3	0.859	22.0	LOS B	18.3	134.4	0.97	1.25	37.
North: A	lbatross I	Rd (north)									
8	Т	347	6.0	0.682	6.7	LOS A	9.4	69.5	0.62	0.48	47.
9	R	561	8.0	0.682	12.5	LOS A	9.4	69.5	0.62	0.63	45.
Approac	:h	908	7.2	0.682	10.3	LOS A	9.4	69.5	0.62	0.58	45
West: Ya	alwal Rd										
10	L	495	8.0	0.282	6.1	X	X	X	X	0.51	51.
12	R	89	8.0	0.188	17.9	LOS B	1.3	10.1	0.90	0.88	41.
Approac	:h	584	8.0	0.282	7.9	LOS A	1.3	10.1	0.14	0.57	49
All Vehic	cles	2409	7.1	0.859	14.2	LOSA	18.3	134.4	0.63	0.83	43

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:55:50 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com
Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Yalwal Rd_Albatross Rd.sip

Site: 2022AM with Development -**Left Lane**

Albatross Rd and Berry St -2022AM with Development - with additional left lane Roundabout

Movement Performance - Vehicles													
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h		
South: /	Albatross	Rd (south)											
1	L	493	2.0	0.595	9.0	LOSA	2.8	19.6	0.95	0.42	45.4		
2	Т	527	6.0	0.346	6.9	LOSA	2.7	19.9	0.26	0.51	49.4		
Approa	ch	1020	4.1	0.595	7.9	LOSA	2.8	19.9	0.60	0.47	47.4		
North: A	Albatross	Rd (north)											
8	Т	600	6.0	0.701	12.2	LOSA	8.3	60.9	0.86	0.88	44.9		
9	R	57	2.0	0.701	16.5	LOS B	8.3	60.9	0.86	0.93	42.5		
Approa	ch	657	5.7	0.701	12.6	LOSA	8.3	60.9	0.86	0.88	44.7		
West: B	erry St												
10	L	67	2.0	0.228	12.4	LOS A	0.6	4.0	0.63	0.78	44.7		
12	R	340	2.0	0.341	14.0	LOSA	2.2	15.9	0.68	0.80	43.7		
Approa	ch	407	2.0	0.341	13.7	LOSA	2.2	15.9	0.67	0.80	43.8		
All Vehi	cles	2084	4.2	0.701	10.5	LOSA	8.3	60.9	0.69	0.66	45.8		

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:31:29 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd Berry St.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: 2022PM with Development -Left Lane

Albatross Rd and Berry St -2022PM with Development - with additional left lane Roundabout

		Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID		Flow		Satn	Delav	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h		v/c	sec		veh			per veh	km/l
South: A	Albatross	Rd (south)									
1	L	460	2.0	0.596	9.0	LOSA	2.8	19.7	1.00	0.35	45.
2	Т	867	6.0	0.535	6.9	LOSA	5.7	42.2	0.26	0.50	49.4
Approac	ch	1327	4.6	0.596	7.6	LOSA	5.7	42.2	0.52	0.45	47.9
North: Albatross Rd (north)											
8	Т	559	6.0	0.765	16.6	LOS B	10.4	76.5	0.99	1.09	41.3
9	R	35	2.0	0.765	20.9	LOS B	10.4	76.5	0.99	1.09	39.4
Approac	ch	594	5.8	0.765	16.8	LOS B	10.4	76.5	0.99	1.09	41.
West: B	erry St										
10	L	87	2.0	0.390	18.1	LOS B	1.1	8.1	0.79	0.95	40.
12	R	466	2.0	0.627	23.0	LOS B	7.0	49.6	0.96	1.13	37.
Approac	ch	554	2.0	0.627	22.2	LOS B	7.0	49.6	0.93	1.10	37
All Vehicles		2475	4.3	0.765	13.1	LOSA	10.4	76.5	0.72	0.75	43

Level of Service (LOS) Method: Delay (RTA NSW). Vehicle movement LOS values are based on average delay per movement Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 9:32:14 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd Berry St.sip

Site: 2022AM with Development - Signals

Albatross Rd and Kalandar St - 2022AM with Development - Signals Signals - Fixed Time Cycle Time = 100 seconds (Practical Cycle Time)

Movem	ent Per	rformance -	Vehicles								
	_	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
O th te	C l	veh/h	%	v/c	sec		veh	m		per veh	km/h
	•	e St (south)									
1	L	48	6.0	0.685	45.7	LOS D	17.2	125.5	0.94	0.90	27.8
2	Т	817	5.0	0.882	42.7	LOS D	28.2	205.6	0.97	0.96	26.3
3	R	53	5.0	0.882	54.9	LOS D	28.2	205.6	1.00	1.05	25.0
Approac	ch	918	5.1	0.882	43.6	LOS D	28.2	205.6	0.97	0.96	26.3
East: Ka	alandar S	St									
4	L	44	5.0	0.558	37.0	LOS C	13.9	102.3	0.87	0.88	31.1
5	Т	308	6.0	0.558	28.9	LOS C	13.9	102.3	0.87	0.76	31.7
6	R	223	5.0	0.858	59.4	LOS E	11.4	83.5	1.00	1.04	22.9
Approac	ch	576	5.5	0.858	41.3	LOS C	13.9	102.3	0.92	0.88	27.5
North: K	inghorne	e St (north)									
7	L	125	5.0	0.067	7.7	Χ	X	X	X	0.60	49.8
8	Т	47	5.0	0.127	36.5	LOS C	1.9	14.1	0.86	0.65	28.7
9	R	307	6.0	0.877	61.3	LOS E	17.1	125.6	1.00	0.98	22.4
Approac	h	480	5.6	0.877	44.9	LOS D	17.1	125.6	0.73	0.85	26.9
West: Al	batross	Rd									
10	L	394	6.0	0.682	14.9	LOS B	7.8	57.3	0.54	0.74	42.8
11	Т	267	6.0	0.888	55.3	LOS D	16.5	121.5	1.00	1.05	22.8
12	R	24	6.0	0.888	63.7	LOS E	16.5	121.5	1.00	1.05	22.7
Approac	h	685	6.0	0.888	32.4	LOS C	16.5	121.5	0.74	0.87	31.2
All Vehic	cles	2659	5.5	0.888	40.4	LOS C	28.2	205.6	0.86	0.90	27.8

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:26 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

MOVEMENT SUMMARY

Site: 2022PM with Development - Signals

Albatross Rd and Kalandar St - 2022PM with Development -Signals Signals - Fixed Time Cycle Time = 90 seconds (Practical Cycle Time)

Movem	ent Perf	ormance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
	Kinghorne	St (south)									
1	L	38	6.0	0.682	50.0	LOS D	9.4	68.8	0.99	0.89	26.4
2	T	360	5.0	0.878	45.7	LOS D	14.2	103.7	1.00	0.96	25.1
3	R	108	5.0	0.878	58.1	LOS E	14.2	103.7	1.00	1.04	23.7
Approac	ch	506	5.1	0.878	48.7	LOS D	14.2	103.7	1.00	0.97	24.9
East: Ka	alandar St										
4	L	44	5.0	0.385	27.1	LOS B	8.9	65.4	0.74	0.88	35.9
5	T	257	6.0	0.385	19.1	LOS B	8.9	65.4	0.74	0.64	37.3
6	R	106	5.0	0.480	45.9	LOS D	4.5	32.6	0.97	0.77	26.6
Approac	h	407	5.6	0.480	27.0	LOS B	8.9	65.4	0.80	0.70	33.6
North: K	inghorne	St (north)									
7	L	335	5.0	0.180	7.7	Χ	X	X	X	0.60	49.8
8	T	91	5.0	0.208	31.1	LOS C	3.3	23.9	0.85	0.67	31.0
9	R	365	6.0	0.891	57.2	LOS E	18.9	138.9	1.00	1.01	23.4
Approac	h	791	5.5	0.891	33.2	LOS C	18.9	138.9	0.56	0.80	31.4
West: Al	batross R	d									
10	L	531	6.0	0.562	9.5	LOSA	4.9	35.8	0.32	0.69	47.7
11	Т	459	6.0	0.909	49.3	LOS D	25.1	184.5	1.00	1.12	24.4
12	R	9	6.0	0.909	57.7	LOS E	25.1	184.5	1.00	1.12	24.3
Approac	h	999	6.0	0.909	28.2	LOS B	25.1	184.5	0.64	0.89	33.0
All Vehic	cles	2703	5.6	0.909	33.3	LOS C	25.1	184.5	0.71	0.85	30.8

X: Not applicable for Continuous movement.

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Processed: Wednesday, 12 December 2012 10:27:26 AM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com Project: P:\P1110 Mundamia TIA\Technical Work\Models\P1110 Albatross Rd_Kalandar St_Kinghorne St.sip 8000283, BITZIOS CONSULTING, FLOATING

