

Air Quality and Greenhouse Gas Impact Assessment

FINAL

DRAYTON SOUTH AIR QUALITY AND GREENHOUSE GAS IMPACT ASSESSMENT

For

Hansen Bailey on behalf of Anglo American Metallurgical Coal

Job No: 3617B

25 October 2012

PROJECT TITLE:	Drayton South Air Quality and Greenhouse Gas Impact Assessment
JOB NUMBER:	3617B
PREPARED FOR:	Daniel Sullivan
	Hansen Bailey on behalf of Anglo American Metallurgical Coal
PREPARED BY:	Khalia Hill
DISCLAIMER & COPYRIGHT:	This report is subject to the copyright statement located at <u>www.paeholmes.com</u> © Queensland Environment Pty Ltd trading as PAEHolmes ABN 86 127 101 642

DOCUMENT CONTROL

VERSION	DATE	PREPARED BY	REVIEWED BY
D1	28.04.12	Khalia Hill	J. Cox
D2	02.05.12	Khalia Hill	R. Kellaghan
D3	17.05.12	Khalia Hill	J. Cox
D4	28.06.12	Khalia Hill	J. Cox
Final V1	11.07.12	Khalia Hill	J. Cox
Final V2	16.07.12	Khalia Hill	J. Cox
Final V3	25.10.12	Khalia Hill	J. Cox

Queensland Environment Pty Ltd trading as **PAEHolmes** ABN 86 127 101 642

SYDNEY:

Suite 203, Level 2, Building D, 240 Beecroft Road Epping NSW 2121 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

BRISBANE:

Level 1, La Melba, 59 Melbourne Street, South Brisbane QLD 4101 PO Box 3306, South Brisbane QLD 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

ADELAIDE:

72 North Terrace, Littlehampton SA 5250 PO Box 1230, Littlehampton SA 5250 Ph: +61 8 8391 4032 Fax: +61 7 3844 5858

PERTH:

Level 18, Central Park Building, 152-158 St Georges Terrace, Perth WA 6000 Ph: +61 8 9288 4522 Fax: +61 8 9288 4400

MELBOURNE:

Suite 62, 63 Turner Street, Port Melbourne VIC 3207 PO Box 23293, Docklands VIC 8012 Ph: +61 3 9681 8551 Fax: +61 3 9681 3408

GLADSTONE:

Suite 2, 36 Herbert Street, Gladstone QLD 4680 Ph: +61 7 4972 7313 Fax: +61 7 3844 5858

ES1 EXECUTIVE SUMMARY

Anglo American is seeking Project Approval under Part 3A of the Environmental Planning & Assessment Act 1979 (EP&A Act) to facilitate the extraction of coal by both open cut and highwall mining methods within Exploration Licence (EL) 5460 for a period of 27 years. The Project Application Boundary (Project Boundary) is shown on **Figure 2-1**.

The Project will allow for the continuation of mining at Drayton Mine by the development of open cut and highwall mining operations within the Drayton South mining area while continuing to utilise the existing infrastructure and equipment from Drayton Mine.

The Project generally comprises:

- The continuation of operations at Drayton Mine as presently approved with minor additional mining areas within the East, North and South Pits.
- The development of an open cut and highwall mining operation extracting up to 7 million tonnes per annum (Mtpa) of ROM coal over a period of 27 years.
- The utilisation of the existing Drayton Mine workforce and equipment fleet (with an addition of a highwall miner and coal haulage fleet).
 - The Drayton Mine fleet includes a dragline, excavators, fleet of haul trucks, dozers, graders, water carts and associated supporting equipment.
- The use of Drayton Mine's existing voids for rejects and tailings disposal and water storage to allow for the optimisation of the Drayton Mine final landform.
- The utilisation of the existing Drayton Mine infrastructure including the Coal Handling and Preparation Plant (CHPP), rail loop and associated load out infrastructure, workshops, bath houses and administration offices.
- The construction of a transport corridor between Drayton South and Drayton Mine infrastructure.
- The utilisation of the Antiene Rail Spur off the Main Northern Railway to transport product coal to the Port of Newcastle for export.
- The realignment of a section of Edderton Road.
- The installation of water management and power reticulation infrastructure at Drayton South.

This report deals with air quality issues that will arise from this development and focuses on the following:

- The impacts likely to arise from emissions of dust from the proposed open cut operations and the associated surface activities.
- The cumulative impacts likely to arise from emissions of dust from the Project considered in combination with emissions from nearby mining operations at Mt. Arthur Coal, Mt. Pleasant, Bengalla, Hunter Valley Operations, Mangoola, Muswellbrook Coal Mine and Drayton Mine.
- An assessment of the greenhouse gas emissions likely to arise from the Project.

Emission inventories were developed for six operating years of the Project and an additional scenario to capture the construction of the visual bund. An alternative transport option of a conveyor between Drayton South mine areas and the Drayton CHPP has also been investigated for the operational year with the largest total ROM coal mined. These years have been selected to represent the potential worst-case air quality impacts that the Project will have on different areas around the Project Boundary throughout its lifetime.

The air dispersion modelling conducted for this assessment is based on an advanced modelling system using the models TAPM and CALMET/CALPUFF. This system overcomes some of the limitations of steady-state Gaussian plume models such as AUSPLUME and ISC.

The dispersion conditions for the area were characterised based on regional and local meteorological data, generated using a diagnostic meteorological modelling system known as CALMET. The annual winds predicted by CALMET correlate well with the windroses presented for the Saddlers Creek meteorological station in 2005 and nearby meteorological station at Macleans Hill.

CALPUFF was used to predict the maximum 24-hour PM_{10} , annual average PM_{10} , annual average TSP and annual average dust deposition (insoluble solids) over an area extending approximately 30 km (east-west) and 36 km (north-south). The modelling has been undertaken to show both the effects of the Project only and the cumulative effects of the Project with neighbouring mines and other sources of dust.

The assessment follows the Environmental Protection Authority (EPA) 'Approved Methods for the assessment of air pollution sources using dispersion models'.

In summary, six private residences, owned by two landowners are anticipated to be impacted by dust levels exceeding the relevant criteria.

Construction activities associated with the Project will have negligible emissions.

Spontaneous combustion is not anticipated to be an issue, however if it is then the same management and monitoring measures currently employed at Drayton Mine will be applied to ensure minimal impact.

The CO_2 emissions released during the mining operations are small compared to the CO_2 emissions released during the combustion of the coal proposed for extraction. Angle American is committed to reviewing and monitoring Greenhouse Gas emissions and the activities that lead to GHG emissions, to ensure that these emissions are kept to the minimum practicable level and will attempt to keep the ratio of greenhouse gas emissions per tonne of coal produced as low as possible.

TABLE OF CONTENTS

ES1 EXE	ECUTIVE SUMMARY	III
TABLE (DF CONTENTS	V
LIST OF	TABLES	VII
1 INT	RODUCTION	1
1.1	Related Studies	1
2 PR	DJECT DESCRIPTION	1
	GISLATIVE SETTING	5
3.1	Introduction	5
3.2	Director-General's Requirements	5
3.3	Environmental Planning and Assessment Act 1979	9
3.4	Particulate Matter and its Health Significance	9
3.5	EPA Impact Assessment Criteria	10
3.6	Strategic Regional Land Use Plan for the Upper Hunter	12
3.7	Action for Air	12
3.8	The Best Practice Report	13
3.9	Protection of the Environment Operations Act 1997	14
4 EXI	STING ENVIRONMENT	15
4.1	Air Quality	15
4.1	.1 Dust deposition data	16
4.1	.2 TSP and PM ₁₀ concentrations	17
4.2	Local Meteorology	21
4.2	.1 Prevailing winds	21
4.2	.2 Local climatic conditions	22
5 ME	THODOLOGY	23
5.1	Approach to Assessment	23
5.2	ТАРМ	24
5.3	CALMET	25
5.4	Wind Speed and Direction	26
5.5	Atmospheric Stability	32
5.6	Mixing Height	33
6 OV	ERVIEW OF BEST PRACTICE DUST CONTROL	34
7 EM	ISSIONS TO AIR	37
7.1	Introduction	37
7.2	Particle Size Categories	37
7.3	Emissions from Project Operations	37
7.3	.1 Emission estimates	38
7.4	Emissions from Neighbouring Mines	46
7.5	Estimated Emissions from Distant Mines and Other Sources	50
8 AS	SESSMENT OF IMPACTS – PARTICULATE MATTER	56
8.1	Assessment Approach	56
8.2	PM ₁₀ 24-hour Predictions	56
8.3	Cumulative 24-hour Average PM_{10} Impacts	67
8.3	.1 Introduction	67
8.3	.2 Level 2 assessment based on Monte Carlo simulation	67
8.4	Project Only PM ₁₀ Predictions	72
8.5	Cumulative PM ₁₀ Predictions	82
8.6	Project Only TSP Predictions	92
8.7	Cumulative TSP Predictions	102
8.8	Project Only Dust Deposition Predictions	112
8.9	Cumulative Dust deposition Predictions	122

8.10 Consideration of Vacant Land	132
8.11 ROM Transport Options	132
8.12 Spontaneous Combustion	138
8.12.1 Introduction	138
8.12.2 Potential air quality impacts	138
8.12.3 Monitoring and control of spontaneous combustion	139
8.13 Construction Phase and Realignment of Edderton Road	139
9 MONITORING AND MANAGEMENT MEASURES	143
9.1 Real-Time Dust Monitoring	143
9.2 Predictive Meteorological Forecasting System	143
10 GREENHOUSE GAS EMISSIONS	145
10.1 Introduction	145
10.2 Greenhouse Gas Emission Estimates	146
10.3 Impact on the Environment	148
10.4 Greenhouse Gas Emissions Intensity	150
10.5 Greenhouse Gas Management	150
11 CONCLUSIONS	151
12 REFERENCES	153
APPENDIX A - WIND ROSES	A-1
APPENDIX B – MONITORING DATA	B-1
APPENDIX C - ESTIMATION OF DUST EMISSIONS	C-1
APPENDIX D – PM _{2.5} ASSESSMENT	D-1
APPENDIX E – COMPARISON WITH OTHER MINE PLANS	E-1
APPENDIX F – MODEL SET UP	F-1
APPENDIX G – ESTIMATION OF GHG EMISSIONS	G-1

LIST OF TABLES

Table 3-1: Director-General's Requirements 6
Table 3-2: EPA agency Comments
Table 3-3: EPA Air Quality Criteria for Particulate Matter Concentrations 11
Table 3.4: EPA Advisory Reporting Standards for PM2.5
Table 3-5: EPA Criteria for Dust (Insoluble Solids) Fallout
Table 4-1: Annual average Dust deposition data (insoluble solids) – 1998 to 2011 (g/m ² /month)
Table 4-2: TSP and PM_{10} annual average concentrations (μ g/m ³)17
Table 4-3: Percentage of calm periods in Saddlers Creek meteorological data
Table 4-4: Percentage of calm periods in Saddlers Creek compared to Macleans Hill
Table 4-5: Climate Information for Jerry's Plain Post Office meteorological station 22 Table 6-1: Evistime Directory Air availation and the static
Table 6-1: Existing Drayton Air quality control measures (AQMP Table 5) 34 Table 6-2: One size of SPA has been size on the size of
Table 6-2: Overview of EPA best practice emission reduction measures 35
Table 7-1: Description of the Projects modelling years 38
Table 7-2: Open cut and highwall ROM coal and waste production schedule
Table 7-3: Silt and Moisture Contents
Table 7-4: Summary of estimated TSP emissions from the Project (kg/y) 41
Table 7-5: Summary of estimated TSP dust emissions from neighbouring mines (kg/y)48
Table 7-6: Summary of estimated TSP emissions from Drayton mine 2016 (kg/y) 49
Table 7-7: Summary of estimated TSP emissions from nearby mines operational in 200552
Table 7-8: PM_{10} concentrations ($\mu g/m^3$)
Table 7-9: TSP concentrations (µg/m³)
Table 7-10: PM_{10} and TSP concentrations ($\mu g/m^3$) at the model boundary
Table 8-1: 24-hour PM_{10} concentrations (μ g/m ³) for each modelling year due to Project only56
Table 8-2: Number of days exceeding 24-hour PM10 assessment criterion for each modelling year
Table 8-3: Monitoring data availability – cumulative 24-hour assessment
Table 8-4: Summary of days exceeding 50 μ g/m ³ – Year10 project alone and cumulative72
Table 8-5: Annual PM_{10} concentrations ($\mu g/m^3$) at nearby residences for each modelling year – Project Only
Table 8-6: Annual PM ₁₀ concentrations (μ g/m ³) at nearby residences for each modelling year –
Cumulative
Table 8-7: Annual TSP concentrations (µg/m ³) at nearby residences for each modelling year – Project Only
Table 8-8: Annual TSP concentrations (μ g/m ³) at nearby residences for each modelling year - Cumulative
Table 8-9: Annual Dust Deposition concentrations (g/m ² /month) at nearby residences for each
modelling year – Project Only
Table 8-10: Annual Dust Deposition concentrations (g/m²/month) at nearby residences for eachmodelling year - Cumulative122
Table 8-11: Privately-owned land area predicted to be impacted greater than 25%
Table 8-12: Summary of estimated TSP emissions from the Conveyor option (kg/y)
Table 10-1: Summary of Estimated CO_2 -e (tonnes) – All Scopes
Table 10-2: Projected Changes in Annual Temperature (relative to 1990) 148

LIST OF FIGURES

3
4
10
15
16
18
18
19
19
20
20
21
24
26
28
29
3:0030

Figure 5-6: CALMET generated vectors for 15th August 2005 (left) 06:00 and (right) 18:0031 Figure 5-7: Stability class frequency (CALMET 2005)......32 Figure 7-1: Source locations for neighbouring mines included in cumulative assessment.......47 Figure 7-2: Source locations for neighbouring mines included in variable background Figure 7-3: Annual average PM_{10} ($\mu g/m^3$) concentrations due to distant mines and other sources Figure 7-4: Annual average TSP (μ g/m³) concentrations due to distant mines and other sources Figure 8-1: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 3A60 Figure 8-2: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 3B.....61 Figure 8-3: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 5......62 Figure 8-4: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 1063 Figure 8-5: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 1564 Figure 8-6: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 2065 Figure 8-7: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Figure 8-8: Representative receivers and monitoring locations – cumulative 24-hour PM₁₀ Figure 8-9: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average PM_{10} Figure 8-10: Year 10 - Number of days likely to exceed cumulative maximum 24-hr average PM_{10} concentration (50 μ g/m³) for residences north east of Drayton Mine71 Figure 8-11: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average PM_{10} concentration (50 μ g/m³) for south east residences71 Figure 8-12: Predicted annual average PM_{10} concentrations due to emissions from Drayton South only - Year 3A75 Figure 8-13: Predicted annual average PM_{10} concentrations due to emissions from Drayton South only - Year 3B76 Figure 8-14: Predicted annual average PM₁₀ concentrations due to emissions from Drayton Figure 8-15: Predicted annual average PM_{10} concentrations due to emissions from Drayton Figure 8-16: Predicted annual average PM_{10} concentrations due to emissions from Drayton Figure 8-17: Predicted annual average PM_{10} concentrations due to emissions from Drayton South only - Year 2080 Figure 8-18: Predicted annual average PM_{10} concentrations due to emissions from Drayton South and other sources - Year 27.....81 Figure 8-19: Predicted annual average PM_{10} concentrations due to emissions from Drayton South and other sources - Year 3A......85

Figure 8-20: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 3B......86 Figure 8-21: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 5......87 Figure 8-22: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 1088 Figure 8-23: Predicted annual average PM₁₀ concentrations due to emissions from Drayton Figure 8-24: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 20.....90 Figure 8-25: Predicted annual average PM₁₀ concentrations due to emissions from Drayton Figure 8-26: Predicted annual average TSP concentrations due to emissions from Drayton South only - Year 3A95 Figure 8-27: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-28: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-29: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-30: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-31: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-32: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-33: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 3A105 Figure 8-34: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-35: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 5107 Figure 8-36: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-37: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 15109 Figure 8-38: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 20110 Figure 8-39: Predicted annual average TSP concentrations due to emissions from Drayton South Figure 8-40: Predicted annual average dust deposition concentrations due to emissions from Figure 8-41: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 3B......116 Figure 8-42: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 5......117 Figure 8-43: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 10118

Figure 8-44: Predicted annual average dust deposition concentrations due to emissions from Figure 8-45: Predicted annual average dust deposition concentrations due to emissions from Figure 8-46: Predicted annual average dust deposition concentrations due to emissions from Figure 8-47: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 3A......125 Figure 8-48: Predicted annual average dust deposition concentrations due to emissions from Figure 8-49: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 5......127 Figure 8-50: Predicted annual average dust deposition concentrations due to emissions from Figure 8-51: Predicted annual average dust deposition concentrations due to emissions from Figure 8-52: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 20......130 Figure 8-53: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 27.....131 Figure 8-54: Comparison of predicted maximum 24-hour average PM₁₀ concentrations due to emissions from Conveyor Option and Hauling Option –Year 20134 Figure 8-55: Comparison of predicted annual average PM₁₀ concentrations due to emissions from Conveyor Option and Hauling Option -Year 20135 Figure 8-56: Comparison of predicted annual average TSP concentrations due to emissions from Conveyor Option and Hauling Option –Year 20......136 Figure 8-57: Comparison of predicted annual average dust deposition concentrations due to Figure 10-1: Greenhouse Gas Intensity Comparison150 Figure A-1: Annual and seasonal windroses for Saddlers Creek, 2002, 2003 and 2004 A-2 Figure A-2: Annual and seasonal windroses for Saddlers Creek, 2006, 2007 and 2008 A-3 Figure A-3: Annual and seasonal windroses for Saddlers Creek, 2009, 2010 and 2011 A-4 Figure A-4: Annual and seasonal windroses for Saddlers Creek and Macleans Hill for 2005.... A-5 Figure C-1: Location of Sources for Year 3A C-2 Figure C-2: Location of Sources for Year 3B C-3 Figure C-3: Location of Sources for Drayton Coal Mine Year 3A/3B..... C-4 Figure C-4: Location of Sources for Year 5 C-5 Figure C-5: Location of Sources for Year 10..... C-6 Figure C-6: Location of Sources for Year 15..... C-7 Figure C-7: Location of Sources for Year20.....C-8 Figure C-8: Location of Sources for Year27..... C-9 Figure D-10: Measured 24-hour average PM_{2.5} at 3 EPA Upper Hunter monitoring sites......D-4 Figure D-11: Year 10 - Number of days likely to exceed cumulative maximum 24-h average $PM_{2.5}$ concentration (25 μ g/m³) for south/south-west residences.....D-7

Figure D-12: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average
$PM_{2.5}$ concentration (25 $\mu g/m^3)$ for residences north east of Drayton MineD-8
Figure D-13: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average
$PM_{2.5}$ concentration (25 $\mu g/m^3)$ for south east residences D-8

1 INTRODUCTION

PAEHolmes has been engaged by Hansen Bailey Environmental Consultants (Hansen Bailey) on behalf of Anglo American Metallurgical Coal Pty Ltd (Anglo American) to complete an air quality and greenhouse gas impact assessment for the Drayton South Coal Project (the Project). The purpose of the assessment is to form part of an Environmental Assessment (EA) being prepared by Hansen Bailey to support an application for a contemporary Project Approval under Part 3A of the Environmental Planning and Assessment Act 1979 (EP&A Act) to facilitate the continuation of Drayton Mine by the development of an open cut and highwall coal mining operation and associated infrastructure within the Drayton South area.

In October 2011, Part 3A of the EP&A Act was repealed. However, the Project has been granted the benefit of transitional provisions and as such, is a development to which Part 3A applies.

The objectives of the air quality and greenhouse gas assessment are as follows:

- To understand meteorological conditions of the project site and surrounding areas.
- To characterize current air quality and baseline air quality issues.
- To estimate the emissions of particulate matter (as PM₁₀, TSP and Depositional Dust) for representative worst case stages of the Project.
- To apply state-of-the-art regulatory dispersion models to predict future ambient air quality at the site for up to seven stages of the mine's development.
- To recommend air quality management measures.
- To estimate greenhouse gas emissions and evaluate climate change.

1.1 Related Studies

The studies which are to be read in conjunction with this assessment include the following:

- The EA horse health assessment.
- The EA agricultural land use impact assessment.
- The EA geochemistry impact assessment.
- The EA economic impact assessment.

2 PROJECT DESCRIPTION

Drayton Mine is managed by Anglo Coal (Drayton Management) Pty Ltd which is owned by Anglo American. Drayton Mine commenced production in 1983 and currently holds Project Approval 06_0202 (dated 1 February 2008) that expires in 2017.

The Project will allow for the continuation of mining at Drayton Mine by the development of open cut and highwall mining operations within the Drayton South mining area while continuing to utilise the existing infrastructure and equipment from Drayton Mine.

The Project is located approximately 10 km north-west of the village of Jerry's Plains and approximately 13 km south of the township of Muswellbrook in the Upper Hunter Valley of New South Wales (NSW). The Project is predominately situated within the Muswellbrook Shire Local Government Area (LGA), with the south-west portion falling within the Singleton LGA. **Figure 2-1**

illustrates the location of the Project. The Project is located adjacent to two thoroughbred horse studs, two power stations and several existing coal mines.

The Project will extend the life of Drayton Mine by a further 27 years ensuring the continuity of employment for its workforce, the ongoing utilisation of its infrastructure and the orderly rehabilitation of Drayton Mine's completed mining areas.

Anglo American is seeking Project Approval under Part 3A of the *Environmental Planning & Assessment Act 1979* (EP&A Act) to facilitate the extraction of coal by both open cut and highwall mining methods within Exploration Licence (EL) 5460 for a period of 27 years. The Project Application Boundary (Project Boundary) is shown on **Figure 2-1**.

The Project generally comprises:

- The continuation of operations at Drayton Mine as presently approved with minor additional mining areas within the East, North and South Pits.
- The development of an open cut and highwall mining operation extracting up to 7 million tonnes per annum (Mtpa) of ROM coal over a period of 27 years;
- The utilisation of the existing Drayton Mine workforce and equipment fleet (with an addition of a highwall miner and coal haulage fleet);
 - The Drayton Mine fleet includes a dragline, excavators, fleet of haul trucks, dozers, graders, water carts and associated supporting equipment.
- The use of Drayton Mine's existing voids for rejects and tailings disposal and water storage to allow for the optimisation of the Drayton Mine final landform;
- The utilisation of the existing Drayton Mine infrastructure including the Coal Handling and Preparation Plant (CHPP), rail loop and associated load out infrastructure, workshops, bath houses and administration offices;
- The construction of a transport corridor between Drayton South and Drayton Mine infrastructure;
- The utilisation of the Antiene Rail Spur off the Main Northern Railway to transport product coal to the Port of Newcastle for export;
- The realignment of a section of Edderton Road; and
- The installation of water management and power reticulation infrastructure at Drayton South.

The conceptual layout of the Project is shown in Figure 2-2.

Figure 2-1: Regional Locality Plan

Figure 2-2: Conceptual Project Layout

3 LEGISLATIVE SETTING

3.1 Introduction

Project mining activities described in **Section 2** have the potential to generate fugitive dust emissions in the form of particulate matter described as total suspended particulate matter (TSP), particulate matter with an equivalent aerodynamic diameter of 10 micrometres (μ m) or less (PM₁₀) and deposited dust emissions. In addition, combustion engines of generators and vehicles release emissions through engine exhausts including carbon monoxide (CO), minor quantities of sulphur dioxide (SO₂) and nitrogen dioxide (NO₂). Diesel combustion also results in the emission of fine particulate matter which is accounted for in the estimates of fugitive emissions presented in this report, which include diesel particles as well as particles derived from the materials being handled.

The low sulphur content of Australian diesel, in combination with the fact that mining equipment (including generators) is widely dispersed over mine sites; is such that the SO_2 goals would not be exceeded, even in mining operations that use large quantities of diesel. For this reason, no detailed study is required to demonstrate that emissions of SO_2 from the Project would not significantly affect ambient SO_2 concentrations. Similarly, NO_2 and CO emissions from the mining activities are limited and too widely dispersed to require a detailed modelling assessment. For this reason these emissions are not considered further in this report.

Other emissions to air from the Project include greenhouse gases (GHG) such as fugitive methane (CH_4) from exposed coal, carbon dioxide (CO_2) from the combustion of fuel in combustion engines, blasting and indirect GHG emissions from the combustion of coal produced on-site. GHG emissions are assessed in **Section 10**.

The following sections provide information on the air quality criteria used to assess the impact of dust and particulate emissions. To assist in interpreting the significance of predicted concentration and deposition levels some background discussion is also provided.

3.2 Director-General's Requirements

The Air Quality and Greenhouse Gas Assessment is guided by the Director-General's Requirements (DGRs), outlined in **Table 3-1**. Assessment requirements have also been outlined by the NSW Environment Protection Authority¹ (EPA) and are provided in **Table 3-2**.

The Air Quality and Greenhouse Gas Assessment has been prepared in accordance with the DGRs, NSW EPA *Approved Methods for the Modelling and Assessment of Air Pollutants in NSW* (Approved Methods) (**DEC, 2005**) and in consideration of the EPA's agency comments in **Table 3-2**.

¹ The EPA exists as a legal entity operated within the NSW Office of Environment and Heritage (OEH) which came into existence in 2011. The OEH was previously part of the NSW Department of Environment, Climate Change and Water (EPAW). The EPAW was also recently known as the NSW Department of Environment and Climate Change (EPA), and prior to that the NSW Department of Environment and Conservation (DEC). The terms EPA, OEH, EPAW, EPA and DEC are essentially interchangeable in this report.

Discipline	Requirement		
Air Quality	including a quantitative assessment of the potential air quality and odour impacts of the project on both people and livestock		
Greenhouse Gases	including:		
	 a quantitative assessment of the potential Scope 1, 2 and 3 greenhouse gas emissions from the project 		
	— a qualitative assessment of the potential impacts of these emissions on the environment		
	 an assessment of the reasonable and feasible measures to minimise the greenhouse gas emissions and ensure energy efficiency 		

Table 3-1: Director-General's Requirements

Table 3-2: EPA agency Comments	
Comment	Report Section
Assess the risk associated with potential discharges of fugitive and point source emissions for <u>all stages</u> of the proposal. Assessment of risk relates to environmental harm, risk to human health and amenity	Entire report
Justify the level of assessment undertaken on the basis of risk factors, including but not limited to:	
a. proposal location,	
b. characteristics of the receiving environment,	
c. type and quantity of pollutants emitted.	
Describe the receiving environment in detail. The proposal must be contextualised within the receiving environment (local, regional and inter-regional as appropriate). The description must include but need not be limited to: a. Meteorology and climate,	Sections 2 and 4
b. Topography,	
c. Surrounding land use, receptors and	
d. Ambient air quality.	
Include a description of the proposal. All processes that could result in air emissions must be identified and described. Sufficient detail to accurately communicate the characteristics and quantity of <u>all emissions</u> must be provided.	Sections 2 and 7
Include a consideration of 'worse case' emission scenarios and impacts at proposed emission limits.	Section 8
Account for cumulative impacts associated with existing emission sources as well as any currently approved developments linked to the receiving environment.	Sections 8
Include air dispersion modelling where there is a risk of adverse air quality impacts or where there is sufficient uncertainty to warrant a rigorous numerical impact assessment. Air dispersion modelling must be conducted in accordance with the Approved Methods of the Modelling and Assessment of Air Pollutants in NSW (2005).	
http://www.environment.nsw.qov.au/resources/air/ammodellinq05361.pdf.	
Demonstrate the proposals ability to comply with the relevant regulatory framework specifically the Protection of the Environment Operations (POEO) Act (1997) and the POEO (Clean Air) Regulation (2002) [now POEO (Clean Air) Regulation (2010)].	Section 3.9
Provide an assessment of the project in terms of the priorities and targets adopted under the NSW State plan 2010 and its implementation plan Action for Air.	Section 3.7
Detail emission control techniques/practices that will be employed by the proposal.	Section 6 and Appendix C

Comment	Report Section
The EA should include a comprehensive assessment of, and report on, the project's predicted greenhouse gas emissions (tCO_2 -e). Emissions should be reported broken down by:	Section 10
 direct emissions (scope 1 as defined by the Greenhouse Gas Protocol), 	
indirect emissions from electricity (scope 2), and	
upstream and downstream emissions (scope 3).	
before and after implementation of the project, including annual emissions for each year of the project (construction, operation and decommissioning).	
The EA should include an estimate of the greenhouse emissions intensity (per unit of production). Emissions intensity should be compared with best practice if possible.	
The emissions should be estimated using an appropriate methodology, in accordance with NSW, Australian and international guidelines.	
The proponent should also evaluate and report on the feasibility of measures to reduce greenhouse gas emissions associated with the project. This could include a consideration of energy efficiency opportunities or undertaking an energy use audit for the site.	

3.3 Environmental Planning and Assessment Act 1979

The EP&A Act is the overarching planning legislation in NSW. This act provides for the creation of planning instruments that guide land use.

Part 3A of the EP&A Act provides an approvals regime for all 'major projects'. Major projects are defined under Schedule 1 of the State Environmental Planning Policies (Major Development) 2005 (SEPP (Major Development)) and are identified by way of declaration as a listed project in the SEPP (Major Development) or by notice in the NSW Government Gazette. The Minister is the consent authority for all projects to which Part 3A applies. Under Part 3A, the Minister was able to issue a project approval or a concept approval following consultation with the community and relevant State Government agencies. The requirement for certain other permits and licences is removed under Part 3A.

In October 2011, Part 3A of the EP&A Act was repealed. However, the Project has been granted the benefit of transitional provisions and as such, is a development to which Part 3A applies.

This impact assessment has been prepared in accordance with Part 3A of the EP&A Act. The EP&A Act requires that environmental impacts including air quality impacts be assessed and mitigated where necessary.

3.4 Particulate Matter and its Health Significance

Particulate matter has the capacity to affect health and to cause nuisance effects, and is categorised by size and/or by chemical composition. The potential for harmful effects depends on both. The particulate size ranges are commonly described as:

- TSP refers to all suspended particles in the air. In practice, the upper size range is typically $30 \ \mu m$ to $50 \ \mu m$.
- PM_{10} refers to all particles with equivalent aerodynamic diameters of less than 10 μ m, that is, all particles that behave aerodynamically in the same way as spherical particles with diameters less than 10 μ m and with a unit density. PM_{10} are a sub-component of TSP.
- $PM_{2.5}$ refers to all particles with equivalent aerodynamic diameters of less than 2.5 μ m diameter (a subset of PM_{10}). These are often referred to as the fine particles and are a sub-component of PM_{10} .
- PM_{2.5-10} defined as the difference between PM₁₀ and PM_{2.5} mass concentrations. These are often referred to as coarse particles.

Evidence suggests that health effects from exposure to airborne particulate matter are predominantly related to the respiratory and cardiovascular systems. The human respiratory system has in-built defensive systems that prevent larger particles from reaching the more sensitive parts of the respiratory system. Particles larger than 10 μ m, while not able to affect health, can soil materials and generally degrade aesthetic elements of the environment. For this reason air quality goals make reference to measures of the total mass of all particles suspended in the air, this is referred to as TSP. In practice particles larger than 30 to 50 μ m settle out of the atmosphere too quickly to be regarded as air pollutants. The upper size range for TSP is usually taken to be 30 μ m.

Both natural and anthropogenic processes contribute to the atmospheric load of particulate matter. Coarse particles ($PM_{2.5-10}$) are derived primarily from mechanical processes resulting in the suspension of dust, soil, or other crustal² materials from roads, farming, mining and dust storms. Coarse particles also include sea salts, pollen, mould, spores, and other plant parts. Mining dust is likely to be composed of predominantly coarse particulate matter (and larger).

² Crustal dust refers to dust generated from materials derived from the earth's crust.

Fine particles or $PM_{2.5}$ are derived primarily from combustion processes, such as vehicle emissions, wood burning, coal burning for power generation and natural processes such as bush fires. Fine particles also consist of transformation products, including sulphate and nitrate particles, and secondary organic aerosol from volatile organic compound emissions. $PM_{2.5}$ may penetrate beyond the larynx and into the thoracic respiratory tract and evidence suggests that particles in this size range are more harmful than the coarser component of PM_{10} .

The size of particles determine their behaviour in the respiratory system, including how far the particles are able to penetrate, where they deposit, and how effective the body's clearance mechanisms are in removing them. This is demonstrated in **Figure 3-1**, which shows the relative deposition by particle size within various regions of the respiratory tract. Additionally, particle size is an important parameter in determining the residence time and spatial distribution of particles in ambient air; key considerations in assessing exposure.

Source: Phalen et al, 1991

The health-based assessment criteria used by the EPA have, to a large extent, been developed by reference to epidemiological studies undertaken in urban areas with large populations where the primary pollutants are the products of combustion (EPA, 1998; National Environment Protection Council [NEPC], 1998a; NEPC, 1998b). This means that, in contrast to dust of crustal origin, the particulate matter from urban areas would be composed of smaller particles and would generally contain acidic and carcinogenic substances that are associated with combustion.

3.5 EPA Impact Assessment Criteria

The Approved Methods specify air quality assessment criteria relevant for assessing impacts from air pollution (**DEC, 2005**). The air quality goals relate to the total dust burden in the air and not just the dust from the Project. In other words, consideration of background dust levels needs to be made when using these goals to assess potential impacts. These criteria are health-based (i.e. they are set at levels to protect against health effects).

10 DRAYTON SOUTH COAL PROJECT Environmental Assessment November 2012

These criteria are consistent with the National Environment Protection Measures for Ambient Air Quality (referred to as the Ambient Air-NEPM) (**NEPC, 1998a**). However, the EPA's criteria includes averaging periods, which are not included in the Ambient Air-NEPM, and also references other measures of air quality, namely dust deposition and TSP.

Table 3-3 summarises the air quality goals for concentrations of particulate matter that are relevant to this study. It is important to note that the criteria are applied to the cumulative impacts due to the Project and other sources.

Pollutant	Averaging period	Standard/Goal	Agency
TSP	Annual mean	90 μg/m³	National Health and Medical Research Council
PM ₁₀	24-hour maximum	50 μg/m³	EPA impact assessment criteria; Ambient Air-NEPM reporting goal, allows five exceedances per year for bushfires and dust storms;
	Annual mean	30 µg/m³	EPA impact assessment criteria;

Notes: $\mu g/m^3$ – micrograms per cubic metre.

In May 2003, the NEPC released a variation to the Ambient Air-NEPM (**NEPC, 2003**) to include advisory reporting standards for particulate matter with an equivalent aerodynamic diameter of 2.5 μ m or less (PM_{2.5}), as shown in Table 3.4 . The purpose of the variation was to gather sufficient data nationally to facilitate the review of the Ambient Air-NEPM, which is currently underway. The variation includes a protocol setting out monitoring and reporting requirements for PM_{2.5} particles. It is noted that the Ambient Air-NEPM PM_{2.5} advisory reporting standards are not impact assessment criteria.

Notwithstanding the above, in the absence of any other relevant standard/goal, the advisory reporting standards have been used in this report for comparison against dispersion modelling results (**Section 8**).

Pollutant	Averaging period	Standard/Goal	Agency
PM _{2.5}	Annual Mean	8 μg/m ³	Ambient Air-NEPM Advisory
			Reporting Standard
	24-hour average	25 μg/m ³	
Nichard a fund antique aux aux	lata waakwa		

Table 3.4: EPA Advisory Reporting Standards for PM_{2.5}

Notes: $\mu g/m^3$ – micrograms per cubic metre.

In addition to health impacts, airborne dust also has the potential to cause nuisance effects by depositing on surfaces, including vegetation. Larger particles do not tend to remain suspended in the atmosphere for long periods of time and will fallout relatively close to source. Dust fallout can soil materials and generally degrade aesthetic elements of the environment, and are assessed for nuisance or amenity impacts.

Table 3-5 shows the maximum acceptable increase in dust deposition over the existing dust levels from an amenity perspective. These criteria for dust fallout levels are set to protect against nuisance impacts (**DEC**, **2005**).

	Tuble 5 5. El A el	iteria for Base (misolable Solids)) i anoac
Pollutant	Averaging period	Maximum increase in deposited dust level	Maximum total deposited dust level
Deposited dust	Annual	2 g/m ² /month	4 g/m²/month

Table 3-5: EPA Criteria for Dust (Insoluble Solids) Fallout

Notes: g/m²/month – grams per square metre per month.

3.6 Strategic Regional Land Use Plan for the Upper Hunter

The NSW government released the Strategic Regional Land Use Plan (hereafter referred to as SRLUP) for the Upper Hunter region in September 2012. The Plan represents a component of the government's broader Strategic Regional Land Use Policy which comprises initiatives to address land use conflicts in areas such as the Upper Hunter and with a particular focus on managing coal and coal seam gas issues.

The SRLUP will aim to support growth, protect the environment and respond to competing land uses over the next 25 years and will introduce a new decision making scheme. The process would ensure that mining and coal seam gas development does not occur in areas where there would be unacceptable impacts on agricultural resources and industries.

The SRLUP outlines seven key challenges (as listed below) facing the Upper Hunter region and lists actions to address these. The SRLUP has been developed in consultation with a range of stakeholders including local government and will be reviewed every five years and adjusted as necessary.

- Balancing Agricultural and Resource Development.
- Infrastructure.
- Economic Development and Employment.
- Housing and settlement.
- Community health and amenity.
- Natural Environment.
- Natural Hazards and Climate Change.
- Cultural Heritage.

The SRLUP highlights the impact of air pollution, in particular dust, on health and amenity as a major community issue in the region. The SRLUP proposes that any new coal mine must not cause exceedance of health based goals for dust and other relevant pollutants in the NEPM at large towns such as Singleton and Muswellbrook. There are suggestions for mitigating emissions through the following measures:

- Establishing buffer zones and buying affected properties.
- Implementing real time monitoring and the use of meteorological forecasts.
- Provisions for modifying operations on site to ensure compliance.
- Implementing best practice controls and entering into the Pollution Reduction Programs.

The way that Anglo American proposes to address these suggestions are addressed in this assessment in Section 6 (Overview of Best Practice Dust Control) and Section 9 (Monitoring and Management Measures).

3.7 Action for Air

The NSW State Plan identifies cleaner air and progress on GHG reductions as priorities. In 1998, the NSW Government implemented a 25 year air quality management plan, Action for Air, for Sydney,

Wollongong and the Lower Hunter (**EPAW, 2009**). Action for Air is a key strategy for implementing the State Plan's cleaner air goals.

Action for Air seeks to provide long-term ongoing emission reductions. It does not target acute and extreme exceedances from events such as bushfires. The aim of Action for Air includes:

- meeting the national air quality standards for six pollutants as identified in the Ambient Air-NEPM; and
- reducing the population's exposure to air pollution, and the associated health costs.

The six pollutants in the Ambient Air-NEPM include CO, NO₂, SO₂, lead, ozone and PM₁₀. The main pollutant from the Project that is relevant to the Action for Air is PM_{10} . Action for Air aims to reduce air emissions to enable compliance with the Ambient Air-NEPM targets to achieve the aims described above, with a focus on motor vehicle emissions.

Whilst the Drayton South Coal Project is not located within the areas relevant to the Action for Air plan (i.e. Sydney, Wollongong and the Lower Hunter), the Project generally addresses the aims of the Action for Air Plan in the following ways:

- PAEHolmes have reviewed potential mitigation measures with reference to best practice and a range of measures have been adopted for the Project (Section 6).
- Air quality emissions potentially associated with the Project have been quantified (Section 7).
- Dispersion modelling has been conducted by PAEHolmes to predict the impact of these emissions on nearby receivers and assess the effect of the emissions on ambient concentrations which can then be compared with the Ambient Air-NEPM goals (Section 8).

3.8 The Best Practice Report

The NSW EPA commissioned *the NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining* (**Donnelly et al., 2011**) (the Best Practice Report). This report is a review of the coal mining activities in the Greater Metropolitan region of NSW.

The Best Practice report provides a guidance of controls for reducing emissions are benchmarked on the international best practice for the following activities:

- Haul roads.
- Wind erosion of exposed materials and stockpiles.
- Bulldozing.
- Blasting.
- Drilling.
- Draglines.
- Loading and dumping overburden.
- Loading and dumping ROM coal.
- Monitoring, proactive and reactive management.

The full set of potential best practice control measures for each of these activities, along with the controls to be adopted by the Project, have been summarised in **Table 6-2** (see **Section 6**). Anglo American is currently in the process of responding to the Pollution Reduction Program and will incorporate any additional measures to control dust that are identified through this process.

3.9 Protection of the Environment Operations Act 1997

In addition, the NSW *POEO* (*Clean Air*) *Regulation 2010* prescribes requirements for domestic solid fuel heaters, control of burning, motor vehicle emissions and industrial emissions (such as Volatile Organic Carbons). Motor vehicle emissions would be addressed by regular maintenance of all vehicles associated with the Project.

In addition, burning on-site would be avoided to minimise potential for smoke impacts on neighbouring receivers.

4 EXISTING ENVIRONMENT

4.1 Air Quality

Air quality standards and goals refer to pollutant levels that include the contribution from specific projects and existing sources. To fully assess impacts against all the relevant air quality standards and goals (see **Section 3**) it is necessary to have information or estimates on existing dust concentration and deposition levels in the area in which the Project is likely to contribute. It is important to note that the existing air quality conditions (that is, background conditions) are influenced by the existing mining operations in the area.

Dust deposition and dust concentration (TSP and PM_{10}) is monitored in the vicinity of the Project. The locations of the monitoring sites are shown in **Figure 4-1**. A total of eleven dust deposition gauges have been measuring the monthly average of deposited dust since 1998, with five gauges currently active. High volume air samplers (HVAS) measure 24-hour average concentrations of TSP (or PM_{10}) every sixth day. There is currently one HVAS measuring TSP only (HV5), and two HVASs measuring 24-hour average concentrations of TSP and PM_{10} (HV2a and HV4).

The following sections discuss the dust deposition, TSP and PM₁₀ monitoring results.

Figure 4-1: Site location, monitoring sites and residences

4.1.1 Dust deposition data

Figure 4-1 shows the locations of the 11 dust deposition gauges analysed in this assessment. The annual averages (excluding contaminated data) are summarised in Table 4-1. Highlighted cells indicate an exceedance of the EPA's annual average assessment criterion of 4 $g/m^2/m$ onth for insoluble solids.

Year	D1	D2	D4	D5	D6	D7	D8	D9	D10	D11	D12
1998	1.1	0.7	-	0.8	1.8	2.6	1.2	2.7	-	-	-
1999	1.4	1.1	2.4	1.2	1.2	0.8	2.1	2.6	-	-	-
2000	1.1	4.1	-	1.0	1.3	2.7	1.6	3.4	-	0.8	-
2001	1.2	1.8	-	1.2	1.0	-	1.0	2.6	0.9	0.9	0.7
2002	-	-	-	-	-	-	1.5	4.1	1.3	1.0	1.8
2003	-	-	-	-	-	-	0.8	2.3	0.9	0.9	0.8
2004	-	-	-	-	-	-	1.4	2.9	1.1	1.5	1.3
2005	-	-	-	-	-	-	0.8	2.5	0.9	0.9	0.9
2006	-	-	-	-	-	-	1.1	2.9	0.9	1.0	1.5
2007	-	-	-	-	-	-	1.1	2.4	0.9	1.4	1.1
2008	-	-	-	-	-	-	0.9	2.9	1.0	1.1	0.7
2009	-	-	-	-	-	-	1.1	3.8	1.5	1.6	2.1
2010	-	-	-	-	-	-	0.9	3.2	0.9	1.6	1.6
2011	-	-	-	-	-	-	1.0	-	1.6	2.3	2.2

Table 4-1: Annual average Dust deposition data (insoluble solids) - 1998 to 2011 (g/m²/month)

Figure 4-2 shows that since 2003, all dust gauges have recorded annual average deposition levels lower than the EPA's annual average assessment criterion of 4 $g/m^2/month$ for insoluble solids. It is noted that these observations include the effects of existing operations from other mines in the surrounding area as well as all other sources of PM (e.g. traffic, and emissions from industrial, agricultural and domestic activities). The elevated level at D09 during 2009 is associated with dust storms during September that year.

Figure 4-2: Dust Deposition Gauges (g/m²/month) 1998-2011

4.1.2 TSP and PM₁₀ concentrations

The main sources of particulate matter in the area include nearby mines, coal-fired power stations, with minor emissions from traffic on sealed and unsealed roads, local building, construction and agricultural activities.

The locations of the HVASs are shown in **Figure 4-1**. There is currently one HVAS measuring TSP only (HV4), and two HVASs measuring 24-hour average concentrations of TSP and PM_{10} (HV2a and HV5) in the locality of the Project. In addition there are 3 monitoring locations for Drayton coal mine measuring PM_{10} (Lot 9) and TSP (Pringles and LOT 22).

A summary of annual average data collected at Drayton and Drayton South since 1998 is presented in **Table 4-2**. This demonstrates that the annual average TSP concentrations are below the EPA criteria of 90 μ g/m³. Elevated levels are present in 2006 and 2009 at all HVASs, however they are still well below the EPA TSP criterion.

Most of the annual average PM_{10} concentrations are at or below the 30 µg/m³ EPA criteria, however from 2002 to 2006 the annual average PM_{10} concentrations at HV2a were above the criteria. This monitor was located near a cultivated farming paddock and has since been moved to a more suitable location. In 2003, the annual average PM_{10} concentration at HV5 was above the EPA criteria. Some of the higher readings coincide with events such as extensive drought conditions, dust storms and bushfires; however, it is not possible to distinguish between mine dust and dust from other sources during such events. Since 2007, all data have been below the annual average criteria for PM_{10} .

Year	Edderton (HV4)	Llanillo (HV2a)		Jerry's Pla	ins School V5)	LOT 9	LOT 9
	TSP	TSP	PM10	TSP	PM10	PM10	TSP
1998	31	-	-	-	-	-	-
1999	32	-	-	-	-	-	-
2000	30	38	17	-	-	-	-
2001	35	44	15	32	19	-	-
2002	44	53	39	49	22	-	-
2003	46	58	31	42	31	-	-
2004	42	43	32	38	25	-	-
2005	45	46	37	42	14	21	50
2006	61	59	42	52	15	27	-
2007	43	51	20	49	18	31	68
2008	50	43	16	58	17	23	52
2009	45	49	24	55	15	26	63
2010	37	35	14	42	15	-	50
2011	35	32	12	38	13	-	44
Average all data	41	46	25	45	17	26	54

Table 4-2: TSP and PM₁₀ annual average concentrations (µg/m³)

Note: shading indicates exceedances above EPA annual average assessment criterion

Figure 4-3, **Figure 4-4** and **Figure 4-5** are a graphical representative of the TSP monitoring data, expressed as a rolling annual average, at HVAS sites HV4, HV2a and HV5 respectively. Lot 22 TSP monitoring data is shown in **Figure 4-6**.

Figure 4-3: TSP Concentration at Edderton (HV4), 1998-2011.

Figure 4-4: TSP Concentration at Llanillo (HV2a), 2000-2011.

Figure 4-5: TSP Concentration at Jerry's Plain School (HV5), 2001-2011.

Figure 4-6: TSP Concentration at Lot 22, 2008-2011.

Figure 4-7 and **Figure 4-8** present a graphical representation of PM_{10} monitoring data at HVAS sites HV2a and HV5 respectively. The graphs show that at HV2a there have been a number of exceedances of the 24 hour criteria during monitoring runs and an exceedance of the rolling annual average criteria from 2002 to 2006. At HV5 the most frequent exceedance of the 24 hour criteria was during 2003 and during that year the annual average criteria was also exceeded.

The data suggests that in general higher 24-hour concentrations are recorded at HV2a. It is our understanding that the Llanillo (HV2a) monitor is located near a cultivated paddock and has since been moved to a more representative location.

Figure 4-7: PM₁₀ Concentration at Llanillo (HV2a), 2000-2011.

Figure 4-8: PM₁₀ Concentration at Jerry's Plain School (HV5), 2001-2011.

Figure 4-9: PM₁₀ Concentration at Lot 9 – Drayton Coal Mine, 2005-2011.

4.2 Local Meteorology

4.2.1 Prevailing winds

Anglo American has operated a meteorological station at Saddlers creek since March 1998. An analysis of all meteorological data collected at Saddlers Creek between 2002 and 2011 shows that since 2006 there has been an increase in the percentage of measured calm periods (wind speeds less than 0.5 m/s). The sensitivity of weather stations to record lower wind speeds can deteriorate with time as the bearings in the anemometer wear and result in stalling as well as higher re-starting thresholds. A new meteorological station was installed at the same location in November 2010.

There are significantly more calms in the Saddlers Creek data when compared with the nearby Macleans Hill data (see locations in **Figure 4-1**) for the period April 2007 to March 2008, as shown in **Table 4-4**.

On the basis of this analysis, 2005 was chosen as the modelling year. This period is representative of wind patterns across all years and seasons (refer to **Appendix A**) and does not exhibit some of the inconsistencies in calm conditions noted in later datasets. The 2005 data for Saddlers Creek are >90% complete and therefore suitable for dispersion modelling.

Period	Saddlers creek data												
	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011			
All	1.9%	2.3%	2.2%	2.8%	5.4%	9.9%	6.1%	11.6%	25.3%	1.2%			
Summer	0.9%	1.5%	1.8%	2.3%	3.7%	6.5%	6.2%	11.6%	15.5%	0.6%			
Autumn	3.8%	2.8%	3.1%	4.5%	4.4%	13.1%	7.6%	N/A	30.6%	0.6%			
Winter	1.4%	2.6%	1.9%	2.0%	7.7%	9.1%	5.1%	N/A	32.4%	1.6%			
Spring	1.6%	2.3%	1.7%	2.6%	5.3%	10.9%	2.1%	N/A	18.2%	1.9%			

Table 4-3: Percentage of calm periods in Saddlers Creek meteorological data

	5 1	•
	Saddlers Creek	Macleans Hill
Period	Apr-07	Apr-07
	to March 2008	to March 2008
All	10%	1%
Summer	8%	1%
Autumn	14%	2%
Winter	9%	1%
Spring	11%	1%

Note: This comparison is based on data made available from Macleans Hill

4.2.2 Local climatic conditions

The Bureau of Meteorology (BoM) collects climatic information in the vicinity of the Project. A range of climatic information collected from the Jerry's Plain Post office weather station (located approximately 6 km southeast of the Project) are presented in **Table 4-5** (**BoM, 2012**). Temperature and humidity data consist of monthly averages of 9.00 am and 3.00 pm readings. Also presented are monthly averages of maximum and minimum temperatures. Rainfall data consists of mean monthly rainfall and the average number of rain days per month.

Table 4-5: Climate	Information fo	or Jerry's F	Plain Post Office	meteorological station

	······································												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
9.00 am Mean Dry-bulb and Wet-bulb Temperatures (°C) and Relative Humidity (%)													
Dry-bulb	23.4	22.7	21.2	18.0	13.6	10.6	9.4	11.4	15.3	19.0	21.1	23.0	17.4
Humidity	67	72	72	72	77	80	78	71	65	59	60	61	70
3.00 pm	Mean D	ry-bulb	and W	et-bulb	Tempe	ratures	(°C) ai	nd Rela	tive Hu	midity	(%)		
Dry-bulb	29.8	28.9	27.2	24.1	20.1	17.1	16.4	18.2	21.2	24.2	26.9	29.0	23.6
Humidity	47	50	49	49	52	54	51	45	43	42	42	42	47
Mean Ma	ximum	Tempei	rature (°C)									
Mean	31.7	30.9	28.9	25.3	21.3	18.0	17.4	19.4	22.9	26.2	29.1	31.2	25.2
Mean Min	nimum 1	Femper	ature ('	°C)									
Mean	17.2	17.1	15.0	11.0	7.4	5.3	3.8	4.4	7.0	10.3	13.2	15.7	10.6
Rainfall (mm)													
Mean	76.7	72.8	58.8	44.3	40.9	48.1	43.5	36.5	42.0	52.2	61.1	67.9	645.4
Raindays	(Numb	er)											
Mean	6.5	6.0	5.8	4.9	4.9	5.5	5.2	5.2	5.2	5.9	6.2	6.4	67.7
Source: BO	M (2012)											

°C = degrees Celsius

mm = millimetres

Climate averages for Station: 061086; Commenced: 1884, Last record: 2012; Latitude: 32.50 °S; Longitude: 150.91 °E.

The annual average maximum and minimum temperatures experienced at Jerry's Plain are 25.2°C and 10.6°C respectively. On average January is the hottest month, with an average maximum temperature of 31.7°C. July is the coldest month, with average minimum temperature of 3.8°C.

The annual average relative humidity reading collected at 9.00 am from the Jerry's Plain site is 70% and at 3.00 pm the annual average is 47%. The month with the highest relative humidity on average is June with 9.00 am averages of 80%. The months with the lowest relative humidity are October, November and December with 3.00 pm averages of 42%.

Rainfall data collected at Jerry's Plain shows that January is the wettest month, with an average rainfall of 76.7 mm over 6.5 rain days. The average annual rainfall is 645.4 mm with an average of 67.7 rain days.

5 METHODOLOGY

5.1 Approach to Assessment

The overall approach to the assessment follows the *Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales* (**NSW DEC, 2005**) using the Level 2 assessment methodology. The Approved Methods specify how assessments based on the use of air dispersion models should be completed. They include guidelines for the preparation of meteorological data to be used in dispersion models and the relevant air quality criteria for assessing the significance of predicted concentration and deposition rates from the proposal. The approach taken in this assessment follows as closely as possible the approaches suggested by the guidelines.

The air dispersion modelling conducted for this assessment is based on an advanced modelling system using the models TAPM and CALMET/CALPUFF (see

Figure 5-1). This system overcomes some of the limitations of steady-state Gaussian plume models such as AUSPLUME and ISC.

The modelling system works as follows:

- TAPM is a prognostic meteorological model that generates gridded three-dimensional meteorological data for each hour of the model run period.
- CALMET, the meteorological pre-processor for the dispersion model CALPUFF, calculates fine resolution three-dimensional meteorological data based upon observed ground and upper level meteorological data, as well as observed or modelled upper air data generated for example by TAPM.
- CALPUFF then calculates the dispersion of plumes within this three-dimensional meteorological field.

Figure 5-1: Modelling methodology used in this study

Output from TAPM, plus regional observational weather station data were entered into CALMET, a meteorological pre-processor endorsed by the US EPA and recommended by the NSW EPA for use in non-steady state conditions. From this, a 1-year representative meteorological dataset suitable for use in the 3-dimensional plume dispersion model, CALPUFF, was compiled. Details on the model configuration and data inputs are provided in the following sections.

A summary of the TAPM and CALMET model set up and inputs can be found in Appendix F.

5.2 TAPM

The Air Pollution Model, or TAPM, is a three dimensional meteorological and air pollution model developed by the CSIRO Division of Atmospheric Research. Detailed description of the TAPM model and its performance can be found in **Hurley (2008)** and **Hurley, Edwards et al. (2009)**.

TAPM utilises fundamental fluid dynamics and scalar transport equations to predict meteorology and (optionally) pollutant concentrations. It consists of coupled prognostic meteorological and air pollution concentration components. The model predicts airflow important to local scale air

pollution, such as sea breezes and terrain induced flows, against a background of larger scale meteorology provided by synoptic analyses.

For the Project Assessment, TAPM was set up with 3 domains, composed of 42 grids along both the X and the Y axes, centred on -32° 21' Latitude and 151° 18' Longitude (340km, 6432km), to capture both the inner and outer modelling domains. Each nested domain had a grid resolution of 30 km, 10 km, 3 km and 1 km respectively.

Default TAPM terrain values are based on a global 30-second resolution (approximately 1 km) dataset provided by the US Geological Survey, Earth Resources Observation Systems (EROS). Default land use and soils data sets for TAPM were used.

TAPM was used to generate gridded prognostic data (3D.dat) for the CALMET modelling domain.

5.3 CALMET

The choice of the CALMET/CALPUFF modelling system for this study is based on the fact that simple Gaussian dispersion models such as ISC assumes that the meteorological conditions are uniform spatially over the entire modelling domain for any given hour. While this may be valid for some applications, in complex flow situations, such as areas with complex terrain, the meteorological conditions may be more accurately simulated using a wind field model such as CALMET.

CALMET is a meteorological pre-processor that includes a wind field generator containing objective analysis and parameterised treatments of slope flows, terrain effects and terrain blocking effects. The pre-processor produces fields of wind components, air temperature, relative humidity, mixing height and other micro-meteorological variables to produce the three-dimensional meteorological fields that are utilised in the CALPUFF dispersion model.

CALMET was run with an outer domain covering a 120 km x 120 km area, with the origin (SW corner) at 280 km Easting and 6360 km Northing (UTM Zone 56S). This consisted of 48×48 grid points, with a 2.5 km resolution along both the X and Y axes.

Observed hourly surface wind speed, wind direction, temperature and relative humidity data from the Saddlers Creek, Macleans Hill and Drayton weather stations, as well as four Bureau of Meteorology (BoM) Automatic Weather Stations (AWS), were used as input for CALMET (see **Figure 5-2** for locations). The outer domain was chosen to incorporate the cloud amount and cloud heights observations at the Williamtown station.

Together, the seven surface stations and the three-dimensional data file generated by TAPM were used as input to CALMET to create a coarse resolution three-dimensional meteorological field for the region.

The CALMET generated meteorological parameters from the outer grid were then used as input into a finer resolution inner grid to provide better resolution closer to the site. The origin for the inner domain was 280 km Easting and 6400 km Northing (UTM Zone 56 S). This consisted of 120×120 grid points, with a 0.25 km resolution along both the X and Y axes. Land use for the domain was determined by aerial photography from Google Earth. **Figure 5-2** presents the inner and outer modelling domains used in this study.

Terrain for this area was derived from 90 m DEM data sourced from NASA.

The Saddlers Creek, Macleans Hill and Drayton weather station data were again used as input for CALMET, the same as for the outer grid. Upper air data were also extracted from the 3 km TAPM to provide the necessary upper air files. CALMET uses the meteorological inputs in combination with land use and geophysical information for the modelling domain to generate a fine resolution three-dimensional wind field the region.

Figure 5-2: CALMET modelling domains and meteorological station locations

5.4 Wind Speed and Direction

Seasonal and annual windroses from the Saddlers Creek weather station for 2005 are presented in **Figure 5-3**. These data represent the surface station inputs used within the CALMET modelling as discussed in **Section 5.3**. On an annual basis, winds are predominantly from the southeast and the northwest quadrant. Summer, spring and autumn also reflect this pattern. The predominant wind direction in winter is from the northwest and to a lesser extent west-northwest, north-northwest and southeast.

As discussed in **Section 5.3**, a CALMET data file was generated for the modelling domain. To compare the wind field produced by the model with observed data, a meteorological dataset was extracted for a point in the middle of the Project Boundary. Windroses for this CALMET generated file is shown in **Figure 5-4**. The CALMET generated windroses show very similar patterns to the Saddlers creek data (see **Figure 5-3**). The annual percentage of calms for the CALMET data is 3.9%, which is approximately 2% higher than measured at the Saddlers Creek weather station.

For comparison **Figure 5-5** and **Figure 5-6** present wind vectors generated by CALMET on two different days and hours across the modelled year. These vector plots illustrate that the CALMET wind field captures the influence from local terrain.

Figure 5-3: Windroses at Saddlers Creek Meteorological station for 2005.

Figure 5-4: CALMET generated windroses at Saddlers Creek.

5.5 Atmospheric Stability

An important aspect of plume dispersion is the level of turbulence in the atmosphere near the ground. Turbulence acts to dilute or diffuse a plume by increasing the cross-sectional area of the plume due to random motion. As turbulence increases, the rate of plume dilution or diffusion increases. Weak turbulence limits diffusion and is a critical factor in causing high plume concentrations downwind of a source. Turbulence is related to the vertical temperature gradient, the condition of which determines what is known as stability, or thermal stability. For traditional dispersion modelling using Gaussian plume models, categories of atmospheric stability are used in conjunction with other meteorological data to describe the dispersion conditions in the atmosphere.

The best known stability classification is the Pasquill-Gifford scheme, which denotes stability classes from A to F. Class A is described as highly unstable and occurs in association with strong surface heating and light winds, leading to intense convective turbulence and much enhanced plume dilution. At the other extreme, class F denotes very stable conditions associated with strong temperature inversions and light winds, such as those that commonly occur under clear skies at night and in the early morning, especially during the cooler months. Under these conditions plumes can remain relatively undiluted for considerable distances downwind. Intermediate stability classes grade from moderately unstable (B), through neutral (D) to slightly stable (E). Whilst classes A and F are closely associated with clear skies, class D is linked to windy and/or cloudy weather, and short periods around sunset and sunrise when surface heating or cooling is small.

The CALMET-generated meteorological data can be used to extract stability class for the site and the frequency distribution of estimated stability classes is presented in **Figure 5-7.** The data shows the conditions experienced are largely class F conditions (~32% of hours).

It is noted that a turbulence based scheme within CALPUFF was used in the modelling and the Pasquill-Gifford (PG) stability class frequency is shown for information only. The use of turbulence based dispersion coefficients is recommended in modelling guidance prepared for the NSW EPA (**TRC, 2010**) for the same reasons that the US EPA has replaced PG-based dispersion with a turbulence-based approach in their regulatory model (AERMOD) and is in accordance with best science practice and model evaluation studies.

Figure 5-7: Stability class frequency (CALMET 2005)

5.6 Mixing Height

Mixing height is defined as the height above ground of a temperature inversion or statically stable layer of air capping the atmospheric boundary layer. It is often associated with, or measured by, a sharp increase in temperature with height, a sharp decrease of water-vapour, a sharp decrease in turbulence intensity and a sharp decrease in pollutant concentration. Mixing height is variable in space and time, and typically increases during fair-weather daytime over land from tens to hundreds of metres around sunrise, up to 1–3 km in the mid-afternoon, depending on the location, season and day-to-day weather conditions. Sea breezes may, however, introduce complexities to the mixing height. The onset of a sea breeze at a particular location will often bring a reduction in the mixing height.

Mixing heights show diurnal variation and can change rapidly after sunrise and at sunset. Diurnal variation in the minimum, maximum and average mixing depths, based on the CALMET-generated meteorological data for the site, is shown in **Figure 5-8**. As expected, mixing heights begin to grow following sunrise with the onset of vertical convective mixing with maximum heights reached in mid to late afternoon.

Figure 5-8: Average daily diurnal variation in mixing layer depth (CALMET 2005)

6 OVERVIEW OF BEST PRACTICE DUST CONTROL

Existing air quality management measures at the Drayton Coal Mine are described in the Drayton Air Quality Management Plan (Drayton AQMP) (**Drayton, 2011**) and presented in **Table 6-1**.

The proposed controls for the Project are based on existing air quality management measures and recommendations of the *NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining* (**Donnelly et al., 2011**) (the Best Practice Report), a study that was commissioned by the NSW EPA.

Table 6-2 provides an overview of the applicable best practice management measures recommended by EPA and those adopted for the assessment. When preparing the Emission inventory for modelling the relevant percentage controls for the best practice measures adopted are shown in **Table 6-2**.

Measure	Current Status
Implement available measures to keep visible dust as low as possible from offsite at all times	Implemented and ongoing.
Topsoil clearing restricted to a single strip ahead of mining, where practical	Implemented and ongoing.
Overburden drills are equipped with equipment to minimise dust generation (water injections facilities or dust collection facility)	Drills fitted with dust suppression.
Water tankers to be utilised at all times to minimise dust emissions from roads and work areas	Water trucks in use. Volumes of water applied collected monthly and reported in AEMR.
Overburden is dumped in low level lifts, with outer berms maintained by dozers	Implemented and ongoing.
Dragline operations are conducted to minimise dumping height so there is minimal free-fall of material	Implemented and ongoing.
Blasting is carried out using gravel stemming or crushed coal, which contains blast within the ground and minimises dust	Implemented and ongoing.
The CHPP is operated with dust suppression sprays at the dump hopper and transfer points as well as coal stockpiles	Implemented and ongoing. Volumes applied are reported in the AEMR.
Rehabilitation of mined areas is progressively achieved	Rehabilitation targets set annually based on MOP and internal requirements. Areas reported in AEMR.
In known or suspected high dust areas, production processes are modified to ensure effective management of visible dust levels	Implemented and ongoing. Mining Coordinators actively manage air quality emissions daily.
Monitoring of air quality emissions	Monitoring program underway. Data and analysis reported in AEMR.

Table 6-1: Existing Drayton Air quality control measures (AQMP Table 5)

i measures
reduction
emission
practice
A best
of EP/
Overview

Mining Activity		Best Practice Control	Applied at site (Y/N/Other)	Comments	Control Applied for modelling
	Application of water		Yes		50
	Revegetation of topsoil stockpiles		No		
	Minimise prestrip exposed areas		No		
Hauling on	Vehicle restrictions	Speed reduction from 75 km/h to 50 km/h	No		
d Roads		Speed reduction from 65 km/h to 30 km/h	No		
		Grader speed reduction from 16 km/h to 8 km/h	Yes	Grader speed assumed to be 8km/h	
	Surface improvements	Pave the surface	No		
		Low silt aggregate	No		
		Oil and double chip surface	No		
	Surface treatments	Watering (standard procedure)	Yes	On in-pit roads	75
		Watering Level 1 (2 L/m2/h)	No		
		Watering Level 2 (>2 L/m2/h)	No		
		Watering grader routes	No		
		Watering twice a day for industrial unpaved road	No		
		Dust suppressants (please specify)	Yes	On out-of-pit roads - Dust-A-Side	85
	Other	Use of larger vehicles	Yes	From Year 10 onwards	
		Conveyors	No		
Wind Erosion on	Avoidance	Minimise pre-strip	Yes	Minimise pre-strip exposed area	0
a Areas & Irden	Surface stabilisation	Watering	Yes		50
Emplacements		Chemical suppressants	No		
		Paving and cleaning	No		
		Application of gravel to stabilise disturbed open areas	No		
		Rehabilitation goals	No		
	Wind speed reduction	Fencing, bunding, shelterbelts or in-pit dump	No		
		Vegetative ground cover	Yes		
Erosion and	Avoidance	Bypassing stockpiles	No		
Maintenance - Coal Stockpiles	Surface stabilisation	Water sprays	Yes		50
- - - -		Chemical wetting agents	No		
		Surface crusting agent	No		
		Carry over wetting from load in	No		
	Enclosure	Silo with bag house	No		
		Cover storage pile with a tarp during high winds	No		
	Wind speed reduction	Vegetative windbreaks	Yes		30
		Reduced pile height	No		
		Wind screens/fences	No		
		Pile shaping/orientation	No		

Control		Applieu for modelling							70													70			70						25			50					
		Comments																				3 sides and no roof			Application of water at transfers														
	Applied at	site (Y/N/Other)	No	No	No	No	No	No	Yes	Yes	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	Yes	No	No	No	No	No	Yes	No	No	Yes	No	No	No	No	No
		Best Practice Control	Minimise travel speeds and distance	Travel routes and material kept moist	Blasting Delay shot to avoid unfavourable weather conditions		Drilling Fabric filters	Cyclone	Water injection while drilling	Minimise drop height	Modify activities in windy conditions	Water sprays	Minimise side casting	Excavator Minimise drop height	Truck dumping Minimise drop height	Water application	Modify activities in windy conditions	Avoidance Bypass ROM stockpiles	Truck or loader dumping coal Minimise drop height	Water sprays on ROM pad	Truck or loader dumping to ROM bin Water sprays on ROM bin or ROM pad	Three sided and roofed enclosure of ROM bin	Three sided and roofed enclosure of ROM bin + water stravs	Enclosure with control device	Conveyors Applicaton of water at transfers	Wind shielding - roof OR side wall	Wind shielding - roof AND side wall	Belt cleaning and spillage minimisation	Transfers Enclosure	Avoidance Bypass coal stockpiles	Loading coal stockpiles Variable height stack	Boom tip water sprays	Telescopic chute with water sprays	Unloading coal stockpiles Bucket-wheel, portal or bridge reclaimer with water application	Limit load size to ensue coal is below sidewalls	Maintain a consisten profile	Use bedliners to minimise seepage	Cover load with tarpaulin	Utilise truck wheel wash
		Mining Activity	Bulldozers on OB		Blasting and	drilling				Draglines				Loading and	aumping overburden			Loading and	dumping KUM coal						Conveyors and	transfers				Stacking and	product coal				Train and truck	load out and transportation	-		
OEH hest practice		Table	76		81		82			85				06				95							96					97					1				
OFH hes		Section	9.4		9.5					9.6				9.7				9.8							9.9					9.10					9.11				

7 Emissions to Air

7.1 Introduction

This section discusses the calculation of the emissions for the assessment. Emissions have been calculated for the following:

- The surface operations from the Project; and
- Approved operations at other mines in the area.

7.2 Particle Size Categories

The modelling has been based on the use of three particle-size categories (0 to 2.5 μ m - referred to as fine particles [FP] or PM_{2.5}, 2.5 to 10 μ m - referred to as coarse matter [CM] and 10 to 30 μ m - referred to as the Rest). The distribution of particles in each particle size range is as follows (**SPCC** [1986]):

- PM_{2.5} (FP) is 0.0468 of the TSP.
- PM_{2.5-10} (CM) is 0.3440 of TSP.
- PM₁₀₋₃₀ (Rest) is 0.6090 of TSP.

Emission rates of TSP have been calculated using emission factors developed both within NSW and by the US EPA (see **Appendix C**). Modelling was undertaken for each size fractions which are assumed to emit according to the distribution above and deposit from the plume in accordance with the deposition rate appropriate for particles with an aerodynamic diameter equal to the geometric mass mean of the particle size range.

The resultant predicted concentrations are then combined as follows to determine the concentrations of each size fraction:

- PM_{2.5} = FP.
- $\blacksquare PM_{10} = FP + CM.$
- **TSP** = FP + CM + Rest.

7.3 Emissions from Project Operations

The mine plans for the Project were analysed and detailed emissions inventories were prepared for six representative operational years, which includes two scenarios for year three to capture the construction of the visual bund south of the Houston mine area. A brief description of each modelling year is presented in **Table 7-1**. These modelled years are considered to be representative of worst-case operations; for example where coal and waste production are highest, where extraction or wind erosion areas are largest or where operations are located closest to receivers. In addition, the years where highwall mining in each mine area is at its most intensive has been included in the inventories of the closest modelled years, which is a conservative approach.

Operation Year	Nominal Year	Operation description and notes
ЗА	2016	All mining areas are actively mined. This modelling scenario captures the conditions before the visual bund is completed south of the Houston mining area. Drayton Mine is operational.
3B		All mining areas are actively mined and the completed visual bund to the south of Houston. Drayton Mine is operational.
5	2018	All mining areas are actively mined, plus the inclusion of year 7 highwall mining in Houston.
10	2023	All mining areas are actively mined, except for Houston which is inactive during this period. Larger trucks replace the existing in-pit haul trucks. Year 8 Redbank is used to capture worst case ROM mined amounts.
15	2028	All mining areas are actively mined.
20	2033	Mining in Whynot and Houston, while only Highwall mining occurs in Redbank and Blakefield (actually Y18 mining).
27	2040	Actively mining Whynot only, while the most of remaining mining areas are completely rehabilitated.

Table 7-1: Description of the Projects modelling years

The information used for developing the inventories has been based on the operational descriptions and mine plan drawings. These have been used to determine haul road distances and routes, stockpile and mining areas, activity operating hours, truck sizes and other details that are necessary to estimate dust emissions.

The mine plans presented in this report were developed in an iterative process. Preliminary modelling predicted unacceptable impacts for certain mine plans and scheduling. Several of the worst impacted years are compared with the current mine plan impacts in **Appendix E**, highlighting the predicted reductions achieved by modifications to the mine plans. Changes to mine plans included reducing the intensity of mining in certain areas and increasing the in-pit haul truck size when the equipment is due for replacement.

7.3.1 Emission estimates

Table 7-2 summarises the ROM coal and waste production schedule used to calculate the emissions from operations. This information includes the different highwall mining years which were selected to capture the worst case scenarios.

Pit ID	Material	removed	Year 3	Year 5	Year 10	Year 15	Year 20	Year 27	
Whynot		Dragline	10.41	7.14	11.01	10.29	11.51	7.04	
	Waste	Excavator	2.81	9.81	10.05	8.62	17.79	0	
	(Mbcm)	Partings	0.34	0.46	0.66	0.54	0.86	0.07	
		Total	13.56	17.41	21.72	19.45	30.15	7.11	
	ROM coal (Kt)	Total	1,553	2,002	3,072	2,369	3,938	551	
Blakefield		Dragline	5.52	9.31	4.59	2.2	0	0	
	Waste	Excavator	0.05	0.56	0.32	0	0	0	
	(Mbcm)	Partings	0.07	0.08	0.04	0.03	0	0	
		Total	5.64	9.96	4.95	2.20	0	0	
	ROM coal (Kt)	Total	722	815	292	98	564	0	
Redbank		Dragline	0	0	0	0	0	0	
	Waste	Excavator	6.20	6.63	9.31	10	0	0	
	(Mbcm)	Partings	0.32	0.38	0.36	0.34	0	0	
		Total	6.53	7.02	9.66	10.71	0	0	
	ROM coal (Kt)	Total	1,226	1,436	2,480	1,389	900	0	
Houston		Dragline	0	0	0	2.77	3.18	0	
	Waste	Excavator	11.43	3.66	0	1.64	2.81	0	
	(Mbcm)	Partings	0.16	0.08	0	0.07	0.12	0	
		Total	11.59	3.74	0	4.48	6.12	0	
	ROM coal (Kt)	Total	2,069	1,610	0	754	989	0	
Total Waste	(Mbcm)		37.32	38.13	36.33	36.85	36.27	7.11	
Total ROM (k	(T)		5,570	5,863	5,845	4,610	6,391	551	

 Table 7-2: Open cut and highwall ROM coal and waste production schedule

Table 7-4 presents the emission estimates for each year modelled. Detailed emission estimates are provided in **Appendix C.**

Figure C-1 to **Figure C-8** (in **Appendix C**) show the general progression of mining and the associated dust generating activities over the life of the Project, together with numbered locations that represent dust sources assumed in the modelling. The activities associated with each of the numbered locations are identified in the table alongside each figure.

A 75% dust control on mining area haul roads was assumed which is typically use in modelling assessments for mine sites and is generally considered to represent control via > Level 2 watering. On haul routes used for coal haulage between Drayton South and the Drayton Mine coal processing facilities an 85% control is based on the assumption that a dust suppressant would be applied to these haul roads. The supplier of the dust suppressant claims that greater than 90% control can be achieved but as no data are available to validate this, a level of 85% control was assumed in accordance with the Best Practice report (**Donnelly et al., 2011**).

As presented in **Table 7-3**, silt and moisture content values are consistent with values used in air quality assessments for other mines in the area, and are also consistent with pre-feasibility assessments completed for the Project. These values will be confirmed once the Project is established and operational.

Mine	Material	Silt (%)	Moisture (%)
Drayton South (the	Overburden	10	2.5
Project)	ROM coal	5	7.5
Mt Arthur Coal ^(a)	Overburden	10	2
	ROM coal	5	8
Muswellbrook Coal ^(b)	Overburden	10	4
Husweiibrook coar	ROM coal	8	4
Bengalla ^(c)	Overburden	10	2
Dengana	ROM coal	5	6

Table 7-3: Silt and Moisture Contents

(a) PAEHolmes (2009)

(b) Todoroski Air Sciences (2012)

(c) PAEHolmes (2010a)

			(1 /64)				
			TSP e	'SP emissions (kg/y)	(y)		
ACTIVITY	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
WHYNOT							
Topsoil Removal & Site preparation - Dozers on Whynot	17,998	17,998	22,829	30,319	26, 181	39,407	I
Topsoil removal - Sh/EX/FELs loading topsoil - Whynot	249	251	234	174	119	186	ı
Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot	2,513	2,513	2,875	2,499	1,586	2,930	I
Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot	2, 132	2,132	2,567	1,666	1,052	1,670	I
Topsoil removal - Emplacing topsoil at emplacement area - Whynot	497	502	469	349	238	371	I
OB - Drilling - Whynot	3,241	3,241	3, 283	4,596	3,571	6,156	3,938
OB - Blasting - Whynot	11,254	11,254	22,795	30,981	18,590	32,537	7,356
OB - Dozers on Dragline OB in-pit - Whynot	32,026	32,026	26,037	40,707	31,819	29,219	24,434
OB - Dragline removal of OB - Whynot	309,391	309,391	212,061	327,232	305,709	341,927	209,200
OB - Dozers on excavator OB in-pit - Whynot	19,795	19, 795	68,533	36,851	60, 308	124,659	I
OB - Excavator loading OB to haul truck - Whynot	9,192	9,288	32,089	33,197	28,513	59,702	I
OB - Hauling excavator OB to emplacement area (east) - Whynot	63,508	63,508	269,007	325,304	259,230	643, 783	T
OB - Hauling excavator OB to emplacement area (west) - Whynot	53,870	53,870	240,226	216,831	171,878	366,842	I
OB - Dozers on OB haul roads (east) - Whynot	4,489	4,489	15,541	16,713	13,676	28,268	I
OB - Dozers on OB haul roads (west) - Whynot	4,489	4,489	15,541	16,713	13,676	28,268	I
OB - Emplacing excavator OB at emplacement area - Whynot	9,192	9,288	32,089	33, 197	28,513	59,702	ı
OB - Dozers on OB emplacement area - Whynot	51,822	51,822	94,570	77,558	92, 128	153,878	24,434
OB - Dozers in-pit ancillary tasks - Whynot	40,247	40,247	55,308	89,698	74, 194	97,568	144,449
OB - Dozers ripping/pushing/clean-up Partings - Whynot	17,538	17,538	23,575	32,241	24,386	36,735	4,056
OB - Loading partings to haul trucks - Whynot	1,110	1,122	1,516	2,175	1,787	2,882	241
OB - Hauling partings to emplacement area (east) - Whynot	7,672	7,672	12,711	21,313	16,244	31,081	2,435
OB - Hauling partings to emplacement area (west) - Whynot	6,508	6,508	11,351	14,206	10,770	17,711	717
OB - Emplacing Partings at emplacement area - Whynot	1,110	1,122	1,516	2,175	1,787	2,882	241
CL - Highwall transfer point - Whynot	I	I	I	I	I	1	128
CL - Highwall conveyor - Whynot	1	1	1	1	1		17
CL - Drilling coal - Whynot	1,617	1,617	1,688	2,410	2,517	2,698	ı
CL - Blasting coal - Whynot	6,496	6,496	4,982	1,257	2,038	6,048	I
CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	58,257	58,257	76,106	116,553	88,164	129,003	51,483
CL - Sh/Ex/FCLs loading open coal to trucks - Whynot	64,492	64,492	83,142	127,591	98, 394	163,526	44,625
CL - Hauling open coal in-pit roads (east) - Whynot	17,539	17,539	23,329	53,618	43,269	92,505	18,585
CL - Hauling open coal to ROM pad (east) - Whynot	666'66	99,999	123,618	197,781	126,527	211,073	63,736
CL - Hauling open coal in-pit roads (middle) - Whynot	14,888	14,888	20,630	32,041	25, 559	54,171	10,897
CL - Hauling open coal to ROM pad (middle) - Whynot	91,283	91,283	133,702	209,433	168,644	285,526	81,802
CL - Unloading ROM to ROM stockpiles/hopper - Whynot	4,659	4,659	6,006	9,217	23,694	11,813	3,224
CL - Handle coal at CHPP - Whynot	326	326	420	645	497	826	225
CL - Rehandle ROM coal at stockpiles/hopper - Whynot	1,553	1,553	2,002	3,072	2,369	3,938	1,075

Table 7-4: Summary of estimated TSP emissions from the Project (kg/y)

F

Hansen Bailey

			TSP e	TSP emissions (kg/y)	(y)		
ACTIVITY	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
BLAKEFIELD							
Topsoil removal & site preparation - Dozers on Blakefield	7,537	7,537	12,532	5,989	2,654	Т	ı
Topsoil removal - Sh/Ex/FELs loading topsoil - Blakefield	65	65	135	65	10	T	I
Topsoil removal - Hauling (25% in Year 5) topsoil to emplacement area - Blakefield (east)	1,057	1,057	447	1,062	117	I	T
Topsoil removal - Hauling (75% in Year 5) topsoil to emplacement area - Blakefield (west)	1	1	2,043	1	1	T	T
Topsoil removal - Emplacing topsoil at emplacement area - Blakefield	129	131	40	131	21	T	I
OB - Drilling - Blakefield	1,424	1,424	2,014	1,039	415	1	ı
OB - Blasting for excavator removal - Blakefield	4,946	4,946	13,981	7,002	2, 160	ı	I
OB - Dozers on Dragline OB in-pit - Blakefield	16,743	16,743	23, 132	8,349	4,153	ı	I
OB - Dragline removal of OB - Blakefield	163,950	163,950	276,789	136, 395	64,652	ı	I
OB - Dozers on Excavator OB in-pit - Blakefield	367	367	3,935	1, 185	1	I	I
OB - Excavator loading OB to haul truck - Blakefield	170	172	1,843	1,067	1	ı	I
OB - Hauling excavator (25% in Year 5) OB to emplacement area - Blakefield (east)	1,901	1,901	4,169	11,847	1	I	Т
OB - Hauling excavator (75% in Year 5) OB to emplacement area - Blakefield (west)	1	1	19,050	1	1	I	Т
OB - Dozers on OB haul roads - Blakefield (east)	166	166	892	1,075	I	I	I
OB - Dozers on OB haul roads - Blakefield (west)	1	1	4,828	I	I	T	I
OB - Emplacing at emplacement area - Blakefield	170	172	1,843	1,067	I	I	T
OB - Dozers on OB emplacement area - Blakefield	17,110	17,110	27,067	9,534	4,153	I	I
OB - Dozers in-pit ancillary tasks - Blakefield	18,720	18,720	22,513	8, 525	3,074	I	T
OB - Dozers ripping/pushing/clean-up Partings - Blakefield	603	603	1,251	461	546	I	I
OB - Loading partings to trucks - Blakefield	229	231	265	134	94	I	I
OB - Hauling (25% in Year 5) partings to emplacement area - Blakefield (east)	2,553	2,553	599	1,482	736	I	ı
OB - Hauling (75% in Year 5) partings to emplacement area - Blakefield (west)	1	1	2,739	I	I	I	I
OB - Emplacing partings at emplacement area - Blakefield	229	231	53	134	94	I	I
CL - Highwall transfer point - Blakefield (Y18)	I	1	I	I	I	118	T
CL - Highwall conveyor - Blakefield (Y18)	1	1	1	I	1	17	1
CL - Drilling coal - Blakefield	752	752	687	229	104	ı	ı
CL - Blasting coal - Blakefield	3,021	3,021	2,028	119	84	I	I
CL - Dozers ripping/pushing/clean-up ROM in-pit - Blakefield	12,496	12,496	17,422	5,923	2,452	I	I
CL - Sh/Ex/FCLs loading open coal to trucks - Blakefield	29,997	29,997	33,844	12,126	4,076	23,442	
CL - Hauling open (25% in Year 5) coal in-pit roads - Blakefield (east)	8,220	8,220	4,370	5,849	1,320	13,591	ı
CL - Hauling open (25% in Year 5) coal to ROM pad - Blakefield (east)	107,765	107,765	30,745	50,177	16,700	93,117	I
CL - Hauling open (75% in Year 5) coal in-pit roads - Blakefield (west)	ı	1	13,111	I	I	I	I
CL - Hauling open (75% in Year 5) coal to ROM pad - Blakefield (west)	1	ı	101,651	ı	1	1	ı
CL - Unloading ROM to ROM stockpiles/hopper - Blakefield	2,167	2,167	2,445	876	982	1,693	I
CL - Handle coal at CHPP - Blakefield	152	152	171	61	21	118	ı
CL - Rehandle ROM coal at stockpiles/hopper - Blakefield	722	722	815	292	98	564	

Hansen Bailey

			TSP e	TSP emissions (kg/y)	(y)		
ACTIVITY	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
REDBANK							
Topsoil removal - Dozers/Excavators stripping topsoil - Redbank	3,886	7,772	8,176	11,928	13,220	1	
Topsoil removal - Sh/EX/FELs loading topsoil - Redbank	273	276	107	89	76	1	
Topsoil removal - Hauling topsoil to emplacement area (north) - Redbank	3,044	3,044	1,287	1,767	1,464	I	
Topsoil removal - Hauling topsoil to emplacement area (south) - Redbank	843	843	381	700	601	1	
Topsoil removal - Emplacing topsoil at emplacement area - Redbank	546	551	213	178	153	1	
OB - Drilling for excavator removal - Redbank	1,326	1,326	1,160	1,814	1,814	I	ı
OB - Blasting for excavator removal - Redbank	4,606	4,606	8,054	12,227	9,442	I	
OB - Dozers on Excavator OB in-pit - Redbank	43,696	43,696	46,345	34,145	72,556	I	
OB - Excavator loading OB to haul truck - Redbank	20,289	20,502	21,700	30,759	34,303	I	
OB - Hauling to emplacement area (north) - Redbank	154,706	154,706	179,061	416,599	449,777	1	
OB - Hauling to emplacement area (south) - Redbank	42,832	42,832	53,070	164,914	184,735	I	
OB - Dozers on OB haul roads (north) - Redbank	606'6	9,909	10,510	15,486	15,517	ı	
OB - Dozers on OB haul roads (south) - Redbank	606'6	9,909	10,510	15,486	15,517	ı	
OB - Emplacing at emplacement area - Redbank	20,289	20,502	21,700	30,759	34,303	I	
OB - Dozers on OB emplacement area - Redbank	43,696	43,696	46,345	34,145	72,556	I	
OB - Dozers in-pit ancillary tasks - Redbank	31,778	31,778	39,666	46,138	43,486	1	
OB - Dozers ripping/pushing/clean-up Partings - Redbank	14,178	14,178	17,161	12,912	9,217	1	
OB - Loading partings to trucks - Redbank	1,062	1,073	1,254	1,178	1,115	1	
OB - Hauling partings to emplacement area (north) - Redbank	8,098	8,098	10,347	15,958	14,614	1	
OB - Hauling partings to emplacement area (south) - Redbank	2,242	2,242	3,067	6,317	6,002	1	
OB - Emplacing partings at emplacement area - Redbank	1,062	1,073	1,254	1,178	1,115	1	
CL - Highwall transfer point - Redbank (Y8/Y20)	1	I	ı	206	1	189	
CL - Highwall conveyor - Redbank (Y8/Y20)	1	T	ı	17	1	17	
CL - Drilling coal - Redbank	1,277	1,277	1,211	1,240	1,475	1	
CL - Blasting coal - Redbank	5,129	5,129	3,573	646	1,194	I	ı
CL - Dozers ripping/pushing/clean-up ROM in-pit - Redbank	41,392	41,392	50,472	50,472	41,423	ı	
CL - Sh/EX/FCLs loading open coal to trucks - Redbank	50,920	50,920	59,628	103,004	57,670	37,375	
CL - Hauling open coal in-pits roads - Redbank	36,604	36,604	50,384	214,592	111,553	30,570	ı
CL - Hauling open coal to ROM pad - Redbank	180,114	180,114	210,672	362,812	207,755	134,642	
CL - Unloading ROM to ROM stockpiles/hopper - Redbank	3,679	3,679	4,308	7,441	4,166	2,700	
CL - Handle coal at CHPP - Redbank	257	257	301	520	291	189	ı
CL - Rehandle ROM coal at stockpiles/hopper - Redbank	1,226	1,226	1,436	2,480	1,389	006	

nes

NOI

			TSP e	TSP emissions (kg/y)	(y)		
ACTIVITY	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
HOUSTON							
Topsoil Removal - Dozers/Excavators stripping topsoil - Houston	14,930	14,930	4,700	I	6, 181	8,829	ı
Topsoil removal - Sh/Ex/FELs loading topsoil - Houston	157	158	93	1	29	18	1
Topsoil removal - Hauling topsoil to emplacement area (east) - Houston	2,304	2,304	1,728	1	128	38	1
Topsoil removal - Hauling topsoil to emplacement area (west) - Houston	1	1	T	1	154	82	1
Topsoil removal - Emplacing topsoil at emplacement area - Houston	313	317	185	1	59	37	1
OB - Drilling for excavator removal - Houston	2,444	2,444	639	I	836	1,374	I
OB - Blasting for excavator removal - Houston	8,486	8,486	4,440	ı	4,353	7,262	ı
OB - Dragline removal of OB - Houston	1	ı	I	I	8, 293	11,572	ı
OB - Dozers on Excavator OB in-pit - Houston	1	I		I	82,210	94,616	I
OB - Dozers on Excavator OB in-pit - Houston	80,503	80, 503	25,548	I	11,497	19,702	1
OB - Excavator loading OB to haul truck - Houston	37,381	37,772	11,962	1	5,436	9,436	ı
OB - Hauling to emplacement area (east) - Houston	375,562	375,562	152,496	ı	16,188	13,414	I
OB - Hauling to emplacement area (west) - Houston	1	I	I	I	19,571	28,863	I
OB - Dozers on OB haul roads (east) - Houston	36,511	36,511	11,587	1	2,607	8,936	1
OB - Dozers on OB haul roads (west) - Houston	1	I	1	I	2,607	1	I
OB - Emplacing at emplacement area - Houston	37,381	37,772	11,962	I	5,436	9,436	1
OB - Dozers on OB emplacement area - Houston	80,503	80,503	25,548	I	19,790	31,274	ı
OB - Dozers in-pit ancillary tasks - Houston	53,616	53,616	26,874	1	23,607	24,493	ı
OB - Dozers ripping/pushing/clean-up Partings - Houston	9,285	9,285	4,806	1	4,146	6,883	1
OB - Loading partings to trucks - Houston	531	537	276	ı	242	172	ı
OB - Hauling partings to emplacement area (east) - Houston	5,335	5,335	3,520	ı	721	245	1
OB - Hauling partings to emplacement area (west) - Houston	1	ı	ı	ı	872	527	ı
OB - Emplacing partings at emplacement area - Houston	531	537	276	1	242	172	
CL - Highwall transfer point - Houston (Y7)	1	ı	145	1		1	•
CL - Highwall conveyor - Houston (Y7)	1	ı	17				•
CL - Dozers ripping/pushing/clean-up ROM in-pit - Houston	82,989	82,989	39,758	I	32,124	38,467	ı
CL - Sh/Ex/FCLs loading open coal to trucks - Houston	85,913	85,913	66,864	I	31,307	41,051	ı
CL - Hauling open coal in-pits roads (east) - Houston	18,108	18,108	13,905	I	7,668	20,402	ı
CL - Hauling open coal in-pits roads (west) - Houston	13,577	13,577	10,027	ı	4,454	ı	ı
CL - Hauling open coal to ROM pad (east) - Houston	128,743	128,743	98,022	1	45,818	120,481	ı
CL - Hauling open coal to ROM pad (west) - Houston	136,628	136,628	106,259	1	50,000		
CL - Unloading ROM to ROM stockpiles/hopper - Houston	6,206	6,206	4,830	I	2,262	2,966	I
CL - Handle coal at CHPP - Houston	434	434	338	ı	158	207	I
CL - Rehandle ROM coal at stockpiles/hopper - Houston	2,069	2,069	1,610	ı	754	686	

				TSP e	TSP emissions (kg/y)	(/\)		
	ACTIVITY	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
ROM	ROM/ REJECTS HANDLING							
- TC	CL - Dozers ROM Coal Handling & Rejects - ROM stockpile	81,371	81,371	81,371	81,371	81,371	81,371	81,371
- L	CL - Loading rejects	1	I	1	1	I	1	T
- TC	CL - Transporting rejects	68,280	68,280	71,868	71,644	56,510	78,337	13,172
- TC	CL - Unloading rejects	1	I	1	I	I	1	I
PRO	PRODUCT COAL							
- L	CL - Loading product stockpile	405	405	689	417	408	533	I
- TC	CL - Loading product coal to trains	540	540	919	556	545	711	I
MIM	WIND EROSION							
WE -	WE - OB dump & disturbed area - Uncontrolled	1	ı	I	1,202,360	1,306,674	1,065,361	1,159,429
- JW	WE - OB dump & disturbed area - Controlled	ı	I	T	66, 798	72,593	59,187	64,413
- JW	WE - OB dump & disturbed area - Whynot - Uncontrolled	221,206	221,206	284,833	I	I	I	I
- JW	WE - OB dump & disturbed area - Whynot - Controlled	12,289	12,289	15,824	ı	I	1	I
WE -	WE - OB dump& disturbed area - Blakefield - Uncontrolled	56,404	56,404	159,847	I	1	ı	I
WE -	WE - OB dump& disturbed area - Blakefield - Controlled	3,134	3,134	8,880	I	1	ı	I
WE -	WE - OB dump& disturbed area - Redbank - Uncontrolled	205,960	205,960	304,573	1	1	ı	I
WE -	WE - OB dump& disturbed area - Redbank - Controlled	11,442	11,442	16,921	ı	1	ı	I
WE -	WE - OB dump& disturbed area - Houston - Uncontrolled	212,828	99,034	158,947	I	I	I	I
WE -	WE - OB dump& disturbed area - Houston- Controlled	11,824	5,502	8,830	I	1	ı	I
WE -	WE - Open mining area - Whynot	122,477	122,477	281,582	420,545	397,444	759,293	192,750
WE -	WE - Open mining area - Blakefield (Y18 mining area for Y20 modelling)	31,900	31,900	162,239	157,717	34,361	24,610	I
- 3M	WE - Open mining area - Redbank	134,430	134,430	128,052	215,110	254,412	1	I
WE -	WE - Open mining area - Houston	77,224	77,224	111,292	86,880	97,717	74,636	I
WE -	WE - ROM stockpiles	7,358	7,358	7,358	7,358	7,358	7,358	7,358
- 3M	WE - Product stockpiles	52,560	52,560	52,560	52,560	52,560	52,560	52,560
TOTAL		4,705,253	4,590,510	5,620,149	6,343,931	6,036,547	6,114,634	2,268,350
			•		•	•		

noir

les

7.4 Emissions from Neighbouring Mines

Modelling of the background conditions in the surrounding regions for the cumulative assessment was completed and includes activities from the following nearby mining operations (see locations in **Figure 4-1**).

The cumulative assessment was completed for each year of the Project. The neighbouring mines that are likely to still be operational throughout the operational period of the Project given their current consents are listed below.

- Drayton
- Mt Arthur Coal
- Mt-Pleasant
- Mangoola
- Bengalla
- Hunter Valley Operations.

The modelling of emissions from each mine is based on the most recent publically available estimates of emissions from the following Environmental Impact Statements (EISs):

- Drayton
 - O Emissions were calculated based on the mine plan and schedule for 2016. These emissions are summarised in **Table 7-6**. The same assumptions that were applied to Drayton South were applied to Drayton Mine.
- Mount Pleasant (MTP)
 - O Air quality impact assessment completed in 1997 (**ERM Mitchell McCotter, 1997**). It is important to note the Mount Pleasant EIS does not present predicted impacts for PM_{10} as there was no regulatory requirement to assess PM_{10} concentrations at that time.
 - It was assumed that MTP operations will start in 2014 and each closest modelled year to the equivalent Drayton South proposed operational years were chosen.
- Mangoola
 - O Air quality impact assessment completed in 2006 (Holmes Air Sciences, 2006). The closest modeled year to the equivalent Drayton South proposed operational years were chosen.
- Mt. Arthur Coal (MAC)
 - O Air quality impact assessment completed in 2009 (PAEHolmes, 2009). Modelled year 16 emissions data were used as these are the maximum predicted emissions from the operations.
- Bengalla
 - Air quality impact assessment completed in 2010 (**PAEHolmes, 2010a**). The closest modelled year to the equivalent Drayton South proposed operational years were chosen.
- Hunter Valley Operations (HVO)
 - Air quality impact assessment completed in 2010 (**PAEHolmes, 2010b**). The closest modelled year to the equivalent Drayton South proposed operational years were chosen.

In this cumulative modelling assessment, each neighbouring mine has been treated as a number of volume sources. These have been located at the apparent points of major emission sources determined from the known locations of the mining areas and/or major dust sources on the mine or facility (see **Figure 7-1**).

Figure 7-1: Source locations for neighbouring mines included in cumulative assessment

Sources have been considered in three classes covering all dust emission sources for which there are emission factor equations for open cut mines.

- 1. Wind erosion sources where emissions vary with the hourly average wind speed according to the cube of the wind speed.
- 2. Loading and dumping operations where emissions vary with wind speed to the power of 1.3.
- 3. All other sources where emissions are assumed to be independent of wind speed.

For neighbouring mines, the proportion of emissions in each of these categories has been assumed to be:

- 0.732 for emissions independent of wind speed;
- 0.135 for emissions that depend on wind speed (such as loading and dumping); and
- 0.133 for wind erosion sources.

These factors are based on a detailed analysis of mine dust inventories undertaken as part of the Mt Arthur North EIS (**URS, 2000**), and have subsequently been accepted as appropriate and routinely applied to subsequent air quality impact assessments for mining operations over the past eleven years. **Table 7-5** presents a summary of the estimated emissions for each mine for the cumulative assessment.

Mine	Y3	Y5	Y10	Y15	Y20	Y26
	2016	2018	2023	2028	2033	2039
MTP - WI	4,656,618	5,063,171	8,348,460	8,296,122	7,813,441	-
MTP - WS	858,803	933,782	1,539,675	1,530,023	1,441,004	-
MTP - WE	846,080	919,948	1,516,865	1,507,356	1,419,655	-
Mangoola - WI	2,692,086	2,759,904	2,205,812	1,668,755	-	-
Mangoola - WS	496,491	508,999	406,810	307,762	-	-
Mangoola - WE	400,783	400,783	400,783	400,783	-	-
HVO - WI	7,642,639	7,642,639	7,642,639	-	-	-
HVO - WS	1,409,503	1,409,503	1,409,503	-	-	-
HVO - WE	1,388,621	1,388,621	1,388,621	-	-	-
Bengalla - WI	6,248,237	-	-	-	-	-
Bengalla - WS	1,152,339	-	-	-	-	-
Bengalla - WE	1,135,267	-	-	-	-	-
MAC - WI	18,983,058	18,983,058	18,983,058	18,983,058	-	-
MAC - WS	3,500,974	3,500,974	3,500,974	3,500,974	-	-
MAC - WE	3,449,107	3,449,107	3,449,107	3,449,107	-	-

Table 7-5: Summary of estimated TSP dust emissions from neighbouring mines (kg/y)

WI = Wind insensitive emissions; WS = Wind sensitive emissions; WE = Wind erosion emissions

Table 7-6 presents the emission estimates for the 2016 Drayton mine integration year which is a representative year when both Drayton Mine and Drayton South will be in operation. Further detail on the emission estimates and illustration of the source allocation are provided in **Appendix C**, as well as the mine plan and source allocations.

Table 7-6: Summary of estimated TSP emissions from Drayton mine 2016 (kg/y)

ACTIVITY	emissions (kg/y)
NORTH PIT	
OB - Drilling - North Pit	1,933
OB - Blasting - North Pit	9,804
OB - Dozers on OB - North Pit	89,49
OB - Excavator/FELS loading OB to haul truck - North Pit	29,67
OB - Hauling excavator OB to emplacement area - North Pit	267,292
OB - Emplacing excavator OB at emplacement area - North Pit	29,67
CL - Drilling coal - North Pit	42
CL - Blasting coal - North Pit	21
CL - Dozers ripping/pushing/clean-up ROM in-pit - North Pit	9,018
CL - Sh/Ex/FCLs loading open coal to trucks - North Pit	19,32
CL - Hauling open coal in-pit roads - North Pit	4,843
CL - Hauling open coal to ROM pad - North Pit	2,624
CL - Unloading ROM to ROM stockpiles/hopper - North Pit	1,396
CL - Handle coal at CHPP - North Pit	106
CL - Rehandle ROM coal at stockpiles/hopper - North Pit	46
Grading - North Pit	7,675
EAST PIT	
OB - Drilling - East Pit	91
OB - Blasting - East Pit	4,617
OB - Dozers on OB - East Pit	61,21
OB - Excavator loading OB to haul truck - East Pit	13,97
OB - Hauling to emplacement area (north) - East Pit	78,30
OB - Hauling to emplacement area (south) - East Pit	87,87
OB - Emplacing at emplacement area - East Pit	13,97
CL - Drilling coal - East Pit	28
CL - Blasting coal - East Pit	144.4
CL - Dozers ripping/pushing/clean-up ROM in-pit - East Pit	6,169
CL - Sh/Ex/FCLs loading open coal to trucks - East Pit	13,21
CL - Hauling open coal in-pits roads (north) - East Pit	1,397
CL - Hauling open coal in-pits roads (south) - East Pit	1,995
CL - Hauling open coal to ROM pad - East Pit	6,540
CL - Unloading ROM to ROM stockpiles/hopper - East Pit	95
CL - Handle coal at CHPP - East Pit	73
CL - Rehandle ROM coal at stockpiles/hopper - East Pit	31
Grading - East Pit	5,250
SOUTH PIT	
OB - Drilling - South Pit	93
OB - Blasting - South Pit	4,716
OB - Dozers on OB - South Pit	339,844
OB - Excavator loading OB to haul truck - South Pit	14,27
OB - Hauling to emplacement area in-pit - South Pit	178,26
OB - Hauling to emplacement area (dust-a-side) - South Pit	246,297
OB - Emplacing at emplacement area - South Pit	14,27
CL - Drilling coal - South Pit	15
CL - Blasting coal - South Pit	80
CL - Dozers ripping/pushing/clean-up ROM in-pit - South Pit	34,24
CL - Sh/Ex/FCLs loading open coal to trucks - South Pit	73,37
CL - Hauling open coal in-pits roads - South Pit	30,31
CL - Hauling open coal to ROM pad - South Pit	51,85
CL - Unloading ROM to ROM stockpiles/hopper - South Pit	5,301
CL - Handle coal at CHPP - South Pit	404
CL - Rehandle ROM coal at stockpiles/hopper - South Pit	1,767
Grading - South Pit	29,14
ROM/REJECTS HANDLING	25,14
CL - Dozers ROM Coal Handling & Rejects - ROM stockpile	81,37
CL - Loading rejects	-
CL - Transporting rejects	12,30
CL - Unloading rejects	12,30
PRODUCT COAL	
	24
CL - Loading product stockpile	24
CL - Loading product coal to trains	320
WE - OB dump & disturbed area - Uncontrolled	570,582
WE - OB dump & disturbed area - Controlled	31,699
WE - Open mining area - North Pit	115,175
WE - Open mining area - East and South Pit	405,083
WE - ROM stockpiles	7,358
WE - Product stockpiles	52,560
TOTAL TSP EMISSIONS	3,073,23

7.5 Estimated Emissions from Distant Mines and Other Sources

In addition to the mines identified in **Section 7.4** distant mines and other sources will also contribute to dust levels in the area. Estimating the background allowance for distant mines and non-mining sources is difficult and depends on local land use and the associated emission sources, as well as climate, soil type, etc.

In previous assessments, the approach taken has been to compare the predicted impacts due to the Project and other mines at nearby monitoring locations. From this an estimate of the contribution by non-modelled sources was made and a single figure estimate of annual average background PM_{10} and TSP concentrations was added to all the predicted impacts.

However, it is recognised, that there is in reality, spatial variation in the contribution that non-modelled sources make to the ambient concentrations of annual average PM_{10} and TSP where open cut mining and other emission sources (e.g. residential roads, power stations) are located compared with areas where open cut mining is not active.

For this assessment, a grid of annual average PM_{10} and TSP concentrations due to non-mining sources has been created to make allowance for the spatial variability that occurs in the PM_{10} and TSP concentrations due to sources that are not explicitly included in the modelling.

The approach taken was to model (as accurately as possible) the actual operations that took place at surrounding mines for 2005 in combination with the meteorological data for this year. This modelling year was a representative year in terms of meteorology and existing environment (as discussed in **Section 4**) and additionally 2005 was during an extended period of drought that affected NSW (**Watkins, 2005**), therefore making this a more conservative choice. This was then compared to all available monitoring data in the modelling domain. The background from other sources was taken as the difference between the predicted and measured annual average concentrations of PM₁₀ and TSP over the modelling domain.

The source of the emission data for the modelling is listed below:

- Mt-Arthur Coal (MAC)
 - Air quality impact assessment completed in 2000 (**URS, 2000**). Modelled year 5 emissions data were used as this was the closest year to modelled background year of 2005.
- Drayton
 - Air quality impact assessment completed in 2002 (Holmes Air Sciences, 2002a). Year 8 (nominally 2008) emissions data were used as this was the closest year to modelled background year of 2005.
- Muswellbrook Coal (MCC)
 - Air quality impact assessment completed in 2002 (Holmes Air Sciences, 2002). Year 4 (nominally 2006) emissions data were used as this was the closest year to modelled background year of 2005.
- Bengalla
 - Air quality impact assessment completed in 2006 (Holmes Air Sciences, 2007b). Modelled current year 2004 emissions data were used as this was the closest year to modelled background year of 2005.
- Hunter Valley Operations (HVO)
 - O Air quality impact assessment completed in 2010 (Holmes Air Sciences, 2005). The closest modelled year to the equivalent Drayton South proposed operational years were chosen.

In addition, the Bayswater and Liddell power stations are located within 6 km of the Project. The particulate matter emitted from these power stations are captured by the current monitoring network used in this assessment. A new 2000 megawatts (MW) power station (Bayswater B) was conceptually approved in January 2010. The air quality impact assessment (**Katestone, 2009**) predicted that the maximum 24-hour average PM_{10} concentrations at sensitive receivers were 0.13 µg/m³, that is, less than 0.5% of the EPA assessment criteria of 50 µg/m³. Maximum predicted annual average PM_{10} concentrations at sensitive receiver were 0.004 µg/m³ - approximately 0.01% of the EPA assessment criteria of 30 µg/m³. Given the extremely low predicted impacts from the operation of Bayswater B, it was not considered necessary to include this in the cumulative assessment.

The source locations for all neighboring mines are shown in Figure 7-2.

Table 7-7 presents a summary of the estimated emissions for each mine for the variable background assessment.

Mine	Background
	2005
Drayton	4,896,063
MAC	11,686,621
MCC	909,393
Bengalla	4,163,185
HVO	13,074,538

Table 7-7: Summary of estim	ated TSP emissions from	m nearby mines operational in 2005
rubic / / building of count		in near by mines operational in 2000

All available PM_{10} and TSP air quality monitoring data covering as much of the modelling domain as possible, were used for this assessment (see **Figure 4-1** for monitor locations).

A variable grid of background emissions were taken as the difference between the predicted and measured annual average concentrations of PM_{10} and TSP over the modelling domain. This was then added to the predicted impacts from Drayton South and approved nearby mining operations to determine the total cumulative impact.

Table 7-8 and **Table 7-9** present the measured, predicted and background PM_{10} and TSP concentrations, respectively. The locations of these monitoring stations are shown in **Figure 4-1**.

Monitor ID	Monitor Owner	Measured Concentrations	Predicted Concentrations	Background Concentrations (i.e. measured minus modelled)
Lot 9	Drayton	17	9	8
HV2a	Drayton South	37*	4	34
HV5	Drayton South	14	3	12
PM10-1	Mangoola	17	5	12
PM10-2	Mangoola	14	4	10
DF01	MAC	16	11	5
DF02	MAC	16	16	0
DF03	MAC	14	6	8
DF04	MAC	19	42	-23*
DF05	MAC	16	15	1
DF06	MAC	21	15	7
DF07	MAC	22	7	15
DF08	MAC	18	32	-14*
HV2	Bengalla	23	14	9
HV4	Bengalla	20	8	13
Site 1	MCC	13	4	9
Site 2	MCC	16	7	10
Site 3	MCC	16	5	11
Wandewoi	HVO	17	5	11
Jerry's Plain School	HVO	14	3	12

Table 7-8: PM₁₀ concentrations (µg/m³)

* HV2a (Llanillo) was removed from the background analysis due to its location near a cultivated paddock, as discussed in **Section 4.1.2**.

* This negative value indicates a slight over prediction by the model at the TEOM sites. For the purposes of developing the spatially varying background grid, these differences have not been included.

Note that there were a number of sites where the difference between the measured PM_{10} or TSP and predicted was negative which indicates that the model has over predicted at these mine sites and these values were removed from the grid.

			<i>, ,</i>	
Monitor ID	Monitor Owner	Measured Concentrations	Predicted concentrations	Background Concentrations (i.e. measured minus modelled)
Lot 22	Drayton	44	30	13
Pringles	Drayton	67	91	-24*
HV2a	Drayton South	46	10	36
HV4	Drayton South	45	15	30
HV5	Drayton South	42	7	34
TSP-1	Mangoola	35	11	24
HV2	Bengalla	51	36	15
HV4	Bengalla	40	20	21
HV1	Bengalla	45	22	23
HV3	Bengalla	39	16	22
Site 1	MCC	31	11	20
Site 2	MCC	33	18	15
Site 3	MCC	32	14	18
Wandewoi	HVO	42	13	29
Jerry's Plain School	HVO	42	6	35

Table 7-9: TSP concentrations $(\mu g/m^3)$

* This negative value indicates a slight over prediction by the model at TEOM site Pringle. For the purposes of developing the spatially varying background grid, the difference has not been included.

The monitoring locations are sparsely located and in order to create a grid of spatially varying concentrations it was necessary to make some assumptions about concentrations at the edge of the modelling domain. The annual average PM_{10} and TSP concentrations on the edges of the modelling domain are shown in **Table 7-10** and were based on measurements from monitors closest to each boundary.

The annual average PM_{10} concentrations on the west to northwest boundaries are assumed to be 14 μ g/m³ where there were little contributions from other mines. To the southwest, where there are significant non-modelled mining sources (such as HVO North and South Operations), the annual average PM_{10} model boundary levels have been assumed to be 17 μ g/m³. The annual average TSP concentrations at the modelling domain boundaries were set to values between 32 μ g/m³ and 44 μ g/m³, following the same methodology as PM_{10} .

The annual average quantity of deposited dust contributed by these other sources has been assumed as 1 g/m²/month.

Modelling domain edge	PM ₁₀ μg/m ³	TSP μg/m ³
Ν	16	32
NE	16	32
E	17	44
SE	17	42
S	17	42
SW	17	42
W	14	35
NW	14	35

Table 7-10: PM_{10} and TSP concentrations ($\mu g/m^3$) at the model boundary

Figure 7-3 and **Figure 7-4** show the grids created for PM_{10} and TSP, respectively. These demonstrate that closer to the modelled mines the majority of the measured PM_{10} and TSP concentrations are due to the operations at these mines, with small contributions from distant mines and other sources. As you move away from each mine, the contribution of distant mines and other sources to the total measured concentrations increase.

Figure 7-3: Annual average PM_{10} (µg/m³) concentrations due to distant mines and other sources

Figure 7-4: Annual average TSP (μ g/m³) concentrations due to distant mines and other sources

8 ASSESSMENT OF IMPACTS – PARTICULATE MATTER

8.1 Assessment Approach

The annual average concentrations, dust concentrations and deposition rates for the selected years of assessment have been presented as isopleth diagrams showing the following:

- Predicted 24 hour PM₁₀ concentrations from the Project alone and with other sources;
- Predicted annual average PM₁₀ concentrations from the Project alone and with other sources;
- Predicted annual average TSP concentrations from the Project alone and with other sources; and
- Predicted annual average dust deposition concentrations from the Project alone and with other sources.

Rather than provide a detailed discussion of each isopleth figure, the results have been summarised in tabular form for each year. The nearby residences are listed, with those that are predicted to experience particulate matter deposition or concentration levels above the NSW EPA's assessment criteria highlighted. The contour plots of dust concentrations and deposition levels show the areas of land that are affected by dust at different levels. However, concentration and deposition levels at residences are of particular interest. The locations of neighbouring properties (and where applicable, residences) are shown in each contour plot and in **Figure 4-1**.

Whilst there are currently no impact assessment criteria for $PM_{2.5}$, **Appendix D** provides an assessment compared with the advisory reporting standard.

8.2 PM₁₀ 24-hour Predictions

Figure 8-1 to **Figure 8-7** present contour plots for the predicted maximum 24-hour PM_{10} concentrations for the Project-only for each modelled scenario. The isopleth for the 24-hour average assessment criterion of 50 µg/m³ is shown in red. It is important to note that the EPA impact assessment criterions are applied to the cumulative impacts of the Project and other sources, as presented in **Section 8.3**.

The 24-hour PM_{10} contours presented in **Figure 8-1** to **Figure 8-7** do not represent a single worst case day, but rather represent the potential worst case 24-hour PM_{10} concentration that could be reached at any particular location across the entire modelling year.

A summary of the predicted particulate concentrations at each of the individual residences are provided in **Table 8-1**. The residences that are predicted to experience 24-hour average PM_{10} levels above the assessment criterion of 50 µg/m³ are highlighted in bold red.

	Project Only Maximum 24-hour average PM ₁₀ (μg/m³)						
ID							
טו			Assessmer	nt Criterion ^a =	= 50 μg/m³		
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
		F	Privately own	ed residences	S		
			Drayto	n South			
2	16	16	16	16	16	16	3
3	16	16	17	17	16	16	3
24A	21	21	23	22	18	19	4
24B	21	21	23	22	18	19	4
25	22	21	23	23	19	19	4
172	20	19	15	18	18	18	6
207	20	19	13	17	16	19	5
209	24	22	16	21	21	24	6
211	22	21	16	20	20	22	6

Table 8-1: 24-hour PM_{10} concentrations ($\mu g/m^3$) for each modelling year due to Project only

	Project Only									
ID	Maximum 24-hour average PM ₁₀ (μg/m ³) Assessment Criterion ^a = 50 μg/m ³									
217A	Year 3A 29	Year 3B 28	Year 5 19	Year 10 27	Year 15 26	Year 20	Year 27			
217A 217B	29	28	19	21	20	32 30	6			
217B 219A	30	28	21	21	20	32	6			
219A 219B	37	34	22	27	29	39	6			
219D	31	29	21	25	29	33	6			
219C	27	25	21	23	28	29	6			
226A	39	35	55	94	90	37	13			
226B	41	37	58	106	102	38	14			
226C	40	36	56	100	96	37	13			
226D	34	31	44	72	71	31	11			
227A	27	26	35	43	41	27	7			
227B	27	25	34	42	39	26	7			
227C	26	25	33	42	40	26	7			
227D	26	24	32	42	40	25	7			
227E	26	24	32	42	41	24	7			
227F	29	26	29	52	55	36	9			
228A	18	16	22	33	29	23	6			
228B	18	16	22	33	29	23	6			
228C	18	16	22	33	29	23	6			
228D	18	16	22	34	30	23	6			
228E 228F	18 18	16 17	22 22	34 34	30 31	23 24	6			
228F 228G	18	17	22	34	31	24	6			
228G	18	17	23	35	31	24	6			
2281	16	15	19	27	24	19	5			
2281	18	16	22	34	30	23	6			
228K	21	18	26	43	38	29	7			
228L	22	19	28	47	41	31	8			
228M	23	21	31	54	48	33	9			
230	14	13	16	22	20	16	4			
238A	14	14	17	18	16	13	3			
238B	14	13	16	17	15	13	3			
238C	14	14	17	18	15	13	3			
238D	14	14	17	18	15	13	3			
238E	14	14	17	18	15	13	3			
238F	14	14	17	18	15	13	3			
239A	15	14	16	17	15	14	3			
239B	16	15	17	18	16	15	3			
239C	16	15	16	18	15	15	3			
239D	16	15	16	18	15	15	3			
239E	16	15	16	18	15	15	3			
239F 239G	15 15	14 15	16 16	17 17	15 15	14 15	3			
239G 239H	15	15	10	17	15	15	3			
239H 239I	16	15	17	18	16	15	3			
240A	22	21	24	26	22	21	4			
240A	24	24	24	30	26	24	4			
240C	25	24	28	30	26	24	5			
240D	25	24	28	30	26	24	5			
240E	24	23	27	29	25	23	4			
250A	27	27	31	30	26	24	5			
250B	27	27	32	31	26	24	5			
253	20	19	21	22	19	18	3			
254A	20	19	21	22	19	18	3			
254B	20	19	21	22	19	18	3			
254C	20	19	21	22	19	18	3			
255	19	18	20	20	17	17	3			
279	16	16	17	17	15	15	3			
284	18	17	19	19	17	16	3			
285	17	16	18	18	15	15	3			
287	17	16	18	18	16	15	3			
288	15	14	15	16	13	13	2			
298A	23	23	26	26	22	21	4			

				Project Only						
ID	Maximum 24-hour average PM ₁₀ (µg/m ³)									
IU	Assessment Criterion ^a = 50 μg/m ³									
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
298B	22	22	25	25	21	20	4			
299	21	20	23	23	19	19	4			
306	19	18	20	20	17	17	3			
			Drayto	on Mine						
384	16	16	7	7	6	8	2			
385	23	22	7	8	7	9	3			
386	22	21	9	9	8	10	3			
387	32	30	11	11	9	13	5			
390	43	41	14	14	13	17	7			
398	39	37	13	13	12	16	5			
399	33	31	11	11	10	14	4			
400	29	28	10	10	9	12	4			
401	31	29	10	10	9	12	4			
402	34	33	11	11	10	14	5			
403	38	36	12	12	11	14	5			
411	31	30	23	23	20	23	9			
418	30	28	21	22	19	22	8			
419	26	24	19	19	17	19	7			
420	24	22	18	18	16	18	7			
421	22	21	15	15	12	14	5			
423	23	22	12	12	9	11	4			
423	22	21	12	12	8		4			
					9	10				
425	21	20	11	11	-	10	3			
427	23	22	8	8	7	9	4			
429	23	21	7	8	7	9	3			
432	20	19	6	6	6	7	3			
433A	18	17	6	6	5	7	2			
433B	17	17	5	5	5	6	2			
435	16	15	5	5	5	6	2			
438	12	12	8	7	6	6	2			
440	16	16	9	9	7	8	2			
441	11	11	7	7	5	6	2			
443	13	13	10	10	8	9	3			
444	16	15	13	13	11	12	4			
446A	16	16	13	13	11	13	4			
446B	15	14	7	7	6	8	3			
451	11	10	5	5	4	5	1			
455	11	10	5	5	5	6	2			
456	11	10	6	6	5	5	1			
460	16	15	8	8	6	7	2			
				l residences						
57	52	52	66	69	64	55	11			
58A	35	30	38	79	101	47	13			
58B	33	29	36	69	84	43	11			
60	81	79	75	61	52	67	30			
145A	53	48	26	31	32	51	9			
145B	71	63	31	31	34	58	13			
145C	56	51	28	35	35	54	10			
145D	45	42	24	33	34	52	9			
388	36	34	12	12	11	15	5			
389	42	40	14	14	13	16	6			
404	32	30	10	10	9	11	4			
410	34	32	23	23	20	23	8			

^a 50 μ g/m³ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

Residences to the northwest of the Project (57, 58A, 58B and 60) are predicted to experience an exceedance of the 24-hour average PM_{10} criterion during several years throughout the life of the mine. As presented in **Table 8-2**, during years 10 and 15 there are up to 26 days when the 24-hour average PM_{10} assessment criterion is predicted to be exceeded (see **Table 8-2**). Note also that these four residences are mine owned.

To the southeast of the Project residences 145 (A-D) experience exceedances of the 24-hour PM_{10} assessment criterion during Year 3 and Year 20, when Houston is fully operational. These residences are also owned by Anglo American and predicted to exceed the criteria for between 1 and 3 days of the year.

Residences 226 (A-D) are predicted to experience exceedances of the 24-hour PM_{10} assessment criterion during years 5, 10 and 15 of the Project operations. Residences 227F and 228M are also predicted to exceed during years 10 and 15 of the Project. The number of days over the 24-hour average PM_{10} criteria at each of these residences (227F and 228M) is predicted to be 1 day during the year for each of year 10 and 15. It is proposed that the impacts at these locations would be managed via a real-time and/or predictive monitoring system where operations could be modified (or temporarily shut down in extreme cases) under certain meteorological conditions (refer to **Section 9**) to minimise the impacts. No other residences are predicted to experience 24-hour average PM_{10} concentrations above the assessment criterion, due to emissions from the Project alone.

Table 8-2: Number of days exceeding 24-hour PM₁₀ assessment criterion for each modelling year

			year					
			Number of	days exceed	ing criteria			
ID		Μ	laximum 24-l	hour average	PM ₁₀ (μg/m ³	3)		
10		Assessment Criterion ^a = 50 µg/m ³						
	Year 3A Year 3B Year 5 Year 10 Year 15						Year 27	
			Privately own	ed residence	S			
226A	0	0	1	13	10	0	0	
226B	0	0	1	23	19	0	0	
226C	0	0	1	17	12	0	0	
226D	0	0	0	3	3	0	0	
227F	0	0	0	1	1	0	0	
228M	0	0	0	1	0	0	0	
			Mine owned	l residences				
57	2	2	5	4	1	1	0	
58A	0	0	0	11	26	0	0	
58B	0	0	0	4	9	0	0	
60	15	15	19	9	1	4	0	
145A	1	0	0	0	0	1	0	
145B	1	1	0	0	0	2	0	
145C	1	1	0	0	0	1	0	
145D	0	0	0	0	0	1	0	

a 50 µg/m³ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

Figure 8-1: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 3A

Figure 8-2: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 3B

Figure 8-3: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 5

Drayton South only - Year 10

Figure 8-5: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 15

Figure 8-6: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 20

Figure 8-7: Maximum predicted 24-hour average PM₁₀ concentrations due to emissions from Drayton South only - Year 27

8.3 Cumulative 24-hour Average PM₁₀ Impacts

8.3.1 Introduction

The EPA describes two methods for assessing cumulative air quality effects (see Section 11.2 of **DEC, 2005**).

- A Level 1 assessment (suitable for a screening assessment) requires the highest predicted concentration from the proposal be added to the highest observed concentration in a data set which provides measurements of PM₁₀ concentrations representative of conditions at the site being assessed. If this results in exceedances of the PM₁₀ impact assessment criteria, a Level 2 assessment is required.
- A Level 2 assessment provides a more rigorous approach when background levels are elevated and requires (1) that the highest ten observed 24-hour PM₁₀ concentrations (below criteria) are added to the predicted concentrations for the same days; and (2) the ten highest predicted 24-hour PM₁₀ concentrations are added to the observed concentrations for the same days.

Both the Level 1 and Level 2 assessments require continuous background ambient monitoring data. The Level 2 assessment works well when there are ambient monitoring data available for each day that coincide with the period of time of predicted impacts, and the data are representative of the site being assessed.

There are no available continuous 24-hour PM_{10} data for the area that match the year of meteorological data year (2005). HVAS data are available every sixth day, however, these data are insufficient to provide a representative background for each day of the model simulation.

Therefore, an alternative statistical approach (using a Monte Carlo Simulation) is presented, to achieve the objectives of a Level 2 Assessment. The cumulative assessment focuses on representative receivers in key areas in the vicinity of the Project. Thirteen locations were selected to provide an indication of worst case cumulative 24-hour PM_{10} concentrations (see **Figure 8-8**) from these key areas:

- South/south-west of Drayton South receivers 57, 58A, 145A, 226B, 226D, 227A, 227F, 240A and 250A;
- South-east of proposed Drayton South receivers 209 and 217; and
- North-east of existing Drayton receivers 410 and 411.

8.3.2 Level 2 assessment based on Monte Carlo simulation

The Monte Carlo Simulation is a statistical modelling approach that combines the frequency distribution of one data set (in this case background 24-hour PM_{10} concentration) with the frequency distribution of another data set (the Project's modelled impacts at a given point). This is achieved by repeatedly randomly sampling and combining values with the two data sets to create a third, 'cumulative' data set and associated frequency distribution.

As discussed in **Section 4.1**, there are a number of monitors operating in the area. **Figure 8-8** shows the location of the monitors deemed to be representative of the key areas selected.

assessment

A summary of the available data and which receiver the monitoring locations are representative of is provided in **Table 8-3**.

Monitoring Location ID	Monitoring Period	No. of daily 24- hour average concentrations	Data source	Representative of Receiver ID
Mt Arthur Coal Edderton (DF04)	2002 - 2010	530	PAEHolmes (2009) BHP Billiton (2009) BHP Billiton (2010)	410 & 411
Anglo American Lot 9	2005 - 2009	288	Anglo American	
Mt Arthur Coal Windmill (DF03)	2002 - 2010	528	PAEHolmes (2009) BHP Billiton (2009) BHP Billiton (2010)	57, 58A, 145A, 226B, 226D,
Anglo American HV2a	2000- November 2011	502	Anglo American	227A, 227F, 240A and 250A
Anglo American HV5	May 2001 – November 2011	477	Anglo American	209 & 217

The process assumes that a randomly selected background value from the real dataset would have a chance equal to that of any other background value from the dataset of occurring on the given 'model day'. Over sufficient time this would yield a good statistical estimate of the combined and independent effects of varying background and Project contributions to total PM_{10} .

To generate greater confidence in the statistical robustness of the results, the Monte Carlo Simulation was repeated 250,000 times for each of the receptors. In other words, the same 1-year set of predicted (modelled) 24-hour PM_{10} concentrations due to the Project were added to 250,000 variations of the randomly selected background concentrations at each representative receiver (i.e. a different random background concentration is selected each time).

The 24-hour PM_{10} cumulative analysis for these 13 receptors has been completed for year 10 as this modelled year has the largest predicted impacts for the Project alone.

The results of this analysis are presented graphically in **Figure 8-9** to **Figure 8-11**, for groups based on the monitored background used i.e. south/south west and measurements at DF03 and HV2a. The plots show the number of days that the predicted 24-hour PM_{10} cumulative concentrations would likely reach a certain ground level concentration. For comparison the number of days that the '*Background Only'* would reach a certain concentration is shown with the '*Mine plus Background'* probability.

The results show varying degrees of impact from the Project emissions depending on the location. At all sites, the statistics indicate some probability of days per year with PM_{10} concentrations above 50 μ g/m³. This is the case for both 'Background Only' (because the background data already has values above this level) and the '*Mine plus Background'*.

Table 8-4 presents a summary of the number of days exceeding the EPA criteria for each of the selected receptors for both the project alone and cumulative.

It is also noted that the actual number of exceedances per year cannot be predicted precisely and will depend on actual Project activities, weather conditions, implementation of real-time controls and predictive meteorological forecasting and background levels in the future.

The greatest increase above background is expected at receivers close to the southern boundary of the Project. From **Figure 8-9** it is apparent that at receivers 58A, 226, 226D and 227F PM_{10} is likely to exceed 50 µg/m³ for a number of days due to cumulative impacts. Whilst the actual number of exceedances per year cannot be predicted with certainty, the analysis shows that when cumulative impacts are considered, the probability of exceedance for the south-south-western receptors ranges from approximately 27 to 44 days. It is important to note that the maximum predicted 24-hour PM_{10}

concentrations due to the Project alone are greater than 50 $\mu g/m^3$ at all these locations, as discussed in **Section 8.2**.

When locations further south are considered, (see 227A and 240A), the predicted number of days with cumulative concentrations greater than 50 μ g/m³ decreases (coming closer to the '*background only*' estimations). The same applies to residences to the south-east (see **Figure 8-10**) and those to the north of the existing Drayton Mine (see **Figure 8-11**).

Figure 8-9: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average PM_{10} concentration (50 μ g/m³) for south/south-west residences

Figure 8-10: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average PM_{10} concentration (50 μ g/m³) for residences north east of Drayton Mine

Figure 8-11: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average PM_{10} concentration (50 μ g/m³) for south east residences

	Maximum predicted		days exceeding 150							
	PM ₁₀ 24-hour	Predicted number	of days exceeding	µg/m ³ Acquisition						
Receptor ID	concentrations	50 μg/m³ cumι	lative criteria	criteria						
	Project Alone	Project Alone	Cumulative							
Units	μg/m ³	Number of days	Number of days	Number of days						
57	69	4	43	0						
58A	79	11	92	0						
145A	31	0	38	0						
226B	106	23	102	1						
226D	72	3	50	0						
227A	43	0	30	0						
227F	52	1	53	0						
240A	26	0	26	0						
250A	30	0	28	0						
209	21	0	10	0						
217A	27	0	12	0						
410	23	0	11	0						
411	23	0	11	0						

Table 8-4: Summary of days exceeding 50 µg/m³ – Year10 project alone and cumulative

8.4 **Project Only PM₁₀ Predictions**

A summary of the Project-only predicted PM_{10} concentrations at each of the individual residences are provided in **Table 8-5**.

There are no privately owned residences that are predicted to experience annual average PM_{10} concentrations above the assessment criteria, due to emissions from the Project-only.

The Project-only contributions to annual average PM_{10} concentrations are presented in **Figure 8-12** to **Figure 8-18** for each modelled year.

				-							
				Project Only							
ID	Annual Average PM ₁₀ (μg/m³)										
10	EPA Assessment criteria = N/A										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
		I	Privately own	ed residences	5						
			Drayto	n South							
2	1	1	1	1	1	1	0				
3	1	1	1	2	1	1	0				
24A	1	1	1	1	1	1	0				
24B	1	1	1	1	1	1	0				
25	1	1	1	2	1	1	0				
172	2	2	2	3	3	3	1				
207	2	2	2	3	3	3	1				
209	3	3	3	3	4	4	1				
211	2	2	2	3	3	3	1				
217A	4	3	3	5	5	5	1				
217B	2	2	2	3	3	3	1				
219A	2	2	3	5	4	4	1				
219B	3	3	3	5	5	4	1				
219C	3	2	3	5	5	4	1				
219D	2	2	3	4	4	3	1				
226A	3	4	7	15	13	3	1				
226B	4	4	8	19	16	4	1				
226C	4	4	7	17	15	3	1				

Table 8-5: Annual PM_{10} concentrations ($\mu g/m^3$) at nearby residences for each modelling year – Project Only

	Project Only									
ID			Annual A	Average PM ₁₀	(µg/m³)					
10				essment crite						
2260	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
226D 227A	3	3	5	9	8	3	<u> </u>			
227A	2	2	2	3	3	2	0			
227C	2	2	2	3	3	2	0			
227D	2	2	2	3	3	2	0			
227E	2	2	2	3	3	2	0			
227F	4	3	5	10	10	3	1			
228A	1	1	1	1	1	1	0			
228B	1	1	1	1	1	1	0			
228C	1	1	1	1	1	1	0			
228D	1	1	1	1	1	1	0			
228E 228F	1	1	1	1	1	1	0			
228F	1	1	1	1	1	1	0			
228G	1	1	1	1	1	1	0			
2281	1	1	1	1	1	1	0			
228J	1	1	1	1	1	1	0			
228K	1	1	2	2	2	1	0			
228L	1	1	2	3	3	1	0			
228M	2	2	2	3	3	2	0			
230	1	1	1	1	1	1	0			
238A	1	1	1	1	1	1	0			
238B 238C	1	1	1	1	1	1	0			
238C	1	1	1	1	1	1	0			
238D	1	1	1	1	1	1	0			
238F	1	1	1	1	1	1	0			
239A	1	1	1	1	1	1	0			
239B	1	1	1	1	1	1	0			
239C	1	1	1	1	1	1	0			
239D	1	1	1	1	1	1	0			
239E	1	1	1	1	1	1	0			
239F	1	1	1	1	1	1	0			
239G	1	1	1	1	1	1	0			
239H 239I	1	1	1	1	1	1	0			
2391 240A	1	1	1	1	1	1	0			
240A	1	1	1	1	1	1	0			
240C	1	1	1	1	1	1	0			
240D	1	1	1	1	1	1	0			
240E	1	1	1	1	1	1	0			
250A	1	1	2	2	2	1	0			
250B	1	1	2	2	2	1	0			
253	1	1	1	1	1	1	0			
254A	1	1	1	1	1	1	0			
254B 254C	<u>1</u> 1	<u> </u>	1	1	<u> </u>	1	0			
2540	1	1	1	1	1	1	0			
279	1	1	1	1	1	1	0			
284	1	1	1	1	1	1	0			
285	1	1	1	1	1	1	0			
287	1	1	1	1	1	1	0			
288	1	1	1	1	1	1	0			
298A	1	1	1	1	1	1	0			
298B	1	1	1	1	1	1	0			
299	1	1	1	1	1	1	0			
306	1	1	1 Dravta	1 n Mino	1	1	0			
384	1	1		n Mine	0	0	0			
384	<u> </u>	1	0	0	0	0	0			
386	1	1	0	0	0	1	0			
387	2	2	1	1	1	1	0			
390	3	3	1	1	1	1	0			
	~	~	-	-	-	-	~			

				Project Only			
TD			Annual A	Average PM ₁₀			
ID				essment crite			
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
398	2	2	1	1	1	1	0
399	2	2	1	1	1	1	0
400	1	1	0	0	0	1	0
401	2	2	1	1	0	1	0
402	2	2	1	1	1	1	0
403	2	2	1	1	1	1	0
411	2	2	1	1	1	1	0
418	2	2	1	1	1	1	0
419	2	2	1	1	1	1	0
420	2	2	1	1	1	1	0
421	2	2	1	1	0	1	0
423	2	2	1	1	0	1	0
424	2	1	1	0	0	1	0
425	1	1	0	0	0	1	0
427	1	1	0	0	0	0	0
429	1	1	0	0	0	0	0
432	1	1	0	0	0	0	0
433A	1	1	0	0	0	0	0
433B	1	1	0	0	0	0	0
435	1	1	0	0	0	0	0
438	1	1	0	0	0	0	0
440	1	1	0	0	0	0	0
441	1	1	0	0	0	0	0
443	1	1	0	0	0	0	0
444	1	1	0	0	0	0	0
446A	1	1	0	0	0	1	0
446B	1	1	0	0	0	0	0
451	1	1	0	0	0	0	0
455	1	1	0	0	0	0	0
456	1	1	0	0	0	0	0
460	1	1	0	0	0	0	0
				l residences			
57	5	5	7	7	6	4	1
58A	6	5	7	17	17	4	1
58B	5	4	6	13	14	4	1
60	17	17	18	14	12	14	5
145A	7	6	6	7	7	9	2
145B	10	9	6	7	8	11	3
145C	7	7	6	8	8	9	3
145D	6	5	5	7	7	8	2
388	2	2	1	1	1	1	0
389	3	3	1	1	1	1	0
404	2	2	1	1	0	1	0
410	3	3	1	1	1	1	0

South only - Year 3A

South only - Year 3B

Figure 8-14: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South only - Year 5

Figure 8-15: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South only - Year 10

South only - Year 15

South only - Year 20

Figure 8-18: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 27

8.5 Cumulative PM₁₀ Predictions

A summary of the cumulative predicted PM_{10} concentrations at each of the individual residences are provided in **Table 8-6**.

Privately owned residences 226A, B and C are predicted to experience annual average PM_{10} concentrations above the assessment criteria (highlighted in red) in Year 10 and Year 15, due to emissions from the Project plus background concentrations or cumulative sources.

The Cumulative annual average PM_{10} concentrations are presented in **Figure 8-19** to **Figure 8-25** for each modelled year.

		<u> </u>	/ear – Cumula							
				Cumulative						
ID	Annual Average PM ₁₀ (μg/m ³)									
10			EPA Assessi	ment criteria	= 30 μg/m³					
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
		I	Privately own	ed residences	5					
			Drayto	n South						
2	19	19	18	19	18	14	12			
3	19	19	18	19	17	14	12			
24A	18	18	17	18	17	13	12			
24B	18	18	17	18	17	13	12			
25	18	18	18	18	17	13	12			
172	21	21	20	20	19	15	12			
207	20	20	19	20	18	15	12			
209	21	21	21	22	20	16	12			
211	21	21	20	21	19	15	12			
217A	23	23	22	23	21	17	13			
217B	20	21	20	21	19	15	12			
219A	20	20	20	22	20	15	12			
219B	21	21	21	23	21	16	13			
219C	20	20	20	22	20	16	12			
219D	20	20	20	22	20	15	12			
226A	21	21	24	32	29	15	12			
226B	21	21	25	36	32	15	12			
226C	21	21	24	34	30	15	12			
226D	20	20	21	25	23	14	12			
227A	18	18	18	19	18	14	12			
227B	18	18	18	19	18	14	12			
227C	18	18	18	19	18	14	12			
227D	18	18	18	19	18	14	12			
227E	18	18	18	19	18	14	12			
227F	22	21	22	28	25	15	12			
228A	18	18	18	18	17	14	13			
228B	18	18	18	18	17	14	13			
228C	18	18	18	18	17	14	13			
228D	18	18	18	18	17	14	13			
228E	18	18	18	18	17	14	13			
228F	18	18	18	18	17	14	13			
228G	18	18	18	18	17	14	13			
228H	18	18	18	18	17	14	13			
2281	18	18	17	18	17	15	14			
228J	18	18	18	18	17	14	13			
228K	18	18	18	19	18	14	13			
228L	18	18	18	19	18	14	13			
228M	18	18	19	20	18	14	12			
230	18	18	18	18	17	15	14			
238A	17	17	17	17	16	15	14			
238B	17	17	17	17	16	15	14			
238C	17	17	17	17	16	15	14			
238D	17	17	17	17	16	15	14			
238E	17	17	17	17	16	15	14			
238F	17	17	17	17	16	15	14			

Table 8-6: Annual PM_{10} concentrations ($\mu g/m^3$) at nearby residences for each modelling year – Cumulative

	Cumulative									
ID				verage PM ₁₀						
10				ment criteria						
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
239A	17	17	17	17	16	14	14			
239B	17	17	17	17	16	14	14			
239C 239D	17 17	17 17	17 17	17 17	16 16	14 14	<u>14</u> 14			
239D 239E	17	17	17	17	16	14	14			
239E	17	17	17	17	16	14	14			
239G	17	17	17	17	16	14	14			
239H	17	17	17	17	16	14	14			
2391	17	17	17	17	16	14	13			
240A	17	17	17	18	16	14	13			
240B	18	17	17	18	17	14	12			
240C	18	17	17	18	17	14	12			
240D	18	17	17	18	17	14	12			
240E	18	17	17	18	17	14	12			
250A	18	18	18	18	17	14	12			
250B	18	18	18	18	17	14	12			
253	18	18	17	17	17	14	13			
254A	18	18	17	17	17	14	13			
254B	18	18	17	17	17	14	13			
254C	18	18	17	17	17	14	13			
255	17	17	17	17	17	14	13			
279	17	17	17	17	17	15	14			
284	17	17	17	17	17	15	14			
285	17	17	17	17	17	15	14			
287	17	17	17	17	17	15	14			
288 298A	17 18	17 18	17	17	17 17	15 14	14 13			
298A 298B	18	18	18 17	18 18	17	14	13			
2988	18	18	17	17	16	14	13			
306	17	17	17	17	16	14	13			
500	17	17	Drayto		10	14	10			
384	17	17	15	15	14	12	10			
385	16	16	14	15	14	12	10			
386	19	19	16	17	16	13	11			
387	19	19	16	16	15	12	10			
390	20	20	16	17	15	12	10			
398	19	19	16	16	15	12	10			
399	18	18	15	16	15	12	10			
400	17	17	14	15	14	11	9			
401	17	17	14	15	14	11	9			
402	18	18	15	15	14	11	9			
403	18	18	15	15	14	11	9			
411	17	17	14	15	13	11	9			
418	17	17	15	15	14	11	9			
419	17	17	15	15	14	11	10			
420 421	17 17	17 17	15 14	15 15	<u>14</u> 14	12 11	10 10			
421	17	17	14	15	14	11	9			
423	17	17	14	15	14	11	9			
424	17	16	14	15	14	11	10			
427	16	16	14	15	14	11	9			
429	16	16	14	15	14	12	10			
432	16	16	14	15	14	12	10			
433A	16	16	14	15	14	12	10			
433B	16	16	14	15	14	12	10			
435	16	16	14	15	14	12	10			
438	16	16	15	15	14	13	11			
440	16	16	14	15	14	12	10			
441	16	16	15	16	15	13	12			
443	17	16	15	15	15	13	11			
444	17	17	15	15	14	12	11			
446A	17	17	15	15	14	12	11			
446B	17	17	16	16	15	13	12			

	Cumulative									
ID	Annual Average PM ₁₀ (µg/m ³)									
עו	EPA Assessment criteria = 30 μg/m ³									
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
451	18	18	17	17	16	15	14			
455	17	17	15	16	15	13	12			
456	16	16	15	16	15	13	12			
460	16	16	14	15	14	12	10			
			Mine owned	l residences						
57	23	23	24	25	22	15	11			
58A	24	22	24	34	33	15	12			
58B	23	21	23	31	29	15	12			
60	54	54	53	49	45	22	12			
145A	27	27	26	27	24	20	13			
145B	31	31	27	27	25	23	14			
145C	28	27	26	27	24	21	14			
145D	26	26	25	27	24	20	13			
388	19	19	16	16	15	12	10			
389	20	20	17	17	16	13	10			
404	17	17	14	15	14	11	9			
410	17	17	14	15	13	10	8			

Figure 8-20: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 3B

South and other sources - Year 5

Figure 8-22: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 10

Figure 8-23: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 15

Figure 8-24: Predicted annual average PM₁₀ concentrations due to emissions from Drayton South and other sources - Year 20

South and other sources - Year 27

8.6 Project Only TSP Predictions

A summary of the Project-only predicted TSP concentrations at each of the individual residences is provided in **Table 8-7**.

There are no privately owned residences that are predicted to experience annual average TSP concentrations above the assessment criteria, due to emissions from the Project-only.

The Project-only contributions to annual average TSP concentrations are presented in **Figure 8-26** to **Figure 8-32** for each modelled year.

			– Project Or	nly						
				Project Only						
			Annual	Average TSP	(µg/m ³)					
ID	EPA Assessment criteria = N/A									
	Year 3A	Year 3B		Year 10		Year 20	Year 27			
				ed residence						
			Drayto							
2	3	3	3	4	4	3	1			
3	3	3	3	4	4	3	1			
24A	3	3	3	4	4	3	1			
24B	3	3	3	4	4	3	1			
25	3	3	4	4	4	3	1			
172	6	6	5	7	7	8	2			
207	5	5	5	6	6	7	2			
209	7	7	7	9	9	10	3			
211	6	6	6	8	8	9	2			
217A	9	9	9	12	12	13	3			
217B	6	6	6	9	9	9	2			
219A	6	6	7	12	11	9	3			
219B	7	7	8	13	13	11	3			
219C	6	6	7	12	12	10	3			
219D	6	6	7	11	11	9	3			
226A	9	10	18	38	34	8	3			
226B	10	10	20	48	42	9	3			
226C	10	10	19	43	38	9	3			
226D	7	8	12	22	21	7	2			
227A	4	4	5	8	8	4	1			
227B	4	4	5	7	7	4	1			
227C	4	4	5	7	7	4	1			
227D	4	4	5	7	7	4	1			
227E	4	4	5	8	8	4	1			
227F	10	8	12	27	25	8	2			
228A	2	2	3	4	3	2	1			
228B	2	2	3	4	3	2	1			
228C	2	2	3	4	3	2	1			
228D	2	2	3	4	4	2	1			
228E	2	2	3	4	4	2	1			
228F	2	2	3	4	4	3	1			
228G	2	2	3	4	4	3	1			
228H	2	2	3	4	4	2	1			
2281	2	2	2	3	2	2	0			
228J	2	2	3	4	4	2	1			
228K	3	3	4	6	6	3	1			
228L	4	4	5	7	7	4	1			
228M	4	4	5	8	7	4	1			
230	2	2	2	2	2	2	0			
238A	1	1	1	2	2	1	0			
238B	1	1	1	2	2	1	0			
238C	1	1	1	2	2	1	0			
238D	1	1	1	2	2	1	0			
238E	1	1	1	2	2	1	0			
238F	1	1	1	2	2	1	0			
239A	1	1	2	2	2	1	0			

Table 8-7: Annual TSP concentrations (μ g/m³) at nearby residences for each modelling year – Project Only

	Project Only								
ID				Average TSP	(µg/m³)				
10	No an DA	¥ 20		ssment criter		X 20	X 27		
239B	Year 3A 2	Year 3B 1	Year 5 2	Year 10 2	Year 15 2	Year 20 2	Year 27 0		
239B 239C	2	1	2	2	2	1	0		
239C	2	1	2	2	2	1	0		
239E	2	1	2	2	2	1	0		
239F	1	1	2	2	2	1	0		
239G	1	1	2	2	2	1	0		
239H	2	1	2	2	2	2	0		
2391	2	2	2	2	2	2	0		
240A	2	2	2	3	3	2	0		
240B	3	2	3	3	3	3	1		
240C	3	2	3	3	3	3	1		
240D	3	2	3	3	3	3	1		
240E	3	2	3	3	3	3	1		
250A	4	4	4	4	4	3	1		
250B	4	4	4	4	4	4	1		
253 254A	2	2	2	2	2	2	0		
254A 254B	2	2	2	2	2	2	0		
254B	2	2	2	2	2	2	0		
255	2	2	2	2	2	2	0		
279	2	2	2	2	2	2	0		
284	2	2	2	2	2	2	0		
285	2	2	2	2	2	2	0		
287	2	2	2	2	2	2	0		
288	2	1	1	2	1	1	0		
298A	3	3	3	3	3	3	1		
298B	3	3	3	3	3	3	1		
299	3	2	3	3	3	2	1		
306	2	2	2 Dravta	2 n Mine	2	2	0		
384	2	2	1	1	1	1	0		
385	3	3	1	1	1	1	0		
386	3	3	1	1	1	1	0		
387	5	5	2	2	2	2	1		
390	7	7	3	3	2	3	1		
398	6	6	2	2	2	2	1		
399	5	5	2	2	1	2	1		
400	4	4	1	1	1	1	0		
401	4	4	1 2	1	1	1	0		
402 403	5	5	2	2	1	2	1		
403	6	6	2	2	2	2	1		
411	5	5	2	2	2	2	1		
419	5	4	2	2	2	2	1		
420	4	4	2	2	1	2	1		
421	4	4	1	1	1	1	0		
423	4	4	1	1	1	1	0		
424	4	4	1	1	1	1	0		
425	4	4	1	1	1	1	0		
427	4	4	1	1	1	1	0		
429	3	3	1	1	1	1	0		
432 433A	2	2	1	1	<u> </u>	1	0		
433A 433B	2	2	1	1	1	1	0		
435	2	2	1	1	1	1	0		
438	2	2	1	1	1	1	0		
440	3	3	1	1	1	1	0		
441	2	2	1	1	1	1	0		
443	2	2	1	1	1	1	0		
444	3	3	1	1	1	1	0		
446A	3	3	1	1	1	1	0		
446B	2	2	1	1	1	1	0		
451	2	1	1	1	1	1	0		

				Project Only						
ID	Annual Average TSP (μg/m ³)									
סו			EPA Asse	ssment criter	ria = N/A					
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27			
455	1	1	1	1	1	1	0			
456	1	1	1	1	1	1	0			
460	2	2	1	1	1	1	0			
			Mine owned	l residences						
57	13	12	18	17	16	11	2			
58A	15	12	17	43	45	11	3			
58B	13	10	15	34	35	9	3			
60	44	43	46	37	30	35	12			
145A	18	17	14	18	18	23	6			
145B	26	24	16	18	19	29	8			
145C	19	17	15	20	20	24	7			
145D	15	14	13	19	19	21	6			
388	6	6	2	2	2	2	1			
389	8	8	3	3	2	3	1			
404	4	4	1	1	1	1	0			
410	7	7	2	2	2	3	1			

Figure 8-26: Predicted annual average TSP concentrations due to emissions from Drayton South only - Year 3A

Figure 8-27: Predicted annual average TSP concentrations due to emissions from Drayton South only - Year 3B

South only - Year 5

Hansen Bailey

Figure 8-29: Predicted annual average TSP concentrations due to emissions from Drayton South only - Year 10

South only - Year 15

South only - Year 20

South only - Year 27

8.7 Cumulative TSP Predictions

A summary of the Cumulative predicted TSP concentrations at each of the individual residences are provided in **Table 8-8**.

Privately owned residences 226B and C are predicted to experience annual average TSP concentrations above the assessment criteria (highlighted in red) in Year 10 and Year 15, due to emissions from the Project plus background concentrations or cumulative sources.

The Cumulative annual average TSP concentrations are presented in **Figure 8-33** to **Figure 8-39** for each modelled year.

			- Cumulativ	ve			
				Cumulative			
75			Annual	Average TSP	(µg/m³)		
ID			EPA Assess	ment criteria	= 90 μg/m ³		
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
		I	Privately own	ed residences	5		
			Drayto	n South			
2	52	40	51	52	48	39	35
3	52	40	51	52	49	39	35
24A	50	41	50	50	47	39	35
24B	50	41	50	50	47	39	35
25	51	41	50	51	48	39	35
172	58	46	56	57	53	43	36
207	56	44	55	56	52	43	36
209	60	48	59	61	55	46	37
211	59	47	58	59	54	45	37
217A	65	53	63	66	60	50	39
217B	58	47	57	60	55	45	38
219A	59	48	59	63	58	46	38
219B	60	49	60	65	59	47	39
219C	59	48	59	63	58	46	38
219D	58	47	58	63	58	46	38
226A	60	54	69	88	81	45	38
226B	62	56	72	99	90	45	38
226C	61	55	70	94	85	45	38
226D	58	50	62	72	67	44	38
227A	53	44	54	56	53	41	37
227B	52	44	53	56	52	41	37
227C	52	44	53	56	52	41	37
227D	53	44	53	56	52	41	37
227E	53	45	53	56	53	42	37
227F	63	53	64	79	73	45	38
228A	50	43	50	51	48	41	39
228B	50	43	50	51	48	41	39
228C	50	43	50	51	48	41	39
228D	50	43	50	51	48	41	39
228E	50	43	50	51	48	41	39
228F	50	43	50	51	48	41	39
228G	50	43	50	51	48	41	39
228H	50	43	50	51	48	41	39
228I	49	42	48	49	47	41	39
228J	50	43	50	51	48	41	39
228K	52	44	52	55	51	42	38
228L	53	44	53	56	52	42	38
228M	53	45	54	57	53	42	38
230	48	42	48	48	46	41	39
238A	47	41	47	47	45	41	39
238B	47	41	47	47	45	41	39
238C	47	41	47	47	45	41	39
238D	47	41	47	47	45	40	39
238E	47	41	47	47	45	40	39
238F	47	41	47	47	45	40	39

Table 8-8: Annual TSP concentrations (μ g/m³) at nearby residences for each modelling year - Cumulative

				Cumulative							
ID	Annual Average TSP (μg/m³)										
10				ment criteria							
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
239A	47	41	47	47	45	40	38				
239B	47	40	47	47	45	40	38				
239C	47	40	47	47	45	40	38				
239D	47	40	47	47	45	40	38				
239E	47	40	47	47	45	40	38				
239F	47	41	47	47	45	40	38				
239G 239H	47	41	47	47	45 45	40	38				
2391	47	41 40	47	47	45	40	38				
2391 240A	49	40	49	40	47	40	37				
240A	50	41	50	50	48	40	36				
2400	50	41	50	50	48	40	36				
240D	50	41	50	51	48	40	36				
240E	50	41	49	50	47	40	36				
250A	51	42	51	51	48	40	36				
250B	51	43	51	51	48	40	36				
253	48	41	48	48	46	40	37				
254A	48	41	48	48	46	40	37				
254B	48	41	48	48	46	40	37				
254C	48	41	48	48	46	40	37				
255	48	41	47	48	46	40	38				
279	47	41	46	47	45	40	38				
284	48	41	47	47	45	40	38				
285	47	41	47	47	45	40	38				
287	47	41	47	47	45	40	38				
288	47	41	46	46	45	40	38				
298A	50	41	49	49	47	40	36				
298B	49	41	49	49	47	40	36				
299	49	41	48	49	46	40	36				
306	48	40	47	48	45	40	37				
				on Mine							
384	35	23	30	32	30	24	19				
385	38	26	32	34	31	26	21				
386	37	22	30	32	29	23	17				
387	38	25	31	32	29	21	16				
<u>390</u> 398	41 39	28 26	31 31	33 33	29 29	21	15 16				
398	38	25	31	33	29	22	10				
400	38	26	32	33	30	24	19				
401	39	27	33	34	31	24	19				
401	39	27	32	34	30	24	19				
403	40	28	33	34	31	23	18				
411	45	35	39	40	36	29	24				
418	45	35	39	40	36	30	25				
419	44	34	38	39	36	30	26				
420	43	33	38	39	36	30	26				
421	42	32	37	38	35	28	24				
423	42	31	36	37	34	28	23				
424	41	30	35	36	33	27	23				
425	41	30	35	37	34	28	24				
427	40	28	34	35	32	26	22				
429	38	27	33	34	32	26	21				
432	37	26	32	34	31	26	21				
433A	36	25	31	33	31	25	21				
433B	36	25	32	33	31	26	22				
435	36	25	31	33	31	26	22				
438	37	28	34	35	33	29	25				
440	39	29	34	36	33	28	24				
441	40	32	37	38	36	32	29				
443	41	32	37	38	36	31	28				
444	42	33	38	39	36	31	27				
446A	43	33	38	39	36	31	27				
446B	43	34	40	41	38	33	30				

	Cumulative										
	Annual Average TSP (μg/m³)										
ID	EPA Assessment criteria = 90 μ g/m ³										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
451	45	38	43	43	41	37	35				
455	41	32	38	39	37	33	30				
456	40	31	36	38	36	32	28				
460	38	28	33	35	33	27	23				
			Mine owned	l residences							
57	66	58	70	70	65	46	36				
58A	69	59	70	94	92	48	39				
58B	67	56	68	87	84	47	39				
60	149	117	146	136	125	67	42				
145A	77	69	73	75	68	60	42				
145B	87	84	76	77	70	66	43				
145C	78	70	74	77	70	61	42				
145D	73	63	71	75	68	58	41				
388	39	26	31	33	29	21	15				
389	42	29	32	34	30	21	15				
404	40	28	33	35	32	25	20				
410	46	36	39	40	36	29	24				

South and other sources - Year 3A

Figure 8-34: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 3B

South and other sources - Year 5

Figure 8-36: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 10

South and other sources - Year 15

Figure 8-38: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 20

Figure 8-39: Predicted annual average TSP concentrations due to emissions from Drayton South and other sources - Year 27

8.8 Project Only Dust Deposition Predictions

A summary of the Project-only predicted Dust Deposition concentrations at each of the individual receivers is provided in **Table 8-9**.

There are no privately owned receivers that are predicted to experience annual average Dust Deposition concentrations above the assessment criteria, due to emissions from the Project-only.

The Project-only contributions to annual average Dust Deposition concentrations are presented in **Figure 8-40** to **Figure 8-46** for each modelled year.

				Project Only			
					on (g/m²/mo	nth)	
ID					2 g/m²/mont		
	Year 3A	Year 3B	Year 5		Year 15	Year 20	Year 27
			Privately own				
			Drayto		5		
2	0.0	0.0	0.0	0.1	0.1	0.1	0.0
3	0.0	0.0	0.1	0.1	0.1	0.1	0.0
24A	0.0	0.0	0.0	0.0	0.0	0.0	0.0
24B	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	0.0	0.0	0.0	0.1	0.1	0.0	0.0
172	0.1	0.1	0.1	0.1	0.1	0.1	0.0
207	0.1	0.1	0.1	0.1	0.1	0.1	0.0
209	0.1	0.1	0.1	0.1	0.1	0.1	0.0
211	0.1	0.1	0.1	0.1	0.1	0.1	0.0
217A	0.1	0.1	0.1	0.2	0.2	0.2	0.1
217B	0.1	0.1	0.1	0.1	0.1	0.1	0.0
219A	0.1	0.1	0.1	0.2	0.2	0.1	0.0
219B	0.1	0.1	0.1	0.2	0.2	0.1	0.1
219C	0.1	0.1	0.1	0.2	0.2	0.1	0.0
219D	0.1	0.1	0.1	0.2	0.2	0.1	0.0
226A	0.1	0.1	0.2	0.4	0.4	0.1	0.0
226B	0.1	0.1	0.2	0.6	0.5	0.1	0.0
226C	0.1	0.1	0.2	0.5	0.5	0.1	0.0
226D	0.1	0.1	0.1	0.3	0.2	0.0	0.0
227A	0.0	0.0	0.0	0.1	0.1	0.0	0.0
227B	0.0	0.0	0.0	0.0	0.0	0.0	0.0
227C	0.0	0.0	0.0	0.1	0.0	0.0	0.0
227D	0.0	0.0	0.0	0.1	0.1	0.0	0.0
227E	0.0	0.0	0.0	0.1	0.1	0.0	0.0
227F	0.1	0.1	0.2	0.4	0.4	0.1	0.0
228A	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228B	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228D	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228E	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228F	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228G	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228H	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2281	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228J	0.0	0.0	0.0	0.0	0.0	0.0	0.0
228K	0.0	0.0	0.0	0.1	0.0	0.0	0.0
228L	0.0	0.0	0.0	0.1	0.1	0.0	0.0
228M	0.0	0.0	0.0	0.1	0.1	0.0	0.0
230	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238A	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238B	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238C	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238D	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238E	0.0	0.0	0.0	0.0	0.0	0.0	0.0
238F	0.0	0.0	0.0	0.0	0.0	0.0	0.0
239A	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 8-9: Annual Dust Deposition concentrations (g/m²/month) at nearby residences for each modelling year – Project Only

	Project Only								
ID					on (g/m²/mo				
					2 g/m²/mont				
2208	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27		
239B 239C	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239C	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239E	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239E	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239G	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239H	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
239I	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
240A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
240B	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
240C	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
240D	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
240E	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
250A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
250B 253	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
253 254A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
254A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
254C	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
255	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
279	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
284	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
285	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
287	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
288	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
298A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
298B	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
299 306	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
300	0.0	0.0	Drayto		0.0	0.0	0.0		
384	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
385	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
386	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
387	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
390	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
398	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
399	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
400	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
401 402	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
402	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
411	0.1	0.1	0.0	0.0	0.0	0.0	0.0		
418	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
419	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
420	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
421	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
423	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
424	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
425	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
427 429	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
429	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
432 433A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
433B	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
435	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
438	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
440	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
441	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
443	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
444	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
446A	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
446B	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
451	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

113

				Project Only							
ID	Annual Average Dust Deposition (g/m ² /month)										
IU	EPA Assessment criteria = $2 g/m^2/month$										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
455	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
456	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
460	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
			Mine owned	l residences							
57	0.1	0.1	0.2	0.3	0.3	0.1	0.0				
58A	0.2	0.2	0.3	0.9	0.8	0.1	0.0				
58B	0.2	0.2	0.3	0.7	0.6	0.1	0.0				
60	1.0	0.9	1.2	1.1	1.0	1.1	0.5				
145A	0.3	0.3	0.3	0.4	0.4	0.4	0.2				
145B	0.4	0.4	0.3	0.4	0.4	0.5	0.2				
145C	0.3	0.3	0.3	0.4	0.4	0.4	0.2				
145D	0.2	0.2	0.2	0.4	0.4	0.4	0.1				
388	0.1	0.1	0.0	0.0	0.0	0.0	0.0				
389	0.1	0.1	0.0	0.0	0.0	0.0	0.0				
404	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
410	0.1	0.1	0.0	0.0	0.0	0.0	0.0				

from Drayton South only - Year 3A

from Drayton South only - Year 3B

Figure 8-42: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 5

Figure 8-43: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 10

Figure 8-44: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 15

Figure 8-45: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 20

Figure 8-46: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 27

8.9 Cumulative Dust deposition Predictions

A summary of the Cumulative predicted Dust Deposition concentrations at each of the individual residences are provided in **Table 8-10**.

There are no residences that are predicted to experience annual average Dust Deposition concentrations above the assessment criteria, due to emissions from the Project plus background concentrations or cumulative sources.

The Cumulative annual average Dust Deposition concentrations are presented in **Figure 8-47** to **Figure 8-53** for each modelled year.

		each mo	dening year -				
				Cumulative		4.1- \	
ID					on (g/m²/mo		
					4 g/m²/mont		
	Year 3A	Year 3B	Year 5		Year 15	Year 20	Year 27
		ŀ	Privately own		5		
	4.4	4.4	Draytor		4.4		1.0
2	1.1	1.1	1.2	1.2	1.1	1.1	1.0
3	1.2	1.2	1.2	1.2	1.1	1.1	1.0
24A	1.1	1.1	1.1	1.1	1.1	1.0	1.0
24B	1.1	1.1	1.1	1.1	1.1	1.0	1.0
25	1.1	1.1	1.1	1.1	1.1	1.0	1.0
172	1.3	1.3	1.2	1.3	1.2	1.1	1.0
207	1.2	1.2	1.2	1.3	1.2	1.1	1.0
209	1.3	1.3	1.3	1.3	1.3	1.1	1.0
211	1.3	1.3	1.2	1.3	1.3	1.1	1.0
217A	1.3	1.3	1.3	1.4	1.3	1.2	1.1
217B	1.2	1.2	1.2	1.3	1.2	1.1	1.0
219A	1.2	1.2	1.2	1.3	1.3	1.1	1.0
219B	1.2	1.2	1.3	1.4	1.3	1.2	1.1
219C	1.2	1.2	1.2	1.3	1.3	1.1	1.0
219D	1.2	1.2	1.2	1.3	1.3	1.1	1.0
226A	1.2	1.2	1.3	1.6	1.5	1.1	1.0
226B	1.2	1.2	1.4	1.7	1.6	1.1	1.0
226C	1.2	1.2	1.3	1.6	1.5	1.1	1.0
226D	1.2	1.2	1.2	1.4	1.3	1.1	1.0
227A	1.1	1.1	1.1	1.1	1.1	1.0	1.0
227B	1.1	1.1	1.1	1.1	1.1	1.0	1.0
227C	1.1	1.1	1.1	1.1	1.1	1.0	1.0
227D	1.1	1.1	1.1	1.1	1.1	1.0	1.0
227E	1.1	1.1	1.1	1.1	1.1	1.0	1.0
227F	1.3	1.3	1.3	1.6	1.5	1.1	1.0
228A	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228B	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228C	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228D	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228E	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228F	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228G	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228H	1.1	1.1	1.1	1.1	1.1	1.0	1.0
2281	1.1	1.1	1.1	1.1	1.0	1.0	1.0
228J	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228K	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228L	1.1	1.1	1.1	1.1	1.1	1.0	1.0
228M	1.1	1.1	1.1	1.2	1.1	1.0	1.0
230	1.0	1.1	1.0	1.1	1.0	1.0	1.0
238A	1.0	1.0	1.0	1.0	1.0	1.0	1.0
238B	1.0	1.0	1.0	1.0	1.0	1.0	1.0
238C	1.0	1.0	1.0	1.0	1.0	1.0	1.0
238D	1.0	1.0	1.0	1.0	1.0	1.0	1.0
238E	1.0	1.0	1.0	1.0	1.0	1.0	1.0
238F	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Table 8-10: Annual Dust Deposition concentrations (g/m²/month) at nearby residences for each modelling year - Cumulative

Annual Average Dust Deposition (g/m ² /month) FPAA Assessment Citrals a 4 g/m ² /month) Ver 3 Ver 10 Ver 15 Ver 20 Ver 2398 1.1 1.1 1.0 1.0 1.0 1.0 2398 1.1 1.1 1.1 1.0 1.0 1.0 2390 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2397 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2396 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2396 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2391 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2408 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2408 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2401 1.1 1.1 1.1 1.1					Cumulative			
FPA Assessment criteria = 4 g/m ² /month Year 3 Vear 5 Vear 10 Vear 15 Vear 20 Vear 2398 1.1 1.1 1.1 1.0 1.0 1.0 2396 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2396 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2397 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2396 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2391 1.1 1.1 1.1 1.1 1.0 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250B 1.1 1.1 1.1 <th1.1< th=""> 1.1 1.1<</th1.1<>	TD				oust Depositi			
239A 1.1 1.1 1.1 1.0 1.1 1.0 1.0 1.0 239C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 239C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 239F 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239F 1.1 1.1 1.0 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2544 1.1 1.1 1.1 1.1	10							
239B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239F 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239F 1.1 1.1 1.1 1.0 1.1 1.0 1.0 1.0 239G 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239G 1.1 1.1 1.1 1.1 1.0 1.0 1.0 240D 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 240D 1.1	220.4	1						Year 27
239C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239F 1.1 1.1 1.1 1.1 1.1 1.0 1.0 239F 1.1 1.1 1.1 1.0 1.1 1.0 1.0 239F 1.1 1.1 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.1 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 253 1.1 1.1 1.1 1.1 1.1 1.0 1.0 254B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 255 1.1 1.1 1.1 1.1 <								
239D 1.1 1.1 1.1 1.1 1.1 1.0 1.0 239F 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239G 1.1 1.1 1.0 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.0 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240B 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240E 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 254A 1.1 1.1 1.1 1.1 1.0 1.0 1.0 255 1.1 1.1 1.1								
239E 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 239F 1.1 1.1 1.1 1.0 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250B 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 253 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 254B 1.1 1.1								
239F 1.1 1.1 1.0 1.1 1.0 1.0 1.0 1.0 239G 1.1 1.1 1.1 1.1 1.0 1.0 1.0 239H 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240B 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240E 1.1								
239H 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 230I 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 240A 1.1								1.0
2391 1.1 1.1 1.1 1.1 1.0 1.0 240A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240B 1.1	239G	1.1	1.1	1.0	1.1	1.0	1.0	1.0
240A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240B 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240C 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240E 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 253B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 254A 1.1 1.1 1.1 1.1 1.1 1.1 1.0								1.0
2408 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2400 1.1 1.0 1.0 2508 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 2548 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 255 1.1 1.1 1.1 1.1 1.1 1.0								1.0
240C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240D 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240E 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 253 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 254A 1.1 1.1 1.1 1.1 1.1 1.0 288								
240D 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 240E 1.1 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
240E 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250A 1.1 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th></th> <th></th>						1		
250A 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 250B 1.1 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
2508 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 253 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2548 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 2546 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 255 1.1 1.1 1.1 1.1 1.0								
253 1.1 1.1 1.1 1.1 1.1 1.0 1.0 254A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 254E 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 254C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 279 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 284 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 285 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 288 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 298 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 386 1								
254A 1.1 1.1 1.1 1.1 1.1 1.0 1.0 254B 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 254C 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 255 1.1 1.1 1.1 1.1 1.1 1.0								1.0
254C 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 255 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 279 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 284 1.1 1.1 1.0 1.1 1.0 1.0 1.0 1.0 287 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 298A 1.1 1.0 1.0 298 1.1 1.1 1.1 1.1 1.1 1.0 1.0 385 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.0</th></t<>								1.0
255 1.1 1.1 1.1 1.1 1.1 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.0</th>								1.0
279 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 284 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.0 285 1.0								1.0
284 1.1 1.1 1.0 1.1 1.0 1.0 1.0 285 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 287 1.0 298 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 386 1.3 1.3 1.2 1.2 1.1 1.0 1.0 1.0 1.0 1.0								1.0
285 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
288 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 298A 1.1 1.0 1.0 1.0 386 1.3 1.3 1.3 1.3 1.3 1.1 1.0 1.0 1.0 1.0								
298A 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 299 1.1 1.0 1.0 306 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 1.0 3.0 1.1 1.0 398 1.5 1.5 1.3 1.3 1.3 1.3 1.1 1.0								
298B 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 299 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 306 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 366 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 385 1.3 1.3 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 387 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.2 1.3 1.3 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 <								
299 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 Drayton Mine 384 1.3 1.3 1.2 1.2 1.2 1.1 1.0 1.0 385 1.3 1.3 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.1 1.0 387 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.3 1.3 1.3 1.1 1.0 398 1.5 1.5 1.3 1.3 1.1 1.0 400 1.4 1.4 1.3 1.3 1.1 1.0 402 1.4 1.4 1.3 1.3								
Drayton Mine 384 1.3 1.3 1.2 1.2 1.2 1.1 1.0 385 1.3 1.3 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.1 1.0 390 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.1 1.0 400 1.4 1.4 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.3 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.2 1.3 1.2 1.1 1.0 403 1.4 1.4 1.3 1.3 1.1 1.0 4	299	1.1					1.0	1.0
384 1.3 1.3 1.2 1.2 1.2 1.1 1.0 385 1.3 1.3 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 387 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.4 1.4 1.3 1.1 1.0 398 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.2 1.3 1.2 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.1 1.0 411	306	1.1	1.1			1.0	1.0	1.0
385 1.3 1.3 1.2 1.2 1.2 1.1 1.0 386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 387 1.5 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.4 1.4 1.4 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.3 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.2 1.3 1.2 1.1 1.0 403 1.4 1.4 1.2 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 411 1.4 1.3 1.3 1.3 1.1 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
386 1.4 1.4 1.2 1.2 1.2 1.1 1.0 387 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.4 1.4 1.3 1.1 1.0 398 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.3 1.3 1.1 1.0 402 1.4 1.4 1.3 1.3 1.2 1.1 1.0 403 1.4 1.4 1.3 1.3 1.1 1.0 411 1.4 1.3 1.3 1.3 1.1 1.0 411 1.4 1.3								
387 1.5 1.5 1.3 1.3 1.3 1.1 1.0 390 1.5 1.5 1.4 1.4 1.3 1.1 1.0 398 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.1 1.0 411 1.4 1.3 1.3 1.3 1.1 1.0 418 1.4 1.3 1.2 1.3 1.2 1.1 1.0 420 1.3 1.3								
390 1.5 1.5 1.4 1.4 1.3 1.1 1.0 398 1.5 1.5 1.3 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.2 1.3 1.2 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.1 1.0 411 1.4 1.3 1.3 1.3 1.1 1.0 418 1.4 1.3 1.2 1.3 1.2 1.1 1.0 420 1.3 1.3 1.2 1.2 1.1 1.0 421								
398 1.5 1.5 1.3 1.3 1.3 1.1 1.0 399 1.4 1.4 1.3 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.2 1.3 1.2 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 411 1.4 1.4 1.3 1.3 1.3 1.1 1.0 418 1.4 1.3 1.2 1.3 1.2 1.1 1.0 420 1.3 1.3 1.2 1.2 1.2 1.1 1.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
399 1.4 1.4 1.3 1.3 1.3 1.1 1.0 400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.2 1.3 1.2 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 411 1.4 1.4 1.3 1.3 1.3 1.1 1.0 414 1.4 1.3 1.3 1.3 1.1 1.0 414 1.3 1.2 1.3 1.1 1.0 418 1.4 1.3 1.2 1.3 1.2 1.1 1.0 420 1.3 1.3 1.2 1.2 1.1 1.0 421 1.3 1.3								
400 1.4 1.4 1.2 1.3 1.2 1.1 1.0 401 1.4 1.4 1.2 1.3 1.2 1.1 1.0 402 1.4 1.4 1.3 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 403 1.4 1.4 1.3 1.3 1.3 1.1 1.0 411 1.4 1.4 1.3 1.3 1.1 1.0 418 1.4 1.3 1.2 1.3 1.1 1.0 419 1.3 1.3 1.2 1.3 1.2 1.1 1.0 420 1.3 1.3 1.2 1.2 1.1 1.0 421 1.3 1.3 1.2 1.2 1.1 1.0 423 1.3 1.3 1.2 1.2 1.1 1.0 424 1.3 1.3 1.2								1.0
4011.41.41.21.31.21.11.04021.41.41.31.31.31.11.04031.41.41.31.31.31.11.04031.41.41.31.31.31.11.04111.41.41.31.31.31.11.04181.41.31.21.31.11.04191.31.31.21.31.21.11.04201.31.31.21.31.21.11.04211.31.31.21.21.11.04231.31.31.21.21.11.04241.31.31.21.21.11.04251.31.31.21.21.11.04271.31.31.21.21.11.04291.31.31.21.21.11.04321.31.31.21.21.11.0433A1.31.31.21.21.11.04351.31.31.21.21.11.04351.31.31.21.21.11.0								1.0
4031.41.41.31.31.31.11.04111.41.41.31.31.31.11.04181.41.31.21.31.21.11.04191.31.31.21.31.21.11.04201.31.31.21.31.21.11.04211.31.31.21.21.21.11.04231.31.31.21.31.21.11.04241.31.31.21.31.21.11.04251.31.31.21.21.11.04271.31.31.21.21.11.04291.31.31.21.21.11.04321.31.31.21.21.11.0433A1.31.31.21.21.11.0433B1.31.31.21.21.11.04351.31.31.11.21.21.11.0	401	1.4	1.4	1.2	1.3		1.1	1.0
4111.41.41.31.31.31.11.04181.41.31.21.31.21.11.04191.31.31.21.31.21.11.04201.31.31.21.21.21.11.04211.31.31.21.21.21.11.04231.31.31.21.21.21.11.04241.31.31.21.21.21.11.04251.31.31.21.21.21.11.04271.31.31.21.21.21.11.04291.31.31.21.21.21.11.04321.31.31.21.21.21.11.0433A1.31.31.21.21.21.11.0433B1.31.31.21.21.21.11.04351.31.31.11.21.21.11.0		1.4	1.4		1.3			1.0
4181.41.31.21.31.21.11.04191.31.31.21.31.21.11.04201.31.31.21.21.21.11.04211.31.31.21.21.21.11.04231.31.31.21.31.21.11.04241.31.31.21.21.11.04251.31.31.21.21.11.04271.31.31.21.21.21.11.04291.31.31.21.21.21.11.04321.31.31.21.21.21.11.0433A1.31.31.21.21.21.11.04351.31.31.11.21.21.11.0								1.0
4191.31.31.21.31.21.11.04201.31.31.21.21.21.11.04211.31.31.21.21.21.11.04231.31.31.21.31.21.11.04241.31.31.21.21.21.11.04251.31.31.21.21.21.11.04271.31.31.21.21.21.11.04291.31.31.21.21.21.11.04321.31.31.21.21.21.11.0433A1.31.31.21.21.11.04351.31.31.11.21.21.11.0								
420 1.3 1.3 1.2 1.2 1.2 1.1 1.0 421 1.3 1.3 1.2 1.2 1.2 1.1 1.0 423 1.3 1.3 1.2 1.2 1.2 1.1 1.0 423 1.3 1.3 1.2 1.3 1.2 1.1 1.0 424 1.3 1.3 1.2 1.3 1.2 1.1 1.0 425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 427 1.3 1.3 1.2 1.2 1.2 1.1 1.0 429 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
421 1.3 1.3 1.2 1.2 1.2 1.1 1.0 423 1.3 1.3 1.2 1.3 1.2 1.3 1.2 1.1 1.0 424 1.3 1.3 1.2 1.3 1.2 1.1 1.0 425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 427 1.3 1.3 1.2 1.2 1.2 1.1 1.0 429 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2<		1						
4231.31.31.21.31.21.11.04241.31.31.21.21.21.11.04251.31.31.21.21.21.11.04271.31.31.21.21.21.11.04291.31.31.21.21.21.11.04321.31.31.21.21.21.11.0433A1.31.31.21.21.21.11.0433B1.31.31.21.21.21.11.04351.31.31.11.21.21.11.0								
424 1.3 1.3 1.2 1.2 1.2 1.1 1.0 425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 427 1.3 1.3 1.2 1.2 1.2 1.1 1.0 429 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2 1.1 1.0								1.0
425 1.3 1.3 1.2 1.2 1.2 1.1 1.0 427 1.3 1.3 1.2 1.2 1.2 1.1 1.0 429 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.2 1.2 1.2 1.1 1.0								1.0
429 1.3 1.3 1.2 1.2 1.2 1.1 1.0 432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2 1.1 1.0	425		1.3	1.2	1.2	1.2		1.0
432 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2 1.1 1.0		1						1.0
433A 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2 1.1 1.0								1.0
433B 1.3 1.3 1.2 1.2 1.2 1.1 1.0 435 1.3 1.3 1.1 1.2 1.2 1.1 1.0								
435 1.3 1.3 1.1 1.2 1.2 1.1 1.0								
438 1.2 1.2 1.1 1.2 1.1 1.1 1.0								1.0
						1		1.0
		1				1		1.0
								1.0
444 1.3 1.3 1.2 1.2 1.2 1.1 1.0						1		1.0
						1		1.0
446B 1.3 1.3 1.2 1.2 1.2 1.1 1.0	446B	1.3	1.3	1.2	1.2	1.2	1.1	1.0

	Cumulative										
ID	Annual Average Dust Deposition (g/m ² /month)										
10	EPA Assessment criteria = $4 g/m^2/month$										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
451	1.2	1.2	1.2	1.2	1.2	1.0	1.0				
455	1.2	1.2	1.1	1.1	1.1	1.1	1.0				
456	1.2	1.2	1.1	1.1	1.1	1.1	1.0				
460	1.3	1.3	1.2	1.2	1.2	1.1	1.0				
Mine owned residences											
57	1.2	1.3	1.3	1.5	1.4	1.1	1.0				
58A	1.4	1.4	1.5	2.0	1.9	1.1	1.0				
58B	1.4	1.3	1.4	1.9	1.7	1.1	1.0				
60	2.8	2.8	3.0	2.9	2.7	2.1	1.5				
145A	1.5	1.5	1.5	1.6	1.6	1.4	1.2				
145B	1.7	1.7	1.6	1.7	1.6	1.5	1.2				
145C	1.5	1.5	1.5	1.7	1.6	1.4	1.2				
145D	1.5	1.5	1.5	1.6	1.5	1.4	1.1				
388	1.5	1.5	1.3	1.3	1.3	1.1	1.0				
389	1.6	1.6	1.4	1.4	1.4	1.1	1.0				
404	1.4	1.4	1.3	1.3	1.3	1.1	1.0				
410	1.4	1.4	1.3	1.3	1.3	1.1	1.0				

Figure 8-47: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 3A

Figure 8-48: Predicted annual average dust deposition concentrations due to emissions from Drayton South only - Year 3B

Figure 8-49: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 5

Figure 8-50: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 10

Figure 8-51: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 15

(shown as a bold red line)

Figure 8-52: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 20

Figure 8-53: Predicted annual average dust deposition concentrations due to emissions from Drayton South and other sources - Year 27

8.10 Consideration of Vacant Land

Recent conditions of consent in relation to air quality have included a reference to vacant land in air quality criteria. Specifically, vacant land is considered to be affected if greater than 25% of a property is predicted to exceed the impact assessment criteria.

Additional assessment has been conducted to identify privately-owned land, including vacant land, where more than 25% of the land is predicted to experience dust levels above the relevant criteria and these are listed in **Table 8-11**. Blocks of land that have the same owner and are contiguous have been considered as a single area.

Both the maximum and the 98.6^{th} percentile (6^{th} highest) 24-hour average PM_{10} were investigated, however no privately owned or vacant land met this 98^{th} percentile criteria. The 98^{th} percentile was investigated as it understood that the DP&I use this as guidance for acquisition.

Table 8-11: Privately-owned land area predicted to be impacted greater than 25%

				24	-hour Av	erage PN	4 ₁₀ (μg/n	1 ³)		
	Lot ID	Land Owner		Assessment criteria = 50 μ g/m ³						
	LOUID		Year	Year	Year	Year	Year	Year	Year	
			3A	3B	5	10	15	20	27	
	226 ^(a)	Arrowfield Estates PTY Limited	N	N	N	Y	Y	N	Ν	

(a) As presented in **Section 8.2**, the residences on Lot 226 are predicted to exceed up to 23 days per year and it proposed that this will be managed through real time monitoring and predictive meteorological systems.

8.11 ROM Transport Options

The alternative option of a conveyor to transport ROM coal from the Drayton South Mine area to the Drayton CHPP has been modelled for the year with the highest ROM coal mined (Year 20). Best practice dust controls were assumed, with walls and water sprays at all transfer points and the conveyor was assumed to be entirely enclosed.

The emission inventory for Year 20 hauling, conveying and CHPP is presented in **Table 8-12**. The Project only contributions of the conveyor option are compared with the hauling option (including CHPP) for Year 20 in **Figure 8-54**, **Figure 8-55**, **Figure 8-56** and **Figure 8-57**. The conveyor options total TSP emissions are approximately 370,000 kg/y less than the hauling option.

These contour plots show that the conveyor transport option would likely reduce impacts, in particular across the transport corridor and around the Drayton CHPP. It is noted that the land over which these impacts would be improved largely form part of the existing Drayton and Mt Arthur Coal Mine and Macquarie Generation owned buffer lands. As such there would only be marginal benefits for private land owners if the conveyor option were to be implemented.

ACTIVITY	TSP emissions (kg/y)
WHYNOT	
CL - Hauling ROM coal to pre-conveyor ROM pad (east) - Whynot	38,248
CL - Hauling ROM coal to pre-conveyor ROM pad (middle) - Whynot	114,984
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Whynot	11,813
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Whynot	3,938
BLAKEFIELD	
CL - Hauling ROM coal to pre-conveyor ROM pad - Blakefield	43,605
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Blakefield	1,693
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Blakefield	564
REDBANK	
CL - Hauling ROM coal to pre-conveyor ROM pad - Redbank	61,239
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Redbank	2,700
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Redbank	900
HOUSTON	
CL - Hauling ROM coal to ROM pad - Houston	34,015
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Houston	2,966
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Houston	6,391
ROM/REJECTS HANDLING	
CL - Dozers ROM Coal Handling & Rejects - CHPP ROM stockpiles	81,371
CL - Loading from pre-conveyor ROM stockpile (25% of total ROM)	15,977
CL - Unloading from pre-conveyor ROM stockpile to hopper (25% of total ROM)	15,977
CL - Hopper transfer to conveyor at pre-conveyor ROM pad	402
CL - Conveying to CHPP stockpile	0
CL - Conveyor transfer at CHPP ROM stockpile	402
CL - Loading from CHPP ROM stockpile	63,908
CL - Unloading from CHPP ROM stockpile to CHPP	63,908
CL- Handle coal at CHPP	1,341
CL - Loading rejects	-
CL - Transporting rejects	78,337
CL - Unloading rejects	-
PRODUCT COAL	
CL - Loading product stockpile	533
CL - Loading product coal to trains	711
WIND EROSION	
WE - ROM stockpiles	7,358
WE - ROM @ CHPP stockpiles	7,358
WE - Product stockpiles	52,560
TOTAL	713,199

Table 8-12: Summary of estimated TSP emissions from the Conveyor option (kg/y)

Figure 8-54: Comparison of predicted maximum 24-hour average PM₁₀ concentrations due to emissions from Conveyor Option and Hauling Option –Year 20

Figure 8-55: Comparison of predicted annual average PM₁₀ concentrations due to emissions from Conveyor Option and Hauling Option –Year 20

gure 8-56: Comparison of predicted annual average TSP concentrations due to emission from Conveyor Option and Hauling Option –Year 20

Figure 8-57: Comparison of predicted annual average dust deposition concentrations due to emissions from Conveyor Option and Hauling Option–Year 20

8.12 Spontaneous Combustion

8.12.1 Introduction

Spontaneous combustion occurs when coal and other carbonaceous materials undergo natural oxidation and generate heat. Under the right conditions, the heat from the oxidation reaction can build-up to a point where the coal and contaminated overburden materials will ignite and burn. For self-heating to occur, the composition of the coal must be such that low temperature oxidation can occur. Further the material must be confined in such a way that heat from the oxidation is trapped, allowing the temperature to build-up, but not so confined as to preclude the ingress of oxygen to the combustible material at a rate sufficient to promote the combustion and release of heat energy. The ventilation of the coal must not be rapid as to remove the heat.

Once the coal reaches a high enough temperature it will liberate smoke (i.e. fine particulate matter), steam and volatile organic compounds, some of which are odorous and some of which are harmful.

As part of the Geochemistry Impact Assessment undertaken for the EA an assessment was undertaken on the propensity of the coal and reject materials from Drayton South to spontaneously combust. This assessment reports that the sulfur content of the coal and reject material at Drayton South, which is mined from the Wittingham Coal Measures is very low (generally well under 0.5%) and most of the sulfur is organic with very minor pyritic material. Within the interburden / overburden there is very little sulfur with several samples returning results below the level of detection (i.e. <0.01%). As such there is a very low probability for spontaneous combustion at Drayton South. Further details with regard to the potential for spontaneous combustion to occur at the Project can be found in the Geochemistry Impact Assessment, limited management measures will need to be employed to minimise spontaneous combustion and the effect on local air quality at Drayton South.

8.12.2 Potential air quality impacts

Spontaneous combustion results in the release of toxic and/or odorous gases:

- Particulates;
- Sulphur dioxide (SO₂);
- Oxides of nitrogen (NO_x);
- Hydrogen sulphide (H₂S);
- Carbon monoxide (CO);
- Polycyclic aromatic hydrocarbons (PAHs); and
- Volatile organic compounds (VOCs).

In addition, greenhouse gas (GHG) emissions will also be released:

- Carbon dioxide (CO₂); and
- Methane (CH₄).

Detailed monitoring was completed by CSIRO under the Australian Coal Association Research Program (ACARP) at the existing Drayton Mine where spontaneous combustion does occur as a result of mining in the Greta Coal measures (**Carras et al., 1999**). The CSIRO monitoring involved measuring concentrations of CH_4 , CO_2 , CO and Non-Methane Hydrocarbons (NMHC) (47 species) and 15 species of PAHs both inside the bulldozer cabin and in the external air.

Whilst these samples were taken primarily to ascertain occupational exposures than to test for compliance with ambient air quality criteria, further analysis of these data indicated that whilst it is unlikely that relevant air quality criteria would be exceeded, there may be a detectable odour in the residential areas on occasion (**Holmes Air Sciences, 2007a**).

As the odour emission rate cannot be accurately quantified, it is difficult to apply the EPA's standard assessment criterion. In these circumstances, the most practical approach appears to be to ensure that odour emissions are kept to the minimum practical level. This is the same as requiring that spontaneous combustion be controlled to the maximum extent that it can be practically controlled. Drayton Mine's current efforts to do this are discussed in the following section. These measures will continue to be undertaken as required at Drayton Mine whilst mining in the Greta Coal measures is undertaken. Given the very low probability for spontaneous combustion at Drayton South where mining is in the Wittingham Coal measures these management efforts will not be necessary.

8.12.3 Monitoring and control of spontaneous combustion

Spontaneous combustion is controlled by avoiding disposing of combustible material in waste emplacement areas and emplacing combustible materials in locations where oxygen ingress is minimised. That is, combustible material must be disposed of in impermeable cells.

Drayton Mine currently employs these principles to minimise the occurrence of spontaneous combustion and has had significant success in reducing the area affected by spontaneous combustion. However, there are practical impediments to application of these principles. Areas that are currently being mined cannot be capped and in some cases, it is not practical to cap areas which will need to be reworked in the near or medium term. Spontaneous combustion is not expected to be an issue at the Drayton South mine, however if does occur then the management measures currently in place at existing Drayton Mine would be employed.

Drayton Mine is required to monitor and manage spontaneous combustion throughout the life of the Project. This includes:

- Managing spontaneous combustion in accordance with the approved spontaneous combustion management plan;
- Capping of all areas of spontaneous combustion with inert material;
- Monitoring and placement of coal stockpiles and their temperature; and
- Monitoring and reporting of spontaneous combustion, including:
 - O Quarterly mapping of areas affected by spontaneous combustion;
 - Quarterly reporting to EPA of areas affected by spontaneous combustion and mitigation measures implemented and their effectiveness;
 - O Monthly inspections of the mining operations; and
 - O Compilation and enforcement of monthly action plans.

8.13 Construction Phase and Realignment of Edderton Road

As discussed in **Section 2**, the Project also includes additional infrastructure and construction/development activities, which includes the realignment of Edderton Road. The Edderton road construction works are anticipated to be completed during 2014, and last for approximately 15 months.

As shown on **Figure 8-58**, there are two options under consideration. While dust would be generated from earthworks associated with the proposed relocation, there are a number of safeguards that can be put in place during these types of operations to ensure there is no detrimental impact on the local air quality. Therefore the impacts have not been specifically modelled.

Nominal equipment to be used during the construction works will include:

- Scrapers;
- Graders;
- Excavators;
- Loaders;
- Trucks;
- Crusher
- Backhoes;
- Crane;
- Smooth drum rollers;
- Pad foot rollers;
- Flat bed trucks;
- Fuel Truck;
- Water carts; and
- Dozers.

From an air quality perspective it is important to consider the potential emissions that would occur during construction. While dust emissions from construction activities can have impacts on local air quality, impacts are typically of a short duration and relatively easy to manage through commonly applied dust control measures. Procedures for controlling dust impacts during construction would include, but not necessarily be limited to the following:

Clearing/Excavation

Emissions from vegetation stripping topsoil clearing and excavation may occur, particularly during dry and windy conditions. Emissions would be effectively controlled by increasing the moisture content of the soil/surface (i.e. through the use of water carts/trucks). Other controls that would be undertaken include:

- modifying working practices by limiting excavation during periods of high winds; and
- limiting the extent of clearing of vegetation and topsoil to the designated footprint required for construction and appropriate staging of any clearing.

Quarry Excavation

Materials for the construction of haul roads and light vehicle access roads are expected to be sourced, in part, from an existing quarry within the transport corridor located on land owned by Anglo American. Limited blasting and crushing will be required for the production of material in the quarry. Operations within the quarry will be during daylight hours only during the initial construction phase.

Controls that would be undertaken include:

Use of water carts as required;

- Trucks entering and leaving the site being well maintained in accordance with the manufacturer's specification to comply with all relevant regulations;
- Truck movements controlled on site and restricted to designated roadways;
- Truck wheel washes or other dust removal procedures being installed to minimise transport of dust offsite; and
- Modifying activities during periods of high wind.

Road Realignments/Bulk Earthworks

The use of earth moving equipment can be a significant source of dust, and emissions would be controlled through the use of water sprays.

Haulage, Heavy Plant and Equipment

Vehicles travelling over paved or unpaved surfaces tend to produce wheel generated dust. The following measures would be implemented during construction to minimise dust emissions from these activities:

- all vehicles on-site would be confined to designated routes with speed limits enforced;
- trips and trip distances would be controlled and reduced where possible, for example by coordinating delivery and removal of materials to avoid unnecessary trips; and
- when conditions are excessively dusty and windy, a water cart/truck (for water spraying of travel routes) would be used.

Wind Erosion

Wind erosion from exposed surfaces during construction would be controlled as part of the best practice environmental management of the site. Wind erosion from exposed ground would be limited by avoiding unnecessary vegetation clearing and by progressively rehabilitating exposed areas as quickly as possible (e.g. through the use of a cover crop). Wind erosion from temporary stockpiles would be limited by minimising the number of stockpiles on-site and minimising the number of work faces on stockpiles. In addition, if stockpiles are left for a period greater than six weeks the area will be seeded with cover crop.

Figure 8-58: Edderton Road – proposed relocation options

9 MONITORING AND MANAGEMENT MEASURES

The Project has the potential to generate dust. It is therefore necessary to take reasonable and practicable measures to prevent or minimise dust impacts at all sensitive residences and in particular those residences predicted to experience 24-hour PM_{10} concentrations above the impact assessment criteria.

Anglo American is committed to best practice dust management and control. This includes the application of dust controls in accordance with best practice and real-time monitoring and a proactive dust management system.

The real-time monitoring and proactive dust management system approach would enable Anglo American to pro-actively manage the short-term impacts of the Project and minimise dust impacts at sensitive residences to the greatest practical extent.

9.1 Real-Time Dust Monitoring

A broad overview of the real-time monitoring and proactive dust management system is provided, however further details would be provided in the Air Quality Management Plan (AQMP) which would be updated for the Project.

- Three (3) continuous monitors for PM₁₀ would be deployed in areas where worst case impacts have been predicted (i.e. south/south-west and south-east of Drayton South and north-east of existing Drayton Mine). A link could also be established with at least one of the Upper Hunter Air Quality Monitoring Network sites, for example, Jerry's Plain.
- The on-site meteorological monitoring station would be used in conjunction with the real-time dust monitors to identify the source type and location which is contributing to dust emissions. The meteorological monitoring station would also help initiate response to adverse weather conditions.

The continuous PM_{10} monitors would be connected to a modem which would allow recorded concentrations to be relayed, in (near) real time, to an IP address where the data would be stored in a customised database. The PM_{10} concentrations can also be presented graphically on a website to enable the dust emissions from the site to be visually assessed on a continuous basis.

The recorded PM_{10} concentrations at the management site would be assessed to determine if predefined trigger levels have been breached and when action is required. SMS notification will be sent to relevant personnel when defined trigger levels are breached.

Response levels would be defined (i.e. investigation and action levels) which would require a response from the relevant personnel. Associated with each action level is a trigger level or response level, which will determine the course of action, taken by accountable personnel. Trigger levels, action levels and responses (i.e. TARP – Trigger Action Response Plan) would be outlined in the AQMP.

The real-time monitoring and proactive dust management system allows relevant personnel to react when short term trigger levels are breached which are set at a level that allows proactive dust management for longer term impacts (24-hour) and ultimately annual averages.

9.2 Predictive Meteorological Forecasting System

A meteorological forecasting system can also be used as part of the real-time monitoring and proactive dust management system. This system would predict meteorological conditions for the coming day to determine, one day in advance, where the risk of dust emissions may occur (e.g. based on wind speed, direction, rainfall and atmospheric stability).

The predictive meteorological forecasting system would work in conjunction with the real-time monitoring and proactive dust management system, providing an alert for the appropriate personnel to review the real-time data and manage the intensity of activities for that day, increase controls or limit activity to various areas of the site.

10 GREENHOUSE GAS EMISSIONS

10.1 Introduction

GHG emissions have been estimated based on the methods outlined in the following documents:

- The World Resources Institute/World Business Council for Sustainable Development (WRI/WBCSD) Greenhouse Gas Protocol The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard Revised Edition (WRI/WBCSD, 2004);
- National Greenhouse and Energy Reporting (Measurement) Determination 2008; and
- The Commonwealth Department of Climate Change and Energy Efficiency (DCCEE) National Greenhouse Accounts (NGA) Factors 2011 (DCCEE, 2011).

The GHG Protocol establishes an international standard for accounting and reporting of GHG emissions. The GHG Protocol has been adopted by the International Standard Organisation, endorsed by GHG initiatives (such as the Carbon Disclosure Project) and is compatible with existing GHG trading schemes.

Three 'scopes' of emissions (scope 1, scope 2 and scope 3) are defined for GHG accounting and reporting purposes, as described below. This terminology has been adopted in Australian GHG reporting and measurement methods and has been employed in this assessment. The 'scope' of an emission is relative to the reporting entity. Indirect scope 2 and scope 3 emissions will be reportable as direct scope 1 emissions from another facility.

1) Scope 1: Direct Greenhouse Gas Emissions

Direct GHG emissions are defined as those emissions that occur from sources that are owned or controlled by the reporting entity. Direct GHG emissions are those emissions that are principally the result of the following types of activities undertaken by an entity:

- Generation of electricity, heat or steam. These emissions result from combustion of fuels in stationary sources.
- Physical or chemical processing. Most of these emissions result from manufacture or processing of chemicals and materials (e.g. the manufacture of cement, aluminum, etc.).
- Transportation of materials, products, waste and employees. These emissions result from the combustion of fuels in entity owned/controlled mobile combustion sources (e.g. trucks, trains, ships, aeroplanes, buses and cars).
- Fugitive emissions. These emissions result from intentional or unintentional releases (e.g. equipment leaks from joints, seals, packing, and gaskets; CH₄ emissions from coal mines and venting); hydroflurocarbon emissions during the use of refrigeration and air conditioning equipment; and CH₄ leakages from gas transport.

2) Scope 2: Energy Product Use Indirect Greenhouse Gas Emissions

Scope 2 emissions are a category of indirect emissions that account for GHG emissions from the generation of purchased energy products (principally, electricity, steam/heat and reduction materials used for smelting) by the entity.

Scope 2 in relation to coal mines typically covers purchased electricity, defined as electricity that is purchased or otherwise brought into the organisational boundary of the entity.

3) Scope 3: Other Indirect Greenhouse Gas Emissions

Scope 3 emissions are defined as those emissions that are a consequence of the activities of an entity, but which arise from sources not owned or controlled by that entity. Some examples of scope 3 activities provided in the GHG Protocol are extraction and production of purchased materials, transportation of purchased fuels, and use of sold products and services.

In the case of the Project, scope 3 emissions will include emissions associated with the extraction, processing and transport of diesel, and the transportation and combustion of product coal. The GHG Protocol provides that reporting scope 3 emissions is optional. If an organisation believes that scope 3 emissions are a significant component of the total emissions inventory, these can be reported along with scope 1 and scope 2. However, the GHG Protocol notes that reporting scope 3 emissions can result in double counting of emissions and can also make comparisons between organisations and/or products difficult because reporting is voluntary. Double counting needs to be avoided when compiling national (country) inventories under the Kyoto Protocol. The GHG Protocol also recognises that compliance regimes are more likely to focus on the "point of release" of emissions (i.e. direct emissions) and/or indirect emissions from the purchase of electricity.

10.2 Greenhouse Gas Emission Estimates

Emissions of CO_2 and CH_4 would be the most significant GHG emissions for the Project. These gases are formed and released during the combustion of fuels used on-site and from fugitive emissions occurring during the mining process, due to the liberation of CH_4 from coal seams.

Inventories of GHG emissions can be calculated using published emission factors. Different gases have different greenhouse warming effects (referred to as global warming potentials) and emission factors take into account the global warming potentials of the gases created during combustion. The estimated emissions are referred to in terms of carbon dioxide equivalent (CO_2 -e) emissions by applying the relevant global warming potential. The GHG assessment has been conducted using the NGA Factors, published by the **DCCEE** (2011).

Project-related GHG sources included in the assessment are as follows:

- fuel consumption (diesel) during mining operations scope 1;
- release of fugitive CH₄ during mining scope 1;
- emissions associated with the loss of carbon through vegetation clearing scope 1;
- indirect emissions associated with on-site electricity use scope 2;
- indirect emissions associated with the production and transport of fuels scope 3;
- emissions from coal transportation scope 3; and
- emissions from the use of the product coal scope 3.

A summary of the annual GHG emissions is provided in **Table 10-1**. Detailed emission calculations are provided in **Appendix G**.

Emissions from the shipping of product coal are not included in this assessment due to the uncertainties in emission estimates, including uncertainty in future export destinations and limited data on emission factors and/or fuel consumption for ocean going vessels.

ŝsi	Scope 1 Emissions (t CO2-e)	0	scope z Emissions (t CO2-e)		Scop	Scope 3 Emissions (t CO2-e)	CO2-e)	
	Explosive ANFO	Total	Electricity	Diesel	Electricity	Coal Burning	Rail	Total
	1,474	388,831	43,047	10,823	8,706	10,287,399	13,779	10,320,707
	5,987	401,520	66,898	11,498	13,530	9,375,279	12,557	9,412,865
	7,775	467,477	61,853	11,035	12,510	10,837,032	14,515	10,875,092
_	7,723	459,323	69,505	10,417	14,057	11,827,686	15,842	11,868,002
_	3,474	370,049	69,505	10,022	14,057	12,702,275	17,014	12,743,368
	3,304	369,906	69,505	9,915	14,057	9,914,776	13,280	9,952,029
	3,275	333,002	69,505	5,879	14,057	10,132,749	13,572	10,166,257
	3,300	348,274	86,652	5,869	17,525	10,097,395	13,525	10,134,314
	3,231	319,736	86,652	5,881	17,525	10,075,569	13,495	10,112,471
	3,262	302,070	86,652	5,818	17,525	6,852,286	9,178	6,884,807
	3,317	291,152	86,652	5,813	17,525	8,065,285	10,803	8,099,427
	3,148	282,137	86,652	5,834	17,525	8,071,369	10,811	8,105,539
	3,101	273,075	86,652	5,806	17,525	8,088,272	10,834	8,122,437
	3,128	296, 797	86,652	5,757	17,525	8,209,509	10,996	8,243,787
	3,119	286,280	86,652	5,773	17,525	8,208,396	10,994	8,242,689
_	2,997	287,884	86,652	5,793	17,525	8,275,523	11,084	8,309,925
	2,988	284,370	86,652	5,923	17,525	8,359,995	11,198	8,394,641
	3,016	312,135	86,652	5,987	17,525	9,191,488	12,311	9,227,311
_	3,101	323,766	86,652	6,257	17,525	10,244,555	13,722	10,282,059
	3,088	346,108	86,652	6,165	17,525	10,234,294	13,708	10,271,691
	3,084	321,083	86,652	5,887	17,525	10,178,198	13,633	10,215,243
	3,096	323,624	86,652	5,895	17,525	10,236,773	13,711	10,273,904
	3,067	279,063	86,652	5,950	17,525	8,186,350	10,965	8,220,790
	3,101	269,027	86,652	5,764	17,525	8,146,360	10,911	8,180,560
	2,940	271,526	86,652	5,757	17,525	8,167,049	10,939	8,201,271
	1,669	97,631	86,652	3,158	17,525	3,458,811	4,633	3,484,127
	679	72,952	86,652	1,824	17,525	2,438,824	3,267	2,461,440
C17 000 3	01 447	8 378 798	2,182,863	180.501	441.478	239,863,496	321.277	240,806,752

Table 10-1: Summary of Estimated CO_{2} -e (tonnes) – All Scopes

10.3 Impact on the Environment

According to the Intergovernmental Panel of Climate Change's (IPCC) Fourth Assessment Report, global surface temperature has increased 0.74 ± 0.18 °C during the 100 years ending 2005 (**IPCC, 2007a**). The IPCC has determined "*most of the observed increase in globally averaged temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations".* "Very likely" is defined by the IPCC as greater than 90% probability of occurrence (**IPCC, 2007b**).

Climate change projections specific to Australia have been determined by the CSIRO, based on the following global emissions scenarios predicted by the IPCC (**CSIRO, 2007**):

- A1F1 (high emissions scenario) assumes very rapid economic growth, a global population that peaks in mid-century and technological change that is fossil fuel intensive.
- A1B (mid emissions scenario) assumes the same economic and population growth as A1F1, with a balance between fossil and non-fossil fuel intensive technological changes.
- B1 (low emissions scenario) assumes the same economic and population growth as A1F1, with a rapid change towards clean and resource efficient technologies.

For the global emissions scenarios described above, the projected changes in annual temperature relative to 1990 levels for Australian cities for 2030 and 2070 are presented in **Table 10-2** as determined by the **CSIRO** (2007). The towns/cities presented in **Table 10-2** are those closest to the Project for which results are available.

Location	2030 - A1B (mid-range emissions scenario)	2070 - B1 (low emissions scenario)	2070 - A1F1 (high emissions scenario)
	Temperat	ture (°C)	
Brisbane	0.7 - 1.4	1.1 - 2.3	2.1 - 4.4
Dubbo	0.7 - 1.5	1.2 - 2.5	2.2 - 4.8
St George (Queensland)	0.7 - 1.6	1.2 - 2.7	2.4 - 5.2
Sydney	0.6 - 1.3	1.1 - 2.2	2.1 - 4.3

Table 10-2: Projected Changes in Annual Temperature (relative to 1990)

Notes: Range of values represents the 10th and 90th percentile results.

For 2030, only A1B results are shown as there is little variation in projected results for the global emission scenarios A1B, B1 and A1F1 (**CSIRO, 2007**).

Source: **CSIRO (2007)** *Climate Change in Australia – Technical Report 2007*, Commonwealth Scientific and Industrial Research Organisation.

The CSIRO also details projected changes to other meteorological parameters (for example rainfall, potential evaporation, wind speed, relative humidity and solar radiation) and the predicted changes to the prevalence of extreme weather events (for example droughts, bush fires and cyclones).

The potential social and economic impacts of climate change to Australia are detailed in the Garnaut Climate Change Review (**Garnaut, 2008**), which draws on IPCC assessment work and the CSIRO climate projections. The Garnaut review details the negative and positive impacts associated with predicted climate change with respect to:

- agricultural productivity;
- water supply infrastructure;
- urban water supplies;
- buildings in coastal settlements;
- temperature related deaths;

- ecosystems and biodiversity; and
- geopolitical stability and the Asia-Pacific region.

The Project's contribution to projected climate change, and the associated impacts, would be in proportion with its contribution to global GHG emissions. Average annual scope 1 emissions from the Project (0.31 Mt CO_2 -e) would represent approximately 0.052% of Australia's commitment under the Kyoto Protocol (591.5 Mt CO_2 -e) and a very small portion of global greenhouse emissions, given that Australia contributed approximately 1.5% of global GHG emissions in 2005 (**Commonwealth of Australia, 2011**).

A comparison of predicted annual GHG emissions from the Project with global, Australian and NSW emissions inventories are presented in **Table 10-3**.

Geographic coverage	Source coverage	Timescale	Emission Mt CO ₂ -e	Reference
Project	Scope 1 only	Average annual	0.31	This report.
Global	Consumption of	Total since	865,000	IPCC (2007a)
	fossil fuels	industrialisation 1750 - 1994		Figure 7.3 converted from Carbon unit basis to CO_2 basis. Error is stated greater than $\pm 20\%$.
Global	CO_2 -e emissions	2005	35,000	Based on Australia representing 1.5% of global emissions (Commonwealth of Australia, 2011). Australian National Greenhouse Gas Inventory (2005) taken from http://www.ageis.greenhouse.gov.au/
Global	CO ₂ -e emission	2005	733	IPCC (2007a)
	increase 2004 to 2005			From tabulated data presented in Table 7.1 on the basis of an additional 733 Mt/a. Data converted from Carbon unit basis to CO_2 basis.
Australia	1990 Base	1990	547.7	Taken from the National Greenhouse Gas Inventory (2009) <u>http://www.ageis.greenhouse.gov.au/</u>
Australia	Kyoto target	Average annual 2008 - 2012	591.5	Based on 1990 net emissions multiplied by 108% Australia's Kyoto emissions target.
Australia	Total	2009	564.5	Taken from the National Greenhouse Gas Inventory (2009) <u>http://www.ageis.greenhouse.gov.au/</u>
NSW	Total	2009	160.5	Taken from the National Greenhouse Gas Inventory (2009) http://www.ageis.greenhouse.gov.au/

Table 10-3: Comparison of Greenhouse Gas Emissions

The commitment from the Australian Government to reduce GHG emissions is proposed to be achieved through the introduction of the Australian Government's proposed carbon pricing mechanisms. From 1 July 2012, this will involve a fixed price on GHG emissions, with no cap on Australia's GHG emissions, or emissions from individual facilities (**Commonwealth of Australia, 2011**).

From 1 July 2015, an emissions trading scheme is proposed to be implemented. As such, Australia's GHG emissions, inclusive of emissions associated with the Project, would be capped at a level specified by the Australian Government. Under the emissions trading scheme, there will specifically be no limit on the level of GHG emissions from individual facilities, with the incentive for facilities to reduce their GHG emissions driven by the carbon pricing mechanism (**Commonwealth of Australia, 2011**).

10.4 Greenhouse Gas Emissions Intensity

The estimated GHG emissions intensity of the Project is approximately 0.083 t CO_2 -e/t saleable coal (this includes all scope 1 emissions) (**Figure 10-1**).

The largest source of scope 1 GHG emissions is fugitive CH_4 emissions (approximately 70%) (refer **Table 10-1**). These emissions have likely been over-estimated by using the NGA Factors default emission factor in the absence of site specific data.

Figure 10-1: Greenhouse Gas Intensity Comparison

10.5 Greenhouse Gas Management

GHG management measures are current employed at the Drayton Mine which is described in the Drayton Greenhouse Gas Management Plan (GHGMP) (**Drayton, 2012**). Drayton has implemented a number of measures to minimise GHG emissions. These measures are described below:

- Greenhouse gas emissions and energy use are monitored and reviewed on a monthly basis and considered in the internal business planning;
- Set energy efficiency and greenhouse gas emission targets across all operations; and
- Inclusion of electricity meters for key equipment and processes.

The effectiveness of these measures to reduce GHG emissions (and energy consumption) will be monitored, as Anglo American annually estimates GHG emissions and energy consumption in accordance with National Greenhouse and Energy Reporting and Energy Efficiency Operations requirements.

11 CONCLUSIONS

This assessment has investigated the potential air quality impacts of the Drayton South Coal Project with respect to air quality and greenhouse gas emissions.

Dispersion modelling has been used to predict off-site dust concentration and dust deposition levels due to the dust generating activities that would occur as a result the Project. Emissions inventories were developed for years 3, 5, 10, 15 and 27 of the Project. The dispersion conditions for the area where characterised based on regional and local meteorological data, generated using a diagnostic meteorological modelling system known as CALMET. The annual winds predicted by CALMET correlate well with the windroses presented for the Saddlers Creek meteorological station in 2005 and nearby meteorological station at Macleans Hill. CALPUFF was used to predict the maximum 24-hour PM₁₀, annual average PM₁₀, annual average TSP and annual average dust deposition (insoluble solids).

Detailed modelling was conducted to assess whether the proposed mining operations of the Project would adversely impact any privately owned or mine-owned residences located within the vicinity of the Project Boundary. The assessment included predictions of air quality impacts from the Project in isolation as well as the potential cumulative impacts of other neighbouring mines in the region and other sources. The modelling indicates that over the 27 year operation of the Project there are a number of residences that have the potential to experience dust concentrations above the EPA's air quality assessment criteria. These residences and the potential impacts are summarised in **Table 11-1**.

Generally, the predictions presented in this report incorporate a level of conservatism due to worst case assumptions and the nature of dispersion modelling. As a result, it is expected that actual ground level concentrations would be lower during the normal operation of the Project.

Notwithstanding, it is proposed that the worst case impacts would be managed on a day to day basis using a network of real-time monitoring stations, which will enable mine personnel to respond to high dust levels prior to reaching critical levels and modify activities or increase controls as required (i.e. TARP) under the AQMP.

The potential greenhouse gas emissions that are likely to occur as a result of the operation of the Project have been estimated based on an inventory for each year of the Project's life. On average, Scope 1 emissions from the Project would increase annual emissions by 0.059% of the 1990 baseline Australian levels and therefore would have a negligible impact.

Residence ID	Potential Impact
Privately owne	d residences
226A	24-hour PM_{10} impacts above 50 µg/m ³ occur up to 13 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 µg/m ³ based on conservative worst case assessment.
226B	24-hour PM_{10} impacts above 50 μ g/m ³ occur up to 23 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 μ g/m ³ and annual average TSP concentrations above 90 μ g/m ³ based on conservative worst case assessment.
226C	24-hour PM ₁₀ impacts above 50 μ g/m ³ occur up to 17 days per year from the Project alone. Cumulative annual average PM ₁₀ concentrations above 30 μ g/m ³ and annual average TSP concentrations above 90 μ g/m ³ based on conservative worst case assessment.
226D	24-hour PM_{10} impacts above 50 μ g/m ³ occur up to 3 days per year from the Project alone.
227F	24-hour PM_{10} impacts above 50 μ g/m ³ occur but for 1 day per year from the Project alone.
228M	24-hour PM_{10} impacts above 50 μ g/m ³ occur but for 1 day per year from the Project alone.
Mine owned res	sidences
57	24-hour PM_{10} impacts above 50 μ g/m ³ occur up to 5 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 μ g/m ³ based on conservative worst case assessment.
58A	24-hour PM_{10} impacts above 50 μ g/m ³ occur up to 26 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 μ g/m ³ and annual average TSP concentrations above 90 μ g/m ³ based on conservative worst case assessment.
58B	24-hour PM_{10} impacts above 50 µg/m ³ occur up to 9 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 µg/m ³ based on conservative worst case assessment.
60	24-hour PM ₁₀ impacts above 50 μ g/m ³ occur up to 19 days per year from the Project alone. Cumulative annual average PM ₁₀ concentrations above 30 μ g/m ³ and annual average TSP concentrations above 90 μ g/m ³ based on conservative worst case assessment.
145A	24-hour PM_{10} impacts above 50 $\mu\text{g}/\text{m}^3$ occur 1 day per year from the Project alone.
145B	24-hour PM_{10} impacts above 50 µg/m ³ occur but for 3 days per year from the Project alone. Cumulative annual average PM_{10} concentrations above 30 µg/m ³ based on conservative worst case assessment.
145C	24-hour PM_{10} impacts above 50 μ g/m ³ occur but for 1 day per year from the Project alone.
145D	24-hour PM_{10} impacts above 50 μ g/m ³ occur but for 1 day per year from the Project alone.

Table 11-1: Residences with potential to experience dust levels above the EPA criteria

12 REFERENCES

BHP Billiton (2009)

Mt Arthur Coal. Annual Environmental Management Report 2009

BHP Billiton (2010)

Mt Arthur Coal. Annual Environmental Management Report 2010.

Carras J N, Day S, Lange A L, Nelson P F, Roberts D B, Szemes F, Tibbett A and Williams D J (1999)

"Emissions from Spoil Pile Fires" CSIRO Investigations Report ET/IR149 on ACARP Project C4014, Prepared by CSIRO Division of Energy Technology, North Ryde, NSW 2000.

Commonwealth of Australia (2011).

"Securing a Clean Energy Future - The Australian Government's Climate Change Plan".

CSIRO (2007).

"Climate Change in Australia – Technical Report 2007".

DCC (2005).

"Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales". New South Wales EPA.

DCCEE (2011).

"National Greenhouse Account (NGA) Factors". Published by the Department of Climate Change and Energy Efficiency. <u>http://www.climatechange.gov.au/</u>

EPAW (2009).

"Action for Air: 2009 Update".

Donnelly, S.J., Balch, A., Wiebe, A., Shaw, N., Welchman, S., Schloss, A., Castillo, E., Henville, K., Vernon, A., Planner, J. (2011).

"NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and / or Minimise Emissions of Particulate Matter from Coal Mining" Prepared by Katestone Environmental Pty Ltd for Office of Environment and Heritage June 2011.

Drayton (2011)

"Drayton Management System Standard - Air Quality and Management Plan", May 2011

Drayton (2012)

"Drayton Management System Standard – Greenhouse and Efficiency Plan", February 2012

ERM Mitchell McCotter (1997)

"Mount Pleasant Mine Environmental Impact Statement" Prepared by ERM Mitchell McCotter.

EPAW (2009).

"Action for Air: 2009 Update".

Garnaut (2008)

"The Garnaut Climate Change Review. Final Report", Ross Garnaut <u>www.garnautreview.org.au</u>

Holmes Air Sciences (2002a)

"Air Quality Impact Assessment: Continuation of Mining at Drayton Open Cut Mine" Prepared for HLA Envirosciences by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. January 2002.

Holmes Air Sciences (2002b)

"Air Quality Impact Assessment: Muswellbrook Coal Company Limited No. 1 Open Cut Extension" Prepared for HLA Envirosciences by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. April 2002.

Holmes Air Sciences (2005)

"Air Quality Impact Assessment: Carrington Pit Extension" Prepared for ERM (Australia) Pty Ltd by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. 17 October 2005.

Holmes Air Sciences (2006)

"Air Quality Impact Assessment: Anvil Hill Project" Prepared for Umwelt (Australia) Pty Ltd by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. 9 August 2006.

Holmes Air Sciences (2007a)

"Air Quality Impact Assessment: Extension of Drayton Open Cut Mine" Prepared for Hansen Consulting by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. April 2007.

Holmes Air Sciences (2007b)

"Bengalla Mine: Wantan Extension SEE - Air quality impact assessment" Prepared for Hansen Consulting by Holmes Air Sciences, Suite 2B, 14 Glen Street, Eastwood, NSW 2122. May 2007.

Hurley, P. (2008).

TAPM V4. Part 1: Technical Description, CSIRO Marine and Atmospheric Research Paper.

Hurley, P., M. Edwards, Ashok, L. (2009).

"Evaluation of TAPM V4 for Several Meteorological and Air Pollution Datasets." Air Quality and Climate Change 43(3): 19.

IPCC (2007a).

"Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change". Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. <u>http://ipcc-wg1.ucar.edu/wg1/Report/AR4WG1 Print SPM.pdf</u>

IPCC (2007b)

"Climate Change 2007: Synthesis Report". An Assessment of the Intergovernmental Panel on Climate Change.

Katestone (2009)

"Air Quality impact assessment for the proposed Bayswater B power station project". Prepared for Macquarie generation, September 2009

NEPC (1998a)

"Ambient Air - National Environment Protection Measures for Ambient Air Quality" National Environment Protection Council, Canberra

NEPC (1998b)

"National Environmental Protection Measure and Impact Statement for Ambient Air Quality". National Environment Protection Council Service Corporation, Level 5, 81 Flinders Street, Adelaide SA 5000.

NEPC (2003).

"COAG Standing Council on Environment and Water", Protection and Heritage Council website, www.ephc.gov.au

PAEHolmes (2009)

"Air Quality Impact Assessment: Mt Arthur Coal Consolidation Project" prepared for Hansen Bailey on behalf of Hunter Valley Energy Coal Pty Ltd. August 2009.

PAEHolmes (2010a)

"Air Quality Impact Assessment: Bengalla Mining Company Development Consent Modification" prepared for Hansen Bailey on behalf of Bengalla Mining Company. November 2010.

PAEHolmes (2010b)

"Air Quality Impact Assessment: Carrington West wing" prepared for ERM Mitchell McLennan on behalf of Coal & Allied Pty Ltd. August 2010.

Phalen R.F, R.G. Cuddihy, G.L. Fisher, O.R. Moss, R.B. Schlessinger, D.L. Swift, H. C. Yeh (1991)

"Main Features of the Proposed NCRP Respiratory Tract Model," Radiat. Protect. Dosim. 38:179-184 (1991).

Queensland Rail Network Access (2002)

"Comparison of Greenhouse Gas Emissions by Australian Intermodal Rail and Road Transport" QR Network Access, 127 Creek Street, Brisbane, Queensland 4000.

SPCC (1983)

"Air Pollution from Coal Mining and Related Developments". State Pollution Control Commission.

Todoroski Air Sciences (2012)

"Muswellbrook Coal Company Particulate Matter - Best Practice Pollution Reduction Program" 25 June 2012. Available from http://www.idemitsu.com.au/content/cms/more/504/

TRC (2010)

"Generic Guidance and Optimum Model Settings for the CALPUFF Modelling System for Inclusion into the "Approved Methods for Modelling and Assessment of Air Pollutants in NSW, Australia" prepared for NSW EPAW, Sydney Australia.

URS (2000)

"Mount Arthur North Coal Project" EIS produced for COAL Australia Pty Ltd by URS Australia Pty Ltd, Level 22, and 127 Creek Street, Brisbane, Queensland 4000

Watkins AB (2005)

'The Australian Drought of 2005', Bulletin of the World Meteorological Organisation 54:156-162.

WRI/WBCSD (2004).

F

"The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard Revised Edition March 2004".

APPENDIX A - WIND ROSES

⊢

APPENDIX B – MONITORING DATA

	Table E	3.12-1: Drayton S	outh Monitoring d	lata	
Data	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	PM ₁₀	TSP	PM 10	TSP	TSP
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
29/03/1998					NA
4/04/1998					NA
10/04/1998					NA
16/04/1998					52
22/04/1998					DNR
28/04/1998					DNR
4/05/1998					6
10/05/1998					34
16/02/1998					6
22/05/1998					31
28/05/1998					31
3/06/1998					
9/06/1998					
15/06/1998					37
21/06/1998					8
27/06/1998					25
3/07/1998					31
9/07/1998					6
15/07/1998					12
21/07/1998					3
27/07/1998					6
2/08/1998					10
8/08/1998					44
14/08/1998					41
20/08/1998					9
26/08/1998					22
1/09/1998					37
7/09/1998					36
13/09/1998					34
19/09/1998					33
24/09/1998					16
1/10/1998					58
7/10/1998					33
13/10/1998					45
19/10/1998					51
25/10/1998					47
31/10/1998					36
6/11/1998					53
12/11/1998					41
18/11/1998					12
24/11/1998					32
30/11/1998					40
6/12/1998					39
12/12/1998					53
18/12/1998					35
24/12/1998					26
30/12/1998					56
5/01/1999					54
11/01/1999					38
17/01/1999					35
23/01/1999					22

Table B.12-1: Drayton South Monitoring data

	Llanillo	(HV2a)	Jerry's Plain School (HV5)		Edderton (HV4)
Date	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP (µg/m ³)
29/01/1999	(µg/m)	(µg/m)	(μg/m)	(µg/m)	na
4/02/1999					13
10/02/1999					24
16/02/1999					42
22/02/1999					
28/02/1999					na 17
6/03/1999					33
12/03/1999					59
18/03/1999					41
24/03/1999					36
30/03/1999					52
5/04/1999					17
11/04/1999					26
17/04/1999					36
23/04/1999					
29/04/1999					na
					20
5/05/1999					32
11/05/1999					34
17/05/1999					36
23/05/1999					29
29/05/1999					25
4/06/1999					22
10/06/1999					13
16/06/1999					13
22/06/1999					33
28/06/1999					14
4/07/1999 10/07/1999					12
16/07/1999					29
					14
22/07/1999					8
28/07/1999 3/08/1999					42
					56
9/08/1999					15
15/08/1999					12
21/08/1999					26
27/08/1999					28
2/09/1999					50
8/09/1999					38
14/09/1999					63
20/09/1999 26/09/1999					53
					36
2/10/1999 8/10/1999					48
i					27
14/10/1999					57
20/10/1999					50
26/10/1999 1/11/1999					44
7/11/1999					40
13/11/1999					23
19/11/1999					24
					33
25/11/1999					45
1/12/1999					42

	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date -	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP΄ (μg/m³)
7/12/1999					36
13/12/1999					42
19/12/1999					37
25/12/1999					8
31/12/1999					20
6/01/2000					32
12/01/2000					30
18/01/2000					56
21/01/2000					40
30/01/2000					23
5/02/2000					51
11/02/2000					50
17/02/2000					28
23/02/2000					93
29/02/2000					39
3/03/2000					28
12/03/2000					18
18/03/2000					23
24/03/2000					
30/03/2000					24 47
5/04/2000					
11/04/2000					30
17/04/2000					na
					24
23/04/2000 29/04/2000					26
					24
5/05/2000					16
11/05/2000					16
17/05/2000					32
23/05/2000					19
29/05/2000					10.00
4/06/2000		DNR			13
10/06/2000		79			22
16/06/2000		DNR			9
22/06/2000		26			13
28/06/2000	10	20			14
4/07/2000	10	23			15
10/07/2000	6	14			13
16/07/2000	5	22			9
22/07/2000	9	12			18
28/07/2000	4	12			22
3/08/2000		58			35
9/08/2000		30			10
15/08/2000		24			10
21/08/2000		29			20
27/08/2000	10	54			11
2/09/2000	10	40			8
8/09/2000	19	25			23
14/09/2000	26	DNR			63
20/09/2000	42	61			107
26/09/2000	33	46			52
2/10/2000		87			41
8/10/2000		85			44

	Llanillo (HV2a) Date PM10 TSP		Jerry's Plain	School (HV5)	Edderton (HV4)
Date	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP (µg/m³)
14/10/2000		34			18
20/10/2000		35			28
26/10/2000		33			51
1/11/2000	20	DNR			29
7/11/2000	25	29			16
13/11/2000	22	45			32
19/11/2000	7	25			13
25/11/2000	19	48			14
1/12/2000	10	25			DNR
7/12/2000		119*			65
13/12/2000		DNR 55			44
19/12/2000					52
25/12/2000		DNR			33
31/12/2000		217*		<u> </u>	31
6/01/2001		42			58
12/01/2001		73			87
18/01/2001		53			42
24/01/2001		41			139
30/01/2001		60			30
5/02/2001		54			43
11/02/2001		3			12
17/02/2001		DNR			19
23/02/2001		DNR			49
1/03/2001		80			54
7/03/2001		46			28
13/03/2001		68			54
19/03/2001		43			67
25/03/2001		30			46
31/03/2001		33			24
6/04/2001	DNR	56			41
12/04/2001	DNR	45			38
18/04/2001	DNR	12			57
24/04/2001	DNR	34			
30/04/2001	DNR	27			DNR
6/05/2001	DINK	DNR	DNR		23
12/05/2001		25	DNR		23
18/05/2001		31	DNR		18
24/05/2001		33	DNR		22
30/05/2001		32	DNR		17
5/06/2001		60	DNR	DNR	33
11/06/2001		44	DNR	DNR	21
17/06/2001		34	1	3	6
23/06/2001		52	DNR	9	10
29/06/2001		48	DNR	20	7
5/07/2001	10	49		12	34
11/07/2001	7	35		14	69
17/07/2001	6	15		9	10
23/07/2001	14	32		DNR	30
29/07/2001	6	15		6	9
4/08/2001	<u> </u>	DNR 29		7	13
10/08/2001 16/08/2001	31	34		142 18	58 25
22/08/2001	18	28		13	13
28/08/2001	8	14		6	6

Llanillo (HV2a Date		(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	PM ₁₀	TSP	PM10	TSP	TSP
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
3/09/2001		18	10	8	10
9/09/2001		DNR	15	26	30
15/09/2001		DNR	3	8	25
21/09/2001		96	45	74	63
27/09/2001		52	26	47	40
3/10/2001		27	9	13	17
9/10/2001		39	22	39	38
15/10/2001		18	8	11	7
21/10/2001		57	dnr	9	39
27/10/2001		36	15	20	26
2/11/2001	48	66		86	67
8/11/2001	22	50		40	6
14/11/2001	DNR	DNR		DNR	46
20/11/2001	8	DNR		11	13
26/11/2001	14	55		105	30
2/12/2001		80	27	42	48
8/12/2001		30	10	23	16
14/12/2001		73	33	62	69
20/12/2001		75	33	54	78
26/12/2001		101	33	52	63
1/01/2002	34	64		35	55
7/01/2002	59	134		74	82
13/01/2002	43	87		101	80
19/01/2002	33	74		48	51
25/01/2002	54	105		75	74
31/01/2002	25	34		33	33
6/02/2002		13	DNR	16	18
12/02/2002		159	DNR	40	46
18/02/2002		30	16	18	27
24/02/2002		43	14	25	44
2/03/2002	57	95		46	14
8/03/2002	30	54		43	36
14/03/2002	DNR	55		39	9
20/03/2002	21	78		60	38
26/03/2002	38	76	10	43	DNR
1/04/2002		45	10	22	39
7/04/2002		19	17	29	26
13/04/2002		92	33	62	42
19/04/2002		22 41	9	14	23
25/04/2002	1 ⊑		19	28	157
1/05/2002 7/05/2002	15 	41 51		45	44
13/05/2002		65		46	62
19/05/2002	DNR 14	25		DNR	58 15
25/05/2002	<u>14</u> 7	31		DNR 15	7
31/05/2002	1	19		13	9
6/06/2002	T	21	9	13	19
12/06/2002		27	4	15	19
18/06/2002		13	4	9	8
24/06/2002		7	5	10	13
30/06/2002		21	8	11	13
6/07/2002	21	25	0	11	14
12/07/2002	25	25		33	18
18/07/2002	18	23		DNR	25
24/07/2002	20	23			49
30/07/2002	DNR	DNR		18 23	23
5/08/2002	DUIL	23	11	23	23
		/ . J	1 11	20	20

	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP (µg/m ³)
17/08/2002		DNR	27	53	42
23/08/2002		27	25	50	31
29/08/2002		36	20	42	35
4/09/2002	18	24		31	30
10/09/2002	17	27		36	26
16/09/2002	28	45		44	55
22/09/2002	11	43		44	39
28/09/2002	42	49		71	57
4/10/2002		50	43	68	63
10/10/2002		9	26	56	49
16/10/2002		52	17	79	17
22/10/2002		97	51	83	78
28/10/2002		45	34	71	46
3/11/2002	108	104		120	125
9/11/2002	114	91		107	89
15/11/2002	64	80		112	75
21/11/2002	16	34		146	31
27/11/2002	163	196		216	158
3/12/2002		DNR	37	70	58
9/12/2002		DNR	53	56	67
15/12/2002		68	22	35	39
21/12/2002		83	39	74	71
27/12/2002		37	9	20	4
2/01/2003	20	238		29	26
8/01/2003	56	84		72	72
14/01/2003	DNR	59		53	62
20/01/2003	DNR	98		87	118
26/01/2003	76	81		42	76
1/02/2003		118	88	DNR	99
7/02/2003		27	37	DNR	60
13/02/2003		88	70	DNR	71
19/02/2003		83	9	76	34
25/02/2003		DNR	10	52	4
3/03/2003	DNR	61		DNR	73
9/03/2003	16	30		163	38
15/03/2003	21	39		64	49
21/03/2003	117	123		249	156
27/03/2003	21	81		55	DNR
2/04/2003		21	4	36	20
8/04/2003		59	17	DNR	45
14/04/2003		25	8	8	3
20/04/2003		DNR	5	4	14
26/04/2003	-1 -7	32	4	2	4
2/05/2003	17	53		8	41
8/05/2003	16	55		28	32
14/05/2003	9	36		31	19
20/05/2003	32	46		32	30
26/05/2003	3	19	40	11	13
1/06/2003		35	13	22	23
7/06/2003		12	9	12	13
13/06/2003		9	12	8	17
19/06/2003		20	15	19	26
25/06/2003	0.2	41	24	28	27
1/07/2003	9.3	10		11.7	5
7/07/2003	11.9	16		14.7	12.4
13/07/2003	8.7	18		17.5	21.6
19/07/2003	24.4	42		69.3	66.5
25/07/2003	6.2	10		7	7.6

Data	Llanillo (HV2a)		Jerry's Plain School (HV5)		Edderton (HV4)
Date	PM ₁₀	TSP	PM10	TSP	TSP
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
31/07/2003	23	41		14.6	13.5
6/08/2003		41	22	28	34
12/08/2003		16	13	14	17
18/08/2003		7	5	6	6
24/08/2003		25	16	18	21
30/08/2003		DNR	20	26	44
5/09/2003	39	60		33	47
11/09/2003	44	65		19	24
17/09/2003	16	23		12	15
23/09/2003	DNR	92		14	68
29/09/2003	74	85		30	43
5/10/2003		28	DNR	19	34
11/10/2003		DNR	16	27	31
17/10/2003		91	27	50	81
23/10/2003		75	37	49	57
29/10/2003		281	192	177	199
4/11/2003	35	82		50	77
10/11/2003	44	DNR		64	96
16/11/2003	81	166		49	80
22/11/2003	8	26		15	13
28/11/2003	20	53		31	64
4/12/2003		21	14	31	34
10/12/2003		41	129	176	45
16/12/2003		49	20	34	38
22/12/2003		47	24	32	33
28/12/2003		50	28	14	68
3/01/2004	DNR	DNR		63	61
9/01/2004	83	98		83	96
15/01/2004	41	59		65	60
21/01/2004	47	84		54	79
27/01/2004	30	47		43	45
2/02/2004		97	34	57	101
8/02/2004		112	44	67	87
14/02/2004		19	39	6	79
20/02/2004		DNR	130	219	91
26/02/2004		DNR	DNR	17	19
3/03/2004	15	28		40	33
9/03/2004	65	7		41	46
15/03/2004	86	35		39	32
21/03/2004	7	36		39	53
27/03/2004	37	62		103	119
2/04/2004		DNR	38	38	73
8/04/2004		59	22	22	45
14/04/2004		11	5	5	66
20/04/2004		94	DNR	DNR	31
26/04/2004		48	26	26	73
2/05/2004	12	4		10	11
8/05/2004	24	78		66	76
14/05/2004	49	75		53	52
20/05/2004	18	34		25	32
26/05/2004	4	DNR		6	6
1/06/2004		DNR	8	DNR	23
7/06/2004		11	9	19	18
13/06/2004		15	8	10	4
19/06/2004		21	9	8	41
25/06/2004		23	7	7	10
1/07/2004	22	30		14	20
7/07/2004	40	61		9	23

	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date -	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP΄ (μg/m³)
13/07/2004	6	16		5	7
19/07/2004	9	28		4	13
25/07/2004	5	12		7	DNR
31/07/2004	14	DNR		18	DNR
6/08/2004		13	5	4	7
12/08/2004		28	10	10	18
18/08/2004		16	7	11	11
24/08/2004		35	18	DNR	5
30/08/2004		25	DNR	DNR	18
5/09/2004	17	DNR		20	11
11/09/2004	8	12		7	7
17/09/2004	43	32		DNR	13
23/09/2004	6	57		30	24
29/09/2004	70	120		73	66
5/10/2004		DNR	9	21	15
11/10/2004		56	27	39	57
17/10/2004		37	24	44	36
23/10/2004		21	DNR	26	25
29/10/2004		51	DNR	DNR	47
4/11/2004	37	49		DNR	62
10/11/2004	20	DNR		28	35
16/11/2004	42	48		72	59
22/11/2004	90	64		80	80
28/11/2004	8	74		58	79
4/12/2004		46	22	40	41
10/12/2004		22	16	26	17
16/12/2004		49	30	44	52
22/12/2004		37	50	65	31
28/12/2004		14	23	46	45
3/01/2005	91	DNR	DNR	155	118
9/01/2005	64	94	DNR	82	55
15/01/2005	131	197	DNR	208	172
21/01/2005	93	152	DNR	127	144
27/01/2005	39	69	DNR	44	51
2/02/2005	52	49	21	62	DNR
8/02/2005	41	47	14.8	24	64
14/02/2005	47	54	26.8	91	12
20/02/2005	15	20	6.4	20	42
26/02/2005	86	69	33	64	44
4/03/2005	39	43	16.1	42	64
10/03/2005	74	58	18	45	63
16/03/2005	24	88	25.2	68	89
22/03/2005	4	5	4.1	5	14
28/03/2005	80	51	10.7	44	65
3/04/2005	71	80	17.4	48	67
9/04/2005	21	62	11.3	34	38
15/04/2005	DNA	59	17.2	55	55
21/04/2005	DNA	70	12.9	16	44
27/04/2005	48	42	13.4	23	42
3/05/2005	63	43	11.3	27	47
9/05/2005	3	32	11.2	23	33
15/05/2005	9	21	7.7	11	19
21/05/2005	25	26	8.2	31	25
27/05/2005	14	15	13.5	17	28
2/06/2005	DNR	57	18.1	20	50
8/06/2005	35	58	22.3	DNR	46
14/06/2005	3	DNR	3.2	2	2
20/06/2005	6	8	2.9	1	3

Dete	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	PM ₁₀	TSP	PM ₁₀	TSP	TSP
	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ³)
26/06/2005	4	23	6.5	20	23
2/07/2005	4	2	3.3	6	11
8/07/2005	12	32	9.8	22	49
14/07/2005	3	7	<1	5	14
20/07/2005	14	7	12.9	28	44
26/07/2005	8	2	5.5	12	25
1/08/2005	DNA	DNR		DNA	48
4/08/2005			5.1		
7/08/2005	8	29	4.7	5	11
13/08/2005	33	19	4.6	7	17
19/08/2005	51	80	13.8	18	43
25/08/2005	3	31	16.7	38	55
31/08/2005	5	11	19.9	7	23
6/09/2005	13	21	8.3	30	46
12/09/2005	4	14	3.4	4	5
18/09/2005	7	DNA	5.2	10	12
24/09/2005	42	37	19	37	19
30/09/2005	24	23	3.9	50	13
6/10/2005	53	34	24.3	60	62
12/10/2005	41	34	16.5	56	60
18/10/2005	34	66	17.4	52	47
24/10/2005	26	57	14.9	38	40
30/10/2005	26	60	10.3	32	77
5/11/2005	30	69	12.6	43	46
11/11/2005	50	70	12.4	50	41
17/11/2005	DNR	DNR	18.9	64	38
23/11/2005	DNR	DNR	9.6	31	61
29/11/2005	22	62	7	36	27
5/12/2005	50	45	15	49	35
11/12/2005	61	30	37.7	86	70
17/12/2005	29	14	19.2	DNR	60
23/12/2005	68	21	38	87	DNR
29/12/2005	154 125	DNR	49.6	DNR	DNR
4/01/2006 10/01/2006	42	149 76	27.1	89	110
	33	66	15.1	70	DNR
16/01/2006 22/01/2006	44	81	14.7 14.8	53 64	40 57
28/01/2006	81	97	22.1	82	53
3/02/2006	65	84	19.6	83	83
9/02/2006	100	111	22.6	74	181
15/02/2006	82	117	8.7	43	90
21/02/2006	56	81	16.3	72	60
27/02/2006	60	79	12.1	71	89
5/03/2006	32	81	10.2	42	47
11/03/2006	64	90	27.9	101	96
17/03/2006	84	91	21.7	92	106
23/03/2006	46	77	13.5	57	47
29/03/2006	62	107	16.3	74	59
4/04/2006	24	25	14.8	48	28
10/04/2006	76	92	21.9	73	94
16/04/2006	11	33	10.6	42	42
22/04/2006	17	37	11.6	64	72
28/04/2006	34	53	16.9	83	88
4/05/2006	64	79	11.3	57	84
10/05/2006	40	52	12.6	61	83
16/05/2006	19	29	14.6	76	103
22/05/2006	9	17	12	59	87
28/05/2006	23	32	10.6	58	118

	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP (μg/m ³)
3/06/2006	32	37	5.2	35	79
9/06/2006	49	56	13.3	46	47
15/06/2006	6	13	6.5	10	8
21/06/2006	15	30	10.7	42	21
27/06/2006	7	16	5.5	12	21
3/07/2006	2	9	4.6	9	2
9/07/2006	8	13	4.1	6	6
15/07/2006	13	25	5.5	13	20
21/07/2006	11	19	10.1	23	28
27/07/2006	5	14	6.8	14	20
2/08/2006	12	31	3.8	12	19
8/08/2006	24	50	15.7	16	56
14/08/2006	34	22	8.3	19	37
20/08/2006	30	56	12.7	34	52
26/08/2006	17	34	7.9	26	31
1/09/2006	13	26	4.9	18	22
7/09/2006	5	13	2.4	10	9
13/09/2006	14	25	9.6	26	24
19/09/2006	27	42	13.4	24	57
25/09/2006	49	68	17	55	79
1/10/2006	44	71	21.4	51	89
7/10/2006	49	68		115	100
13/10/2006	47	68		67	113
17/10/2006			17.8		
19/10/2006	121	102	31.4	104	95
21/10/2006			18.1		
25/10/2006	52	64	17.4	50	68
31/10/2006	49	70	16.5	53	60
6/11/2006	13	23	7.6	21	31
12/11/2006	45	42	16.7	55	56
18/11/2006	46	64	27.7	58	64
24/11/2006	112	121	39.3	94	89
30/11/2006	68	78	30	95	96
6/12/2006	52	71	21.7	60	66
12/12/2006	83	96	12.9	48	49
18/12/2006	69	94	21	69	67
24/12/2006	26	60	18.5	61	44
30/12/2006	16	44	13.1	49	40
5/01/2007	60	93	20.7	67	108
11/01/2007	48	107	33.5	92	93
17/01/2007	47	117	37.6	100	82
23/01/2007	43	121	45.0	129	121
29/01/2007	35	94	33.0	84	73
4/02/2007	39	126	32.7	123	77
10/02/2007	23	71	17.9	62	48
16/02/2007	28	72	17.6	53	48
22/02/2007	20	64	19.8	56	41
28/02/2007	15	56	13.3	39	28
6/03/2007	12	39	14.8	39	29
12/03/2007	25	82	32.6	80	63
18/03/2007	8	28	8.7	27	21
24/03/2007	24	70	17.6	45	45
30/03/2007	19	36	10.4	31	29
5/04/2007	17	52	16.5	34	5
11/04/2007	19	44	23.0	37	56
17/04/2007	24	93	32.6	66	69
23/04/2007	12	45	11.9	43	28
29/04/2007	8	18	9.5	22	18

Data	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	PM ₁₀	TSP	PM10	TSP	TSP
	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$
5/05/2007	34	80	37.0	61	79
11/05/2007	14	41	18.6	57	47
17/05/2007	12	42	11.4	26	34
23/05/2007	3	15	6.2	21	11
29/05/2007	16	44	13.5	39	44
4/06/2007	9	18	7.7	22	14
10/06/2007	11	19	2.9	22	19
16/06/2007	4	5	4.6	9	5
22/06/2007	4	8	3.0	16	15
28/06/2007	5	6	1.2	6	5
4/07/2007	9	13	6.8	19	39
10/07/2007	7	12	5.2	15	5
16/07/2007	6	11	5.3	14	17
22/07/2007	16	34	12.4	31	27
28/07/2007	7	21	4.6	14	9
3/08/2007	8	18	4.1	17	11
9/08/2007	11	22	7.7	21	14
15/08/2007	16	53	16.3	57	47
21/08/2007	9	19	8.1	21	17
27/08/2007	9	19	7.9	18	24
2/09/2007	26	60	24.4	59	63
8/09/2007	nt	nt	7.9	21	nt
14/09/2007	nt	nt	22.9	73	nt
20/09/2007	nt	nt	14.2	49	nt
26/09/2007	nt	nt	26.5	78	nt
2/10/2007	nt	nt	34.8	76	nt
8/10/2007	7	47	23.6	87	29
14/10/2007	9	5	15.6	66	43
20/10/2007	75	58	43.4	96	131
26/10/2007	14	94	11.5	33	35
1/11/2007	42	87	24.2	95	19
2/11/2007	42	17	31.3		
7/11/2007		17	10.0	29	nt
8/11/2007	5	05	10.6	4 5	F 4
13/11/2007	26	85	10	45	54
14/11/2007 19/11/2007	26	90	18	20	
20/11/2007	40	90	45.5	89	nt
25/11/2007	40	40	45.5	4 5	07
26/11/2007	15	40	17.4	45	87
1/12/2007	12	49	17.4	36	32
7/12/2007	24	52	17.7	48	81
13/12/2007	11	41	14.8	40	40
19/12/2007	15	46	24	50	40
25/12/2007	12	37	15.5	37	31
31/12/2007	39	138	23.9	71	51
6/01/2008	13	40	9.6	123	38
12/01/2008	35	112	25:00	106	98
18/01/2008	5	13	8	18	21
24/01/2008	22	53	22.6	53	60
30/01/2008	54	134	26.5	109	112
5/02/2008	7	27	7.8	22	20
11/02/2008	10	24	22.2	109	29
17/02/2008	13	38	13.1	82	38
23/02/2008	60	94	36.1	92	135
29/02/2008	8	19	10.1	70	6
6/03/2008	27	47	25.5	62	87
			1		1

	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	ΡΜ ₁₀ (μg/m ³)	TSP (µg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (µg/m³)	TSP (μg/m ³)
18/03/2008	21	57	19.8	52	67
24/03/2008	16	28	12.6	34	37
30/03/2008	11	24	10.6	31	27
5/04/2008	27	76	11.3	51	55
11/04/2008	21	61	8.4	33	36
17/04/2008	12	35	4.6	28	23
23/04/2008	5	7			
	14	16	3.7	18	6
29/04/2008			7.9	20	24
5/05/2008	11	28	21.4	23	26
11/05/2008	14	40	7.8	54	39
17/05/2008		29		39	34
23/05/2008	9	27	13.9	45	37
29/05/2008	8	17	10.8	33	24
4/06/2008	3	6	2.4	11	8
10/06/2008	5	10	6.5	17	19
16/06/2008	3	6	3.4	12	5
22/06/2008	4	10	3.8	16	21
28/06/2008	5	17	10.5	26	34
2/10/2008	23	47	25.4	45	75.6
8/10/2008	9	30	14.4	57	24.3
14/10/2008	15	33	11.9	33	55
20/10/2008	21	55	25.9	61	99
26/10/2008	16	52	65.5	364	85.9
1/11/2008	24	96	29.8	76	119
7/11/2008	35	129		90	90.7
	23	68	41.5		
13/11/2008			22.2	51	72.8
19/11/2008	9	27	8.7	23	37.5
25/11/2008	15	47	20.2	52	69.2
1/12/2008	7.1	24	8.8	31.5	
3/12/2008					79.3
7/12/2008	9.0	28	12.5	33.9	27.7
13/12/2008	15.5	36	15.5	33.4	49.2
19/12/2008	10.9	37	36	159	45.9
25/12/2008	16.7	34	19.7	32.2	39.3
31/12/2008	26.1	90	41.3	83.7	94.5
5/02/2009			44.2		
6/01/2009	27.3	71		60.2	84.8
12/01/2009	32.3	101		83.1	81.5
13/02/2009			8.8		
17/02/2009			10.8		
18/01/2009	20.1(est)	65		74.6 (est)	81.6
23/02/2009	(000)	~~	24.9		
24/01/2009	21.3	52	2115	80.5	52.2
30/01/2009	45.0	163		92.1	87.8
	10.0	105	26.1	72.1	07.0
1/03/2009	32.5	02	36.1	02 5	74.4
5/02/2009	32.3	92		92.5	74.4
7/03/2009	2 7	20	23		44.0
11/02/2009	2.7	28		32.2	41.2
13/03/2009			13.1		
17/02/2009	6.2	12		17.5	22.8
19/03/2009			12.9		
23/02/2009	17.4	51		61	31.5
25/03/2009			32.7		
1/03/2009	66.2	205		69.6	68.3
7/03/2009	45.5	138		79.8	90.6
13/03/2009	13.4	37		36.3	42.1
19/03/2009	33.0 (est)	46		37.6	52.9
19/03/2009					

Data	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date	PM ₁₀	TSP	PM10	TSP	TSP
	(µg/m ³)	(µg/m³)	(µg/m³)	$(\mu g/m^3)$	(µg/m ³)
31/03/2009	39.1 (est)	26	10.4	32.6	25.4
6/04/2009	19.5	19	15.7	58.7	14(est)
12/04/2009	12.9	19	10.9	38.5	31.8
18/04/2009	27.3	28	17.3	53.6	41.5
24/04/2009	7.4	31	8.4	198	29.4
30/04/2009	3.6	8	11.2	32.5	15.7
6/05/2009	12.8	30	15.7	35.5	42
12/05/2009	13.0	23	10.9	39.9	42.4
18/05/2009	19.6	52	17.3	66.5	59.7
24/05/2009	15.0	33	8.4	47.6	37
30/05/2009	7.1	14	11.2	37	15.8
5/06/2009	4.8	8	2.9	17.5	9
11/06/2009	4.3	8	3.3	12.6	6.8
17/06/2009	10.3	21	8	36.1	24.6
23/06/2009	5.9	16	2.4	20.1	11.4
29/06/2009	5.4	19	8.1	22.7	12.1
5/07/2009	7.1		3.6		9.2
11/07/2009	12.4		7.9		22.8
17/07/2009	8.1		4.6		12.5
23/07/2009	nt		6.4		21.6
24/07/2009	6.6				
29/07/2009	2.6		3.9		9.1
4/08/2009	5.6	33	13.4	42.1	13.7
10/08/2009	20.4	42	20.6	57.2	61
16/08/2009	13.0	41	13.7	35.8	29.8
22/08/2009	10.7	30	25.2	61.6	20.3
28/08/2009	11.3	29	16.5	39.2	38.9
3/09/2009	26.0	61	26.5	52.3	68.7
9/09/2009	8.1	24	8.4	21.1	13
15/09/2009	47.0	83	51.2	106	101
21/09/2009	23.3	36	22.2	59.9	56.8
27/09/2009	22.7	dust storm	25.7	117	131
3/10/2009 9/10/2009	<u>8.4</u> 8.9	68 53	9.2	23.7	28.4
15/10/2009	11.2	24		86.7	33.8
21/10/2009	22.3	31	16.6	31.3	27.3
27/10/2009	9.4	19	27.9 11.8	101 26.6	72.8 23.7
2/11/2009	35.1	60	30.5	85.1	106
8/11/2009	8.7	21	7.1	21.5	19.9
14/11/2009	25.0	69	23.2	95.2	61.8
20/11/2009	53.7	114	39.6	94.6	109
26/11/2009	41.0	107	34.8	96.9	96.2
2/12/2009	13.2	37	13.3	46.8	40.2
8/12/2009	57.1	131	53	121	126
14/12/2009	35.9	81	30.6	104	89.1
20/12/2009	39.3	108	29.3	58	57.6
26/12/2009	7.2	15	4.6	21.4	15.2
1/01/2010	14.9	32	nt	31.6	27.5
7/01/2010	19.1	40	20	44.7	42.9
13/01/2010	33.6	69	39.9	71.8	106
19/01/2010	18.7	44	18.4	37.4	43.3
25/01/2010	50.5	103	32.1	90.8	132
31/01/2010	11.7	25	nt	192	36.3
6/02/2010	13.4	24	nt	35.4	30.7
12/02/2010	22.9	47	nt	37.2	57.7
18/02/2010	21.2	47	34	122	52.5
24/02/2010	27.7	64	25.1	55.5	77.5
2/03/2010	17.1	33	12.8	nt	47.6

Data	Llanillo	(HV2a)	Jerry's Plain	School (HV5)	Edderton (HV4)
Date -	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	ΡΜ ₁₀ (μg/m ³)	TSP (μg/m³)	TSP (µg/m ³)
8/03/2010	18.3	34	10.2	48.7	37.6
14/03/2010	nt	nt	8.2	32.4	25.5
20/03/2010	29.7	57	30.1	69	75
26/03/2010	28.3	56	19.1	50.2	71.7
1/04/2010	17.2	33	10.3	55.2	47.9
7/04/2010	17.8	33	8.4	47.8	36.8
13/04/2010	nt	nt	18.7	32.7	25.2
19/04/2010	29.2	58	15.7	67.4	74
25/04/2010	27.8	55	7.2	48.3	70.5
1/05/2010	12.6	43	8.1	45	24.9
7/05/2010	8.1	17	17.7	57.1	20.8
11/05/2010	0.1		12.7	5711	2010
13/05/2010	9.5	17	11.1	31.2	22.9
19/05/2010	nt	nt	21.2	nt	35.3
25/05/2010	6.4	13	6.8	nt	18.9
31/05/2010	3.3	7	0.0	13.2	5
6/06/2010	5.9	9	nt	19.5	9.3
12/06/2010	4.2	15	8.6	23.8	21.4
18/06/2010	12.7	20	4.9	20.8	20.5
24/06/2010	8.2	28	8.9	19.7	21.7
30/06/2010	2.0	6	5.4	5.1	6.4
6/07/2010	10.0	12	7.6	17.3	17.2
12/07/2010	4.2	31	7.2	10.7	10.4
18/07/2010	4.5	24	6.4	11.7	11.4
24/07/2010	7.6	28	10.2	24.3	38.5
30/07/2010	0.2	12	4.5	5.9	3.5
5/08/2010	4.9	15	4	9.4	23.2
11/08/2010	4.5	16	4.2	9.2	8.9
17/08/2010	6.5	24	8	15.4	11.6
23/08/2010	5.2	30	8.4	11.8	17.2
29/08/2010	12.3	32	14.7	39	48.5
4/09/2010	4.2	7	2.9	10.8	10.1
10/09/2010	3.1	9	10.9	6.5	6.5
16/09/2010	3.2	9	2.4	37.6	6
22/09/2010	22.1	60	23.4	73	61.9
28/09/2010	18.2	82	9.6	23.9	34.8
4/10/2010	7.0	29	6.2	20.2	23.5
10/10/2010	16.5	50	33.9	55.8	54
16/10/2010	7.8	53	4.6	27.7	35.4
22/10/2010	16.3	41	13.2	48	52.7
28/10/2010	12.4	38	23.8	43.5	38.2
3/11/2010	13.8	33	9.5	26.3	25.7
9/11/2010	16.0	37	12.7	30.3	33.5
15/11/2010	12.8	28	8.9	18.6	23.2
21/11/2010	16.5	52	27	54.4	59.4
27/11/2010	20.8	76	29.5	61	80.6
3/12/2010	15.0	30	nt	39.3	34.9
9/12/2010	13.9	41	15.1	40.9	49.4
15/12/2010	19.3	60	24.3	63.2	54.7
21/12/2010	8.1	23	40.3	139	25
27/12/2010	12.2	33	15.3	52.6	40.8
2/01/2011	31.0	97		67.4	20.4
8/01/2011	12.2	28		47.3	33.1
14/01/2011	14.5	41		56.2	50.4
20/01/2011	18.8	45		73.9	58.8
26/01/2011	38.6	99		79.8	85
1/02/2011	21.0	67.4	22.5	58.9	82.4

Dete	Llanillo	(HV2a)	Jerry's Plain	Jerry's Plain School (HV5)	
Date	PM ₁₀	TSP	PM10	TSP	(HV4) TSP
	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m ³)	(µg/m³)
7/02/2011	12.0	38.3	14.8	45.2	34.2
13/02/2011	9.1	17.4	8.3	22.6	26.4
19/02/2011	21.1	45.5		49.4	49.5
25/02/2011	27.1	72.8	21.5	59.4	64.4
3/03/2011	14.5	34.5	11.7	32.3	34.5
9/03/2011	13.5	28.1	13.5	46.2	39.9
15/03/2011	20	33.7	17.4	41.1	43.0
21/03/2011	13.7	28.5	6.7	33.8	38.2
27/03/2011	9.9	33.2	10.9	40.1	38.9
2/04/2011	4	48.9	18.9	56.5	65.4
8/04/2011	7.6	24.7	7.9	28.9	26.2
14/04/2011	6.8	16.3	6.5	12.1	16.1
20/04/2011	13.8	23.4	13.8	22.3	31.6
26/04/2011	4	23.8	6	19.1	18.1
2/05/2011	9.0	22.8		192.0	43.1
8/05/2011	6.2	21.9	11	16.3	25.4
14/05/2011	3.8	12.8	2	8.7	11.5
20/05/2011	16.9	42.0	19	41.3	50.8
26/05/2011	2.7	9.6	2	8.8	15.8
1/06/2011	10.30	20.6	12	18.4	18.8
7/06/2011	5.70	10.9	5	9.0	12.6
13/06/2011	4.00	8.6	4	13.2	8.4
19/06/2011	3.60	9.4	1	8.3	9.5
25/06/2011	8.20	17.6	11	19.7	16.4
1/07/2011	5.80	16.8	10	18.2	17.9
7/07/2011	4.80	13.4	7	9.1	7.6
13/07/2011	11.00	19.8	11	14.3	16.1
19/07/2011	1.90	7.6	4	6.2	6.7
25/07/2011	2.20	7.6	9	63.7	6.0
31/07/2011	7.90	24.5	10	17.2	33.5
6/08/2011	11.10	36.7	12	25.7	56.7
12/08/2011	6.20	14.6	7	18.5	23.0
18/08/2011	4.60	9.2	4	8.8	7.8
24/08/2011	4.30	12.7	7	17.4	28.0
30/08/2011	10.30	31.4	22	45.1	36.3
5/09/2011	13.6	40.4	23	73.5	44.8
11/09/2011	3.6	8.3	4	6.8	10
17/09/2011	12	31	11	29.3	53.8
23/09/2011	21.5	51.4	23	56	69.4
29/09/2011	4.7	10.3	4	9.2	14
5/10/2011	15.6	36.2	21	43.0	42.3
11/10/2011	6.2	17.8	11	19.4	16.8
17/10/2011	16.7	50.4	28	108.0	48.1
	29.5	72.2	36	68.5	82.5
23/10/2011 29/10/2011	11	32.5	10	29.6	38.7
4/11/2011	20.10	47.9	20	66.3	53.2
4/11/2011		51.6	16	43.5	59.2
	17.70		23		
16/11/2011	22.60	48.7	15	53.6	54.4
22/11/2011	13.90	28.9	15	25.8	27.1
28/11/2011	19.70	44.8	19	45.8	55.8

Table B.12-2: Drayton Mine Monitoring data

	Lot 22	Pringles
Date	TSP	TSP
	(µ g/m³)	(µg/m³)
3/01/2005	74.70	76.08
9/01/2005	40.45	37.23
15/01/2005	102.13	109.38
21/01/2005	79.39	107.58
27/01/2005	46.67	43.60
2/02/2005	44.84	50.96
8/02/2005	54.54	102.10
14/02/2005	59.63	57.73
20/02/2005	36.73	39.10
26/02/2005	75.03	81.06
4/03/2005	36.10	63.99
10/03/2005	60.77	66.10
16/03/2005	77.27	94.13
22/03/2005	44.42	18.88
28/03/2005	35.92	69.11
3/04/2005	41.17	68.79
9/04/2005	40.99	35.85
15/04/2005	47.62	67.86
21/04/2005	39.91	42.91
27/04/2005	66.90	119.68
3/05/2005	37.17	56.69
9/05/2005	20.31	
15/05/2005	48.91	61.48
21/05/2005	23.60	74.59
27/05/2005	34.90	89.30
2/06/2005	44.25	
8/06/2005	63.68	83.40
14/06/2005	9.77	
20/06/2005	7.79	55.93
26/06/2005	26.75	28.95
2/07/2005	12.88	22.05
8/07/2005	40.88	67.79
14/07/2005	17.05	33.08
20/07/2005	42.75	
26/07/2005	22.20	
1/08/2005	47.84	93.55
7/08/2005	14.48	67.11
13/08/2005	41.40	84.18
19/08/2005	40.15	241.83
25/08/2005	45.61	77.74
31/08/2005	70.65	142.14
6/09/2005	44.84	52.33
12/09/2005	23.90	61.03
18/09/2005	64.19	61.05
24/09/2005	77.18	132.96
30/09/2005	30.04	89.40
6/10/2005	74.83	127.90
12/10/2005	54.83	91.28 29.01
18/10/2005 24/10/2005	40.17 69.10	102.51
30/10/2005	48.57	27.71
5/11/2005	30.99	36.01
11/11/2005	92.30	82.64
17/11/2005	78.55	104.17
23/11/2005	51.25	53.18
29/11/2005	24.74	55.72
5/12/2005	66.15	104.62
11/12/2005	87.01	71.06
11/12/2003	07.01	71.00

ring data	
	Lot 9
Date	ΡΜ ₁₀ (μg/m ³)
3/01/2005	27.91
9/01/2005	12.70
15/01/2005	42.77
21/01/2005	37.33
27/01/2005	19.58
2/02/2005	28.80
14/02/2005	26.39
20/02/2005	17.98
26/02/2005	42.62
4/03/2005	15.13
10/03/2005	23.82
16/03/2005	37.55
22/03/2005	11.20
28/03/2005	13.64
3/04/2005	20.01
9/04/2005	17.10
15/04/2005	19.13
21/04/2005	21.09
27/04/2005	20.55
3/05/2005	14.01
9/05/2005	9.23
15/05/2005	16.74
21/05/2005	8.16
27/05/2005	15.07
2/06/2005	24.07
8/06/2005	34.75
14/06/2005	1.55
20/06/2005	2.14
26/06/2005	8.70
2/07/2005	2.50
8/07/2005	14.72
14/07/2005	1.25
20/07/2005	17.40
26/07/2005	6.73
1/08/2005	24.41
7/08/2005	4.17
13/08/2005	13.58
19/08/2005	16.87
	28.12
25/08/2005 31/08/2005	35.34
	16.44
6/09/2005 12/09/2005	3.28
18/09/2005	14.72
24/09/2005	46.67
30/09/2005	8.82
6/10/2005	25.63
12/10/2005	20.50
18/10/2005	19.74
24/10/2005	25.45
30/10/2005	22.65
5/11/2005	27.31
11/11/2005	36.95
17/11/2005	24.14
23/11/2005	22.95
29/11/2005	14.31
5/12/2005	29.38
11/12/2005	40.83
17/12/2005	31.74
, ,	

Air Quality and Greenhouse Gas Impact Assessment
--

	Lot 22	Pringles
Date	TSP	TSP
	(μ g/m³)	(μ g/m ³)
17/12/2005	54.40	59.00
23/12/2005	87.77	105.23
29/12/2005	102.03	104.66
5/01/2007	97.42	
11/01/2007	132.90	
17/01/2007	95.12	113.2
23/01/2007	129.57	133.03
29/01/2007	116.44	
4/02/2007	125.57	
10/02/2007	90.76	
16/02/2007	83.98	
22/02/2007	75.69	81.05
28/02/2007	68.90	106.93
6/03/2007	50.14	51.03
12/03/2007	92.48	113.96
18/03/2007	38.32	43.67
24/03/2007	64.05	87.33 72.68
30/03/2007 5/04/2007	77.18 109.05	95.81
11/04/2007	69.25	95.85
17/04/2007	95.00	81.16
23/04/2007	70.03	70.18
29/04/2007	28.49	58.8
5/05/2007	72.71	125.58
11/05/2007	55.24	58.74
17/05/2007	55.21	58.79
23/05/2007		122.67
29/05/2007	41.68	190.38
4/06/2007	31.83	91.62
10/06/2007	23.72	42.18
16/06/2007	12.58	19.53
22/06/2007	9.18	115.97
28/06/2007	11.44	61.18
4/07/2007	23.49	92.12
10/07/2007	46.92	19.89
16/07/2007	35.77	37.33
22/07/2007	46.43	67.83
28/07/2007	24.68	107.89
3/08/2007	32.90	78.28
9/08/2007	34.51	117.55
15/08/2007	59.09	57.97
21/08/2007	26.82	28.94
27/08/2007	20.32	85.49
2/09/2007	47.70	100.14
8/09/2007	32.42	51.15
14/09/2007	102.03	142.74
20/09/2007	92.48	105.27
26/09/2007	95.36	82.36 125.52
2/10/2007 8/10/2007	79.74 108.40	83.76
14/10/2007	74.08	82.57
20/10/2007	133.80	02.37
26/10/2007	27.89	163.71
1/11/2007	130.63	102.88
7/11/2007	39.51	102100
13/11/2007	72.95	73.75
19/11/2007	96.65	119.09
25/11/2007		50.26
1/12/2007	29.68	33.47

	Lot 9
Date	ΡΜ ₁₀ (μg/m ³)
23/12/2005	42.31
29/12/2005	51.43
4/01/2006	42.21
10/01/2006	22.05
16/01/2006	23.84
22/01/2006	23.54
28/01/2006	33.33
3/02/2006	23.91
9/02/2006	34.69
15/02/2006	32.78
21/02/2006	22.54
27/02/2006	23.18
5/03/2006	19.79
11/03/2006	38.76
17/03/2006	44.82
23/03/2006	17.64
29/03/2006	24.20
4/04/2006	18.58
10/04/2006	29.99
16/04/2006	14.24
22/04/2006	23.54
28/04/2006	22.57
4/05/2006	0.00
10/05/2006	28.67
16/05/2006	15.14
22/05/2006	11.19
28/05/2006	17.46
3/06/2006	8.76
9/06/2006	15.98
15/06/2006	9.18
21/06/2006	16.87
27/06/2006	14.31
3/07/2006	36.95
9/07/2006	10.91
15/07/2006	0.00
21/07/2006	37.19
27/07/2006	31.30
2/08/2006	11.20
8/08/2006	35.16
14/08/2006	17.22
20/08/2006	27.55
26/08/2006	19.13
1/09/2006	14.12
7/09/2006	8.17
13/09/2006	20.38
19/09/2006	53.88
25/09/2006	41.78
1/10/2006	33.57
7/10/2006	40.83
13/10/2006	36.71
19/10/2006	44.04
25/10/2006	44.06
31/10/2006	38.56
6/11/2006	24.66
12/11/2006	38.04
18/11/2006	35.40
24/11/2006	58.59
30/11/2006	44.60
6/12/2006	44.58

	Lot 22	Pringles
Date	TSP	TSP
	(µ g/m³)	(µ g/m³)
7/12/2007	124.13	117.15
19/12/2007	55.37	58.27
25/12/2007	99.41	39.29
31/12/2007	99.45	122.62
6/01/2008	43.27	47.13
12/01/2008	91.82	134.35
18/01/2008	27.36	31.19
24/01/2008	57.19	40.56
30/01/2008	69.55	101.65
5/02/2008	30.63	30.95
11/02/2008	43.17	34.37
17/02/2008	45.23	49.05
23/02/2008	141.55	94.64
29/02/2008	46.73	47.89
6/03/2008		116.89
12/03/2008	55.78	89.9
18/03/2008	67.79	94.66
24/03/2008	56.70	62.25
30/03/2008	46.31	128.5
5/04/2008	59.80	111.24
11/04/2008	50.08	67.23
17/04/2008	91.60	59.45
23/04/2008	22.00	23.1
29/04/2008	22.96	86.32
5/05/2008	34.33	93.89
11/05/2008	40.35	67.94
17/05/2008	38.46	85.67
23/05/2008	50.44 46.72	87.16 66.01
29/05/2008 4/06/2008	75.27	49.33
10/06/2008	/5.2/	14.94
11/06/2008	11.03	17.97
16/06/2008	47.02	
22/06/2008	28.90	75.74
28/06/2008	28.87	87.96
4/07/2008	47.62	113.62
10/07/2008	4.83	132.25
16/07/2008	9.21	87.57
22/07/2008	27.49	108.72
28/07/2008	21.69	39.84
3/08/2008	14.73	114.26
9/08/2008	6.13	123.5
15/08/2008	25.86	243.77
21/08/2008	28.49	302.69
27/08/2008	57.12	51.35
2/09/2008	49.15	92.6
8/09/2008	34.19	73.63
14/09/2008	49.11	133.27
20/09/2008	70.06	176.62
26/09/2008		121.1
2/10/2008	44.48	152.39
8/10/2008	51.74	81.91
14/10/2008	67.79	95.4
20/10/2008	75.84	158.53
26/10/2008	50.76	196.95
1/11/2008	73.20	109.27
7/11/2008	121.48	135.35
13/11/2008	113.03	110.27
19/11/2008	34.74	72.02

	Lot 9
Date	PM ₁₀
	(μ g/m ³)
12/12/2006	63.89
18/12/2006	39.71
24/12/2006	26.40
30/12/2006 17/01/2007	23.84 39.04
23/01/2007	60.61
29/01/2007	43.04
4/02/2007	42.08
10/02/2007	30.60
16/02/2007	30.10
22/02/2007	45.83
28/02/2007	37.01
6/03/2007	23.55
12/03/2007	50.84
18/03/2007	23.72
24/03/2007	32.19
30/03/2007	33.43
5/04/2007	34.27
5/05/2007	42.51
11/05/2007	14.66
17/05/2007	14.66
29/05/2007	22.66
4/06/2007	17.16
10/06/2007	10.73
16/06/2007	5.13
22/06/2007 28/06/2007	22.35 1.43
4/07/2007	9.42
10/07/2007	11.14
16/07/2007	8.22
22/07/2007	18.66
28/07/2007	7.01
3/08/2007	9.06
9/08/2007	12.52
15/08/2007	28.96
21/08/2007	19.19
27/08/2007	11.56
2/09/2007	22.48
8/09/2007	41.84
14/09/2007	37.79
20/09/2007	48.12
26/09/2007	37.78
2/10/2007	43.09
8/10/2007	40.66
14/10/2007	16.81
20/10/2007	61.39
26/10/2007	13.23
1/11/2007	65.35
7/11/2007	19.67
13/11/2007	38.14
19/11/2007	45.13
25/11/2007	27.71
1/12/2007	24.21 68.83
7/12/2007 19/12/2007	54.27
25/12/2007	23.97
31/12/2007	75.57
6/01/2008	21.41
12/01/2008	45.32
,,,,,,,,,	

Air Quality and Greenhouse Ga	as Impact Assessment
-------------------------------	----------------------

	Lot 22	Pringles
Date	TSP	TSP
	(μ g/m ³)	(μ g/m ³)
25/11/2008	84.67	
1/12/2008	30.04	
7/12/2008	56.43	
9/12/2008	6.83	
13/12/2008	22.49	
19/12/2008	75.75	
25/12/2008	137.71	
31/12/2008	105.06	
12/01/2009	96.94	
18/01/2009	95.64	
24/01/2009	73.07	
31/01/2009	127.69	
6/02/2009	213.38	
12/02/2009	42.59	
18/02/2009	9.35	
28/02/2009	74.26	
7/03/2009	126.63	
13/03/2009	91.46	
19/03/2009 25/03/2009	64.13	
31/03/2009	59.68 112.58	
6/04/2009	38.28	
12/04/2009	30.70	
18/04/2009	15.14	
24/04/2009	28.17	
30/04/2009	31.24	
6/05/2009	39.33	
12/05/2009	36.00	
19/05/2009	50.96	
30/05/2009	20.03	
5/06/2009	17.70	
11/06/2009	10.63	
17/06/2009	45.37	
23/06/2009	7.15	
29/06/2009	6.20	
5/07/2009	24.33	
11/07/2009	26.40	
17/07/2009	11.76	
23/07/2009	16.81	
29/07/2009	18.26	
4/08/2009	15.70	
10/08/2009	61.20	
16/08/2009	28.72	
22/08/2009	31.92	
28/08/2009	39.53	
3/09/2009	23.60	
9/09/2009	17.24	
15/09/2009	153.32	
21/09/2009	152.74	
27/09/2009	92.65	
3/10/2009	42.81	
9/10/2009	97.00	
15/10/2009	47.22	
21/10/2009	90.18	
27/10/2009	23.33	
2/11/2009	86.96	
8/11/2009 14/11/2009	29.11 85.99	
20/11/2009	142.80	
20/11/2009	172.00	

Data	Lot 9
Date	ΡΜ ₁₀ (μg/m ³)
18/01/2008	16.70
24/01/2008	28.62
30/01/2008	30.36
5/02/2008	19.79
11/02/2008	23.54
17/02/2008	20.08
23/02/2008	60.82
29/02/2008	26.81
6/03/2008	24.20
12/03/2008	23.02
18/03/2008	39.97
24/03/2008	28.73
30/03/2008	14.66
5/04/2008	29.39
11/04/2008	20.26
17/04/2008	30.75
23/04/2008	5.48
29/04/2008	27.40
5/05/2008	21.69
11/05/2008	19.62
17/05/2008	15.61
23/05/2008	22.34
29/05/2008	31.64
4/06/2008	41.58
11/06/2008	5.90
16/06/2008	11.63
22/06/2008	5.01
28/06/2008	14.60
4/07/2008	22.54
10/07/2008	2.91
16/07/2008	13.98
22/07/2008	8.33
28/07/2008	18.03
3/08/2008	6.73
9/08/2008	2.21
15/08/2008	7.09
21/08/2008	19.80
28/08/2008	23.85
2/09/2008	21.10
8/09/2008	14.96
14/09/2008	16.11
20/09/2008	42.67
26/09/2008	9.56
2/10/2008	21.34
8/10/2008	25.28
14/10/2008	26.52
20/10/2008	28.19
26/10/2008	24.85
1/11/2008	27.37
7/11/2008	44.72
13/11/2008	38.20
19/11/2008	11.80
25/11/2008	33.78
1/12/2008	8.11
7/12/2008	23.84
13/12/2008	26.29
19/12/2008	27.59
25/12/2008	18.54
31/12/2008	44.76

Hansen Bailey

$\begin{array}{ c c c c c c c c } \hline \text{Lot 22} & Pringles \\ \hline \text{Date} & TSP & TSP \\ \hline (\mu g/m^3) & (\mu g/m^3) \\ \hline 26/11/2009 & 109.48 & \\ \hline 2/12/2009 & 76.28 & \\ \hline 8/12/2009 & 160.91 & \\ \hline 14/12/2009 & 160.91 & \\ \hline 14/12/2009 & 149.66 & \\ \hline 20/12/2009 & 115.21 & \\ \hline 26/12/2009 & 30.12 & \\ \hline 1/01/2010 & 34.00 & \\ \hline 7/01/2010 & 115.62 & \\ \hline \end{array}$	
(μg/m³)(μg/m³)26/11/2009109.482/12/200976.288/12/2009160.9114/12/2009149.6620/12/2009115.2126/12/200930.121/01/201034.00	
26/11/2009 109.48 2/12/2009 76.28 8/12/2009 160.91 14/12/2009 149.66 20/12/2009 115.21 26/12/2009 30.12 1/01/2010 34.00	
2/12/2009 76.28 8/12/2009 160.91 14/12/2009 149.66 20/12/2009 115.21 26/12/2009 30.12 1/01/2010 34.00	
8/12/2009 160.91 14/12/2009 149.66 20/12/2009 115.21 26/12/2009 30.12 1/01/2010 34.00	
14/12/2009 149.66 20/12/2009 115.21 26/12/2009 30.12 1/01/2010 34.00	
20/12/2009 115.21 26/12/2009 30.12 1/01/2010 34.00	
26/12/2009 30.12 1/01/2010 34.00	
1/01/2010 34.00	
7/01/2010 115.62	
//01/2010 115.02	
13/01/2010 96.21	
19/01/2010 78.78	
25/01/2010 140.89	
31/01/2010 45.97	
6/02/2010 21.46	
12/02/2010 89.32	
18/02/2010 106.58 24/02/2010 104.42	
24/02/2010 104.42	
2/03/2010 59.38 8/03/2010 40.76	
8/03/2010 40.76 14/03/2010 15.03	
20/03/2010 60.34	
26/03/2010 78.10	
1/04/2010 158.33	
13/04/2010 64.82	
19/04/2010 37.14	
25/04/2010 14.94	
1/05/2010 27.20	
7/05/2010 27.56	
13/05/2010 34.94	
19/05/2010 41.67	
25/05/2010 35.00	
31/05/2010 5.60	
6/06/2010 24.76	
12/06/2010 30.89 18/06/2010 19.70	
30/06/2010 14.23	
6/07/2010 32.44	
12/07/2010 9.76	
18/07/2010 12.86	
24/07/2010 32.04	
30/07/2010 10.18	
5/08/2010 19.58	
11/08/2010 1.01	
17/08/2010 53.39	
23/08/2010 31.13	
29/08/2010 73.39	
4/09/2010 15.48	
10/09/2010 23.99	
16/09/2010 25.48	
22/09/2010 66.01	
28/09/2010 63.10 4/10/2010 21.12	
4/10/2010 31.13 10/10/2010 54.29	
10/10/2010 54.29 16/10/2010 46.19	
22/10/2010 62.68	
28/10/2010 85.42	
2/11/2010 47.62	
10/11/2010 42.76	
15/11/2010 77.00	
21/11/2010 52.27	

	Lot 9
Date	PM ₁₀ (μg/m ³)
6/01/2009	23.74
12/01/2009	31.86
18/01/2009	31.17
24/01/2009	27.40
31/01/2009	45.59
6/02/2009	56.38
12/02/2009	21.93
	13.44
18/02/2009	
28/02/2009	38.80
7/03/2009	52.71
13/03/2009	42.37
19/03/2009	31.29
25/03/2009	32.26
31/03/2009	42.61
6/04/2009	19.91
12/04/2009	23.24
18/04/2009	10.22
24/04/2009	7.54
30/04/2009	16.81
6/05/2009	21.93
12/05/2009	28.92
19/05/2009	24.79
24/05/2009	20.20
30/05/2009	12.10
	5.25
5/06/2009	
11/06/2009	4.53
17/06/2009	21.45
23/06/2009	6.14
29/06/2009	2.56
5/07/2009	3.58
11/07/2009	8.59
17/07/2009	2.38
23/07/2009	6.56
29/07/2009	4.35
4/08/2009	8.94
10/08/2009	44.34
16/08/2009	10.49
22/08/2009	12.10
28/08/2009	15.79
3/09/2009	37.56
9/09/2009	8.64
15/09/2009	50.48
21/09/2009	31.65
27/09/2009	57.00
3/10/2009	14.60
9/10/2009	20.62
15/10/2009	26.82
21/10/2009	44.00
27/10/2009	18.53
2/11/2009	55.37
8/11/2009	14.61
14/11/2009	34.03
20/11/2009	108.20

	Lot 22	Pringles
Date	TSP	TSP
	(µ g/m³)	(µ g/m³)
27/11/2010	93.64	
3/12/2010	52.45	
9/12/2010	28.96	
15/12/2010	73.99	
21/12/2010	36.77	
27/12/2010	56.50	
5/09/2011	20.16	
11/09/2011	17.65	
17/09/2011	31.89	
23/09/2011	76.58	
29/09/2011	31.71	
5/10/2011	50.44	
11/10/2011	37.84	
17/10/2011	50.66	
23/10/2011	71.22	
29/10/2011	52.71	
4/11/2011	51.35	
10/11/2011	53.72	
16/11/2011	39.34	
22/11/2011	7.88	
28/11/2011	56.85	
4/12/2011	34.69	
10/12/2011	35.90	
16/12/2011	47.64	
22/12/2011		
28/12/2011	60.28	<u> </u>

	Lot 9 ΡΜ ₁₀ (μg/m ³)
Date	PM10
	$(\mu q/m^3)$

APPENDIX C – ESTIMATION OF DUST EMISSIONS

Drayton South Mine Project

For each stage of the mine shown in **Figures B1** to **B7**, a corresponding emissions inventory has been developed. The modelled scenarios are considered to be representative of worst-case operations; for example where coal and waste material amounts are highest, where extraction or wind erosion areas are largest or where operations are located closest to receivers.

Figure C-1: Location of Sources for Year 3A

Figure C-2: Location of Sources for Year 3B

Figure C-3: Location of Sources for Drayton Coal Mine Year 3A/3B

Figure C-4: Location of Sources for Year 5

Figure C-5: Location of Sources for Year 10

⊢

Figure C-6: Location of Sources for Year 15

Figure C-7: Location of Sources for Year20

Figure C-8: Location of Sources for Year27

Figure C-9: Location of Sources for Year20 – Conveyor Option

Stripping topsoil

Emissions from dozers on overburden have been calculated using the United States Environment Protection Agency (US EPA) emission factor equation (**US EPA, 1985 and updates**), per **Equation 1**.

Equation 1

$$E_{TSP} = 2.6 \times \frac{s^{1.2}}{M^{1.3}} \ (kg|hour)$$

Where, $E_{TSP} = TSP$ emissions s = silt content (%), and M = moisture (%)

The silt content in the topsoil was assumed to be 10%, and the moisture content 2%. This results in an emission factor of 16.7 kg/h.

Drilling overburden and coal

The emission factor used for drilling has been taken to be 0.59 kg/hole (**US EPA, 1985 and updates**).

Blasting overburden and coal

TSP emissions from blasting were estimated using the **US EPA (1985 and updates)** emission factor equation given in **Equation 2**.

Equation 2

 $E_{TSP} = 0.00022 \times A^{1.5} (kg|blast)$

Where, $E_{TSP} = TSP \text{ emissions}$ A = area to be blasted in m²

The area blasted for each scenario is based on ha per blast provided in mine schedule each year.

Loading material /transfer material dumping overburden

Each tonne of material loaded will generate a quantity of TSP that will depend on the wind speed and the moisture content. **Equation 3** shows the relationship between these variables.

Equation 3

$$E_{TSP} = k \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right) (kg|t)$$

Where, $E_{TSP} = TSP$ emissions k = 0.74, U = wind speed (m/s) M = moisture content % of 0.25

The mean wind speed has been taken to be 1.57-1.61 m/s for Drayton South and 1.46 m/s for Drayton and a moisture content of 2.5%.

Hauling material/product on unsealed surfaces

The emission estimate of wheel generated dust presented in the EIS is based the US EPA AP42 emission factor for unpaved surfaces at industrial sites shown below:

$$E_{TSP} = 0.2819 \times \left[4.9 \times \left(\frac{s}{12}\right)^{0.7} \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} \right] (kg|VKT)$$

Where:

= TSP emissions ETSP

= silt content of road surface s

W = mean vehicle weight

The adopted silt content (s) for the EA was 3%. This is higher (i.e. more conservative) than the silt content measured for the Duralie Coal Mine (1.6%) (Heggies, 2009) and is consistent with testing done at multiple mines sites in the Hunter Valley which measured average haul road silt contents of 2-3%, for a current ACARP project. The mean vehicle weight used in the emissions estimates is an average of the loaded and unloaded gross vehicle mass, to account for one empty trip and one loaded trip.

				For
	Capacity	Full (GVM)	Empty	Inventory
OB trucks (t) - CAT775	63.5	109.770	46	78
OB trucks (t) - CAT789	177	317.515	141	229
CL trucks (t)	70	100	30	65
OB trucks (t) – Komatsu				
830	222	385.848	164.2	275

Dozers working on overburden

Emissions from dozers on overburden have been calculated using the US EPA emission factor Equation 1 (US EPA, 1985 and updates).

The silt content of the overburden was assumed to be 10%, and the moisture content 2.5%. This results in an emission factor of 12.5 kg/h.

Dozers working on coal

The US EPA (1985 and updates) emission factor equation has been used. It is given below in Equation 5.

Equation 5

$$E_{TSP} = 35.6 \times \frac{s^{1.2}}{M^{1.4}} \ (kg|hour)$$

Where,

E_{TSP} = TSP emissions s = silt content (%), and M = moisture (%)

The silt content of the coal was assumed to be 5%, and the moisture content 9%. This results in an emission factor of 14.1 kg/h.

Loading/unloading coal

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 6**.

Equation 6

$$E_{TSP}$$
 $\left(\frac{kg}{t}\right) = \frac{0.580}{M^{1.2}}(kg|t)$

Where, $E_{TSP} = TSP$ emissions M = moisture (%)

The moisture content of the coal was assumed to be 9%.

Wind erosion

The **SPCC (1983)** default emission factor of 0.4 has been used for wind erosion.

The following tables present the calculated emissions for Year 3, Year 5, Year 10, Year 15, Year 20 and Year 27 which corresponds to the sources allocations as represented in **Figure C1** – **Figure C7**.

The abbreviations used in the tables are as follows:

- OB overburden related activities
- CL coal related activities
- WE wind erosion emissions

Table C.12-	3: Yea	ar 3A	- C	rayton	South Emission	s Ca	alculatio	ons							
ACTIVITY	TSP emissions (kg/y)	Intensity	units	Emission factor units	Variable units	Variable 2	units	Variable 3	units	Variable 4	Units	Variable 5	Units	Variable 6	Units
WHYNOT Topsol Removal & Site preparation - Dozers on Whynot	17.000	2.171	10	16.7 kg/h	10 silt content in %		moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Whynot	17,998 248	2,151 266,920	t/y	16.7 kg/n 0.0019 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in %	50	% control						
Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot	2,513	133,460 133,460	t/y	0.075 kg/t 0.064 kg/t	177 [°] t/load 177 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/retum trip km/retum trip		kg/VKT kg/VKT		% silt content % silt content		% control % control
Topsoil removal - Emplacing topsoil at emplacement area - Whynot	497	266,920	t/y	0.002 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in %			5.65	NJ/ VINI		/# Sit Concenc	7.	10 CONCION
OB - Drilling - Whynot OB - Blasting - Whynot	3,241 18,408		holes/y blasts/y	0.59 kg/hole 230 kg/blast	70 % control 10311 Area of blast in square metres										
OB - Dozers on Dragline OB in-pit - Whynot	32,026	2,558	h/y	12.52 kg/h	10 silt content in %		moisture content in %								
OB - Dragline removal of OB - Whynot OB - Dozers on Excavator OB in-pit - Whynot	309,391 19,795	10,411,741	bcm/y h/y	0.0297 kg/m3 (loosi 12.52 kg/h	e 7 drop distance in m 10 silt content in %		moisture content in % moisture content in %								
OB - Excavator loading OB to haul truck - Whynot	9,188	6,745,377	t/y	0.0014 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in %								
OB - Hauling excavator OB to emplacement area (east) - Whynot OB - Hauling excavator OB to emplacement area (west) - Whynot	63,508 53,870	3,372,688 3,372,688		0.075 kg/t 0.064 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/retum trip km/retum trip		kg/VKT kg/VKT		% silt content % silt content		% control % control
OB - Dozers on OB haul roads (east) - Whynot	4,489	359	h/y	12.52 kg/h	10 silt content in %	2.	moisture content in %				_				
OB - Dozers on OB haul roads (west) - Whynot OB - Emplacing excavator OB at emplacement area - Whynot	4,489 9,188	6,745,377	h/y t/y	12.52 kg/h 0.0014 kg/t	10 silt content in % 1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Dozers on OB emplacement area - Whynot	51,822	4,139	h/y	12.52 kg/h	10 silt content in %		moisture content in %								
OB - Dozers in-pit ancillary tasks - Whynot OB - Dozers ripping/pushing/clean-up Partings - Whynot	67,138 20,203	5,362 1,613		12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %		moisture content in %								
OB - Loading partings to haul trucks - Whynot	1,110	814,871	t/y	0.0014 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in %						AL 74		
OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (west) - Whynot	7,672 6,508	407,436 407,436		0.075 kg/t 0.064 kg/t	177 t/load 177 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip		kg/VKT kg/VKT		% silt content % silt content		% control % control
0B - Emplacing Partings at emplacement area - Whynot CL - Drillng coal - Whynot	1,110 1,017	814,871	t/y holes/y	0.0014 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s 70 % control	2.5	moisture content in %								
CL - Dning coal - Whynot CL - Blasting coal - Whynot	6,679		blasts/y	0.59 kg/hole 230 kg/blast	10311 Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	55,252	3,914		14.116 kg/h	5 silt content in % 9 moisture content in %	9	moisture content in %								
CL - Sh/Ex/FCLs loading open coal to trucks - Whynot CL - Hauling open coal in-pit roads (east) - Whynot	51,521 14,012	1,240,646 620,323		0.042 kg/t 0.090 kg/t	70 t/load	65.0	Vehicle gross mass (t)	3	km/return trip	2.18	kg/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad (east) - Whynot	79,887	620,323		0.86 kg/t	70 t/load		Vehicle gross mass (t)		km/return trip		kg/VKT		% silt content		% control
CL - Hauling open coal in-pit roads (middle) - Whynot CL - Hauling open coal to ROM pad (middle) - Whynot	11,894 72,924	620,323 620,323		0.077 kg/t 0.78 kg/t	70 t/load 70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip		kg/VKT kg/VKT		% silt content % silt content		% control % control
CL - Unloading RDM to ROM stockpiles/hopper - Whynot	3,722	1,240,646	t/y	0.01 kg/t	70 % control										
CL - Handle coal at CHPP - Whynot CL - Rehandle ROM coal at stockpiles/hopper - Whynot	260 1,241	1,240,646 124,065		0.0002 kg/t 0.01 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
BLAKEFIELD					10 cite contract in N		and the second second second		N						
Topsoil removal & site preparation - Dozers on Blakefield Topsoil removal - Sh/Ex/FELs loading topsoil - Blakefield	7,537	901 69,522	h/y t/y	16.7 kg/h 0.0019 kg/t	10 silt content in % 1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %		% control % control						
Topsoil removal - Hauling topsoil to emplacement area - Blakefield	1,057	69,522	t/y	0.061 kg/t	177 t/truck load	229.0	Vehicle gross mass (t)		km/return trip	3.85	kg/VKT	3	% silt content	75	% control
Topsoil removal - Emplacing topsoil at emplacement area - Blakefield OB - Drilling - Blakefield	129 1,424	69,522 8,04	t/y holes/y	0.0019 kg/t 0.59 kg/hole	1.57 average of (wind speed/2.2)^1.3 in m/s 70 % control	-	moisture content in %								
OB - Blasting for excavator removal - Blakefield	8,090	3	blasts/y	230 kg/blast	10311 Area of blast in square metres										
06 - Dozers on Dragline OB in-pit - Blakefield 08 - Dragline removal of OB - Blakefield	16,743 163,950	1,337 5,517,311	h/y hcm/y	12.52 kg/h 0.030 kg/m3 (loosi	10 silt content in % 7 drop distance in m		moisture content in %								
OB - Dozers on Excavator OB in-pit - Blakefield	367	29	h/y	12.52 kg/h	10 silt content in %	2.5	moisture content in %								
OB - Excavator loading OB to haul truck - Blakefield OB - Hauling to emplacement area - Blakefield	170 1,901	125,090 125,090		0.0014 kg/t 0.061 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s 177 t/bad		moisture content in % Vehicle gross mass (t)	20	km/return trip	3.95	kg/VKT	3	% silt content	76	% control
OB - Dozers on OB haul roads - Blakefield	166	13	h/y	12.52 kg/h	10 silt content in %	2.	moisture content in %	2.0	kilyrecom cilp	5.05	Ng/ VINI		/# Site Contenie		10 CONCION
OB - Emplacing at emplacement area - Blakefield OB - Dozers on OB emplacement area - Blakefield	170 17,110	125,090 1,366		0.00136 kg/t 12.52 kg/h	1.57 average of (wind speed/2.2)^1.3 in m/s 10 silt content in %		moisture content in % moisture content in %								
OB - Dozers on OB emplocement area - Blakefield	34,527	2,757		12.52 kg/h	10 silt content in %		moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Blakefield OB - Loading partings to trucks - Blakefield	721 229	58 167,953	h/y	12.52 kg/h 0.0014 kg/t	10 silt content in % 1.57 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Lodong partings to trucks - bakened OB - Hauling partings to emplacement area - Blakefield	2,553	167,953		0.0014 kg/t 0.061 kg/t	1.57 average or (wind speed/2.2)*1.3 in mys 177 t/load		Vehicle gross mass (t)	2.8	km/return trip	3.85	kg/VKT	3	% silt content	75	% control
OB - Emplacing partings at emplacement area - Blakefield CL - Driling coal - Blakefield	229 473	167,953		0.0014 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s 70 % control	2.5	moisture content in %								
CL - Unling coal - Blakefield CL - Blasting coal - Blakefield	3,107	2,6/2	holes/y blasts/y	0.59 kg/hole 230 kg/blast	10311 Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Blakefield	12,363	876	h/y	14.116 kg/h	5 silt content in %	9	moisture content in %								
CL - Sh/Ex/FCLs loading open coal to trucks - Blakefield CL - Hauling open coal in-pits roads - Blakefield	23,964 6,567	577,053 577,053		0.042 kg/t 0.046 kg/t	9 moisture content in % 70 t/load	65.0	Vehicle gross mass (t)	1.5	km/return trip	2.18	kg/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad - Blakefield	86,091	577,053	t/y	0.99 kg/t	70 t/load		Vehicle gross mass (t)		km/return trip		kg/VKT	3	% silt content	85	% control
CL - Unloading ROM to ROM stockpiles/hopper - Blakefield CL - Handle coal at CHPP - Blakefield	1,731 121	577,053 577,053		0.010 kg/t 0.0002 kg/t	70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Blakefield	577	57,705		0.01 kg/t											
REDBANK Toosoil removal - Dozers/Excavators stripping toosoil - Redbank	7,772	000	h/y	8.4 kg/h	10 silt content in %		moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Redbank	273	292,969	t/y	0.0019 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s		2 moisture content in %	50	% control						
Topsoil removal - Hauling topsoil to emplacement area (north) - Redbank Topsoil removal - Hauling topsoil to emplacement area (south) - Redbank	2,029	146,484 146,484		0.055 kg/t 0.046 kg/t	177 t/truck load 177 t/truck load		Vehicle gross mass (t) Vehicle gross mass (t)		km/retum trip km/retum trip		kg/VKT kg/VKT		% silt content % silt content		% control % control
Topsoil removal - Emplacing topsoil at emplacement area - Redbank	545	292,969	t/y	0.0019 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s	22510	moisture content in %	2.1	kilyrecull crp	3.03	NU/VNI	3	70 SIL COILEIL	7.	10 CONCION
OB - Drilling for excavator removal - Redbank OB - Blasting for excavator removal - Redbank	1,326		holes/y blasts/y	0.59 kg/hole	70 % control 10311 Area of blast in square metres										
OB - Dozers on Excavator OB in-pit - Redbank	43,696	3,490	h/y	230 kg/blast 12.52 kg/h	10 silt content in %		moisture content in %								
OB - Excavator loading OB to haul truck - Redbank OB - Hauling to emplacement area (north) - Redbank	20,281 103.137	14,889,472 7,444,736		0.0014 kg/t 0.055 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s 177 t/load		moisture content in % Vehicle gross mass (t)	26	km/return trip	3.95	kg/VKT	3	% silt content	76	% control
OB - Hauling to emplacement area (north) - Redbank OB - Hauling to emplacement area (south) - Redbank	85,665	7,444,736	t/y	0.035 kg/t	177 t/load		Vehicle gross mass (t)		km/return trip		kg/VKT		% sit content		% control
OB - Dozers on OB haul roads (north) - Redbank OB - Dozers on OB haul roads (south) - Redbank	9,909 9,909		h/y h/y	12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %		moisture content in % moisture content in %								
OB - Emplacing at emplacement area - Redbank	20,281	14,889,472	t/y	0.0014 kg/t	1.57 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in %								
06 - Dozers on OB emplacement area -Redbank 06 - Dozers in-pit ancillary tasks - Redbank	43,696 15,889	3,490 1.269	h/y h/y	12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %		moisture content in % moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Redbank	16,166	1,291	h/y	12.52 kg/h	10 silt content in %	2.5	moisture content in %								
OB - Loading partings to trucks - Redbank OB - Hauling partings to emplacement area (north) - Redbank	1,062 5,399	779,421 389,711		0.0014 kg/t 0.055 kg/t	1.57 [°] average of (wind speed/2.2)^1.3 in m/s 177 [°] t/load		Moisture content in % Vehicle gross mass (t)	26	km/return trip	3,85	kg/VKT	3	% silt content	75	% control
OB - Hauling partings to emplacement area (south) - Redbank	4,484	389,711	t/y	0.046 kg/t	177 t/load	229.0	Vehicle gross mass (t)		km/return trip		kg/VKT		% silt content		% control
OB - Emplacing partings at emplacement area - Redbank CL - Drilling coal - Redbank	1,062	779,421	t/y holes/y	0.0014 kg/t 0.59 kg/hole	1.57 average of (wind speed/2.2)^1.3 in m/s 70 % control	2.5	moisture content in %								
CL - Blasting coal - Redbank	5,273	23	blasts/y	230 kg/blast	10311 Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Redbank CL - Sh/Ex/FCLs loading open coal to trucks - Redbank	39,151 40,679	2,774 979,572	h/y t/v	14.116 kg/h 0.042 kg/t	5 silt content in % 9 moisture content in %	9	moisture content in %								
CL - Hauling open coal in-pits roads - Redbank	29,242	979,572	t/y	0.12 kg/t	70 t/load		Vehicle gross mass (t)		km/return trip		kg/VKT		% silt content		% control
CL - Hauling open coal to ROM pad - Redbank CL - Unloading ROM to ROM stockpiles/hopper - Redbank	143,889 2,939	979,572 979,572	t/y t/v	0.98 kg/t 0.010 kg/t	70 t/load 70 % control	65.0	Vehicle gross mass (t)	31.4	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Handle coal at CHPP - Redbank	206	979,572	t/y	0.0002 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Redbank ROM/REJECTS HANDLING	980	97,957	t/y	0.01 kg/t											
CL - Dozers ROM Coal Handling & Rejects - ROM stockpile	81,371	5,765		14.12 kg/h	5 silt content in %	9	moisture content in %								
CL - Loading rejects CL - Transporting rejects	- 34,288	699,318 699,318		Rejects very wet theref 0.20 kg/t		117.0	Vehicle gross mass (t)	6.2	km/return trip	2.95	kg/VKT	3	% silt content	74	% control
CL - Unloading rejects		699,318		Rejects very wet theref		117.9	2 3 10 10 gross (C)	0.2	and a construction	2.63	AN VAL	3	one content	/:	to conclut
PRODUCT COAL CL - Loading product stockpile	255	2,143,148	t/v	0.0002 [°] kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s		moisture content in %	20	% control						
CL - Loading product coal to trains	255 340	2,143,148 2,143,148		0.0002 kg/t 0.0002 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s 1.46 average of (wind speed/2.2)^1.3 in m/s		moisture content in %	- 25	a control						
WIND EROSION	224.204														
WE - OB dump & disturbed area - Whynot - Uncontrolled WE - OB dump & disturbed area - Whynot - Controlled	221,206 12,289		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y	5	% control								
WE - OB dump& disturbed area - Blakefield - Uncontrolled	56,404	16	ha	0.4 kg/ha/h	8760 h/y										
WE - OB dump& disturbed area - Blakefield - Controlled WE - OB dump& disturbed area - Redbank - Uncontrolled	3,134 205,960		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y	51	% control								
WE - OB dump& disturbed area - Redbank - Controlled	11,442	7	ha	0.4 kg/ha/h	8760 h/y	51	% control								
WE - Open mining area - Whynot WE - Open mining area - Blakefield	122,477 31,900		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y										
WE - Open mining area - Redbank	134,430	38	ha	0.4 kg/ha/h	8760 h/y										
WE - ROM stockpiles WE - Product stockpiles	7,358 52,560		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y	6	% control								
	52,500	15		or all un				_							لتتتعم

Table C.12-3: Year 3A – Drayton South Emissions Calculations

	TSP emissions	ai 3	D -		South Emission	IS C	alculati	ons		Variable	Va	riable		
ACTIVITY	(kg/y)	Intensity	units	factor units	Variable 1 units	Variable 2	units	Variable 3	units	4	Units	5 Units	Variable 6	Units
Topsoil Removal & Site preparation - Dozers on Whynot Topsoil removal - Sh/Cx/FELs loading topsoil - Whynot	17,998 251	2,151 266,920	t/y	16.7 kg/h 0.0 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2	2 moisture content in % 2 moisture content in %		% control % control					
Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot	2,513 2,132	133,460 133,460	t/y	0.075 kg/t 0.064 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	3.85 kg		3 % silt content 3 % silt content		5 % contr 5 % contr
Fopsoil removal - Emplacing topsoil at emplacement area - Whynot DB - Drilling - Whynot DB - Blasting - Whynot	502 3,241 18,408	266,920 18,312 80	holes/y	0.0 kg/t 0.59 kg/hole 230 kg/blast	1.59 [°] average of (wind speed/2.2)^1.3 in m/s 70 [°] % control 10311 Area of blast in square metres		moisture content in %							
38 - Dozers on Dragline OB in-pit - Whynot 38 - Dragline removal of OB - Whynot	32,026	2,558 10,411,741	h/y bcm/y	12.52 kg/h 0.030 kg/m3 (loose'	10 silt content in %	2.5	moisture content in % moisture content in %							
36 - Dozers on Excavtor OB in-pit - Whynot 36 - Excavator loading OB to haul truck - Whynot	19,795 9,288	1,581 6,745,377	h/y t/y	12.52 kg/h 0.00 kg/t	7 drop distance in m 10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %							
86 - Hauling excavator OB to emplacement area (east) - Whynot 186 - Hauling excavator OB to emplacement area (west) - Whynot	63,508 53,870	3,372,688 3,372,688	t/y	0.075 kg/t 0.064 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	3.85 ki 3.85 ki		3 % silt content 3 % silt content		5 % contr 5 % contr
18 - Dozers on OB haul roads (east) - Whynot 18 - Dozers on OB haul roads (west) - Whynot 18 - Emplacing excavator OB at emplacement area - Whynot	4,489 4,489 9,288	359	h/y h/y t/y	12.52 kg/h 12.52 kg/h 0.00 kg/t	10 silt content in % 10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in % moisture content in %							_
B - Dozers on OB emplacement area - Whynot B - Dozers in-pit antilary tasks - Whynot	51,822	4,139	h/y	12.52 kg/h 12.52 kg/h	10 sit content in %	2.5	moisture content in % moisture content in %							
86 - Dozers ripping/pushing/clean-up Partings - Whynot 86 - Loading partings to haul trucks - Whynot	20,203 1,122		h/y t/y	12.52 kg/h 0.00 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %							
Ke - Hauling partings to emplacement area (east) - Whynot Ke - Hauling partings to emplacement area (west) - Whynot Sense Redexect - Mediane -	7,672 6,508 1,122	407,436	t/y	0.075 kg/t 0.064 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip	3.85 kg		3 % silt content 3 % silt content		5 % contr 5 % contr
IB - Emplacing Partings at emplacement area - Whynot IL - Drilling coal - Whynot IL - Blasting coal - Whynot	1,122 1,017 6,679	5,744	t/y holes/y blasts/y	0.00 kg/t 0.59 kg/hole 230 kg/blast	1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control 10311 Area of blast in square metres	2.5	moisture content in %					_		
L - Dozers ripping/pushing/clean-up ROM in-pit - Whynot L - Sty/Cx/FCLs loading open coal to trucks - Whynot	55,252	3,914 1,240,646	h/y t/y	14.116 kg/h 0.042 kg/t	5.0 sit content in % 9.0 moisture content in %		moisture content in %							-
:L - Hauling open coal in-pit roads (east) - Whynot :L - Hauling open coal to ROM pad (east) - Whynot	14,012 79,887	620,323 620,323	t/y t/y	0.090 kg/t 0.859 kg/t	70 t/load 70 t/load	65.0	Vehicle gross mass (t) Vehicle gross mass (t)	28	km/return trip km/return trip	2.18 kg 2.18 kg	g/VKT	3 % silt content 3 % silt content		5 % contri 5 % contri
L - Hauling open coal in-pit roads (middle) - Whynot L - Hauling open coal to ROM pad (middle) - Whynot	11,894		t/y	0.077 kg/t 0.78 kg/t	70 t/load 70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	2.18 kg		3 % silt content 3 % silt content		5 % contri 5 % contri
L - Unloading ROM to ROM stockples/hopper - Whynot L - Handle coal at CHPP - Whynot L - Rehandle ROM coal at stockples/hopper - Whynot	3,722 260 1,241	1,240,646	t/y	0.010 kg/t 0.000 kg/t 0.01 kg/t	70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %							_
te preparation - Dozers on Blakefield	7,537		h/y	16.7 kg/h	10 silt content in %	2	moisture content in %	50	% control					
opsoil removal - Sh/Ex/FELs loading topsoil - Blakefield opsoil removal - Hauling topsoil to emplacement area - Blakefield	65 1,057	69,522 69,522	t/y t/y	0.0 kg/t 0.061 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 177 t/truck load	229.0	Vehicle gross mass (t)		% control km/return trip	3.85 k	g/VKT	3 % silt content	75	5 % contro
opsoil removal - Emplacing topsoil at emplacement area - Blakefield B - Drilling - Blakefield	131 1,424	69,522 8,048	holes/y	0.0 kg/t 0.59 kg/hole	1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control	2	moisture content in %							
B - Blasting for excavator removal - Blakefield B - Dozers on Dragine OB in-pit - Blakefield B - Dragine removal of OB - Blakefield	8,090 16,743 163,950	35 1,337 5,517,311		230 kg/blast 12.52 kg/h 0.030 kg/m3 (loose'	10311 Area of blast in square metres 10 silt content in %		moisture content in % moisture content in %					_		
B - Dragline removal of OB - Blakefield B - Dozers on Excavator OB in-pit - Blakefield B - Excavator loading OB to haul truck - Blakefield	163,950 367 172	5,517,311 29 125,090	h/y	0.030 kg/m3 (bose) 12.52 kg/h 0.00 kg/t	7 drop distance in m 10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in % moisture content in %							-
B - Hauling to emplacement area - Blakefield B - Dozers on OB haul roads - Blakefield	1,901	125,090	t/y b/y	0.061 kg/t 12.52 kg/h	177 t/load 10 sit content in %	229.0	Vehicle gross mass (t) moisture content in %	2.8	km/return trip	3.85 k	g/VKT	3 % silt content	75	% contro
8 - Emplacing at emplacement area - Blakefield 8 - Dozers on OB emplacement area -Blakefield	172 17,110	125,090 1,366	t/y h/y	0.00 kg/t 12.52 kg/h	1.59 average of (wind speed/2.2)^1.3 in m/s 10 sit content in %	2.5	moisture content in % moisture content in %							
6 - Dozers in-pit ancillary tasks - Blakefield 6 - Dozers ripping/pushing/clean-up Partings - Blakefield	34,527	2,757 58	h/y h/y	12.52 kg/h 12.52 kg/h	10 sit content in % 10 sit content in %	2.5	moisture content in % moisture content in %							
B - Loading partings to trucks - Blakefield B - Hauling partings to epmlacement area - Blakefield B - Emplacing partings at emplacement area - Blakefield	231 2,553	167,953 167,953 167,953	t/y	0.00 kg/t 0.061 kg/t	1.59 [°] average of (wind speed/2.2)^1.3 in m/s 177 t/load	229.0	Moisture content in % Vehicle gross mass (t) Moisture content in %	2.8	km/return trip	3.85 kg	g/VKT	3 % silt content	75	5 % contr
is - Emplacing partings at emplacement area - blakenero L - Driling coal - Blakefield L - Blasting coal - Blakefield	231 473 3,107	2,672	t/y holes/y blasts/y	0.00 kg/t 0.59 kg/hole 230.35 kg/blast	1.59 [°] average of (wind speed/2.2)^1.3 in m/s 70 [°] % control 10311 Area of blast in square metres	2.3	mosture content in %							
Dozers ripping/pushing/clean-up RDM in-pit - Blakefield Sh/Cx/FCLs loading open coal to trucks - Blakefield	12,363	876	h/y t/y	14.116 kg/h 0.042 kg/t	5.0 sit content in % 9.0 moisture content in %	S	moisture content in %							
L - Hauling open coal in-pits roads - Blakefield L - Hauling open coal to ROM pad - Blakefield	6,567 86,091	577,053 577,053	t/y t/y	0.046 kg/t 0.995 kg/t	70 t/load 70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	2.18 kg 2.18 kg		3 % silt content 3 % silt content		5 % contri 5 % contri
L - Unloading ROM to ROM stockpiles/hopper - Blakefield L - Handle coal at CHPP - Blakefield	1,731 121	577,053 577,053	t/y t/y	0.010 kg/t 0.000 kg/t	70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s	S	moisture content in %							
L - Rehandle ROM coal at stockpiles/hopper - Blakefield EDBANK	577	57,705		0.01 kg/t								_		
opsoil removal - Dozers/Excavators stripping topsoil - Redbank opsoil removal - Sh/Ex/FELs loading topsoil - Redbank opsoil removal - Hauling topsoil to emplacement area (north) - Redbank	7,772 276 2.029	292,969		16.7 kg/h 0.0 kg/t 0.055 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s 177 t/truck load		moisture content in % moisture content in % Vehicle gross mass (t)		% control % control km/return trip	3.85 ki	- 0.07	3 % silt content		5 % contr
opsoi removal - nauling topsoi to emplacement area (norm) - xeobank opsoi removal - Hauling topsoi ito emplacement area (south) - Redbank opsoi removal - Emplacing topsoi at emplacement area - Redbank	2,029 1,686 551		t/y	0.035 kg/t 0.046 kg/t 0.0 kg/t	177 t/truck load 177 t/truck load 1.59 average of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t) Vehicle gross mass (t) moisture content in %		km/return trip	3.85 ki		3 % sit content		% contro
B - Drilling for excavator removal - Redbank Basting for excavator removal - Redbank	1,326	7,494	holes/y blasts/y	0.59 kg/hole 230 kg/blast	70 % control 10311 Area of blast in square metres									
B - Dozers on Excavator OB in-pit - Redbank B - Excavator loading OB to haul truck - Redbank	43,696 20,502	3,490 14,889,472	h/y t/y	12.52 kg/h 0.00 kp/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %							
86 - Hauling to emplacement area (north) - Redbank 86 - Hauling to emplacement area (south) - Redbank	103,137 85,665	7,444,736 7,444,736	t/y	0.055 kg/t 0.046 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)	2.6	km/return trip km/return trip	3.85 kg 3.85 kg		3 % silt content 3 % silt content	75	5 % contr 5 % contr
6 - Dozers on OB haul roads (north) - Redbank 6 - Dozers on OB haul roads (south) - Redbank 8 - Emplacing at emplacement area - Redbank	9,909 9,909 20,502	791 791 14,889,472		12.52 kg/h 12.52 kg/h 0.00 kg/t	10 sit content in % 10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in % moisture content in %							
5 - Emplacing at emplacement area - Neobank B - Dozers on OB emplacement area - Redbank B - Dozers in-pit ancillary tasks - Redbank	43,696	14,889,472 3,490 1,269	h/y	12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %	2.5	moisture content in % moisture content in %							
B - Dozers ripping/pushing/clean-up Partings - Redbank B - Loading partings to trucks - Redbank	16,166	1,291 779,421	h/y t/y	12.52 kg/h 0.00 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %							
B - Hauling partings to epmlacement area (north) - Redbank B - Hauling partings to epmlacement area (south) - Redbank	5,399 4,484	389,711	t/y	0.055 kg/t 0.046 kg/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	3.85 kg 3.85 kg		3 % silt content 3 % silt content		5 % contr 5 % contr
B - Emplacing partings at emplacement area - Redbank L - Drilling coal - Redbank	1,073 803	779,421 4,535	holes/y	0.00 kg/t 0.59 kg/hole	1.59 [°] average of (wind speed/2.2)^1.3 in m/s 70 [°] % control	2.5	moisture content in %							
L - Blasting coal - Redbank L - Dozers ripping/pushing/clean-up ROM in-pit - Redbank L - Sh/Cx/FCLs loading open coal to trucks - Redbank	5,273 39,151 40.679	23 2,774 979,572		230 kg/blast 14.116 kg/h 0.042 kg/t	10311 Area of blast in square metres 5.0 silt content in % 9.0 moisture content in %	g	moisture content in %							
Styck/rcts loading open coal to rocks - Rebank L - Hauling open coal in-pits roads - Rebank L - Hauling open coal to ROM pad - Rebank	29,242	979,572 979,572	t/y	0.12 kg/t 0.98 kg/t	70 t/load 70 t/load	65.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip	2.18 kg		3 % silt content 3 % silt content		5 % contri 5 % contri
L - Unloading ROM to ROM stockpiles/hopper - Redbank L - Handle coal at CHPP - Redbank	2,939 206	979,572 979,572	t/y t/y	0.010 kg/t 0.000 kg/t	70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s		moisture content in %							
- Rehandle ROM coal at stockpiles/hopper - Redbank OUSTON	980	97,957	t/y	0.01 kg/t										
opsoil Removal - Dozers/Excavators stripping topsoil - Houston opsoil removal - Sh/Ex/FELs loading topsoil - Houston	14,930		t/y	16.7 kg/h 0.0 kg/t	10 [°] sit content in % 1.59 [°] average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %		% control % control			2 11 12		
opsoil removal - Hauling topsoil to emplacement area - Houston opsoil removal - Emplacing topsoil at emplacement area - Houston B - Drilling for excavator removal - Houston	2,304 317 2,444	168,297	t/y t/y holes/y	0.055 kg/t 0.0 kg/t 0.59 ka/hole	177 t/truck load 1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control	229.0	Vehicle gross mass (t) moisture content in %	2.5	km/return trip	3.85 k	g/VKT	3 % silt content	75	5 % contro
B - Blasting for excavator removal - Houston B - Dozers on Excavator OB in-pit - Houston	13,880 80,503	6.429	blasts/y h/y	230 kg/blast 12.52 kg/h	10311 Area of blast in square metres 10 silt content in %		moisture content in %							
B - Excavator loading OB to haul truck - Houston B - Hauling to emplacement area - Houston	37,772 375,562	27,431,844 27,431,844	t/y t/y	0.00 kg/t 0.055 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 177 t/load	2.5	moisture content in % Vehicle gross mass (t)	2.5	km/return trip	3.85 k	g/VKT	3 % silt content	75	5 % contr
B - Dozers on OB haul roads - Houston B - Emplacing at emplacement area - Houston	36,511 37,772	2,916 27,431,844	h/y t/y	12.52 kg/h 0.00 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %							
B - Dozers on OB emplacement area - Houston B - Dozers in-pit ancillary tasks - Houston B - Dozers ripping/pushing/clean-up Partings - Houston	80,503 26,808 11,177	6,429 2,141 893	h/y	12.52 kg/h 12.52 kg/h 12.52 kg/h	10 sit content in % 10 sit content in % 10 sit content in %	2.5	moisture content in % moisture content in % moisture content in %							
8 - Dozers npping/pushing/clean-up Partings - Houston 8 - Loading partings to trucks - Houston 8 - Hauling partings to epidacement area - Houston	11,1// 537 5,335	389,649 389,649	t/y t/y	12.52 kg/h 0.00 kg/t 0.055 kg/t	10 sit content in % 1.59 average of (wind speed/2.2)^1.3 in m/s 177 t/load	2.5	moisture content in % moisture content in % Vehicle gross mass (t)		km/return trip	3.85 ki	q/VKT	3 % silt content	76	5 % cont
B - Emplacing partings at emplacement area - Houston	5,335 537 1,354	389,649 7,652	t/y holes/y	0.05 kg/t 0.00 kg/t 0.59 kg/hole	1.59 [°] average of (wind speed/2.2)^1.3 in m/s 70 [°] % control		impisture content in %	2.5		3.63 K			//	- comb
L - Drilling coal - Houston L - Blasting coal - Houston L - Dozers ripping/pushing/clean-up RDM in-pit - Houston	8,897 80,856	39 5,728	blasts/y h/y	230 kg/blast 14.116 kg/h	10311 Area of blast in square metres 5.0 sit content in %	9	moisture content in %							
Dozers ripping/pushing/clean-up ROM in-pit - Houston Sh/Cx/FCLs loading open coal to trucks - Houston Hauling open coal in-pits roads (east) - Houston	68,634 14,466	1,652,729 826,365	t/y t/y	0.042 kg/t 0.070 kg/t	9.0 moisture content in % 70 t/load	65.0	Vehicle gross mass (t)		km/return trip	2.18 kj		3 % silt content		5 % contr
L - Hauling open coal in-pits roads (west) - Houston L - Hauling open coal to RDM pad (east) - Houston L - Hauling open coal to RDM pad (west) - Houston	10,846	826,365	t/y	0.053 kg/t 0.83 kg/t	70 t/load 70 t/load 70 t/load	65.0	Vehicle gross mass (t) Vehicle gross mass (t) Vehicle gross mass (t)	26.6	km/return trip	2.18 k	g/VKT	3 % silt content 3 % silt content	85	5 % contr 5 % contr
Hauling open coal to RDM pad (west) - Houston - Unloading ROM to ROM stockpiles/hopper - Houston Handle coal at CHPP - Houston	109,150 4,958 347	826,365 1,652,729 1.652,729	t/y t/y t/y	0.88 kg/t 0.01 kg/t 0.000 kg/t	70 t/load 70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s		Vehicle gross mass (t) moisture content in %	28.2	2 km/retum trip	2.18 kg	9/ 761	3 % silt content	85	5 % contri
- Handle ROB at Cherr - Houston - Rehandle ROM coal at stockpiles/hopper - Houston OM/REJECTS HANDLING	1,653	1,652,729	t/y	0.000 kg/t			sata a concelle in 70							
L - Dozers ROM Coal Handling & Rejects - RDM stockpile L - Loading rejects	81,371	5,765 1,112,500	t/y	14.12 kg/h Rejects very wet therefore	5.0 silt content in % no dust		moisture content in %							
L - Transporting rejects L - Unloading rejects	54,547	1,112,500 1,112,500	t/y t/y	0.20 kg/t Rejects very wet therefore	91 [°] t/load no dust	117.9	Vehicle gross mass (t)	6.2	km/return trip	2.85 kj	g/VKT	3 % silt content	75	% contro
RODUCT COAL - Loading product stockpie Loading emduct and to bains	405	3,409,398	t/y	0.0002 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s	11.0	moisture content in %	25	% control					
L - Loading product coal to trains /IND EROSION /E - OB dump & disturbed area - Whynot - Uncontrolled	221,206	3,409,398	t/y ha	0.0002 kg/t 0.4 kg/ha/h	1.46 average of (wind speed/2.2)^1.3 in m/s 8760 h/y	11.0	moisture content in %							
E - OB dump & disturbed area - Whynot - Uncontrolled E - OB dump & disturbed area - Whynot - Controlled E - OB dump & disturbed area - Blakefield - Uncontrolled	221,205 12,289 56,404	63 7	ha ha ha	0.4 kg/ha/h 0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y 8760 h/y	50	% control							
/E - OB dump & disturbed area - Blakefield - Controlled /E - OB dump& disturbed area - Redbank - Uncontrolled	3,134	2	ha ha	0.4 kg/ha/h 0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y 8760 h/y		% control							
F - OS dump& disturbed area - Redbank - Controlled F - OS dump& disturbed area - Redbank - Controlled F - OS dump& disturbed area - Houston - Uncontrolled	11,442 99,034	7 28	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y		% control							
	5.502	3	ha	0.4 kg/ha/h	8760 h/y	50	% control							
VE - OB dump& disturbed area - Houston- Controlled VE - Open mining area- Whynot	122,477	35		0.4 kg/ha/h	8760 h/y					_				
18 - Dis dumps discutred ans - Nositori - Unicitative 16 - Odi aungik discutred ans - Nositori 16 - Ogen mining ans Whynot 16 - Ogen mining ans - Biskeffeld 16 - Ogen mining ans - Robbank 17 - Ogen mining ans - Nositon		9	ha ha ha	0.4 kg/ha/h 0.4 kg/ha/h 0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y 8760 h/y									

Table C.12-4: Year 3B - Drayton South Emissions Calculations

Table C.12-5	5: Ye	ar 5	- 0	Drayton	Sou	th Emissions	Ca	Iculatio	ns							
ACTIVITY	TSP emissions (kn/y)			Emission factor units								Units	Variable 5		Variable 6	Units
WHYNOT Topsoi removal & Site preparation - Dozers on Whynot	15,412	1,842	b/v	16.7 kg/h	10	iit content in %	2	moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Whynot Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot	225	241,302 120,651	t/y	0.0019 kg/t 0.091 kg/t	1.57	average of (wind speed/2.2)^1.3 in m/s /load	229.0	Vehicle gross mass (t)		% control km/return trip	3.84644244	ka/VKT	39	6 sit content	75	% control
Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot Topsoil removal - Emplacing topsoil at emplacement area - Whynot	2,462 449	120,651 241,302	t/y	0.082 kg/t 0.0019 kg/t	177 1	/load werage of (wind speed/2.2)^1.3 in m/s		Vehicle gross mass (t) moisture content in %	3.8	km/return trip	3.84644244			6 sit content		% control
OB - Driling - Whynot OB - Blasting - Whynot	2,206 11,406	12,462	holes/y blasts/y	0.59 kg/hole 174 kg/blast	70 ×	% control Area of blast in square metres										
OB - Dozers on Dragline OB in-pit - Whynot OB - Dragline removal of OB - Whynot	26,037 212,061	2,079 7,136,365		12.52 kg/h 0.030 kg/m3 (loose)	70	ilt content in % frop distance in m	2.5	moisture content in % moisture content in %								
OB - Dozers on Excavator OB in-pit - Whynot OB - Excavator loading OB to haul truck - Whynot	26,807 12,552	2,141 9,209,692	h/y t/y	12.52 kg/h 0.0014 kg/t		ilt content in % everage of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Hauling excavator OB to emplacement area (east) - Whynot OB - Hauling excavator OB to emplacement area (west) - Whynot	105,223 93,965	4,604,846 4,604,846	t/y	0.091 kg/t 0.082 kg/t	177 t 177 t	/load /load	229.0 229.0	Vehicle gross mass (t) Vehicle gross mass (t)	4.2	km/return trip km/return trip	3.84644244 3.84644244			6 sit content 6 sit content	75 75	% control % control
OB - Dozers on OB haul roads (east) - Whynot OB - Dozers on OB haul roads (west) - Whynot	6,079		h/y h/y	12.52 kg/h 12.52 kg/h	10 1	ilt content in % ilt content in %	2.5	moisture content in % moisture content in %								
OB- Emplacing excavator OB at emplacement area - Whynot OB - Dozers on OB emplacement area - Whynot OB - Dozers in-pit ancillary tasks - Whynot	12,552 52,844 48,046	9,209,692 4,220 3.837	h/y	0.0014 kg/t 12.52 kg/h 12.52 kg/h	10 5	average of (wind speed/2.2)^1.3 in m/s alt content in % alt content in %	2.5	moisture content in % moisture content in % moisture content in %								
UB - Dozers In-pit ancieny tasks - winynot OB - Dozers ripping/pushing/clean-up Partings - Whynot OB - Loading partings to haul trucks - Whynot	48,046 16,388 875	3,837 1,309 641,966		12.52 kg/h 12.52 kg/h 0.0014 kg/t	10 5	ilt content in % ilt content in % sverage of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (west) - Whynot	7,335	320,983	t/y	0.091 kg/t 0.082 kg/t	177 1	/ioad	229.0	Vehicle gross mass (t) Vehicle gross mass (t)	4.2	km/return trip km/return trip	3.84644244			6 sit content 6 sit content		% control % control
OB - Emplocing Partings at emplacement area - Whynot CL - Drilling coal and partings - Whynot	875	641,966 5,876	t/y holes/y	0.0014 kg/t 0.59 kg/hole		werage of (wind speed/2.2)^1.3 in m/s		moisture content in %								
CL - Blasting coal and partings - Whynot CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	1,339 47,416	22 3,359	blasts/y h/y	59.76 kg/blast 14.12 kg/h		Area of blast in square metres ilt content in %		moisture content in %								
CL - Sh/Ex/FELs loading open coal to trucks - Whynot CL - Hauling open coal in-pit roads (east) - Whynot	62,650 17,579	1,508,641	t/y t/y	0.042 kg/t 0.09 kg/t	9 r 70 t	noisture content in % /load	65.0	Vehicle gross mass (t)	3.0	km/return trip	2.18238556	kg/VKT	3 9	6 silt content	75	% control
CL - Hauling open coal to ROM pad (east) - Whynot CL - Hauling open coal in-pit roads (middle) - Whynot	93,150 15,545	754,320 754,320	t/y	0.82 kg/t 0.08 kg/t		/load /load	65.0 65.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	2.18238556 2.18238556	kg/VKT	39	6 sit content 6 sit content		% control % control
CL - Hauling open coal to ROM pad (middle) - Whynot CL - Unloading ROM to ROM stockpiles/hopper - Whynot	100,749 4,526	754,320 1,508,641	t/y	0.89 kg/t 0.01 kg/t	70 0	/load % control	65.0	Vehicle gross mass (t)	28.	km/return trip	2.18238556	kg/VKT	3 9	6 sit content	85	% control
CL- Handle coal at CHPP - Whynot CL - Rehandle ROM coal at stockpiles/hopper - Whynot	317 1,509	1,508,641 150,864	t/y t/y	0.0002 kg/t 0.01 kg/t	1.46 2	everage of (wind speed/2.2)^1.3 in m/s	ę	moisture content in %								
BLAKEFIELD Topsoil removal & Site preparation - Dozers on Blakefield	12,243	1,463		16.7 kg/h		ilt content in %		moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Blakefield Topsoil removal - Hauling (25%) topsoil to emplacement area - Blakefield (east)	129 429	139,031 34,758	t/y	0.0019 kg/t 0.049 kg/t	177 t	everage of (wind speed/2.2)^1.3 in m/s /truck load	229.0	Vehicle gross mass (t)		% control km/return trip	3.84644244			6 sit content	75	% control
Topsoil removal - Hauling (75%) topsoil to emplacement area - Blakefield (west) Topsoil removal - Emplacing topsoil at emplacement area - Blakefield	1,959	104,273 139,031	t/y t/y holes/y	0.075 kg/t 0.00027 kg/t		/truck load average of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t) moisture content in %	3.	km/return trip	3.84644244	kg/VKT	39	6 sit content	75	% control
08 – Driling – Blakefield OB – Blasting – Blakefield OB – Dzers on Dragine OB in-pit – Blakefield	1,941 10,036	58	holes/y blasts/y h/y	0.59 kg/hole 174 kg/blast	70 × 8546 /	% control Area of blast in square metres		analistum.								
08 - Dozers on Dragline O8 in-pit - Biakefield O8 - Dragline removal of O8 - Biakefield 08 - Dozers on Excavator O8 in-pit - Biakefield	23,132 276,789	9,314,606	bcm/y	12.52 kg/h 0.030 kg/m3 (loose)	70	ilt content in % Irop distance in m	2.4	moisture content in % moisture content in %								
OB – Dozers on Excavator OB in-pit - Blakefield OB - Excavator loading OB to haul truck - Blakefield OB - Hauling excavator (25%) OB to emplacement area - Blakefield (east)	2,180 1,021 2,310	749,098		12.52 kg/h 0.0014 kg/t 0.049 kg/t		ilt content in % sverage of (wind speed/2.2)^1.3 in m/s /load		moisture content in % moisture content in % Vehicle const mass (t)		km/return trip	3.8464434	kn/u/v=	24	6 silt content	-	% control
0B - Hauling excavator (25%) 0B to emplocement area - Biakefield (east) 0B - Hauling excavator (75%) 0B to emplocement area - Biakefield (west) 0B - Dozers on 0B haur orods (east) - Biakefield	2,310 10,555 494	187,275 561,824 39	t/y t/y h/y	0.049 kg/t 0.075 kg/t 12.52 kg/h	177 t	/load /load iit content in %		Vehicle gross mass (t) Vehicle gross mass (t) moisture content in %		km/return trip km/return trip	3.84644244 3.84644244			6 sit content 6 sit content	75	% control
UB - Dozers on OB haul roads (east) - Blakefield OB - Dozers on OB haul roads (west) - Blakefield OB - Emplocing excavator OB at emplocement area - Blakefield	494 2,675 1,021	214 749,098	h/y	12.52 kg/h 12.52 kg/h 0.0014 kg/t	10 1	it content in % iit content in % sverage of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in % moisture content in %								
UB - Emplacing excavator UB at emplacement area - Blakefield OB - Dozers on OB emplacement area - Blakefield OB - Dozers in-pit ancillary tasks - Blakefield	1,021 25,312 50,113	749,098 2,022 4,002	t/y h/y h/y	0.0014 kg/t 12.52 kg/h 12.52 kg/h	10 1	it content in % it content in %	2.5	moisture content in % moisture content in %								
UB - Dozers In-pit ancieny tasks - siekerield OB - Dozers ripping/pushing/clean-up Partings - Biakefield OB - loading partings to trucks - Biakefield	1,464	4,002 117 194,396	h/y	12.52 kg/h 12.52 kg/h 0.0014 kg/t	10 1	ilt content in % ilt content in % sverage of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Hauling (25%) partings to emplacement area - Blakefield (east) OB - Hauling (75%) partings to emplacement area - Blakefield (west)	2,739	48,599	t/y	0.049 kg/t 0.075 kg/t	177 t	/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)	2.	km/return trip km/return trip	3.84644244			6 sit content 6 sit content		% control % control
OB - Employing participant or employement area - Blakefield OL - Driling coal - Blakefield OL - Driling coal - Blakefield	53	194,396	t/y t/y holes/y	0.00027 kg/t 0.59 kg/hole		werage of (wind speed/2.2)^1.3 in m/s		moisture content in %	3.	s with crub	3.04044244	NJ/ VICI	37	o sit content	/3	S CONCION
CL - Blasting coal - Blastefield CL - Date ripping/pushing/clean-up ROM in-pit - Blastefield	897	15	blasts/y h/y	59.76 kg/blast 14.12 kg/h	4194	Area of blast in square metres		moisture content in %								
CL - Sk/Ex/FELs bading open coal to trucks - Blakefield CL - Hauling open (25%) coal in-pit roads - Blakefield (east)	41,973		t/y	0.04 kg/t 0.1 kg/t	91	moisture content in % /load	65.0	Vehicle gross mass (t)	21	km/return trip	2.18238556	kn/VKT	3 9	6 silt content	75	% control
CL - Hauling open (25%) coal to ROM pad - Blakefield (east) CL - Hauling open (75%) coal in-pit roads - Blakefield (west)	38,130	252,680 758,040	t/y	1.01 kg/t 0.09 kg/t	70 t	/load /load	65.0	Vehicle gross mass (t) Vehicle gross mass (t)	32.	km/return trip	2.18238556	kg/VKT	3 9	6 sit content 6 sit content		% control % control
CL - Hauling open (75%) coal to ROM pad - Blakefield (west) CL - Unloading ROM to ROM stockpiles/hopper - Blakefield	126,067 3,032		t/y	1.11 kg/t 0.010 kg/t		/load		Vehicle gross mass (t)		km/return trip	2.18238556			6 sit content		% control
CL - Handle coal at CHPP - Blakefield CL - Rehandle ROM coal at stockpiles/hopper - Blakefield	212	1,010,719	t/y t/y	0.0002 kg/t 0.01 kg/t	1.46	everage of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
REDBANK Topsoil removal & Site preparation - Dozers on Redbank	15.874		h/y	16.7 kg/h	10	iit content in %		moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Redbank Topsoil removal - Hauling topsoil to emplacement area (north) - Redbank	102	109,735 54,867	t/y	0.0019 kg/t 0.06 kg/t	1.57	average of (wind speed/2.2)^1.3 in m/s /truck load		vehicle gross mass (t)		% control km/return trip	3.84644244	ka/VKT	39	6 sit content	75	% control
Topsoil removal - Hauling topsoil to emplacement area (south) - Redbank Topsoil removal - Emplacing topsoil at emplacement area - Redbank	731 204	54,867 109,735	t/y	0.05 kg/t 0.0019 kg/t	177 t	/truck load werage of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t) moisture content in %		km/return trip	3.84644244		3 9	6 sit content		% control
OB - Drilling for excavator removal - Redbank OB - Blasting for excavator removal - Redbank	2,215 5,685	12,516	holes/y blasts/y	0.59 kg/hole 174 kg/blast	70 ¹ 9 8546	% control Area of blast in square metres										
DB - Dozers on Excavator OB in-pit - Redbank DB - Excavator loading OB to haul truck - Redbank	89,826 42,060	7,174 30,860,448	h/y t/y	12.52 kg/h 0.0014 kg/t	1.57	ilt content in % sverage of (wind speed/2.2)^1.3 in m/s	2.4	moisture content in % moisture content in %								
DB - Hauling to emplacement area (north) - Redbank DB - Hauling to emplacement area (south) - Redbank	231,370 205,718	15,430,224 15,430,224	t/y	0.06 kg/t 0.05 kg/t		/ioad	229.0	Vehicle gross mass (t) Vehicle gross mass (t)	2.	km/return trip km/return trip	3.84644244 3.84644244	kg/VKT kg/VKT		6 sit content 6 sit content	75 75	% control % control
OB - Dozers on OB haul roads (north) - Redbank OB - Dozers on OB haul roads (south) - Redbank	20,370 20,370	1,627	h/y	12.52 kg/h 12.52 kg/h	10 1	ilt content in % ilt content in %	2.5	moisture content in % moisture content in %								
OB - Emplacing at emplacement area - Redbank OB - Dozers on OB emplacement area -Redbank	42,060 89,826	30,860,448 7,174	h/y	0.0014 kg/t 12.52 kg/h	10 1	everage of (wind speed/2.2)^1.3 in m/s ilt content in %	2.5	moisture content in % moisture content in %								
OB - Dozers in-pit ancillary tasks - Redbank OB - Dozers ripping/pushing/clean-up Partings - Redbank	33,761 23,281	2,696 1,859	h/y	12.52 kg/h 12.52 kg/h	10 5	ilt content in % ilt content in %	2.5	moisture content in % moisture content in %								
OB - Loading partings to trucks - Redbank OB - Hauling partings to emplacement area (north) - Redbank	2,135	1,566,872 783,436	t/y	0.0014 kg/t 0.06 kg/t	1.57 8	everage of (wind speed/2.2)^1.3 in m/s	229.0	moisture content in % Vehicle gross mass (t)		km/return trip				6 sit content		% control
OB - Hauling partings to emplacement area (south) - Redbank OB - Emplacing partings at emplacement area - Redbank	10,445 2,135	783,436	t/y	0.05 kg/t 0.0014 kg/t	1.57 8	/load average of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t) moisture content in %	2.	km/return trip	3.84644244	kg/VKT	39	6 sit content	75	% control
CL - Driling coal - Redbank CL - Blasting coal - Redbank CL - Dozers ripping/publing/clean-up RDM in-pit - Redbank	2,257 2,907	12,752 49 6,331	holes/y blasts/y	0.59 kg/hole 59.76 kg/blast		le control Area of blast in square metres		moisture content in %								
CL - boces repring cosing clearer op Nov in pr - Reconix CL - Sh/Ex/FELs loading open coal to trucks - Redbank CL - Haufing open coal in-pit mads - Redbank	89,364 135,967 114,888	3,274,133	t/y	14.12 kg/h 0.042 kg/t 0.14 kg/t	9 1	nit content in % moisture content in % /load		Vehicle gross mass (t)		km/return trip	2.18238556	la DAT	24	6 silt content	28	Tr control
CL - Hauning open coal to ROM pad - Redbank CL - Hauning open coal to ROM pad - Redbank CL - Unloading ROM to ROM stockpiles/hopper - Redbank	480,387	3,274,133	t/y	0.98 kg/t 0.01 kg/t		/load	65.0	Vehicle gross mass (t)			2.18238556			6 sit content	85	% control
CL - Handle coal at CHPP - Redbank CL - Handle coal at Stockpiles/hopper - Redbank CL - Rehandle ROM coal at stockpiles/hopper - Redbank	687	3,274,133	t/y	0.002 kg/t 0.01 kg/t	1.46 2	everage of (wind speed/2.2)^1.3 in m/s	ç	moisture content in %								
HOUSTON Topsol removal & Site preparation - Dozers on Houston	4,708		h/y	16.7 kg/h	10	iit content in %		moisture content in %	50	% control						
Topsoil removal - Sh/EX/FELs loading topsoil - Houston Topsoil removal - Hauling topsoil to emplacement area - Houston	89	95,372 95,372	t/y	0.0019 kg/t 0.07 kg/t		average of (wind speed/2.2)^1.3 in m/s	229.0	moisture content in % Vehicle gross mass (t)		% control km/return trip	3.84644244	ka/VKT	39	6 sit content	75	% control
Topsoil removal - Emplaining topsoil or emplocement area - Houston OB - Drilling for excavator removal - Houston	178 630	95,372 3,560	t/y holes/y	0.0019 kg/t 0.59 kg/hole	70	everage of (wind speed/2.2)^1.3 in m/s % control	-	moisture content in %								
OB - Blasting for excavator removal - Houston OB - Dozers on Excavator OB in-pit - Houston	3,258 25,548	19 2,040	blasts/y h/y	174 kg/blast 12.52 kg/h	10 5	Area of blast in square metres alt content in %		moisture content in %								
OB - Excavator loading OB to haul truck - Houston OB - Hauling to emplacement area - Houston	11,962 152,496	8,777,141 8,777,141	t/y t/y	0.0014 kg/t 0.069 kg/t	177 t	everage of (wind speed/2.2)^1.3 in m/s /load	2.5	Vehicle gross mass (t)	3.	km/return trip	3.84644244	kg/VKT	39	6 silt content	75	% control
OB - Dozers on OB haul roads - Houston OB- Emplacing at emplacement area - Houston	11,587 11,962	925 8,777,141	h/y t/y	12.52 kg/h 0.0014 kg/t	1.57	ilt content in % sverage of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Dozers on OB emplacement area - Houston OB - Dozers in-pit ancillary tasks - Houston	25,548 12,441		h/y	12.52 kg/h 12.52 kg/h	10 5	ilt content in % ilt content in %	2.5	moisture content in % moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Houston OB - Loading partings to trucks - Houston	4,009 276	202,598		12.52 kg/h 0.0014 kg/t		ilt content in % average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %						(.)		
OB - Hauling partings to emplacement area (east) - Houston CL - Emplocing partings at emplacement area - Houston	3,520 276	202,598	t/y	0.07 kg/t 0.0014 kg/t	177 8	/load average of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t) moisture content in %	3.	km/return trip	3.84644244	kg/VKT	3 9	6 silt content	75	% control
CL - Deiling coal - Houston CL - Blasting coal - Houston CL - Dozers ripping/pushing/clean-up RDM (in-pit) - Houston	832 1,071		holes/y blasts/y	0.59 kg/hole 59.76 kg/blast	70 ×	% control Area of blast in square metres		analistum and the first								
CL - Dozers ripping/pushing/clean-up. ROM (in-pit) - Houston CL - Sh/Ex/FELs loading open coal to trucks - Houston CL - Hauling open coal in-pit roads (east) - Houston	39,638 50,103		t/y	14.12 kg/h 0.042 kg/t		ilt content in % moisture content in % fead	65.0	moisture content in %		han land	2.18238556	ha 0				W. control
CL - Hauling open coal in-pit roads (east) - Houston CL - Hauling open coal in-pit roads (west) - Houston CL - Hauling open coal to ROM pad (east) - Houston	10,419 7,514 73,451	603,253 603,253 603,253	t/y	0.069 kg/t 0.05 kg/t 0.81 kg/t		/load /load /load	65.0	Vehicle gross mass (t) Vehicle gross mass (t) Vehicle gross mass (t)		km/retum trip km/retum trip km/retum trip	2.18238556 2.18238556 2.18238556	kg/VKT	3 9	6 silt content 6 silt content		% control % control % control
CL - Hauling open coal to ROM pad (east) - Houston CL - Hauling open coal to ROM pad (west) - Houston CL - Unloading ROM to ROM stockpiles/hopper - Houston	73,451 79,624 3,620	603,253 603,253 1,206,507	t/y	0.81 kg/t 0.88 kg/t 0.010 kg/t		/load /load		Vehicle gross mass (t) Vehicle gross mass (t)			2.18238556			6 silt content 6 silt content		% control % control
CL - Unicidating KOM to RDM stockpiles/hopper - Houston CL- Handle coal at CHPP - Houston CL - Rehandle ROM coal at stockpiles/hopper - Houston	3,620 253 1,207	1,206,507	t/y t/y t/y	0.010 kg/t 0.0002 kg/t 0.01 kg/t	1.46 2	werage of (wind speed/2.2)^1.3 in m/s	ġ	moisture content in %								
CL - Nazers ROM Coal Handling & Rejects - ROM stockpile	81,371	5 765	h/y	14.12 kg/h		iit content in %		moisture content in %								
CL - Loading rejects CL - Transporting rejects	- 85,805	1,750,000	t/y t/y	Rejects very wet therefore 0.20 kg/t		/load	117.9	Vehicle gross mass (t)	6	km/return trie	2.8534676	kg/VKT	3.0	6 silt content	75	% control
CL - transporting rejects CL - Unloading rejects PRODUCT COAL		1,750,000	t/y	Rejects very wet therefore	no dust		117.9	Contract group meas (C)	0	and a second second second	2.0334070	AP YOU	37	- SR CONCER	/3	
CL- Loading product coal to trains	632 843	5,318,415 5,318,415	t/y t/y	0.0002 kg/t 0.0002 kg/t	1.46 8	everage of (wind speed/2.2)^1.3 in m/s everage of (wind speed/2.2)^1.3 in m/s	11	moisture content in % moisture content in %	2	% control						
WIND EROSION WE - OB dump & disturbed area - Whynot - Uncontrolled	284,833	81	'ha	0.0002 kg/t	8760	v/v		and the set of								
WE - OB dump & disturbed area - Whythot - Okolikolieu WE - OB dump & disturbed area - Whythot - Controlled WE - OB dump& disturbed area - Blakefield - Uncontrolled	15,824	9	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 1	Nγ	50	% control								
WE - OB dump8 disturbed area - Blakefield - Controlled WE - OB dump8 disturbed area - Redbank - Uncontrolled	8,880 304,573	5	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 H 8760 H	√y √y	50	% control								
WE - OB dump8 disturbed area - Redbank - Controlled WE - OB dump 8 disturbed area - Houston - Uncontrolled	16,921 158,947	10 45	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 H 8760 H	Vy Vy	50	% control								
WE - OB dump & disturbed area - Houston - Controlled WE - Open mining area- Whynot	8,830 281,582		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 H 8760 H	√y √y	50	% control								
WE - Open mining area - Blakefield WE - Open mining area - Redbank	162,239 128,052		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 H 8760 H	Vý Vý										
WE - Open mining area - Houston WE - ROM stockpiles	111,292 7,358		ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 H 8760 H	Vy	65	% control								
WE - Product stockpiles	52,560	15	ha	0.4 kg/ha/h	8760	Ŵγ										

Table C.12-5: Year 5 – Drayton South Emissions Calculations

Table C.12	- U. I		- 0	Diay		1 South Emission			115							
ACTIVITY	emissions (kg/y)			Emission factor					Variable 3				Variable 5		Variable 6	Units
WHYNOT Topsoil removal & Site preparation - Dozers on Whynot	23,771	2.841	h/y	16.7 k	ı/h	10 silt content in %		moisture content in %	50	% control						
Topsoil removal - Sh/Ew/FELs loading topsoil - Whynot Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot	181	215,658	t/y	0.00168 k	/t	1.42 average of (wind speed/2.2)^1.3 in m/s 177 t/load	2	moisture content in % Vehicle gross mass (t)		% control km/retum trip	3.8464424 k	0.07	2.04	silt content	~	% control
Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot	2,237	107,829	t/y	0.08297 k	j/t	177 t/load 1.42 average of (wind speed/2.2)^1.3 in m/s	229.0	Vehicle gross mass (t)		km/return trip	3.8464424 k			6 silt content		% control
Topsoil removal - Emplacing topsoil at emplacement area - Whynot OB - Dniling - Whynot	363 3,609		1 holes/y	0.00168 kg 0.59 kg	/hole	70 % control		moisture content in %								
OB - Blasting - Whynot OB - Dozers on Dragline OB in-pit - Whynot	19,256 40,707	3,251	blasts/y h/y	191 ki 12.52 ki	j/h	9099 Area of blast in square metres 10 silt content in %		moisture content in %								
OB - Dragline removal of OB - Whynot OB- Emplacing Dragline OB at emplacement area - Whynot	327,232 32,525	11,012,155 26,429,172		0.0297 k 0.00123 k	j/m3 (loose j/t	e 7 drop distance in m 1.42 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
08 - Dozers on Excavotor OB in-pit - Whynot 08 - Excavator loading 08 to haul truck - Whynot	46,613 26,781	3,723 21,762,027	h/y t/y	12.52 kg 0.00123 kg		10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
08 - Hauling excavator 08 to emplacement area (east) - Whynot 08 - Hauling excavator 08 to emplacement area (west) - Whynot	338,609	10,881,013 10,881,013	t/y	0.12448 kg	/t	177 t/load 177 t/load	229.0	Vehicle gross mass (t) Vehicle gross mass (t)	5.7	km/return trip km/return trip	3.8464424 k	g/VKT		6 silt content 6 silt content		% control % control
08 - Dozers on 08 haul roads (east) - Whynot 08 - Dozers on 08 haul roads (east) - Whynot	10,570	844	h/y h/y	12.52 k	j/h	10 silt content in %	2.5	moisture content in %		any recomments	3.0404424	9, 111		Sit content		in control
OB - Emplacing excavator OB at emplacement area - Whynot	26,781 87.319	21,762,027	t/y h/y	0.00123 k	/t	1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
08 - Dozers on 08 emplacement area - Whynot 08 - Dozers in-pit ancillary tasks - Whynot	81,061	6,474	h/y	12.52 k	, j/h	10 silt content in % 10 silt content in %	2.5	moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Whynot OB - Loading partings to haul trucks - Whynot	22,457 1,323	1,075,227		12.52 kg 0.00123 kg		10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (west) - Whynot	16,730 11,151	537,614 537,614		0.12448 kg 0.08297 kg		177 t/load 177 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	3.8464424 k 3.8464424 k			6 silt content 6 silt content		% control % control
OB - Emplacing Partings at emplacement area - Whynot CL - Drilling coal and partings - Whynot	1,323 4,999	1,075,227		0.00123 k	j/t	1.42 average of (wind speed/2.2)^1.3 in m/s 70 % control		moisture content in %								
CL - Blasting coal and partings - Whynot CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	7,374 82,677	82 5,857	blasts/y	89.8106 k	/blast	5503 Area of blast in square metres Sit content in %		moisture content in %								
CL - Sh/Ev/FELs loading open coal to trucks - Whynot CL - Hauling open coal in-pit roads (east) - Whynot	94,660	2,279,456	t/y	0.04153 k	j/t	9 moisture content in % 70 t/load		Vehicle gross mass (t)		km/retum trip	2.1823856 k	0.07	2.01	6 silt content	~	% control
CL - Hauling open coal to ROM pad (east) - Whynot	146,734	1,139,728	t/y	0.85830 kg	j/t	70 t/load	65.0	Vehicle gross mass (t)	2	8 km/return trip	2.1823856 k	kg/VKT	3 %	6 silt content	85	% control
CL - Hauling open coal in-pit roads (middle) - Whynot CL - Hauling open coal to ROM pad (middle) - Whynot	23,772 155,380	1,139,728 1,139,728	t/y	0.08343 kg 0.90887 kg	j/t	70 t/load 70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		3 km/retum trip 9 km/return trip	2.1823856 k 2.1823856 k			6 silt content 6 silt content		% control % control
CL - Unioading ROM to ROM stockpiles/hopper - Whynot CL- Handle coal at CHPP - Whynot	22,795 521	2,279,456 2,279,456	t/y	0.010 k 0.0002 k	j/t	0 % control 1.59 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Whynot BLAKEFIELD	2,279	227,946	t/y	0.01 ki	ı/t							_				
Topsoil removal & Site preparation - Dozers on Blakefield Topsoil removal - Sh/Ex/FELs loading topsoil - Blakefield	4,842		h/y t/y	16.7 k 0.00168 k		10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s	1	moisture content in % moisture content in %		% control % control						
Topsoil removal - Hauling topsoil to emplacement area - Blakefield Topsoil removal - Emplacing topsoil at emplacement area - Blakefield	1,425	80,878	t/y	0.07050 kg	ı/t	177 t/truck load 1.42 average of (wind speed/2.2) 1.3 in m/s	229.0	Vehicle gross mass (t)	3.	2 km/retum trip	3.8464424 k	cg/VKT	3 %	6 silt content	75	% control
OB - Drilling - Blakefield	22 843	4,76	t/y holes/y	0.00027 k	/hole	70 % control		moisture content in %								
OB - Blasting - Blakefield OB - Dozers on Dragline OB in-pit - Blakefield	4,498 8,349	24	h/y	191 ki 12.52 ki	j/h	9099 Area of blast in square metres 10 silt content in %		moisture content in %								
OB - Dragline removal of OB - Blakefield OB- Emplacing Dragline OB at emplacement area - Blakefield	136,395 13,557	4,590,029 11,016,071	t/y	0.00123 k		1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Dozers on Excavator OB in-pit - Blakefield OB - Excavator loading OB to haul truck - Blakefield	1,407	112 657,076	h/y t/y	12.52 kg 0.00123 kg		10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
08 - Hauling excavator 08 to emplacement area - Blakefield 08 - Dozers on 08 haul roads - Blakefield	11,580 638	657,076	t/y h/y	0.07050 kg 12.52 kg		177 t/load 10 ¹ sit content in %	229.0	Vehicle gross mass (t) moisture content in %	3.	2 km/return trip	3.8464424 k	cg/VKT	3 %	6 silt content	75	% control
08- Emplacing excavator OB at emplacement area - Blakefield 08 - Dozers on OB emplacement area - Blakefield	809 9.757	657,076		0.00123 kg		1.42 average of (wind speed/2.2)^1.3 in m/s 10 silt content in %	2.5	moisture content in % moisture content in %								
OB - Dozers in-pit ancilary tasks -Blakefield OB - Dozers ripping/pushing/clean-up Partings - Blakefield	22,852	1,825	h/y h/y	12.52 k	/h	10 silt content in % 10 silt content in %	2.5	moisture content in %								
OB - loading partings to trucks - Blakefield	119	96,964	t/y	0.00123 k	/t	1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in %								
OB - Hauling partings to emplacement area - Blakefield OB - Emplacing partings to emplacement area - Blakefield	1,709 119		t/y	0.07050 kg 0.00123 kg	/t	177 t/load 1.42 average of (wind speed/2.2)^1.3 in m/s		Vehicle gross mass (t) moisture content in %	3.	2 km/return trip	3.8464424 k	sg/VKT	3%	6 silt content	75 *	% control
CL - Drilling coal - Blakefield CL - Blasting coal - Blakefield	593 875	10	holes/y blasts/y	0.59 kg 89.8106 kg	/blast	70% control 5503 Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Blakefield CL - Sh/Ex/FELs loading open coal to trucks - Blakefield	4,975 11,229	352 270,394		14.1156 kg 0.04153 kg		S silt content in % moisture content in %	9	moisture content in %								
CL - Hauling open coal in-pit roads - Blakefield CL - Hauling open coal to ROM pad - Blakefield	5,416 46,466	270,394 270,394	t/y	0.08012 k	j/t	70 t/load 70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		6 km/retum trip 7 km/retum trip	2.1823856 k 2.1823856 k			6 silt content 6 silt content		% control % control
CL - Unloading ROM to ROM stockpiles/hopper - Blakefield CL - Handle coal at CHPP - Blakefield	811 62	270,394 270,394	t/y	0.010 k	/t	70 % control 1.59 average of (wind speed/2.2)^1.3 in m/s		moisture content in %				y				
CL - Rehandle ROM coal at stockpiles/hopper - Blakefield REDBANK	270	27,039		0.01 k												
Topsoil Removal - Dozers/Excavators stripping topsoil - Redbank	12,924	1,544	h/y	16.7 k		10 silt content in %	2	moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Redbank Topsoil removal - Hauling topsoil to emplacement area (north) - Redbank	49 724	29,119	t/y t/y	0.00168 kg	/t	1.42 [°] average of (wind speed/2.2)^1.3 in m/s 222 t/truck load	275.0	moisture content in % Vehicle gross mass (t)	5.	% control 3 km/return trip	4.176738 k			6 silt content		% control
Topsoil removal - Hauling topsoil to emplacement area (south) - Redbank Topsoil removal - Emplacing topsoil at emplacement area - Redbank	860	29,119 58,237	t/y	0.11811 kg 0.00168 kg		222 t/truck load 1.42 average of (wind speed/2.2)^1.3 in m/s	275.0	Vehicle gross mass (t) moisture content in %	6.	3 km/retum trip	4.176738 k	₀g/VKT	3 %	6 silt content	75	% control
OB - Drilling for excavator removal - Redbank OB - Blasting for excavator removal - Redbank	2,023 10,768	11,427	holes/y blasts/y	0.59 ki 191 ki		70 % control 9099 Area of blast in square metres										
OB - Dozers on Excavator OB in-pit - Redbank OB - Excavator loading OB to haul truck - Redbank	72,181 30.639	5,765	h/y	12.52 k	j/h	10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Hauling to emplacement area (north) - Redbank OB - Hauling to emplacement area (south) - Redbank	309,528	12,448,488 12,448,488	t/y	0.09946 kg	j/t	222 t/load 222 t/load	275.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	4.176738 k			6 silt content 6 silt content		% control % control
OB - Dozers on OB haul roads (north) - Redbank	16,368	1,307	h/y	12.52 k	/h	10 silt content in %	2.5	moisture content in %	6.	s kilyrecull cilp	4.170730 K	.g/ vici	5 10	I SIL COILEIL		in control
OB - Dozers on OB haul roads (south) - Redbank OB - Emplacing at emplacement area - Redbank	16,368 30,639	1,307 24,896,975	t/y	12.52 kg	j/t	10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in % moisture content in %								
OB - Dozers on OB emplacement area -Redbank OB - Dozers in-pit ancillary tasks - Redbank	72,181 38,111	3,044	h/y h/y	12.52 kg 12.52 kg	j/h	10 silt content in % 10 silt content in %	2.5	moisture content in % moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Redbank OB - Loading partings to trucks - Redbank	9,727 922	749,032	h/y t/y	12.52 kg 0.00123 kg	j/h j/t	10 silt content in % 1.42 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Hauling partings to epmlacement area (north) - Redbank OB - Hauling partings to epmlacement area (south) - Redbank	9,312 11,059	374,516 374,516	t/y t/y	0.09946 kg 0.11811 kg		222 t/load 222 t/load	275.0	Vehicle gross mass (t) Vehicle gross mass (t)		3 km/return trip 3 km/return trip	4.176738 k			6 silt content 6 silt content		% control % control
OB - Emplacing partings at emplacement area - Redbank CL - Highwall transfer point - Redbank (Y8)	922	749,032	t/y	0.00123 k		1.42 average of (wind speed/2.2)^1.3 in m/s 1.42 average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
CL - Highwall conveyor - Rebank CL - Drilling coal - Rebank CL - Drilling coal - Rebank	17	0.0048		0.4 kg	j/ha/h	8760 h/y 70 % control										
CL - Drilling Coal - Redbank CL - Blasting coal - Redbank CL - Dozers ripping/pushing/clean-up ROM in-pit - Redbank	2,496	28	blasts/y h/y	0.59 k 89.8106 k 11.3312 k	/blast	5503 Area of blast in square metres		moisture content in %								
CL - Sh/Ex/FELs loading open coal to trucks - Redbank	38,625 67,090 139,771	1,615,549 1,615,549	t/y	0.04153 k	j/t	g moisture content in % 70 t/load	9			1 km/return trip	2.1823856 k	in Dillot		silt content	_	% control
CL - Hauling open coal in-pit roads - Redbank CL - Hauling open coal to ROM pad - Redbank	236,311	1,615,549	t/y	0.34606 kg 0.97515 kg	j/t	70 t/load		Vehicle gross mass (t) Vehicle gross mass (t)		1 km/return trip 3 km/return trip	2.1823856 k			6 silt content 6 silt content		% control % control
CL - Unioading ROM to ROM stockpiles/hopper - Redbank CL - Handle coal at CHPP - Redbank	4,847 369	1,615,549 1,615,549	t/y	0.010 kg 0.0002 kg	j/t	70 % control 1.59 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Redbank HOUSTON	1,616	161,555	t/y	0.01 kg	j/t											
CL - Highwall transfer point - Houston (Y9) CL - Highwall conveyor - Houston	184 17	900,000 0.0048		0.0002 kg 0.4 kg		1.42 average of (wind speed/2.2)^1.3 in m/s 8760 h/y	2	moisture content in %								
CL - Sty/Ex/FELs loading open coal to trucks - Houston CL - Hauling open coal in-pit roads - Houston - east	37,375 8,958	900,000 450,000	t/y	0.04153 k	j/t	9 moisture content in % 70 t/load	65.0	Vehicle gross mass (t)	2	s km/retum trip	2.1823856 k	kn/VKT	3 %	6 silt content	75	% control
CL - Hauling open coal in-pit roads - Houston - west CL - Hauling open coal to ROM pad - Houston - east	5,331 54,749	450,000	t/y	0.04739 kg 0.81110 kg	j/t	70 t/load 70 t/load	65.0	Vehicle gross mass (t) Vehicle gross mass (t)	1.	5 km/retum trip 0 km/retum trip	2.1823856 k	kg/VKT	3 %	6 silt content 6 silt content	75	% control % control
CL - Hauling open coal to ROM pad - Houston - west	58,748	450,000	t/y	0.87034 kg	j/t	70 t/load		Vehicle gross mass (t)			2.1823856 k			b silt content		% control
CL - Unloading ROM to ROM stockpiles/hopper - Houston CL - Handle coal at CHPP - Houston	2,700 206	900,000 900,000	t/y	0.010 k	j/t	70 % control 1.59 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Houston ROM/REJECTS HANDLING	900			0.01 k	¦∕t											
CL - Dozers ROM Coal Handling & Rejects - ROM stockpile CL - Loading rejects	81,371	5,765 1,266,350	t/y	14.1156 kg Rejects very w	et therefor			moisture content in %				_				
CL - Transporting rejects CL - Unloading rejects	62,091	1,266,350 1,266,350	t/y	0.1961 k Rejects very w	ı/t	91 [°] t/load	117.9	Vehicle gross mass (t)	6.	2 [°] km/retum trip	2.8534676 k	₀g/VKT	3 %	6 silt content	75	% control
PRODUCT COAL CL - Loading product stockpile	567	4,380,403		0.0002 kg		1.59 average of (wind speed/2.2)^1.3 in m/s		moisture content in %	2	5 % control			_			
CL - Loading product coal to trains	756	4,380,403		0.0002 k		1.59 average of (wind speed/2.2) 1.3 in m/s 1.59 average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
WIND EROSION WE - 08 dump & disturbed area - Uncontrolled	1,202,360		ha	0.4 kg		8760 h/y										
WE - OB dump & disturbed area - Controlled WE - Open mining area- Whynot	66,798 420,545	120	ha ha	0.4 kg	j/ha/h	8760 h/y 8760 h/y	50	% control								
WE - Open mining area - Blakefield WE - Open mining area - Redbank	157,717 215.110		ha ha	0.4 kg 0.4 kg	j/ha/h	8760 h/y 8760 h/y										
													_			
WE - Open mining area - Houston WE - active rehab areas - Uncontrolled	86,880	25	ha ha	0.4 kg 0.4 kg		8760 h/y 8760 h/y										
WE - Open mining area - Houston	86,880				j/ha/h j/ha/h			% control % control								

Table C.12-6: Year 10 – Drayton South Emissions Calculations

	TSP emissions (kg/y)		Joite	Emission units	South Emission	Variable		Variable	units	Variable 4 Unite	Variable Unite	Varial	ble Unite
WHYNOT Topsoil removal & Site preparation - Dozers on Whynot	NEW (AII)		Cinto Cinto	factor	1	2		3			5	6	
Topsoli removal & Site preparation - Lozers on Witynot Topsoli removal - Sh/Ex/FELs loading topsoli - Whynot Topsoli removal - Hauling topsoli to emplacement area (east) - Whynot	26,182 122 1,628	3,129 129,962 64,981	t/y	16.7 kg/h 0.00188 kg/t 0.10021 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load	275.0	2 moisture content in % 2 moisture content in % 0 Vehicle gross mass (t)	50	% control % control km/retum trip	4.18 kg/VKT	3 % sit cont	ent	75 % control
Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot Topsoil removal - Emplacing topsoil at emplacement area - Whynot	1,079 245	64,981 129,962	t/y t/y	0.06644 kg/t 0.00188 kg/t	222 t/load 1.59 average of (wind speed/2.2)^1.3 in m/s	275.0	Vehicle gross mass (t) 2 moisture content in %		km/retum trip	4.18 kg/VKT	3 % silt cont		75 % control
OB - Driling - Whynot OB - Blasting - Whynot OB - Dozers on Dragline OB in-pit - Whynot	3,593 20,406 31,819		holes/y blasts/y h/y	0.59 kg/hole 182 kg/blast 12.52 kg/h	70 % control 8823 Area of blast in square metres 10 silt content in %	2.	5 moisture content in %						
OB - Dragline removal of OB - Whynot OB - Dozers on Excavator OB in-pit - Whynot	305,709 60,308 28,513	10,287,862 4,816 20,694,368	bcm/y h/y	0.0297 kg/m3 (loose) 12.52 kg/h 0.00138 kg/t	7 drop distance in m 10 silt content in %	2.	5 moisture content in % 5 moisture content in %						
OB - Excavator loading OB to haul truck - Whynot OB - Hauling excavator OB to emplacement area (east) - Whynot OB - Hauling excavator OB to emplacement area (west) - Whynot	259,229	20,094,388 10,347,184 10,347,184	t/y	0.100138 kg/t 0.10021 kg/t 0.06644 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load 222 t/load	275.0	5 moisture content in % 0 Vehicle gross mass (t) 0 Vehicle gross mass (t)		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % silt cont 3 % silt cont		75 % control 75 % control
OB - Dozers on OB haul roads (east) - Whynot OB - Dozers on OB haul roads (west) - Whynot	13,676 13,676 28,513	1,092 1,092 20,694,368	h/y h/y	12.52 kg/h 12.52 kg/h 0.00138 kg/t	10 silt content in % 10 silt content in %	2.	5 moisture content in % 5 moisture content in %						
OB- Emplacing excavator OB at emplacement area - Whynot OB - Dozers on OB emplacement area - Whynot OB - Dozers in-pit ancillary tasks - Whynot	92,127	7,358 6,204	h/y h/y	12.52 kg/h 12.52 kg/h	1.59 average of (wind speed/2.2)^1.3 in m/s 10 silt content in % 10 silt content in %	2.5	5 moisture content in % 5 moisture content in % 5 moisture content in %						_
OB - Dozers ripping/pushing/clean-up Partings - Whynot OB - Loading partings to haul trucks - Whynot	40,730 1,793 16,303	3,253 1,301,448 650,724	t/y	12.52 kg/h 0.00138 kg/t 0.10021 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	5 moisture content in % 5 moisture content in %						
OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (west) - Whynot OB - Emplacing Partings at emplacement area - Whynot	10,809 1,793	650,724 1,301,448	t/y t/y	0.06644 kg/t 0.00138 kg/t	222 t/load 222 t/load 1.59 average of (wind speed/2.2)^1.3 in m/s	275.0	0 Vehicle gross mass (t) 0 Vehicle gross mass (t) 5 moisture content in %		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % sit cont 3 % sit cont	ent	75 % control 75 % control
CL - Drilling coal and partings - Whynot CL - Blasting coal and partings - Whynot	1,949 1,798 121,150	52	holes/y blasts/y h/y	0.5900 kg/hole 34.2691 kg/blast 14.1156 kg/h	70 % control 2895 Area of blast in square metres								
CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot CL - Sh/Ex/FELs loading open coal to trucks - Whynot CL - Hauling open coal in-pit roads (east) - Whynot	98,772	2,378,473 1,189,236	t/y t/y	0.04153 kg/t 0.14610 kg/t	5 sit content in % 9 moisture content in % 70 t/load	65.0	9 moisture content in % 0 Vehicle gross mass (t)	5	km/retum trip	2.18 kg/VKT	3 % silt cont	ent	75 % control
CL - Hauling open coal to ROM pad (east) - Whynot CL - Hauling open coal in-pit roads (middle) - Whynot	127,014 25,657 169,292	1,189,236 1,189,236 1,189,236	t/y	0.71202 kg/t 0.08630 kg/t 0.94903 kg/t	70 t/load 70 t/load	65.0	0 Vehicle gross mass (t) 0 Vehicle gross mass (t)		km/retum trip km/retum trip	2.18 kg/VKT 2.18 kg/VKT	3 % silt cont 3 % silt cont	ent	85 % control 75 % control
CL - Hauling open coal to ROM pad (middle) - Whynot CL - Unloading ROM to ROM stockpiles/hopper - Whynot CL- Handle coal at CHPP - Whynot	7,135	2,378,473 2,378,473	t/y	0.94903 kg/t 0.010 kg/t 0.0002 kg/t	70 t/load 70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s	65.1	Vehicle gross mass (t) 9 moisture content in %	30	km/retum trip	2.18 kg/VKT	3 % sit cont	ent	85 % control
CL - Rehandle ROM coal at stockpiles/hopper - Whynot BLAKEFIELD	2,378	237,847	t/y	0.01 kg/t									
Site preparation - Dozers on Blakefield Topsoil removal - Sh/Ev/FELs loading topsoil - Blakefield Topsoil removal - Hauling topsoil to emplacement area - Blakefield	2,654 11 121	317 11,236 11,236	t/y	16.7 kg/h 0.00188 kg/t 0.04293 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load	275.0	2 moisture content in % 2 moisture content in % 0 Vehicle gross mass (t)	50	% control % control km/retum trip	4.177 kg/VKT	3 % sit cont	ent	75 % control
Topsoil removal - Emplacing topsoil at emplacement area - Blakefield OB - Drilling - Blakefield	21 418	11,236 2,359	t/y holes/y	0.00188 kg/t 0.59 kg/hole	1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control		2 moisture content in %						
OB - Blasting - Blakefield OB - Dozers on Dragline OB in-pit - Blakefield OB - Dragline removal of OB - Blakefield	2,371.44 4,153 64,652		blasts/y h/y hcm/y	182 kg/blast 12.52 kg/h 0.0297 kg/m3 (loose)	8823 Area of blast in square metres 10 silt content in % 7 drop distance in m	2.	5 moisture content in %						_
OB - Dozers on OB emplacement area - Blakefield OB - Dozers in-pit ancillary tasks - Blakefield	4,153 9,028	332 721	h/y h/y	12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %	2.5	5 moisture content in % 5 moisture content in %						
OB - Dozers ripping/pushing/clean-up Partings - Blakefield OB - loading partings to trucks - Blakefield OB - Hauling partings to emplacement area - Blakefield	546 94 736	44 68,579 68,579		12.52 kg/h 0.00138 kg/t 0.04293 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load	2.5	5 moisture content in % 5 moisture content in % 0 Vehicle gross mass (t)		km/retum trip	4.177 kg/VKT	3 % sit cont	ent	75 % control
OB - Emplacing partings to emplacement area - Blakefield CL - Drilling coal - Blakefield	94	68,579 455	t/y holes/y	0.00138 kg/t 0.5900 kg/hole	1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control		5 moisture content in %	2.3	any recent crip	-carring/vkl	5 W SIL COM		. o se control
CL - Blasting coal - Blakefield CL - Dozers ripping/pushing/clean-up ROM in-pit - Blakefield CL - Sh/Ex/FELs loading open coal to trucks - Blakefield	74 2,417 4,076		blasts/y h/y	34.2691 kg/blast 14.1156 kg/h 0.04153 kg/t	2895 Area of blast in square metres 5 silt content in % 9 moisture content in %		9 moisture content in %						
CL - Hauling open coal in-pit roads - Blakefield CL - Hauling open coal in-pit roads - Blakefield CL - Hauling open coal to ROM pad - Blakefield	1,320 16,700	98,156 98,156	t/y t/y	0.05381 kg/t 1.13422 kg/t	70 t/load 70 t/load	65.0	0 Vehicle gross mass (t) 0 Vehicle gross mass (t)		km/retum trip km/retum trip	2.18 kg/VKT 2.18 kg/VKT	3 % silt cont 3 % silt cont		75 % control 85 % control
CL - Unloading ROM to ROM stockples/hopper - Blakefield CL - Handle coal at CHPP - Blakefield CL - Rehandle ROM coal at stockpiles/hopper - Blakefield	294 21 98	98,156 98,156 9,816	t/y	0.010 kg/t 0.0002 kg/t 0.01 kg/t	70 % control 1.46 average of (wind speed/2.2)^1.3 in m/s		9 moisture content in %						
REDBANK Site preparation - Dozers on Redbank	13,219	1,580		16.7 kg/h	10 silt content in %		2 moisture content in %	50	% control				
Topsoli removal - Sh/Ex/FELs loading topsoli - Redbank Topsoli removal - Hauling topsoli to emplacement area (north) - Redbank	78	83,191 41,596	t/y t/y	0.00188 kq/t 0.09211 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load		2 moisture content in % 0 Vehicle gross mass (t)	4.9	% control km/retum trip	4.18 kg/VKT	3 % sit cont		75 % control
Topsoil removal - Hauling topsoil to emplacement area (south)- Redbank Topsoil removal - Emplacing topsoil at emplacement area -Redbank OB - Driling - Redbank	1,459 157 1,825	41,596 83,191 10,312		0.14035 kg/t 0.00188 kg/t 0.59 kg/hole	222 t/load 1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control	2/5.	0 Vehicle gross mass (t) 2 moisture content in %	7.4	km/retum trip	4.18 kg/VKT	3 % sit cont	ent .	75 % control
OB - Blasting - Redbank OB - Dozers on Excavator OB in-pit - Redbank	10,365.04	5,795	blasts/y h/y	182 kg/blast 12.52 kg/h	8823 Area of blast in square metres 10 silt content in %	2.	5 moisture content in %						
OB - Excavator loading OB to haul truck - Redbank OB - Hauling to emplacement area (north) - Redbank OB - Hauling to emplacement area (south) - Redbank	34,303 286,656 436,787	24,896,975 12,448,488 12,448,488	t/y	0.00138 kg/t 0.09211 kg/t 0.14035 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load 222 t/load	275.0	5 moisture content in % 0 Vehicle gross mass (t) 0 Vehicle gross mass (t)		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % silt cont 3 % silt cont		75 % control 75 % control
OB - Dozers on OB haul roads (north) - Redbank OB - Dozers on OB haul roads (south) - Redbank	16,402 16,402	1,310 1,310	h/y h/y	12.52 kg/h 12.52 kg/h	10 silt content in % 10 silt content in %	2.	5 moisture content in % 5 moisture content in %						
OB- Emplacing excavator OB at emplacement area - Redbank OB - Dozers on OB emplacement area - Redbank OB - Dozers in-pit ancillary tasks - Redbank	34,303 72,556 39,459	24,896,975 5,795 3,151	h/y	0.00138 kg/t 12.52 kg/h 12.52 kg/h	1.59 average of (wind speed/2.2)^1.3 in m/s 10 silt content in % 10 silt content in %	2.5	5 moisture content in % 5 moisture content in % 5 moisture content in %						
OB - Dozers ripping/pushing/clean-up Partings -Redbank OB - loading partings to trucks - Redbank	10,725	857 1,044,222	h/y t/y	12.52 kg/h 0.00138 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.	5 moisture content in % 5 moisture content in %						
OB - Hauling partings to emplacement area (north) - Redbank OB - Hauling partings to emplacement area (south)- Redbank OB - Emplacing partings to emplacement area - Redbank	24,046 36,639 1,439	1,044,222 1,044,222 1,044,222	t/y	0.09211 kg/t 0.14035 kg/t 0.00138 kg/t	222 t/load 222 t/load 1.59 average of (wind speed/2.2)^1.3 in m/s	275.0	0 Vehicle gross mass (t) 0 Vehicle gross mass (t) 5 moisture content in %		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % silt cont 3 % silt cont		75 % control 75 % control
CL - Drilling coal - Redbank CL - Blasting coal - Redbank	1,216	6,871 33	holes/y blasts/y	0.5900 kg/hole 34.2691 kg/blast	70 % control 2895 Area of blast in square metres								
CL - Dozers ripping/pushing/clean-up ROM in-pit - Redbank CL - Sh/Ex/FELs loading open coal to trucks - Redbank CL - Hauling open coal in-pit roads - Redbank	49,308 61,621 134,830	3,493 1,483,845 1,483,845	t/y	14.1156 kg/h 0.04153 kg/t 0.36346 kg/t	5 silt content in % 9 moisture content in % 70 t/load	65.	9 moisture content in % 0 Vehicle gross mass (t)		km/retum trip	2.18 kg/VKT	3 % sit cont		75 % control
CL - Hauling open coal to ROM pad - Redbank CL - Unloading ROM to ROM stockpiles/hopper -Redbank	221,987 14,838	1,483,845 1,483,845	t/y t/y	0.99735 kg/t 0.010 kg/t	70 t/load 70 % control	65.1	Vehicle gross mass (t)		km/return trip	2.18 kg/VKT	3 % sit cont		85 % control
CL - Handle coal at CHPP - Redbank CL - Rehandle ROM coal at stockpiles/hopper - Redbank HOUSTON	311 1,484	1,483,845 148,384	t/y t/y	0.0002 kg/t 0.01 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s		9 moisture content in %						
Topsol removal - Dozers/Excavators stripping topsol - Houston Topsol removal - Sh/Ex/FELs loading topsol - Houston	6,181 30	31,953		16.7 kg/h 0.00188 kg/t	10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s		2 moisture content in % 2 moisture content in %	50	% control % control				
Topsoil removal - Hauling topsoil to emplacement area (east) - Houston Topsoil removal - Hauling topsoil to emplacement area (west) - Houston Topsoil removal - Emplacing topsoil at emplacement area - Houston	131 159 60	15,977 15,977 31,953	t/y	0.03283 kg/t 0.03969 kg/t 0.00188 kg/t	222 t/truck load 222 t/truck load 1.59 average of (wind speed/2.2)^1.3 in m/s		0 Vehicle gross mass (t) 0 Vehicle gross mass (t) 2 moisture content in %		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % silt cont 3 % silt cont		75 % control 75 % control
OB - Drilling - Houston OB - Blasting - Houston	841 4,778	4,754 26	holes/y blasts/y	0.59 kg/hole 182 kg/blast	70 % control 8823 Area of blast in square metres								
OB - Dozers on Dragline OB in-pit - Houston OB - Dragline removal of OB - Houston OB - Dozers on Excavator OB in-pit - Houston	8,293 82,210 11,497	2,766,556	h/y bcm/y h/y	12.52 kg/h 0.0297 kg/m3 (loose) 12.52 kg/h	10 silt content in % 7 drop distance in m 10 silt content in %	2.5	5 moisture content in % 5 moisture content in % 5 moisture content in %						
OB - Excavator loading OB to haul truck - Houston OB - Hauling to emplacement area (east) - Houston	5,436 16,188	3,945,131 1,972,565	t/y t/y	0.00138 kg/t 0.03283 kg/t	1.59 average of (wind speed/2.2)^1.3 in m/s 222 t/load	2.5	5 moisture content in % 0 Vehicle gross mass (t)		km/retum trip	4.18 kg/VKT	3 % sit cont		75 % control
OB - Hauling to emplacement area (west) - Houston OB - Dozers on OB haul roads (east) - Houston OB - Dozers on OB haul roads (west) - Houston	19,571 2,607 2,607		t/y h/y h/y	0.03969 kg/t 12.52 kg/h 12.52 kg/h	222 t/load 10 silt content in % 10 silt content in %	2.5	0 Vehicle gross mass (t) 5 moisture content in % 5 moisture content in %	2.1	km/retum trip	4.18 kg/VKT	3 % silt cont	ent	75 % control
OB- Emplacing at emplacement area - Houston OB - Dozers on OB emplacement area - Houston	5,436 19,790	3,945,131 1,581	t/y h/y	0.00138 kg/t 12.52 kg/h	1.59 average of (wind speed/2.2)^1.3 in m/s 10 silt content in %	2.	5 moisture content in % 5 moisture content in %						
OB - Dozers in-pit ancillary tasks - Houston OB - Dozers ripping/pushing/clean-up Partings - Houston OB - Loading partings to trucks - Houston	18,191 7,830 242	1,453 625 175,692	h/y	12.52 kg/h 12.52 kg/h 0.00138 kg/t	10 silt content in % 10 silt content in % 1.59 average of (wind speed/2.2)^1.3 in m/s	2.5	5 moisture content in % 5 moisture content in % 5 moisture content in %						
OB - Hauling partings to emplacement area (east) - Houston OB - Hauling partings to emplacement area (west) - Houston	721 872	87,846 87,846	t/y t/y	0.03283 kg/t 0.03969 kg/t	222 t/load 222 t/load	275.0	Vehicle gross mass (t) Vehicle gross mass (t)		km/retum trip km/retum trip	4.18 kg/VKT 4.18 kg/VKT	3 % sit cont 3 % sit cont		75 % control 75 % control
CL - Emplacing partings at emplacement area - Houston CL - Driling coal - Houston CL - Blasting coal - Houston	242 1,665 570		holes/y	0.00138 kg/t 1.5900 kg/hole 34.2691 kg/blast	1.59 average of (wind speed/2.2)^1.3 in m/s 70 % control 2895 Area of blast in square metres	2.	5 moisture content in %						
CL - Blasting coal - Houston CL - Dozers ripping/pushing/clean-up ROM (in-pit) - Houston CL - Sh/Ex/FELs loading open coal to trucks - Houston	49,678 31,307	3,519 753,885	blasts/y h/y t/y	14.1156 kg/h 0.04153 kg/t	5 sit content in % 9 moisture content in %		9 moisture content in %						
CL - Hauling open coal in-pit roads (east) - Houston CL - Hauling open coal in-pit roads (west) - Houston	7,668 4,454 45,818	376,942 376,942 376,942	t/y	0.08137 kg/t 0.04726 kg/t 0.81035 kg/t	70 t/load 70 t/load 70 t/load	65.0	0 Vehicle gross mass (t) 0 Vehicle gross mass (t) 0 Vehicle gross mass (t)	1.5	km/retum trip km/retum trip km/retum trip	2.18 kg/VKT 2.18 kg/VKT 2.18 kg/VKT	3 % sit cont 3 % sit cont 3 % sit cont	ent	75 % control 75 % control 85 % control
CL - Hauling open coal to ROM pad (east) - Houston CL - Hauling open coal to ROM pad (west) - Houston CL - Unloading ROM to ROM stockpiles/hopper - Houston	50,000 2,262	376,942 753,885	t/y t/y	0.88430 kg/t 0.010 kg/t	70 t/load 70 % control	65.0	0 Vehicle gross mass (t)		km/retum trip km/retum trip	2.18 kg/VKT 2.18 kg/VKT	3% sit cont 3% sit cont		85 % control 85 % control
CL - Handle coal at CHPP - Houston CL - Rehandle ROM coal at stockpiles/hopper - Houston	158 754	753,885	t/y t/y	0.0002 kg/t 0.01 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s		9 moisture content in %						
ROM/REJECTS HANDLING CL - Dozers ROM Coal Handling & Rejects - ROM stockpile CL - Loading rejects	81,371	1,178,590	h/y t/y	14.1156 kg/h Rejects very wet therefore r	5 sit content in %		9 moisture content in %						
CL - Transporting rejects CL - Unloading rejects	57,788	1,178,590 1,178,590	t/y	0.1961 kg/t Rejects very wet therefore r	91 t/load	117.9	9 Vehicle gross mass (t)	6.2	km/retum trip	2.85 kg/VKT	3 % silt cont	ent	75 % control
PRODUCT COAL CL - Loading product stockpile CL - Loading product coal to trains	408	3,432,878 3,432,878	t/y t/y	0.0002 kg/t 0.0002 kg/t	1.46 average of (wind speed/2.2)^1.3 in m/s 1.46 average of (wind speed/2.2)^1.3 in m/s		11 moisture content in % 11 moisture content in %	25	% control				
WIND EROSION WE - OB dump & disturbed area - Uncontrolled	1,306,674	373	ha	0.4 kg/ha/h	8760 h/y								
WE - OB dump & disturbed area - Controlled WE - Open mining area - Whynot WE - Open mining area - Blakefield	72,593 397,444 34,361	41 113 10	ha ha ha	0.4 kg/ha/h 0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y 8760 h/y		50 [°] % control						
WE - Open mining area - Redbank WE - Open mining area - Houston	254,412 97,717	73 28	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y								
WE - ROM stockpiles WE - Product stockpiles	7,358 52,560	6 15	ha ha	0.4 kg/ha/h 0.4 kg/ha/h	8760 h/y 8760 h/y		55 % control						

Table C.12-7: Year 15 – Drayton South Emissions Calculations

	TSP	rear	20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				arcarac								
ACTIVITY	emissions	Intensity		Emission factor		Variable 1		Variable 2						Variable 5			Units
	(kg/y)																
WHYNOT Topsoil removal & Site preparation - Dozers on Whynot	NEW 40,720	1.077	b.L.	16.7	- 6		sit content in %		moisture content in %		% control						
Topsoil removal & She preparation - Edzers on Whynot Topsoil removal - Sh/Ex/FELs loading topsoil - Whynot	40,720	4,866 209,439		0.00191			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		% control % control		-				
Topsoil removal - Hauling topsoil to emplacement area (east) - Whynot	3,158	104,719		0.121			t/load		Vehicle gross mass (t)		km/return trip	4.18 k	ig/VKT	3	% silt content	75	% control
Topsoil removal - Hauling topsoil to emplacement area (west) - Whynot	1,800	104,719		0.069			t/load		Vehicle gross mass (t)	3.6	km/return trip	4.18 k	ig/VKT	3	% silt content	75	% control
Topsoil removal - Emplacing topsoil at emplacement area - Whynot OB - Drilling - Whynot	400 6,331	209,439	t/y holes/v	0.00191			average of (wind speed/2.2)^1.3 in m/s % control	2	moisture content in %				_				
OB - Dniing - Whynot OB - Blasting - Whynot	33,891		blasts/y		g/noie g/blast		Area of blast in square metres						-				
OB - Dozers on Dragline OB in-pit - Whynot	29,219	2,334	h/y	12.52			silt content in %	2.5	moisture content in %								
OB - Dragline removal of OB - Whynot	341,927	11,506,666			g/m3 (loose)		drop distance in m		moisture content in %				_				
OB - Dozers on Excavator OB in-pit - Whynot OB - Excavator loading OB to haul truck - Whynot	131,675 63,223	10,516 45,208,878		12.52) 0.00140)			sit content in % average of (wind speed/2.2)^1.3 in m/s		moisture content in % moisture content in %								
OB - Excavator loading OB to naul truck - winyhot OB - Hauling excavator OB to emplacement area (east) - Whynot	681,746	22,604,439		0.12			t/load		Vehicle gross mass (t)	64	km/return trip	4.18 k	n/VKT	3	% silt content	75	% control
OB - Hauling excavator OB to emplacement area (west) - Whynot	388,474	22,604,439	t/y	0.07			t/load		Vehicle gross mass (t)		km/return trip	4.18 k			% silt content		% control
OB - Dozers on OB haul roads (east) - Whynot	29,859	2,385		12.52			sit content in %		moisture content in %								
OB - Dozers on OB haul roads (west) - Whynot	29,859	2,385		12.52			sit content in %		moisture content in %								
OB - Emplacing excavator OB at emplacement area - Whynot OB - Dozers on OB emplacement area - Whynot	63,223 160,894	45,208,878 12,850		0.0014			average of (wind speed/2.2)^1.3 in m/s silt content in %		moisture content in % moisture content in %				-				
OB - Dozers in-pit ancillary tasks - Whynot	121,956	9,740		12.52			sit content in %		moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Whynot	68,048	5,435		12.52			sit content in %		moisture content in %								
OB - Loading partings to haul trucks - Whynot	3,036	2,171,174		0.0014			average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
OB - Hauling partings to emplacement area (east) - Whynot OB - Hauling partings to emplacement area (west) - Whynot	32,741 18,657	1,085,587 1,085,587		0.121 (t/load t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	4.18 k 4.18 k			% silt content % silt content		% control % control
OB - Emplacing Partings at emplacement area (West) - Whynot	3,036	2,171,174		0.00140			average of (wind speed/2.2)^1.3 in m/s		moisture content in %	3.0	NIFICUITUP	4.10 %	4/4K1		TO SIL CONCEIL	/J	70 CONCION
CL - Drilling coal and partings - Whynot	2,486	14,047	holes/y	0.5900 (g/hole		% control										
CL - Blasting coal and partings - Whynot	2,484	89		27.89			Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	199,023 171,332	14,100 4,125,733		14.12			silt content in %	9	moisture content in %								
CL - Sh/Ex/FELs loading open coal to trucks - Whynot CL - Hauling open coal in-pit roads (east) - Whynot	96,921	4,125,755		0.19			moisture content in % t/load	65.0	Vehicle gross mass (t)	6	km/return trip	2.18 k	a/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad (east) - Whynot	221,150	2,062,867	t/y	0.71	g/t	7	t/load	65.0	Vehicle gross mass (t)		km/return trip	2.10 k			% silt content		% control
CL - Hauling open coal in-pit roads (middle) - Whynot	56,757	2,062,867		0.11	g/t	7	t/load	65.0	Vehicle gross mass (t)	4	km/return trip	2.18 k	ag/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad (middle) - Whynot	299,156	2,062,867		0.97			t/load	65.0	Vehicle gross mass (t)	31	km/return trip	2.18 k	ig/VKT	3	% silt content	85	% control
CL - Unloading ROM to ROM stockpiles/hopper - Whynot CL- Handle coal at CHPP - Whynot	12,377	4,125,733 4,125,733		0.010			% control average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
CL- Handle Coal at CHPP - Winyhot CL - Rehandle ROM coal at stockpiles/hopper - Whynot	4,126	412,573		0.0002		1.4	arcroge or (mina speed/2/2), 113 m t//S		molecure content in %								
BLAKEFIELD																	
CL - Highwall transfer point - Blakefield (Y18)	116	564,492		0.0002			average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Highwall conveyor - Blakefield CL - Sh/Ex/FELs loading open coal to trucks - Blakefield	23,442	0.0048		0.04	g/ha/h		h/y moisture content in %										
CL - Sn/EX/FELS loading open coal to trucks - Blakefield CL - Hauling open coal in-pit roads - Blakefield	13,591	564,492		0.10			t/load	65.0	Vehicle gross mass (t)	3	km/return trip	2.18 k	:n/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad - Blakefield	93,117	564,492		1.10	g/t		t/load		Vehicle gross mass (t)		km/return trip	2.18 k			% silt content		% control
CL - Unloading RDM to ROM stockpiles/hopper - Blakefield	1,693	564,492		0.010			% control										
CL- Handle coal at CHPP - Blakefield	118	564,492		0.0002		1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Blakefield REDBANK	564	56,449	t/y	0.01)	g/t												
CL - Highwall transfer point - Redbank (Y20)	184	900,000		0.0002		1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Highwall conveyor - Redbank	17	0.0048			g/ha/h		h/y										
CL - Sh/Ex/FELs loading open coal to trucks - Redbank	37,375	900,000 900,000		0.04			moisture content in % t/load	65.0	Vehicle gross mass (t)			2.40	- 0.07		M - 34 4 4	-	M had
CL - Hauling open coal in-pit roads - Redbank CL - Hauling open coal to ROM pad - Redbank	30,570 134,642	900,000		1.00			t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	2.18 k 2.18 k			% silt content % silt content		% control % control
CL - Unloading ROM to ROM stockples/hopper - Redbank	2,700	900,000		0.010			% control		Venicle globs hass (r)		any country	2110	ay ma		to bit content		To concion
CL- Handle coal at CHPP - Redbank	189	900,000		0.0002 (1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Redbank HOUSTON	900	90,000	t/y	0.01	g/t												
Topsoil removal & Site preparation - Dozers on Houston	7,516	ROR	h/y	16.7	n/h	10	silt content in %	7	moisture content in %	50	% control						
Topsoil removal - Sh/Ex/FELs loading topsoil - Houston	20	20,587		0.0019			average of (wind speed/2.2)^1.3 in m/s		moisture content in %		% control						
Topsoil removal - Hauling topsoil to emplacement area (east) - Houston	41	10,294		0.016			t/truck load		Vehicle gross mass (t)	0.8	km/return trip	4.18 k			% silt content	75	% control
Topsoil removal - Hauling topsoil to emplacement area (west) - Houston	88	10,294		0.034			t/truck load		Vehicle gross mass (t)	1.8	km/return trip	4.18 k	ıg/VKT	3	% silt content	75	% control
Topsoil removal - Emplacing topsoil at emplacement area - Houston OB - Drilling - Houston	39	20,587	t/y holes/y	0.0019			average of (wind speed/2.2)^1.3 in m/s % control		moisture content in %								_
OB - Blasting - Houston	6,226		blasts/y	192.87			Area of blast in square metres										
OB - Dozers on Dragline OB in-pit - Houston	11,572	924		12.52			sit content in %		moisture content in %								
OB - Dragline removal of OB - Houston	94,616	3,184,041			g/m3 (loose)		drop distance in m		moisture content in %								
OB - Dozers on Excavator OB in-pit - Houston OB - Excavator loading OB to haul truck - Houston	12,687 6,091	1,013 4,355,818		12.52) 0.0014)	-	10	sit content in % average of (wind speed/2.2)^1.3 in m/s	2.3	moisture content in % moisture content in %								
OB - Hauling to emplacement area (east) - Houston	8,660	2,177,909		0.016			t/bad		Vehicle gross mass (t)	0.8	km/return trip	4.18 k	a/VKT	3	% silt content	75	% control
OB - Hauling to emplacement area (west) - Houston	18,632	2,177,909		0.034			t/load		Vehicle gross mass (t)		km/return trip	4.18 k			% silt content		% control
OB - Dozers on OB haul roads - Houston	5,754		h/y	12.52			sit content in %		moisture content in %								
OB - Emplacing at emplacement area - Houston OB - Dozers on OB emplacement area - Houston	6,091 24,259	4,355,818 1,937		0.0014			average of (wind speed/2.2)^1.3 in m/s silt content in %		moisture content in % moisture content in %								
UB - Dozers on UB emplacement area - Houston OB - Dozers in-pit ancillary tasks - Houston	24,259 22,406	1,957		12.52			sit content in %		moisture content in % moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Houston	8,963	716	h/y	12.52	g/h	10	silt content in %	2.5	moisture content in %								
OB - Loading partings to trucks - Houston	122	87,402	t/y	0.0014			average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
OB - Hauling partings to emplacement area (east) - Houston	174	43,701		0.016			t/load t/load		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip km/return trip	4.18 k 4.18 k			% silt content % silt content		% control % control
OB - Hauling partings to emplacement area (west) - Houston CL - Emplacing partings at emplacement area - Houston	3/4	43,701 87,402		0.0014			average of (wind speed/2.2)^1.3 in m/s		moisture content in %	1.8	kmyrecum cnp	4.18 8	ag/ VK I	5	% SILE CONCERT	/5	1/16 COTTERON
CL - Drilling coal - Houston	417	2,358		0.59	g/hole		% control		Contraction in 18								
CL - Blasting coal - Houston	417	15	h/y	27.89			Area of blast in square metres										
CL - Dozers ripping/pushing/clean-up ROM (in-pit) - Houston	42,303	2,997		14.12			silt content in %	9	moisture content in %								
CL - Sh/Ex/FELs loading open coal to trucks - Houston CL - Hauling open coal in-pit roads - Houston	28,762 14,295	692,611 692,611		0.042			moisture content in % t/load	65.0	Vehicle gross mass (t)	26	km/return trip	2.18 k	in/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad - Houston	84,415	692,611		0.81			t/bad		Vehicle gross mass (t) Vehicle gross mass (t)		km/return trip	2.10 k			% silt content		% control
CL - Unloading ROM to ROM stockpiles/hopper - Houston	2,078	692,611	t/y	0.010	g/t		% control										
CL- Handle coal at CHPP - Houston	145	692,611		0.0002		1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Houston ROM/REJECTS HANDLING	693	69,261	ųγ	0.01)	y/t												
CL - Dozers ROM Coal Handling & Rejects - ROM stockpile	81,371	5,765	t/y	14.12	g/h		silt content in %	c	moisture content in %								
CL - Loading rejects		1,204,586	t/y														
CL - Transporting rejects	59,062	1,204,586	t/y	0.1961	g/t	9:	t/load	117.9	Vehicle gross mass (t)	6.2	km/return trip	2.85 k	ig/VKT	3	% silt content	75	% control
CL - Unloading rejects	•	1,204,586	t/y	-													
PRODUCT COAL CL - Loading product stockpile	554	4,658,602	t/v	0.0002	a/t	1.4	average of (wind speed/2.2)^1.3 in m/s	11	moisture content in %	25	% control						
CL - Loading product stockpie CL - Loading product coal to trains	738	4,658,602		0.0002			average of (wind speed/2.2)^1.3 in m/s		moisture content in %								
WIND EROSION																	
WE - OB dump & disturbed area - Uncontrolled	1,065,361		ha		g/ha/h	876			the second s								
WE - OB dump & disturbed area - Controlled WE - Open mining area - Whynot & Redbank	59,187 759,293	34 217	ha ha		g/ha/h g/ha/h	876) 876)		50	% control								
WE - Open mining area - Blakefield (Y18)	24,613		ha		g/ha/h g/ha/h	876											
WE - Open mining area - Houston	74,636	21	ha	0.4	g/ha/h	876	h/y										
WE - ROM stockpiles	7,358		ha		g/ha/h		h/y	65	% control								
WE - Product stockpiles	52,560	15	ha	0.4)	g/ha/h	876	h/y										

						.,											
ACTIVITY	TSP emissions (kg/y)			Emission factor								Variable 4	Units	Variable 5		Variable 6	
WHYNOT	NEW																
OB - Drilling - Whynot	3,938	22,247	holes/y	0.59	kg/hole	70	% control										
OB - Blasting - Whynot	7,356	208	blasts/y	35	kg/blast	2956	Area of blast in square metres										
OB - Dozers on Dragline OB in-pit - Whynot	24,434	1,951	h/y	12.52	kg/h	10	silt content in %	2.5	moisture content in %								
OB - Dragline removal of OB - Whynot	209,200	7,040,073	bcm/y	0.0297	kg/m3 (loose)	7	drop distance in m	2.5	moisture content in %								
OB - Dozers on OB emplacement area - Whynot	24,434	1,951	h/y	12.52	kg/h	10	silt content in %	2.5	moisture content in %								
OB - Dozers in-pit ancillary tasks - Whynot	144,449	11,536	h/y	12.52	kg/h	10	silt content in %	2.5	moisture content in %								
OB - Dozers ripping/pushing/clean-up Partings - Whynot	4,056	324	h/y	12.52	kg/h	10	silt content in %	2.5	moisture content in %								
OB - Loading partings to haul trucks - Whynot	241	172,459	t/y	0.00140	kg/t	1.61	average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in %								
OB - Hauling partings to emplacement area (east) - Whynot	2,435	86,229	t/y	0.11295	kq/t	222	t/load	275.0	Vehicle gross mass (t)	6.0	km/return trip	4.18	kg/VKT	3	% silt content	75	% control
OB - Hauling partings to emplacement area (west) - Whynot	717	86,229	t/y	0.03326	kg/t	222	t/load	275.0	Vehicle gross mass (t)	3.4	km/return trip	2.18	kg/VKT	3	% silt content	75	% control
OB - Emplacing Partings at emplacement area - Whynot	241	172,459	t/y	0.00140	kg/t	1.61	average of (wind speed/2.2)^1.3 in m/s	2.5	moisture content in %				-				
CL - Highwall transfer point - Whynot	128	550,912	t/y	0.0002	kg/t	1.61	average of (wind speed/2.2)^1.3 in m/s	ġ	moisture content in %								
CL - Highwall conveyor - Whynot	17	0.0048	ha	0.4	kg/ha/h	8760	h/y										
CL - Dozers ripping/pushing/clean-up ROM in-pit - Whynot	51,483	3,647	h/y	14.1156	ka/h	5	silt content in %	9	moisture content in %								
CL - Sh/Ex/FELs loading open coal to trucks - Whynot	44,625	1,074,582	t/y	0.04153	kg/t	9	moisture content in %										
CL - Hauling open coal in-pit roads (east) - Whynot	18,585	537,291	t/y	0.13836	kg/t	70	t/load	65.0	Vehicle gross mass (t)	4	km/return trip	2.18	kg/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad (east) - Whynot	63,736	537,291	t/y	0.79083	kg/t	70	t/load	65.0	Vehicle gross mass (t)	25	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Hauling open coal in-pit roads (middle) - Whynot	10,897	537,291	t/y	0.08112	ka/t	70	t/load		Vehicle gross mass (t)	3	km/return trip	2.18	kg/VKT	3	% silt content	75	% control
CL - Hauling open coal to ROM pad (middle) - Whynot	81,802	537,291	t/y	1.01500	kq/t	70	t/load	65.0	Vehicle gross mass (t)	33	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Unloading ROM to ROM stockpiles/hopper - Whynot	3,224	1,074,582	t/y	0.010) kq/t	70	% control										
CL- Handle coal at CHPP - Whynot	225	1,074,582	t/y	0.0002	kq/t	1.46	average of (wind speed/2.2)^1.3 in m/s	ġ	moisture content in %								
CL - Rehandle ROM coal at stockpiles/hopper - Whynot	1,075	107,458	t/y	0.01	kq/t												
ROM/REJECTS HANDLING					-												
CL - Dozers ROM Coal Handling & Rejects - ROM stockpile	81,371	5,765	h/y	14.1156	ka/h	5	silt content in %	g	moisture content in %								
CL - Loading rejects		268,645	t/y	Rejects very w	vet therefore n	o dust			,								
CL - Transporting rejects	13,172	268,645	t/y	0.1961	kq/t	91	t/load	117.9	Vehicle gross mass (t)	6.2	km/return trip	2.85	kg/VKT	3	% silt content	75	% control
CL - Unloading rejects		268,645	t/y	Rejects very w	vet therefore n	o dust											
PRODUCT COAL																	
CL - Loading product stockpile			t/y	0.0002	ka/t	1.46	average of (wind speed/2.2)^1.3 in m/s	11	moisture content in %	25	% control						
CL - Loading product coal to trains			t/y	0.0002			average of (wind speed/2.2)^1.3 in m/s	11	moisture content in %								
WIND EROSION							a contract of the second										
WE - OB dump & disturbed area - Uncontrolled	1,159,429	331	ha	0.4	kg/ha/h	8760	h/v										
WE - OB dump & disturbed area - Controlled	64,413		ha		kg/ha/h	8760		50	% control								
WE - Open mining area - Whynot	192.750	55	ha	0.4	ko/ha/h	8760	h/v										
WE - Open mining area - Whynot WE - ROM stockpiles	192,750		ha ha		kg/ha/h kg/ha/h	8760 8760		65	% control								

Table C.12-9: Year 3 – Drayton Emissions Calculations

ACTIVITY	TSP emissions (kg/y)	Intensity	units	Emission factor	units	Variable 1	units	Variable 2	units	Variable 3	units	Variable 4	Units	Variable 5	Units	Variable 6	Units
WHYNOT																	
CL - Hauling ROM coal to pre-conveyor ROM pad (east) - Whynot	38,248	1,968,877	t/y	0.13	kg/t	7) t/load	65.0	Vehicle gross mass (t)	4	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Hauling ROM coal to pre-conveyor ROM pad (middle) - Whynot	114,984	1,968,877	t/y	0.39	kg/t	7	t/load	65.0	Vehicle gross mass (t)	12	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Whynot	11,813	3,937,754	t/y	0.010	kg/t											70	% control
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Whynot	3,938	393,775	t/y	0.01	kg/t												
BLAKEFIELD																	
CL - Hauling ROM coal to pre-conveyor ROM pad - Blakefield	43,605	564,492	11	0.51		7) t/load	65.0	Vehicle gross mass (t)	17	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Blakefield	1,693	564,492		0.010												70	% control
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Blakefield	564	56,449	t/y	0.01	kg/t												
REDBANK																	
CL - Hauling RDM coal to pre-conveyor RDM pad - Redbank	61,239	900,000	11	0.45		7	t/load	65.0	Vehicle gross mass (t)	15	km/return trip	2.18	kg/VKT	3	% silt content	1	% control
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Redbank	2,700	900,000		0.010												70	% control
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Redbank	900	90,000	t/y	0.01	kg/t												
HOUSTON																	
CL - Hauling ROM coal to ROM pad - Houston	34,015	988,521	11	0.23	kg/t	7) t/load	65.0	Vehicle gross mass (t)	7.4	km/return trip	2.18	kg/VKT	3	% silt content	85	% control
CL - Unloading ROM to pre-conveyor ROM stockpiles/hopper - Houston	2,966	988,521	t/y	0.010	kg/t											70	% control
CL - Rehandle ROM coal at pre-conveyor stockpiles/hopper - Houston	6,391	639,077	t/y	0.01	kg/t												
ROM/REJECTS HANDLING																	
CL - Dozers ROM Coal Handling & Rejects - CHPP ROM stockpiles	81,371	5,765	t/y	14.12	kg/h	1	silt content in %	9	moisture content in %								
CL - Loading from pre-conveyor ROM stockpile (25% of total ROM)	15,977	1,597,692	t/y	0.010	kg/t												
CL - Unloading from pre-conveyor ROM stockpile to hopper (25% of total ROM)	15,977	1,597,692	t/y	0.010	kg/t												
CL - Hopper transfer to conveyor at pre-conveyor RDM pad	402	6,390,767	t/y	0.0002	kg/t	1.4	5 average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %							70	% control
CL - Conveying to CHPP stockpile		1.3199	ha	0.4	kg/ha/h	876) h/y									100	% control
CL - Conveyor transfer at CHPP ROM stockpile	402	6,390,767	t/y	0.0002	kg/t	1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %							70	% control
CL - Loading from CHPP ROM stockpile	63,908	6,390,767	t/y	0.010	kg/t												
CL - Unloading from CHPP ROM stockpile to CHPP	63,908	6,390,767	t/y	0.010	kg/t												
CL- Handle coal at CHPP	1,341	6,390,767	t/y	0.0002	kg/t	1.4	average of (wind speed/2.2)^1.3 in m/s	9	moisture content in %								
CL - Loading rejects		1,597,692	t/y														
CL - Transporting rejects	78,337	1,597,692	t/y	0.1961	kg/t	9:	t/load	117.9	Vehicle gross mass (t)	6.2	km/return trip	2.85	kg/VKT	3	% silt content	75	% control
CL - Unloading rejects		1,597,692	t/y														
PRODUCT COAL																	
CL - Loading product stockpile	533	4,487,110	t/y	0.0002	kg/t	1.4	average of (wind speed/2.2)^1.3 in m/s	11	moisture content in %							25	% control
CL - Loading product coal to trains	711	4,487,110	t/y	0.0002	kg/t	1.4	average of (wind speed/2.2)^1.3 in m/s	11	moisture content in %								
WIND EROSION																	
WE - ROM stockpiles	7,358	6	ha	0.4	kg/ha/h	876) h/y									65	% control
WE - ROM @ CHPP stockpiles	7,358	6	ha	0.4	kg/ha/h	876) h/y									65	% control
WE - Product stockpies	52,560	15	ha	0.4	ko/ha/h	876) h/v										

Table C.12-10: Drayton South Emissions Calculations – Conveyor Option

APPENDIX D – PM_{2.5} ASSESSMENT

D.1 PROJECT ONLY ANNUAL PM_{2.5} PREDICTIONS

A summary of the Project-only predicted $PM_{2.5}$ concentrations at each of the individual residences are provided in **Table D.12-11**.

There are no privately owned residences that are predicted to experience annual average $PM_{2.5}$ concentrations due to emissions from the Project-only above the NEPM standard (8 µg/m³).

Table D.12-11: Annual PM2.5 concentrations (μ g/m3) at nearby residences for each
modelling year – Project Only
Deciset Only

Project Only Numual Average PM.s. (tag/m ³) New Standard = 8 µg/m ³ Var 3 [Vear 10] Vear 10 Vear 20 Vear 27 Privately owned residences Drayton South 2 0.1 0.1 0.2 0.2 0.1 0.0 3 0.2 0.1 0.2 0.2 0.2 0.2 0.0 24A 0.1 0.1 0.2 0.2 0.2 0.2 0.0 24B 0.1 0.1 0.2 0.2 0.2 0.2 0.0 27 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.4 0.4 0.1 218C 0.3 0.3 0.3 0.3					Ducient Only			
NEPM Standard = 8 µg/m ³ Year 3A Year 3D Year 3D Year 20 Year 27 Drivately owned residences 2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 2448 0.1 0.2 0.2 0.2 0.2 0.2 0.0 1207 0.2 0.2 0.0 1207 0.2 0.2 0.0 1207 0.2 0.0 1207 0.2 0.0 1217 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								
Vear 3A Vear 3B Vear 3V Vear 3V Vear 3V Vear 27 Privately owned residences Drayton South Drayton South 2 0.1 0.1 0.2 0.2 0.1 0.0 3 0.2 0.1 0.1 0.2 0.2 0.2 0.0 24A 0.1 0.1 0.2 0.2 0.2 0.2 0.0 217 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <th>ID</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ID							
Privately owned residences Drayton South 2 0.1 0.1 0.2 0.2 0.1 0.0 3 0.2 0.1 0.2 0.2 0.2 0.2 0.0 24A 0.1 0.1 0.2 0.2 0.2 0.2 0.0 24B 0.1 0.1 0.2 0.2 0.2 0.2 0.0 25 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.0 172 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219B 0.3 0.3 0.3 0.3 0.5 0.4 0.1 219C 0.3 0.3 0.3 0.5 0.4 0.1 226A						- /		
Drayton South 2 0.1 0.1 0.2 0.2 0.1 0.0 3 0.2 0.1 0.1 0.2 0.2 0.2 0.0 248 0.1 0.1 0.2 0.2 0.2 0.2 0.0 25 0.2 0.1 0.2 0.2 0.2 0.2 0.0 207 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 209 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 2118 0.3 0.3 0.3 0.3 0.4 0.6 0.6 0.5 0.1 2198 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.1 2266 0.4 0.5 0.9 2.0 1.8 0.4 0.1 2274 0.2 <th></th> <th> Year 3A</th> <th></th> <th></th> <th></th> <th></th> <th>Year 20</th> <th>Year 27</th>		Year 3A					Year 20	Year 27
2 0.1 0.1 0.2 0.2 0.1 0.0 24A 0.1 0.1 0.2 0.2 0.2 0.2 0.0 24B 0.1 0.1 0.2 0.2 0.2 0.2 0.0 25 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.0 172 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 207 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 217B 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226C 0.4 0.5 0.9			P			:5		
3 0.2 0.1 0.2 0.2 0.2 0.0 24A 0.1 0.1 0.2 0.2 0.2 0.2 0.0 24B 0.1 0.1 0.2 0.2 0.2 0.2 0.0 25 0.2 0.1 0.2 0.2 0.2 0.2 0.0 25 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.1 207 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.1 217B 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 <		0.1	0.1			0.0	0.1	
24A 0.1 0.1 0.2 0.2 0.2 0.0 24B 0.1 0.1 0.2 0.2 0.2 0.2 0.0 172 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 207 0.2 0.2 0.3 0.3 0.3 0.3 0.1 209 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.4 0.4 0.4 0.4 0.1 217B 0.3 0.3 0.3 0.3 0.4 0.4 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219C 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.3 0.4 0.6 1.1 1.0 0.3								
248 0.1 0.1 0.2 0.2 0.2 0.0 25 0.2 0.1 0.2 0.2 0.2 0.0 172 0.3 0.3 0.3 0.3 0.3 0.4 0.1 207 0.2 0.2 0.2 0.3 0.3 0.4 0.4 0.1 219 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.4 0.6 0.6 0.6 0.2 217B 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219A 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219C 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1		I contract the second se						
25 0.2 0.1 0.2 0.2 0.2 0.0 172 0.3 0.3 0.3 0.3 0.3 0.1 207 0.2 0.2 0.2 0.3 0.3 0.3 0.1 209 0.3 0.3 0.3 0.4 0.4 0.4 0.1 211 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.4 0.4 0.1 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.2 2.0 0.4 0.1 227B 0.2 0.		1						
112 0.3 0.3 0.3 0.4 0.1 207 0.2 0.2 0.3 0.3 0.3 0.1 209 0.3 0.3 0.3 0.4 0.4 0.5 0.1 211 0.3 0.3 0.3 0.4 0.4 0.4 0.4 217B 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219B 0.3 0.3 0.3 0.4 0.6 0.6 0.5 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226B 0.5 0.5 0.9 2.2 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.2 0.3 0.3 0.2 0.1 2		I contract the second se						
207 0.2 0.2 0.3 0.3 0.3 0.1 209 0.3 0.3 0.3 0.4 0.4 0.4 0.1 211 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.4 0.4 0.4 0.4 0.1 217B 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.9 2.2 2.0 0.4 0.1 227A 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1								
209 0.3 0.3 0.4 0.4 0.5 0.1 2111 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217A 0.4 0.4 0.6 0.6 0.6 0.6 0.2 217B 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.1 219A 0.3 0.3 0.3 0.4 0.6 0.6 0.5 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.0 1.8 0.4 0.1 227A 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3								
211 0.3 0.3 0.4 0.4 0.4 0.1 217B 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 217B 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219A 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.3 0.6 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226C 0.4 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 227A 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.3 0.3 0.2								
217A 0.4 0.4 0.4 0.6 0.6 0.6 0.2 217B 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219A 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.4 0.6 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.2		I contract the second se						
217B 0.3 0.3 0.3 0.4 0.4 0.4 0.1 219B 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219B 0.3 0.3 0.4 0.6 0.6 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2								
219A 0.3 0.3 0.4 0.6 0.5 0.4 0.1 219B 0.3 0.3 0.3 0.4 0.6 0.5 0.4 0.1 219C 0.3 0.3 0.3 0.5 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 227A 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2								1
219B 0.3 0.3 0.4 0.6 0.6 0.5 0.1 219C 0.3 0.3 0.3 0.6 0.5 0.4 0.1 219D 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 <		I contract the second se						
219C 0.3 0.3 0.3 0.6 0.5 0.4 0.1 219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226C 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1		I contract the second se						
219D 0.3 0.3 0.3 0.5 0.5 0.4 0.1 226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227F 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.2 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1								
226A 0.4 0.4 0.8 1.8 1.6 0.4 0.1 226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.2 0.4 0.4 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1								
226B 0.5 0.5 0.9 2.2 2.0 0.4 0.1 226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2								
226C 0.4 0.5 0.9 2.0 1.8 0.4 0.1 226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.1								
226D 0.3 0.4 0.6 1.1 1.0 0.3 0.1 227A 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 <th></th> <th>I contract the second se</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		I contract the second se						
227A 0.2 0.2 0.3 0.4 0.4 0.2 0.1 227B 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.4 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1								
2278 0.2 0.2 0.3 0.3 0.2 0.1 227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.3 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.1 0.1 0.1								
227C 0.2 0.2 0.2 0.3 0.3 0.2 0.1 227D 0.2 0.2 0.2 0.4 0.3 0.2 0.1 227F 0.2 0.2 0.2 0.4 0.4 0.4 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2		I contract the second se						
227D 0.2 0.2 0.2 0.4 0.3 0.2 0.1 227E 0.2 0.2 0.4 0.4 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.2 0.2 0.2 0.3 0.3 0.2 0.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
227E 0.2 0.2 0.4 0.4 0.2 0.1 227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.2 0.2 0.2 0.3 0.3 0.2 0.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
227F 0.5 0.4 0.6 1.2 1.2 0.4 0.1 228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228D 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2								
228A 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228D 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228K 0.2 0.2 0.2 0.2 0.2 0.2 0.1 230 0.1 0.1 0.1 0.1 0.1 0.0		I contract the second se	1					
228B 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228D 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.1 0.1 0.1								1
228C 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228D 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.0 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 238M 0.2 0.2 0.2 0.3 0.3 0.2		I contract the second se						
228D 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 238M 0.1 0.1 0.1 0.1 0.1 0.0		1						
228E 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 238M 0.2 0.2 0.2 0.4 0.4 0.2 0.1 238A 0.1 0.1 0.1 0.1 0.1 0.0		I contract the second se						
228F 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 230 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.0								
228G 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 230 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.0 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.0		I contract the second se						
228H 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228I 0.1 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.4 0.4 0.2 0.1 230 0.1 0.1 0.1 0.1 0.1 0.0 0.1 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.0 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.0								1
228I 0.1 0.1 0.1 0.1 0.1 0.0 228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 230 0.1 0.1 0.1 0.1 0.1 0.1 0.1 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.1 0.0 <th></th> <th>I contract the second se</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		I contract the second se						
228J 0.1 0.1 0.1 0.2 0.2 0.1 0.0 228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 230 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1		I contract the second se						
228K 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.4 0.4 0.2 0.1 230 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1		I contract the second se						
228L 0.2 0.2 0.2 0.3 0.3 0.2 0.0 228M 0.2 0.2 0.2 0.4 0.4 0.2 0.1 230 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1		1	1					
228M 0.2 0.2 0.2 0.4 0.4 0.2 0.1 230 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 <								
230 0.1 0.1 0.1 0.1 0.1 0.0 238A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.0 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.0 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.0 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.0 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 0.0	228M		1					1
238A 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
238B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238C 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238D 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0		0.1	1	0.1		0.1	0.1	
238D 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0	238B	0.1	0.1	0.1	0.1		0.1	0.0
238D 0.1 0.1 0.1 0.1 0.1 0.0 238E 0.1 0.1 0.1 0.1 0.1 0.0 238F 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0	238C	0.1	0.1	0.1	0.1	0.1	0.1	0.0
238F 0.1 0.1 0.1 0.1 0.1 0.0 239A 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.0	238D		0.1	0.1	0.1	0.1	0.1	0.0
239A 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.0 239B 0.1 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0	238E	0.1	0.1	0.1	0.1	0.1	0.1	0.0
239B 0.1 0.1 0.1 0.1 0.1 0.0 239C 0.1 0.1 0.1 0.1 0.1 0.1 0.0	238F	0.1	0.1	0.1	0.1	0.1	0.1	0.0
239C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0	239A	0.1	0.1	0.1	0.1	0.1	0.1	0.0
	239B	0.1	0.1	0.1	0.1	0.1	0.1	0.0
239D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0	239C	0.1	0.1	0.1	0.1	0.1	0.1	0.0
	239D	0.1	0.1	0.1	0.1	0.1	0.1	0.0

				Proiect Only			
ID			Annual A	verage PM _{2.5}	. (μg/m³)		
10				Standard = 8			
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
239E	0.1	0.1	0.1	0.1	0.1	0.1	0.0
239F 239G	0.1	0.1	0.1	0.1	0.1	0.1	0.0
239G	0.1	0.1	0.1	0.1	0.1	0.1	0.0
2391	0.1	0.1	0.1	0.1	0.1	0.1	0.0
240A	0.1	0.1	0.1	0.1	0.1	0.1	0.0
240B	0.1	0.1	0.1	0.2	0.1	0.1	0.0
240C	0.1	0.1	0.1	0.2	0.1	0.1	0.0
240D	0.1	0.1	0.1	0.2	0.2	0.1	0.0
240E	0.1	0.1	0.1	0.2	0.1	0.1	0.0
250A	0.2	0.2	0.2	0.2	0.2	0.2	0.0
250B	0.2	0.2	0.2	0.2	0.2	0.2	0.0
253	0.1	0.1	0.1	0.1	0.1	0.1	0.0
254A	0.1	0.1	0.1	0.1	0.1	0.1	0.0
254B	0.1	0.1	0.1	0.1	0.1	0.1	0.0
254C 255	0.1	0.1	0.1	0.1	0.1	0.1	0.0
255	0.1	0.1	0.1	0.1	0.1	0.1	0.0
279	0.1	0.1	0.1	0.1	0.1	0.1	0.0
285	0.1	0.1	0.1	0.1	0.1	0.1	0.0
287	0.1	0.1	0.1	0.1	0.1	0.1	0.0
288	0.1	0.1	0.1	0.1	0.1	0.1	0.0
298A	0.1	0.1	0.1	0.2	0.1	0.1	0.0
298B	0.1	0.1	0.1	0.1	0.1	0.1	0.0
299	0.1	0.1	0.1	0.1	0.1	0.1	0.0
306	0.1	0.1	0.1	0.1	0.1	0.1	0.0
384	0.1	0.1	Drayto 0.0	0.0	0.0	0.0	0.0
385	0.1	0.1	0.0	0.0	0.0	0.0	0.0
386	0.2	0.1	0.1	0.1	0.0	0.1	0.0
387	0.2	0.2	0.1	0.1	0.1	0.1	0.0
390	0.4	0.3	0.1	0.1	0.1	0.1	0.1
398	0.3	0.3	0.1	0.1	0.1	0.1	0.0
399	0.2	0.2	0.1	0.1	0.1	0.1	0.0
400	0.2	0.2	0.1	0.1	0.1	0.1	0.0
401	0.2	0.2	0.1	0.1	0.1	0.1	0.0
402	0.2	0.2	0.1	0.1	0.1	0.1	0.0
403	0.3	0.2	0.1	0.1	0.1	0.1	0.0
411 418	0.3	0.3	0.1	0.1	0.1	0.1	0.0
419	0.2	0.2	0.1	0.1	0.1	0.1	0.0
420	0.2	0.2	0.1	0.1	0.1	0.1	0.0
421	0.2	0.2	0.1	0.1	0.1	0.1	0.0
423	0.2	0.2	0.1	0.1	0.1	0.1	0.0
424	0.2	0.2	0.1	0.1	0.1	0.1	0.0
425	0.2	0.2	0.1	0.1	0.1	0.1	0.0
427	0.2	0.2	0.1	0.1	0.0	0.1	0.0
429 432	0.1	0.1	0.0	0.0	0.0	0.1	0.0
432 433A	0.1	0.1	0.0	0.0	0.0	0.0	0.0
433A 433B	0.1	0.1	0.0	0.0	0.0	0.0	0.0
435	0.1	0.1	0.0	0.0	0.0	0.0	0.0
438	0.1	0.1	0.0	0.0	0.0	0.0	0.0
440	0.1	0.1	0.0	0.0	0.0	0.0	0.0
441	0.1	0.1	0.0	0.0	0.0	0.0	0.0
443	0.1	0.1	0.0	0.0	0.0	0.0	0.0
444	0.1	0.1	0.1	0.1	0.0	0.1	0.0
446A	0.1	0.1	0.1	0.1	0.1	0.1	0.0
446B	0.1	0.1	0.0	0.0	0.0	0.0	0.0
451 455	0.1	0.1	0.0	0.0	0.0	0.0	0.0
455	0.1	0.1	0.0	0.0	0.0	0.0	0.0
450	0.1	0.1	0.0	0.0	0.0	0.0	0.0
	0.1	0.1	0.0	0.0	0.0	0.0	0.0

				Ducient Only							
	Project Only										
ID	Annual Average PM _{2.5} (μg/m ³)										
10	NEPM Standard = 8 μg/m ³										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
	Mine owned residences										
57	0.6	0.6	0.8	0.8	0.8	0.5	0.1				
58A	0.7	0.5	0.8	2.0	2.1	0.5	0.1				
58B	0.6	0.5	0.7	1.6	1.6	0.4	0.1				
60	2.0	2.0	2.1	1.7	1.4	1.6	0.5				
145A	0.8	0.8	0.7	0.8	0.8	1.1	0.3				
145B	1.2	1.1	0.8	0.8	0.9	1.3	0.4				
145C	0.9	0.8	0.7	0.9	0.9	1.1	0.3				
145D	0.7	0.6	0.6	0.9	0.9	1.0	0.3				
388	0.3	0.3	0.1	0.1	0.1	0.1	0.0				
389	0.4	0.4	0.1	0.1	0.1	0.1	0.1				
404	0.0	0.2	0.1	0.1	0.1	0.1	0.0				
410	0.0	0.3	0.1	0.1	0.1	0.1	0.0				

D.2 CUMULATIVE ANNUAL PM_{2.5} PREDICTIONS

To assess the cumulative impact of $PM_{2.5}$ the monitoring data was taken from the nearest EPA monitoring sites at Muswellbrook, Singleton and Camberwell. The annual average for 2011 for each of the site is presented in **Table D.12-12**. These values are already close to or above the current annual NEPM standard for $PM_{2.5}$.

Table D.12-12: Annual average PM_{2.5} concentrations (µg/m³) at nearby EPA monitoring sites

Monitor location	Annual average - 2011
Muswellbrook	9.11
Singleton	7.60
Camberwell	8.24

The 24-hour average values for these three sites are plotted in **Figure D-10**. This monitoring data shows a clear seasonal signal, with and increase across all three sites through winter. This increase in $PM_{2.5}$ is likely the result of domestic wood burning and would explain why the annual average is close or exceeding to the NEPM standard.

The Project alone predicted ground level concentrations are less than 1 μ g/m³ at most residences for all operational years, so they will not likely contribute too greatly to the background PM_{2.5} levels.

Figure D-10: Measured 24-hour average PM_{2.5} at 3 EPA Upper Hunter monitoring sites

D.3 PROJECT ONLY 24 HOUR PM_{2.5} PREDICTIONS

A summary of the predicted maximum 24-hour $PM_{2.5}$ concentrations at each of the individual residences are provided in **Table D.12-13**. No residences are predicted to experience 24-hour average $PM_{2.5}$ levels above the NEPM standard of 25 µg/m³.

Note that the 24-hour $PM_{2.5}$ values do not represent a single worst case day, but rather represent the potential worst case 24-hour $PM_{2.5}$ concentration that could be reached at that particular location across the entire modelling year.

for each modelling year – Project Only							
				Project Only			
ID		Ma			PM _{2.5} (μg/n	1 ³)	
ענ				tandard = 25			
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27
		Р	rivately own	ed residence	S		
			Draytor	n South			
2	2	2	2	2	2	2	0
3	2	2	2	2	2	2	0
24A	3	2	3	3	2	2	0
24B	3	2	3	3	2	2	0
25	3	3	3	3	2	2	0
172	2	2	2	2	2	2	1
207	2	2	2	2	2	2	1
209	3	3	2	3	3	3	1
211	3	2	2	2	3	3	1
217A	4	3	2	3	4	4	1
217B	3	3	2	2	4	4	1
219A	4	3	3	3	4	4	1
219B	4	4	3	3	5	5	1
219C	4	3	3	3	4	4	1
219D	3	3	2	3	4	4	1
226A	5	4	7	11	4	4	2
226B	5	4	7	13	5	5	2
226C	5	4	7	12	4	4	2
226D	4	4	5	9	4	4	1
227A	3	3	4	5	3	3	1
227B	3	3	4	5	3	3	1
227C	3	3	4	5	3	3	1
227D	3	3	4	5	3	3	1
227E	3	3	4	5	3	3	1
227F	3	3	3	6	4	4	1
228A	2	2	3	4	3	3	1
228B	2	2	3	4	3	3	1
228C	2	2	3	4	3	3	1
228D	2	2	3	4	3	3	1
228E	2	2	3	4	3	3	1
228F	2	2	3	4	3	3	1
228G	2	2	3	4	3	3	1
228H	2	2	3	4	3	3	1
2281	2	2	2	3	2	2	1
228J	2	2	3	4	3	3	1
228K	2	2	3	5	4	4	1
228L	3	2	3	6	4	4	1
228M	3	2	4	6	4	4	1
230	2	2	2	3	2	2	0
238A	2	2	2	2	2	2	0
238B	2	2	2	2	2	2	0
238C	2	2	2	2	2	2	0
238D	2	2	2	2	2	2	0
238E	2	2	2	2	2	2	0
238F	2	2	2	2	2	2	0
239A	2	2	2	2	2	2	0
239B	2	2	2	2	2	2	0
	<u> </u>	~	<u> </u>	<u> </u>	4	<u> </u>	

Table D.12-13: Maximum 24-hour PM_{2.5} concentrations (μg/m³) at nearby residences for each modelling year – Project Only

				Project Only			
ID		M		nour average	PM _{2.5} (μg/n	n³)	
	Year 3A	Year 3B	NEPM S Year 5	<i>tandard = 25</i> Year 10		Year 20	Year 27
239C	Year 3A	Year 3B	2	2 Year 10	Year 15 2	2 Year 20	Year 27
239D	2	2	2	2	2	2	0
239E	2	2	2	2	2	2	0
239F	2	2	2	2	2	2	0
239G	2	2	2	2	2	2	0
239H	2	2	2	2	2	2	0
2391	2	2	2	2	2	2	0
240A	3	3	3	3	3	3	0
240B	3	3	3	4	3	3	1
240C 240D	3	3	3	4	3	3	1
240D	3	3	3	3	3	3	1
250A	3	3	4	4	3	3	1
250B	3	3	4	4	3	3	1
253	2	2	3	3	2	2	0
254A	2	2	3	3	2	2	0
254B	2	2	3	3	2	2	0
254C	2	2	3	3	2	2	0
255	2	2	2	2	2	2	0
279	2	2	2	2	2	2	0
284	2	2	2	2	2	2	0
285 287	2	2	2	2	2	2	0
287	2	2	2	2	2	2	0
298A	3	3	3	3	2	2	1
298B	3	3	3	3	2	2	0
299	2	2	3	3	2	2	0
306	2	2	2	2	2	2	0
			Drayto	n Mine			
384	2	2	1	1	1	1	0
385	3	3	1	1	1	1	0
386	3	3	1	1	1	1	0
387	4	4	1	1	2	2	1
390 398	5	5	2	2	2	2	1
398	4	4	1	1	2	2	0
400	4	3	1	1	1	1	0
401	4	4	1	1	1	1	0
402	4	4	1	1	2	2	1
403	5	4	1	1	2	2	1
411	4	4	3	3	2	3	1
418	4	3	3	3	2	3	1
419	3	3	2	2	2	2	1
420	3	3	2	2	2	2	1
421 423	3	3	2	2	1	2	1
423	3	3	1	1	<u> </u>	1	0
424	3	2	1	1	1	1	0
427	3	3	1	1	1	1	0
429	3	3	1	1	1	1	0
432	2	2	1	1	1	1	0
433A	2	2	1	1	1	1	0
433B	2	2	1	1	1	1	0
435	2	2	1	1	1	1	0
438	1	1	1	1	1	1	0
440 441	2	2	1	1	1	1	0
441	2	2	1	1	1	1	0
443	2	2	1	2	1	1	0
446A	2	2	2	2	1	1	0
446B	2	2	1	1	1	1	0
451	1	1	1	1	1	1	0
455	1	1	1	1	1	1	0

				Project Only							
ID	Maximum 24-hour average PM _{2.5} (µg/m ³)										
10	NEPM Standard = 25 µg/m ³										
	Year 3A	Year 3B	Year 5	Year 10	Year 15	Year 20	Year 27				
456	1	1	1	1	1	1	0				
460	2	2	1	1	1	1	0				
			Mine owned	l residences							
57	6	6	8	8	8	7	1				
58A	4	4	5	9	12	6	2				
58B	4	3	4	8	10	5	1				
60	10	9	9	7	6	8	4				
145A	6	6	3	4	4	6	1				
145B	8	8	4	4	4	7	2				
145C	7	6	3	4	4	6	1				
145D	5	5	3	4	4	6	1				
388	4	4	1	1	1	2	1				
389	5	5	2	2	2	2	1				
404	4	4	1	1	1	1	1				
410	4	4	3	3	2	3	1				

D.4 CUMULATIVE 24 HOUR PM_{2.5} PREDICTIONS

The Monte Carlo method was used for the cumulative analysis of the 24-hour average $PM_{2.5}$. The three nearest EPA Upper Hunter Air Quality network sites of Muswellbrook, Singleton and Camberwell $PM_{2.5}$ data were used as the background data to add to the predicted Project alone concentrations, as in the $PM_{2.5}$ cumulative analysis. The same 13 residences were assessed for the average 24-hour $PM_{2.5}$ impacts.

The results of the Monte Carlo simulations are present in **Figure D-11**, **Figure D-12** and **Figure D-13**. As in the $PM_{2.5}$ analysis the residences closer to the Project are more likely to experience days over the NEPM standard, however for all sites the predicted number of days varying between 1 to 4 days per year (see **Table D.12-14**).

Figure D-11: Year 10 – Number of days likely to exceed cumulative maximum 24-h average PM_{2.5} concentration (25 µg/m³) for south/south-west residences

Figure D-12: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average $PM_{2.5}$ concentration (25 μ g/m³) for residences north east of Drayton Mine

Figure D-13: Year 10 – Number of days likely to exceed cumulative maximum 24-hr average $PM_{2.5}$ concentration (25 μ g/m³) for south east residences

Receptor ID	Maximum predicted PM _{2.5} 24-hour concentrations	Predicted number of days exceeding 25 μ g/m ³				
	Project Alone	Project Alone	Cumulative			
57	8	0	2			
58A	9	0	4			
145A	4	0	2			
226B	13	0	4			
226D	9	0	2			
227A	5	0	2			
227F	6	0	2			
240A	3	0	1			
250A	4	0	2			
209	3	0	1			
217	3	0	2			
410	3	0	1			
411	3	0	1			

Table D.12-14: Summary of days exceeding 25 μ g/m ³ for 24 hour PM _{2.5} – Ye	ar10
project alone and cumulative	

APPENDIX E - COMPARISON WITH OTHER MINE PLANS

Figure E1: Year 3 impact comparison – Mine Plan 1 and Mine Plan 2

Figure E3: Year 10 impact comparison – Mine Plan 1 and Mine Plan 2 (V1 and V2)

APPENDIX F - MODEL SET UP

-	I Parameters used for TAPM and CALMET				
TAPM (v 4.0.4)					
Number of grids (spacing)	30 km, 10 km, 3 km, 1km				
Number of grid points	42 x 42 x 35				
Year of analysis	January 2005 – December 2005				
Centre of domain	35º03′ S, 151º34′ E				
CALMET (v. 6.327)					
Meteorological grid domain	120 km x 120 km (outer), 30 km x 36 km (inner)				
Meteorological grid resolution	2.5 km (outer), 0.25 km (inner)				
Surface meteorological stations					
Inner and outer grid:	Saddlers Creek Meteorological Station				
	- Wind speed				
	- Wind direction				
	- Temperature				
	Macleans Hill Meteorological Station				
	- Wind speed				
	- Wind direction				
	- Temperature				
	Drayton Meteorological Station				
	- Wind speed - Relative humidity				
	- Wind direction				
	- Temperature				
	ТАРМ				
	- Wind speed - Cloud Amount				
	- Wind direction - Relative humidity				
	- Temperature - Sea Level Pressure				
	- Cloud Height				
Outer grid only:	Williamtown RAFF AWS (BoM, Station No. 061078)				
	- Wind speed - Cloud Amount				
	- Wind direction - Relative humidity				
	- Temperature - Sea Level Pressure				
	- Cloud Height				
	Patterson AWS (BoM, Station No. 061250)				
	- Wind speed - Relative humidity				
	- Wind direction - Sea Level Pressure				
	- Temperature				
	Scone AWS (BoM, Station No. 061363)				
	- Wind speed - Relative humidity				
	- Wind direction - Sea Level Pressure				
	- Temperature				
	Cessnock Airport AWS (BoM, Station No. 061260)				
	- Wind speed - Relative humidity				
	- Wind direction - Sea Level Pressure				
	- Temperature				
3D.dat	Data extracted from 3 km TAPM				
JU.uai					

Model Set Up Table E1: Meteorological Parameters used for TAPM and CALMET

	1		
IEXTRP	Extrapolate surface wind observations to upper layers	Similarity theory	Similarity theory
BIAS (NZ)	Relative weight given to vertically extrapolated surface observations versus upper air data	NZ * 0	-1, -0.5, -0.25, 0 for all other layers
TERRAD	Radius of influence of terrain	No default (typically 5- 15km)	10 km
RMAX1 and RMAX2	Maximum radius of influence over land for observations in layer 1 and aloft	No Default	6 km (outer) and 0.3 km (inner)
R1 and R2	Distance from observations in layer 1 and aloft at which observations and Step 1 wind fields are weighted equally	No Default	3 km (outer) and 0.1 km (inner)

Table E2: CALMET Model Options used

Table E3: CALPUFF Model Options used

MCHEM	Chemical Transformation	0	Not modelled
MDRY	Dry Deposition	1	Yes
MTRANS	Transitional plume rise allowed?	1	Yes
MTIP	Stack tip downwash?	1	Yes
MRISE	Method to compute plume rise	1	Briggs plume rise
MSHEAR	Vertical wind Shear	0	Vertical wind shear not modelled
MPARTL	Partial plume penetration of elevated inversion?	1	Yes
MSPLIT	Puff Splitting	0	No puff splitting
MSLUG	Near field modelled as slugs	0	Not used
MDISP	Dispersion Coefficients	2	Based on micrometeorology
MPDF	Probability density function used for dispersion under convective conditions	0	No
MROUGH	PG sigma y, z adjusted for z	0	No
MCTADJ	Terrain adjustment method	3	Partial Plume Adjustment
MBDW	Method for building downwash	1	ISC method

APPENDIX G – ESTIMATION OF GHG EMISSIONS

Hansen Bailey

G.1 FUEL CONSUMPTION

Greenhouse gas emissions from diesel consumption were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EF}{1000}$$

Where:

E _{CO2}	2-e	=	Emissions of GHG from diesel combustion	(t CO ₂ -e) ¹	
Q		=	Estimated combustion of diesel	(GJ) ²	
EF		=	Emission factor (scope 1 or scope 3) for diesel combustion	(kg CO ₂ -e/GJ) ³	
1	tCO_2 -e = tonnes of carbon dioxide equivalent.				
2	GJ = gigajoules.				

3 kg CO_2 -e/GJ = kilograms of carbon dioxide equivalents per gigajoule.

The quantity of diesel consumed in gigajoules (GJ) (Q) is calculated using an energy content factor for diesel of 38.6 gigajoules per kilolitre (GJ/kL).

Greenhouse gas emission factors and energy content for diesel were sourced from the NGA Factors (DCCEE, 2011). The estimated annual and Project total GHG emissions from diesel usage are presented in the table below.

Table G.12-15: Estimated CO ₂ -e (tonnes) for Diesel Consumption				
Year	Diesel Consumption (kL)	Emissions (Total
		Scope 1	Scope 3	
2014	52,905	141,928	10,823	152,751
2015	56,204	150,778	11,498	162,276
2016	53,939	144,702	11,035	155,737
2017	50,919	136,600	10,417	147,017
2018	48,987	131,416	10,022	141,438
2019	48,468	130,024	9,915	139,939
2020	28,736	77,091	5,879	82,970
2021	28,688	76,960	5,869	82,829
2022	28,748	77,122	5,881	83,004
2023	28,439	76,292	5,818	82,110
2024	28,416	76,231	5,813	82,044
2025	28,515	76,497	5,834	82,331
2026	28,382	76,141	5,806	81,947
2027	28,140	75,492	5,757	81,249
2028	28,220	75,706	5,773	81,479
2029	28,316	75,963	5,793	81,756
2030	28,954	77,674	5,923	83,597
2031	29,263	78,503	5,987	84,489
2032	30,585	82,051	6,257	88,308
2033	30,133	80,838	6,165	87,002
2034	28,777	77,201	5,887	83,088
2035	28,813	77,298	5,895	83,192
2036	29,084	78,024	5,950	83,974
2037	28,175	75,585	5,764	81,349
2038	28,143	75,499	5,757	81,257
2039	15,437	41,414	3,158	44,572
2040	8,915	23,916	1,824	25,740
Total	882,299	2,366,944	180,501	2,547,445

Table G 12-15: Estimated CO---- (tennes) for Discel Consumption

G.2 ELECTRICITY

Greenhouse gas emissions from electricity usage were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EF}{1000}$$

Where:

E _{CO2-e}	=	Emissions of greenhouse gases from electricity usage	(tCO ₂ -e/annum)
Q	=	Estimated electricity usage	(kWh/annum) ¹
EF	=	Emission factor (Scope 2 or Scope 3) for electricity usage	(kgCO ₂ -e/kWh) ²
¹ kWh/anr	านm	= kilowatt hours per annum	

 2 kgCO₂-e/kWh = kilograms of carbon dioxide equivalents per kilowatt hour

Greenhouse gas scope 1 emission factor (0.89 kg CO_{2-e} per kilowatt hour) and scope 2 (0.18 kg CO_{2-e} per kilowatt hour) were sourced from the NGA Factors (**DCCEE, 2011**). The estimated annual and project total GHG emissions from electricity usage are presented in the table below.

Year	Electricity Consumption (kWh)			Total
		Scope 2	Scope 3	
2014	48,367,931	43,047	8,706	51,754
2015	75,166,485	66,898	13,530	80,428
2016	69,497,537	61,853	12,510	74,362
2017	78,095,970	69,505	14,057	83,563
2018	78,095,970	69,505	14,057	83,563
2019	78,095,970	69,505	14,057	83,563
2020	78,095,970	69,505	14,057	83,563
2021	97,361,949	86,652	17,525	104,177
2022	97,361,949	86,652	17,525	104,177
2023	97,361,949	86,652	17,525	104,177
2024	97,361,949	86,652	17,525	104,177
2025	97,361,949	86,652	17,525	104,177
2026	97,361,949	86,652	17,525	104,177
2027	97,361,949	86,652	17,525	104,177
2028	97,361,949	86,652	17,525	104,177
2029	97,361,949	86,652	17,525	104,177
2030	97,361,949	86,652	17,525	104,177
2031	97,361,949	86,652	17,525	104,177
2032	97,361,949	86,652	17,525	104,177
2033	97,361,949	86,652	17,525	104,177
2034	97,361,949	86,652	17,525	104,177
2035	97,361,949	86,652	17,525	104,177
2036	97,361,949	86,652	17,525	104,177
2037	97,361,949	86,652	17,525	104,177
2038	97,361,949	86,652	17,525	104,177
2039	97,361,949	86,652	17,525	104,177
2040	97,361,949	86,652	17,525	104,177
Total	2,452,654,811	2,182,863	441,478	2,624,341

G.3 FUGITIVE METHANE

Emissions from fugitive CH_4 were estimated using the following equation:

$$E_{co2-e} = Q \times EF$$

Where:

E _{CO2-e}	=	Emissions of greenhouse gases from fugitive CH_4	(t CO ₂ -e/annum)
Q	=	ROM coal extracted during the year	(t)
EF	=	Scope 1 emission factor	(t CO ₂ -e/tonne)

The default emission factor for fugitive emissions from open cut mines (0.045 kg CO_{2-e} per tonne of ROM) was sourced from the NGA Factors (**DCCEE**, **2011**). The estimated annual and Project total GHG emissions from fugitive methane are presented in the table below.

Table G.12-17: Estimated CO ₂ -e	(tonnes) for Fugitive Methane
---	-------------------------------

Year	ROM (tpa)	Scope 1 Emissions (t CO _{2-e})
2014	5,454,000	245,430
2015	5,439,000	244,755
2016	7,000,000	315,000
2017	7,000,000	315,000
2018	5,225,755	235,159
2019	5,257,283	236,578
2020	5,614,141	252,636
2021	5,955,877	268,014
2022	5,319,613	239,383
2023	4,944,801	222,516
2024	4,702,312	211,604
2025	4,499,833	202,493
2026	4,307,385	193,832
2027	4,848,383	218,177
2028	4,610,121	207,455
2029	4,642,751	208,924
2030	4,526,831	203,707
2031	5,124,829	230,617
2032	5,302,532	238,614
2033	5,826,275	262,182
2034	5,351,083	240,799
2035	5,405,115	243,230
2036	4,399,374	197,972
2037	4,229,818	190,342
2038	4,290,827	193,087
2039	1,212,183	54,548
2040	1,074,582	48,356
Total	131,564,705	5,920,412

G.4 **EXPLOSIVES**

Emissions from explosive usage were estimated based on the using the following equation:

$$E_{co2-e} = Q \times EF$$

Where:

E _{CO2-e}	=	Emissions of greenhouse gases from explosives	(t CO ₂ -e/annum)
Q	=	Quantity of explosive used (assumed ANFO)	(t)
EF	=	Scope 1 emission factor	(t CO ₂ -e/tonne explosive)

Greenhouse gas emission factor (0.17 t CO2-e / tonne product) were sourced from the Australian Greenhouse Office (AGO) Factors and Methods Workbook – December 2006. It is noted that the AGO Factors and Methods were replaced by the NGA Factors (**DCCEE, 2011**), however the emission factor for explosives was omitted from the latest version.

The estimated annual and Project total GHG emissions from explosive usage are presented in the table below.

Year	Explosive ANFO (tonnes)	Scope 1 Emissions (t CO _{2-e})
2014	0.660	1 474
2014	8,668	1,474
2015	35,216	5,987
2016	45,734	7,775
2017	45,430	7,723
2018	20,436	3,474
2019	19,437	3,304
2020	19,263	3,275
2021	19,411	3,300
2022	19,004	3,231
2023	19,187	3,262
2024	19,514	3,317
2025	18,515	3,148
2026	18,244	3,101
2027	18,399	3,128
2028	18,345	3,119
2029	17,631	2,997
2030	17,578	2,988
2031	17,739	3,016
2032	18,243	3,101
2033	18,163	3,088
2034	18,139	3,084
2035	18,213	3,096
2036	18,042	3,067
2037	18,241	3,101
2038	17,294	2,940
2039	9,816	1,669
2040	3,996	679
Total	· · · ·	91,442

Table G.12-18: E	Estimated CO ₂ -	e (tonnes)) for E	xplosives

G.5 COAL TRANSPORTATION

The scope 3 emissions associated with product coal transportation have been estimated based on all product coal being transported to Newcastle for export by rail. Emissions associated with product coal transportation have been estimated based on an emission factor for loaded trains of 12.3 grams per net tonne per kilometre (**Queensland Rail Network Access, 2002**).

Emission factors were not available for unloaded trains so the factor for loaded trains is conservatively applied for the return trip. The return rail trip from Drayton to the port of Newcastle is estimated to be 260 km.

The total estimated GHG emissions from rail transport of product coal are provided in the table below.

Year	Product Coal (tpa)	Scope 3 Emissions (t CO _{2-e})
2014	4,308,660	13,779
2015	3,926,638	12,557
2016	4,538,862	14,515
2017	4,953,776	15,842
2018	5,320,080	17,014
2019	4,152,594	13,280
2020	4,243,888	13,572
2021	4,229,080	13,525
2022	4,219,939	13,495
2023	2,869,935	9,178
2024	3,377,974	10,803
2025	3,380,522	10,811
2026	3,387,602	10,834
2027	3,438,379	10,996
2028	3,437,913	10,994
2029	3,466,028	11,084
2030	3,501,407	11,198
2031	3,849,661	12,311
2032	4,290,715	13,722
2033	4,286,418	13,708
2034	4,262,923	13,633
2035	4,287,456	13,711
2036	3,428,680	10,965
2037	3,411,931	10,911
2038	3,420,596	10,939
2039	1,448,650	4,633
2040	1,021,450	3,267
Total	100,461,757	321,277

Table G.12-19: Estimated CO₂-e (tonnes) for Rail Transportation

G.6 ENERGY PRODUCTION - USE OF PRODUCT COAL

The scope 3 emissions associated with the combustion of product coal were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EC \times EF}{1000}$$

Where:

E _{CO2-e}	=	Emissions of GHG from coal combustion	(t CO ₂ -e)	
Q	=	Quantity of product coal burnt	(GJ)	
EC	=	Energy Content Factor for black / coking coal	(GJ/t) ¹	
EF	=	Emission factor for black / coking coal combustion	(kg CO ₂ -e/GJ)	
1 GJ/t = gigajoules per tonne				

The quantity of thermal coal burnt in Mtpa is converted to GJ using an energy content factor for black coal of 27 GJ/t.

The greenhouse gas emission factor and energy content for coal were sourced from the NGA Factors (**DCCEE, 2011**). The emissions associated with the use of the product coal are presented in the table below.

Year Thermal Product Coal (tpa) Scope 3 Emissions (t					
i cui	merman rodaet coar (tpa)	CO _{2-e})			
2014	4,308,660	10,287,399			
2015	3,926,638	9,375,279			
2016	4,538,862	10,837,032			
2017	4,953,776	11,827,686			
2018	5,320,080	12,702,275			
2019	4,152,594	9,914,776			
2020	4,243,888	10,132,749			
2021	4,229,080	10,097,395			
2022	4,219,939	10,075,569			
2023	2,869,935	6,852,286			
2024	3,377,974	8,065,285			
2025	3,380,522	8,071,369			
2026	3,387,602	8,088,272			
2027	3,438,379	8,209,509			
2028	3,437,913	8,208,396			
2029	3,466,028	8,275,523			
2030	3,501,407	8,359,995			
2031	3,849,661	9,191,488			
2032	4,290,715	10,244,555			
2033	4,286,418	10,234,294			
2034	4,262,923	10,178,198			
2035	4,287,456	10,236,773			
2036	3,428,680	8,186,350			
2037	3,411,931	8,146,360			
2038	3,420,596	8,167,049			
2039	1,448,650	3,458,811			
2040	1,021,450	2,438,824			
Total	100,461,757	239,863,496			

Table G.12-20: Estimated CO₂-e (tonnes) for Energy Production

