

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095

Stamford Property Services Pty Ltd PO Box R685 Royal Exchange NSW 1225

Attention: Mr Anthony Rice

Email: AnthonyRice@Stamford.com.au

Dear Sirs

Waste Classification of In-situ Material 110-114 Herring Road, Macquarie Park

1. Introduction

This letter report by Douglas Partners Pty Ltd (DP) provides details of the methodology and findings of a preliminary waste classification assessment of *in situ* materials undertaken by Douglas Partners Pty Ltd (DP) at 110 - 114 Herring Road, Macquarie Park. The work was undertaken at the request of the Stamford Property Services Pty Ltd for the off-site disposal of excavated material.

It is understood that the development of the site will include the construction of seven multi-storey buildings with an associated underground basement to depths of 7 to 13 m below ground level. Excavated material for the basement is proposed to be largely disposed off site.

This assessment was carried out concurrently with a geotechnical investigation and preliminary contamination assessment for the site. The results of the geotechnical investigation are presented separately.

2. Background

A review of the 1930, 1951, 1961, 1970 and 1986 historical aerial photographs indicates that the site was originally used for agricultural purposes (eg grazing) and subsequently developed in the 1950s with several buildings on-site.

3. Site Description

The site is identified as 110 – 114 Herring Road (Lot 1 in D.P.780314), Macquarie Park. It is an approximate rectangular shaped area of 2.24 hectares. The ground surface generally falls to the north

Project 72138.00 31 January 2011 GRB:III

at slopes of approximately 1° to 3°, resulting in an elevation change of approximately 10 m (RL 65.2 – RL 75.1 relative to Australian Height Datum [AHD]).

The site is currently occupied by the Stamford Grand North Ryde Hotel which includes several buildings ranging in height from one to three storeys, a one level underground basement together with associated driveways, gardens and recreational facilities (e.g. pool, tennis court etc).

The site is bounded by the Epping Road to the southwest, Herring Road to the southeast, a residential development which includes single storey villas and a 3 storey unit block to the northeast and a Baptist Retirement Village with one to two storey buildings to the northwest.

Reference to the Sydney 1:100 000 Geological Series Sheet indicates that the site is underlain by Ashfield Shale but in close proximity to Hawkesbury Sandstone at lower elevations to the north. The field work is interpreted as intersecting Mittagong Formation, a thin (typically <6 m) transitional unit between the Ashfield Shale and Hawkesbury Sandstone on the upper portions, and Hawkesbury Sandstone.

4. Waste Classification and Assessment Criteria

The fill soil was assessed in accordance with the Department of Environment and Climate Change (DECC, now the Department of Environment, Climate Change and Water DECCW) *Waste Classification Guidelines*, April 2008 (updated July 2009).

The following publications with background concentration ranges for Australian soils have been referenced in assessing the natural clayey soils within the site:

- NEPC (1999). National Environmental Protection (Assessment of Site Contamination) Measure, Schedule B(1) Guidelines on the Investigation Levels for Soil and Groundwater, Background Ranges.
- Australian and New Zealand Environment and Conservation Council/National Health and Medical Research Council (ANZECC/NHMRC): Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites (1992), Environmental Soil Quality Guidelines, Table 2 - Column A Background (ANZECC A).

With regard to the organic contaminants with no published background concentration ranges, the respective laboratory practical quantitation limits (PQL) of the analytes were used as the evaluation threshold.

5. Fieldwork Methods

The current field work comprised:

- Sixteen boreholes (Bores 101 to 116) drilled with either an underpinning rig or a truck, track or bobcat-mounted auger/rotary drilling and sampling rig. The boreholes were generally drilled to depths ranging from 0.5 m to 2.3 m with 110 mm spiral flight augers, then cased using HW or NW casing and extended to final depths ranging from 10.0 m to 17.55 m by NMLC (52 mm core diameter) diamond coring techniques. Bores 101, 111 and 112 also required diacoring to penetrate concrete layers at various stages during auger drilling. Standard penetration tests (SPTs) were carried out within soils at regular depth intervals. Disturbed soil samples retrieved from the cuttings returned by the auger blade were used for identification and classification purposes.
- One test pit (TP 117) excavated to 0.2 m depth using hand tools for the purpose of obtaining a sample for subsequent laboratory testing.
- Installation of standpipes to depths of 14.0 m, 16.0 m and 11.8 m in Bores 103, 110 and 116 respectively, for subsequent monitoring of the groundwater level. The standpipe wells were purged of water after the completion of drilling and then measured on two subsequent occasions.

Soil samples were collected from the filling and natural clays in every test bore except Bore 101 where difficult drilling conditions precluded sampling. The general sampling procedure is summarised below:

- Collect soil samples directly from the cuttings returned by the auger blade using disposable sampling equipment;
- Transfer samples into laboratory-prepared glass jars, capping immediately and ensuring that the headspace within the sample jar is minimised;
- Label sample containers with individual and unique identification, including project number, sample location and sample depth; and
- Place the glass jars, with Teflon lined lid, into a cooled, insulated and sealed container for transport to the laboratory.

All fieldwork was carried out under the direction of an experienced geo-environmental engineer.

The locations of the bores and pits are given in Drawing 1 (Attachment 1). The test bore and pit surface levels relative to AHD, shown on the borehole and test pit logs, were generally estimated from the survey plan of the site dated 13 October 2010 and prepared by Denny Linker & Co. Pty Ltd (Drawing No. 100915). Test Bore 113 was located within the basement and its level was not indicated on the survey plan and was levelled relative to an identifiable point on the survey plan, to determine its level relative to AHD.

6. Field Work Results

Details of the conditions encountered in the current boreholes and test pits are presented in Attachment 2. The results of previous investigations are presented in Attachment 3. Notes defining classification methods and descriptive terms used in logging the boreholes and test pit are also given in Attachment 2. Summary geological cross sections (Sections A - A' to F - F') are included in Drawings 2 to 7 in Attachment 1.

The material strata encountered in current and previous bores is described in generally increasing depth order below:

- **FILLING** Ranging from 0.2 m to 2.9 m and comprising a surficial layer of asphaltic concrete, concrete or pavers in all but Bores 1 4, underlain by gravels, roadbase, crushed sandstone, gravelly silty sand and clayey silty sand. Additional concrete layer were intersected in Bores 101, 107, 109 111 and 116;
- **CLAYS** Clay and sandy clay to depths of 0.4 2.4 m in Bores 102, 105, 106 and 113 to 116;
- **MITTAGONG** Initially a thin layer of weathered sandstone and laminite (sandstone **FORMATION** interbedded with approximately 10% to 30% siltstone) overlying medium and high strength, highly weathered to fresh, fragmented to slightly fractured, grey and brown sandstone and laminite with ironstone banding (including medium, high and very high strength bands) and clay seams up to 200 mm thick to depths of 2.7 4.7 m in Bores 103 to 111. This unit contains joints dipping from 45° to 90°. A fault with 50 mm displacement was intersected in Bore 111;
- **SANDSTONE** Typically medium and high strength, moderately weathered to fresh, typically fractured to unbroken with some fractured zones, medium and coarse grained, grey and orange sandstone with distinct and indistinct siltstone laminations. This unit contained frequent joints dipping from 45° to 85° and some minor crushed zones.

Outcrops of medium strength sandstone are exposed in the car park on the north-western boundary. The locations and the Reduced Levels of the top of the sandstone exposure are indicated on Drawing 1, Attachment 1.

During the fieldwork in December 2011 asbestos-based products were not observed in the fill.

Page 5 of 11

7. Laboratory Analysis

Selected fill and natural soil samples obtained from the test bores were sent for analysis at a National Association Testing Authorities (NATA) accredited laboratory for a variety of common contaminants including:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- Total Petroleum Hydrocarbons (TPH);
- Benzene, Toluene, Ethyl Benzene and Xylene (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Polychlorinated Biphenyls (PCB);
- Organochlorine Pesticides (OCP); and
- Asbestos.

Table 2 shows the analytical scheme for the fill and natural soil samples.

Sample ID	Material	Heavy Metals	TRH	BTEX	PAH	PCB	ОСР	Phenols	Asbestos
101/1.0-1.4m	Filling	✓	~	~	~	~	✓	✓	\checkmark
102/0.1-0.2m	Filling	✓	~	~	~	~	~	✓	\checkmark
102/0.5-0.6m	Clay	✓	~	✓	✓	~	~	✓	
102/1.0-1.1m	Sandstone	~	√	~	✓	~	✓		
103/0.1-0.2m	Filling	~	✓	~	✓	~	~		\checkmark
104/0.1-0.2m	Filling	\checkmark	✓	~	✓	~	~	~	\checkmark
107/0.1-0.2m	Filling	~	✓	~	~	~	~	~	✓
107/0.5-0.6m	Filling	\checkmark	~	~	~	~	~		
109/0.1-0.2m	Filling	\checkmark	✓	~	✓	~	~	~	\checkmark
109/0.5-0.6m	Filling	\checkmark	✓	~	✓	~	~	~	
110/0.1-0.2m	Filling	\checkmark	✓	~	✓	~	~		\checkmark
110/0.5-0.6m	Filling	~	✓	~	✓	~	✓		
111/0.2-0.3m	Filling	\checkmark	~	~	~	~	~	~	
111/0.5-0.6m	Filling	\checkmark	✓	~	✓	✓	✓	\checkmark	
112/0.1-0.2m	Filling	\checkmark	~	~	~	~	~		\checkmark
115/0.1-0.2m	Filling	~	✓	~	~	~	~		\checkmark
116/0.3-0.4m	Filling	~	✓	~	✓	~	~		
116/1.0-1.1m	Clay	~	✓	~	✓	✓	✓		

Table 2: Analytical Scheme for Samples

Envirolab Services, a laboratory accredited by NATA, was employed to conduct the sample analysis. The laboratory is required to carry out routine in-house QC procedures.

Based on the results of the first round of laboratory analysis (Sections 8 and 9) toxicity characteristic leaching procedure (TCLP) tests were carried out on seven samples (TB102/0.1-0.2 m, TB103/0.1-0.2 m, TB104/0.1-0.2 m, TB107/0.1-0.2 m, TB109/0.1-0.2m, TB110/0.1-0.2m and TB116/0.3-0.4 m) and the leachate analysed for either lead, nickel or PAHs.

8. Summary of Results

A summary of the laboratory results are presented in Table 3, attached. Laboratory certificates are also attached (Attachment 4).

Table 3: Results of Soil Analysis (All results in mg/kg unless otherwise stated)

								Heavy Meta	als							Polycyc	ic Aromatic	Hydrocarbo	ons (PAH)	Total Pe Hydrocarb)		Monocycli	ic Aromatic	Hydrocarbons (BTEX)			Total Polychl	lorinated			
Sample ID	Material	Ars	senic	Cad	mium	Chromium⁵	Сс	opper	Lea	ad	Mer	cury	Nie	:kel	Zinc	Benzo	a)pyrene	P	AH	C6-C9	C10-C36	Benze	ene	Tol	uene	Ethylbenzene	Tota	I Xylene	Asbestos	Biphenyls	(PCB)	Organochlorine Pesticides (OCP) ⁶	Phen	ols
		SCC ¹ (mg/kg)	TCLP ² (mg/L)	SCC (mg/kg)	TCLP S((mg/L) (mg				SCC ng/kg)	TCLP (mg/L)	SCC (mg/kg)	TCLP (mg/L)	SCC (mg/kg)	TCLP (mg/L)	SCC (mg/kg)	SCC (mg/kg)	TCLP (mg/L)	SCC (mg/kg)	TCLP (mg/L)	SCC (mg/kg)	SCC (mg/kg)	SCC (mg/kg)	TCLP (mg/L)	SCC (mg/kg)	TCLP (mg/L)	SCC TCLP (mg/kg) (mg/L)	SCC (mg/kg)	TCLP (mg/L)			TCLP (mg/L)		SCC (mg/kg)	TCLP (mg/L)
	•																																	
101/1.0-1.4	Filling	9		<0.5)		35	14		<0.1		14		62	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0	<5	
102/0.1-0.2	Filling	<4		<0.5	3	3		54	4		<0.1		100	0.1	42	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0	<5	
102/0.5-0.6	Clay	6		<0.5	3	5		9	11		<0.1		21		10	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0			<0.6		<2.0		
102/1.0-1.1	Sandstone	9		<0.5		0			13		<0.1		9		5	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0			<0.6		<2.0		
103/0.1-0.2	Filling	<4		<0.5		3			4		<0.1		81	0.05	39	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0	<5	
104/0.1-0.2	Filling	<4		< 0.5		7			3		<0.1		110	0.09	44	< 0.05		<1.55		<25	<250	<0.5		< 0.5		<1.0	<3.0	-	NAD	<0.6		<2.0	<5	
107/0.1-0.2	Filling	<4		<0.5 <0.5		9			4 17		<0.1 <0.1		110 13	0.1	43	<0.05 <0.05		<1.55 <1.55		<25	<250	<0.5 <0.5		< 0.5		<1.0 <1.0	<3.0 <3.0		NAD	<0.6		<2.0	<5	
109/0.1-0.2	Filling	11 <4	-	<0.5		2			7		<0.1		69	0.04	40	< 0.05		<1.55		<25 <25	<250 <250	<0.5		<0.5 <0.5	-	<1.0	<3.0	-	NAD	<0.6 <0.6		<2.0	<5	
109/0.5-0.6	Filling	7		<0.5		7			18		<0.1		6	0.04	15	< 0.05		<2.7		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0	<5	
110/0.1-0.2	Filling	18		<0.5		4			210	0.1	0.1		7		230	0.2		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0	<5	
110/0.5-0.6	Filling	8		< 0.5		3			61	0.1	<0.1		6		74	< 0.05		<1.55		<25	<250	<0.5		< 0.5		<1.0	<3.0		1010	<0.6		<2.0		
111/0.2-0.3	Filling	7		<0.5		9			19		<0.1		5		11	< 0.05		<1.55		<25	<250	< 0.5		< 0.5		<1.0	<3.0			<0.6		<2.0	<5	
111/0.5-0.6	Filling	<4		<0.5	1	4		3	16		<0.1		2		6	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0			<0.6		<2.0	<5	
112/0.1-0.2	Filling	<4		<0.5	1	5		16	9		<0.1		13		28	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0		
115/0.1-0.2	Filling	<4		<0.5	1	1		28	5		<0.1		28		38	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0		NAD	<0.6		<2.0		
116/0.3-0.4	Filling	<4		<0.5	1	D		27	43		<0.1		13		43	0.9	<0.001	<11.5	<0.016	<25	<250	<0.5		<0.5		<1.0	<3.0			<0.6		<2.0		
116/1.0-1.1	Clay	<4		<0.5	2	3		9	7		<0.1		21		22	< 0.05		<1.55		<25	<250	<0.5		<0.5		<1.0	<3.0			<0.6		<2.0		
SAC		400		80	41	0	4	4000 1	1200		60		2400		28000	4		80		65	1000	1		130		50	25		NAG	40		40/200/800/40	34000	
													Мах	mum value	es of Specif	ic Contami	nant Concen	ntration for (classificatior	n without T	CLP ³													
General Solid Waste (CT1) (mg/kg)		100		20	- 10	0 -		ND	100	-	4	-	40	-	ND	0.8	-	NA	-	NA	NA	10	-	288		600 -	1000		NAG	NA	-	NA	288	-
Restricted Solid Waste (CT2) (mg/kg)	e	400	-	80	- 41	10 -		ND 4	400	-	16	-	160	-	ND	3.2	-	NA	-	NA	NA	40	-	1152	-	2400 -	4000	-	NAG	NA	-	NA	1152	-
					1							1	Maximum	values for	Specific Co	ntaminant	Concentratio	on and Lead	hable conce	entration (w	/ith TCLP)	4		1						1			II	
General Solid Waste																																		
(mg/kg) SCC1 & TCLP1		500	5	100	1 19	00 5		ND 1	1500	5	50	0.2	1050	2	ND	10	0.04	200	NA	650	10000	18	0.5	518	14.4	1080 30	1800	50	NAG	<50	NA	NA	518	14.4
Restricted Solid Waste (mg/kg) SCC2 & TCLP2	e	2000	20	400	4 76	00 20		ND 6	5000	20	200	0.8	4200	8	ND	23	0.16	800	NA	2600	40000	72	2	2073	57.6	4320 120	7200	200	NAG	<50	NA	NA	2073	57.6
Notes																																		
*		NSW EPA	Contaminate	ed Sites: Gu	idelines for the NS	W Site Audito	ors Scherr	ne, 2006. He	alth-base	ed auideline	s for comm	ercial or indu	ustrial (Colu	mn 4)																				
1					n (Total Concentral			.,						,																				
2					cedure (TCLP)	,																												
3					ation Guidelines P	art 1: Classify	ring Waste	e, Table 1: C	Contamin	ant Thresho	ld Values (CT1 & CT2)	for classifyir	ig waste by	chemical as	sessment w	ithout the lea	aching (TCLF	P) test															
4		NSW DEC	C (2008) Wa	ste Classific	ation Guidelines P	art 1: Classify	ving Waste	e, Table 2: L	eachable	e concentrat	ion (TCLP)	and specific	contaminar	t concentra	tion (SCC) \	alues for cla	ssifying wast	te by chemic	al assessmer	nt														
5		All Chromi	um are assur	ned to exist	in the stable Cr(III)	oxidation sta	ite, as Cr((VI) will be to	o reactiv	e and unsta	ible under t	he normal ei	nvironment																					
6		Aldrin+Diel	drin/Chlorda	ne/ DDD+DI	DE+DDT/Heptachl	r																												
95% UCL*		Based on S	Student's-t te	st assuming	a normal distributi	on in accorda	ince with I	NSW EPA S	ampling	design Guid	leline (1995	ō)																						
-		Not Tested																																
NA		Not Applica																																
ND		Not Define																																
NAD			os Detected																															
NAG		No Asbeste	os on Ground	1																														

BD1/16022010 Field Intra Lab Duplicate of sample Bobcat#3/0-0.2

9. Discussion

9.1 Fill

Classification of the filling was generally conducted in accordance with the six step process as set out in the *Waste Classification Guidelines*, 2008 (updated 2009) as set out in Table 4.

Table 4: Six Step Classification

Step	Comments	Rationale
1. Is it special waste?	No	Waste not considered to be clinical, asbestos or tyre waste
2. Is it liquid waste?	No	Waste composed of soil and building materials
3. Is the waste "pre-classified"?	No	Filling material is not pre-classified,
 Does the Waste have hazardous waste characteristics 	No	Waste not observed to/ or considered at risk to contain explosives, gases, flammable solids, oxidising agents, organic peroxides, toxic substances or corrosive substances, substances liable to spontaneous combustion
5. Chemical Assessment	Conducted	Refer to Table 3
6. Is the Waste Putrescible?	No	All observed components of filling composed of materials pre-classified as non-putrescible (i.e. soil and rock, bricks and concrete, building and demolition waste)

Initial testing indicated that elevated concentrations of nickel, lead and benzo(a)pyrene, exceeding the respective contaminant threshold values for General Solid Waste without TCLP results, were obtained in the following samples:

- TB102/0.1-0.2 m Nickel
- TB103/0.1-0.2 m Nickel
- TB104/0.1-0.2 m Nickel
- TB107/0.1-0.2 m Nickel
- TB109/0.1-0.2m Nickel
- TB110/0.1-0.2m Lead
- TB116/0.3-0.4 m Benzo(a)pyrene

Therefore, in view of these results, a TCLP leachability test was carried out on these samples and the leachate analysed for either lead, nickel or PAHs (whichever was relevant) to determine whether the classification could be revised.

Leachable concentrations (TCLP) were reported either below the respective leachable concentration (TCLP1 - as noted in Table 3 of the NSW DECC *Waste Classification Guidelines*,) or laboratory limit of reporting in the soil samples submitted for analysis.

Based on the results of the field investigation and laboratory testing a preliminary *in situ* waste classification of **General Solid Waste** is assigned to fill soils on site. Given the presence of filling and the test results, a site inspection by an experienced environmental scientist or engineer is considered necessary once the site has been stripped of filling and excavated soils are stockpiled on site. A site inspection would aim to confirm or otherwise the assigned classification, assess whether further testing is required to confirm the classification, and confirm complete removal of filling (i.e. exposing underlying natural soils). Once this inspection and any additional required testing have occurred, the waste classification may be confirmed.

The fill classified as General Solid Waste in this report, once confirmed, should only be transported to a facility licensed to accept General Solid Waste. Under the current regulatory framework there is no compliance of the materials that would permit recycling and re-use. Further sampling and testing would be required in an attempt to meet current waste exemptions.

As a general rule, on delivery of the material to the landfill facility, it would be anticipated that the landfill management would check to ensure that the material matches the description and contains no cross-contamination. Any material exhibiting obvious signs of cross-contamination from other sources or materials not described above or odours should be stockpiled and assessed separately by a consultant in accordance with the *Waste Classification Guidelines*.

It should be noted that asbestos-based building materials (e.g. asbestos-cement) are frequently associated with building rubble and demolition waste. Building wastes were identified in the bores and, whilst not detected, asbestos-based waste may be present. If asbestos-based wastes are found during excavation the classification will change to Special Waste (Asbestos), subject to confirmation by the environmental consultant.

Please note that Part 5.6, Section 143 of the Protection of the Environment Operations (POEO) Act 1997 states that is an offence for waste to be transported to a place that cannot lawfully be used as a facility to accept that waste. It is the duty of the owner and transporter of the waste to ensure that the waste is disposed of appropriately. DP accepts no liability for the unlawful disposal of waste materials from any site. DP does not accept any responsibility for the material tracking, loading, management, transport or disposal of waste from the site. Before disposal of the material to a licensed landfill is undertaken, the waste producer will need to obtain prior consent from the landfill. The receiving site should check to ensure that the material received matches the description provided in the report. If you have any queries please do not hesitate to contact the undersigned.

9.2 Natural Soils

The DECC *Waste Classification Guidelines* 'Part 1 – Classifying Waste' defines Virgin Excavated Natural Material (VENM) as:

"natural material (such as clay, gravel, sand, soil or rock fines):

• that does not contain sulphidic ores or soils, or any other waste.

and includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette."

Additional advice is provided on the NSW DECCW web site¹ entitled '<u>How do you assess whether</u> excavated waste material is <u>VENM</u>?' This advice states:

- 1. All VENM should be checked for signs of contamination, such as odours and the presence of any other waste materials, such as bricks, concrete, timber, tiles, and vegetation. A load of excavated material cannot be classified as VENM if it is contaminated or mixed with other waste.
- 2. Check the history of the site from which the material was excavated.
 - If the site has been used for commercial, industrial, mining or agricultural purposes at any time in its history, or if the site contains fill material, or there is potential for chemical contamination from past or current uses, additional verification would be needed to establish that the excavated material is VENM.
 - If the site is, and has always been, used for residential purposes then excavated material from the site (not including surface layers that may be contaminated with physical debris, vegetation, chemicals and fertilisers or asbestos) would not usually require additional verification to demonstrate that the excavated material is VENM.'

No further DECCW guidelines or Gazettal notices have been published/issued that provide additional criteria for assessing VENM.

On the basis of the abovementioned definitions, and the laboratory test results which were within typical background ranges for Australian Soils (refer Table 2) it is considered that the natural soils beneath the filling on site are classifiable as VENM. Once again, this preliminary classification is subject to an inspection once all filling has been removed.

The VENM material is suitable for off-site beneficial reuse.

^{1 &}lt;u>http://www.environment.nsw.gov.au/wr/wastewcmr/.venm.htm</u>, available on 21 July 2010.

10. Limitations

Douglas Partners (DP) has prepared this report for a project at 110 – 114 Herring Road, Macquarie Park, NSW in accordance with DP's proposal dated 25 November 2010 and acceptance received from Mr Anthony Rice of Stamford Property Services Pty Ltd on 30 November 2010. The report is provided for the exclusive use of Stamford Property Services Pty Ltd for this project only and for the purpose(s) described in the report. It should not be used for other projects or by a third party. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions only at the specific sampling or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of anthropogenic influences. Such changes may occur after DP's field testing has been completed.

Yours faithfully Douglas Partners Pty Ltd

Gavin Boyd Associate Reviewed by

Lindsay Rockett Senior Associate

Attachments: 1 - Drawings

- 2 Field Work Results
- 3 Previous Investigations
- 4 Laboratory Test Results

Attachment 1

Drawings 1 to 7

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Locality Plan

LEGEND

- ⊕ Previous Test Bore (October 2009)
- Current Test Bore (December 2010)
- Current Test Pit (December 2010)

Proposed Multi-Storey Building Footprint

BEL Bulk Excavation Level

	<u>A</u> '
PERTY NDARY	
HERRING ROAD	
INIT 1	72
	70
	00
	62
	60
NOTES:	
1. The ground surface leve however is largerly unkn	l is estimated; own over the
existing building footprin 2. Subsurface profile is acc	58 58
locations only and may v away from bores.	ary significantly
 For details of Section A- Drawing 1 	
GEOLOGICAL PROFILE:	56
UNIT 1: Filling UNIT 2: Residual clays and	dextremely
weathered rock UNIT 3: Laminite and fine t	
UNIT 4: Medium to coarse (Hawkesbury Sand	grained sandstone
: NOTE: Summary logs only. Should be rea 300	: d in conjunction with detailed logs. 350
	SITE MAP
	· 116 ₅₁₁₄
	1165114 113 112
	·•
	PROJECT No: 72138
	DRAWING No: 2
	REVISION: 0

	<u>B</u> '
HERRING ROAD APPROXIMATE GRC SURFACE LEVEL	
	68
NOTES: 1. The ground surface lev however is largerly unk	
 existing building footpri 2 Subsurface profile is ac locations only and may away from bores. 3. For details of Section B Drawing 1 	ocurate at bore vary significantly
GEOLOGICAL PROFILE UNIT 1: Filling UNIT 2: Residual clays at weathered rock UNIT 3: Laminite and fine	nd extremely
UNIT 4: Medium to coars (Hawkesbury Sai	ndstone) ad in conjunction with detailed logs.
300	350 SITE MAP
	PROJECT No: 72138
	DRAWING No: 3
	REVISION: 0

	C	,
		72
		70
ROXIMATE GROUND FACE LEVEL		68
		66
		64
		62
		60
NOTES: 1. The ground surface leve however is largerly unkn existing building footprint 2. Subsurface profile is acc locations only and may v away from bores 3. For details of Section C-1	own over the t. curate at bore /ary significantly	58
Drawing 1 GEOLOGICAL PROFILE: UNIT 1: Filling UNIT 2: Residual clays and	d extremely	56
weathered rock	ta un alluna	
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand	e (Mittagong Formation) grained sandstone dstone)	54
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand	e (Mittagong Formation) grained sandstone dstone)	54
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand IOTE: Summary logs only. Should be n	e (Mittagong Formation) grained sandstone dstone)	54
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand IOTE: Summary logs only. Should be n	e (Mittagong Formation) grained sandstone dstone) read in conjunction with detailed logs.	54
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand IOTE: Summary logs only. Should be n	e (Mittagong Formation) grained sandstone dstone) read in conjunction with detailed logs.	54
UNIT 3: Laminite and fine t grained sandstone UNIT 4: Medium to coarse (Hawkesbury Sand IOTE: Summary logs only. Should be n	e (Mittagong Formation) grained sandstone dstone) read in conjunction with detailed logs.	54

D	PROPERTY			D
	-??	APPROXIMATE GROUND SURFACE LEVEL		
		JNIT 1		
	vst			
			G	
			PROPERTY BOUNDARY	
	н		114 Offset 2.0m NW APPROXIMATE	
			UNIT 2	
	v⊨ H			
		UNIT 4		
		UNIT 4	м	
	н			
	v-			
	н		NOTES:	
			however is lar	urface level is estimated; rgerly unknown over the
	Bottom Depth 14.7 m	PROPOSED BASEMENT BEL RL 58.3		rofile is accurate at bore
	·····	BASEMENT BEL RL 58.3	away from bor	
			Bottom Depth 10 m 3. For details of S Drawing 1	Section D-D' refer
			GEOLOGICAL F	PROFILE:
				al clays and extremely
			UNIT 3: Laminite	red rock e and fine to medium
			grained UNIT 4: Medium	I sandstone (Mittagong Formation)
			(Hawke:	sbury Sandstone)
			NOTE: Summary logs only.	Should be read in conjunction with detailed logs.
0 20	40 60	80 100 DISTANCE ALONG PROFILE (m)	120 140	160
LEGEND Core Loss Filling	Sandy Clay	ROCK STRENGTH SOIL CONSISTENCY	TESTS / OTHER	
Core Loss Filling Asphaltic Concrete		EL - Extremely Low vs - very soft vl - very loose VL - Very Low s - soft l - loose L - Low f - firm md - medium dense	N - Standard penetration test value ♀ - Water level BEL Bulk excavation level	
Clay Sandstone coarse	e grained	M - Medium st - stiff d - dense H - High vst - very stiff vd - very dense VH - Very High h - hard		Horizontal Scale (metre
Clay Sandstone coarse Concrete Sandstone fine gr	rained	vii - veiy riigii ii - naid		Vertical Exaggeration =
	CLIENT: Stamford Property Service	tille: INTERPRETED GEOLOGICAL	SECTION D - D'	PROJECT No: 72138
Douglas Pa Geotechnics Environment	OFFICE: Sydney DR/	AWN BY: GRB/LD Proposed Macquarie Village		DRAWING No: 5
Geotechnics Environment	I Groundwater SCALE: 1:500 (H) 1:100 (V) @ A3 DA1	TE: 17.01.2011 110 - 114 Herring Road, Macq	uarie Park	REVISION: 0
	1:100 (V) 0 1.0 DAT			

	<u>E'</u>	
•••••••••••••••••••••••••••••••••••••••	76	6
		1
	72	2
SURFACE LEVEL		
		,
		,
		3
		6
		1
NOTES: 1. The ground surface level	is estimated:	2
however is largerly unkno	own over the	
existing building footprint 2. Subsurface profile is acc		
locations only and may v	ary significantly	
away from bores. 3. For details of Section A-A)
Drawing 1		
GEOLOGICAL PROFILE:		
UNIT 1: Filling		
UNIT 2: Residual clays and weathered rock	extremely 58	3
UNIT 3: Laminite and fine to	o medium (Mittagong Formation)	
UNIT 4: Medium to coarse	grained sandstone	
(Hawkesbury Sand	stone)	
		,
TE: Summary logs only. Should be read	d in conjunction with detailed logs.	
	0 10 I I	
	Horizontal Scale (metres)	,
	Vertical Exaggeration = 5.0	,
	PROJECT No: 72138	
	DRAWING No: 6	
	REVISION: 0	

	F	•
		76
		- 4
		74
		72
SURFACE LEVEL		
•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	70
		68
		66
		64
		-
NOTES: 1. The ground surface le		62
however is largerly ur		
existing building footp	print.	
2. Subsurface profile is		
locations only and ma away from bores.	ay vary significantiy	60
 For details of Section 		
Drawing 1		
GEOLOGICAL PROFIL	E:	
UNIT 1: Filling		
UNIT 2: Residual clays		58
weathered rock UNIT 3: Laminite and fir		
	one (Mittagong Formation)	
UNIT 4: Medium to coal	rse grained sandstone	
UNIT 4: Medium to coa (Hawkesbury S	andstone)	56
UNIT 4: Medium to coa (Hawkesbury S	andstone)	56
(Hawkesbury S	andstone)	56
UNIT 4: Medium to coal (Hawkesbury S NOTE: Summary logs only. Should be read 160	andstone)	56
(Hawkesbury S	andstone) d in conjunction with detailed logs. SITE MAP // // // // // // // // // /	56
(Hawkesbury S	andstone)	56
(Hawkesbury S	andstone) d in conjunction with detailed logs. SITE MAP // // // // // // // // // /	56

Attachment 2

Field Work Results

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
$\overline{\bigtriangledown}$	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) рр
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical ٧
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Mudstone, claystone, shale

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 101 PROJECT No: 72138 DATE: 20/12/2010 SHEET 1 OF 2

Π			Description		egr	ee o	R of J Graphic Log	F	lock				ture	Discontinuities				In Situ Testing
R	Dej (m		of				aph Log			th IEI III	Vate		cing n)	B - Bedding J - Joint	e	e. %	RQD %	Test Results
	("	Strata	≳ ≩	Ŵ	sw Fs	_ ق ق	احاد واحاد	liah liah	Nev F	× -0;0		0.50	S - Shear F - Fault	Type	ပ္ပြင္လ	82 %	& Comments
- 8	-	0 10	CONCRETE - 180mm	Ţ	Ē	<u>ה</u> ו	4		ĒĒ	11	Ĭ	ŢŢ				1	1	
E	-	0.18 0.3	FILLING - poorly compacted, grey				X:4 X:4											
			CONCRETE - 350mm				1.1											
		0.05	FILLING - poorly compacted,				\boxtimes											
-6	-1		yellow brown, sandstone cobbles and boulders filling													-		
			and boulders minig				\mathbb{X}								A/E			
ţ ţ							\mathbb{X}									1		
EE							\mathbb{X}											
- 9	-2	2.0-												Note: Unless otherwise				
	-		CONCRETE - 300mm				44							stated, rock is fractured along rough planar				
F F		2.3	FILLING - poorly compacted, grey				\bowtie							bedding planes dipping				
EE			gravel filling	Ì	1 I 		\mathbb{N}							between 0°- 10°				
ţţ		2.9		1			\boxtimes						11					
- 65	-3		SANDSTONE - high strength, moderately then highly weathered,	1														
EE			fractured to slightly fractured, light grey and red-purple, medium to	1					ļ		1				c	96	84	
ł ł			coarse grained sandstone	1	ili						i	المار	i					PL(A) = 1.6
}												`1 ↓	1			ļ		FL(A) = 1.0
-2-	4			ii	ili	ii		111	i		l	11	┛╎╎	4m: J85°, pl, ro, fe	С	100	100	
		4.2							╨		┢	╧╧╈	╘╼┿╼┿╌╴	4.18m: CORE LOSS:	C	100	77	PL(A) = 0.6
ļţ	4		LAMINITE - high then medium strength, moderately weathered,		11	()		111	1	11	ſ	T	711	20mm 4.2m: J80°, pl, ro, fe		400		
ĒĒ			slightly fractured, dark grey laminite				••••		Ľ					4.34m: CORE LOSS: 20mm	С	100	92	
-8-			SANDSTONE - high strength, fresh	ii		Ϊį		iii	ī	ii	i	ii	li	4.75m: Cz, 20mm				
 			and fresh stained then slightly weathered, slightly fractured and												С	100	94	
ĒĒ			unbroken, medium to coarse grained sandstone with distinct	ii	İ	1 į		iii		i i	li	ij	1i	5.23m: Cs, 10mm				PL(A) = 1.2
			laminations															
				İ		İİ		İİİ		i i	l	ij	Į į		С	100	100	
-67-	6												Ļ					
EE				ÌÌ	İ	I I		111	i	i	ļ	ij	İİ					
<u>}</u>															с	100	100	PL(A) = 1.1
ţţ				Ìİ	Ì	ii		İİİ	ij	i	ļ	ij	ii			100	100	(.,
F¤F	7				1													
<u></u>					ļ						1							
F F					1													
EE					-[PL(A) = 2
-8-	8				1				ili		1							
						11												
ĒĒ					1										с	100	97	
ŀŀ				11	ļ			111	ļ		İ	ļİ						PL(A) = 1.6
					1								╎┟┙					
-8-	9			ļļ	ļ			<u> </u>	ļ		ļ	11		· ·				
																		PL(A) = 1
<u> </u>					1	11		ļļļ	ļ		Ì							
](c	100	100	
Ľ				11	1		<u>[:::::]</u>	LLİ				1İ			U U	100	100	

RIG: Multi-drill

DRILLER: Traccess

LOGGED: PGH

CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

CLIENT: Stamford Property Services Pty Ltd PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68 AHD EASTING: **NORTHING:** DIP/AZIMUTH: 90°/--

BORE No: 101 PROJECT No: 72138 DATE: 20/12/2010 SHEET 2 OF 2

		Deat	Description	Degree of Weathering ⋒≩≩≋≋ღ≝	. <u>9</u>	Rock Strength	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
ļ	뵈	Depth (m)	of		Sraph	Very Low Very Low Very High Meddum Very High Kex High Kex High Kex High Kex High Key High Key High Key	Spacing (m)	B - Bedding J - Joint	Type	ore 0.%	RQD %	Test Results &
╞	8		SANDSTONE - bigh strength freeh	M A M S S S S S S S S S S S S S S S S S	Į	High Hed		S - Shear F - Fault	F	ŭ ĝ	Ϋ́,	Comments
			SANDSTONE - high strength, fresh and fresh stained then slightly weathered, slightly fractured and unbroken, medium to coarse grained sandstone with distinct laminations (continued)						с	100	100	PL(A) = 2.5
		11							с	100	100	PL(A) = 2
F ⁸	18	12 12.0	Bore discontinued at 12.0m									
		13										
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	<u></u>	14										
53		15										
52		6										
51	- 1	7										
50	- 18	8										
49	- 19	9										

RIG: Multi-drill

DRILLER: Traccess

LOGGED: PGH

CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

1	SAM	PLIN	G & IN SITU TESTING	LEG	END	ר
C D	Auger sample Bulk sample Block sample Core drilling Disturbed sample Environmental sample	G P U,	Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level	PID PL(A) PL(D) pp	Photo ionisation detector (ppm) Point load axial test Is(50) (MPa) Point load diametral test Is(50) (MPa) Pocket penetrometer (kPa) Standard penetration test Shear vane (kPa)	

SURVEY DATUM:

CLIENT: Stamford Property Services Pty Ltd PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 102 PROJECT No: 72138 **DATE:** 9/12/2010 SHEET 1 OF 2

Donat	Description	Degree of Weathering .≌	Rock Strength	Fracture	Discontinuities				In Situ Testing
Depth (m)	of Strata	Degree of Weathering ∰ ∯ ≹ § ≋ ≌ ∰	High High Action	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results
0.05 0.46 0.66 -1 1.0 1.36	ASPHALT - 50mm thick FILLING (ROADBASE) - grey blue metal gravel filling CLAY - red brown clay with ironstone bands SANDSTONE - extremely low strength, extremely weathered, sandstone with high strength				Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping between 0°- 10° 1m: CORE LOSS: 360mm	E/A E/A E/A		77	Comments PL(A) = 0.8
-33.0-	SANDSTONE - medium to high strength, moderately weathered,				2.77m: J50°, pl, ro 3.07m: Cz, 20mm				PL(A) = 0.6
	fractured and slightly fractured, light grey, fine to medium grained sandstone - distinct and indistinct laminations from 3.7 to 4.6m				3.7m: Cs, 10mm	с	100	88	PL(A) = 0.7
-5	SANDSTONE - high strength, slightly and moderately weathered, slightly fractured, light grey and light orange, medium grained sandstone					с	100 1	100	PL(A) = 1.8 PL(A) = 1.3
6.2	SANDSTONE - medium to high strength, moderately weathered, slightly fractured, orange brown, medium grained sandstone SANDSTONE - high strength,				6.22m: Cs, 10mm 6.36m: Cz, pl, ro, cly				PL(A) = 0.5
	slightly weathered then fresh, slightly fractured, light orange then grey, medium grained sandstone 7.4-7.5m: distinct laminations				7.13m: Cs, 10mm	C 1	100 1	00	PL(A) = 1.1 PL(A) = 1.6 PL(A) = 1.6
Bobca PE OF BO TER OB MARKS:	ORING: Solid flight auger (TC-bit) to SERVATIONS: No free groundwate	0.90m; NMLC	-Coring to 13.05m	ED: PGH	9.78m: J70°, pl, ro, cln CASING: HW SURVE				

CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 102 PROJECT No: 72138 DATE: 9/12/2010 SHEET 2 OF 2

Depth	Description	Degree of Weathering	Rock Strength ৳	Fracture Spacing	Discontinuities		g & In Situ Testir
(m)	of Strata	Degree of Weathering ﷺ ≩ ≩ ⊗ ღ ස	Craphic Graphic Graphic Cervention Medium Medium Verytigh Kertytigh Kertytigh Nater 0.01	(m)	B - Bedding J - Joint S - Shear F - Fault	Type Core Rec. %	Test Resul
-11	SANDSTONE - high strength, slightly weathered then fresh, slightly fractured, light orange then grey, medium grained sandstone (continued)				11.36m: Cs, 10mm		PL(A) = 1.5 PL(A) = 1.7 PL(A) = 1.7
	12.45-13.05m: distinct laminations						
⁻¹³ 13.05	Bore discontinued at 13.05m						
-14 -15 -15							
17							
18							
19							

TYPE OF BORING: Solid flight auger (TC-bit) to 0.90m; NMLC-Coring to 13.05m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAMI A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample	PLIN G P U, W D	G & IN SITU TESTING Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep	PID PL(A) PL(D) pp	Photo ionisation detector (ppm) Point load axial test Is(50) (MPa) Point load diametral test Is(50) (MPa) Pocket penetrometer (KPa)
E Environmental sample	¥	Water level	Ň	Standard penetration test Shear vane (kPa)

SURVEY DATUM:

•