

CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 74 AHD

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 110 PROJECT No: 72138 DATE: 10/12/2010 SHEET 1 OF 2

		Depth	Description	Degree of Weathering	Fracture Spacing	Discontinuities	s			In Situ Testing
2		(m)	of Strata	Meathering No. Strength No. Str	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
	-		FILLING - poorly compacted, brown silty clay filling with organic matter, moist				A/E	E		
-		0.7	CONCRETE - 300mm thick			Note: Unless otherwise stated, rock is fractured along rough planar	A/E			
12	-	1 1.0	LAMINITE - low strength, moderately weathered, brown laminite	-		bedding planes dipping between 0°- 10°	S			
72	2	1.6-	LAMINITE - high strength with low strength, bands, slightly and moderately weathered, fragmented to fractured, purple red and grey laminite							PL(A) = 0.8
71	-3	3.1	2.72-3.10m: extremely low strength band with 200mm thick clay seam SANDSTONE - high strength,			2.9m: Cs, 200mm	С	100		PL(A) = 3
20,	-4		moderately weathered and fresh, fractured and slightly fractured, orange brown and light grey, medium grained sandstone distinct laminations from 3.1m to 5.2m, 5.9m to 6.2m and 7.3m to 7.7m			3.54m: J80°- 90°, cu, ro, fe				PL(A) = 1.4
69	-5									PL(A) = 1.4
99	-6						С	100		PL(A) = 1.4
67	7									PL(A) = 1.6
19	,									PL(A) = 1.4
99	8							100		PL(A) = 1.9
69	9	9.3				9.09m: J35°, pl, ro, fe	С	100		
						9.6m: B20°, pl, ro, cly				PL(A) = 0.6

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 0.70m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.70m; NMLC-Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed to 16.0m; Water level measured at 11.5m on 20/12/10 and 11.7m on 22/12/10

CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 74 AHD

EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

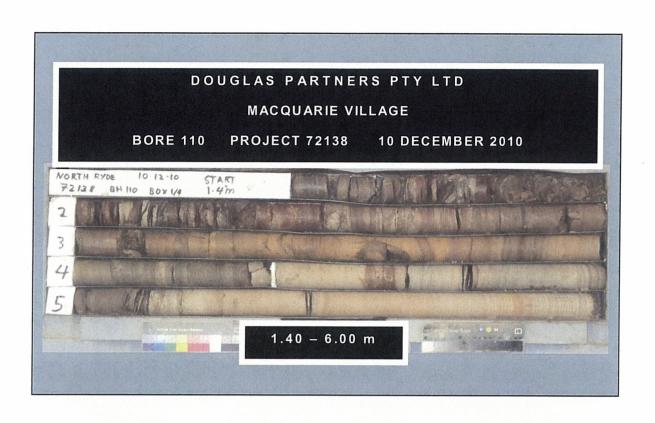
BORE No: 110 PROJECT No: 72138 DATE: 10/12/2010 SHEET 2 OF 2

Degree of Weathering Rock Description Fracture Discontinuities Sampling & In Situ Testing Strength Depth Spacing 2 of Ex Low Very Low Medium High Very High Ex High Rec. 5 Test Results Core (m) (m) B - Bedding J - Joint Strata S - Shear F - Fault EW HW FS SW HW 0.05 Comments SANDSTONE - medium then low strength with some extremely low C strength zones, fresh then slightly 100 10.27m: Cs, 10mm and moderately weathered, slightly PL(A) = 0.2fractured, light grey and orange 10.63m; Cz. 50mm brown, medium grained sandstone (continued) 11 SANDSTONE - high strength, fresh, slightly fractured, light grey, PL(A) = 1medium grained sandstone Ā 11.46m; Cs. 10mm SANDSTONE - medium strength, 11.66m: Cs, 10mm 11.73m: J35°, pl, ro moderately weathered, slightly -없- 12 fractured, orange brown, medium 100 С grained sandstone 12.5-12.54m: B (x2) 10°, pl, ro, cly PL(A) = 0.313 13,1 SANDSTONE - high strength, slightly weathered and fresh, slightly fractured, light orange and PL(A) = 1.1grey, medium grained sandstone 8 - 14 PL(A) = 1C 100 -B- 15 PL(A) = 1.3-- 3 - 16 16.0 Bore discontinued at 16.0m 1 -G-17 ·යි – 18 -:있는 19 11 1 1 1 1 1 11 1

RIG: Bobcat DRILLER: SS LOGGED: PGH CASING: HW to 0.70m

TYPE OF BORING: Solid flight auger (TC-bit) to 0.70m; NMLC-Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering


REMARKS: Standpipe installed to 16.0m; Water level measured at 11.5m on 20/12/10 and 11.7m on 22/12/10

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C C Core drilling
D Disturbed sample
E Environmental sample
E Environmental sample

SAMPLING & IN SITU TESTING
G Sas sample
P Piston sample
P Piston sample
D V Water sample (x mm dia.)
W Water sample
V Water sample
Water seep
W

CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

EASTING: NORTHING:

DATE: 9/12/2010 SHEET 1 OF 2

BORE No: 111

PROJECT No: 72138

DIP/AZIMUTH: 90°/--

Depth of Strata Depth (m) Depth (m) Depth of Strata Depth (m) Depth of Strata Depth o	A Type	Core	S O S	Test Results
CONCRETE 160mm thick		ပိုင်	$\lesssim 10^{\circ}$	
1 COMCDETE 160mm thick	ΔÆ			& & Comments
FILLING - brown sifty clay filling				
with some organic matter (grass	A/E			
FILLING - light brown, silty clay	~_			
filling with some angular gravel	A			20/40mm
1.1 LAMINITE - extremely low strength extremely weathered, red purple	\$	1	†	refusal
				PL(A) = 1.2
extremely low strength bands,				
-2 weathered bands, highly fractured				
to fractured, grey and red brown,				
2.4m: Cs, 20mm	C			
[[
3				PL(A) = 1.1
	_		ļ	
▗▐▗▗▗▗▗▗▗▗ ▗▊▞▗▘▞▗ ░ ░░▊ ▍ ╪╪▗▗▗▗▗▕▐▀▞▄▖▗▗ ▗				
# 4.36 AND STOUT # 4.09m: Cs, 30mm				PL(A) = 1
SANDSTONE - medium to high then high strength, slightly				
weathered then fresh, slightly fractured, light grey then orange				
brown, medium grained sandstone, thickly bedded with indistinct and thickly bedded with indistinct and	, c	100	34	
distinct laminations			•	PL(A) = 0.9
[] [] [] [] [] [] [] [] [] []				. 200
<u> </u>				PL(A) = 0.9
				PL(A) = 1.5
-2- 	: 1	100	99	
				PL(A) = 1.1
				PL(A) = 0.8
SANDSTONE - high strength, Slightly then moderately weathered.				
light grey then orange brown,				
	+	4		PL(A) = 1.2
distinct laminations	10	00	92	

RIG: Bobcat DRILLER: SY LOGGED: PGH CASING: HW to 1.0m TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.10m; NMLC-Coring to 14.20m

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:**

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample

SAMPLING & IN SITU TESTING LEGEND

G Gas sample
Piston sample PL(A) Point load axial test Is(50) (MPa)
U, Tube sample (x mm dia.)
W Water sample PD PL(D) Point load diametral test Is(50) (MPa)
PP P(D) Point load diametral test Is(50) (MPa)
PP P(D) Point load diametral test Is(50) (MPa)
PP P(D) Point load diametral test Is(50) (MPa)
PP Pocket penetrometer (MPa)

Water seep S Standard penetration test
Water level V Shear vane (MPa)

CLIENT:

Stamford Property Services Pty Ltd

PROJECT:

Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD

EASTING:

NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 111 PROJECT No: 72138 **DATE:** 9/12/2010

SHEET 2 OF 2

	Depth	Description	Degree of Weathering	일 _	Rock Strength	<u></u>	Fracture Spacing	Discontinuities	Sa			In Situ Testing
씸	(m)	of Strata	>>>	Grap	Ex Low Very Low High	Water	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	o o	RQD %	Test Results &
61	-11	SANDSTONE - high strength, slightly then moderately weathered, light grey then orange brown, slightly fractured, medium grained sandstone, thickly bedded with distinct laminations (continued)	HW MW				0.10	10.78m: Cs, 7mm	C	100	92	PL(A) = 1.3 PL(A) = 1.2 PL(A) = 1.3
69	13 14 14.2	Bore discontinued at 14.2m							С	100	97	PL(A) = 1.4 PL(A) = 1
-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	15	200 die 14.2m				***************************************						
1 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												

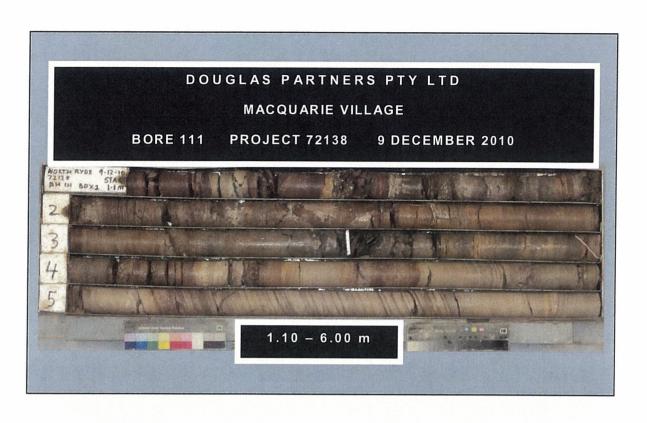
DRILLER: SY

LOGGED: PGH

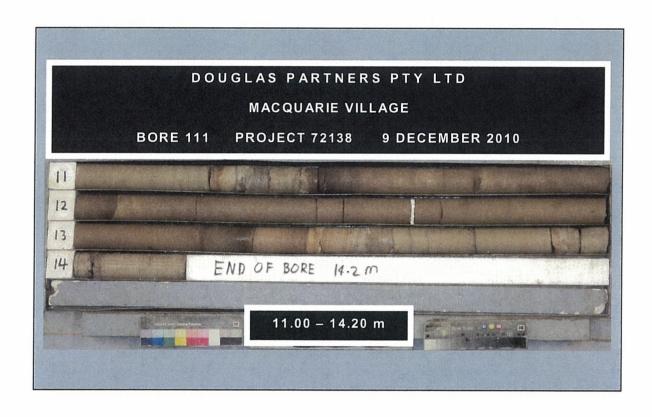
CASING: HW to 1.0m

TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.10m; NMLC-Coring to 14.20m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:


Environmental sample

SAMPLING & IN SITU TESTING LEGEND


Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
p Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

CLIENT: Stamford Property Services Pty Ltd

Macquarie Village PROJECT:

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD

EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 112 PROJECT No: 72138 **DATE:** 20/12/2010

SHEET 1 OF 2

		Depth	Description	Degree of Weatherin	f g 글	Rock Strength	50	Fracture Spacing	Discontinuities	;			In Situ Testing
ā	2	(m)	of Strata	2 2 3 >	Grap	Ex Low Very Low Low Medium High Very High Ex High	Water	(m)	B - Bedding J - Joint S - Shear F - Fault	T.	ore Sore	RQD %	Test Results &
71	1	0.1 0.2	PAVERS	EW HWW HWW SW S	£	지			Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping between 0°- 10°	A/S	E E		10,12/125mm refusal
70	-2	1.2	LAMINITE - medium and high strength, highly to moderately weathered, slightly fractured, orange brown, grey and purple red laminite 2.19-2.4m: fragmented zone							С	100	98	PL(A) = 0.8
69	3		g						2.93m: J45°, st, ro, cln				PL(A) = 0.6
89 29	• • • • •	4.6	3.83-3.95m: 130mm clay band SANDSTONE - high strength, highly weathered to fresh, fractured to slightly fractured, orange brown and grey, medium to coarse grained sandstone							С	100	96	PL(A) = 1.4
99	-6				•								PL(A) = 1.6
68	7									С	100	93	PL(A) = 1.5
64	8												PL(A) = 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9												PL(A) = 1
			9.45-11.20m: distinctly laminated							С	100	99	PL(A) = 1

RIG: Multi-drill DRILLER: SK LOGGED: PGH CASING: NW to 1.2m

TYPE OF BORING: Diatube to 0.1m; Solid flight auger (TC-bit) to 1.2m; NMLC-Coring to 14.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

SAMPLING & IN SITU TESTING LEGEND

G Gas sample Piston sample PL(A) Point load axial test is(50) (MPa)
U, Tube sample (xmm dia.)
W Water sample PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PL(D) Point load diametral test is(50) (MPa)
PCocket penetrometer (kPa)

Water seep S Standard penetration test
Water level V Shear vane (kPa)

CLIENT: Stamford Property Services Pty Ltd

PROJECT: Macquarie Village

LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD

EASTING: PROJECT No: 72138 **NORTHING:** DIP/AZIMUTH: 90°/--

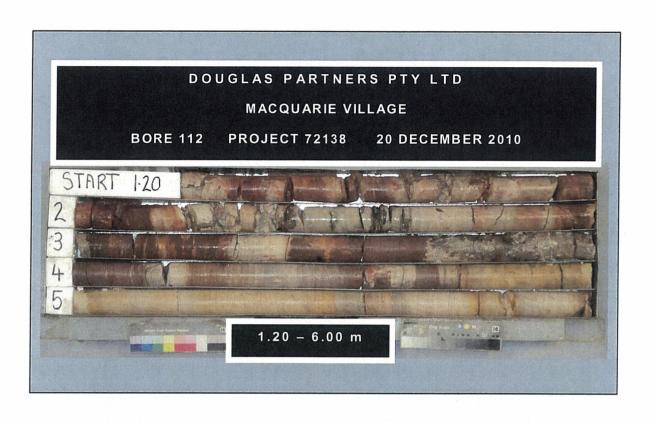
DATE: 20/12/2010 SHEET 2 OF 2

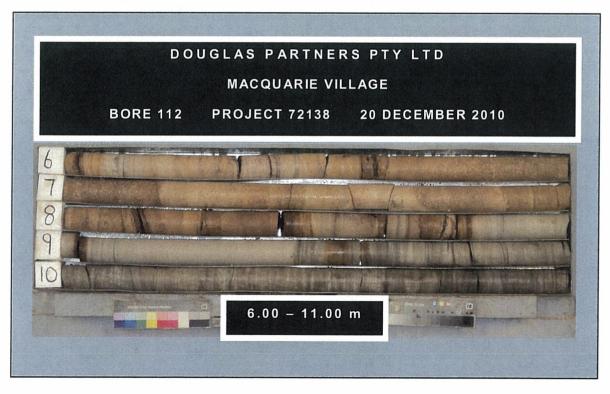
BORE No: 112

Г	_			Dogram of	Т		Roc	i,	7								
	ار	Depth	Description	Degree of Weathering	를 등	s	treng	gth	_ G		cture acing	Discor	itinuities	Sa			In Situ Testing
Č	킨	(m)	of		rap Lo	Ex Low Very Low	151	티티	Vat	1)	m) ¯	B - Bedding		Туре	e %	RQD %	Test Results &
L	8		Strata	WH W W R R	0		ا ﴿ ا		Y 2		1.00	S - Shear	F - Fault	15	ပြည်	E .	Comments
	*****	-11	SANDSTONE - high strength, highly weathered to fresh, fractured to slightly fractured, orange brown and grey, medium to coarse grained sandstone (continued)											С	100	99	PL(A) = 1.5
Ė	-										Jii						PL(A) = 1.3
		12												С	100	94	PL(A) = 1.3
88		14 14.0										13.52m: Cs,	12mm				PL(A) = 1.1
†"	ŀ	14.0	Bore discontinued at 14.0m	!		11	 			- 	11						
57	1	15							. — *** — *** — *** — *** — ***		. —						
56	- -1 -	6															
95	- 1	7							. — — — —								
53 54																	

RIG: Multi-drill DRILLER: SK LOGGED: PGH CASING: NW to 1.2m

TYPE OF BORING: Diatube to 0.1m; Solid flight auger (TC-bit) to 1.2m; NMLC-Coring to 14.0m WATER OBSERVATIONS: No free groundwater observed whilst augering


REMARKS:


SAMPLING & IN SITU TESTING LEGEND

A Auger sample
B Bulk sample
BLK Block sample
C Core drilling
D Disturbed sample
E Environmental sample Gas sample
Piston sample
Tube sample (x mm dia.)
Water sample
Water seep
Water level

PID Photo ionisation detector (ppm)
PL(A) Point load axial test Is(50) (MPa)
PL(D) Point load diametral test Is(50) (MPa)
PC Pocket penetrometer (kPa)
S Standard penetration test
V Shear vane (kPa)

