

Mt Kuring-Gai 12/9-15 Gundah Rd Mt Kuring-Gai NSW 2080 T: (02) 8438 0300 F: (02) 8438 0310

Wollongong 1/140 Industrial Rd Oak Flats NSW 2529 T: (02) 4257 4458 F: (02) 4257 4463

E: admin@netgeo.com.au W: www.netgeo.com.au ABN: 35 069 211 561

TCG PLANNING PROPOSED LIFE CITY WOLLONGONG **WARWICK STREET BERKELEY GEOTECHNICAL INVESTIGATION** REPORT G09/1100-Ar **JANUARY 2014**

Mt Kuring-Gai 12/9-15 Gundah Rd Mt Kuring-Gai NSW 2080 T: (02) 8438 0300 F: (02) 8438 0310 Wollongong 1/140 Industrial Rd Oak Flats NSW 2529 T: (02) 4257 4458 F: (02) 4257 4463

E: admin@netgeo.com.au W: www.netgeo.com.au ABN: 35 069 211 561

G09/1100 Ar LT: It 29th January 2014

TCG Planning 5-174/182 Gipps Road GWYNNEVILLE NSW 2500

Attention: Elaine Treglown

Dear Madam

Re: Proposed Life City Wollongong, Warwick Street, Berkeley

This report presents the results of a geotechnical investigation carried out for the above project.

We have reviewed the data available from previous investigations by others and carried out field and laboratory testing in order to provide a geotechnical model including material properties and design parameters.

The investigation comprised twelve (12) boreholes (BH1 to BH9 and BH31 to BH33) drilled for geotechnical investigation and thirteen boreholes (BH10 to BH22) drilled for preliminary contamination assessment.

Laboratory tests included Acid Sulphate Screening, Point Load Strength Index on rock core samples and chemical tests for exposure classification.

A separate report is issued providing details of contamination assessment and acid sulphate assessment.

This report should be read in conjunction with the attached General Notes. Please contact the undersigned if you require any further assistance.

For and on behalf of Network Geotechnics Pty Ltd

Long Tsang Beng, MEng, MIE Aust Geotechnical Engineer

TABLE OF CONTENTS

EXECUTIVE SUMMARY 1				Page	
2 PROPOSED DEVELOPMENT 2 3 PREVIOUS GEOTECHNICAL ASSESSMENT 3 4 FIELDWORK 4 5 LABORATORY TEST RESULTS 5 6 SITE CONDITION 7 6.1 Site Description 7 6.2 Subsurface Condition 7 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EXCAVATION Characteristics 13 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 11 FOOTING DESIGN 16 12		EXECUTIVE	SUMMARY	1	
3 PREVIOUS GEOTECHNICAL ASSESSMENT 4 FIELDWORK 5 LABORATORY TEST RESULTS 6 SITE CONDITION 6.1 Site Description 7 6.2 Subsurface Condition 7 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 7.1 Surface Soil 7.2 Bedrock 7.3 Groundwater 7.4 Geotechnical Parameters for Design 8 SLOPE INSTABILITY 11 9 EARTHWORKS 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Characteristics 13 9.3 Fill Material 10 IMPACT ON ENVIRONMENT 10.1 Vibration Noise 14 10.2 Groundwater 10.3 Erosion Control 11 FOOTING DESIGN 16 17 18 CONCLUSION 17 16 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide's Australian Geomechanics Landside Risk Management Appendix C AUSTRAIL BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX A BOREHOLE Laboratory Test Results	1	INTRODUC	TION	2	
4 FIELDWORK 4 5 LABORATORY TEST RESULTS 5 6 SITE CONDITION 7 6.1 Site Description 7 6.2 Subsurface Condition 7 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Support 13 9.2 Excavation Support 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 1	2	PROPOSED	DEVELOPMENT	2	
5 LABORATORY TEST RESULTS 6 SITE CONDITION 7 6.1 Site Description 7 7 6.2 Subsurface Condition 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Characteristics 13 9.3 Fill Material 10 IMPACT ON ENVIRONMENT 11 10.1 Vibration Noise 14 10.2 Groundwater 10.3 Erosion Control 15 16 17 17 18 FOOTING DESIGN 17 18 CONCLUSION 17 19 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	3	PREVIOUS	GEOTECHNICAL ASSESSMENT	3	
6 SITE CONDITION 7 6.1 Site Description 7 6.2 Subsurface Condition 7 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BIH to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	4	FIELDWOR	К	4	
6.1 Site Description 7 6.2 Subsurface Condition 7 6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES A Homeowner's Guide"	5	LABORATO	RY TEST RESULTS	5	
Subsurface Condition 7	_				
6.3 Proposed Cut/Fill Earthwork 10 7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES A Homeowner's Guide" Australian Geomechanics Landslide Risk Ma	6.1	-		7	
7 GEOTECHNICAL MODEL 10 7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES A Homeowner's Guide" CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanic	_				
7.1 Surface Soil 10 7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) Sorehole logs (BH1 t	6.3	Proposed Cu	ıt/Fill Earthwork	10	
7.2 Bedrock 10 7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance:	7	GEOTECHN	ICAL MODEL	10	
7.3 Groundwater 11 7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) Sperehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	7.1	Surface Soil		10	
7.4 Geotechnical Parameters for Design 11 8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 16 12 PAVEMENT DESIGN 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B	7.2	Bedrock		10	
8 SLOPE INSTABILITY 11 9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Constructioe) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	7.3	Groundwate	r	11	
9 EARTHWORKS 12 9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 16 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	7.4	Geotechnica	l Parameters for Design	11	
9.1 Excavation Characteristics 13 9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B	8	SLOPE INS	TABILITY	11	
9.2 Excavation Support 13 9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics A Homeowner's Guide" Australian Geoguide LR8 (Construction Practice) APPENDIX A APPENDIX B Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	9	EARTHWO	RKS	12	
9.3 Fill Material 13 10 IMPACT ON ENVIRONMENT 14 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	9.1	Excavation (Characteristics	13	
10 IMPACT ON ENVIRONMENT 10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	9.2	Excavation 9	Support	13	
10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	9.3	Fill Material		13	
10.1 Vibration Noise 14 10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	10	IMPACT ON	I ENVIRONMENT	14	
10.2 Groundwater 14 10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results				= -	
10.3 Erosion Control 15 11 FOOTING DESIGN 16 12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results					
12 PAVEMENT DESIGN 17 13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results					
13 CONCLUSION 17 14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	11	FOOTING D	DESIGN	16	
14 FURTHER INVESTIGATION 17 15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	12	PAVEMENT	DESIGN	17	
15 LIMITATIONS 18 GENERAL NOTES CSIRO Sheet BTF18 "Foundation Maintenance and Footing Performance: A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols Laboratory Test Results	13	CONCLUSIO	ON	17	
GENERAL NOTES CSIRO Sheet BTF18	14	FURTHER I	NVESTIGATION	17	
A Homeowner's Guide" Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Laboratory Test Results			NS	18	
Australian Geomechanics Landslide Risk Management Appendix C Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Laboratory Test Results	CSIRO She	et BTF18			
Australian Geoguide LR8 (Construction Practice) APPENDIX A Borehole logs (BH1 to BH22, BH31 to BH33) and Terms and Symbols APPENDIX B Laboratory Test Results	Australian (Geomechanics			
APPENDIX B Laboratory Test Results		Australian Geoguide LR8 (Construction Practice)			
DRAWING NO. G09/1100-1 Site Plan TCG Cut Fill Drawing No 00864-SK 08 Rev 2	APPENDIX I DRAWING I	B NO.	Laboratory Test Results G09/1100-1 Site Plan	and Symbols	

EXECUTIVE SUMMARY

This report presents the results of a geotechnical investigation carried out by Network Geotechnics Pty Ltd (NG) for the proposed Life City Wollongong in Berkeley, NSW.

The objective of the investigation was to assess surface and subsurface condition in order to assist in the evaluation of the Development Application Lodged with the Department of Planning for the proposed Life City Project which includes a multi stage development comprising a medical centre, accommodation for patients, hospital, seniors accommodation and other facilities.

The sampling program included total 25 boreholes, BH1 to BH9 and BH31 to BH33 were drilled for geotechnical investigation and BH10 to BH22 were drilled for Stage 1 Contamination Assessment. A separate report is issued providing details of contamination assessment.

Based on the boreholes drilled, subsurface profiles in the study area may be generally summarised below:

- Fill: mostly comprised of Silty CLAY, medium to high plasticity, with fine to medium grained sandstone, igneous and ironstone gravel and roots inclusions.
- Topsoil: Silty CLAY/Silty SAND, high plasticity, fine to medium grained sand, dark brown, with roots.
- Residual Soils: Silty CLAY/Sandy CLAY, medium to high plasticity, fine to medium grained sand, generally orange brown and red brown, trace of fine grained sandstone and ironstone gravel.
- Bedrock: SANDSTONE, fine to medium grained, generally orange brown and red brown, typically extremely low to very low strength over the upper layers and becoming high to very high strength. Latite was only encountered below the proposed basement levels in the boreholes drilled.

In the view of above, a summary of findings and recommendations are listed below:

- Fill was predominantly encountered in the northern part of the site to maximum depths of 1.7m below the existing grade. Some surface rubbish was noted along the existing top ridgeline vehicular track.
- Majority of the site surface was covered by Silty CLAY/Silty SAND topsoil with thick grass. Shrub and small to medium size trees spread around the site.
- Slope instability would not be an issue provided the design and construction is carried out based on good hill side development practice as outlined in this report.
- Fill, Residual/Colluvial soils and extremely weathered rock profiles can be excavated by medium size excavators with 'teeth' bucket attachments. Rock hammer/rock saw might be required to break through iron indurated bands and medium to high strength Sandstone and Latite bedrock.
- Groundwater may be encountered during the construction; but it could be controlled using a sump pump system.
- Potential Acid Sulphate and Actual Acid Sulphate soils were not encountered in this site.
- Footings for major structures should be founded on underlying bedrock.
- Localised retaining structures should be provided for supporting the proposed cuts and fill batters. The structures should be designed by an experienced engineering consultant. Where excavation is in good quality rock, steep unsupported batters may be possible subjected to geotechnical assessment

- Temporary excavations may be battered at 1.5H:1V in overburden soils and 1H:1V to 0.5H:1V in rock depending upon the quality of rock and subject to assessment by a geotechnical consultant.
- Further geotechnical investigations and review may be required during the detailed design and construction stages.

1.0 INTRODUCTION

Network Geotechnics Pty Ltd (NG) was engaged by TCG Planning Pty Ltd to undertake a Geotechnical and Preliminary Contamination Assessment for the proposed Life City Wollongong in Berkeley, NSW. The investigation was carried out in accordance with NG proposal (Ref: G09/1100r dated 04 September 2013).

A preliminary geotechnical investigation has been carried out by Coffey Geotechnics (report Reference GEOTWOLLO3229AC-AB dated February 2013). The geotechnical investigation report has been assessed by SKM during the assessment of the development application by the Department of Planning and additional geotechnical investigations to supplement the preliminary investigation have been requested.

The purpose of the investigation was to obtain geotechnical information on subsurface conditions at twelve boreholes in correlation with Coffey's test pit logs and laboratory testing to form a basis for comments and recommendations for the proposed developments.

A preliminary contamination investigation was carried out in conjunction with the geotechnical investigation. A separate report is issued providing details of contamination assessment and acid sulphate assessment.

2.0 PROPOSED DEVELOPMENT

Based on the supplied conceptual plans, we understand the proposed Life City Wollongong project includes the following six stages:

- Stage 1: Medical Centre and Child Care Centre
- Stage 2: Medical Accommodation
- Stage 3: Hospital Building
- Stage 4: Seniors Independent Living Units
- Stage 5: Seniors Residential Care Facility
- Stage 6: Holistic Health Care Course

A brief description of the proposed developments is presented below:

- Stage 1 developments would comprise a day surgery and a child care/ respite
 centre. The surgery proposed is a two storey building with a basement car
 park. The basement car park floor level ranged from RL 48m to RL 47m which
 would involve about 5m cut over the east and northern part of the area. The
 buildings would comprise medical centre, day surgery, child care centre and
 respite care centre.
- Stage 2 developments would include a medi hostel and serviced apartments comprising three and four storey buildings with basement car parks. The basement car park floor level is proposed to be RL 55.0m, which would involve about 5m cut over the eastern part of the area. The ground surface

level within this area ranges from about RL 55m in the west to RL 60m in the east.

- Stage 3 developments would be a medical hospital comprising five storey buildings with four levels of car park. Its lowest car park floor level is to be RL 46m, which would involve up to 5m cut over the north eastern part of the area. The ground level within this area range from RL 44 to RL 63m. The building will be used for a Hi Tech Holistic Cancer and Medical Hospital.
- Stage 4 developments would comprise three sections of two storey apartment buildings. Each apartment has its own car park with floor levels ranging from RL 46m to RL 57m. The buildings would be for seniors living. The ground level in this area ranges from about RL 46m to RL 60m. The development would involve up to 6m depth of cut and about 1m depth of fill.
- Stage 5 developments would comprise a four storey residential care facility with at grade car parking space. The ground floor level varies between RL 60m (west) and RL 61m (east), which would involve about 6m cut over the southern part of the area.
- Detail of stage 6 developments is unknown at the time of report preparation. But, it is understood to comprise holistic health care course.
- Five roads (Road Nos. 1 to 5) are to be constructed, with one access entering the site from Warwick Street and the other from Nolan Street.

3.0 PREVIOUS GEOTECHNICAL INFORMATION

Prior to commencement of our investigation, we were provided with the following geotechnical reports by other engineering consultants for review.

- Preliminary Environmental Assessment (Phase 1 Study) by Clearsafe Environmental Solutions, report ref: 1357-01-LC Rev 0 dated November 2012;
- Preliminary Geotechnical Assessment Report by Coffey Geotechnics, report ref: GEOTWOLL03229AC-AB Feb 2013;
- Geotechnical Review Report by Coffey Geotechnics, report ref: GEOTWOLL032229AD-AA dated May 2013;
- Review of Geotechnical Assessment Second Draft Report by Sinclair Knight Merz (SKM), report ref: ENO4222 dated July 2013;

A summary of those report contents is briefly discussed below:

Clearsafe's report 1357-01-LC provided an Environmental Assessment (Phase 1 study) at the above site. They identified the site was contaminated due to illegal dumping based on their historical search and site inspection. They recommended that a Stage 2 environmental assessment to be carried out.

Coffey's report GEOTWOLL03229AC-AB provided a preliminary geotechnical assessment at the above site. The report included technical comments on the following:

- Landslide Risk Assessment
- Site Classification to Australian Standard AS2870-2011
- Site Earthwork Conditions
- Site Maintenance and Drainage Issues
- Recommended Additional Works

Coffey investigation included 12 test pits excavated using a 5t excavator to maximum depth of 2.8m or prior refusal. Most test pits refused at depths ranging from 0.7m to 2.8m except test pits TP3 and TP11 which were terminated in fill and colluvial soils respectively.

Coffey has carried out a desk study and surface mapping of the area and assessed that the north western corner (about 200m long and 100m wide) contained uncontrolled fill to more than 2.5m depth. Coffey found that the area is underlain by mainly two geological units, Pheasant Nest formation (Illawarra Coal measures) and Berkeley Latite.

Coffey assessed the risk of landslide over the whole site and identified area of low, medium and high risk. Coffey stated that the basis of assessment was that "Good hillside Construction practice "to be adopted which included cut and fill depths to be limited to 1.5m depth. On the basis of this assumption Coffey assessed that there is a high risk of soil creep over the middle valley section of the site where the depth of colluvial soils in one test pit (TP11) was found to be more than 2.5m.

Coffey's report GEOTWOLL03229AD-AA provided a geotechnical review for the proposed developments based on revised preliminary bulk earthworks plans at that time. The report also provided an additional comment on earthwork and geotechnical aspects related to responses received from the public.

SKM's report ENO 422 provided an opinion and appraisal of the suitability of proposal against the requirements of E12 and E19 of Wollongong Development Control Plan and Practice Note Guidelines for Landslide Risk Management Australian Society (AGS) 2007. They provided a geotechnical model based on Coffey's report. They concluded that due to insufficient data obtained during Coffey's investigation, they could not provide an adequate assessment on geotechnical constraints on the above site. They recommended further geotechnical investigation and assessment prior to planning approval.

4.0 FIELDWORK

The fieldwork for the investigation was carried out between 21^{st} November 2013 and 8^{th} January 2014 by NG Geotechnical Engineers on a full time basis and comprised the following works:

- One of NG Principal Geotechnical Engineers visited the site during site investigation works on 21st November 2013 to carry out a visual risk assessment of slope instability including observations of the general site topography, approximate slope angles and any potential contamination of the site.
- Twenty two borehole (BH1 to BH22 and BH 31 to BH33) locations were located and levels were measured using a Trimble Global Positioning System with Ground Control at a remote base. Borehole coordinates and reduced levels are shown on the attached borehole logs. The survey datum is Australian Height Datum.

- Boreholes BH1 to BH9 and BH31 were auger drilled to depths between 4.4m to 8m using truck mounted drilling rig. BH1, BH2, and BH7 to BH9 were auger drilled with a Tungsten Carbide 'TC' bit attachment to termination depths of 4.5m, 4.4m, 4.4m and 5.1m respectively, where the 'TC' bit is refused. BH3 to BH6 and BH31 to BH33 were drilled to depths ranging from 4m to 8m by auguring to TC bit refusal followed by NMLC diamond core drilling with water flush.
- Boreholes BH10 to BH22 were drilled by hand auger to practical refusal depths between 0.2m and 1m to collect soil samples for contamination assessment.

Standard penetration tests (SPT) were carried out at 1.5m depth intervals in BH1 to BH9 and BH31 to BH33 to assess the strength of soil profile. The consistency of clay samples recovered in the SPT split tube sampler was assessed by hand held pocket penetrometers (HP) readings.

The strength of the augured bedrock was assessed by our observation of drilling resistance together with tactile examination of the recovered rock cuttings. We note that the rock strength assessed in this way should be considered approximate. Variance of one strength order should not be unexpected.

The strength of the cored rock was assessed from Point Load Strength Index $(Is_{(50)})$ tests.

Groundwater observations were recorded during and on completion of borehole drilling. Groundwater monitoring wells were installed into BH3, BH6 and BH8 with monuments concreted at top.

The remaining boreholes were backfilled with the excavated spoils after the completion of auger drilling.

Selected soil samples were delivered to NATA registered laboratory to carry out Acid Sulphate Screening and Emerson and Dispersion test.

Borehole logs are attached in Appendix A and the borehole locations are shown on the attached Drawing No G09/1100-A.

5.0 LABORATORY TEST RESULTS

Laboratory testing program carried out on soil and rock samples recovered for geotechnical investigation included the following:

- Acid sulphate screening tests on samples collected from boreholes close to valley floor.
- Soil dispersion and Emerson Class number tests to assess soil dispersion characteristics.
- Point Load Strength Index testing on recovered rock core.

Acid Sulphate Screening pH tests were carried out on 8 soil samples to assess the presence of Acid Sulphate Soils. All pH tests in water recorded pH>4.7 and pH tests in Hydrogen Peroxide recorded pH>3.0.

The following scale was adopted for assessment of rock strength in rock cored section based on Point Load Index (PLI) tests.

Typical Rock Strength Assessment Based on PLI

PLI (MPa)	Rock Strength Grade
0.03 to 0.1	Very Low
0.1 to 0.3	Low
0.3 to 1.0	Medium
1.0 to 3.0	High
>3.0	Very High

Rock Strength Classification

Borehole No.	Depth PLI Rock Strength Grad		Rock Strength Grade
	(m)	(MPa)	
3	4.46m-4.50m	0.08	Very Low
3	5.61m-5.65m	0.05	Very Low
3	6.72m-6.76m	0.04	Very Low
3	7.22m-7.26m	0.04	Very Low
4	4.81m-4.84m	0.55	Medium
4	5.20m-5.24m	0.22	Low
5 5	4.55m-4.58m	0.16	Low
5	5.48m-5.53m	0.50	Medium
5	6.51m-6.56m	3.70	Very High
6	2.80m-2.84m	0.16	Low
6	3.66m-3.70m	0.27	Low
6	4.40m-4.44m	0.57	Medium
31	4.45-4.48	0.14	Low
31	4.9-4.93	0.17	Low
32	1.52-1.55	1.13	High
32	2.72-2.75	6.44	Very High
32	3.79-3.83	3.50	Very High
32	4.54-4.58	2.69	High
33	2.30-2.34	0.59	Medium
33	2.93-2.97	1.62	High
33	3.45-3.47	2.56	High
33	4.00-4.03	3.77	Very High

The Point Load Strength Index quoted above is based on axial tests. The attached test reports in Appendix B show both axial and diametrical test results.

For Sandstone samples tested the ratio between diametrical test and axial test result was generally close to unity indicating less degree of anisotropy.

6.0 SITE CONDITION

6.1 Site Description

The site covered about 20 hectares. The topography of the site is a ridgeline that bounded a centre valley. The average site slope is between 5° and 17° dipping toward the M1 Princess Motorway.

For site description purpose, we have assumed the M1 Princess Motorway abuts the site to the west.

At the time of the investigation, the site surface was covered with thick grasses to a height of up to 0.5m. Shrub and small to large size trees were spread around.

During our walkover assessment and locating the borehole locations, the site surface appeared uneven sloping ground due to previous weathering and soil erosion. Several soil erosion drains are present in the centre of the site, running toward the centre valley.

The north western area closer to the Motorway appeared to be filled with hummocky and irregular ground surface. The extent of filled area could not be assessed due to thick grass cover. Boreholes BH1 and BH9 and Coffey test pits TP1 to TP3 exposed fill in this area.

A marshy area covered with reed was noted close to south western area of the proposed development.

Two vehicular tracks pass through the site. One is located at the top of the ridgeline (east of the site), the other is located near the middle of the site.

Natural silty CLAY and Sandstone bedrock were exposed on the northern part of the site surface, near northern end of the top ridgeline vehicular track.

A valley is situated at the centre of the site, which is surrounded by land sloping up to 17° when viewed from the valley floor. The valley floor slopes down to the west at about 3°.

Two stockpiles were observed in the area covered by boreholes BH5, BH6 and BH8. The stockpiles comprised concrete boulders and steel fragments. The location of the stockpiles is shown on our borehole location plans. Some surfaced rubbish was noted along the top ridgeline vehicular track.

Residential houses and local roads bounded the site to the north, east and south. High voltage power lines were located on the southern end of the site.

6.2 Subsurface Condition

The 1:100,000 Geological Series Sheet of Wollongong-Port Hacking indicates the site to be underlain Illawarra Coal Measures, Cumberland Subgroup Pheasant Nest Formation (Pip) comprising inter-bedded lithic sandstone, grey siltstone, claystone, carbonaceous claystone, clay, laminate and coal and surrounded by Dapto Latite (Psud) comprising coarse grained Latite. The eastern area of the site is shown to be underlain mid-grey Dolerite.

Subsurface conditions encountered in the NG boreholes and Coffey test pits are discussed at each development stages. Reference should be made to the attached engineering logs for details at each specific location.

Stage 1 Development: Geotechnical Profile Encountered in NG Boreholes BH1, BH9 and BH31

LAYER	DESCRIPTION	DEPTH TO BASE OF LAYER (m)
TOPSOIL	Sandy Silt, low plasticity, dark grey, fine grained sand with roots	0.3 - 0.5
FILL	Silty CLAY, medium to high plasticity, dark brown, with fine to medium sandstone and ironstone.	0 - 1.5
RESIDUAL	Silty CLAY, high plasticity, light brown and orange	>0.5-3.2
ROCK	Sandstone, fine to medium grained, orange brown	>5.1

Stage 2 Development: Geotechnical Profile Encountered in NG's Boreholes BH5, BH21 and BH, Coffey's TP11 and TP12

LAYER	DESCRIPTION	DEPTH TO BASE OF LAYER (m)
TOPSOIL	Silty Clay, high plasticity, dark brown, with roots and trace of fine to medium grained ironstone gravel	0.2
FILL	Silty CLAY, medium to high plasticity, dark brown, with fine to medium sandstone and ironstone.	0.2 1.0 - 1.5
RESIDUAL	Silty CLAY, medium to high plasticity, light brown and orange, trace of fine to medium grained ironstone gravel	1122
ROCK	Latite, Highly weathered, coarse grained, brown	1.1-3.2 >7.0

Stage 3 Development: Geotechnical Profile Encountered in NG's Boreholes 2, 3 and 6, Coffey's TPs 1 and 2

LAYER	DESCRIPTION	DEPTH TO BASE OF LAYER (m)
TOPSOIL	Silty Clay, high plasticity, dark brown, with roots	0.2.0.6
FILL	Silty CLAY, medium to high plasticity, dark brown, with fine to medium sand, fine to medium grained sandstone and ironstone and latite cobbles and boulders.	0.2-0.6
	factor cobbles and boulders!	0.5 - 1.7
RESIDUAL	Silty CLAY/Sandy CLAY, medium to high plasticity, light brown and orange, trace of fine to medium grained sandstone and ironstone gravel	
ROCK	Weathered Sandstone/Latite, fine to medium	1.1-2.8
ROCK	grained, brown BH2 and BH6 Latite, Coarse grained, brown (BH3)	>4.4, >4.7
		>7.35

Stage 4 Development: Geotechnical Profile Encountered in NG BH4, BH5 and BH32, Coffey TP 10

LAYER	DESCRIPTION	DEPTH TO BASE OF LAYER (m)
TOPSOIL	Silty Clay, high plasticity, dark brown, with roots and fine to medium grained ironstone gravel	0.2-0.5
RESIDUAL	Silty CLAY, medium to high plasticity, dark brown, with fine to medium sand, fine to medium grained sandstone and ironstone and Latite cobbles and boulders.	1.65
RESIDUAL	Sandy CLAY, medium plasticity, orange brown, dark brown and red brown, trace of fine to medium grained sand.	1.5-3.0
ROCK	Latite, fine to coarse grained, brown	
ROCK	Sandstone, fine grained, grey	>1.6, >8
		>5.09

Stage 5 Development: Geotechnical Profile Encountered in NG BH33

LAYER	DESCRIPTION	BASE OF LAYER (m)
TOPSOIL	Silty Clay, high plasticity, dark brown, with roots and fine to medium grained ironstone gravel	
RESIDUAL	Sandy CLAY, low plasticity, brown,	0.3
ROCK	Sandstone, fine grained, brown, with iron indurated band	3.4
	illudiated ballu	>4.17

6.3 Proposed Cut/Fill Earthwork

We anticipate that where the proposed roads/buildings are cut into natural hill slopes, silty CLAY natural soils would be encountered in the subgrade. Weathered sandstone bedrock would be encountered in the subgrade at some section. Fill earthwork methodology should be referenced in Section 9.

Based on the borehole logs and test pit logs, we expect that the excavation would predominantly involve cutting through the topsoil/fill and clayey soils. Some sections may possibly involve cutting through extremely low to low strength sandstone or Latite bedrock. Some medium to high strength Latite or ironstone band should be expected during the earthwork. Excavation characteristic is discussed in Section 9.1.

We advise that a stability assessment of cut/fill earthworks should be carried out by an experienced geotechnical consultant in a regular basis.

7.0 GEOTECHNICAL MODEL

7.1 Surface Soil

Silty CLAY fill was mainly encountered over northern end of the site, where BH9 to BH11 located, to maximum depths of 1.5m below the existing grade. Either Colluvial or residual silty CLAY of high plasticity and of stiff strength was encountered below the topsoil/fill.

7.2 Bedrock

Sandstone rock was exposed on the northern part of the site surface, exposed along the upper ridgeline vehicular track.

Weathered sandstone/Latite bedrock was encountered below the natural silty CLAY and extended to the borehole termination depths. The upper sandstone/Latite profile was generally extremely weathered and extremely low strength. The strength of the bedrock is increased with depths.

The predominant bed rock type encountered in the boreholes by NG and test pits by Coffey was Sandstone which appears to be overlain on Latite bed rock. Latite

DEDTH TO

was found in Ng boreholes BH3, BH4, BH5 and BH8 at reduced levels ranging from RL 38.8m to RL 47.3m. It may be noted that most excavations proposed are above the level of Latite encountered in boreholes and entirely in Sandstone.

7.3 Groundwater

Groundwater monitoring wells were installed in BH3, BH6 and BH8 after completion of core drilling.

Groundwater was measured in BH's 3 and 6 wells at depths of 3.31m and 0.68, respectively after one day of drilling completion. Groundwater was not recorded in BH8 well. We note that the groundwater level might not be at equilibrium level after a short time of core drilling completion as fresh water was introduced for drilling.

7.4 Geotechnical Parameters for Design

The following shear strength parameters may be used in the footing and retaining wall designs:

Shear Strength Parameters	Colluvial/	Extremely	Distinctly
	Residual	weathered	weathered
	Soil	rock	rock
Unit Weight (γ) (kN/m3)	18	20	22
Undrained Cohesion (Cu) (kPa)	75	500	1000
Undrained friction angle (Ø) (deg)	0	20	33
Drained Cohesion (C') (kPa)	3	20	50
Drained friction angle (Ø') (deg)	26	32	38
Drained Elastic Modulus (E) (MPa)	18	100	1000

8.0 SLOPE INSTABILITY

A preliminary slope stability assessment has been carried out by Coffey during their preliminary investigation. Coffey identified the risk soil creep where overburden soil depth exceed 2m to be high in the central valley area and either moderate or low over the rest of the site.

It is noted that the overburden soils would be removed for construction of buildings and most of the roads and parking areas. Under such conditions soil creep is no longer relevant and the areas where overburden soils are excavated.

Based on the proposed cut/fill design some areas would be excavated up to 6m depth. Excavations would be partially in overburden and mostly in Sandstone bed rock. Provided that the excavation batters are designed with geotechnical advice and following recommendations of this report, the risk of instability due to temporary excavations is assessed to be low.

Some areas, particularly over the North West area and the eastern parking and access roads adjoining Stage 3 development would require filling. These areas are located near deep cuts associated with building construction and the cuts will be retained by structural walls forming parts of the building. It is likely that suspended link slabs would be required to support access road and parking areas proposed.

9.0 EARTHWORKS

The recommendations for earthworks below should be complemented by reference to Australian Standard AS3798.

It is possible that cut earthworks would result in different types of materials such as Silty CLAY soils of high plasticity and Sandstone/Latite rock of different weathering grades.

The following broad recommendations should be included in an earthworks management plan:

- Vegetation within the development area should be removed and this area should be subjected to a detailed assessment by a geotechnical/environmental engineer to identify extent of fill.
- All foreign materials such as bricks, concrete, metal, timber etc should be collected and disposed appropriately.
- As the topography site is ridgeline, if fill is to be placed on sloping land with localised slope exceeding 10°, that area should be benched and fill placed in near horizontal layers.
- All uncontrolled fill should be excavated and visually assessed for contamination. Further testing should be carried out if any contamination is suspected.
- Topsoil should be excavated and stockpiled for later use in landscaping.
- Areas where deep fill is required should be stripped to competent ground and proof roll tested.
- Different fill types to be excavated should be stockpiled separately or alternatively placed in fill in identified zones in the earthworks management plan b.
- Where fill to be battered or supported with walls, the areas should be over filled and cut back to the required profile to reduce areas of loose fill on edges.
- All fill should be placed in near horizontal layers not exceeding 300mm depth.
- Earthworks should be managed such that reactive clay should not be placed over the upper 1.5m depth of fill. It would be better if reactive clay is placed in thin layers sandwiched between granular fill.
- Earthworks should be carried out under level 1 testing in accordance with AS3798-2007. Fill should be compacted to density ratio not less than 98% Standard Compaction. Where clay fill is used the placement moisture content should be controlled within 2% of Standard Optimum Moisture Content.
- Area receiving new fill should be examined by a geotechnical consultant prior to fill placement. Any unsuitable foundation materials, such as root affected topsoil, should be excavated, and the area should be replaced by engineered fill.

- Fill abutting the existing ground should be placed by cutting benches on to the existing ground.
- Geotechnical Inspection and Testing Authority (GITA) should be engaged directly by the Principal.

9.1 Excavation Characteristics

Excavation through the clayey fill and colluvial/residual soils can be completed by medium size (ie. 12 tonne) excavator. However, removal of low to medium strength sandstone bedrock may require a larger sized excavator (ie 30 tonnes or larger) with attached "tiger teeth" buckets. High strength fine grained sandstone was encountered over some higher elevations in BH31 to BH33 which may not be excavatable with an excavator. Impact hammers and/or hard ripping with a larger machine (caterpillar D10 dozer or similar) may be required for excavation of high and very high strength rock. Rock saw may be required if ground disturbance and vibration due to hard ripping and impact hammers are unacceptable.

It may be noted that the depth of weathered rock shown on borehole logs should not be extrapolated over the area for assessment of excavation characteristics as the weathering profile can vary over short distances due to variations in rock material, joint spacing and availability of water and air.

It is recommended that further seismic surveys be carried out in a close grid pattern to provide a better assessment of excavation characteristics for contractors pricing the work.

9.2 Excavation Support

It is assessed that temporary excavations can be typically carried out to the following batters:

StratumRatioFill/Colluvial/Residual soil2H: 1VExtremely low to low strength sandstone1H: 1VDistinctly weathered Sandstone0.5H: 1V

The recommended batter should be confirmed by a geotechnical engineer after inspections during bulk excavation. Any deeper excavation, which is more than 1.5m in high, may require benching.

The geological profiled assumed for design purposes should be confirmed during construction/excavation by a geotechnical engineer. If the actual conditions encountered are significantly different to those assumed for design it may be necessary to carry out additional analysis.

Any rock boulders, if encountered on the cut slope, should be removed.

9.3 Fill Materials

The existing topsoil can be reused for garden and park construction filling material. The existing clayey fill at the site are acceptable for re-use on condition that the soils used are clean (i.e. free of organics and inclusions greater than

75mm size), free of contaminants for landscaping and site levelling. They should not be considered as an engineered fill.

It is considered that the natural Silty CLAY and Sandy CLAY soils including extremely weathered rock at the site should be suitable for use as engineered fill subject to removal of any organic material and material greater than 150mm in size. However, in good engineering practice, we consider the materials to be used as an engineered fill are well-graded granular materials, such as ripped or crushed sandstone or good quality shale.

10 IMPACT ON ENVIRONMENT

The main impacts of open excavation are generation of dust, soil erosion from disturbed areas and noise and vibration from excavation of rock. Therefore, a detail of excavation/construction management plan should be prepared prior to commencement of excavation and construction.

10.1 Vibration and Noise

Where hard ripping or rock hamming is required (ie. Removing sandstone boulders, excavation of high/very high strength Sandstone or breaking through iron indurated bands) to achieve the required design footing level, vibration noise and dust pollution could occur and will require appropriate management.

Excavation methods which minimise noise and vibration may be required in some areas, where near the residences to the north.

As mentioned in Section 6.1, sandstone bedrock was exposed at the surface on existing vehicular track. We expect that the sandstone bedrock will be encountered at shallow depths over that area; therefore, other excavation techniques such as rock saw/drilling may be required to minimise the environmental effects.

It is recommended that vibration and noise monitoring be carried out during the initial stages of the excavation. If it is assessed vibration/noise is above the acceptable limit excavation methods should be reviewed.

10.2 Groundwater

Ground water monitoring wells were installed in BH3 (Well No.1), BH6 (Well No.2) and BH8 (Well No.3) respectively, for long term groundwater measurement.

As water was introduced into boreholes during core drilling, the measurement made after the coring might not provide meaningful groundwater readings and the groundwater level might not have sufficient time to stabilise in these boreholes shortly after the fieldwork completion, but it could provide us some indication of underlying rock quality.

The groundwater level readings were recorded the day after core drilling and again six weeks later. The results are tabulated in following Table:

Borehole	Drilling Completion	Date and	Depth	Date and	Depth
	Date/Time	Time	(m)	Time	(m)
BH3	21/11/13 5:30am	22/11/13	3.31	06/01/14	3.21
		AM		AM	
BH6	21/11/13 2:00pm	22/11/13	0.68	06/01/14	Dry
		AM		AM	
BH8	21/11/13 11am	22/11/13	Dry	06/01/14	Dry
		AM	,		

^{*}The above groundwater depths were measured from its existing grade.

Based on the above groundwater appears to be present only in BH3 at 3.2m depth (RL 38.4m).

Standing groundwater and seepages may fluctuate with variations in rainfall, temperature and other factors.

Local seepage flows may possibly occur in fill and clayey soil, interface between soil and rock, through joints and defects within bedrock, particularly after period of heavy rain. Seepage, if any, during excavation, is expected to be satisfactorily controlled by conventional sump pumping.

Roof drainage and drainage from hard stand areas should be collected and directed to site drainage system without allowing to soak in to the site, in particular the centre valley area.

Care should be taken to provide drainage both during construction and for long term site maintenance. The drainage measures should promote run off and reduce ponding.

10.3 Erosion Control

Four Emersion Class Number tests and two percentage dispersion tests were carried out to assess dispersion characteristics of clay soils. Emerson Class Number 5 or higher is considered to be less dispersive and soils with Emerson Class number 4 or below are considered to be highly dispersive. One soil sample recorded Emersion Class number 2 and the rest Number 5 indicating mixed results.

Two dispersion tests carried out recorded dispersion percentage of more than 90%. These soils contained sand and silt content in excess of 80% and Clay content in excess of 45%. Therefore clay soils tested are assessed as highly dispersive and would be Type F in accordance with NSW Stormwater Management manual (Blue book).

It is recommended that sediment and erosion control plans and sediment basins be designed based on the above assessment.

11.0 FOOTING DESIGN

We recommend that the proposed new buildings be supported on underlying either sandstone or Latite as medium to heavy structural loadings are expected.

Due to the existing site sloping features, we do not recommend the proposed building to be founded on colluvial/residual clayey soil, which are anticipated generally associated with high shrink swell reactivity.

We consider that the encountered Silty CLAY soils are considered suitable for an allowable end bearing pressure (AEBP) of 75kPa, which does not comply with a minimum engineering design requirement in accordance with AS2870.

Pile foundation would be the best means to transfer the load from the column to underlying bedrock. Piles founded in extremely weathered to highly weathered sandstone or Latite bedrock with extremely low to very low strength may be designed for the AEBP of 600kPa with an allowable shaft adhesion value of 60kPa. A minimum 0.5m pile socket into the bedrock would be required.

The footing design may be carried out based on the following ABEP given below:

Footing Founding	Design Allowable End Bearing pressure (kPa)
Stiff Clay	75, not recommend
Extremely low strength bedrock	600
Low strength bedrock	1000
Medium to high strength	>3000

Design Allowable Bearing Pressure

The above parameters may be used for preliminary design. Further detailed site specific investigations may be required for design of footings for individual buildings, particularly where column loads are higher and AEBP>1000kPa is required.

All footing excavations and piers should be inspected by an experienced geotechnical engineer prior to concreting, to ensure that the founding materials are consistent with the adopted footing design parameters.

Differential settlement should not be unexpected if the footing saddled different stratum (ie. silty CLAY and ROCK). Movement joint(s) between two stratums can be used to reduce differential settlement effect.

All footings should be cleaned of debris, softened materials, and any water encountered during the excavation should be pumped out prior to placing of concrete.

Foundation materials (ie. Silty CLAY) may be softened by groundwater seepage resulting in requiring further excavation and cleaning. Therefore, water should be prevented from entering the base of the footings. If delays in pouring concrete are anticipated, we recommend the base of the footings be protected with a blinding layer of concrete.

In sites where the risk of landslip might be potentially assessed to be high (ie. centre valley area), the pier footings should be tied together by reinforced concrete tie beams at ground level to reduce the risk of ground movement.

12.0 PAVEMENT DESIGN

Due to a limited scope of our investigation carried out at this site, further Geotechnical Investigations for pavement design would be required if this is critical to the pavement thickness design.

However, in general, we consider a typical California Bearing Ratio in the range 2% to 3% may be adopted for the pavement thickness design where subgrade materials would be clay. Earthworks may be managed such that the subgrade to be on good quality fill such as ripped sandstone. In that case a subgrade CBR of 7% may be used for pavement thickness design.

Where natural clay is on subgrade, it is likely that a select fill layer to be incorporated where subgrade is deflecting or of very low strength (CBR<2%). Lime stabilisation of subgrade may be an option in such cases.

13.0 CONCLUSIONS

Based on the investigations carried out we assess that the proposed development is feasible provided the recommendations of this report are carried out.

The main concern related to the proposed development is excavation of high to very high strength sandstone in Stages 4 and 5 areas. These areas are away from existing residential developments and the impact of excavation on the residences would be minimal.

14.0 FURTHER INVESTIGATION

We recommend the following works be completed prior to construction certificate and during construction as outlined in the preceding sections of this report:

- Further geotechnical investigation targeting design of footings for buildings with high column loads and where high retaining walls to support fill would be required.
- Earthwork management plan to be prepared providing details of excavation batters, methods of excavation support, fill management and inspection and testing.
- Pavement thickness design when road alignment and grades have been finalised.
- Direction of all proof rolling by an experienced geotechnician or geotechnical engineer.
- Inspection and approval of installation of excavation support.
- Inspection of all footing excavation Area receiving new fill should be examined by a geotechnical consultant prior to fill placement. Any unsuitable foundation materials, such as root affected topsoil, should be excavated and the area should be replaced by engineered fill.
- Inspections to confirm that the design bearing pressures have been achieved.
- Density testing of engineered fill and pavement layers.

15.0 LIMITATIONS

This report presents the results of a geotechnical investigation carried out in accordance with a brief provided by the client.

The report interpretations are based on the information supplied with the geotechnical brief, the information collected during the current investigation. It may be noted that the investigation was tailored to meet the planning requirements and not necessarily addresses the requirements for the detailed design.

The analysis is based on preliminary sketches emailed to us on 3rd October 2013. The proposed cut fill plan supplied for the investigation is included at the end of the appendices. Further clarifications and or investigations may be required if the final concept design is substantially different to the one assumed in this investigation.

Please do not hesitate to contact the undersigned if you have any queries or need further assistance.

For and on behalf of Network Geotechnics Pty Ltd

Reviewed by

Long Tsang BE, MEng, MIE Aust, Geotechnical Engineer V W de Silva BScEng, MEng, SMIE Aust, CPEng NPER Principal Geotechnical Engineer

GENERAL

Geotechnical reports present the results of investigations carried out for a specific project and usually for a specific phase of the project (e.g. preliminary design). The report may not be relevant for other phases of the project (e.g. construction), or where project details change.

SOIL AND ROCK DESCRIPTIONS

Soil and rock descriptions are based on AS 1726 – 1993, using visual and tactile assessment except at discrete locations where field and / or laboratory tests have been carried out. Refer to the terms and symbols sheet for definitions.

GROUNDWATER

The water levels indicated on the logs are taken at the time of measurement and depending on material permeability may not reflect the actual groundwater level at those specific locations. Also, groundwater levels can vary with time due to seasonal or tidal fluctuations and construction activities.

INTERPRETATION OF RESULTS

The discussion and recommendations in the accompanying report are based on extrapolation / interpolation from data obtained at discrete locations. The actual interface between the materials may be far more gradual or abrupt than indicated. Also, actual conditions in areas not sampled may differ from those predicted.

CHANGE IN CONDITIONS

Subsurface conditions can change with time and can vary between test locations. Construction operations at or adjacent to the site and natural events such as floods, earthquakes or groundwater fluctuations can also affect subsurface conditions.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this firm. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimise the likelihood of misinterpretation from logs.

FURTHER ADVICE

Network Geotechnics would be pleased to further discuss how any of the above issues could affect your specific project. We would also be pleased to provide further advice or assistance including:

- assessment of suitability of designs and construction techniques;
- contract documentation and specification;
- construction control testing (earthworks, pavement materials, concrete);
- construction advice (foundation assessments, excavation support).

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
 place because of the expulsion of moisture from the soil or because
 of the soil's lack of resistance to local compressive or shear stresses.
 This will usually take place during the first few months after
 construction, but has been known to take many years in
 exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- · Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

	GENERAL DEFINITIONS OF SITE CLASSES			
Class	Foundation			
A	Most sand and rock sites with little or no ground movement from moisture changes			
S	Slightly reactive clay sites with only slight ground movement from moisture changes			
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes			
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes			
Е	Extremely reactive sites, which can experience extreme ground movement from moisture changes			
A to P	Filled sites			
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise			

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

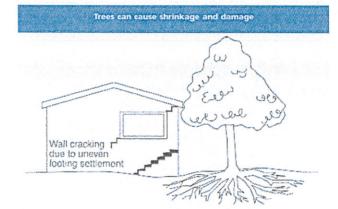
Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).


Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

Prevention/Cure

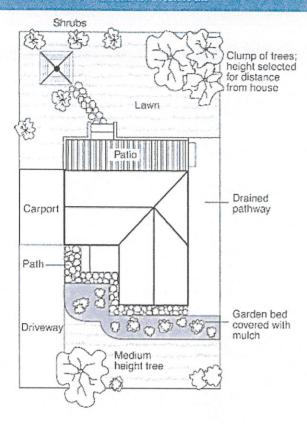
Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.

It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.


Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Description of typical damage and required repair Approximate crack width Damage limit (see Note 3) category Hairline cracks < 0.1 mm Fine cracks which do not need repair <1 mm 1 2 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks 3 to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 15-25 mm but also depend 4 especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted

Gardens for a reactive site

should extend outwards a minimum of 900~mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100~mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The Information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia

Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: LANDSLIDE RISK ASSESSMENT

QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

QUALITATIVE MEASURES OF LIKELIHOOD

Approximate A	Approximate Annual Probability	Implied Indicative Landslide	e Landslide	Description	Descriptor	Level
Indicative Value	Notional Boundary	Recurrence Interval	Interval			
10-1		10 years		The event is expected to occur over the design life.	ALMOST CERTAIN	А
10-2	5x10 ⁻²	100 years	20 years	The event will probably occur under adverse conditions over the design life.	LIKELY	В
10-3	5x10 ⁻³	1000 vears	200 years	The event could occur under adverse conditions over the design life.	POSSIBLE	၁
10-4	5x10 ⁻⁴	10,000 years	2000 vears	The event might occur under very adverse circumstances over the design life.	UNLIKELY	D
10-5	5x10 ⁻⁵	100,000 years	20,000 years	The event is conceivable but only under exceptional circumstances over the design life.	RARE	Ш
10-6	5x10 ⁻⁶	1,000,000 years	200,000 years	The event is inconceivable or fanciful over the design life.	BARELY CREDIBLE	Ή

The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa. (1) Note:

QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

Approximate	Approximate Cost of Damage	Description	Descriptor	Level
Indicative Value	Notional Boundary			
200%		Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.	CATASTROPHIC	П
%09	100%	Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant etablication works. Could cause at least one adiacent property medium consequence damage.	MAJOR	2
20%	40%	Superiorities of the state of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.	MEDIUM	3
5%	10%	Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.	MINOR	4
0.5%	170	Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)	INSIGNIFICANT	5

The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the unaffected structures. (2) Notes:

The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property. (3) (4)

The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa

PRACTICE NOTE GUIDELINES FOR LANDSLIDE RISK MANAGEMENT 2007

APPENDIX C: - QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY

LIKELIHOOD	000	CONSEQUI	CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage)	SRTY (With Indicati	ve Approximate Cost	of Damage)
	Indicative Value of Approximate Annual Probability	1: CATASTROPHIC 200%	2: MAJOR 60%	3: MEDIUM 20%	4: MINOR 5%	5: INSIGNIFICANT 0.5%
A - ALMOST CERTAIN	10-1	AH	VH	AH	Н	M or L (5)
B - LIKELY	10-2	VIE	ViH	Н	M	L
C - POSSIBLE	10-3	VIH	Н	M	M	VL
D - UNLIKELY	10-4	H	M	L	Г	VL
E - RARE	10-5	M	L	L	VL	VL
F - BARELY CREDIBLE	10-6	Т	VL	VL	VL	VL

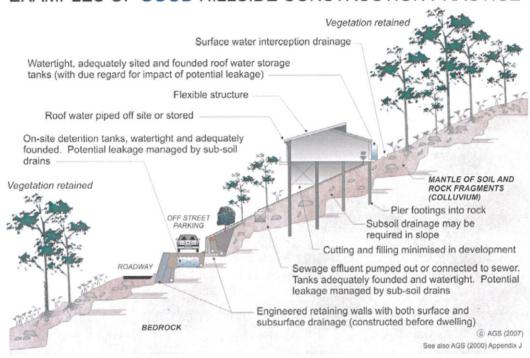
(5) Notes:

For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current

RISK LEVEL IMPLICATIONS

	Risk Level	Example Implications (7)
	一年 のからの はいかい 大田 のいまない なんし はいかい こうない はないない	Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment
VH	VERY HIGH RISK	options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the
		property.
:	Apid Hom	Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce
Ц	HIGH KISN	risk to Low. Work would cost a substantial sum in relation to the value of the property.
		May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and
M	MODERATE RISK	implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be
		implemented as soon as practicable.
•	Abra mo r	Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is
٦	LOW KISA	required.
1/1	VERV I OW BISK	Acceptable. Manage by normal slope maintenance procedures.
1,	VENT LOW MUSIK	


The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide. Note: (7)

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

HILLSIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

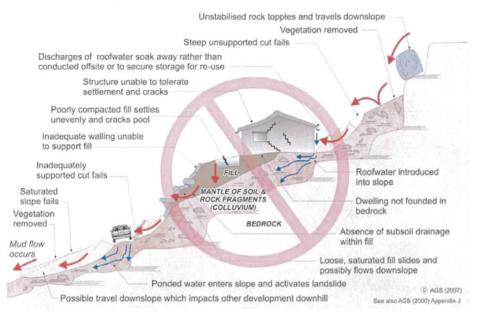
Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken away in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a lightweight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.


Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LR5). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THESE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

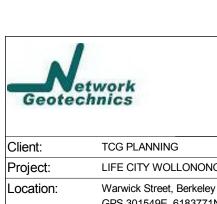
Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

More information relevant to your particular situation may be found in other Australian GeoGuides:


- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides
- GeoGuide LR3 Landslides in Soil
- GeoGuide LR4 Landslides in Rock
- GeoGuide LR5 Water & Drainage
- GeoGuide LR6 Retaining Walls
- GeoGuide LR7 Landslide Risk
- GeoGuide LR9 Effluent & Surface Water Disposal
 - GeoGuide LR10 Coastal Landslides GeoGuide LR11 - Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments' National Disaster Mitigation Program.

APPENDIX A

Borehole Logs BH1 to BH22, BH31 to BH33

Terms and Symbols

BOREHOLE LOG G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 21/1/14

BOREHOLE LOG

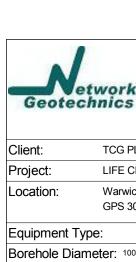
ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: **BH01**Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

Project: LIFE CITY WOLLONONG Finished: 28/11/13


Location: Warwick Street, Berkeley Logged: LT

GPS 301549E 6183771N Checked: VDS

Equipment Type: MOBILE DRILL B80 RL Surface: 46.7

Borehole Diameter: 100mm (I.D.) Inclination: -90 deg Bearing: Datum: A.H.D.

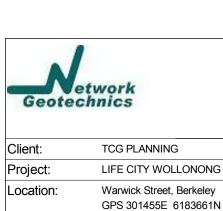
Во	reho	ole Dia	met	er: 100	mm (I.E	D.)	Inclination: -90 deg Bea	aring:	Datum:		A.H.D	
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional	
	p	D				СН	Silty CLAY: high plasticity, dark brown, with roots and trace of fine to medium gra	ained ironstone	>PI	-	observations FILL, GRASS COVER	
	None encountered	2, 3, 4 N=7		_			Silty CLAY: high plasticity, dark brown, with roots and trace of fine to medium gra and sandstone gravel					-
		N-7		1.0 		CH	Silty CLAY: high plasticity, dark brown, with root fibres		>PI	St	COLLUVIAL HP READING: 150, 170	
		N		_							'V' BIT REFUSED AT 1.8m DEPTH	_
		7,4/70mm,			\(\lambda \lambda \lambd	-	SANDSTONE : fine to medium grained, orange brown, red brown and light grey, voccassional iron indurated band, extremely low strength	with	XW		VL 'TC' BIT RESISTANCE	
ADT				_							·	
				_								_
				3.0								
				_								
				_								
9				4.0								1
-		D		4.0		-	As above, but low strength		DW	L	L 'TC' BIT RESISTANCE	_
				_	::::							_
				_			BH01 Terminated at 4.5 m				'TC' BIT REFUSAL	
				5.0								_
				_								-
				_								+
3				6.0								_
				_								+
				_								+

BOREHOLE LOG

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH02


Sheet: PAGE 1 / 1

 Client:
 TCG PLANNING
 Started: 28/11/13

 Project:
 LIFE CITY WOLLONONG
 Finished: 28/11/13

Lacation Washing Otrack Budgless

Loc	catio	on:		Warwic			erkeley 83722N	Logged		LT VDS			
Fai	uinr	ment Ty	vne			MOB	ILE DRILL B80	RL Sur		45.4			
		ole Dia					Inclination: -90 deg Bearing:	Datum:		A.H.D			
method	water		DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations			
	None encountered	D		_	71 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	СН	Silty CLAY: high plasticity, dark brown, with roots	>PI	-	TOPSOIL, GRASS COVER			
	None	1, 2, 4 N=6		1.0 		СН	Silty CLAY : high plasticity, dark brown and orange brown	>PI	St/VSt	COLLUVIAL HP READING: 170, 220, 230			
		5, 10, 10 N=20				CL	Sandy Silty CLAY: low to medium plasticity, fine grained, orange brown, red brown and dark brown	<pi< td=""><td>VSt</td><td>HP READING: 250, 300</td></pi<>	VSt	HP READING: 250, 300			
ADI	D						 			SANDSTONE : fine to coarse grained, orange brown and red brown, extremely low strength As above, but with medium strength iron indurated band	XW	-	'V' BIT REFUSAL VERY LOW 'TC' BIT RESISTANCE VERY LOW 'TC' BIT
		D	-	3.0 		-	As above, but with medium strength from indulated band			RESISTANCE			
		D		4.0 		-	As above, coarse grained	_					
				5.0			BH02 Terminated at 4.4 m			'TC' BIT REFUSAL			

BOREHOLE LOG G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 21/1/14

BOREHOLE LOG

Checked:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

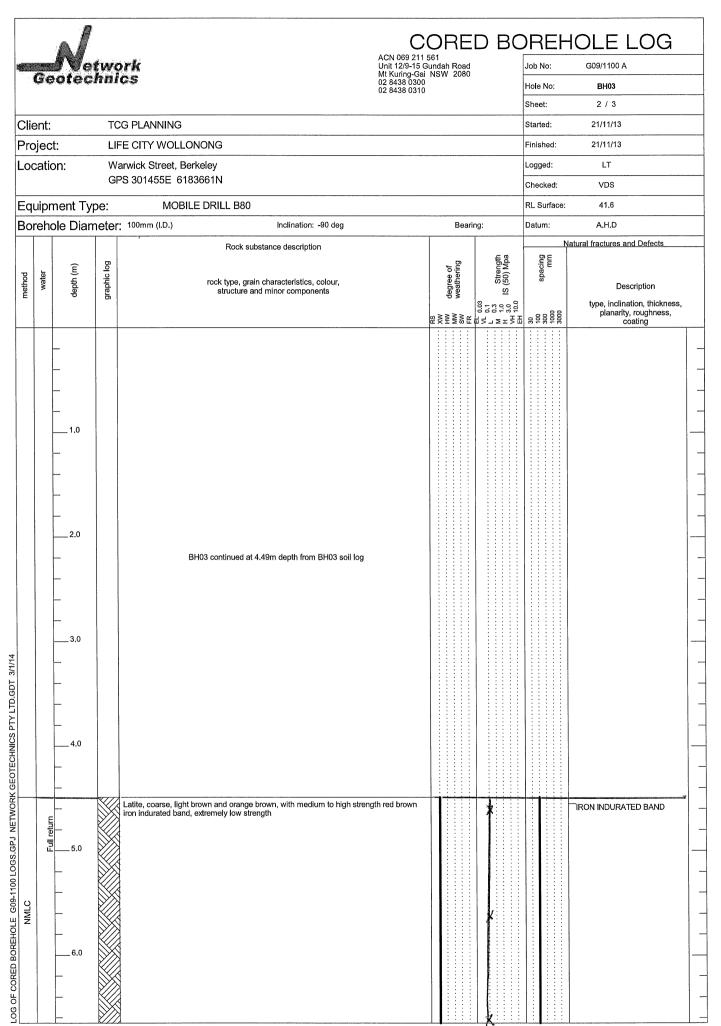
Job No: G09/1100 A

Hole No: BH03

Sheet: PAGE 1 / 3

VDS

 Client:
 TCG PLANNING
 Started:
 21/11/13


 Project:
 LIFE CITY WOLLONONG
 Finished:
 21/11/13

Project: LIFE CITY WOLLONONG Finished: 21/11/13

Location: Warwick Street, Berkeley Logged: LT

Equipment Type: MOBILE DRILL B80 RL Surface: 41.6

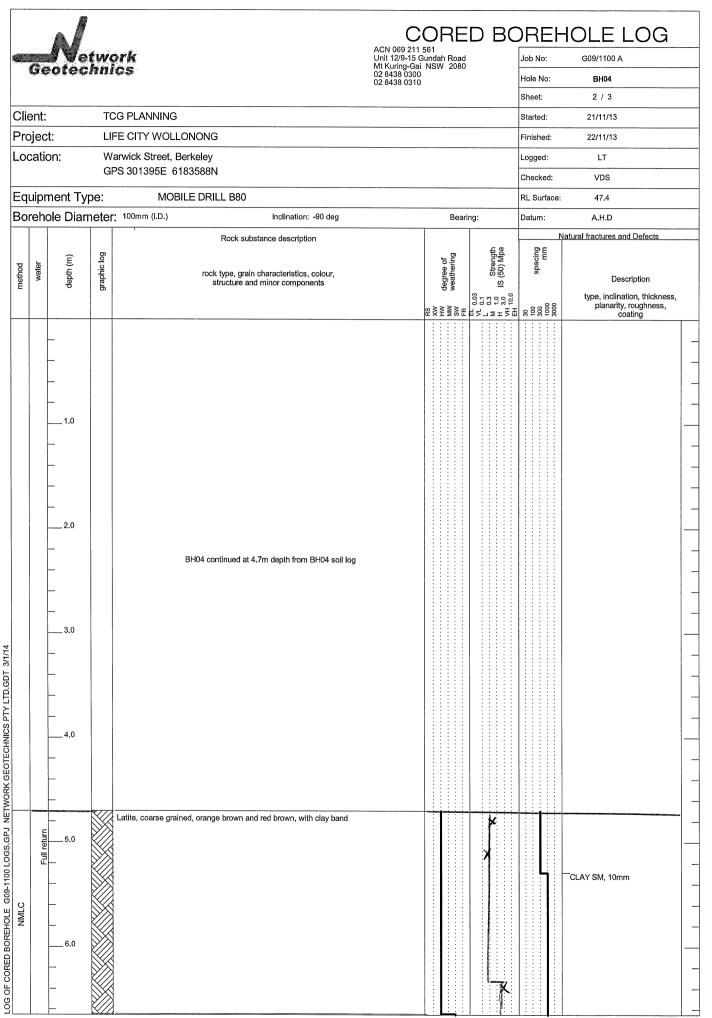
Во	reho	ole Dia	met	er: 100	mm (I.[D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D						
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations						
	ountered	D		_	7 71		Silty CLAY: high plasticity, dark brown, with roots	>PI	-	TOPSOIL, GRASS COVER						
	None encountered	1, 2, 4 N=6	-			CH	Silty CLAY: high plasticity, grey and dark brown, with roots	>PI	F-St	COLLUVIAL HP READING: 90, 110						
			-	1.0 		СН	As above, but brown, with root fibres		St-VSt							
		2, 3, 5 N=8	- -	2.0						HP READING: 190, 210,220						
ADT			_	-	_ _ _						_ _ _					
		N>23 15, 8/50mm		3.0	-	Latite, coarse, light brown and orange brown, with medium to high strength red brown iron indurated band, extremely low strength	XW		VERY LOW 'V' BIT RESISTANCE 'V' BIT REFUSAL VERY LOW 'TC' BIT RESISTANCE							
1000									-	4.0 						A 50mm PVC INSTALLED TO THE BOTTOM, MACHINE SLOTTED BETWEEN 4.47m TO 7.47m, 2mm FILTER SAND BACKFILLED TO 0.7m, BENTONITE SEALED BETWEEN 0.2m TO 0.7m. MONUMENT
			-				BH03 continued from 4.49 m on sheet 2 / 3			CONCRETED AT SURFACE						
				_						_						

					ACN 069 211		D BC	PREH	HOLE LOG	
*		y Ve otec	ţw	yk	Unit 12/9-15 (Mt Kuring-Ga 02 8438 0300	Gundah Road		Job No:	G09/1100 A	
	u e	orec		CS -	02 8438 0300 02 8438 0310))		Hole No:	ВН03	
								Sheet:	3 / 3	
Cli	ent:		TC	G PLANNING				Started:	21/11/13	
Pro	ojec	t:	LII	FE CITY WOLLONONG				Finished:	21/11/13	
Lo	catio	n:		arwick Street, Berkeley				Logged:	LT	
			Gi	PS 301455E 6183661N				Checked:	VDS	
Eq	uipr	nent Ty	pe:	MOBILE DRILL B80				RL Surface:	41.6	
Во	reh	ole Diar	neter	: 100mm (I.D.) Inclination: -90 deg		Bearin	ng:	Datum:	A.H.D	
				Rock substance description			- m	1	Natural fractures and Defects	
method	water	depth (m)	graphic log	rock type, grain characteristics, colour, structure and minor components		degree of weathering	Strength IS (50) Mpa	spacing mm	Description	
						XX XW MW SW FR	0.3 0.3 1.0 1.0 1.0 1.0	00000	type, inclination, thickness, planarity, roughness,	
			N/A	Latite, coarse, light brown and orange brown, with medium to high str	ength red brown	# × ± ≥ Ø E	K : : : :	: :::	coating	
၂		-		iron indurated band, extremely low strength (continued)						-
NMLC		7.0								
		_							IRON INDURATED BAND	-
		- Company		BH03 Terminated at 7.35 m						-
										-
		_								-
		8.0								-
										-
										-
		_								-
		_								-
		9.0								-
		_								-
		_								-
		_								-
		_								-
		10.0								
										-
										-
		_								-
5		11.0								-
		_								-
		_								-
5		_								-
		-								-
3		12.0								-
8		ļ_								-
7		_								-
OG OF CORED BORETOLE GOSTION ECOSION STEERING TO THE ESTATE STEERING		_								-
3		_								_
3		13.0								_
5										1.

BOREHOLE LOG G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 21/1/14

BOREHOLE LOG

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310


Job No: G09/1100 A Hole No: BH04 Sheet: PAGE 1 / 3

Client: TCG PLANNING Started: 21/11/13

LIFE CITY WOLLONONG Project: Finished: 22/11/13 Location: Warwick Street, Berkeley Logged: LT

GPS 301395E 6183588N Checked: VDS

Eq	uipr	nent T	уре:		I	МОВ	ILE DRILL B80	RL Sur	face:	47.4
Во	reh	ole Dia	met	er: 100).l) mm	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	pare	D			<u>z_I y^N</u> .	СН	Silty CLAY: high plasticity, dark brown, with fine to medium grained ironstone gravel and roots	>PI	-	TOPSOIL, GRASS COVER
	None encountered	1, 2, 2 N=4	- -	- - -		СН	Silty CLAY: high plasticity, dark brown and orange brown, trace of roots and fine grained gravel	>PI	St	COLLUVIAL, HP READING: 150, 170, 180 —
		D	-	1.0		СН	As above, but orange brown, without roots			 _ _
	1	N=16 0,9,7/50m	m	2.0		SC	Sandy CLAY: medium plasticity, fine to medium grained, orange brown, red brown and dark brown	<pi< td=""><td></td><td>HP READING: 160, 170</td></pi<>		HP READING: 160, 170
ADT			-	- - -						_ _ _ _
			-	3.0		-	Latite, coarse grained, orange brown and red brown, with clay band, extremely low strength	XW		'V' BIT REFUSAL VERY LOW 'TC' BIT RESISTANCE
			- -	4.0 				DW to XW	L-VL	VERY LOW TO LOW 'TC' BIT RESISTANCE -
			-	5.0 			BH04 continued from 4.7 m on sheet 2 / 3			-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-	6.0 						_ _ _ _

			7		CORED BO	DREH	HOLE LOG
		JVe	two	ork	ACN 069 211 561 Unit 12/9-15 Gundah Road	Job No:	G09/1100 A
	G	otec	hni	cs	Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310	Hole No:	BH04
						Sheet:	3 / 3
Cli	ent:		TC	CG PLANNING		Started:	21/11/13
Pro	ojec	et:	LIF	FE CITY WOLLONONG		Finished:	22/11/13
Lo	cati	on:		arwick Street, Berkeley		Logged:	LT
			GF	PS 301395E 6183588N		Checked:	VDS
-		ment Ty		MOBILE DRILL B80		RL Surface:	: 47.4
Во	reh	ole Dian	neter	100mm (I.D.) Inclination: -90 deg	Bearing:	Datum:	A.H.D
				Rock substance description	£ ¤		Natural fractures and Defects
В	water	depth (m)	graphic log	rock type, grain characteristics, colour,	degree of weathering Strength	spacing	
method	W	dept	grapł	structure and minor components	we de S		Description
					XXW XXW XWW SWW SWW FF F L 0.03 M M 1.00 M 1	20000	type, inclination, thickness, planarity, roughness, coating
				Latite, coarse, orange brown and grey (continued)			Coaling
		7.0					
NMLC							CRUSHED SM, 20mm
Z							TJT, 60, pl, rou, Fe
		8.0					CLAY SM, 5mm —
		0.0		BH04 Terminated at 8 m			
							_
		_					
		-					-
		9.0					
		_					-
		-					-
		-					-
							_
		10.0					
i		-					_
-		-					_
2		-					_
5		_					_
		11.0					
1		_					
0.55							
2		12,0					
ם פ		_					
200		_					
<u> </u>							
7		13.0					
LOG OF CORED BOREHOLE G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LID.GDT 37774		<u> </u>					

Started:

Logged:

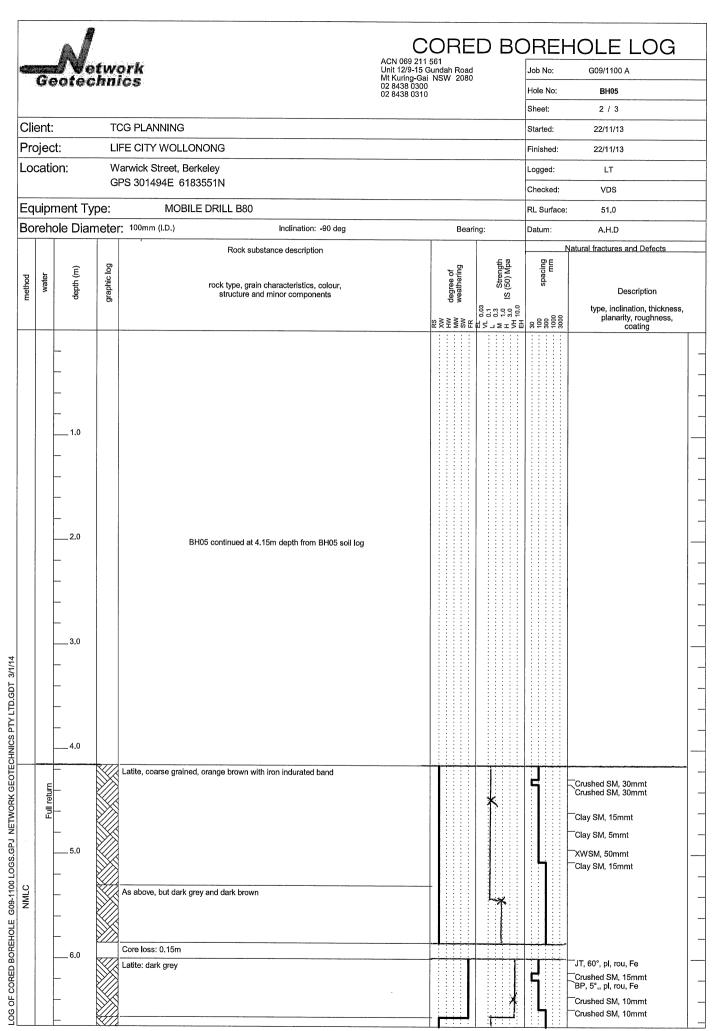
ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

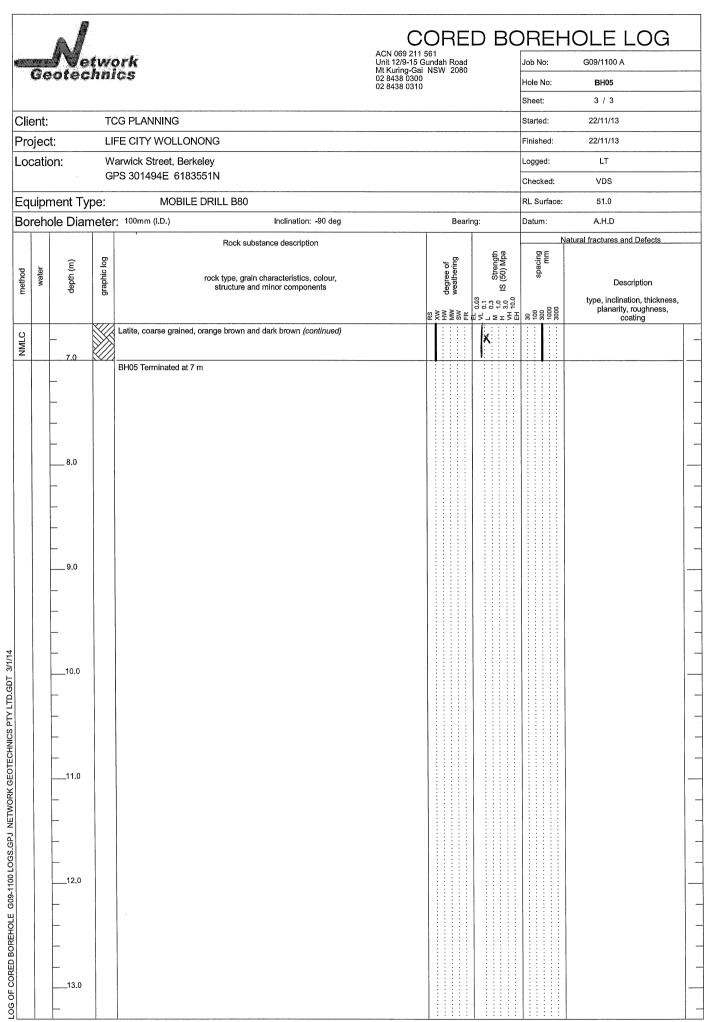
Job No: G09/1100 A Hole No: BH05 Sheet: PAGE 1 / 3

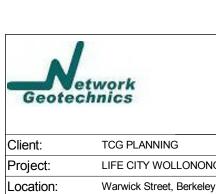
22/11/13

LT

Client: TCG PLANNING


LIFE CITY WOLLONONG Project: Finished: 22/11/13


Location: Warwick Street, Berkeley GPS 301494E 6183551N Checked: VDS


RL Surface: Equipment Type: MOBILE DRILL B80 51.0

Borehole Diameter: 100mm (I.D.) Datum: A.H.D Bearing: Inclination: -90 deg

Boı	rehc	ole Dia	met	er: 1	00mm (I.	D.)	Inclination: -90 deg	Bearing:	Datum:		A.H.D
g	-e-	, tests	lows mm	(m)	o log	ymbol	Material Description		ure :ion	ency/ lensity	comments
metnod	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol			Moisture condition	Consistency/ relative density	notes, structure, and additional observations
	None encountered	D		_	7) (7) 17 - 24 2/ 18		Silty CLAY : high plasticity, dark brown, with roots		>PI	-	TOPSOIL, GRASS COVER
	None	2, 3, 4 N=7				CH	Silty CLAY: high plasticity, brown, trace of root fibres and fine grained ironsto	ne gravel	>PI	VSt	COLLUVIAL HP READING: 250, 270, 290
ADI		3, 6, 9 N=15				СН	Silty CLAY: high plasticity, grey brown, trace of root fibres and fine grained irc	onstone gravel	<pi< td=""><td></td><td>HP READING: 300, 320, 370</td></pi<>		HP READING: 300, 320, 370
	4,8	N>18 3,10/100m	m			CH	Silty CLAY: high plasticity, grey to dark brown, orange brown and red brown, ironstone gravel	fine to medium			HP READING: 370, 380, 380
				_	//////////////////////////////////////	-	SANDSTONE : fine to medium grained, orange brown, extremely low strength	1	xw		VERY LOW 'V' BIT RESISTANCE
				_		-	Latite: dark grey		SW	Н	'V' BIT REFUSAL MEDIUM 'TC' BIT RESISTANCE
				4.0		-	Latite, coarse grained, orange brown with iron indurated band BH05 continued from 4.15 m on sheet 2 / 3		HW	L	LOW 'TC' BIT RESISTANCE
				5.0							
				_ 							

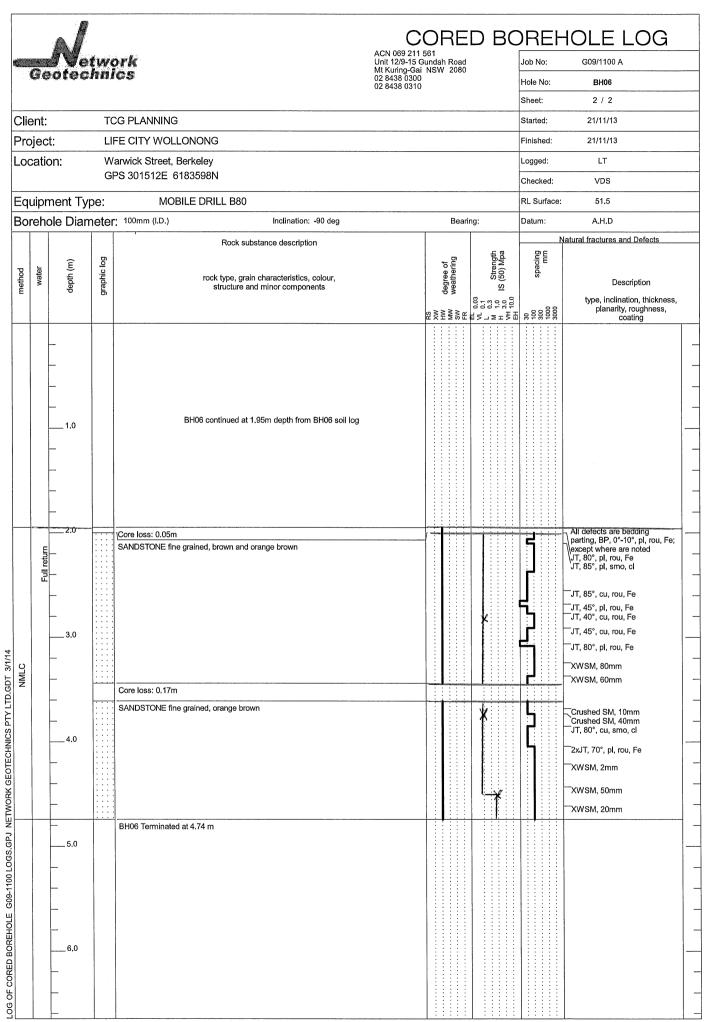
Logged:

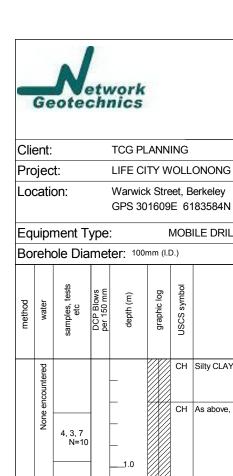
ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: **BH06**Sheet: PAGE 1 / 2

LT

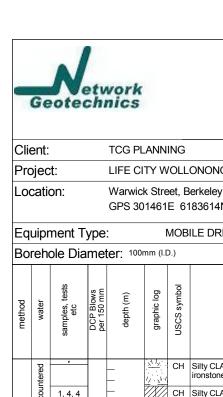

Client: TCG PLANNING Started: 21/11/13


Project: LIFE CITY WOLLONONG Finished: 21/11/13

GPS 301512E 6183598N Checked: VDS

Equipment Type: MOBILE DRILL B80 RL Surface: 51.5

Equipment	Гуре:	М	DBILE DRILL B80	F	RL Surf	ace:	51.5
Borehole Di	ameter: 1	00mm (I.D.)	Inclination: -90 deg	Bearing:	Datum:		A.H.D
method water samples, tests etc	DCP Blows per 150 mm depth (m)	graphic log	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
page o		<u>z/ /v</u> (H Silty CLAY: high plasticity, dark brown, with roots and trace of fine to med gravel	dium grained ironstone	>PI	-	TOPSOIL, GRASS COVER
None encountered 1, 2, 3 N=	51.0		H Silty CLAY: high plasticity, grey and dark brown, trace of fine to medium of	grained ironstone gravel	>PI	St	COLLUVIAL HP READING: 110, 120
	_		SANDSTONE : fine to medium grained, brown, extremely low strength		XW		VERY LOW 'V' BIT RESISTANCE
D					DW	VL	V' BIT REFUSAL LOW 'TC' BIT RESISTANCE, A 50mm PVC INSTALLED TO THE BOTTOM, MACHINE SLOTTED
			BH06 continued from 1.95 m on sheet 2 / 2				BETWEEN 3m TO 4.74m, 2mm FILTER SAND BACKFILLED TO 0.7m, BENTONITE SEALED BETWEEN 0.2m TO 0.7m. MONUMENT CONCRETED AT SURFACE


ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A Hole No: BH07 Sheet: PAGE 1 / 1

Started: 21/11/13 Finished: 21/11/13

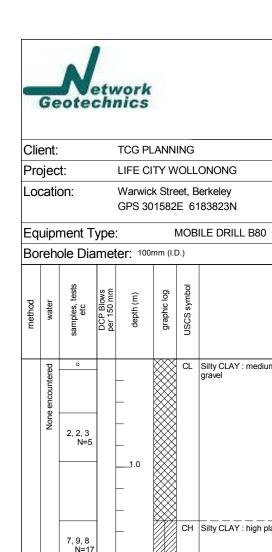
Warwick Street, Berkeley Logged: LT

				GPS 3	01609	E 61	183584N	Checke	ed:	VDS
		ment T					ILE DRILL B80	RL Sur	face:	67.1
Во	reh	ole Dia	met	er: 100	Omm (I.I	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	None encountered			_		СН	Silty CLAY: high plasticity, orange brown	>PI		RESIDUAL
	None en	4, 3, 7 N=10				СН	As above, but with fine to medium grained very low strength sandstone grave	<pi< td=""><td>St</td><td></td></pi<>	St	
		3, 4, 7 N=11	- - - -							
ADT			-	- - -						
		N=R 6 5,-		3.0		_	SANDSTONE : fine to medium grained, orange brown	DW	VL	'V' BIT REFUSAL
PTY LTD.GDT 21/1/14		D	-						VL.	VERY LOW 'TC' BIT RESISTANCE
OTECHNICS F				<u>. </u>			BH07 Terminated at 4.4 m			'TC' BIT REFUSAL
REHOLE LOG G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 21/1/14			-	5.0 						

Logged:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A Hole No: BH08 Sheet: PAGE 1 / 1


LT

TCG PLANNING Started: 28/11/13

LIFE CITY WOLLONONG Finished: 28/11/13

> GPS 301461E 6183614N Checked: VDS

⊨qι	uipn	nent T	ype	:		MOB	ILE DRILL B80	RL Sur	face:	43.3
Bor	eho	ole Dia	me	ter: 100	mm (l.l	D.)	Inclination: -90 deg Bearing:	Datum:	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture	Consistency/ relative density	notes, structure, and additional observations
	ntered	0			1, , , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	СН	Silty CLAY high plasticity, dark grey and dark brown, with fine grained sand, fine grained ironstone gravel and roots	>PI	-	TOPSOIL, GRASS COVER
	None encountered	1, 4, 4 N=8				СН	Silty CLAY high plasticity, dark brown and dark grey, with root fibres	>PI	St	COLLUVIAL HP READING: 170, 180, 190
	Non	D		_		СН	As above, but brown and grey, trace of fine grained ironstone gravel			
		2, 4, 7 N=11		 2.0					VSt	HP READING: 270, 290, 300
				_		-	Latite, coarse grained, orange brown and dark grey, with clay band, extremely low strength	XW		VERY LOW 'V' BIT RESISTANCE
		N>18		3.0						
-	5	6, 18,-		_				XW/DW	,	'V' BIT REFUSAL VERY LOW 'TC' BIT
				4.0 4.0						RESISTANCE
				5.0 _						
				6.0 						
				 7.0						
				_			BH08 Terminated at 7 m			A 50mm PVC INSTALLED TO THE BOTTOM, MACHINE SLOTTED
				8.0						BETWEEN 4m TO 7m, 2mm FILTER SAND BACKFILLED TO 0.7m,
				_						BENTONITE SEALED BETWEEN 0.2m TO 0.7m. MONUMENT
				9.0 9						CONCRETED AT SURFACE
				_						
				10.0 						
				 12.0						
				<u>1</u> 3.0						

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

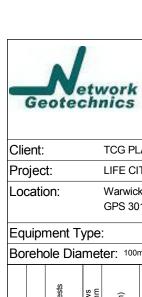
Hole No: BH09

Sheet: PAGE 1 / 1

 TCG PLANNING
 Started:
 28/11/13

 t:
 LIFE CITY WOLLONONG
 Finished:
 28/11/13

 Warwick Street, Berkeley
 Logged:
 LT


 GPS 301582E 6183823N
 Checked:
 VDS

Material Description

Equipment Type: MOBILE DRILL B80 RL Surface: 46.4

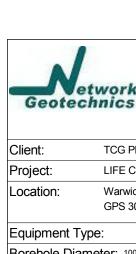
Borehole Diameter: 100mm (I.D.) Inclination: -90 deg Bearing: Datum: A.H.D

method	water		DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	notes, structure, and additional observations
	tered	D	1	_		CL	Silty CLAY: medium plasticity, dark brown, with fine to coarse grained sandstone and ironstone gravel	~PI	-	TOPSOIL, GRASS COVER
	None encountered									
	one el			_						
	z	2, 2, 3 N=5								
				1.0						
				_						
				_						
			1	_		СН	Silty CLAY : high plasticity, dark brown, with root fibres	>PI	St	COLLUVIAL _
		7, 9, 8 N=17		_						
				2.0						
				_						'V' BIT REFUSAL
				_		-	SANDSTONE fine to medium grained, orange brown, extremely low strength	XW		VERY LOW 'TC' BIT RESISTANCE
ADT				_						
			1	_		-	As above, but orange brown and light grey, medium strength	DW	M	MEDIUM 'TC' BIT
		D		3.0						RESISTANCE
				_						
				_						
4/1				_						
EOTECHNICS PTY LTD.GDT 21/1/14				_						
D.G			1	4.0						
TY				_						
AICS F		D		_		-	As above, but orange brown			
ECH ECH			1	_						
GEO				_						
VORK				5.0				SW	Н	HIGH 'TC' BIT
NETV			1	_			BH09 Terminated at 5.1 m			RESISTANCE 'TC' BIT REFUSAL
G09-1100 LOGS.GPJ NETWORK GI				_						
LOGS				_						
1100				_						
609				6.0						
FLOG				_						
BOREHOLE LOG				_						
BORE										

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH10


Sheet: PAGE 1 / 1

 Client:
 TCG PLANNING
 Started: 28/11/13

 Project:
 LIFE CITY WOLLONONG
 Finished: 28/11/13

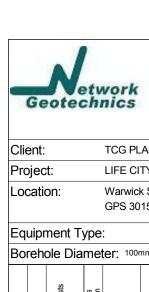
Location: Warwick Street, Berkeley Logged: RS

_0(catio	on:					derkeley	Logged	d: 	RS
				GPS 30)160C)E 61	183836N	Checke	ed:	VDS
Ξq	uipr	nent 7	ype			HANI	D AUGER	RL Sur	face:	45.8
Зо	reho	ole Dia	ame	ter: 100	mm (l.l	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ered					sc	Sandy CLAY medium to high plasticity, fine grained, dark grey, sand fine to medium grained	>PI	-	FILL, GRASS COVER
	counte	D		_						
HA	None encountered	D		 1.0						
							BH10 Terminated at 1 m			
				_ _ _						
				2.0						
				_						
				_						
				_						
				_						
				3.0						
				_						
				_						
				_						
				_						
				4.0						
				_						
				_						
				5.0						
				_						
				_						
				_						
				_						
				6.0						
				_						
				_						
				_						

Started:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A


Hole No: BH11

Sheet: PAGE 1 / 1

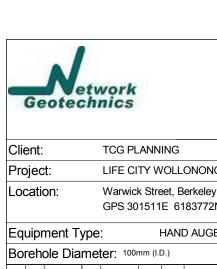
28/11/13

Client: TCG PLANNING

:	~4 .			NITY V	VOL 1	ONONO		Finish to	.d.	00/44/40
roje						ONONG		Finishe		28/11/13
ocati	ion:					erkeley		Logged	d:	RS
			GPS 3	801596	6 6°	183814N		Checke	ed:	VDS
auin	ment	Tvne	<u> </u>		HANI	DAUGER		RL Sur	face:	46.9
			rter: 10			Inclination: -90 deg	Bearing:	Datum		A.H.D
oren		ialile	ICI. 10	J. (I.	ر.ن.		Deaning.	Datum	•	I ATTE
	, o				_	Material Description			. >	comments
5 k	samples, tests etc	DCP Blows	depth (m)	graphic log	USCS symbol			e re	Consistency/ relative density	
water	ples	7 BB	bth	aphic	SS			Moisture condition	isiste ive d	
<u> </u>	sam		, w	gre	OSO			≥ິຽ	Cor elati	notes, structure, and additional observations
									_	observations
ָם ,		+		7/1 J ^X .	ML	Sandy SILT low plasticity, fine grained, dark grey, with root fibres		w,	_	TOPSOIL
Jaering					-	SANDSTONE extremely weathered, brown				ROCK
ng a						BH11 Terminated at 0.2 m				
duri										
ered										
onut										
eno			1.0							
None encountered during augering										
_										
			L							
			2.0							
			-							
			3.0							
			0.0							
			-							
			-							
			4.0							
			L							
			_							
			E 0							
			5.0							
			-							
			6.0							
			-							
1	1	- 1	1		1					

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A


Hole No: BH12

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

Project: LIFE CITY WOLLONONG Finished: 28/11/13

Lo	catio	on:					erkeley	Logge	d:	RS
							183809N	Check		VDS
		nent T					DAUGER	RL Sui		46.4
Во	reho	ole Dia	ame	ter: 100	Omm (I.I	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ering					ML	Sandy SILT low plasticity, fine grained, dark grey, with root fibres	-	-	TOPSOIL
H	None encountered during augering	D				CI/CH	Silty CLAY medium to high plasticity, dark grey, some gravel	>Wp	-	FILL
	ered d			_			BH12 Terminated at 0.5 m			
	counte			_						
	one en			1.0						_
	ž			_						
				_						
				_						
				2.0						_
				3.0						_
				_						
				_						
				4.0						_
				_						
				5.0						_
				6.0						_
				L						

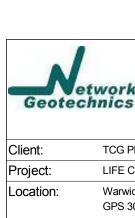
BOREHOLE LOG G09-1100 LOGS.GPJ NETWORK GEOTECHNICS PTY LTD.GDT 21/1/14

BOREHOLE LOG

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH13


Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

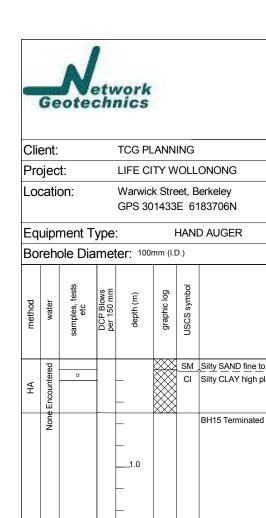
Project: LIFE CITY WOLLONONG Finished: 28/11/13

Location: Warwick Street, Berkeley Logged: RS

Equipment Type: HAND AUGER Borehole Diameter: 100mm (I.D.) Inclination: -90 deg Bearing: Datum: A.H.D Description Descript	
Borehole Diameter: 100mm (I.D.) Inclination: -90 deg Bearing: Datum: A.H.D Pay	
Pound and additional observations Handle and additional observations Handle and additional observations CH Sandy CLAY high plasticity, brown, sand fine to medium grained Swip and additional observations CH Sandy CLAY high plasticity, brown, sand fine to medium grained Swip and additional observations BH13 Terminated at 0.5 m	
YET D	

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A


Hole No: BH14

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

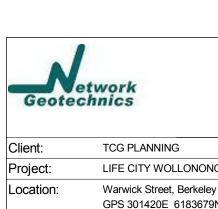
Project: LIFE CITY WOLLONONG Finished: 28/11/13

								1.			
_ocat	tion:						Berkeley 183731N	Logged		RS	
				J JU				Checke		VDS	
	oment						D AUGER	RL Sur	face:	38.9	
ore	hole D	iame	eter:	100m	nm (I.E	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D	
water	samples, tests etc	DCP Blows	per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture	Consistency/ relative density	comme notes, struc and additic observatio	ture,
HA	D					CI/CH	Sandy CLAY medium to high plasticity, dark grey, sand fine to medium grained, some gravel	≥Wp	-	FILL	
HA None Enoquitered				2.0			BH14 Terminated at 0.3 m				
			- - -	4.0 5.0							
			6	6.0							

Logged:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A BH15 Hole No: Sheet: PAGE 1 / 1


RS

Started: 28/11/13

Finished: 28/11/13

> Checked: VDS

		nent T					DAUGER		face:	37.4
or	ehc	ole Dia	met	er: 100	mm (l.l	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
nome	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture	Consistency/ relative density	notes, structure, and additional observations
	ъ					SM	Silty SAND fine to medium grained, brown, traces of grass rootlets	ļ - ,		TOPSOIL
<u> </u>	nuter	D		_		CI	Silty CLAY high plasticity, grey, sand fine to medium grained	>Wp	-	FILL
-	Euco			_						
	None Encountered			_			BH15 Terminated at 0.5 m			
	_			_						
				1.0						
				_						
				_						
				_						
				_						
				2.0						
				_						
				_						
				_						
				_						
				3.0						
				_						
				_						
				_						
				_						
				4.0						
				_						
				_						
				_						
				_						
				5.0						
				_						
				_						
				_						
				-						
				_						
				6.0						
				_						
			1		1			1		

Started:

Logged:

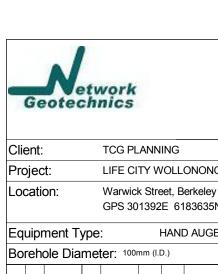
ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH16

Sheet: PAGE 1 / 1

28/11/13


RS

Client: TCG PLANNING

Project: LIFE CITY WOLLONONG Finished: 28/11/13

GPS 301420E 6183679N Checked: VDS

				GPS 3	01420)E 61	183679N	Ch	ecke	ed:	VDS
Ξq	uipr	nent T	уре			HANI	DAUGER	RL	. Surf	face:	37.7
Во	reho	ole Dia	amet	er: 100	Omm (I.	D.)	Inclination: -90 deg Bearing:	Da	itum:		A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture	condition	Consistency/ relative density	notes, structure, and additional observations
_	ъ				<u>311/2</u>	SP	Silty SAND fine to medium grained, brown, traces of grass rootlets	1	М	,	TOPSOIL
Ϋ́	nnter	D	-	_			Silty CLAY medium to high plasticity, grey		Vр	-	RESIDUAL
	None Encountered						BH16 Terminated at 0.3 m				
				_							

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH17

Sheet: PAGE 1 / 1

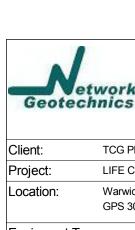
Client: TCG PLANNING Started: 28/11/13

Project: LIFE CITY WOLLONONG Finished: 28/11/13

_00	catio	on:					erkeley 183635N		Logged		RS
									Checke		VDS
		nent T					DAUGER		RL Sur		42.3
3or	reho	ole Dia	amet	er: 100	Omm (I.I	D.)		earing:	Datum		A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
_	peu				<u>314</u>		Silty CLAY low to medium plasticity, dark grey, traces of grass rootlets		√ <wp< td=""><td></td><td>TOPSOIL</td></wp<>		TOPSOIL
Η	untei	D		_		СН	Silty CLAY medium to high plasticity, dark grey		>Wp	-	RESIDUAL
	None Encountered						BH17 Terminated at 0.3 m				
				_							
				3.0 							
				_							
				5.0 							
				6.0							
				_							

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A


Hole No: BH18

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

Project: LIFE CITY WOLLONONG Finished: 28/11/13

	jec				, I I I V	OLL	ONONG		Finishe	u.	28/11/13
_00	catio	on:					erkeley		Logged	d:	RS
				GPS 30	01451	E 61	83679N	İ	Checke	ed:	VDS
Ξqι	uipr	nent T	ype	:		HANI	DAUGER		RL Sur	face:	41.3
				ter: 100				earing:	Datum	:	A.H.D
method	water		DCP Blows per 150 mm		graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
	ъ				[7] N.	ML	Sandy SILT low plasticity, dark grey, some grass rootlets		<wp ,<="" td=""><td></td><td>TOPSOIL</td></wp>		TOPSOIL
Η	None Encountered			_		CH	Silty CLAY high plasticity, dark grey		<u>></u> Wp		RESIDUAL
	ncon			_	<u> </u>		BH18 Terminated at 0.3 m				
	one										
	z										
				_							
				1.0							
				_							
				_							
				_							
				_							
				2.0							
				_							
				_							
				_							
				3.0							
				_							
				_							
				_							
				_							
				4.0							
				=							
				—							
				_							
				5.0							
				_							
				_							
				_							
				6.0							
				_							

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

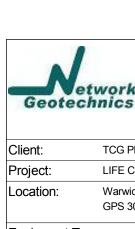
Hole No: BH19

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

						1110					
Pro	ject	t:		LIFE C	ITY W	/OLL	ONONG		Finishe	ed:	28/11/13
Loc	catic	on:					Berkeley 183707N		Logge		RS
									Check		VDS
		nent T					DAUGER		RL Sui		52.4
Воі	reho	ole Dia	met	er: 100	mm (l.l	D.)	Inclination: -90 deg	Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description		Moisture condition	Consistency/ relative density	comments notes, structure, and additional observations
4	pe	D			7 <u>1 J</u> N	CI	Sandy CLAY medium to high plasticity, grey, sand fine to medium grained		<wp< td=""><td>-</td><td>TOPSOIL</td></wp<>	-	TOPSOIL
Η	nute			_	1, 1.1	-	SANDSTONE extremely weathered, brown			_	ROCK
	None Encountered			_			BH19 Terminated at 0.3 m				
	S			_							
				1.0							
				_							
				_							
				_							
				_							
				2.0							-
				_							
				_							
				_							
				_							
				3.0							_
				_							
				_							
				_							
				4.0							_
				_							
				_							
				_							
				_							
				5.0							_
				_							
				_							
				-							
				_							
				_							
				6.0							-
				_							
				_							
				_							

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

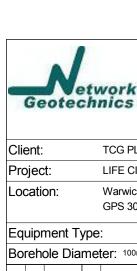

Job No: G09/1100 A

Hole No: BH20

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13

	ent.			TCG P					Startet		20/11/13
⊃rc	ject	t:		LIFE C	ITY W	/OLL	ONONG		Finishe	ed:	28/11/13
_00	catio	on:					Berkeley		Logge	d:	RS
				GPS 30	01538	8E 6	183661N		Check	ed:	VDS
Ξαι	uipn	nent T	vpe	<u> </u>		HAN	D AUGER		RL Sui	rface:	52.5
				er: 100			Inclination: -90 deg	Bearing:	Datum	:	A.H.D
		,,o <u>D</u> ,o			T		Material Description				
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	waterial Description		Moisture condition	Consistency/ relative density	notes, structure, and additional observations
НА	ered	D			7/1/8	CI	Sandy CLAY medium to high plasticity, dark grey, sand fine to medium gra	ained	<wp< td=""><td>-</td><td>TOPSOIL</td></wp<>	-	TOPSOIL
_	onut				4.4.4.		SANDSTONE extremely weathered, brown		 		ROCK
	None Encountered						BH20 Terminated at 0.3 m				
				_							
				_							
				_							
				_							
				2.0							
				_							
				_							
				_							
			-	_							
				3.0							
				_							
			-	_							
				_							
				4.0							
				_							
			-	_							
			-	_							
				_							
				5.0							
				_							
				-							
				_							
				_							
				_							
				6.0							
				_							
				_							
				_							



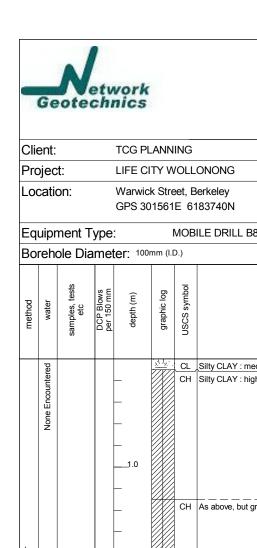
ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A BH21 Hole No: Sheet: PAGE 1 / 1

TCG PLANNING Started: 28/11/13

Client:	TCG PLANI	NIING		Started	1:	28/11/13
Project:	LIFE CITY V	NOLL	ONONG	Finishe	ed:	28/11/13
Location:	Warwick Str			Logged	d:	RS
	GPS 30153	8E 6	183619N	Checke	ed:	VDS
Equipment T	уре:	HAN	D AUGER	RL Sur	face:	53.5
Borehole Dia	meter: 100mm (I	l.D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method water samples, tests etc	DCP Blows per 150 mm depth (m) graphic log	USCS symbol	Material Description	Moisture	Consistency/ relative density	comments notes, structure, and additional observations
D D		ML	Sandy SILT low plasticity, dark grey, sand fine to medium grained, some gravel/ironstone	<wp< td=""><td></td><td>TOPSOIL</td></wp<>		TOPSOIL
HA			SANDSTONE extremely weathered, brown			ROCK
None Encountered			BH21 Terminated at 0.3 m			
	4.0					
	5.0					
	6.0					

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310


Job No: G09/1100 A

Hole No: BH22

Sheet: PAGE 1 / 1

Client: TCG PLANNING Started: 28/11/13
Project: LIEE CITY WOLLONONG Finished: 28/11/13

² rc	jec	t:		LIFE C	ITY W	/OLL	ONONG	Finishe	ed:	28/11/13
_00	catio	on:					serkeley	Logged	d:	LT
				GPS 30	01611	E 61	183599N	Checke	ed:	VDS
Ξqι	uipr	nent T	уре	:		HANI	D AUGER	RL Sur	face:	65.3
Зоі	reho	ole Dia	ame	ter: 100	mm (l.l	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
							Material Description			comments
p	<u>.</u>	tests	ows	Œ	<u>log</u>	loqш/		ion	ency/ ensity	
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol		Moisture	Consistency/ relative density	notos etrusturo
_		sar			B	Sn			S 89	notes, structure, and additional observations
	-	D			<u>z₁ y^x</u> .	CL	Silty CLAY: medium plasticity, dark brown, with roots	>PI	_	TOPSOIL, GRASS COVER
₹	None encountered			_	17 711		Only OLAT . Thedrain plasticity, daily brown, with 19913	751	-	TO COIL, GIVIOU GOVERY
	encor		-			СН	Silty CLAY: high plasticity, orange brown, with fine to medium grained sandstone gravel	_ <pl_< td=""><td>St</td><td>RESIDUAL</td></pl_<>	St	RESIDUAL
	None			_			BH22 Terminated at 0.4 m			HAND AUGER REDFUSAL
				1.0						_
				_						
				2.0						-
				_						
				_						
				_						
				3.0						-
				_						
				_						
				_						
				_						
				4.0						
				_						
				5.0						
				_						
				_						
				6.0						-
				_						
				L						
				L						

Logged:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A BH31 Hole No: Sheet: PAGE 1 / 2

Started: 08/01/14

08/01/14 Finished: LT

> Checked: VDS

		nent T					ILE DRILL B80	RL Sui	rface:	52.2
3ore	ehc	ole Dia	me	ter: 100)mm (I.I	D.)	Inclination: -90 deg Bearing:	Datum	:	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture condition	Consistency/ relative density	notes, structure, and additional observations
1	De Je				311/		Silty CLAY : medium plasticity, dark brown, with roots	<wp< td=""><td></td><td>TOPSOIL</td></wp<>		TOPSOIL
ADI	None Encountered						Silty CLAY: high plasticity, dark brown and red brown As above, but grey to dark grey	>Wp	St	RESIDUAL
						SC	Sandy Silty CLAY: medium plasticity, orange brown, fine grained sand	~Wp		'V' BIT REFUSAL
				_		-	SANDSTONE : fine grained, orange brown	XW		VERY LOW 'TC' BIT RESISTANCE
							BH31 continued from 3.6 m on sheet 2 / 2			
				4.0 						
				5.0						
				6.0						
				_						

		M	i		CORE	D BC	PREH	HOLE LOG
ij.		otec	tw	ork .	ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gal NSW 2080 02 8438 0300 02 8438 0310		Job No:	G09/1100 A
	196	orec	mm	CS-	02 8438 0300 02 8438 0310		Hole No:	BH31
							Sheet:	2 / 2
Cli	ent:		T(CG PLANNING			Started:	08/01/14
Pro	ojec	et:	LI	FE CITY WOLLONONG			Finished:	08/01/14
Lo	cati	on:		arwick Street, Berkeley			Logged:	LT
			G	PS 301561E 6183740N			Checked:	VDS
Εq	uipı	nent Ty	pe:	MOBILE DRILL B80			RL Surface:	52.2
Во	reh	ole Dian	neter	100mm (I,D.) Inclination: -90 deg	Bearing	g:	Datum:	A.H.D
				Rock substance description			1	Natural fractures and Defects
method	water	depth (m)	graphic log	rock type, grain characteristics, colour, structure and minor components	degree of weathering	Strength S Strength JS (50) Mpa	spacing mm	Description type, inclination, thickness,
					XXX XXW MWW FR FR	देन≅∓ <u>}</u> 3995%5	300 300 3000 3000	planarity, roughness, coating
NMLC		1.0		BH31 continued at 3.6m depth from BH31 soil log				
				SANDSTONE ; fine grained, orange brown, extremely low strength	The state of the s		4,0,30,4,0,5	JT, 80°, cu, smo, Cl 2mm
		4.0		As above, but coarse grained	 		5	CLAY SM, 5mm CLAY SM, 30mm
ပ္		-						
NMLC		-		SANDSTONE : fine grained, orange brown and dark brown		k		
		-						
		_						CLAY SM, 50mm
	-	5.0		SANDSTONE - fine grained, light grey		K		
				BH31 Terminated at 4.98 m				
		L						
		6.0						
		_ 5.0						-
		_						
L		<u> </u>				<u> </u>	<u> </u>	

Started:

Logged:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A BH32 Hole No: Sheet: PAGE 1 / 2 08/01/14

LT

Client: TCG PLANNING

Warwick Street, Berkeley

Project: LIFE CITY WOLLONONG 08/01/14 Finished:

Location: GPS 301442E 6183501N Checked: VDS

	quipment Type: Morehole Diameter: 100mm (I.D.					- · ·	Indication: 00 des	<u> </u>		ALLD
or	enc	ole Dia	amet	er: 100	mm (l.l	ر.)	Inclination: -90 deg Bearing:	Datum		A.H.D
metnod	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	Material Description	Moisture	Consistency/ relative density	notes, structure, and additional observations
	ped				7/1/2	CL	Silty CLAY : medium plasticity, dark brown, with roots	<wp< td=""><td>-</td><td>TOPSOIL, GRASS COVER</td></wp<>	-	TOPSOIL, GRASS COVER
ADI	None Encountered					CL	Silty CLAY: medium plasticity, orange brown, fine grained sand	<wp< td=""><td>St</td><td>RESIDUAL</td></wp<>	St	RESIDUAL
				_						'V' BIT REFUSAL
		D		_		-	SANDSTONE : fine grained, orange brown	DW	L	
_				_			BH32 continued from 1.52 m on sheet 2 / 2			
				_						
				2.0						
				_						
				_						
				_						
				3.0						
				_						
				_						
				_						
				4.0						
				_						
				_						
				_						
				5.0						
				_						
				_						
				_						
				6.0						
				_						

	G e	Ne otec	tv. hni	ork Gs	ACN 069 211 Unit 12/9-15 G Mt Kuring-Gai 02 8438 0300 02 8438 0310	561 Sundah Road	D BC	Job No: Hole No:	HOLE LOG G09/1100 A BH32
Clie	ent:		TC	CG PLANNING				Sheet: Started:	08/01/14
	ojec	t:		FE CITY WOLLONONG				Finished:	08/01/14
	catio			arwick Street, Berkeley				Logged:	LT
			Gi	PS 301442E 6183501N				Checked:	VDS
		nent Ty		MOBILE DRILL B80				RL Surface	: 62,0
Bo	reho	ole Dian	neter	100mm (I.D.) Inclination: -90 deg		Beari	ng:	Datum:	A.H.D
method	water	depth (m)	graphic log	Rock substance description rock type, grain characteristics, colour, structure and minor components		RS NW degree of MW weathering SW	PL 0.03 VL 0.1 M 0.3 Strength H 3.0 IS (50) Mpa	spacing mm	Natural fractures and Defects Description type, inclination, thickness, planarity, roughness, coating
				BH32 continued at 1.52m depth from BH32 soil log					
		2,0 		SANDSTONE : fine grained, orange brown SANDSTONE : fine grained, light grey		CHART TOTAL BASE AND	X		CLAY SM, 60mm JT, 90°, un, rou, Fe JT, 70°, pt, smo, Ct 1mm CLAY SM, 20mm CRUSHED SM, 50mm JT, 80°, pt, rou, Cn
NMLC		3.0					X		JT, 85°, pl, rou, Fe
		4.0 		As above, but fine to medium grained					
NMFC		6,0	3	BH32 Terminated at 5.09 m					

Started:

Finished:

ACN 069 211 561 Unit 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310

Job No: G09/1100 A

Hole No: BH33

Sheet: PAGE 1 / 2

08/01/14

08/01/14

Client: TCG PLANNING

Project: LIFE CITY WOLLONONG

_00	cation: Warwick Street, Berkeley GPS 301514E 6183511N					Logged	Logged: LT			
								Checked: VDS RL Surface: 62.0		
	quipment Type: MOBILE DRILL B80 prehole Diameter: 100mm (I.D.) Inclination: -90 deg Bearing:						62.0			
SOI	end	DIE DIA	me	ter: 100	1.11	J.)	Inclination: -90 deg Bearing: Material Description	Datum	•	A.H.D
method	water	samples, tests etc	DCP Blows per 150 mm	depth (m)	graphic log	USCS symbol	watera bescription	Moisture	Consistency/ relative density	notes, structure, and additional observations
	ntered				1. 7.1.1 7.1.1.	CL	Silty CLAY : medium plasticity, dark brown, with roots	<wp< td=""><td>-</td><td>TOPSOIL, GRASS COVER</td></wp<>	-	TOPSOIL, GRASS COVER
	None Encountered			_		CL	Sandy CLAY: low plasticity, orange brown, fine grained sand, with fine to medium grained sandstone gravel	<wp< td=""><td>St</td><td>RESIDUAL</td></wp<>	St	RESIDUAL
2		2, 6, 10 N=16		1.0						
								>Wp		
										'V' BIT REFUSAL AT 1.8m
-				2.0			SANDSTONE : fine grained, orange brown, extremely low strength BH33 continued from 1.9 m on sheet 2 / 2	XW_		LOW 'TC' BIT RESISTANCE
				3.0						
				5.0						
				_						

Network Geotechnics			CORED BOREHOLE LOC ACN 069 211 561 Unil 12/9-15 Gundah Road Mt Kuring-Gai NSW 2080 02 8438 0300 02 8438 0310 Hole No: BH33			G09/1100 A	3	
				02 8438 0310		Sheet:	2 / 2	
Clie	ent:	T-	CG PLANNING			Started:	08/01/14	
Pro	oject:	L	FE CITY WOLLONONG			Finished:	08/01/14	
-	cation:	V	arwick Street, Berkeley			Logged:	LT	
		G	PS 301514E 6183511N			Checked:	VDS	
Eq	uipment	Туре:	MOBILE DRILL B80			RL Surface	62,0	
Во	rehole D	Diamete	; 100mm (I.D.) Inclination: -90 deg	Beal	ing:	Datum:	A.H.D	
			Rock substance description		C m	1	Natural fractures and Defects	_
method	water	graphic log	rock type, grain characteristics, colour, structure and minor components	degree of weathering	0.03 0.1 0.3 Strength 1.0 IS (50) Mpa 10.0	spacing	Description type, inclination, thickness,	
				S X X WW HW S S W X S X W X X X X X X X X X X X X	#\$~\$#\$E	36 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	1.	0	BH33 continued at 1.9m depth from BH33 soll log					
	2	0	SANDSTONE : fine grained, orange brown		*		JT, 90°, pl, rou, Fe JT, 90°, pl, rou, Fe JT, 90°, pl, rou, Fe BP, 0°, pl, Fe CRUSHED SEAM, 5mm CRUSHED SEAM, 10mm JT,40°, pl, rou, Fe CLAY SM, 50mm CLAY SM, 10mm	-
NMLC	3		SANDSTONE : fine grained, light grey		*		BP, 0°, pl, Fe JT, 60°, pl, rou, Cn	-
LUG OF CORED BORETOLE GUSTINO LOGGISTO NETWORK CECTESTING THE TRIBEST NAMED		.0	BH33 Terminated at 4.17 m					

TERMS AND SYMBOLS

SOLL DE	SCRIPTIONS			FZ	Fractured 2	zone	st	Stepped
JOIL DE	SORIF HONS			SZ	Shear zone		ir	Irregular
Moisture	Condition			VN	Vein			Ü
	D	Dry			0 11			
	M W	Moist			or Coating		Roughne	
	vv QW	Wet Plastic Limit		Cn Cl	Clean Clay		pol slk	Polished Slickensided
	WI	Liquid Limit		Ca	Calcite		smo	Smooth
	MC	Moisture Content		Fe	Iron oxide		rou	Rough
		moiorar o comon	•	Mi	Micaceous		vro	Very rough
Consiste	ncy		Qu (kPa)	Qz	Quartz			3 3 3
	VS	Very Soft	<25					
	S	Soft	25 – 50	EXCA	VATION/DRII	LLING M	ETHOD	& CASING
	F	Firm	50 – 100					
	St	Stiff	100 – 200		BH			itor bucket
	VSt H	Very Stiff Hard	200 – 400		NE HE		exposu	
	Fb	Friable	>400		AS		xcavatior Screwing	
	1.0	THADIE			AD		Orilling *	
Density	Index		I _D (%)		R	Roller/T		
Density	VL	Very Loose	< 15		W	Washbo		
	L	Loose	15 – 35		* de	enotes bi	t shown	by suffix
	MD	Medium Dense	35 – 65		В	Blank B		,
	D	Dense	65 – 85		V	"V" Sha	ped Bit	
	VD	Very Dense	> 85		T	Tungste	en Carbic	le Bit
					LB			Tube Drilling
					MC			n Tube Drilling
					DT	Dual Pu	ish Tube	Drilling
ROCK D	ESCRIPTIONS	3			NMLC	NMLC C	ore Drilli	ing
				N	Q/HQ	Wireline	e Core Di	rilling
Weather	5							
	Rs	Residual Soil			С	Casing		
	XW	Extremely Weath			М	Mud		
	HW	Highly Weathere		CARAE	N EC /TECTO			
	MW DW	Moderately Weat Distinctly Weather		SAIVIF	PLES/TESTS			
	SW	Slightly Weather			В	Bulk sar	mnlo	
	FR	Fresh	cu		D		ed sampl	le
		ooth HW & MW)			U50			e sample
	(211 0010.02						diamete	
Strength			Is (50) MPa		PP			neter (kPa)
3	EL	Extremely Low	< 0.03		N*		ows per :	
	VL	Very Low	0.03 - 0.1			*denote	es samp	le taken
	L	Low	0.1 - 0.3		Nc		h solid co	one
	M	Medium	0.3 – 1		R	SPT refu	usal	
	H	High	1 – 3			_		
	VH EH	Very High	3 – 10	VANE	SHEAR TESTS	S		
	ЕП	Extremely High	> 10					
Structure	е		Spacing		S _U	Vane sh	near stre	ngth
	Thinly Lamina	ated	< 6mm			Peak/re	sidual (k	(Pa) and
	Laminated		6 – 20mm			Vane siz	ze (mm)	
	Very thinly be		20 – 60mm					
	Thinly bedded		60 – 200mm	WATE	ER MEASUREN			
	Medium bedd	led	0.2 – 0.6m		lacktriangle		evel at th	ne time of
	Thickly bedde	od.	0.6 – 2.0m			drilling		
	Very thickly b		0.6 = 2.011 > 2.0m		∇	Water le	evel afte	er drilling
								
NOTE:		k descriptions are	based on AS 1726	4	▲—	Water in	nflow	
	- 1993			_	-	Water o	outflow	
					_			
Natural F	ractures				TUBE DRILLI			E. I.
T		CI.			e of Resistance	:		Factor
Type	laint	Shape	Dlanar		rcussion	aniar.		0
JT BP	Joint	pl o cu	Planar Curved		oush with percu			1 2
SM	Bedding plan Seam	e cu un	Undulose		m push with pe oush with percu			3
JIVI	Jean	un	UTIGUIUSE		slow – nearir			4
				refus		_		

APPENDIX B

Laboratory Test Results

Geotechnical Engineering, Consulting & Testing Services

ACN 069 211 561 Unit 1/140 Industrial Road Oak Flats NSW 2529 AUSTRALIA Telephone 61 2 4257 4458 Facsimile 61 2 4257 4463 Email southcoast@netgeo.com.au

Client: TCG Planning Job No: G09/110 Principal: Date: 16/12/2013

Project: Life of City Tested By: HU Location: Berkeley Checked By: HU

ACID SULPHATE ANALYSIS						
SAMPLE NUMBER	BOREHOLE NUMBER	DEPTH (m)	рН	pH With Peroxide	Remarks	
W46985	BH3	0.4-0.5	6.1	4.5		
W46986	BH2	1.5-1.7	5.4	5.1		
W46987	BH5	0.5-0.95	6.5	5.9		
W46989	BH5	0.0-0.1	7.2	4.7		
W46992	BH6	0.4-0.5	8.2	6.3		
W46993	BH8	1.0-1.2	8.0	5.4		
W46995	BH8	0.5-0.8	7.9	4.6		
W46996	ВН9	0.5-0.95	6.9	6.1		

SGS Australia Pty Ltd PO Box 6432 Alexandria NSW 2015 Unit 15, 33 Maddox Street Alexandria NSW 2015

Client:

Network Geotechnics Pty Ltd

Client Job No: Project:

G09/1100 A

Order No:

17/12/2013

Proposed Life City Wollongong

Tested Date: SGS Job Number:

13-32-745

Location: Sample No:

13-AC-5513

Lab: Alexandria CMT Sample ID: BH2 0.70-0.95m

Emerson Class Number of a Soil

AS 1289.3.8.1

Emerson Class Number:

SILTY CLAY:brown

Soil Description: Type of Water Used:

Distilled water at 20°C

Note: Sample supplied by client.

Approved Signatory:

Accreditation No.: 2418

(Niall O'Mahony.Senior Technical Officer)

Accredited for compliance with ISO/IEC 17025

Site No.: 2418 Cert No.: 13-AC-5513-AN018 Page: 1 of 1

Client Address: Unit 12 9-15 Gundah Road Mt Kuring_Gai NSW 2080

Form No.PF-AU-INDCMT-GEN-AN-018

Date: 7/01/2014

TEST CERTIFICATE

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PERCENT DISPERSION OF A SOIL

CLIENT: Network Geotechnics Pty Ltd

Unit 129-15 Gundah RoadMt Kuring Gai NSW 2080

PROJECT: Proposed Life City Wollongong (G09/1100 A)

LOCATION:

Lab Number	Sample Source	Sample Description	% Passing 0.005mm without Dispersing Agent	% Passing 0.005mm with Dispersing Agent	Percent Dispersion (%)
13-AC-5513	BH2 0.70- 0.95m	SILTY CLAY:brown	49	52	94%

NOTES TO TESTING

Test Procedure: AS1289 3.8.2 Determination of the percent dispersion of a soil

Sampled By: Client Job Number: 13-32-745 Date Tested: 12/12/2013

Comments:

Approved Signatory:

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

Date: 17/12/2013

TEST CERTIFICATE

This document is issued by the Company subject to its General Conditions of Service w.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

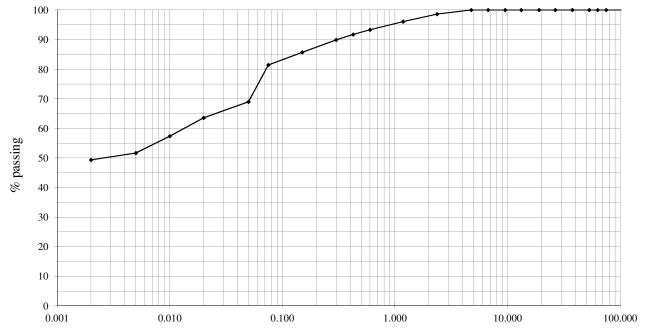
Date:

17/12/2013

PARTICLE SIZE DISTRIBUTION

Client: Network Geotechnics Ptv Ltd

Address: Unit 129-15 Gundah RoadMt Kuring_Gai NSW 2080


Project: Proposed Life City Wollongong (G09/1100 A)

Location:

Test Method: AS 1289 3.6.1 / 3

13-32-745 13-AC-5513 Job Number: Lab Number: BH2 0.70-0.95m Sample Source: Date Tested: 13/12/2013

Sampled By: Client Checked By: JL

sieve aperture mm

Clay	Silt	Sand	Gravel

Sample Description: SILTY CLAY:brown

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	96
75.0		0.600	93
63.0		0.425	92
53.0		0.300	90
37.5		0.150	86
26.5		0.075	81
19.0		0.050	69
13.2		0.020	64
9.5		0.010	57
6.7		0.005	52
4.75	100	0.002	49
2.36	99		

Hydrometer Type: ASTM 152H

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory:

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

This document is issued by the Company subject to its General Conditions of Service w.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

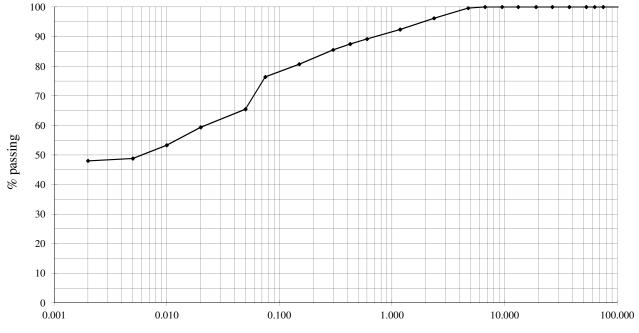
Date:

07.01.14

PARTICLE SIZE DISTRIBUTION

Client: Network Geotechnics Ptv Ltd

Address: Unit 129-15 Gundah RoadMt Kuring_Gai NSW 2080


Project: Proposed Life City Wollongong (G09/1100 A)

Location:

Test Method: AS 1289 3.6.1 / 3

13-32-745 13-AC-5513 Job Number: Lab Number: BH2 0.70-0.95m Sample Source: Date Tested: 13/12/2013

Sampled By: Client Checked By: JL

sieve aperture mm

Clay	Silt	Sand	Gravel
	17 1	12 11 11	

SILTY CLAY:brown Sample Description:

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	92
75.0		0.600	89
63.0		0.425	87
53.0		0.300	85
37.5		0.150	81
26.5		0.075	76
19.0		0.050	65
13.2		0.020	59
9.5		0.010	53
6.7		0.005	49
4.75	100	0.002	48
2.36	96		

ASTM 152H **Hydrometer Type:**

Dispersant Type: N/A **Pretreatment:** None Loss on Pretreatment: None

Remarks:

Approved Signatory:

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

SGS Australia Pty Ltd PO Box 6432 Alexandria NSW 2015 Unit 15, 33 Maddox Street Alexandria NSW 2015

Client:

Network Geotechnics Pty Ltd

Client Job No:

G09/1100 A Proposed Life City Wollongong

Order No:

Tested Date:

17/12/2013

Sample No:

Project: Location:

13-AC-5514

SGS Job Number: Lab:

13-32-745 Alexandria CMT

Sample ID: BH4 1.65-1.85m

Emerson Class Number of a Soil

AS 1289.3.8.1

Emerson Class Number:

Soil Description:

SANDY SILTY CLAY:brown

Type of Water Used: Distilled water at 20°C

Note: Sample supplied by client.

Approved Signatory:

(Niall O'Mahony.Senior Technical Officer)

Accredited for compliance with ISO/IEC 17025

Site No.: 2418 Cert No.: 13-AC-5514-AN018 Page: 1 of 1

Date: 7/01/2014

Accreditation No.: 2418 Client Address: Unit 12 9-15 Gundah Road Mt Kuring_Gai NSW 2080 Form No.PF-AU-INDCMT-GEN-AN-018

SGS Australia Pty Ltd PO Box 6432 Alexandria NSW 2015 Unit 15, 33 Maddox Street Alexandria NSW 2015

Client: Network Geotechnics Pty Ltd Client Job No: G09/1100 A

Order No: Project:

Location:

Proposed Life City Wollongong

Tested Date: 17/12/2013 SGS Job Number: 13-32-745

Sample No:

13-AC-5515

Lab: Alexandria CMT Sample ID: BH5 1.50-1.95m

Emerson Class Number of a Soil

AS 1289.3.8.1

Emerson Class Number:

Soil Description: SILTY CLAY:brown Type of Water Used: Distilled water at 20°C

Note: Sample supplied by client.

Approved Signatory:

(Niall O'Mahony.Senior Technical Officer)

Date: 7/01/2014

Accredited for compliance with ISO/IEC 17025

This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

17/12/2013

Date:

PERCENT DISPERSION OF A SOIL

CLIENT: Network Geotechnics Pty Ltd

Unit 129-15 Gundah RoadMt Kuring Gai NSW 2080

PROJECT: Proposed Life City Wollongong (G09/1100 A)

LOCATION:

Lab Number	Sample Source	Sample Description	% Passing 0.005mm without Dispersing Agent	% Passing 0.005mm with Dispersing Agent	Percent Dispersion (%)
	Source	SILTY CLAY:brown			
NOTES TO TES					

NOTES TO TESTING

Test Procedure: AS1289 3.8.2 Determination of the percent dispersion of a soil

Sampled By: Client Job Number: 13-32-745 Date Tested: 12/12/2013

Comments:

Approved Signatory:

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

Accreditation No. 2418

This document is issued by the Company subject to its General Conditions of Service w.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

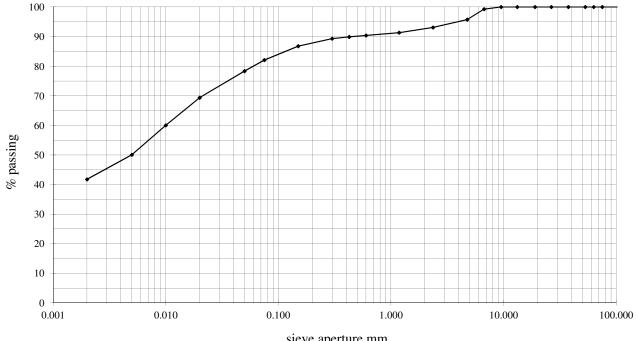
SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

Date:

17/12/2013

PARTICLE SIZE DISTRIBUTION

Client: Network Geotechnics Ptv Ltd


Address: Unit 129-15 Gundah RoadMt Kuring_Gai NSW 2080

Project: Proposed Life City Wollongong (G09/1100 A)

Location:

Test Method: AS 1289 3.6.1 / 3

13-32-745 13-AC-5515 Job Number: Lab Number: BH5 1.50-1.95m Sample Source: Date Tested: 13/12/2013 Sampled By: Client Checked By: JL

sieve aperture mm

	Clay	Silt	Sand	Gravel
- 1				

SILTY CLAY:brown Sample Description:

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	91
75.0		0.600	90
63.0		0.425	90
53.0		0.300	89
37.5		0.150	87
26.5		0.075	82
19.0		0.050	78
13.2		0.020	69
9.5	100	0.010	60
6.7	99	0.005	50
4.75	96	0.002	42
2.36	93		

ASTM 152H Hydrometer Type:

Dispersant Type: Sodium Hexametaphosphate

Pretreatment: None Loss on Pretreatment: None

Remarks:

Approved Signatory:

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

ABN 44 000 964 278 ph: +61 (0)2 8594 0481 fax: +61 (0)2 8594 0499 This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The company's sole responsibility it to its client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

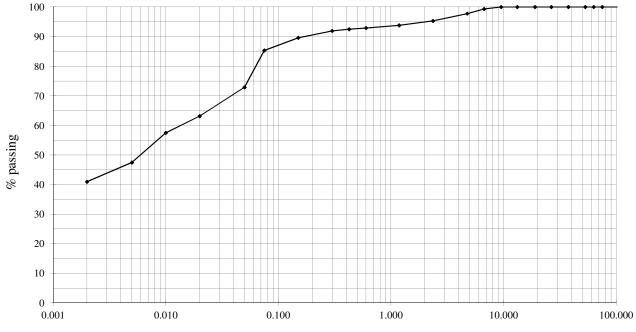
SGS Australia Pty Ltd Unit 15, 33 Maddox Street (PO Box 6432) Alexandria NSW 2015 Australia

PARTICLE SIZE DISTRIBUTION

Client: Network Geotechnics Pty Ltd

Address: Unit 129-15 Gundah RoadMt Kuring_Gai NSW 2080

Project: Proposed Life City Wollongong (G09/1100 A)


Location:

Test Method: **AS 1289 3.6.1 / 3**

 Job Number:
 13-32-745
 Lab Number:
 13-AC-5515

 Sample Source:
 BH5 1.50-1.95m
 Date Tested:
 12/12/2013

Sampled By: Client Checked By: JL

sieve aperture mm

Clay	Silt	Sand	Gravel
	17 1	12 11 11	

Sample Description: SILTY CLAY:brown

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
150.0		1.18	94
75.0		0.600	93
63.0		0.425	92
53.0		0.300	92
37.5		0.150	90
26.5		0.075	85
19.0		0.050	73
13.2		0.020	63
9.5	100	0.010	57
6.7	99	0.005	47
4.75	98	0.002	41
2.36	95		

Hydrometer Type: ASTM 152H

Dispersant Type: N/A
Pretreatment: None
Loss on Pretreatment: None

Remarks:

Approved Signatory:

Walatale

Chris Lloyd

Accredited for Compliance with ISO/IEC 17025

Date:

17/12/2013

SGS Australia Pty Ltd PO Box 6432 Alexandria NSW 2015 Unit 15, 33 Maddox Street Alexandria NSW 2015

Client: Network Geotechnics Pty Ltd Client Job No: Project:

G09/1100 A

Order No:

Lab:

17/12/2013

Location:

Proposed Life City Wollongong

Tested Date: SGS Job Number:

13-32-745

Sample No:

13-AC-5516

Alexandria CMT

Sample ID: BH5 3.00-3.45m

Emerson Class Number of a Soil

AS 1289.3.8.1

Emerson Class Number:

Soil Description: SILTY CLAY:brown Type of Water Used: Distilled water at 20°C

Note: Sample supplied by client.

Approved Signatory:

(Niall O'Mahony.Senior Technical Officer)

Date: 7/01/2014

Accreditation No.: 2418

chris.lloyd@sgs.com ABN: 44 000 964 278 ph: +61 (0)2 8594 0481 fv: +61 (0)2 8594 0499

com 1 278 TEST CERTIFICATE

his document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects to Company's findings at the time of its intervention only and within the initiat of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excerted parties to a transaction from exerciting all their rights and deligations under the transaction documents. Any unathorized alteration.

SGS Australia Pty Ltd
PO Box 6432 Alexandria NSW 2015
Unit 15, 33 Maddox Street
Alexandria NSW 2015

Client: Network Geotechnics Pty Ltd Client Job No:

Order No:

Project:

Proposed Life City Wollongong

Tested Date: 17/12/2013 SGS Job Number: 13-32-745 Location: Sample No:

13-AC-5517

G09/1100 A

Lab: Alexandria CMT

Sample ID: BH8 1.50-1.95m

Emerson Class Number of a Soil

AS 1289.3.8.1

Emerson Class Number:

Soil Description: SILTY CLAY:brown

Type of Water Used: Distilled water at 20°C

Note: Sample supplied by client.

Approved Signatory:

Accreditation No.: 2418

(Niall O'Mahony.Senior Technical Officer)

Date: 7/01/2014

Accredited for compliance with ISO/IEC 17025

Site No.: 2418 Cert No.: 13-AC-5517-AN018 Page: 1 of 1

POINT LOAD STRENGTH INDEX TEST REPORT

Report Number: G09/1100 CLIENT: TCG Planning Test Request Number: NA

PROJECT: Life of City

LOCATION: Between Warwick, Nottingham and York Street, Berkeley

LAB.	SAMPLE	LITHOLOGY	PLATEN SEPARATION		TEST	POINT	POINT
NO.	SOURCE		DIAM	RATION HEIGHT	ORIENTATION	LOAD STRENGTH	LOAD STRENGTH
			(mm)	(mm)		I _s (MPa)	I _s 50 (MPa)
			(111111)	(11111)		is (ivii a)	is oo (ivii u)
	внз	SANDSTONE	52.3		Diametral	0.07	0.07
	4.46m-4.50m			39.1	Axial	0.08	0.08
	BH3	SANDSTONE	52.1		Diametral	0.04	0.04
	5.61m-5.65m			37.6	Axial	0.05	0.05
	BH3	SANDSTONE	52.4		Diametral	0.04	0.04
	6.72m-6.76m			43.9	Axial	0.04	0.04
	ВН3	SANDSTONE	51.8		Diametral	0.34	0.34
	7.22m-7.26m			41.3	Axial	0.04	0.04
	BH4	SANDSTONE	52.3		Diametral	0.15	0.15
	4.81m-4.84m			31.8	Axial	0.57	0.55
	BH4	SANDSTONE	52		Diametral	0.07	0.08
	5.20m-5.24m			42.1	Axial	0.22	0.22
	BH4	SANDSTONE	51.9	0	Diametral	1.02	1.04
	6.40m-6.43m			33.4	Axial	1.41	1.37
	BH4	SANDSTONE	52.3	0	Diametral	2.37	2.42
	7.28m-7.32m			41.3	Axial	2.98	3.05

NOTES TO TESTING

Testing Device: ELE Point Load Tester Date Tested: 29/11/2013

Sample History: Unsoaked Test method: AS 4133 4.1

Sampled by: LT Job Number: G09/1100

Approved Signatory

Date: 3rd December 2013

Accredited for compliance with ISO/IEC 17025 Mount Kuring-gai Laboratory 1318

Page 1 of 4

POINT LOAD STRENGTH INDEX TEST REPORT

Report Number: G09/1100 CLIENT: TCG Planning Test Request Number: NA

PROJECT: Life of City

LOCATION: Between Warwick, Nottingham and York Street, Berkeley

LAB.	SAMPLE	LITHOLOGY	PLATEN SEPARATION		TEST	POINT	POINT
NO.	SOURCE		DIAM	RATION HEIGHT	ORIENTATION	LOAD STRENGTH	LOAD STRENGTH
			(mm)	(mm)		I _s (MPa)	I _s 50 (MPa)
			(11111)	(11111)		.5 (0.)	.ş 00 (u)
	BH5	SANDSTONE	51.2		Diametral	0.14	0.15
	4.55m-4.58m			31.6	Axial	0.17	0.16
	BH5	SANDSTONE	51.1		Diametral	0.34	0.34
	5.48m-5.53m			49.5	Axial	0.47	0.50
	BH5	SANDSTONE	51.8		Diametral	3.61	3.67
	6.51m-6.56m			46.8	Axial	3.53	3.70
	BH6	SANDSTONE	52.3		Diametral	0.22	0.23
	2.80m-2.84m			40.1	Axial	0.16	0.16
	BH6	SANDSTONE	51.3		Diametral	0.12	0.12
	3.66m-3.70m			37.8	Axial	0.28	0.27
	BH6	SANDSTONE	51.4	00.5	Diametral	0.30	0.30
	4.40m-4.44m			39.5	Axial	0.56	0.57

NOTES TO TESTING

Testing Device: ELE Point Load Tester Date Tested: 29/11/2013

Sample History: Unsoaked Test method: AS 4133 4.1

Sampled by: LT Job Number: G09/1100

Approved Signatory

Date: 3rd December 2013

Accredited for compliance with ISO/IEC 17025 Mount Kuring-gai Laboratory 1318

Page 2 of 4

POINT LOAD STRENGTH INDEX TEST REPORT

Report Number: G09/1100 CLIENT: TCG Planning Test Request Number: NA

PROJECT: Life of City

LOCATION: Between Warwick, Nottingham and York Street, Berkeley

LAB.	SAMPLE	LITHOLOGY	PLATEN		TEST	POINT	POINT
NO.	SOURCE		DIAM	RATION HEIGHT	ORIENTATION	LOAD STRENGTH	LOAD STRENGTH
			(mm)	(mm)		I _s (MPa)	I _s 50 (MPa)
			(111111)	(11111)		is (ivii a)	is oo (ivii u)
	BH31	SANDSTONE	51.7		Diametral		
	4.45m-4.48m			32	Axial	0.14	0.14
	BH31	SANDSTONE	51.7		Diametral	0.19	0.19
	4.90m-4.93m			31	Axial	0.18	0.17
	BH32	SANDSTONE	51.7		Diametral	0.76	0.77
	1.52m-1.55m			29	Axial	1.20	1.13
	BH32	SANDSTONE	51.7		Diametral		
	2.72m-2.75m			26.2	Axial	7.00	6.44
	BH32	SANDSTONE	51.2		Diametral	2.39	2.42
	3.79m-3.83m			36.2	Axial	3.54	3.50
	BH32	SANDSTONE	51.2		Diametral	1.79	1.81
	4.54m-4.58m			34.5	Axial	2.76	2.69

NOTES TO TESTING

Testing Device: ELE Point Load Tester Date Tested: 13/01/2014

Sample History: Unsoaked Test method: AS 4133 4.1

Sampled by: LT Job Number: G09/1100

Approved Signatory

Date: 3rd December 2013

Accredited for compliance with ISO/IEC 17025 Mount Kuring-gai Laboratory 1318

Page 3 of 4

POINT LOAD STRENGTH INDEX TEST REPORT

Report Number: G09/1100 CLIENT: TCG Planning Test Request Number: NA

PROJECT: Life of City

LOCATION: Between Warwick, Nottingham and York Street, Berkeley

LAB.	SAMPLE	LITHOLOGY	PLATEN		TEST	POINT	POINT
NO.	SOURCE			RATION	ORIENTATION	LOAD STRENGTH	LOAD
			DIAM (mm)	HEIGHT		I _s (MPa)	STRENGTH I _s 50 (MPa)
			(mm)	(mm)		Is (IVIFa)	Is 50 (IVIFA)
	BH33	SANDSTONE	51.5		Diametral		
	2.30m-2.34m			33.5	Axial	0.61	0.59
	BH33	SANDSTONE	51.5		Diametral	3.04	3.08
	2.93m-2.97m	S 12 S. 1 S. 1 Z	00	34.1	Axial	1.66	1.62
	BH33	SANDSTONE	51.5		Diametral	2.61	2.64
	3.45m-3.47m	S 12 S. 1 S. 1 Z	00	27.6	Axial	2.76	2.56
	BH33	SANDSTONE	51.5		Diametral	1.32	1.34
	4.00m-4.03m	5 5		26.6	Axial	4.09	3.77

NOTES TO TESTING

Testing Device: ELE Point Load Tester Date Tested: 13/01/2014

Sample History: Unsoaked Test method: AS 4133 4.1

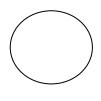
Sampled by: LT Job Number: G09/1100

Approved Signatory

Date: 13th January 2014

Accredited for compliance with ISO/IEC 17025 Mount Kuring-gai Laboratory 1318

Page 4 of 4



LEGEND

- O NETWORK GEOTECHNICS (NG) BOREHOLE 2013
- Δ COFFEY GEOTECHNICS TEST PIT (CTP) 2012
- $\hfill \Box$ CLEARSAFE CONTAMINATION SPOT (CCS) 2012

ACN 069 211 561 Unit 1/140 Industrial Road Oak Flats NSW 2529 AUSTRALIA Telephone 61 2 4257 4458 Facsimile 61 2 4257 4463 Email southcoast@netgeo.com.au

NOT IN SCALE DRAWING NO: G09/1100-1 CLIENT: TCG PLANNING

PROJECT: PROPOSED LIFE CITY PROJECT

LOCATION: WARWICK STREET, BERKELEY, NSW

APPROXIMATE TEST LOCATION PLAN