Riverwood North Residential Renewal Project
Washington Avenue \& Kentucky Road, Riverwood
s.75W AMENDED CONCEPT PLAN APPLICATION TRAFFIC AND PARKING ASSESSMENT REPORT

1 August 2014
Ref 13461

VARGA TRAFFIC PLANNING Pty Ltd Transport, Traffic and Parking Consultants

TABLE OF CONTENTS

1. INTRODUCTION 1
2. PROPOSED DEVELOPMENT 5
3. TRAFFIC ASSESSMENT 7
4. TRANSPORT PLANNING 22
5. CONCLUSION 26
APPENDIX A TRAFFIC SURVEY DATA
APPENDIX B BUS ROUTE MAPS

LIST OF ILLUSTRATIONS

Figure 1 Location
Figure 2 Site
Figure 3 Road Hierarchy
Figure 4 Existing Traffic Controls
Figure 5 Bus Routes
Figure 6 Cycleway Plan
Figure 7 Traffic Assignment

1. INTRODUCTION

This Transport and Accessibility Study has been prepared on behalf of Housing NSW and Payce Communities Pty Ltd to accompany a S.75w application to the Department of Planning to modify the previously approved Concept Plan to provide an additional 34 apartments as part of the proposed Riverwood North Residential Renewal Project, located in Washington Avenue \& Kentucky Road, Riverwood (Figures 1 and 2).

The Concept Plan approval includes the staged construction of a new and revitalised residential area, comprising a mixture of social and privately owned dwellings. The dwellings are in the form of modern, architecturally designed residential flat buildings.

Resident carparking for the proposed development is provided at the base of the respective buildings.

Construction of the Residential Renewal Project is being undertaken in several stages, over a period of several years.

This Transport and Accessibility Study has been prepared with reference to the NSW Long Term Transport Master Plan, the NSW State Plan 2021, the NSW Planning Guidelines for Walking and Cycling, the Integrated Land Use and Transport Policy Package, the NSW Bike Plan and the RMS's Guide to Traffic Generating Developments.

The purpose of this report is to assess the cumulative transport, traffic and parking implications of the additional dwellings, and to that end this report:

- describes the site and provides details of the development proposal
- reviews the road network in the vicinity of the site, and the traffic conditions on that road network
- identifies the opportunities for public transport, walking and cycling options which will be available to the residents of the proposed development
- assesses the traffic implications of the proposed s. 75 W modification in terms of road network capacity
- assesses the adequacy and suitability of the off-street carparking facilities proposed on the site.

2. PROPOSED DEVELOPMENT

Site

The subject site is located on both sides of Kentucky Road (and Vermont Crescent), extending west to Roosevelt Avenue, south to Washington Avenue, and north and east to the Salt Pan Creek Wetlands. The site occupies an area of approximately 3.8ha.

The subject site was previously occupied by 176 social housing dwellings (comprising mostly two and three-storey townhouses or "walk-up" residential flat buildings, as well as several single-storey townhouses) which have now been demolished. The site also includes community areas such as a park and basketball court.

Approved Concept Plan

The approved Concept Plan provides for 723 dwellings comprising 150 social housing units and 573 private owned dwellings.

Construction of the social housing units has been substantially commenced. Construction of some of the private dwellings has also commenced.

Associated infrastructure upgrades to be provided as part of the project will include landscaping, construction of a new garden square, new street furniture, stormwater management, site works and services, and the retention and upgrade of the existing central park. Improvements to the existing road network will include:

- the establishment of a new "shared zone" with a $10 \mathrm{~km} / \mathrm{h}$ speed limit and appropriate traffic calming and pavement treatments at the eastern end of Kentucky Road, and
- the construction of two new connecting roads between Kentucky Road and Washington Avenue which will improve through-site connections.

The construction of the new links between Kentucky Road and Washington Avenue will significantly improve the permeability of the neighbourhood for pedestrians and cyclists,
particularly for those residents wishing to walk or cycle to the nearby Riverwood Public School or to Riverwood Railway Station and the local shops.

The subject site is ideally located approximately 650 m walk from Riverwood Railway Station and the local shopping centre which comprises a range of shops, restaurants and services such as banks and the post office. In addition, a number of regular bus services traverse the site or travel along Belmore Road, near the eastern perimeter of the site. The site is also located within 400m walking distance from Riverwood Primary School, and 500m walking distance from Hannans Road Primary School.

The site is located immediately adjacent to a shared pedestrian path and cycleway which traverses the Salt Pan Creek Wetlands and provides walking and cycling connections to Bankstown in the north, Padstow in the south and Kingsgrove in the east.

The site is also located immediately adjacent to the Riverwood Community Centre and within close walking distance of the new Riverwood Sport and Recreation Centre which is located on the eastern side of Belmore Road, directly opposite the Community Centre.

Cycling options for the residents of the proposed development will be further enhanced through the provision of bicycle storage facilities throughout the development in accordance with Council and Housing NSW requirements.

Proposed Development

As noted in the foregoing, the approved Concept Plan provides for a total of 723 residential units.

This s. 75 W application seeks to increase the total number of units to be provided on the site to 757 apartments, an addition of 34 units above the Concept Plan approval.

The 34 additional residential units which are the subject of this application are to be located in the "Lakeview" Building on Lot 7, 5 Vermont Crescent, Riverwood.

3. TRAFFIC ASSESSMENT

Road Hierarchy

The road hierarchy allocated to the road network in the vicinity of the site by the Roads and Traffic Authority is illustrated on Figure 3.

The M5 Motorway is classified by the RMS as a State Road and provides the key east-west road link in the area, linking the City with Campbelltown and beyond. It typically carries two traffic lanes in each direction in the vicinity of the site, with opposing traffic flows separated by a centre median island.

All intersections with the M5 Motorway are grade-separated. The Motorway is located approximately 350 m north of the site, and intersects with Belmore Road with two west-facing ramps controlled by traffic signals. Provision has been made to allow for two east-facing ramps on the M5 Motorway to connect with Belmore Road to be constructed in the future.

Belmore Road is classified by the RMS as a Regional Road and provides the key north-south road link in the Riverwood area, linking Henry Lawson Drive to the south with Canterbury Road to the north. It typically carries one traffic lane in each direction in the vicinity of the site, with additional lanes/parking restrictions provided at key intersections.

Washington Avenue, Kentucky Road and Vermont Crescent are all local, unclassified roads which are primarily used to provide vehicular and pedestrian access to frontage properties. Kerbside parking is generally permitted on both sides of all three roads.

Existing Traffic Controls

The existing traffic controls which apply to the road network in the vicinity of the site are illustrated on Figure 4. Key features of those traffic controls are:

- a $50 \mathrm{~km} / \mathrm{h}$ SPEED LIMIT which applies to Belmore Road and all other local roads in the area

Key:

VARGA TRAFFIC PLANNING pty Ltd Transport, Traffic and Parking Consultants \bigcirc

ROAD HIERARCHY FIGURE 3

- TRAFFIC SIGNALS in Belmore Road where it intersects with Hannans Road and also the M5 Motorway on/off ramps
- a GIVE-WAY SIGN in Washington Avenue at its intersection with Belmore Road
- SPEED HUMPS located at various locations throughout the area including along Washington Avenue and Kentucky Road.

Existing Traffic Conditions

An indication of the existing traffic conditions on the road network in the vicinity of the site is provided by reference to the RMS's Annual Average Daily Traffic data. The relevant count stations nearest to the subject site are summarised below, revealing that the annual average daily traffic along this section of Belmore Road is in the order of $16,000-20,000$ axle pairs per day (northbound and southbound).

Annual Average Daily Traffic Volumes
 (vehicles per day)

Station No.	Location	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$
24075	Belmore Road (north of M5 Motorway)	23,267	21,974	20,779	19,869
41150	Belmore Road (south of Morotai Avenue)	17,516	16,770	16,044	15,524

A more detailed indication of the existing traffic conditions on the road network in the vicinity of the site is provided by peak period traffic surveys undertaken as part of this traffic study. The traffic surveys were undertaken during commuter peak periods (ie. 6:30am 7:30am and $3: 30 \mathrm{pm}-6: 30 \mathrm{pm}$) on Tuesday, 26 October 2010 at the following intersections:

- Belmore Road \& Roosevelt Avenue
- Belmore Road \& Washington Avenue
- Belmore Road \& Hannans Road
- Washington Road \& Virginia Place
- Washington Avenue \& Kentucky Road
- Washington Road \& Roosevelt Avenue
- Roosevelt Road \& Virginia Place

The results of the traffic surveys are reproduced in full in Appendix A and reveal that:

- two-way traffic flows in Belmore Road are typically in the order of 1,400 vehicles per hour (vph) during peak periods
- two-way traffic flows in Washington Avenue are typically less than 200 vph during peak periods
- two-way traffic flows in Kentucky Road are typically in the order of 80 to 90 vph during peak periods
- two-way traffic flows in Roosevelt Avenue are typically in the order of 150 vph during peak periods.

Alternate Transport Options

The proposed Residential Renewal Project is fortunate to be located in an area where a variety of alternate transport options are available such as train, bus, cycling and walking, as detailed below.

Train Services

Riverwood Railway Station is located near the corner of Belmore Road and Morotai Avenue, approximately 650 m south of the corner of Washington Avenue and Belmore Road. The railway station is approximately 8 to 10 minutes walk from the subject site.

The Railway Station is located on the Airport - East Hills Line, with Sydney Trains services operating between Macarthur and the City Circle via Revesby and Wolli Creek, with peak hour services also operating via Sydenham.

Weekday train services operate every 5 to 10 minutes during weekday commuter peak periods, and every 10 to 15 minutes outside peak periods. Weekend services operate every 10 to 20 minutes.

Riverwood Railway Station is located six stops east of Glenfield Railway Station, a major rail interchange with connecting services to the Cumberland Line, the South Line and ultimately the South West Rail Link to Leppington.

To the east Riverwood Railway Station is also located seven stops from Wolli Creek Railway Station, a rail interchange with connecting services to the Eastern Suburbs - Illawarra Line.

Bus Services

Bus services through the Riverwood area are operated by Punchbowl Bus Company. Route maps are reproduced in Appendix B and summarised below:

Route No.	Nearest Bus Stop	Operating Between
940	Belmore Rd	Bankstown \& Hurstville via Riverwood \& Narwee
942	Belmore Rd \& Josephine St	Lugarno \& Campsie via Riverwood \& Belmore
944	Kentucky Rd	Bankstown \& Mortdale via Roselands \& Riverwood
945	Belmore Rd	Bankstown \& Hurstville via Riverwood \& Peakhurst
N20	Belmore Rd	Rockdale to Riverwood Night Ride

All weekday services operate every 30 minutes, with additional services during commuter peak periods. All weekend services operate every 60 minutes. Bus stops are located at regular intervals along both sides of Kentucky Road and Hannans Road (for Route No. 944) and also Belmore Road (for Route No's 940, 942 and 945).

An extract from Council's Public Transport Guide illustrating the Bus Routes in the vicinity of the Riverwood site is shown on Figure 5.

Bicycle and Pedestrian Routes

There are a number of cycleways and shared pedestrian paths providing convenient access to and from the proposed Residential Renewal Project at Riverwood for those residents who do not wish to drive or use public transport. Studies have shown that in Sydney, over 50\% of trips are less than 5 km ; such trips are ideally suited to walking or cycling.

The nearby shared pedestrian and cycleway path which is located adjacent to Salt Pan Creek Wetlands continues approximately 4 km north to Bankstown, 2 km south to Padstow and 7 km east to Kingsgrove.

An extract from Council's Cycleway Plan illustrating the shared cycle paths and cycle routes located in the vicinity of the site is illustrated on Figure 6.

The proposed development will enhance the options available to residents for walking and cycling through the provision of 2 new links between Kentucky Road and Washington Avenue. The improved permeability for pedestrians and cyclists that will be provided by these links will provide more direct links for residents when walking or cycling to nearby facilities such as the local primary school, local shops and railway station.

The new links will also provide improved permeability for other residents living to the south of the site who may wish to access the shared pedestrian and cycleway paths traversing the Salt Pan Creek Wetlands or the nearby sports and recreation facilities using the network of local roads, without the need to travel along the busy Belmore Road.

Projected Traffic Generation

An indication of the traffic generation potential of the development proposal is provided by reference to the Roads and Traffic Authority's publication Guide to Traffic Generating Developments, Section 3 - Landuse Traffic Generation (October 2002).

The RMS Guidelines are based on extensive surveys of a wide range of land uses and nominates the following traffic generation rates which are applicable to the development proposal:

High Density Residential Flat Buildings

0.29 "peak hour" vehicle trips/dwelling
2.9 "daily" vehicle trips/dwelling (estimated)

Definition:

A high density residential flat building refers to a building containing 20 or more dwellings. This does not include aged or disabled persons' housing. High density residential flat buildings are usually more than five levels, have basement level car parking and are located in close proximity to public transport services. The building may contain a component of commercial use.

Medium Density Residential Flat Buildings

$0.4-0.5$ "peak hour" vehicle trips / $1 \& 2$ bedroom dwelling
$4.0-5.0$ "daily" vehicle trips / $1 \& 2$ bedroom dwelling
$0.5-0.65$ "peak hour" vehicle trips / 3 bedroom dwelling
$5.0-6.5$ "daily" vehicle trips / 3 bedroom dwelling

Housing for Aged and Disabled Persons

0.1-0.2 "peak hour" vehicle trips/dwelling

1-2 "daily" vehicle trips/dwelling

Factors

These figures at the lower end of the above rates are based on research conducted by the Authority. This research concentrates on subsidised developments (often run by religious organisations). Generation rates or resident funded developments are often greater, as indicated at the higher end of the range.

Application of the above traffic generation rates for "high density" residential developments to the proposed 34 additional dwellings yields a projected increase in the traffic generation potential of the site of an additional 10 vehicles per hour (vph) during commuter peak periods, or an additional 98 vehicles per day when compared with the previously approved Concept Plan.

However, for the purposes of this report, and to provide a more "rigorous" traffic assessment, it has been assumed that the private dwellings component of the development proposal will comprise "medium density" dwellings rather than "high density" dwellings. Application of the higher traffic generation rates nominated in the RMS Guidelines for "medium density" dwellings to the proposed 34 additional dwellings yields a projected increase of an additional 17 vph during commuter peak periods (or an additional 170 vehicles per day) when compared with the previously approved Concept Plan.

The cumulative traffic flows expected to be generated by the amended Concept Plan have been assigned to the surrounding road network as illustrated on Figure 7.

It is pertinent to note that the traffic assignment takes into account the prohibition on rightturn movements at the Belmore Road/Washington Avenue intersection required by the previous Concept Plan approval.

EXISTING TRAFFIC VOLUMES

TRAFFIC ASSIGNMENT
FIGURE 7

Traffic Implications - Road Network Capacity

The traffic implications of development proposals primarily concern the effects that any additional traffic flows may have on the operational performance of the nearby road network. Those effects can be assessed using the SIDRA program which is widely used by the RMS and many LGA's for this purpose. Criteria for evaluating the results of SIDRA analysis are reproduced in the following pages.

The results of the SIDRA analysis of the Belmore Road \& Washington Avenue intersection are summarised on Table 3.1 below, revealing that:

- the Belmore Road \& Washington Avenue intersection currently operates at Level of Service " A " under the existing traffic demands with total average vehicle delays in the order of 2 seconds/vehicle
- under the projected future traffic demands expected to be generated by the 34 additional apartments the Belmore Road \& Washington Avenue intersection will continue to operate at Level of Service " A ", with increases in average vehicle delays of 0.1 seconds/vehicle.

The results of the SIDRA analysis of the Belmore Road \& Roosevelt Avenue intersection are summarised on Table 3.2 below, revealing that:

- the Belmore Road \& Roosevelt Avenue intersection currently operates at Level of Service " A " under the existing traffic demands with total average vehicle delays in the order of 4 seconds/vehicle
- under the projected future traffic demands expected to be generated by the 34 additional apartments, the Belmore Road \& Roosevelt Avenue intersection will continue to operate at Level of Service " A ", with increases in average vehicle delays of 0.5 seconds/vehicle.

The results of the SIDRA analysis of the Belmore Road \& Hannans Road intersection are summarised on Table 3.3 below, revealing that:

- the Belmore Road \& Hannans Road intersection currently operates at Level of Service " B " under the existing traffic demands with total average vehicle delays in the order of 24-27 seconds/vehicle
- under the projected future traffic demands expected to be generated by the 34 additional apartments, the Belmore Road \& Hannans Road intersection will continue to operate at Level of Service " B ", with increases in average vehicle delays of 0.1 seconds/vehicle.

In the circumstances, it is clear that the proposed development will not have any unacceptable traffic implications in terms of road network capacity.

In addition, the Belmore Road/Roosevelt Avenue intersection was assessed against the warrants for traffic signals as specified in the RMS Traffic Signal Design guide. That review found that:

- the projected future traffic volumes do not meet the pedestrian or vehicle volume warrants for each of 4×1-hour periods on an average day, and
- the number of accidents occurring at this intersection (and at the Washington Avenue intersection) does not meet the warrants for traffic signals, even if it is assumed that all of the accidents were correctable.

The assessment found that the installation of traffic signals was therefore not warranted at the Belmore Road/Roosevelt Avenue intersection.

Conclusion - Traffic Analysis

In summary, the foregoing analysis has found that:

- the cumulative development potential of the proposed development will not have any unacceptable traffic implications in terms of road network capacity
- the proposed development will not have any adverse impacts on the performance of nearby intersections, and will not require upgrading or road improvement works.

TABLE 3.1 - RESULTS OF SIDRA ANALYSIS OF BELMORE ROAD \& WASHINGTON AVENUE								
Key Indicators	Existing Traffic Demand		Amended Concept Plan Traffic Demand	Plus 17 vph				
	AM	PM	AM	PM	AM	PM		
Level of Service	A	A	A	A	A	A		
Degree of Saturation	0.193	0.229	0.595	0.296	0.606	0.297		
Total Average Vehicle Delay (secs/veh)	1.7	1.7	4.1	2.1	4.2	2.1		

TABLE 3.2 - RESULTS OF SIDRA ANALYSIS OF BELMORE ROAD \& ROOSEVELT AVENUE								
Key Indicators	Existing Traffic Demand		Amended Concept Plan Traffic Demand	Plus 17 vph				
	AM	PM	AM	PM	AM	PM		
Level of Service	A	A	A	A	A	A		
Degree of Saturation	0.365	0.383	0.735	0.699	0.753	0.707		
Total Average Vehicle Delay (secs/veh)	3.5	3.6	7.8	10.2	8.1	10.5		

TABLE 3.3 - RESULTS OF SIDRA ANALYSIS OF BELMORE ROAD \& HANNANS ROAD							
Key Indicators	Existing Traffic Demand		Amended Concept Plan Traffic Demand	Plus 17 vph			
	AM	PM	AM		AM	PM	
Level of Service	B	B	C	B	C	B	
Degree of Saturation	0.652	0.670	0.736	0.755	0.736	0.758	
Total Average Vehicle Delay (secs/veh)	27.0	23.5	29.0	24.9	29.1	25.0	

Criteria for Interpreting Results of SIDRA Analysis

1. Level of Service (LOS)

LOS	Traffic Signals and Roundabouts	Give Way and Stop Signs
'A'	Good operation.	Good operation.
'B'	Good with acceptable delays and spare capacity.	Acceptable delays and spare capacity.
'C'	Satisfactory.	Satisfactory but accident study required.
'D'	Operating near capacity.	Near capacity and accident study required.
'E'	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode.	At capacity and requires other control mode.
'F'	Unsatisfactory and requires additional capacity.	Unsatisfactory and requires other control mode.

2. Average Vehicle Delay (AVD)

The AVD provides a measure of the operational performance of an intersection as indicated on the table below which relates AVD to LOS. The AVD's listed in the table should be taken as a guide only as longer delays could be tolerated in some locations (ie inner city conditions) and on some roads (ie minor side street intersecting with a major arterial route).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way and Stop Signs
A	less than 14	Good operation.	Good operation.
B	15 to 28	Good with acceptable delays and spare capacity.	Acceptable delays and spare capacity.
C	29 to 42	Satisfactory.	Satisfactory but accident study required.
D	43 to 56	Operating near capacity.	Near capacity and accident study required.
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode.	At capacity and requires other control mode.

3. Degree of Saturation (DS)

The DS is another measure of the operational performance of individual intersections.
For intersections controlled by traffic signals ${ }^{1}$ both queue length and delay increase rapidly as DS approaches 1, and it is usual to attempt to keep DS to less than 0.9 . Values of DS in the order of 0.7 generally represent satisfactory intersection operation. When DS exceeds 0.9 queues can be anticipated.

For intersections controlled by a roundabout or GIVE WAY or STOP signs, satisfactory intersection operation is indicated by a DS of 0.8 or less.
T. The values of DS for intersections under traffic signal control are only valid for cycle length of 120 secs.

4. TRANSPORT PLANNING

NSW 2021

NSW 2021 is a 10-year plan to guide the State's policy and budget decision making. It sets a number of goals to inform the NSW Government's strategic business plan, including the following transport-related goals:

- reduce travel times by improving the efficiency of the road network during peak times on Sydney's road corridors, and minimising public transport waiting times for customers
- grow patronage on public transport by making it a more attractive choice
- improve customer experience with transport services, and
- improve road safety.

NSW Long-Term Transport Master Plan

The NSW Long-Term Transport Master-Plan provides an integrated transport strategy which brings together landuse planning with transport planning, and integrates it with planning for freight and passenger movements, as well as other modes of transports. It includes actions for road, rail, bus, ferry, light rail, cycling and walking. Initiatives identified by the NSW Long-Term Transport Master-Plan which will improve the transport options available to Riverwood residents will include:

- expansion of the integrated public transport ticketing system
- modernisation of the public transport fleets, including the introduction of new Warratah train and the refurbishment of the Tangara train
- widening of the M5 between Camden Valley Way and King Georges Road
- planning for the WestConnex road link which includes duplication of the M5 East Motorway
- construction of the South-West Rail Link which will provide additional flexibility for train services on the East Hills Line
- increased the capacity of the East Hills Line to cater for an additional 9,600 passengers per hour in peak periods, and
- further investigations into the Liverpool to Port Botany growth corridor.

Planning Guidelines for Walking and Cycling

The Planning Guidelines for Walking and Cycling identify a number of city-scale design principles that can assist the creation of walkable and cyclable cities and neighbourhoods. These principles emphasise urban renewal and the creation of compact, mixed use, accessible centres around public transport stops. At the neighbourhood scale, design principles can be reinforced through the creation of local and accessible centres and neighbourhoods with connected street patterns and road design which aim to reinforce local walking and cycling networks.

In particular, the guidelines note that increased population density is an important element in creating a walkable and cyclable city. A compact development brings activities close together, making them more accessible by foot or by bicycle, without the need to use a car. Increased population density also enhances the viability of public transport services.

The Riverwood Residential Renewal Project is consistent with those objectives in that it seeks to provide increased population density in close proximity to existing public transport services which are accessible by walking or cycling. In addition, the provision of a number of new internal road links will improve the permeability of the neighbourhood for pedestrians and cyclists.

The Riverwood North Residential Renewal Project provides a number of opportunities to provide improved connections for walking and cycling using both the existing and proposed
new road links to connect the existing shared pedestrian path and cycleway which traverses Salt Pan Creek Wetlands to the north of the site with the schools, shops and public transport services located to the south of the site.

Integrated Land Use and Transport Policy

The Integrated Land Use and Transport Policy encourages increased housing densities within an acceptable walking distance -400 to $1,000 \mathrm{~m}$ of major public transport land such as railway stations and high frequency bus routes to help moderate the demand for private car travel and to reduce the growth of VKT (Vehicle Kilometres Travelled).

The proposed development is consistent with those objectives in that it will result in increased population densities in an area which already has good access to public transport services as well as options for walking and cycling.

NSW Bike Plan

The NSW Bike Plan promotes cycling-friendly development decisions and notes that cycling is strongly influenced by the shape of our neighbourhoods. It encourages cycling-friendly developments concentrated in existing centres. Planning ahead to locate residential areas, community activities (such as schools, shops and services) close together, and next to cycleways, makes it more likely that a bicycle will be used to travel from one to the other.

The Riverwood North Residential Renewal Project is ideally placed in this regard in that it is located immediately adjacent to an established shared pedestrian/bicycle path, and is located approximately 650 m from Riverwood Railway Station, shops and services such as banks, post office and the like. Careful planning of the proposed development will enable the Residential Renewal Project to further capitalise on its location by providing improve permeability through the neighbourhood, as well as improved pedestrian and bicycle pathways along the existing roads located within the neighbourhood.

Implementation of a Location Specific Sustainable Travel Plan

The proposed development provides the opportunity to provide a site specific sustainable travel plan which seeks to reduce dependence on private car travel. Key features of the sustainable travel plan could include (but are not limited to):

1. Establish high quality and efficient pedestrian and cycle links to existing routes to encourage travel by these modes
2. incorporate fibre/internet to the home for premises in an early state
3. community education to support public transport initiatives
4. provide a "How to Find Us" website facility with links to bus and train timetables etc
5. provide a "Handover Pack" to all new residents that identifies existing walking, cycling and public transport options available

5. CONCLUSION

This Transport and Accessibility Study has been prepared for Housing NSW and Payce Communities Pty Ltd to accompany a Concept Plan application to the Department of Planning for the proposed Riverwood North Residential Renewal Project which is located in Washington Avenue and Kentucky Road, Riverwood.

The Concept Plan approval includes the staged construction of a new and revitalised residential area comprising a mixture of social and privately owned dwellings.

An additional 34 dwellings are proposed, increasing the total number of dwellings from 723 dwellings to 757 dwellings.

The foregoing assessment has found that:

- the site is ideally located in close proximity to a range of walking, cycling and public transport options
- the site is also located in easy walking/cycling distance of a range of shops and services, including banks, post office and primary schools
- two new road links proposed within the site will improve permeability for pedestrians and cyclists
- the site is also located immediately adjacent to a shared pedestrian and bicycle path with links to Bankstown, Padstow and Kingsgrove
- the proposed 34 additional apartments will not have any unacceptable traffic implications in terms of road network capacity, and does not generate a need for any upgrades or road improvements, and
- the parking facilities incorporated in the development proposal will satisfactorily accommodate the needs of the proposed development
- the proposed development is consistent with the aims and objectives of the NSW LongTerm Transport Master-Plan, the NSW State Plan 2021, the NSW Planning Guidelines for Walking and Cycling, the Integrated Land Use and Transport Policy Package and the NSW Bike Plan.

PEAK HR	2	51	8	9	66	12	148

PEAK HR	11	24	25	7	36	1	104

 | PEAK HR | 12 | 33 | 26 | 6 | 30 | 2 | 109 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | PAKHR_ـ_

BUS ROUTE MAPS

