Shepherds Bay Urban Renewal Development Stages 2 and 3

Traffic Impact Assessment Section 96 Application

Prepared for

Reference: 20100099 December 2015 © 2015 Road Delay Solutions Pty Ltd, Australia

DOCUMENT STATUS

Document C:\Users\Glen\Documents\Meadowbank\Stage 2 and 3\Report\Shepherds Bay Stage 2 and 3 TIA.docx

Author	Glen Varley (Road Delay Solutions Pty Ltd)
Signed	Grasly
Reviewed	George Youssef (Holdmark)
Original Issue	11 December 2015

COPYRIGHT

 $\ensuremath{\mathbb{C}}$ Road Delay Solutions Pty Ltd AUSTRALIA (2015) All rights reserved

The information contained within this document, produced by Road Delay Solutions Pty Ltd, is solely for the use of the Client identified and for the sole purpose or purposes, for which it has been prepared. Road Delay Solutions Pty Ltd undertakes no duty to, or accepts any responsibility for, use by any third party who may rely upon this document. No section, nor any element of this document, may be removed, reproduced, electronically stored or transmitted, in any form, without the written permission of Road Delay Solutions Pty Ltd.

DISCLAIMER

Road Delay Solutions Pty Ltd assumes no responsibility or liability for the predictive nature of any traffic volumes, and resultant conclusions, detailed in this document. Any data surveys and/or modelling projections are subject to significant uncertainties and unanticipated change, without notice. While all source data, employed in the preparation of this document, has been diligently collated and checked, Road Delay Solutions Pty Ltd is unable to assume responsibility for any errors resulting from erroneous data.

ROAD DELAY SOLUTIONS PTY LTD, 2/12 Flitton Valley Close | FRENCHS FOREST NSW 2086 | AUSTRALIA A.B.N. 40 127 220 964

gvarley@bigpond.com

0414 800 912

CONTENTS

ABSTRACT	6
LOCATION	
Figure 1	Shepherds Bay Development Footprint
THE DEVELOPM	ENT9
EXISTING CONE	DITIONS
Road Networ	k 10
Figure 2	Meadowbank Road Hierarchy
Existing Traffic	controls
Traffic Counts	
Table 1	Current Road Network Growth Rates
FUTURE CONDI	TIONS
Vehicle Gene	eration
Table 2	RMS Vehicle Generation Rates
Table 3	Development Vehicle Generation by Stage
Figure 3	Meadowbank Precinct JTW Mode Choice
Figure 4	Stages 1 Through 3 Generated Traffic Flows
Figure 5	Projected Sydney Metropolitan Peak Hour Travel Demand
Infrastructure	Requirements
Traffic Impac	ts17
Constitution R	Road and Bowden Street17
Figure 6	Constitution Road and Bowden Street Operational Performance
Table 4	2014 Constitution Road/Bowden Street Movement Summaries
Table 5	Stages 2 and 3 Constitution Road/Bowden Street Movement Summaries
Constitution R	Road and Belmore Street21
Figure 7	Constitution Road and Belmore Street Operational Performance
Table 6	2014 Constitution Road/Belmore Street Movement Summaries
Table 7	AM Stages 2 and 3 Constitution Road/Belmore Street Movement Summaries 24
Table 8	PM Stages 2 and 3 Constitution Road/Belmore Street Movement Summaries 25
Nancarrow A	venue Extension to Belmore Street
Hamilton Cre	scent Left In/Left Out at Belmore Street
Constitution F	Road and Hamilton Crescent26

Belmore Street and Rothesay Avenue Roundabout	27
Underdale Lane and Bowden Street	
Belmore Street and Yerong Street Left in/Left out	
Railway Road Pedestrian Crossing	
PUBLIC TRANSPORT	
Rail	30
Buses	
Pedestrians and Bicyclists	32
CONCLUSION	
APPENDIX A – TRAFFIC COUNTS	35
	40
APPENDIX B – Performance Indicators	
General	48
Table A1: Performance Indicators by Control Method	
Average Vehicle Delay (AVD)	49
Degree of Saturation (DS)	50
Table A2: Qualified Level of Service by Control Method	50
APPENDIX C – ARTERIAL ROAD ASSESSMENT	51
The Scates Model	58
Victoria Road	59
Church Street	60
Projected Volumes	62
Victoria Road	62
Church Street	63
Table 15: Future Operation - Church Street	64
General	71
Average Vehicle Delay (AVD)	72
Degree of Saturation (DS)	73
Victoria Road Existing – VICX.DAT	74
Victoria Road Future without Development – VICB.DAT	87
Victoria Road Future with Development – VICF.DAT	
Church Street Existing – CHURCHX.DAT	113

Church Street Future without Development – CHURCHB.DAT	134
Church Street Future with Development – CHURCHF.DAT	155

ABSTRACT

Road Delay Solutions Pty Ltd has been engaged by Holdmark Prperty Group to undertake investigation and provide supporting information into the traffic implications associated with the proposed Shepherds Bay Residential Development, Stages 2 and 3 and the Section 96 Application for the deletion of Community Facility and addition of apartments.

The Section 96 Application specifically proposes...

- Reduction of the largely unusable stepped terraces within the internal courtyards of each building. These have been replaced by a largely 'at grade' landscaping zone which reduces the amount of hard landscaping and increases the soft landscaping areas,
- → Amendments to the stepped terraces between Stage 2 and Stage 3 buildings. The current scheme proposed two separate lifts to enable people to traverse from Nancarrow Avenue to Rothesay Avenue. The second lift stopped approximately 4m above the landscaped paving toward Rothesay Avenue and then people traversed a series of ramps and/or stairs to access the lower part of the site. The proposal has one lift that takes people from Nancarrow Avenue to the Upper Basement level. The large curved stairs at Upper Basement and the series of steps between the multiple levels have been deleted. This improves accessibility throughout the site.
- → The proposed Café, which is currently at Lower Ground level or over 4m above Rothesay Avenue, has been relocated to the Upper Basement level, which allows far greater connectivity incorporating the adjusted landscape areas at this level.
- People now have the advantage of being able to access the internal courtyards of both buildings at the Upper Basement levels via generous links through both Stage 2 and Stage 3 buildings. This enables connectivity between the buildings that was not previously available.
- The current DA has three storeys of very large unusable space against the cliff. These spaces have been activated by adjusting the carparking areas and apartments as shown. This activates the unusable space by using it as car parking, a potential gym one storey below Nancarrow Avenue and Services spaces.
- → Removal of unnecessary walling needed to cope with the varying terrace levels both between the two buildings and within their respective internal courtyards.
- \rightarrow The number of water features have been reduced and refined.
- → 28 apartments have been added over and above the 17 included as part of the deed of agreement.

This assessment specifically focuses on the traffic impacts associated with the proposed urban renewal of the Meadowbank Precinct and the committed infrastructure projects associated with the Department of Planning & Infrastructure Concept Approval, MP09_0216.

Stages 2 and 3 of the development will provide for 498 residential apartments and is anticipated to generate some 144 vehicle trips per commuter peak travel period. The Section 96 Application is proposed to include...

- \rightarrow 498 residential apartments,
- \rightarrow 640 car parking spaces,
- \rightarrow 64 allocated bicycle spaces at 1 space per 10 car spaces,
- \rightarrow Pedestrian and bicycle pathways,
- \rightarrow Publically accessible open space,
- \rightarrow Provision for emergency and service vehicles, and
- → Infrastructure improvements to sustain the anticpated level of motor vehicle generation.

The internal vehicle machinations, parking and service provisions for the proposed Stages 2 and 3 is dealt with in a separate report prepared by Thompson Stanbury Associates.

LOCATION

Located within the precinct known as the Meadowbank Employment Area (MEA) the proposed Holdmark development, Shepherds Bay, is generally bounded by Bowden Street to the west, Constitution Road to the north and Belmore Street to the east, and the Parramatta River to the south.

Figure 1Shepherds Bay Development FootprintSourceRobertson + Marks Architects, Revision L, 2014

THE DEVELOPMENT

The full development involves the construction of 1,988, high end, residential apartment dwellings on the shore of the Parramatta River, Shepherds Bay, west of the Ryde Bridge.

Stage 1, involving the construction of 246 residential apartments, is located at the corner of Belmore Street and Rothesay Avenue, replacing the former industrial activities.

Stages 2 and 3 of the development, located to the immediate west of Stage 1, proposes the construction of a further 498 residential apartments, consisting of...

- \rightarrow 4 studio apartments,
- \rightarrow 253 single bedroom apartments,
- \rightarrow 12 loft apartmets,
- \rightarrow 212 two bedroom apartments, and
- \rightarrow 17 three bedroom apartments.

Vehicular access to the Stages 2 and 3 buildings is proposed to be facilitated via a single access driveway connecting with Rothesay Avenue in the south-eastern corner of the site. The driveway is proposed to provide a 6m wide ingress laneway, separated from a 6m wide egress lane by a 1m wide median. The driveway will permit access to 640, basement level, parking spaces.

EXISTING CONDITIONS

Road Network

Church Street is classified as a *State Road* under the auspices of the *RMS* and provides the key north-south transport corridor in the area. It typically comprises six (6) traffic lanes (ie. 3 lanes in each direction), with opposing traffic flows separated by a central concrete median island.

Victoria Road is also classified as a *State Road* under the auspices of the *RMS* providing a pivotal east-west transport link on the Sydney Metropolitan road network.

Typically comprising six (6) trafficable lanes, with opposing traffic flows separated by a central concrete median island.

Junction Street, Belmore Street and Constitution Road form part of a *collector road* system which permit traffic to enter and leave the Meadowbank Precinct.

Generally consisting of a single trafficable lane in each direction, and with kerbside parking permitted at select locations only, the collector road network affords both local and cross regional traffic the ability to by pass congestion on the arterial road network.

Existing Traffic Controls

The existing key traffic controls on the surrounding road network, in the vicinity of the Shepherds Bay development site, are...

- → A 70 km/h speed limit on Church Street
- \rightarrow A 60 km/h speed limit in Victoria Road,
- \rightarrow A 50 km/h speed limit on all other local roads in the area,
- → Traffic signals on Church Street at its intersection with both Junction Street and Morrison Road,
- → Traffic signals in Belmore Street at its intersection with both Constitution Road and Junction Street,
- → Central median islands in Church Street and in Victoria Road ptecluding right turn movements, with the exception of those permitted at key traffic signal controlled intersections,
- ightarrow A roundabout in Constitution Road at its intersection with Bowden Street, and
- Roundabouts in Porter Street at its intersection with both Parsonage Street and Well Street.

Traffic Counts

Road Delay Solutions has commissioned *ROAR Data* to annually count key intersections within the *MEA*, in particular the intersections of Constitution Road with both Bowden Sreet and Belmore Street. These counts have been collected in or around November of each year from 2011 to 2014, inclusive.

The 2014 counts, along with the projected traffic volumes for the respective stages of development, are presented in *Appendix* A.

From the counts, the annual growth rates on each road corridor have been calculated and utilised in the operational computer based modelling of the select infrastructure upgrades associated with the planning approval.

From the collated traffic data, the annual growth in traffic has been determined by Road corridors. Understandably a negative growth rate is currently reported through the precinct given...

- \rightarrow The transformation of local land uses,
- \rightarrow The vacation of local business prior to the development construction, and
- → The impedance of construction vehicles for the Shepherds Bay and surrounding developments.

A positive growth rate is anticipated with the occupancy of Stage 1, onwards.

While the Bureau of Transport Statistics (BTS) currently lists vehicle growth on the Metropolitan Arterial Road Network as some 1.2%, for the purpose of this assessment, an average 1% growth rate has been applied, annually, to the current traffic figures to assimilate any possible growth in cross regional traffic flow.

On top of the 1% growth rate applied, each annual stage of development has been added to the future traffic projections to enable assessment of a 'worst case' situation.

	Vehicles	Vehicles per Hour (All vehicle types)						
Road Corridor	2011	2012	2013	2014	Average Growth			
AM Constitution Road Eastbound	686	692	628	621	-3.2%			
AM Constitution Road Westbound	488	452	441	435	-3.7%			
AM Bowden Road Northbound	420	438	363	371	-3.5%			
AM Bowden Street Southbound	377	369	254	266	-9.5%			
AM Belmore Street Northbound	322	337	304	300	-2.1%			
AM Belmore Street Southbound	146	152	138	133	-2.9%			
AM Railway Parade Northbound	766	770	632	621	-6.4%			
AM Railway Parade Southbound	323	437	352	355	5.6%			

Average Annual Growth Rate					-29.0%
PM Railway Parade Southbound	815	849	906	919	4.1%
PM Railway Parade Northbound	302	344	375	372	7.4%
PM Belmore Street Southbound	228	223	246	152	-10.0%
PM Belmore Street Northbound	322	346	331	284	-3.7%
PM Bowden Street Southbound	374	389	510	540	13.7%
PM Bowden Road Northbound	413	384	255	189	-22.2%
PM Constitution Road Westbound	619	768	667	580	-0.7%
PM Constitution Road Eastbound	429	340	417	513	8.3%

Current Road Network Growth Rates Table 1

Source

Road Delay Solutions, 2014

FUTURE CONDITIONS

Vehicle Generation

Based upon the *RMS Technical Direction TDT 2013/04a* high density residential apartment developments, the traffic generation for the Stages 2 and 3 has adopted a generation rate of 0.29 vehicles per hour (vph) per apartment, for both the morning and evening commuter peak periods, respectively. This generation rate is considered conservative and will aid in determining the appropriate triggers and warrants for infrastructure during construction of the development.

Travel patterns from the development have been drawn from the BTS data set published in 2011, and have been exported into *Road Delay Solutions'* Netanal strategic model for the purpose of utilising select link analysis to determine the projected movement of development generated traffic within the precinct.

Vehicle Generation Period	R۸	RMS Vehicle Generation Rate						
	Sydney Average	Sydney Range	Regional Average	Regional Range				
AM peak (1 hour) vehicle trips per unit	0.19	0.07-0.32	0.53	0.39-0.67				
AM peak (1 hour) vehicle trips per car space	0.15	0.09-0.29	0.35	0.32-0.37				
AM peak (1 hour) vehicle trips per bedroom	0.09	0.03-0.13	0.21	0.20-0.22				
PM peak (1 hour) vehicle trips per unit	0.15	0.06-0.41	0.32	0.22-0.42				
PM peak (1hour) vehicle trips per car space	0.12	0.05-0.28	0.26	0.11-0.40				
PM peak (1 hour) vehicle trips per bedroom	0.07	0.03-0.17	0.15	0.07-0.22				
Daily vehicle trips per unit	1.52	0.77-3.14	4.58	4.37-4.78				
Daily vehicle trips per car space	1.34	0.56-2.16	3.22	2.26-4.18				
Daily vehicle trips per bedroom	0.72	0.35-1.29	1.93	1.59-2.26				

Table 2Source

RMS Vehicle Generation Rates

Extract from RMS Technical Direction, 2013

\$96 Traffic Impact Assessment

		Vehicle Generation							
Construction Stage	No of Apartments	Adopted Rate	Vehicles per Hour (vph)	AM Outbound <i>(80%)</i>	AM Inbound (20%)				
1	246	0.29	71	57	14				
2 and 3	498*	0.29	144	116	29				
4 and 5	511	0.29	148	119	30				
6 and 7	311	0.29	90	72	18				
8 and 9	422	0.29	122	98	24				
Totals	1988		577	461	115				

* 28 apartments have been added over and above the 17 included as part of the deed of agreement.

Table 3	Development Vehicle Generation by Stage
Source	Holdmark, 2015

Meadowbank Precinct JTW Mode Share

Figure 3 Meadowbank Precinct JTW Mode Choice

Source

ABS Census data – 'Suburban Community Profile'- Meadowbank, 2011

\$96 Traffic Impact Assessment

The current predominant available transport mode choices for JTW have been catalogued from those available within, or adjacent to, the *MEA*, and as defined within the *BTS* 2006 transport zone number 2522.

The latest Household Travel Survey (HTS) data shows that average weekday trips grew by 1.0% between 2009/10 and 2010/11, which was slower than the 1.6% rate of population growth in the Sydney Statistical Division (SSD).

The private motor vehicle remains the dominant mode of transport embraced by the wider Sydney community. The ever increasing use of the private motor vehicle for both journey to work trips and recreational activities, places significant pressure on the road network infrastructure, the environment, health and local amenity, with road authorities compelled to sustain a perceived and expected satisfactory level of service.

In line with NSW 2021 targets, growth in public transport trips has been higher than growth in private vehicle passenger trips. Vehicle driver trips have increased by 1.5%, while train and bus trips increased by 2.6% and 2.3%, respectively. These inherent increases can be attributed to increased traffic congestion on the arterial road system, greater frequency of public transport services and improved intermodal/interchange provisions.

Figure 5Projected Sydney Metropolitan Peak Hour Travel DemandSourceRoad Delay Solutions, Netanal Model 2012

Infrastructure Requirements

During the planning and approval stage, the form and level of infrastructure required, to sustain the urban renewal development, was diligently assessed.

Holdmark has expressed it's commitment to constructing the following infrastructure during the staged construction of the development, in accordance with the Department of Planning and Infrastructure Approval MP09_0216.

The prescribed infrastructure upgrades include...

- → The extension of Nancarrow Avenue between Hamilton Crescent and Belmore Street,
- → The provision of left in/left out at the intersection of Belmore Street and Hamilton Crescent,
- → The provision of left in/left out at the intersection of Belmore Street and Yerong Street,
- \rightarrow Underdale Lane Local Area Traffic Management (LATM) measures,
- → Installation of a pedestrian refuge on Bowden Street near Nancarrow Avenue,
- → Installation of roundabout in Belmore Street at Rothesay Avenue,
- \rightarrow The provision of left in/left out at the intersection of Belmore Street and Yerong Street,
- $\rightarrow\,$ Installation of traffic signals at the intersection of Constitution Road and Bowden Street, and
- → Installation of traffic signal installation on Railway Road at the current pedestrian crossing near Meadowbank railway station.

Traffic Impacts

Investigations into the traffic impacts associated with the development vehicle generation has been undertaken using the computer based program, SIDRA.

In particular, the intersections of Constitution Road with Belmore Street and also Bowden Street, have been closely scrutinised.

Constitution Road and Bowden Street

It is understood that the intersection was itemised by Council, under the 2005 works program and again identified by Urban Horizon in July of 2010, to be reconstructed and operate under the control of traffic signals.

The single lane circulating roundabout controlled intersection was modelled extensively under both pre and post development conditions during the 'Concept Stage', at which time an operational Level of Service (LoS) 'A' was reported for both AM and PM peak commuter periods.

Figure 6 Source

Constitution Road and Bowden Street Operational Performance Road Delay Solutions, Netanal Model 2014

MOVEMENT SUMMARY

Site: Existing AM 2014 Constitution Rd & Bowden St Roundabout

Mov CD IO Mov		Demand Flow		Deg	Average	Leveni ori-	95% Black of	Queve	E Ping. III	Effective	Juncage.
0	Mor	Tintel websh	12	Deg. Sata wt	Average Deley sec	Senika	Vehicles with	Catance	Queund	Stop Rate per with	Average Speed kent
SouthEns	Constitution Rd (10.5	ACC MUS	2-22		a constant.		
21	1.2	33	7.8	0.399	5.4	LOS A	2.9	29.7	0.53	0.60	45.0
22	Tt	266	1.0	0.399	5.1	LOS A	2.9	20.7	0.53	0.60	45.8
23	R2	136	0.6	0.399	8.1	LOS A	2.9	20.7	0.53	0.60	45.6
Approach		435	1.4	0.399	6.1	LOS A	29	20.7	0.53	0.60	45.7
NorthEast	Bowden St (NE)										
24	L2	78	0.0	0.358	7.8	LOS A	2.4	17.0	0.76	0.82	43.9
25	Tt	69	4.3	0.358	7.8	LOS A	2.4	17.0	D.76	0.62	44.5
26	82	119	3.5	0.358	10.8	LOS B	2.4	17.0	0.76	0.87	44.3
Approach		266	2.7	0.358	9.2	LOS A	2.4	17.0	0.76	0.82	44.3
NorthWest	Constitution Rd	NNS									
27	L2	142	2.5	0.615	7.7	LOS A	5.6	41.0	0.74	0.76	44.7
28	Tt	462	0.6	0.815	7.4	LOS A	5.8	41.0	D.74	0.76	45.4
29	R2	11	0.0	0.615	10.4	LOS B	5.8	41.0	0.74	0.76	45.2
Approach		615	8.0	0.615	7.5	LOS A	5.8	41.0	D.74	0.76	45.2
SouthWee	t Bowden St (SW										
30	L2	6	0.0	0.234	7.2	LOS A	1.4	10.0	0.66	0.75	44.2
31	TT	93	3.7	0.234	7.2	LOS A	1.4	10.0	0.66	0.75	44.8
32	R2	87	3.6	0.234	10.2	LOS B	1.4	10.0	0.66	0.75	44.6
Approach		196	3.5	0.234	5.6	LOS A	1.4	10.0	0.66	0.75	44.7
All Vehicle	5	1602	57	0.615	7.5	LOS A	5.0	41.0	0.67	0.72	45.1

MOVEMENT SUMMARY

V Site: Existing PM 2014

Constitution Rd & Bowden St Roundabout

Moverne	ant Performance	Vehicles									
Mov 10	OD Mav	Tussi	nd Flues HV	Deg Sats v/t	Avenuen Detay	Level of Service	95% Back of Vehicles	Distance	Prop. Guarant	Effective Stop Role	Average Speed Mon
Could be an	Constitution Rd	unhiti		- vit-	100	100 A. M.		11		per web	1924
21	L2	27	0.0	0.689	8.2	LOSA	8.0	58.4	0.91	0.99	42.8
22	T1	498	0.9	0.689	11.1	LOS B	80	56.4	0.91	0.99	43.4
23	82	55	1.4	0.689	14.1	LOS B	8.0	56.4	0.91	0.99	43.2
Approach	12,000	580	0.9	0.689	11.2	LOS B	6.0	56.4	0.91	0.99	43.4
NorthEas	Bowden St (NE)										
24	L2	76	0.0	0.583	8.1	LOSA	5.2	38.5	0.76	0.83	43.4
25	T1	94	1.2	0.583	8.0	LOS A	5.2	36.5	0.76	0.83	-#4.0
26	R2	370	0.4	0.583	11.0	LOS B	5.2	36.5	0.76	0.63	43.9
Approach		540	0.5	0.583	10.1	LOS B	5.2	. 36.5	0.76	0.83	43.8
NorthWei	at: Constitution Rd (NW)									
27	1.2	59	2.7	0.336	5.4	LOS A	2.3	16.1	0.52	0.57	45.5
28	T1	297	0.4	0.536	5.1	LOSA	23	16.1	0.52	0.57	46.2
29	R2	1	12.5	0.336	8.4	LOSA	2.3	16.1	D.52	0.57	45.8
Approach	0	367	0.8	0.336	5.2	LOSA	2.3	16.1	5.52	0.57	48.1
SouthWe	st Bowden St (SW)	ý -									
30	L2	24	0.0	0.365	12.1	LOS B	2.6	17.9	0.91	0.96	41.8
31	Tt	75	1.0	0.365	12.0	LOS B	2.6	17.9	0.91	0.96	42.4
32	82	86	0.0	0.365	14.9	LOS B	2.6	17.5	0.91	0.96	42.2
Approach	1.	185	0.4	0.365	13,4	LOS B	2.6	17.9	0.91	0.96	42.2
All Vehicl	**	1662	0.7	0.689	9.8	LOSA	6.0	56.4	0.75	0.84	43.9

Table 4Source

2014 Constitution Road/Bowden Street Movement Summaries

Road Delay Solutions, 2015

MOVEMENT SUMMARY

𝒜 Site: Stage 2 and 3 AM

Constitution Rd & Bowden St Roundabout

movemen	it Performa	ance - Vehicles									
Mov ID	OD Mov	Deman Total veh/h	d Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back of Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
SouthEast:	Constitution										
21	L2	33	7.8	0.398	5.4	LOS A	2.9	20.8	0.53	0.60	45.0
22	T1	269	1.0	0.398	5.1	LOS A	2.9	20.8	0.53	0.60	45.8
23	R2	137	0.6	0.398	8.1	LOS A	2.9	20.8	0.53	0.60	45.6
Approach		439	1.4	0.398	6.0	LOS A	2.9	20.8	0.53	0.60	45.7
NorthEast:	Bowden St	(NE)									
24	L2	78	0.0	0.356	8.0	LOS A	2.4	17.0	0.77	0.83	43.8
25	T1	69	4.3	0.356	8.0	LOS A	2.4	17.0	0.77	0.83	44.4
26	R2	112	3.5	0.356	11.0	LOS B	2.4	17.0	0.77	0.83	44.2
Approach		259	2.7	0.356	9.3	LOS A	2.4	17.0	0.77	0.83	44.2
NorthWest:	: Constitution	n Rd (NW)									
27	L2	143	2.5	0.633	8.0	LOS A	6.2	44.1	0.76	0.78	44.5
28	T1	478	0.6	0.633	7.7	LOS A	6.2	44.1	0.76	0.78	45.2
29	R2	11	0.0	0.633	10.7	LOS B	6.2	44.1	0.76	0.78	45.0
Approach		632	1.0	0.633	7.8	LOS A	6.2	44.1	0.76	0.78	45.1
SouthWest	: Bowden St	t (SW)									
30	L2	6	0.0	0.236	7.2	LOS A	1.4	10.1	0.66	0.75	44.2
31	T1	94	3.7	0.236	7.2	LOS A	1.4	10.1	0.66	0.75	44.8
32	R2	88	3.6	0.236	10.2	LOS B	1.4	10.1	0.66	0.75	44.6
Approach		188	3.5	0.236	8.6	LOS A	1.4	10.1	0.66	0.75	44.7
All Vehicles	5	1518	1.7	0.633	7.7	LOS A	6.2	44.1	0.68	0.73	45.0

MOVEMENT SUMMARY

Site: Stage 2 and 3 PM Constitution Rd & Bowden St Roundabout

Mov	OD		nd Flows	Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
ID	Mov	Total veh/h	H∨ %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
SouthEas	st: Constitution f		70	V/C	sec		ven	m		per veh	km/l
21	L2	27	0.0	0.706	8.7	LOS A	8.5	60.1	0.94	1.02	42.6
22	Τ1	503	0.9	0.706	11.6	LOS B	8.5	60.1	0.94	1.02	43.2
23	R2	56	1.4	0.706	14.6	LOS B	8.5	60.1	0.94	1.02	43.0
Approach	ı	586	0.9	0.706	11.7	LOS B	8.5	60.1	0.94	1.02	43.1
NorthEast	t: Bowden St (N	IE)									
24	L2	93	0.0	0.635	9.6	LOS A	6.4	44.9	0.82	0.91	42.1
25	T1	95	1.2	0.635	9.5	LOS A	6.4	44.9	0.82	0.91	43.3
26	R2	374	0.4	0.635	12.5	LOS B	6.4	44.9	0.82	0.91	43.1
Approach	1	562	0.5	0.635	11.5	LOS B	6.4	44.9	0.82	0.91	43.
NorthWes	st: Constitution I	Rd (NW)									
27	L2	60	2.7	0.376	5.4	LOS A	2.7	18.8	0.54	0.58	45.4
28	T1	341	0.4	0.376	5.2	LOS A	2.7	18.8	0.54	0.58	46.
29	R2	1	12.5	0.376	8.5	LOS A	2.7	18.8	0.54	0.58	45.1
Approach	1	402	0.8	0.376	5.3	LOS A	2.7	18.8	0.54	0.58	46.0
SouthWe:	st: Bowden St (SW)									
30	L2	24	0.0	0.376	12.5	LOS B	2.7	18.8	0.92	0.97	41.0
31	T1	76	1.0	0.376	12.4	LOS B	2.7	18.8	0.92	0.97	42.3
32	R2	87	0.0	0.376	15.3	LOS B	2.7	18.8	0.92	0.97	42.
Approach	1	187	0.4	0.376	13.8	LOS B	2.7	18.8	0.92	0.97	42.
All Vehicle	es	1737	0.7	0.706	10.4	LOS B	8.5	60.1	0.81	0.88	43.

Table 5 Source Stages 2 and 3 Constitution Road/Bowden Street Movement Summaries Road Delay Solutions, 2015 The RMS warrant, which the authority is adhereing to stringently for signalisation of the site, requires Constitution Road to realise 900vph in each direction for four (4) one (1) hour periods of a single day.

With the addition of the Stages 1 through 3 vehicle generations, the intersection of Constitution Road and Bowden Street operates satisfactorily under roundabout control and fails to satisfy the warrant for the installation of traffic signals, prior to the release of an Occupancy Certificate for Stage 3.

Constitution Road and Belmore Street

The intersection of Constitution Road with Belmore Street currently operates at a satisfactory LoS during both the morning and evening peak commuter periods.

With the advent of Stages 2 and 3, no adverse impact on operation is reported by the SIDRA modelling. However, the intersection will require the introduction of a 'No Stopping' restriction, in the northbound aaproach of Belmore Street to increase the capacity and operation of the signals. The 'No Stopping' zone should extend from Rothesay Avenue to Constitution Road. This measure will also eliminate the potential conflict between left turn vehicles leaving Hamilton Crescent onto Belmore Street.

Modelling during the 'Concept Stage' also identified the Belmore Street and Constitution Road as a 'rat run' utilised by cross regional traffic. Two northbound lanes in Belmore Street between Rothesay Avenue and Constitution Road was identified as critical in ensuring sufficient mid block and queueing capacities for growth along the corridor. \$96 Traffic Impact Assessment

Source

Constitution Road and Belmore Street Operational Performance Road Delay Solutions, Netanal Model 2014

MOVEMENT SUMMARY

Site: Existing AM 2014

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Move	ment Perf	formance - V	/ehicles								
Mov ID	OD Mov	Demand Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
NorthE	ast: Belmo										
25	T1	27	0.0	0.042	28.6	LOS C	1.0	7.3	0.70	0.52	36.0
26	R2	106	1.6	0.385	55.1	LOS E	5.7	40.6	0.95	0.78	28.3
Approa	ach	133	1.3	0.385	49.8	LOS D	5.7	40.6	0.90	0.73	29.6
NorthV	Vest: Const	titution Rd (NV	V)								
27	L2	216	1.5	0.154	8.5	LOS A	3.3	23.1	0.28	0.62	44.4
29	R2	405	0.7	0.387	19.8	LOS B	12.9	91.1	0.60	0.74	39.0
Approa	ach	621	1.0	0.387	15.9	LOS B	12.9	91.1	0.49	0.70	40.7
SouthV	Vest: Belm	ore St (SW)									
30	L2	388	0.1	0.287	9.6	LOS A	7.1	49.5	0.34	0.65	43.8
31	T1	84	0.0	0.323	51.8	LOS D	4.5	31.8	0.95	0.74	29.3
Approa	ich	472	0.1	0.323	17.1	LOS B	7.1	49.5	0.45	0.67	40.3
All Veh	icles	1226	0.7	0.387	20.0	LOS C	12.9	91.1	0.52	0.69	39.0

MOVEMENT SUMMARY

Site: Existing PM 2014

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Move	ment Per	formance - V	ehicles								
Mov ID	OD Mov	Demand I Total veh/h	Flows H∨ %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
NorthE	East: Belmo	ore St (NE)									
25	T1	35	0.0	0.058	31.0	LOS C	1.4	9.9	0.73	0.55	35.1
26	R2	117	2.4	0.513	59.1	LOS E	6.6	47.2	0.98	0.79	27.5
Approa	ach	152	1.8	0.513	52.6	LOS D	6.6	47.2	0.92	0.73	28.9
NorthV	Vest: Cons	titution Rd (NV	V)								
27	L2	232	0.5	0.164	8.5	LOS A	3.5	24.8	0.29	0.62	44.4
29	R2	281	0.0	0.256	17.0	LOS B	7.8	54.3	0.51	0.70	40.2
Approa	ach	513	0.2	0.256	13.1	LOS B	7.8	54.3	0.41	0.67	42.0
South\	Nest: Belm	nore St (SW)									
30	L2	674	0.2	0.514	9.7	LOS A	13.9	97.4	0.39	0.68	43.8
31	T1	52	0.0	0.200	50.7	LOS D	2.8	19.3	0.93	0.70	29.5
Approa	ach	726	0.2	0.514	12.6	LOS B	13.9	97.4	0.43	0.68	42.3
All Veh	nicles	1391	0.4	0.514	17.2	LOS B	13.9	97.4	0.48	0.68	40.2

Table 6 Source **2014 Constitution Road/Belmore Street Movement Summaries** Road Delay Solutions, 2015

INTERSECTION SUMMARY

Site: Stage 2 and 3 AM

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Performance Measure	Vehicles	Pedestrians	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total)	38.0 km/h 1440 4 veh-km/h 37.9 veh-h/h	2.2 km/h 0.2 ped-km/h 0.1 ped-h/h	38.0 km/h 1728.6 pers-km/h 45.5 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1418 veh/h 1.0 % 0.437 105.9 % 3245 veh/h	5 ped/h 0.001	1702 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	8.80 veh-h/h 22.3 sec 57.5 sec 57.5 sec 3.9 sec 18.5 sec 16.1 sec LOS C	0.04 ped-h/h 30.3 sec 45.9 sec LOS D	10.60 pers-h/h 22.4 sec 57.5 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	14.7 veh 103.7 m 0.37 996 veh/h 0.70 per veh 0.57 96.2	3 ped/h 0.70 per ped 0.70 0.1	1199 pers/h 0.70 per pers 0.57 96.3
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	823.15 S/h 142.3 L/h 335.4 kg/h 0.027 kg/h 0.286 kg/h 0.255 kg/h	1.53 \$/h	824.67 \$/h

Level of Service (LOS) Method: Delay (HCM 2000).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Performance Measure	Véhicles	Pedestrians	Persons
Demand Flows (Total) Delay Effective Stops Travel Distance Travel Time	680,640 veh/y 4,224 veh-h/y 478,138 veh/y 691,376 veh-km/y 18,171 veh-h/y	2,400 ped/y 20 ped-h/y 1,668 ped/y 84 ped-km/y 38 ped-h/y	816,768 pers/y 5,089 pers-h/y 575,434 pers/y 829,735 pers-km/y 21,844 pers-h/y
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	395,110 \$/y 68,316 L/y 160,970 kg/y 13 kg/y 137 kg/y 122 kg/y	734 \$/y	395,844 \$/y

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 2 December 2015 9:23:55 AM Project: Not Saved

Table 7 Source

AM Stages 2 and 3 Constitution Road/Belmore Street Movement Summaries Road Delay Solutions, 2015

INTERSECTION SUMMARY

Site: Stage 2 and 3 PM

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Performance Measure	Vehicles	Pedestrians	Persons
Fravel Speed (Average) Fravel Distance (Total) Fravel Time (Total)	39.8 km/h 1479.9 veh-km/h 37.2 veh-h/h	2.2 km/h 0.2 ped-km/h 0.1 ped-h/h	39.8 km/h 1776.1 pers-km/h 44.7 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Iffective Intersection Capacity	1457 veh/h 0.4 % 0.492 83.1 % 2964 veh/h	5 ped/h 0.003	1748 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane)	7.30 veh-h/h 18.0 sec 57.9 sec	0.04 ped-h/h 30.7 sec	8.80 pers-h/h 18.1 sec
Control Delay (Worst Movement) Seometric Delay (Average) Stop-Line Delay (Average) dling Time (Average) ntersection Level of Service (LOS)	57.9 sec 4.1 sec 13.9 sec 11.9 sec LOS B	54.2 sec LOS D	57.9 sec
5% Back of Queue - Vehicles (Worst Lane) 15% Back of Queue - Distance (Worst Lane) Queue Storage Ratio (Worst Lane) total Effective Stops Effective Stop Rate Proportion Queued Performance Index	14.6 veh 102.0 m 0.63 995 veh/h 0.68 per veh 0.50 84.0	3 ped/h 0.68 per ped 0.68 0.1	1197 pers/h 0.68 per pers 0.50 84.1
Cost (Total) uel Consumption (Total) Carbon Dioxide (Total) Iydrocarbons (Total) Jarbon Monoxide (Total) IOx (Total)	807.13 S/h 147.0 L/h 345.7 kg/h 0.029 kg/h 0.304 kg/h 0.172 kg/h	1.54 S/h	808.67 S/h

Level of Service (LOS) Method: Delay (HCM 2000).

Intersection LOS value for Vehicles is based on average delay for all vehicle movements.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Performance Measure	Vehicles	Pedestrians	Persons
Demand Flows (Total) Delay Effective Stops Travel Distance Travel Time	699,360 veh/y 3,505 veh-h/y 477,571 veh/y 710,372 veh-km/y 17,840 veh-h/y	2,400 ped/y 20 ped-h/y 1,632 ped/y 84 ped-km/y 38 ped-h/y	839,232 pers/y 4,226 pers-h/y 574,718 pers/y 852,531 pers-km/y 21,447 pers-h/y
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	387,425 \$/y 70,538 L/y 165,935 kg/y 14 kg/y 146 kg/y 82 kg/y	739 S/y	388.164 \$/y

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 2 December 2015 9:26:59 AM Project: Not Saved

Table 8 Source

PM Stages 2 and 3 Constitution Road/Belmore Street Movement Summaries Road Delay Solutions, 2015

Nancarrow Avenue Extension to Belmore Street

Concept approval conditioned the timing pertaining to the construction of the Nancarrow Avenue extension to Belmore Street prior to the issue of the Occupation Certificate for Stage 4.

No access will be possible to or from Belmore Street during or following completion of Stages 2 and 3. Therefore, construction of the extension should parallel with the construction of Stage 4.

Accordingly, no works are required under this stage of development.

Hamilton Crescent Left In/Left Out at Belmore Street

The Belmore Street access at Hamilton Crescent is dependant upon the construction of the Nancarrow Avenue extension and will be required prior to the issue of the Occupation Certificate for Stage 4.

Accordingly, no works are required under this stage of development.

Constitution Road and Hamilton Crescent

Access to the intersection will be facilitated with the occupancy of Stage 4 onwards and construction of the Nancarrow Road extension to Belmore Street.

It is proposed to install the necessary signposting to prevent right turns from Constitution Road into Hamilton Crescent and likewise from Hamilton Crescent into Constitution Road. In conjunction with the right turn ban from Constitution Road a central median, of sufficient length, should be installed to provide a physical barrier and enforce the restriction.

The works should be undertaken prior to the issue of the Occupancy Certificate for Stage 4.

Accordingly, no action is required under this stage of development.

Belmore Street and Rothesay Avenue Roundabout

Vehicular access for Stages 2 and 3 is proposed via Rothesay Avenue.

Given the projected vehicle generation of 144vph under this Section 96 Application with full occupation of these particular stages, it is considered the roundabout at the intersection of Belmore Street and Rothesay Avenue will need to be constructed prior to the issue of the Occupation Certificate for Stage 2.

Underdale Lane and Bowden Street

Once the Nancarrow Avenue upgrade and extension are complete, the Nancarrow Avenue and Underdale Lane corridor will become an essential link between the development and the Meadowbank Railway Station.

To reduce the conflict between motor vehicles and pedestrian/cyclist activities, measures are to be set in place to deter the lane's use by motor vehicles and highlight the high pedestrian activity. To this end it is proposed to...

- → Install three (3) raised thresholds in Underdale Lane immediately west of Bowden Street, immediately east of Angus Street and immediately east of Railway Road,
- → Install an alternate road surface coulouring and/or texture, in consultation with Council,
- \rightarrow Install signposting denoting high pedestrian and bicycle activity, and
- → Design and construction of a pedestrian refuge in Bowden Street, between Nancarrow Avenue and Underdale Lane, taking care to avoid driveways, utility services and roadside vegetation.

Until the Nancarrow Avenue upgrade is complete, access will be restricted to pedestrians by the construction activities associated with Stages 4 and 5.

It is considered the Underdale LATM upgrades and Belmore Street pedestrian refuge construction should be completed prior to the issue of the Occupation Certificate for Stage 4. Accordingly, no works are proposed during Stages 2 and 3.

Belmore Street and Yerong Street Left in/Left out

Conditioned in the concept approval is the design and installation of a triangular splitter island in Yerong Street at the intersection with Belmore Street.

With the occupancy of stages 1 through 3, the installation will be necessary to effectively manage traffic movements to and from Yerong Street.

It is proposed to construct a triangular, concrete, island in Yerong Street to facilitate priority controlled left in/left out.

The construction is to be completed prior to the issue of an Occupancy Certificate for Stage 2 of the development.

Railway Road Pedestrian Crossing

Based upon traffic counts undertaken by *R.O.A.R. Data*, and the projected vehicle generation with 100% occupation of Stages 1, 2 and 3 of the Shepherds Bay development the site fails to satisfy the current *RMS* warrant for traffic signal installation and no further action is considered necessary at this time.

The current volume of pedestrian demand reported during two, typical, consecutive one-hour periods, in the morning commuter peak is 555 with the corresponding vehicle flows in Railway Road of 1232 northbound and 685 southbound.

Extensive queuing was noted, extending to the south in Railway Road from the existing marked foot-crossing, to the railway overbridge roundabout at Bank Street.

The volume reported during two, one-hour periods, of the evening commuter peak totalled 337 with corresponding vehicle flows of 661 northbound and 1763 southbound with extensive queuing noted, extending back into Constitution Road, during the evening peak.

No recent accident history has been reported at the site.

The *RMS* warrant requires the pedestrian flows to exceed 250 persons/hour for each of four (4) one (1) hour periods with conflicting vehicle flows of no less than 600vph, in each direction.

With the addition of pedestrian and vehicle generation projected from Stages 1, 2 and 3, the mid block site does not satisfy the warrant for the installation of traffic signals, at this time.

PUBLIC TRANSPORT

The Metropolitan Strategy, under the auspices of 'Draft SEPP 66 – Integration of Land Use and Transport', prescribes guiding provisions that aim to ensure the urban structure, building forms, land use locations, development design, subdivision and street layouts to help achieve the following planning objectives...

- Improving accessibility to housing, employment and services by walking, bicycling and public transport,
- Improving the choice of transport and reducing the dependancy on private vehicle usage,
- Moderating growth in the demand for travel and the distances travelled, especially by car,
- → Support the efficient and viable operation of public transport services, and
- → Providing for the efficient movement of freight.

The provision seeks to influence mode choice made by both community and business.

The State Government's has invested in 300 new buses across the state, which has resulted in 400 new jobs for bus drivers and 150 jobs in bus construction.

Rail

Meadowbank Railway Station is located near the corner of Railway Road and Constitution Road, some 500-700m from the development. The railway station is approximately 6 to 8 minutes walk utilising the Underdale Lane pedestrian link from nancarrow Avenue.

The railway station is located on the Northern Line, approximately mid-way between Strathfield and Hornsby Railway Stations. The Northern Line operates on a loop comprising Hornsby, the City Circle and Strathfield, via the Epping-Chatswood rail link.

Weekday train services operate every 15 minutes during weekday commuter peak periods, and every 30 minutes outside peak periods. Weekend services also operate every 30 minutes.

Meadowbank Railway Station is located four stops south of Epping Station, a major bus rail interchange with connecting rail services to the City via Macquarie University, Chatswood and North Sydney, and connecting bus services to the Hills District.

To the south Meadowbank Railway Station is located four stops from Strathfield Station, a major bus rail interchange with connections to the North Shore and Western Line, the South Line (to Campbelltown), the Inner West Line between the City Circle and Liverpool, as well as most intercity rail services (ie. to Newcastle, Lithgow and Southern Highlands).

Buses

Bus services through the MEA are operated by Sydney Buses with weekday services operating every 30 minutes and additional services during the commuter peak periods.

Weekend services generally operate every 60 minutes. Bus stops are located at regular intervals along both sides of Bowden Street and Constitution Road, as well as along Church Street and Victoria Road.

Improved pedestrian access provisions under the development will afford residents greater incemntive to embrace the abundance of public transport oportunitites within the *MEA*.

Route No.	Nearest Bus Stop	Service Route
507	Constitution Road	Meadowbank Station to Sydney CBD & Macquarie University
513	Bowden Street	Meadowbank Wharf to Carlingford Court
533	Church Street	Chatswood to Olympic Park
458	Church Street	Burwood Station to Top Ryde
459	Church Street	Strathfield Station to Macquarie University
534	Victoria Road	West Ryde Station to Chatswood Station
520	Victoria Road	Parramatta Station to Sydney CBD

Pedestrians and Bicyclists

There are a number of cycleways and shared pedestrian paths providing convenient access to and from the Shepherds Bay development for those residents who do not wish to drive or use public transport.

Studies have shown that in Sydney, over 50% of trips are less than 5km; such trips are ideally suited to walking or cycling.

The nearby shared off-road pedestrian and cycleway path which is located along the foreshore continues towards the west to Parramatta and towards the east to the City, using a combination of on and off-road cycleways and pedestrian paths.

An on-road cycleway connects with the foreshore shared pedestrian and cycleway path and follows a generally north-south alignment along Bowden Street and Angus Street to connect with West Ryde Railway Station and other on-road cycleways which extend further to the north. A shared pedestrian and cycleway path also extends southward across Ryde Bridge to the Rhodes peninsula where it connects to other on and off-road cycleways that extend to the south to Concord and Olympic Park.

The proposed development will enhance the options available to residents for walking and cycling through the provision of 3 new east-west cycle links between Bowden Street and Belmore Road. The improved permeability for pedestrians and cyclists offered by these links will provide more direct links for residents when walking or cycling to nearby facilities such as the local primary school, TAFE College, local shops and railway station.

Improved pedestrian links will be provided along all east-west and north-south road links, with additional mid-block pedestrian links to be provided generally following a north-south alignment. The improved pedestrian links will significantly enhance the accessibility of public transport services for residents wishing to walk to the station or to bus stops located in Constitution Road, Bowden Street, Victoria Road, Belmore Street or Church Street.

CONCLUSION

This report, commissioned by *Holdmark* and undertaken by *Road Delay Solutions*, supports the Section 96 Application by Holdmark.

The Section 96 Applicastion proposes 28 additional apartments over and above the 17 included as part of the deed of agreement, bringing the total number of architecturally designed appartments for Stages 2 and 3 to 498.

The former DA Application sought approval to 431 apartnments.

The 498 apartments proposed under this Section 96 Application will generate some 144vph during the commuter peak travel periods.

The report assess the conditioned infrastructure necessary to sustain the level of development, in accordance with the Department of Planning & Infrastructure Concept Approval, MP09_0216 and proposes the relavent timing for each.

In support of the foregoing assessment, the following is considered relevant to the development Stages 2 and 3...

- → The site is ideally located in close proximity to a broad range of public transport alternatives, reducing dependence on use of private passenger vehicles.
- → The site is located within easy walking/cycling distance of a range of shops and services (such as the local post office, TAFE College and primary schools).
- → The site is located immediately adjacent to a shared pedestrian and bicycle path with links to Parramatta and the Sydney CBD.
- → The planned Nancarrow Road extension will improve mobility and accessibility for pedestrians and cyclists.
- → Construction of a roundabout at the intersection of Belmore Street and Rothesay Avenue should be designed, to Council specifications, prior to issue of the Occupation Certificate for Stage 2 of the development.
- Design and construction of a triangular, concrete, island in Yerong Street at Belmore Street to facilitate priority controlled left in/left out with construction to be completed prior to the issue of an Occupancy Certificate for Stage 2 of the development.

Page 33 of 175

- \rightarrow No warrant exists for the signalisation of the Constitution Road intersection with Bowden Street.
- \rightarrow No warrant exists for the signalisation of the marked foot crossing in Railway Road, at this time.

APPENDIX A – TRAFFIC COUNTS

Road Delay Solutions has commissioned ROAR Data to annually count key intersections within the MEA, in particular the intersections of Constitution Road with both Bowden Street and Belmore Street and the pedestrian mid block crossing in railway Road. These counts have been collected in or around November of each year from 2011 to 2014, inclusive.

The 2014 counts, along with the projected traffic volumes for the respective stages of development at key locations, are presented in this Appendix.

\$96 Traffic Impact Assessment

Shepherds Bay Stages 2 and 3

© Road Delay Solutions Pty Ltd (2015)

Shepherds Bay Stages 2 and 3

Page **37** of **175**

December 2015

Ø	Reliable, O	C. DATA Driginal & Au 7, Fax 881968		c Results 0.0418-239019					Job No	ient o/Name /Date	: 5447	Delay Soluti MEADOWB/ day / 9th Dec	ANK Traffic 8	Ped Counts	
		ay Rd lehicles		AM		ay Rd /ehicles				ay Rd Vehicles		<u>PM</u>		vay Rd Vehicles	
Time Per	Northbound	Southbound	TOT	Time Per	Northbound	Southbound	TOT	Time Per	Northbound	Southbound	TOT	Time Per	Northbound	Southbound	TOT
0700 - 0715	130	53	183	0700 - 0715	0	1	1	1600 - 1615	85	230	315	1600 - 1615	0	0	0
0715-0730	147	75	222	0715 - 0730	0	0	0	1615 - 1630	73	200	273	1615 - 1630	1	0	1
0730 - 0745	156	85	241	0730 - 0745	0	0	0	1630 - 1645	96	222	318	1630 - 1645	0	0	0
0745 - 0800	152	88	240	0745 - 0800	0	0	0	1645 - 1700	72	250	322	1645 - 1700	0	0	0
0800 - 0815	152	96	248	0800 - 0815	0	0	0	1700 - 1715	76	236	312	1700 - 1715	0	0	0
0815 - 0830	161	108	269	0815 - 0830	0	1	1	1715 - 1730	91	210	301	1715 - 1730	0	0	0
0830 - 0845	190	93	283	0830 - 0845	0	0	0	1730 - 1745	103	205	308	1730 - 1745	0	0	0
0845 - 0900	144	87	231	0845 - 0900	0	0	0	1745 - 1800	65	210	275	1745 - 1800	0	0	0
eriod End	1232	685	1917	Period End	0	2	2	Period End	661	1763	2424	Period End	1	0	1
Peak Per 1700 - 0800 1715 - 0815 1730 - 0830 1745 - 0845 1800 - 0900	Northbound 585 607 621 655 647	Southbound 301 344 377 385 384	TOT 886 951 998 1040 1031	Peak Per 0700 - 0800 0715 - 0815 0730 - 0830 0745 - 0845 0800 - 0900	Northbound 0 0 0 0	Southbound 1 0 1 1 1 1	TOT 1 0 1 1 1	Peak Per 1600 - 1700 1615 - 1715 1630 - 1730 1645 - 1745 1700 - 1800	326 317 335 342 335	Southbound 902 908 918 901 861	TOT 1228 1225 1253 1243 1196	Peak Per 1600 - 1700 1615 - 1715 1630 - 1730 1645 - 1745 1700 - 1800	Northbound 1 0 0 0 0	Southbound 0 0 0 0 0	TOT 1 0 0 0
PEAK HR	655	385	1040	PEAK HR	0	1	1	PEAK HR	335	918	1253	PEAK HR	0	0	0
Peak Hour	Railw	ay Rd		TOTAL VOLUMES	Railw	ay Rd		Peak Hour	Railw	ay Rd		TOTAL VOLUMES	Raile	vay Rd	
0745 - 0845	ן מטוני מטוני]]]]]			 0000]]]]]		1630 - 1730	 0001] [[[[] 918 1			 0001] [] [] [] 1763 I	

Shepherds Bay Stages 2 and 3

Page **38** of **175**

0.0	Reliable, C	. DATA Priginal & Al 7, Fax 86196		c <i>Results</i> 5.0418-239019	r.				Job Ne	ient o/Name /Date	: 5447	Delay Soluti MEADOWB day / 9th Dec	ANK Traffic	& Ped Counts	0.563
				AM								PM			
	Railw Light V	ay Rd			Railw Heavy	ay Rd				ray Rd /ehicles				vay Rd Vehicles	1
Time Per	Northbound	and the second se	TOT	Time Per	Northbound	and the second state of th	TOT	Time Per		Southbound	TOT	Time Per		Southbound	TOT
0700 - 0715	130	53	183	0790-0715	0	Production of the	1	1600 - 1615	85	230	315	1000- 3015	D	0	0
0715 - 0730	147	75	222	0715-0730	0	0	0	1615 - 1630	75	200	273	1615- 1630	t	0	Ť
0750 - 0745	156	85	241	0730 - 0745	0	0	0	1630 - 1645	96	222	318	1630 - 3545	0	0	0
0745-+ 0800	152	88	240	0745 - 0800	0	0	0	1645 - 1700	72	250	322	1645-1700	0	0	0
0800 - 0815	152	95	248	0600 - 0815	0	0	0	1700 - 1715	70	236	312	1700-1715	0	0	0
0815 - 0830	151	tig	269	0815 - 0838	0	1	Ť	1715 - 1730	90	210	301	1715- 1730	0	0	1 0
8630 - 0645	190	90e 93	283	0839+0845	0	0	0	1730 - 1745	103	205	308	1738-1745	0	0	0
0630 - 0605	140	67	231	0545 - 0900	0	0	0	1745 - 1800	65	210	275	1745+ 1800	0	0	0
Period End	1232	685	1917	Period End	0	2	2	Period End	661	1763	2424	Period End	1	0	Ť
0700 - 0800 0715 - 0815	585 667	Southbound 301 304	TOT 886 951	Peak Per 0700 - 0908 0715 - 0815	Northbound 0 0	Southbound 1 0	1 1 0	Peak Per 1600 - 1700 1615 - 1715	326 317	902 906	TOT 1228 1225	Peak Per 1600 - 1700 1615 - 1715	Northbound t	0 0	101
0730-0830	621	377	998	.0730 - 0830	0	1	1	1830 - 1730	235	918	1253	1630 - 1750	0	0	0
0746 - 0845	655	385	1040	0745 - 0945	0	1	1	1645 - 1745	342	901	1243	1645-1745	0	0	0
8800 - 6900	647	364	1031	0600 - (0900	0	1	1	1700 - t800	335	166	1196	1700-3800	0	0	U U
PEAK HR	655	385	1040	PEAK HR	0	1	1	PEAK HR	335	918	1253	PEAK HR	0	0	0
Peak Hour 0745 - 0845	†	^{™ Rd}]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		TOTAL VOLUMES	1232	, ra]		Peak Hour 1620 - 1730	1 335	oy Rd		TOTAL VOLUMES	661	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0

		ay Rd				ay Rd	1
	Peds C	rossing	L		Peds C	rossing	
Time Per	Eastbound	Westbound	TOT	Time Per	Eastbound	Westbound	TOT
)700-0715	18	35	53	1600 - 1615	34	17	51
1715-0730	10	48	58	1615 - 1630	26	13	39
1730-0745	16	86	102	1630 - 1645	23	- 24	47
0745 - C800-	16	68	84	1645 - 1700	27	13	40
800 - 0815	10	88	98	1700 - 1715	30	19	49
3815 - 0830	18	40	66	1715 - 1738	30	12	42
830 - 0845	10	42	52	1730 - 1745	62	-25	93
3845 - 0900	5	37	42	1745 - 1888	60	16	76
eriod End	103	452	555	Period End	292	145	437
		<u>K HOUR</u> - 0830				<u>K HOUR</u> - <mark>1800</mark>	
8	and the second strength of the second strengt	ay Rd		1		ay Rd	1
		rossing				rossing	
Peak Per	Eastbound	Address of the local division of the local d	TOT	Peak Per	Eastbound	Westbound	TOT
1700 - 0800	60	237	297	1600 - 1700	110	67	177
1715 - 0815	52	290	342	1615 - 1715	105	. 69	175
730 - 0830	60 54	290	300	1630 - 1730		68	178
0745 - 0645 0900 - 0800	43	246	258	1700 - \$800	149	75	224
000 - 0000	40	219	230	1700 - 3800	194	- 18	200
PEAKHR	60	290	350	PEAK HR	182	78	260
Peak Hour	-	ay Rd 290		Peak Hour		ay Rd 78	Î
	1000						
	ишиц	JUUU			UUUL	1000	

Client : Road Delay Solutions Pty. Ltd Job No/Name : 5447 MEADOW/BANK Traffic & Ped Counts Day/Date : Tuesday / 9th December 2014

Shepherds Bay Stages 2 and 3

Page **42** of **175**

Page **43** of **175**

Page **44** of **175**

December 2015

Shepherds Bay Stages 2 and 3

Page **45** of **175**

December 2015

Page **46** of **175**

December 2015

Page **47** of **175**

APPENDIX B – PERFORMANCE INDICATORS

General

Intersection performance is best measured by the indicators of Level of Service (LoS), Average Vehicle Delay (AVD) and the Degree of Saturation (DS) during peak hours.

This is defined as the assessment of a qualitative effect of factors influencing vehicle movement through the intersection. Factors such as speed, traffic volume, geometric layout, delay and capacity are qualified and applied to the specific intersection control mode, as shown in Table 1.

The measure of average delay assessed for traffic signal operation is over all movements. For roundabouts and priority controlled intersections, the critical criterion for assessment is the movement with the highest delay per vehicle.

Intersection Control	Performance Measure [Unit]
	→ Delay of critical movement(s) [seconds/vehicle]
Sign or Priority Control	→ Average Vehicle Delay [seconds/vehicle]
°	→ Queue length of critical movement(s) [metres]
	→ Delay of critical movement(s) [seconds/vehicle]
	→ Degree of Saturation [ratio of vehicles to capacity]
Traffic Signal Control	→ Average Vehicle Delay [seconds/vehicle]
	→ Cycle Length [seconds]
	→ Queue length of critical movement(s) [metres]
	→ Delay of critical movement(s) [seconds/vehicle]
	→ Degree of Saturation[ratio of vehicles to capacity]
Roundabout Control	→ Average Vehicle Delay [seconds/vehicle]
	\rightarrow Queue length of critical movement(s) [metres]

Table A1: Performance Indicators by Control Method

Average Vehicle Delay (AVD)

The AVD is a measure of the operational performance of a road network or an intersection.

AVD is determined globally over a road network or within a cordon during an assignment model run. The AVD exhibited on comparable network models, for analogous peak periods, forms the basis of comparing the operational performance of the road network.

AVD is used in the determination of intersection Level of Service. Generally, the total delay incurred by vehicles through an intersection is averaged to give an indicative delay on any specific approach. Longer delays do occur but only the average over the peak hour period is reported.

Degree of Saturation (DS)

The DS of an intersection is usually taken as the highest ratio of traffic volume on an approach to the intersection compared with its theoretical capacity, and is a measure of the utilisation of available green time. The DS reported is generally of a critical movement through the intersection rather than the DS of the intersection unless equal saturation occurs on all approaches.

For intersections controlled by traffic signals, generally both queue length and delay increase rapidly as DS approaches 1.0. An intersection operates satisfactorily when its DS is kept below 0.875. When the DS exceeds 0.9, extensive queues can be expected.

LOS	AVD secs	Traffic Signals and Roundabout	Give Way and Stop Sign Priority Control
А	1 to 14	Good operation.	Good operation
В	14 to 28	Good operation with acceptable delays and spare capacity.	Good operation with acceptable delays and spare capacity.
с	28 to 42	Satisfactory.	Satisfactory but accident study and operational analysis required.
D	42 to 56	Operating near capacity.	Near capacity. Accident study and operational analysis required.
E	56 to 70	Unsatisfactory. Traffic signals incidence will cause excessive delays. Requires additional capacity. Roundabouts require alternative control mode.	At capacity. Requires alternative control mode.
F	>70	Unsatisfactory. Over capacity and unstable operation.	Over capacity. Unstable and unsafe operation.

Table A2: Qualified Level of Service by Control Method

APPENDIX C – ARTERIAL ROAD ASSESSMENT

Shepherds Bay, Meadowbank

Addendum Arterial Road Network Traffic Signal Operation Assessment

for...

Reference: 20100099 November 2012 © 2012 Road Delay Solutions Pty Ltd, Australia

DOCUMENT STATUS

D:\Documents and Drawings\Meadowbank\TMAP\Shepherds Bay Addendum Arterial Road Network.docx

Author	Glen Varley (Road Delay Solutions Pty Ltd)
Signed	Glasly
Reviewed	Adam Fahim : Brian Mann:
Date	2 November 2012

COPYRIGHT

© Road Delay Solutions Pty Ltd (2012) All rights reserved

The information contained within this document, produced by Road Delay Solutions Pty Ltd, is solely for the use of the Client identified and for the sole purpose or purposes, for which it has been prepared. Road Delay Solutions Pty Ltd undertakes no duty for, or accepts any responsibility for, use of this document by any third party who may rely upon the contents presented. No section, nor any element of this document, may be removed, reproduced, electronically stored or transmitted, in any form, without the written permission of Road Delay Solutions Pty Ltd.

DISCLAIMER

Road Delay Solutions Pty Ltd assumes no responsibility or liability for the predictive nature of any traffic volumes, and resultant conclusions, detailed in this document. The modelling projections are subject to significant uncertainties and unanticipated change, without notice. While all source data, employed in the preparation of this document, has been diligently collated and checked, Road Delay Solutions Pty Ltd is unable to assume responsibility for any

errors resulting from such projections.

Page | 53

Shepherds Bay -Traffic Impact Assessment

November 2012

CONTENTS

СС	DNTENTS
FIG	SURES
TAI	BLES
1	INTRODUCTION
2	EXISTING CONDITIONS
	The Scates Model
	Victoria Road
	Church Street
3	FUTURE CONDITIONS
	Projected Volumes
	Victoria Road
	Church Street
4	CONCLUSION
AP	PENDIX A – Performance Indicators71
	General
	Average Vehicle Delay (AVD)
	Degree of Saturation (DS)
AP	PENDIX B – SCATES OUTPUT
	Victoria Road Existing – VICX.DAT
	Victoria Road Future without Development – VICB.DAT
	Victoria Road Future with Development – VICF.DAT
	Church Street Existing – CHURCHX.DAT113
	Church Street Future without Development – CHURCHB.DAT
	Church Street Future with Development – CHURCHF.DAT

Page | 54 Shepherds Bay - Traffic Impact Assessment

November 2012

FIGURES

Figure 1:	Existing Traffic	57
Figure 2:	2031 AM Peak Bitzios Traffic Volumes with Development	65
-	2031 PM Peak Bitzios Traffic Volumes with Development	
0	2031 AM Peak Difference Plot	
	2031 PM Peak Bitzios Traffic Volumes with Development	
-	2031 Future Modelled Traffic Volumes	

TABLES

Table 1:	Scates Input Parameters	58
Table 2:	Existing Operation – Victoria Road	59
Table 3:	Existing Queue Lengths – Victoria Road	59
	Existing Operation - Church Street	
Table 5:	Existing Queue Lengths – Church Street	61
	Future Operation – Victoria Road	
Table 7:	Future Queue Lengths with Development – Victoria Road	63
Table 8:	Future Operation - Church Street	64
Table 9:	Future Queue Lengths with Development – Church Street	64

Page | 55 Shepherds Bay - Traffic Impact Assessment

November 2012

1 INTRODUCTION

Road Delay Solutions has been engaged by Robertson + Marks Architects and Holdmark NSW Pty Ltd to undertake the preparation of a Strategic Transport Model in support of the Control for the Shepherds Bay Urban Renewal Development.

As part of this process an assessment has been undertaken into the impacts and operational performance of the arterial road network, under the control of traffic signals on Victoria Road and Church Street.

This assessment of the arterial road network, servicing the Meadowbank Employment Area (MEA) and the proposed Shepherds Bay Urban Renewal Development, has been prepared utilising the intersection turn movements, collected by R.O.A.R. in June 2010 to reflect the current base traffic conditions during the commuter peak periods.

The future year 2031 traffic projections have been taken from the preferred Bitzios Saturn models of the precinct for the respective peak commuter periods, with the turn movements interpolated, by percentage, from the base year intersections, by the corresponding vehicle movement.

Page | 56 Shepherds Bay - Traffic Impact Assessment

November 2012

2 EXISTING CONDITIONS

The existing traffic volumes, as shown in Figure 1, were collected by R.O.A.R. DATA in June 2010 and encompass...

- → Victoria Road from Bowden Street to Devlin Street, and
- Church Street/Devlin Street from the Ryde Bridge to Victoria Road. \rightarrow

The Victoria Road intersectiuons modelled are...

- Victoria Road and Bowden Street TCS 491, and \rightarrow
- Victoria Road and Church Street TCS 110. \rightarrow

The Church Street intersections modelled are...

- → Church Street and Well Street mid block pedestrian site TCS 1956,
- Church Street and Junction Street TCS 448, and \rightarrow
- Church Street and Morrison Road TCS 11. \rightarrow

Figure 8: Existing Traffic

It should be noted that significant vehicle queuing has been observed, predominantly in the peak flow direction, during the commuter periods along Church Street. This resultant, 'platooned', vehicle demand exacerbates the operational route performance of Church Street, but is not directly attributable to the signal operations being assessed in this report.

Page | 57

Shepherds Bay - Traffic Impact Assessment

November 2012

The Scates Model

The PC based Scates program calculates the optimum phasing design, phase splits, offsets and cycle lengths for network and/or linear traffic signal system operation.

This assessment will detail the operational characteristics of the traffic signal sites modeleld and present the maximum back of queue lengths reported.

A number of input parameters are required by Scates to reflect the current conditions at each traffic signal site. These user defined inputs are presented in Table 1.

Table 9: Scates Input Parameters

Parameter	Parameter Value	Remarks				
Lane Saturation Thresholds	LT - 11750 Thru 1960 RT 1850	The saturation threshold or capacity of each lane, by movement, is expressed in vehicles per hour. The maximum capacity of each lane type yielding a saturation of 1 is employed in the Scates model. The capacities are predetermined on a general acceptance of typical lane types for the specific conditions. The through movement lane types have been found to generally be capable of carrying some 1960 vph within the Sydney regional centres where congested traffic conditions prevail and motorists have become 'conditioned' to driving in closer formation at slow speeds.				
% Heavy Vehicles	² 2	The percentage of heavy on Victoria Road and Church Street, commensurate with the field data collected by R.O.A.R., in June 2010.				
Heavy Vehicle PCU Equivalence ³ 2		AUSTROADS prescribes a PCU equivalence of 2.4. Scates accepts whole numbers only with respect to the PCU equivalence. Each heavy vehicle is equivalent to the delay incurred by two (2) passenger vehicles.				
Pedestrians	50 peds/hr	An arbitrary 50 pedestrians per hour have been modelled at each site				
Frequency of WALK Green Time	25% / 33%	A pedestrian walk frequency of 30% has been adopted to reflect a call demand for the walk every 3rd cycle.				
Pedestrian WALK 6 sec		Commensurate with current RMS practice.				
Pedestrian Clearance time	1.2m/sec	Commensurate with current RMS practice.				
Stop Penalty	10 sec	Utilised in the calculation of the intersection Performance Index eg. <i>Rate of Delay + (Rate of Stops * Stop Penalty)</i> . A 10 second stop penalty optimises the traffic system to minimise vehicle and operating costs along the corridor.				
Predominant Design Speed	60 & 70 km/h	Regulated speeds - Victoria Road is 60 km/h and Church Street is 70 km/h. All residential side streets assume 50 km/h, unless signposted otherwise.				
Effective Lost Time (ELT)	4 sec	The total seconds accumulated during the inter-green periods minus the allowance for turn movements on amber, per cycle. 4 seconds is considered an average in s built up urban area.				
LT / RT Delay	0 sec	Employed in Scates to reflect the impact of a high ped demand and a LT and/or RT RA hold condition. Should the LT and/or RT movements be able to clear following clearance of the pedestrian demand and within the remaining green time, 0 sec delay should be modelled.				
Min Cycle Length	20 sec	Scates begins cycle iterations commencing at the				
Max Cycle Length	120 sec	Scates optimises the intersection operation to the upper limit specified but may increase the max cycle length, by up to 20 seconds, if it calculates a cost benefit to do so.				

¹ Expressed in vehicles per hour (vph)

² Scates converts traffic flow numbers to PCU's during a mode run to reflect the impact of heavy vehicle movements along the corridor

³ Each heavy vehicle is equivalent to the delay incurred by two (2) passenger vehicles

Page | 58 Shepherds Bay - Traffic Impact Assessment

November 2012

Victoria Road

Victoria Road currently carries some 4,500 vph during the commuter peak periods. A major arterial corridor linking Parramatta to the Sydney CBD, intermittent bus lanes and a high number of signalised intersections, particularly through the West Ryde Precinct, has a platooning effect on traffic in the peak flow directions.

The intersection with Church Street has a bus only lane operating in the southbound, right turn approach to Victoria Road. To assimilate this feature the Scates model has adopted a late start for the right turn movement of 3 seconds, every 2nd cycle allowing the bus movement some 30 times during the combined morning and evening peak periods.

The modelling indicates that the Victoria Road traffic signals, at Bowden Street and Church Street, currently operate at an acceptable level of service, as shown in *Table* 2.

Queue lengths reported from the model are considered satisfactory and do not impede the operation of preceding intersections along the corridor while all turn movements are adequately contained within their respective bay lengths per cycle.

		VICTORIA ROAD OPERATION			
Victoria Road Intersections		AM (CL 139sec)	PM (CL 105sec)		
	LOS	A	A		
Bowden Street TCS 491	DS	0.90	0.81		
	AVD	7	8		
	LOS	С	В		
Church Street TCS 110	DS	0.67	0.75		
	AVD	37	21		

Table 10: Existing Operation – Victoria Road

Table 11: Existing Queue Lengths – Victoria Road

		VICTORIA RO	DAD QUEUES
Victoria Road Intersections		AM Max. Back of Queue (m)	PM Max. Back of Queue (m)
	NB	60	30
Bowden Street	SB	24	18
TCS 491	EB	85	42
	WB	45	36
	NB	42	42
Church Street	SB	48	54
TCS 110	EB	66	48
	WB	54	54

Page | 59 Shepherds Bay - Traffic Impact Assessment

November 2012

Church Street

Church Street carries in the order of 6,200 vph during the commuter peaks and is subject to the affects of 'platooned' traffic occurring in the peak flow directions from the intersections of Homebush Bay Drive and Concord Road, to the south, and the Devlin Street and Blaxland Road intersection, to the north.

The Scates analysis does not consider the impacts from residual queueing in Church Street from either the Concord Road intersection with Homebush Bay Drive or the Blaxland Road intersection with Devlin Street. While this is considered necessary to assess the route operation of Church Street, the Concord Road and Blaxland Road intersections are outside the scope of this study. It is further considered that no improvement to the capacity or operation of the modelled intersections in this report will result in a significant gain in route performance.

As a consequence, the modelling suggests that that the traffic signals, from Well Street to Morrison Road, operate at a satisfactory level of service. No significant queueing is generated by these sites and all turn movements are contained within the extents of the current bays.

Most importantly, the modelling indicates the signal operations adequately manage the volume of side street traffic currently accessing the corridor.

		CHURCH STR	EET EXISTING
Church Street Intersections		AM (CL 105sec)	PM (CL 128sec)
	LOS	A	A
Well Street TCS 1956	DS	0.80	0.78
	AVD	5	6
	LOS	A	A
Junction Street TCS 448	DS	0.69	0.72
	AVD	5	5
	LOS	A	А
Morrison Road TCS 11	DS	0.76	0.80
	AVD	6	6

Table 12: Existing Operation - Church Street

Page | 60 Shepherds Bay - Traffic Impact Assessment

November 2012

Addendum - Arterial Road Network

Table 13: Existing Queue Lengths – Church Street

		CHURCH STREET QUEUES - EXISTING		
Church Street Intersections		AM Max. Back of Queue (m)	PM Max. Back of Queue (m)	
	NB	54	60	
Well Street	SB	60	60	
TCS 1956-	EB	-	-	
	WB	-	-	
	NB	42	48	
Junction Street	SB	42	36	
TCS 448	EB	18	18	
	WB	-	-	
	NB	48	42	
Morrison Road	SB	48	48	
TCS 11	EB	36	30	
	WB	36	48	

Page | 61 Shepherds Bay - Traffic Impact Assessment

November 2012

3 FUTURE CONDITIONS

Projected Volumes

The projected base 2031 link volumes, adopted in the Scaters modelling, have been interpolated from the Year 2031 preferred Saturn models, including Part 3A development, and application of the difference volumes, prepared by Bitzios Consulting, and presented in *Figure 2 – AM Peak* and *Figure 3 – PM Peak*.

The future 2031 preferred network traffic projections, prepared by Bitzios Consulting, are shown in Figure 4 – AM Peak and Figure 5 – PM Peak.

The turn movements employed in the Scates models were proportioned from the link volumes, based upon the current percentage movement volumes, shown in *Figure 1*.

The future traffic movements modelled at each intersection are presented in Figure 6.

Comparison modelling for year 2031, with and without the proposed 3A development, resulted in no significant difference in the operation levels reported at the modelled intersections.

Victoria Road

The future traffic projections suggest that traffic volumes on Victoria Road will be in the order of 5,100 vph and 4,900 vph during the morning and evening commuter peak periods, respectively. This constitutes an increases of some 10.9% in the morning peak and 16.7%% during the evening peak.

The modelling indicates that the Victoria Road traffic signals, subjected to the projected volumes as determined by Bitzios Consulting, should operate at an acceptable level of service, as shown in *Table* 6.

Queue lengths reported from the model are considered satisfactory and will not impede the operation of preceding intersections along the corridor, while all turn movements are adequately contained within their respective bay lengths per cycle.

As a result of the future year modelling it is deduced the future traffic generation associated with the proposed Shepherds Bay development does not necessitate any need for infrastructure improvements along the Victoria Road corridor.

		VICTORIA ROAD WITHOUT DEVELOPMENT		VICTORIA ROAD WITH DEVELOPMENT	
Victoria Road Intersections		AM (CL 140sec)	PM (CL 105sec)	AM (CL 139sec)	PM (CL 105sec)
	LOS	В	В	В	В
Bowden Street TCS 491	DS	0.99	0.77	0.98	0.75
	AVD	26	18	24	18
	LOS	С	В	С	В

Table 14: Future Operation – Victoria Road

TCS 110	DS	0.89	0.82	0.89	0.80
	AVD	35	23	36	23

Page | 62 Shepherds Bay - Traffic Impact Assessment

November 2012

Addendum - Arterial Road Network

		VICTORIA ROAD QUEUES WITH DEVELOPMENT		
Victoria Road Intersections		AM Max. Back of Queue (m)	PM Max. Back of Queue (m)	
	NB	54	54	
Bowden Street	SB	126	48	
TCS 491	EB	36	42	
	WB	30	54	
	NB	42	24	
Church Street TCS 110	SB	54	24	
	EB	60	54	
	WB	78	42	

Table 15: Future Queue Lengths with Development – Victoria Road

Church Street

With increases of 6.5% and 17.5% in the morning and evening peak commuter periods, respectively, Church Street is projected to carry some 6,600vph in the morning peak and 7,400vph in the evening peak.

Under theses increases Church Street has been found to should operate at an acceptable level of service, as shown in Table 8.

The reported queue lengths, generated by the three intersections modelled, do not impede the operation of preceding intersections and all turn movements are satisfactorily contained within the existing turn bays. However, in the broader regional context, residual queuing northbound, from the upstream intersection of Devlin Street and Blaxland Road has a dramatic impact on the Concord Road/Church Street route performance, which has been excluded from the operational modelling. It was found through sensitivity modelling that increasing the capacity on Church Street northbound, between Ryde Bridge and the Devlin Street underpass would have little to no significant impact on the residual queue length observed along the section as any isolated measure does not address the broader, downstream, impact of the Devlin Street intersection operation at Blaxland Road.

Page | 63 Shepherds Bay - Traffic Impact Assessment

November 2012

Table 16: Future Operation - Church Street

		CHURCH STREET WITHOUT DEVELOPMENT		CHURCH STREET WITH DEVELOPMENT	
Church Street Intersections		AM (CL 105sec)	PM (CL 128sec)	AM (CL 105sec)	PM (CL 128sec)
	LOS	A	A	A	A
Well Street TCS 1956	DS	0.87	0.88	0.88	0.86
	AVD	5	6	5	5
	LOS	A	A	A	A
Junction Street TCS 448	DS	0.81	0.86	0.82	0.84
	AVD	6	5	6	5
	LOS	A	A	A	A
Morrison Road TCS 11	DS	0.76	0.76	0.76	0.79
	AVD	6	6	6	6

Table 17: Future Queue Lengths with Development – Church Street

		CHURCH STREET QUEUES WITH DEVELOPMENT	
Church Street Intersections		AM Max. Back of Queue (m)	PM Max. Back of Queue (m)
	NB	60	72
Well Street	SB	66	72
TCS 1956-	EB	-	-
	WB	-	-
	NB	54	60
Junction Street	SB	54	36
TCS 448	EB	30	24
	WB	-	-
	NB	48	42
Morrison Road	SB	48	48
TCS 11	EB	36	30
	WB	36	36

Page |64 Shepherds Bay -Traffic Impact Assessment

November 2012

Figure 9: 2031 AM Peak Bitzios Traffic Volumes with Development

Link Volumes for the Preferred Network - 2031 AM Peak

Page |65 Shepherds Bay -Traffic Impact Assessment

November 2012

Figure 10: 2031 PM Peak Bitzios Traffic Volumes with Development

Page | 66 Shepherds Bay - Traffic Impact Assessment

November 2012

Page | 67 Shepherds Bay - Traffic Impact Assessment

November 2012

Page | 68 Shepherds Bay - Traffic Impact Assessment

1

N

November 2012

Page | 69 Shepherds Bay - Traffic Impact Assessment

November 2012

4 CONCLUSION

Adopting the future year traffic projections provided by Bitzios Consulting, it can be concluded from the foregoing assessment that...

- → The residual queuing experienced, primarily on Church Street during the evening commuter peak periods as a result of the operations of intersections beyond the scope of this project, have not been factored into the operation of the modeled intersections,
- → The future operations of traffic signals on Church Street, between Well Street and Morrison Road, will be satisfactory,
- → The future operations of traffic signals on Victoria Road, between Bowden Street and Church Street, will be satisfactory,
- → The future traffic generation resulting from the proposed urban renewal of Shepherds Bay will have no detrimental impact on the operations of Victoria Road and Church Street, and
- → No warrant can be drawn for any improvements to road infrastructure on Victoria Road and/or Church Street as a result of the proposed Shepherds Bay development.

Page |70 Shepherds Bay -Traffic Impact Assessment

November 2012

APPENDIX A – Performance Indicators

General

Intersection performance is best measured by the indicators of Level of Service (LoS), Average Vehicle Delay (AVD) and the Degree of Saturation (DS) during peak hours.

This is defined as the assessment of a qualitative effect of factors influencing vehicle movement through the intersection. Factors such as speed, traffic volume, geometric layout, delay and capacity are qualified and applied to the specific intersection control mode, as shown in Table 1.

The measure of average delay assessed for traffic signal operation is over all movements. For roundabouts and priority controlled intersections, the critical criterion for assessment is the movement with the highest delay per vehicle.

Intersection Control	Performance Measure [Unit]		
Sign or Priority Control	 Delay of critical movement(s) [seconds/vehicle] Average Vehicle Delay [seconds/vehicle] Queue length of critical movement(s) [metres] 		
Traffic Signal Control	 Delay of critical movement(s) [seconds/vehicle] Degree of Saturation [ratio of vehicles to capacity] Average Vehicle Delay [seconds/vehicle] Cycle Length [seconds] Queue length of critical movement(s) [metres] 		
Roundabout Control	 Delay of critical movement(s) [seconds/vehicle] Degree of Saturation[ratio of vehicles to capacity] Average Vehicle Delay [seconds/vehicle] Queue length of critical movement(s) [metres] 		

Table A1: Performance Indicators by Control Method

Average Vehicle Delay (AVD)

The AVD is a measure of the operational performance of a road network or an intersection.

AVD is determined globally over a road network or within a cordon during an assignment model run. The AVD exhibited on comparable network models, for analogous peak periods, forms the basis of comparing the operational performance of the road network.

AVD is used in the determination of intersection Level of Service. Generally, the total delay incurred by vehicles through an intersection is averaged to give an indicative delay on any specific approach. Longer delays do occur but only the average over the peak hour period is reported.
Degree of Saturation (DS)

The DS of an intersection is usually taken as the highest ratio of traffic volume on an approach to the intersection compared with its theoretical capacity, and is a measure of the utilisation of available green time. The DS reported is generally of a critical movement through the intersection rather than the DS of the intersection unless equal saturation occurs on all approaches.

For intersections controlled by traffic signals, generally both queue length and delay increase rapidly as DS approaches 1.0. An intersection operates satisfactorily when its DS is kept below 0.875. When the DS exceeds 0.9, extensive queues can be expected.

LOS	AVD secs	Traffic Signals and Roundabout	Give Way and Stop Sign Priority Control
Α	1 to 14	Good operation.	Good operation
В	14 to 28	Good operation with acceptable delays and spare capacity.	Good operation with acceptable delays and spare capacity.
с	28 to 42	Satisfactory.	Satisfactory but accident study and operational analysis required.
D	42 to 56	Operating near capacity.	Near capacity. Accident study and operational analysis required.
E	56 to 70	Unsatisfactory. Traffic signals incidence will cause excessive delays. Requires additional capacity. Roundabouts require alternative control mode.	At capacity. Requires alternative control mode.
F	>70	Unsatisfactory. Over capacity and unstable operation.	Over capacity. Unstable and unsafe operation.

Table A2: Qualified Level of Service by Control Method

APPENDIX B - SCATES OUTPUT

Victoria Road Existing – VICX.DAT

SCATES Program Version: 2013 Date: 27-OCT-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: VICX VICTORIA ROAD 2010 EXISTING VOLUMES

ers
OSS
0.0
0.0
108
1
•
)
)
)
)
1-)))

		1	AM PEA	٩K			F	PM PE	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	494	1750	S	0	0.0	481	1750	S	0	0.0	102	1750	S	0	0.0
1T	1838	5880	Α	0	0	1161	5880	Α	0	0	7	5880	Α	72	0
1R	410	3700	G			322	3700	G			108	3700	G		
2L	70	1750	S			229	1750	S			102	1750	S		
2T	6	3920	E			6	3920	E			457	3920	E		
2R	552	3700	D			589	3700	D			108	3700	D		
ЗL	468	1750	S	0	0.0	423	1750	S	0	0.0	102	1750	S	0	0.0
ЗT	1283	5880	Α			1299	5880	Α			7	5880	Α		
ЗR	114	3700	G			148	3700	G			108	3700	G		

ROAD DELAY SOLUTIONS

4L	25 1750	D GE		52	1750	GE			102	1750	GE	
4T	6 3920) E		6	3920	Е			457	3920	Е	
4R	646 3700	D C		806	3700	D			108	3700	D	
Type =	DOD0			Α	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD
File =	= VICX			1	32	4.0	0	0	0		0	
				2	30	4.0	0	0	0		0	
TCS =	110			3	32	4.0	0	0	0		0	
				4	5	4.0	0	0	0		0	
	PEDES	STRIAN V	OLUME	WAL	<-CLEA	RANCE	Ξ 7	FRAM D	DATA	PE	DEST	TRAM
Арр	P#AM	P#PM	P#B	Wall	K C	lear				FA	СТ	FACT
1	50	50	25	6	2	6	()%		5	0	100
2	50	50	25	6	2	4	()%		5	0	100
3	50	50	25	6	2	6	()%		5	0	100
4	0	0	0	0	0	1	()%		1	00	100

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade 0 3 0 0 2 0 0 3 0 0 2 0 N Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 LT 9999 1750 LT 9999 1750 LT 9999 1750 T 9999 1960 R 9999 1850 T 9999 1960 TR 9999 1850 1 T 9999 1960 R 35 1850 T 9999 1960 T 9999 1960 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM
 Apprch 0 0 0 0 Depart O File = VICX TCS = 491 Type = COCO _____ APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 DownLanesGradeDownLanesGradeDownLanesGrade06004060040 Tidal Ν Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane L 50 1750 L 9999 1750 L 110 1750 L 65 1750 T 9999 1960 T 9999 3920 T 9999 1960 T 9999 3920 1 2 T 9999 1960 R 9999 1850 T 9999 1960 R 120 1850 T 9999 1960 R 100 1850 3 R 100 1850 4 T 9999 1960 R 70 1850 R 120 1850 5 R 70 1850 6 R 120 1850 7 8 No ParkingNo ParkingNo ParkingNo ParkingAMPMBUSAMPMBUSAMPMBUS000000000000000000000000000 AM PM BUS Apprch 0 0 Depart File = VICX Type = DODO TCS = 110 AM PEAKPM PEAKBUSINESSGT%GT%CLCLGT%GT%CLCLCORDISOLCORDISOLCORDISOLCORDISOLCORDISOL78.978.913913979.779.710510526.826.856562121120.320.373.273.2 Ph G1%G1%G1%CORDISOLCORD78.978.971.121.121.120.3 А В С D dlay dlay Е dlay dlay dlay dlay 0.7 0.7 F G

 dlay
 25
 25
 AB
 dlay
 13
 13

 Stps
 3.0
 3.0
 Stps
 2.1
 2.1

 DS
 0.90
 0.90
 1
 DS
 0.81
 0.81

AB dlay 3 3 AB dlav 25 25 Sea Stps2.12.1Stps0.70.7DS0.810.811DS0.480.48 Mode 1

Page **|76**

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

ROAD DELAY SOLUTIONS

File = VICX		ay Bay Slip	•	Туре
TCS = 491		eq Act Req 5 35 21 11 21	0 0	C0C0
	-	0 0 11	0 ersections are c	optimised
AM PEAK		PM PEAK	BU	JSINESS
		7% CL		CL CL
CORD ISOL CORD ISOL				
A 37.8 35.8 139 105				
В				
С				
D 29.1 27.4	33.0 33	0	15.8 15.8	
		1	33.6 33.6	
F dlay dlay			dlay	dlay dlay
G 19.5 18.8 2.7 1.9	15.5 15			
Seq ADEG dlay 53 45	ADE	a dlay 43	43 ADEG d	llay 8 8
Stps 3.9 4.1		Stps 3.8	3.8 8	Stps 1.2 1.2
Mode 1 DS 0.67 0.74				
File = VICX	A Ba	ay Bay Slip	Slip	Туре
	R	eq Act Req	Act	
TCS = 110	1 4	5 70 12	50	DODO
	2 0	61 100		
	3	8 120 24	110	
	4	16	65	
	Bay	s if all into	ersections are o	optimised

тсѕ	=	491 I	solate	ed Opei	ration	Degree	e of Sa	turati	on for	PM Pe	eak VIO	Х	
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.39	80	0	5	0	6	0.39	80	0	5	0	6
1	Т	0.64	80	3	752	13	42	0.64	80	3	752	13	42
1	R	0.81	80	1	67	1	6	0.81	80	1	67	1	6
2	L	0.62	17	1	41	1	30	0.62	17	1	41	1	30
2	Т	0.62	17	1	109	3	30	0.62	17	1	109	3	30
2	R	0.81	17	3	167	5	30	0.81	17	3	167	5	30
3	L	0.53	80	0	59	1	36	0.53	80	0	59	1	36
3	Т	0.53	80	3	760	15	36	0.53	80	3	760	15	36
3	R												
4	L	0.26	17	0	13	0	18	0.26	17	0	13	0	18
4	Т	0.26	17	1	93	3	18	0.26	17	1	93	3	18
4	R	0.31	17	0	12	0	18	0.31	17	0	12	0	18
INT		0.81	105					0.81	105				

TCS = 491 Pedestrian - Vehicle Delay PM Peak File = VICX Isolated Operation

		(Co-ordi	nated	Cycle	Length			Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				17	0.0	4.3				17	0.0	4.3
1	Т	40	0.5	46.7	1786	2.9	5.9	40	0.5	46.7	1786	2.9	5.9
1	R				75	0.9	41.8				75	0.9	41.8
2	L				49	0.6	40.8				49	0.6	40.8
2	Т	0	0.0		130	1.5	40.8	0	0.0		130	1.5	40.8
2	R				161	2.7	60.7				161	2.7	60.7
3	L				163	0.2	5.1				163	0.2	5.1
3	Т	0	0.0		2105	3.0	5.1	0	0.0		2105	3.0	5.1
3	R												
4	L				17	0.2	38.3				17	0.2	38.3
4	Т	0	0.0		118	1.3	38.3	0	0.0		118	1.3	38.3
4	R				16	0.2	42.3				16	0.2	42.3
INT		40	1	46.7	4637	13	10.4	40	1	46.7	4637	0	0.0

TCS	=	491 I	Pedestr	ian ·	- Vehio	cle Del	.ay - 8	Stops F	M Peak	File	= VICX	
			- Delay	s & S1	tops at	fter Co	ordir	nated E	Evaluat	ion		
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				17	0.0	1.2	0	0.0	Α	0	6
1	Т	40	0.5	46.7	1786	0.6	1.2	0	0.0	Α	0	6
1	R				75	0.0	0.0	0	0.0	А	0	6
2	L				49	0.6	40.8	41	0.8	С	1	12
2	Т	0	0.0		130	1.5	40.8	109	0.8	С	3	30
2	R				161	2.7	60.7	167	1.0	Е	5	30
3	L				163	0.4	8.0	57	0.4	А	1	6
3	Т	0	0.0		2105	4.7	8.0	738	0.4	А	15	36
3	R											
4	L				17	0.2	38.3	13	0.8	С	0	6
4	Т	0	0.0		118	1.3	38.3	93	0.8	С	3	12
4	R				16	0.2	42.3	12	0.8	D	0	6
INT		40	1	46.7	4637	12	9.3	1230	0.3	Α		

TCS = 491 Isolated Operation Degree of Saturation for Business Peak VICX --- Co-ordinated Cycle Length --- Isolated Cycle Length -----GT Delay Stops Queue Metre DS DS GT Delay Stops Queue Metre A M 6 0.30 0.30 1 L Т 0.02 6 0.02 R 0.13 6 0.13 L 0.48 24 0.48 Т 0.48 24 0.48 R 0.24 6 0.24 6 0.30 0.30 L 3 T 0.01 6 0.01 3 R 4 L 0.43 24 0.43 0 43 4 T 0.43 18 0.43 1 194 2 18 4 R 0.46 24 0.46 INT 0.48 0.48

TCS	=	491	Pedestr	ian		cle Dela solated	-		Peak F	ile =	VICX		
			Co-ordi	nated		Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				102	0.5	19.2				102	0.5	19.2
1	Т	20	0.1	22.3	7	0.0	18.1	20	0.1	22.3	7	0.0	18.1
1	R				36	0.2	18.1				36	0.2	18.1
2	L				102	0.1	4.7				102	0.1	4.7
2	Т	0	0.0		457	0.6	4.7	0	0.0		457	0.6	4.7
2	R				36	0.2	22.4				36	0.2	22.4
3	L				102	0.5	19.2				102	0.5	19.2
3	Т	0	0.0		7	0.0	18.1	0	0.0		7	0.0	18.1
3	R												
4	L				102	0.1	4.5				102	0.1	4.5
4	Т	0	0.0		457	0.6	4.5	0	0.0		457	0.6	4.5
4	R				36	0.2	22.9				36	0.2	22.9
INT		20	0	22.3	1444	3	8.0	20	0	22.3	1444	0	0.0

TCS	=	491 F					2	•			File =	
			- Delay	's & St	ops at	fter Co	-ordir	nated E	valuat	ion		
Α	Μ	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				102	0.0	0.2	0	0.0	Α	0	6
1	Т	20	0.1	22.3	7	0.0	0.2	0	0.0	Α	0	6
1	R				36	0.0	0.0	0	0.0	Α	0	6
2	L				102	0.1	4.7	46	0.4	Α	1	6
2	Т	0	0.0		457	0.6	4.7	205	0.4	Α	2	24
2	R				36	0.2	22.4	28	0.8	В	0	6
3	L				102	0.0	0.4	2	0.0	Α	0	6
3	Т	0	0.0		7	0.0	0.4	0	0.0	Α	0	6
3	R											
4	L				102	0.1	4.5	43	0.4	Α	1	6
4	Т	0	0.0		457	0.6	4.5	194	0.4	Α	2	18
4	R				36	0.2	22.9	29	0.8	В	0	6
INT		20	0	22.3	1444	2	4.7	548	0.4	Α		

тсѕ	=	491 I	solate	ed Oper	ration	Degree	e of Sa	uturati	on fo	r AM Pe	eak VI	сх	
		C	o-ordi	inated	Cycle	Lengtl	h		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.34	106	0	4	0	6	0.34	106	0	4	0	6
1	Т	0.90	106	10	1756	25	84	0.90	106	10	1756	25	84
1	R	0.72	106	1	60	1	6	0.72	106	1	60	1	6
2	L	0.77	25	1	31	1	60	0.77	25	1	31	1	60
2	Т	0.77	25	4	192	7	60	0.77	25	4	192	7	60
2	R	0.82	25	4	167	6	42	0.82	25	4	167	6	42
3	L	0.47	106	0	43	1	42	0.47	106	0	43	1	42
3	Т	0.47	106	3	635	18	42	0.47	106	3	635	18	42

2

4

1

Page | 80

24 0.30

24 0.30

24 0.64

0.90

25

25

25

139

1

2

0

40

95

20

2

4

1

40

95

20

3 R 4 L

4 T

4 R

INT

0.30

0.30

0.64

0.90 139

25

25

25

1

2

0

24

24

24

TCS = 491 Pedestrian - Vehicle Delay AM Peak File = VICX Isolated Operation --- Co-ordinated Cycle Length --- Isolated Cycle Length -----A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver 14 0.0 5.4 14 0.0 5.4 1 L 40 0.7 63.6 2525 10.1 14.4 74 1.0 46.8 1 T 40 0.7 63.6 2525 10.1 14.4 1 R 74 1.0 46.8 2 L 0.6 60.8 34 0.6 60.8 34 0 0.0 3.5 59.7 2 T 0.0 212 212 3.5 59.7 2 R 3.5 76.5 3.5 76.5 166 166 3 L 0.2 6.2 127 0.2 6.2 127 3 T 0 0.0 1896 3.3 6.2 0 0.0 1896 3.3 6.2 3 R 4 L 51 0.7 49.2 51 0.7 49.2 4 T 0.0 122 1.7 49.2 0 0.0 122 1.7 49.2 4 R 25 0.4 60.8 25 0.4 60.8 40 INT 1 63.6 5246 25 17.1 40 1 63.6 5246 0 0.0

TCS	=	491 I	Pedestr	ian -	• Vehi	cle Del	.ay - 9	Stops A	M Peak	File =	= VICX	
			- Delay	's & St	tops a	fter Co	-ordi	nated E	valuat	ion		
А	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				14	0.0	2.6	0	0.0	Α	0	6
1	Т	40	0.7	63.6	2525	1.8	2.6	0	0.0	Α	0	6
1	R				74	0.0	0.0	0	0.0	А	0	6
2	L				34	0.6	60.8	31	0.9	Е	1	12
2	Т	0	0.0		212	3.5	59.7	192	0.9	Е	7	60
2	R				166	3.5	76.5	167	1.0	F	6	42
3	L				127	0.0	0.5	3	0.0	Α	0	6
3	Т	0	0.0		1896	0.3	0.5	46	0.0	А	2	6
3	R											
4	L				51	0.7	49.2	40	0.8	D	2	6
4	Т	0	0.0		122	1.7	49.2	95	0.8	D	4	24
4	R				25	0.4	60.8	20	0.8	Е	1	6
INT		40	1	63.6	5246	13	8.6	593	0.1	А		

TCS	=	110 I	solate	ed Oper	ration	Degree	e of Sa	iturati	on foi	r PM Pe	eak VIC	X	
		C	o-ordi	inated	Cycle	Lengtl	n		Isola	ated Cy	/cle Le	ength -	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.30	97	0	43	1	12	0.30	97	0	43	1	12
1	Т	0.55	38	9	834	22	48	0.55	38	9	834	22	48
1	R	0.75	12	4	290	9	30	0.75	12	4	290	9	30
2	L	0.30	46	1	133	4	24	0.30	46	1	133	4	24
2	Т	0.02	15	0	5	0	6	0.02	15	0	5	0	6
2	R	0.75	22	6	503	14	42	0.75	22	6	503	14	42
3	L	0.29	89	0	78	2	12	0.29	89	0	78	2	12
3	Т	0.75	31	12	1056	27	54	0.75	31	12	1056	27	54
3	R	0.75	6	2	143	4	18	0.75	6	2	143	4	18
4	L	0.12	26	0	36	1	12	0.12	26	0	36	1	12
4	Т	0.02	21	0	4	0	6	0.02	21	0	4	0	6
4	R	0.75	31	8	661	17	54	0.75	31	8	661	17	54
INT		0.75	105					0.75	105				

TCS = 110 Pedestrian - Vehicle Delay PM Peak File = VICX Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				481	0.1	0.4				481	0.1	0.4
1	Т	50	0.6	46.7	1161	8.7	26.9	50	0.6	46.7	1161	8.7	26.9
1	R				322	4.3	47.6				322	4.3	47.6
2	L				229	1.2	18.9				229	1.2	18.9
2	Т	50	0.6	46.7	6	0.1	38.7	50	0.6	46.7	6	0.1	38.7
2	R				589	6.5	39.6				589	6.5	39.6
3	L				423	0.2	1.7				423	0.2	1.7
3	Т	50	0.6	46.7	1299	12.0	33.4	50	0.6	46.7	1299	12.0	33.4
3	R				148	2.3	56.0				148	2.3	56.0
4	L				52	0.4	30.3				52	0.4	30.3
4	Т	0	0.0		6	0.1	33.5	0	0.0		6	0.1	33.5
4	R				806	7.6	34.1				806	7.6	34.1
INT		150	2	46.7	5522	43	28.3	150	2	46.7	5522	0	0.0

TCS	=	110 F								File = ion			
А	М	Peds	-										
1	L		,		481	0.0	0.0	́о	0.0	А	0	6	
1	Т	50	0.6	46.7	1161	13.4	41.7	778	0.7	С	22	48	
1	R				322	0.4	5.0	9	0.0	А	0	6	
2	L				229	1.2	18.9	133	0.6	В	4	24	
2	Т	50	0.6	46.7	6	0.1	38.7	5	0.8	С	0	6	
2	R				589	6.5	39.6	503	0.9	С	14	42	
3	L				423	0.0	0.0	0	0.0	А	0	6	
3	Т	50	0.6	46.7	1299	2.4	6.7	0	0.0	А	0	6	
3	R				148	0.0	0.0	0	0.0	А	0	6	
4	L				52	0.4	30.3	36	0.7	С	1	12	
4	Т	0	0.0		6	0.1	33.5	4	0.7	С	0	6	
4	R				806	7.6	34.1	661	0.8	С	17	54	
INT		150	2	46.7	5522	32	21.0	2129	0.4	В			

тсѕ	=	110 I	solate	ed Opei	ration	Degree	e of S	Saturati	on fo	- Busir	ness Pe	eak VI(x
		C	o-ord:	inated	Cycle	Length	h		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	e DS	GT	Delay	Stops	Queue	Metre
1	L	0.10	32	0	41	1	6	6 0.10	32	0	41	1	6
1	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
1	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
2	L	0.07	47	0	16	0	6	0.07	47	0	16	0	6
2	Т	0.44	15	2	342	5	18	0.44	15	2	342	5	18
2	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
3	L	0.10	32	0	41	1	6	6 0.10	32	0	41	1	6
3	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
3	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
4	L	0.15	22	0	60	1	6	0.15	22	0	60	1	6
4	Т	0.51	13	2	359	5	18	0.51	13	2	359	5	18
4	R	0.40	5	1	92	2	6	6 0.40	5	1	92	2	6
INT		0.51	56					0.51	56				

TCS = 110 Pedestrian - Vehicle Delay Business Peak File = VICX Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				102	0.2	5.3				102	0.2	5.3
1	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
1	R				108	0.7	24.1				108	0.7	24.1
2	L				102	0.0	0.8				102	0.0	0.8
2	Т	25	0.2	22.3	457	2.2	17.1	25	0.2	22.3	457	2.2	17.1
2	R				108	0.7	24.1				108	0.7	24.1
3	L				102	0.2	5.3				102	0.2	5.3
3	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
3	R				108	0.7	24.1				108	0.7	24.1
4	L				102	0.3	11.2				102	0.3	11.2
4	Т	0	0.0		457	2.4	18.8	0	0.0		457	2.4	18.8
4	R				108	0.7	24.2				108	0.7	24.2
INT		75	0	22.3	1768	8	16.6	75	0	22.3	1768	0	0.0

TCS = 110 Pedestrian - Vehicle Delay - Stops Business Peak File = VICX ----- Delays & Stops after Co-ordinated Evaluation-----A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 1 L 102 0.0 0.0 0 0.0 А 0 6 0.3 25 0.2 22.3 0.0 0.4 2 А 0 6 1 T 7 1 R 108 0.2 5.0 2 0.0 А 0 6 2 102 0 6 L 0.0 0.8 16 0.2 А 2 Т 25 0.2 22.3 457 2.2 17.1 342 0.7 В 5 18 2 R 108 0.7 24.1 91 0.8 В 1 6 3 L 0.0 0 6 102 0.0 0 0.0 А 3 T 0.2 22.3 25 0.0 0.0 0 0.0 А 0 6 7 0.0 3 R 108 0.0 0 6 0 0.0 А 4 L 102 0.3 11.2 60 0.6 А 1 6 4 T 0.0 457 18.8 359 0.8 18 0 2.4 В 5 4 R 108 0.7 24.2 92 0.9 В 1 6 INT 75 0 22.3 1768 963 0.5 7 13.2 А

TCS = 110 Isolated Operation Degree of Saturation for AM Peak VICX --- Co-ordinated Cycle Length --- Isolated Cycle Length -----GT Delay Stops Queue Metre DS DS GT Delay Stops Queue Metre A M 1 12 0.30 0.30 1 L 0 37 0.67 78 0.74 13 1392 Т R 0.67 42 0.74 L 0.08 0.08 Т 0.03 6 0.02 6 473 R 0.67 54 0.74 3 L 24 0.33 0 108 0.34 3 T 0.63 66 0.68 11 1005 3 R 0.67 18 0.65 2 101 4 L 0.09 6 0.07 5 4 T 0.02 6 0.02 4 R 0.67 8 520 60 0.74 7 544 INT 0.67 139 0.74 _____

TCS	=	110	Pedestr	ian ·	- Vehi	cle Dela	ay AM	Peak	File =	VICX			
					Is	solated	Opera	ation					
			Co-ordi	inated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				494	0.0	0.3				494	0.0	0.3
1	Т	50	0.9	63.6	1838	14.6	28.5	50	0.6	46.7	1838	13.0	25.5
1	R				410	6.2	54.3				410	5.1	44.4
2	L				70	0.4	18.4				70	0.3	13.0
2	Т	50	0.9	63.6	6	0.1	55.5	50	0.6	46.7	6	0.1	38.7
2	R				552	7.5	49.2				552	6.2	40.4
3	L				468	0.5	3.6				468	0.3	2.5
3	Т	50	0.9	63.6	1283	13.4	37.7	50	0.6	46.7	1283	11.1	31.1
3	R				114	2.1	65.2				114	1.6	49.1
4	L				25	0.3	49.5				25	0.2	33.9
4	Т	0	0.0		6	0.1	52.6	0	0.0		6	0.1	37.3
4	R				646	8.2	45.9				646	6.8	37.9
INT		150	3	63.6	5912	53	32.5	150	2	46.7	5912	0	0.0

			- Delay	/s & S1	tops at	fter Co	-ordir	nated E	valuat	ion		
А	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				494	0.0	0.0	0	0.0	А	0	6
1	Т	50	0.9	63.6	1838	40.9	80.0	1909	1.0	F	38	78
1	R				410	0.6	5.0	16	0.0	А	1	6
2	L				70	0.4	18.4	33	0.5	В	1	12
2	Т	50	0.9	63.6	6	0.1	55.5	5	0.8	D	0	6
2	R				552	7.5	49.2	453	0.8	D	17	54
3	L				468	0.0	0.0	0	0.0	А	0	6
3	Т	50	0.9	63.6	1283	2.7	7.5	0	0.0	А	0	6
3	R				114	0.0	0.0	0	0.0	Α	0	6
4	L				25	0.3	49.5	19	0.8	D	1	6
4	Т	0	0.0		6	0.1	52.6	5	0.8	D	0	6
4	R				646	8.2	45.9	520	0.8	D	18	60
INT		150	3	63.6	5912	61	37.0	2960	0.5	С		

Victoria Road Future without Development - VICB.DAT

SCATES Program Version: 2013 Date: 02-NOV-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: VICB VICTORIA ROAD 2031 BITZIOS BASE VOLUMES

			AM PEA	٩K			F	PM PEA	٨K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	18	1750	Α	0	0.0	19	1750	Α	0	0.0	102	1750	Α	0	0.0
1T	2917	3710	Α			1853	3710	Α			7	3710	Α		
1R	89	1850	S			80	1850	S			36	1850	S		
2L	28	1750	В			42	1750	В			102	1750	В		
2T	171	1750	В			112	1750	В			457	1750	В		
2R	132	1850	S			139	1850	S			36	1850	S		
ЗL	123	1750	Α	0	0.0	145	1750	Α	0	0.0	102	1750	Α	0	0.0
ЗT	1848	5670	Α	0	982	1868	5670	Α	0	157	7	5670	Α	0	108
ЗR	0	0	S			0	0	S			0	0	S		
4L	59	1750	В			41	1750	В			102	1750	В		
4T	141	3600	В			287	3600	В			457	1850	В		
4R		1850	S			42	1850	S			36	1850	S		
Туре	= COO	0				А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	
File	= VIC	СВ				1	22	4.0	0	0	0	0 '	0	0	
						2	5	4.0	0	0	0	0 '	0	0	
TCS :	= 491	1				3	5	4.0	0	0	0	0 '	0	0	
						4	24	4.0	0	0	0	0 '	0	0	
	F	PEDES	TRIAN	VOLU	ME			ARANCE	= -	TRAM [DATA	PE	EDEST	TRA	M
Арр	P##	١M	P#PM	Pi	#B	Walk	((Clear				FÆ	ACT	FAC	т
1	40)	40	:	20	6	-	16	()%		Ę	50	10	0
2	0		0	(0	0	(C	()%		-	100	10	0
3	0		0	(0	0	()	()%			100	10	0
4	0		0	(0	6		18	()%		Ę	50	10	0
															-

			AM PEA	٩K			F	PM PEA	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	337	1750	S	0	0.0	799	1750	S	0	0.0	102	1750	S	0	0.0
1T	1585	5880	Α	0	484	599	5880	Α	0	89	7	5880	Α	72	0
1R	702	3700	G			546	3700	G			108	3700	G		
2L	598	1750	S			235	1750	S			102	1750	S		
2T	6	3920	Е			6	3920	E			457	3920	E		
2R	236	3700	D			809	3700	D			108	3700	D		
3L	449	1750	S	0	0.0	489	1750	S	0	0.0	102	1750	S	0	0.0
3T	1787	5880	Α			1239	5880	Α			7	5880	Α		
ЗR	109	3700	G			176	3700	G			108	3700	G		
4L	22	1750	GE			61	1750	GE			102	1750	GE		
4T	6	3920	Е			6	3920	Е			457	3920	E		
4R	568	3700	D			696	3700	D			108	3700	D		
Туре	= D0[00				Α	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	

Page | 87

© 2012 Road Delay Solutions Pty Ltd, Australia

ROAD DELAY SOLUTIONS

File =	VICB			1	32 4.0	0	0	0	0	
				2	30 4.0	0	0	0	0	
TCS =	110			3	32 4.0	0	0	0	0	
				4	5 4.0	0	0	0	0	
	PEDE	STRIAN V	OLUME	WALK-	CLEARANCE	E TF	RAM DA	TA	PEDEST	TRAM
Арр	P#AM	P#PM	P#B	Walk	Clear				FACT	FACT
1	50	50	25	6	26	09	б		50	100
2	50	50	25	6	24	09	б		50	100
3	50	50	25	6	26	09	б		50	100
4	0	0	0	0	0	09	б		100	100

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade 0 3 0 0 2 0 0 3 0 0 2 0 N Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 LT 9999 1750 LT 9999 1750 LT 9999 1750 T 9999 1960 R 9999 1850 T 9999 1960 TR 9999 1850 1 T 9999 1960 R 35 1850 T 9999 1960 TR 9999 1850 T 9999 1960 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM
 Apprch 0 0 0 0 Depart O File = VICB TCS = 491 Type = COCO _____ APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 DownLanesGradeDownLanesGradeDownLanesGrade06004060040 Tidal N Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane L 50 1750 L 9999 1750 L 110 1750 L 65 1750 T 9999 1960 T 9999 3920 T 9999 1960 T 9999 3920 1 2 R 100 1850 T 9999 1960 R 9999 1850 R 100 1850 T 9999 1960 R 120 1850 T 9999 1960 3 4 T 9999 1960 R 70 1850 R 120 1850 5 R 70 1850 6 R 120 1850 7 8 NoParkingNoParkingNoParkingAMPMBUSAMPMBUSAMPMBUS00000000000000000000000000000 AM PM BUS 0 Apprch 0 Depart File = VICB Type = D0D0 TCS = 110 AM PEAK PM PEAK BUSINESS GT% GT% CL CL GT% GT% CL CL GT% GT% CL CL CL Ph CORD ISOL
 CORD ISOL
 CORD ISOL CORD ISOL
 CORD ISOL CORD ISOL
 CORD ISOL
 CORD ISOL

 A
 82.9
 82.9
 140
 140
 73.2
 73.2
 105
 105
 26.8
 26.8
 56
 56

 B
 17
 1
 17
 1
 73
 2
 73
 2
 B 17.1 17.1 26.8 26.8 73.2 73.2 С D Е dlay dlay 0.1 0.1 AB dlay 3 3 Stos 0 7 5 dlay dlay dlay dlay dlay 0.7 0.7 0.5 0.5 AB dlay 47 47 AB dlay 18 18 Stps 4.2 4.2 Stps 2.5 2.5 F G Seq

 Stps
 4.2
 4.2
 Stps
 2.5
 2.5

 DS
 0.99
 0.99
 1
 DS
 0.77
 0.77
 1

 A
 Bay
 Bay
 Slip
 Slip
 Slip

Mode 1 DS 0.48 0.48 File = VICB Type

ROAD DELAY SOLUTIONS

TCS = 491	1 21 3 2 3 4 13	t Req Act 5 27 O 11 O 27 O 0 18 O all intersections ar	COCO e optimised
AM PEAK	PM F	EAK	BUSINESS
Ph GT% GT% CL CL	GT% GT%	CL CL GT% GT	% CL CL
CORD ISOL CORD ISOL			
A 36.8 37.6 140 113	29.5 29.5	105 105 34.8 34.	8 56 56
В			
C	~ ~ ~ ~ ~		•
D 20.0 20.8 E 13.6 16.8	30.5 30.5	15.8 15.	8
E 13.6 16.8	18.1 18.1	33.6 33.	6
F dlay dlay		dlay dlay	diay diay
G 29.6 24.8 2.7 2.1			
Seq ADEG dlay 68 57			
Stps 4.6 4.6	Stp	s 3.8 3.8	Stps 1.2 1.2
Mode 1 DS 0.89 0.89			
File = VICB	•	y Slip Slip	Туре
TCS = 110		t Req Act O 20 50	DODO
105 - 110			DODO
	2 102 10	-	
	3 29 12 4	0 46 110 20 65	
	•	all intersections ar	o optimicod
	Dayo 11	INCELSECTIONS al	e oprimised

TCS	=	491 I	solat	ed Opei	ration	Degree	e of Sa	turati	on foi	° PM P€	eak VIC	СВ	
		C	o-ord	inated	Cycle	Lengt	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.46	73	0	8	0	6	0.46	73	0	8	0	6
1	Т	0.73	73	5	1032	17	54	0.73	73	5	1032	17	54
1	R	0.77	73	1	70	1	6	0.77	73	1	70	1	6
2	L	0.38	24	0	32	1	24	0.38	24	0	32	1	24
2	Т	0.38	24	1	85	3	24	0.38	24	1	85	3	24
2	R	0.77	24	2	138	4	24	0.77	24	2	138	4	24
3	L	0.51	73	0	62	1	42	0.51	73	0	62	1	42
3	Т	0.51	73	4	799	17	42	0.51	73	4	799	17	42
3	R												
4	L	0.45	24	0	32	1	36	0.45	24	0	32	1	36
4	Т	0.45	24	3	222	6	30	0.45	24	3	222	6	30
4	R	0.56	24	1	35	1	36	0.56	24	1	35	1	36
INT		0.77	105					0.77	105				

TCS = 491 Pedestrian - Vehicle Delay PM Peak File = VICB Isolated Operation

		(Co-ordi	nated	Cycle	Length			Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				19	0.0	7.3				19	0.0	7.3
1	Т	40	0.5	46.7	1853	5.1	10.0	40	0.5	46.7	1853	5.1	10.0
1	R				80	0.9	41.6				80	0.9	41.6
2	L				42	0.4	34.1				42	0.4	34.1
2	Т	0	0.0		112	1.1	34.1	0	0.0		112	1.1	34.1
2	R				139	2.2	57.3				139	2.2	57.3
3	L				145	0.3	7.7				145	0.3	7.7
3	Т	0	0.0		1868	4.0	7.6	0	0.0		1868	4.0	7.6
3	R												
4	L				41	0.4	34.7				41	0.4	34.7
4	Т	0	0.0		287	2.8	34.7	0	0.0		287	2.8	34.7
4	R				42	0.5	44.8				42	0.5	44.8
INT		40	1	46.7	4628	18	13.8	40	1	46.7	4628	0	0.0

TCS = 491 Pedestrian - Vehicle Delay - Stops PM Peak File = VICB ----- Delays & Stops after Co-ordinated Evaluation-----

			Deruy	5 4 0	copo u	1 2 2 1 0 0	OTUTI		vuruut	TOUL		
А	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				19	0.0	2.0	0	0.0	Α	0	6
1	Т	40	0.5	46.7	1853	1.0	2.0	0	0.0	Α	0	6
1	R				80	0.0	0.0	0	0.0	Α	0	6
2	L				42	0.4	34.1	32	0.8	С	1	12
2	Т	0	0.0		112	1.1	34.1	85	0.8	С	2	24
2	R				139	2.2	57.3	138	1.0	Е	4	24
3	L				145	1.2	30.0	87	0.6	С	1	6
3	Т	0	0.0		1868	15.6	30.0	1118	0.6	С	17	42
3	R											
4	L				41	0.4	34.7	32	0.8	С	1	6
4	Т	0	0.0		287	2.8	34.7	222	0.8	С	6	30
4	R				42	0.5	44.8	35	0.8	D	1	6
INT		40	1	46.7	4628	25	19.6	1749	0.4	В		

TCS	=	491 I	solate	ed Opei	ration	Degree	e of Sa	turati	on foi	- Busir	ness Pe	eak VI(СВ
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.30	11	1	78	1	6	0.30	11	1	78	1	6
1	Т	0.02	11	0	5	0	6	0.02	11	0	5	0	6
1	R	0.13	11	0	26	0	6	0.13	11	0	26	0	6
2	L	0.48	37	0	46	1	24	0.48	37	0	46	1	24
2	Т	0.48	37	1	205	2	24	0.48	37	1	205	2	24
2	R	0.24	37	0	28	0	6	0.24	37	0	28	0	6
3	L	0.30	11	1	78	1	6	0.30	11	1	78	1	6
3	Т	0.01	11	0	5	0	6	0.01	11	0	5	0	6
3	R												
4	L	0.43	37	0	43	1	24	0.43	37	0	43	1	24
4	Т	0.43	37	1	194	2	18	0.43	37	1	194	2	18
4	R	0.46	37	0	29	0	24	0.46	37	0	29	0	24
INT		0.48	56					0.48	56				

тсѕ	=	491	Pedestr	rian		cle Del solated			Peak F	ile =	VICB		
			Co ond	inatod		Length			Teolo	tod Cu		nath	
•												-	
A	М	Peas	ретау	Aver		Delay		Peas	ретау	Aver		Delay	
1	L				102		19.2				102	0.5	19.2
1	Т	20	0.1	22.3	7	0.0	18.1	20	0.1	22.3	7	0.0	18.1
1	R				36	0.2	18.1				36	0.2	18.1
2	L				102	0.1	4.7				102	0.1	4.7
2	Т	C	0.0		457		4.7	0	0.0		457	0.6	4.7
2	R	, c	, 0.0		36		22.4	0	0.0		36	0.2	
3	L				102		19.2				102	0.5	19.2
3	Т	C	0.0		7	0.0	18.1	0	0.0		7	0.0	18.1
3	R												
4	L				102	0.1	4.5				102	0.1	4.5
4	Т	C	0.0		457		4.5	0	0.0		457	0.6	4.5
	R	, c	0.0		36				0.0		36	0.2	
				<u> </u>					0	<u> </u>			
INT		20) ()	22.3		3			0	22.3		0	0.0
			- Delay	/s & S†	tops at	cle Del fter Co	-ordir	nated E	Evaluat	ion			
A		Peus	ретау	Aver		Delay		-		LOS			
1	L				102		0.2	0		A	0	6	
1	Т	20	0.1	22.3	7	0.0	0.2	0	0.0	Α	0	6	
1	R				36	0.0	0.0	0	0.0	Α	0	6	
2	L				102	0.1	4.7	46	0.4	Α	1	6	
2	Т	C	0.0		457		4.7	205		A	2	24	
2	R	, c	0.0		36		22.4	28	0.8	В	0	6	
3	L				102		0.4	2		Α	0	6	
3	Т	C	0.0		7	0.0	0.4	0	0.0	Α	0	6	
3	R												
4	L				102	0.1	4.5	43	0.4	Α	1	6	
4	Т	C	0.0		457	0.6	4.5	194	0.4	А	2	18	
4	R				36		22.9		0.8	В	0	6	
INT		20	0	22.3					0.4	Ā	Ŭ	0	
						Degree Length							
А	М	DS				Queue							
1	L	0.39		-	5			0.39		0	5	0	6
1	Т	0.99		30	2947		138	0.99		30	2947	41	138
1	R	0.74		1	71	1	6		112	1	71	1	6
2	L	0.80		1	27	1	54		20	1	27	1	54
2	Т	0.80		3		6	54		20	3	164	6	54
2	R	0.97	' 20	6	214	8	54	0.97	20	6	214	8	54
3	L	0.43		0	34	1	36	0.43		0	34	1	36
3	Т	0.43		2	508	14	36	0.43	112	2	508	14	36
		0.70	, 112	2	500		00	0.70	114	2	000	17	50
3	R	• •				-		a : -				-	• -
4	L	0.45		1	49	2	30		20	1	49	2	30
4	Т	0.45	5 20	2	116	5	30			2	116	5	30
4	R	0.75	5 20	1	29	1	30	0.75	20	1	29	1	30
INT		0.99	140					0.99	140				

TCS	=	491	Pedestr	ian		cle Del solated			File =	VICB			
			Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				18	0.0	4.0				18	0.0	4.0
1	Т	40	0.7	64.1	2917	29.6	36.6	40	0.7	64.1	2917	29.6	36.6
1	R				89	1.1	42.6				89	1.1	42.6
2	L				28	0.5	69.5				28	0.5	69.5
2	Т	C	0.0		171	3.3	68.9	0	0.0		171	3.3	68.9
2	R				132	6.4	174.5				132	6.4	174.5
3	L				123	0.1	4.3				123	0.1	4.3
3	Т	C	0.0		1848	2.2	4.3	0	0.0		1848	2.2	4.3
3	R												
4	L				59	0.9	55.0				59	0.9	55.0
4	Т	C	0.0		141	2.2	55.0	0	0.0		141	2.2	55.0
4	R				29	0.7	83.9				29	0.7	83.9
INT		40) 1	64.1	5555	47	30.4	40	1	64.1	5555	0	0.0

TCS	=	491	Pedestr	ian ·	- Vehio	cle Dei	Lay - S	Stops A	M Peak	File	= VICB	
			- Delay	's & St	tops at	fter Co	o-ordir	nated E	valuat	ion		
А	Μ	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				18	0.2	36.3	0	0.0	С	0	6
1	Т	40	0.7	64.1	2917	29.4	36.3	0	0.0	С	0	6
1	R				89	0.0	0.0	0	0.0	Α	0	6
2	L				28	0.5	69.5	27	1.0	Е	1	12
2	Т	0	0.0		171	3.3	68.9	164	1.0	Е	6	54
2	R				132	6.4	174.5	214	1.6	F	8	54
3	L				123	0.2	5.6	27	0.2	А	1	6
3	Т	0	0.0		1848	2.9	5.6	406	0.2	А	14	36
3	R											
4	L				59	0.9	55.0	49	0.8	D	2	12
4	Т	0	0.0		141	2.2	55.0	116	0.8	D	5	24
4	R				29	0.7	83.9	29	1.0	F	1	6
INT		40	1	64.1	5555	47	30.2	1032	0.2	С		

TCS	=	110 I	solate	ed Oper	ration	Degree	e of Sa	iturati	on foi	r PM Pe	eak VIC	В	
		C	o-ordi	inated	Cycle	Length	า		Isola	ated Cy	/cle Le	ength -	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.49	97	0	95	2	12	0.49	97	0	95	2	12
1	Т	0.27	40	4	372	11	24	0.27	40	4	372	11	24
1	R	0.82	19	7	502	14	42	0.82	19	7	502	14	42
2	L	0.21	66	1	92	3	18	0.21	66	1	92	3	18
2	Т	0.02	19	0	4	0	6	0.02	19	0	4	0	6
2	R	0.82	28	9	708	18	54	0.82	28	9	708	18	54
3	L	0.36	82	0	134	3	24	0.36	82	0	134	3	24
3	Т	0.82	27	13	1068	27	60	0.82	27	13	1068	27	60
3	R	0.82	6	3	190	6	18	0.82	6	3	190	6	18
4	L	0.16	23	1	45	1	12	0.16	23	1	45	1	12
4	Т	0.02	13	0	5	0	6	0.02	13	0	5	0	6
4	R	0.82	24	8	621	16	54	0.82	24	8	621	16	54
INT		0.82	105					0.82	105				

TCS = 110 Pedestrian - Vehicle Delay PM Peak File = VICB Isolated Operation

						oo ra coa	00010						
		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ngth -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				799	0.1	0.5				799	0.1	0.5
1	Т	50	0.6	46.7	599	3.7	22.5	50	0.6	46.7	599	3.7	22.5
1	R				546	7.1	46.5				546	7.1	46.5
2	L				235	0.6	8.5				235	0.6	8.5
2	Т	50	0.6	46.7	6	0.1	35.4	50	0.6	46.7	6	0.1	35.4
2	R				809	8.8	39.1				809	8.8	39.1
3	L				489	0.5	3.5				489	0.5	3.5
3	Т	50	0.6	46.7	1239	13.1	38.1	50	0.6	46.7	1239	13.1	38.1
3	R				176	3.3	67.0				176	3.3	67.0
4	L				61	0.6	33.5				61	0.6	33.5
4	Т	0	0.0		6	0.1	40.4	0	0.0		6	0.1	40.4
4	R				696	8.1	42.1				696	8.1	42.1
INT		150	2	46.7	5661	46	29.2	150	2	46.7	5661	0	0.0

TCS	=	110 F					5					
			• Delay	's & St	cops at	fter Co	-ordir	nated E	valuat	ion		
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				799	0.0	0.0	0	0.0	Α	0	6
1	Т	50	0.6	46.7	599	13.2	79.2	789	1.3	F	11	24
1	R				546	0.8	5.0	16	0.0	Α	0	6
2	L				235	0.6	8.5	92	0.4	Α	3	18
2	Т	50	0.6	46.7	6	0.1	35.4	4	0.7	С	0	6
2	R				809	8.8	39.1	708	0.9	С	18	54
3	L				489	0.0	0.0	0	0.0	Α	0	6
3	Т	50	0.6	46.7	1239	2.6	7.7	0	0.0	Α	0	6
3	R				176	0.0	0.0	0	0.0	Α	0	6
4	L				61	0.6	33.5	45	0.7	С	1	12
4	Т	0	0.0		6	0.1	40.4	5	0.8	С	0	6
4	R				696	8.1	42.1	621	0.9	D	16	54
INT		150	2	46.7	5661	35	22.1	2281	0.4	В		

TCS	=	110 I	solate	ed Oper	ration	Degree	e of Sa	aturati	on fo	r Busir	ness Pe	eak VIC	ЭВ
		C	o-ord:	inated	Cycle	Lengtl	n		Isola	ated Cy	ycle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.10	32	0	41	1	6	0.10	32	0	41	1	6
1	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
1	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
2	L	0.07	47	0	16	0	6	0.07	47	0	16	0	6
2	Т	0.44	15	2	342	5	18	0.44	15	2	342	5	18
2	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
3	L	0.10	32	0	41	1	6	0.10	32	0	41	1	6
3	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
3	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
4	L	0.15	22	0	60	1	6	0.15	22	0	60	1	6
4	Т	0.51	13	2	359	5	18	0.51	13	2	359	5	18
4	R	0.40	5	1	92	2	6	0.40	5	1	92	2	6
INT		0.51	56					0.51	56				

TCS = 110 Pedestrian - Vehicle Delay Business Peak File = VICB Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				102	0.2	5.3				102	0.2	5.3
1	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
1	R				108	0.7	24.1				108	0.7	24.1
2	L				102	0.0	0.8				102	0.0	0.8
2	Т	25	0.2	22.3	457	2.2	17.1	25	0.2	22.3	457	2.2	17.1
2	R				108	0.7	24.1				108	0.7	24.1
3	L				102	0.2	5.3				102	0.2	5.3
3	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
3	R				108	0.7	24.1				108	0.7	24.1
4	L				102	0.3	11.2				102	0.3	11.2
4	Т	0	0.0		457	2.4	18.8	0	0.0		457	2.4	18.8
4	R				108	0.7	24.2				108	0.7	24.2
INT		75	0	22.3	1768	8	16.6	75	0	22.3	1768	0	0.0

TCS = 110 Pedestrian - Vehicle Delay - Stops Business Peak File = VICB ----- Delays & Stops after Co-ordinated Evaluation-----

Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS			
1	L				102	0.0	0.0	0	0.0	Α	0	6	
1	Т	25	0.2	22.3	7	0.0	0.4	2	0.3	Α	0	6	
1	R				108	0.2	5.0	2	0.0	Α	0	6	
2	L				102	0.0	0.8	16	0.2	Α	0	6	
2	Т	25	0.2	22.3	457	2.2	17.1	342	0.7	В	5	18	
2	R				108	0.7	24.1	91	0.8	В	1	6	
3	L				102	0.0	0.0	0	0.0	А	0	6	
3	Т	25	0.2	22.3	7	0.0	0.0	0	0.0	Α	0	6	
3	R				108	0.0	0.0	0	0.0	Α	0	6	
4	L				102	0.3	11.2	60	0.6	Α	1	6	
4	Т	0	0.0		457	2.4	18.8	359	0.8	В	5	18	
4	R				108	0.7	24.2	92	0.9	В	1	6	
INT		75	0	22.3	1768	7	13.2	963	0.5	Α			

TCS	=	110 I	solate	ed Oper	ration	Degree	e of Sa	turati	on foi	∽ AM P€	eak VIC	В	
		C	o-ord:	inated	Cycle	Length	ו ר		Isola	ated Cy	/cle Le	ength ·	
Α	Μ	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.20	134	0	15	1	6	0.20	107	0	20	1	6
1	Т	0.68	80	9	1001	26	78	0.53	58	8	958	24	54
1	R	0.89	37	11	651	22	84	0.89	24	11	682	19	60
2	L	0.52	93	2	277	8	48	0.54	71	2	303	7	42
2	Т	0.03	15	0	5	0	6	0.02	15	0	5	0	6
2	R	0.89	10	6	268	11	36	0.89	8	6	281	9	30
3	L	0.37	99	1	161	5	36	0.34	85	1	135	3	24
3	Т	0.89	48	23	1556	47	96	0.89	39	19	1569	38	78
3	R	0.82	5	3	124	5	18	0.67	5	2	97	3	12
4	L	0.05	36	0	15	1	6	0.05	28	0	15	1	6
4	Т	0.02	27	0	4	0	6	0.01	24	0	4	0	6
4	R	0.89	24	11	556	20	66	0.89	19	9	570	17	54
INT		0.89	140					0.89	113				

TCS	=	110	Pedestr	ian	- Vehi	cle Dela	ay AM	Peak	File =	VICB			
					Is	solated	Opera	ation					
			Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				337	0.0	0.1				337	0.0	0.2
1	Т	50	0.9	64.1	1585	9.3	21.1	50	0.7	50.7	1585	8.2	18.6
1	R				702	11.3	57.9				702	10.5	54.1
2	L				598	2.0	12.2				598	2.0	11.8
2	Т	50	0.9	64.1	6	0.1	56.0	50	0.7	50.7	6	0.1	42.6
2	R				236	6.5	98.5				236	5.6	85.5
3	L				449	1.0	8.3				449	0.6	4.7
3	Т	50	0.9	64.1	1787	22.9	46.2	50	0.7	50.7	1787	18.9	38.1
3	R				109	3.0	98.1				109	1.6	53.2
4	L				22	0.2	38.9				22	0.2	32.1
4	Т	0	0.0		6	0.1	45.7	0	0.0		6	0.1	34.9
4	R				568	11.1	70.5				568	9.4	59.5
INT		150	3	64.1	6405	68	38.0	150	2	50.7	6405	0	0.0

			• Delay	S & S1	tops at	fter Co	-ordir	nated E	valuat	ion		
А	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				337	0.0	0.0	0	0.0	А	0	6
1	Т	50	0.9	64.1	1585	33.1	75.1	1943	1.2	F	26	78
1	R				702	0.9	4.6	25	0.0	А	1	6
2	L				598	2.0	12.2	277	0.5	Α	8	48
2	Т	50	0.9	64.1	6	0.1	56.0	5	0.8	D	0	6
2	R				236	6.5	98.5	268	1.1	F	10	36
3	L				449	0.0	0.0	0	0.0	А	0	6
3	Т	50	0.9	64.1	1787	4.6	9.2	0	0.0	А	0	6
3	R				109	0.0	0.0	0	0.0	Α	0	6
4	L				22	0.2	38.9	15	0.7	С	1	6
4	Т	0	0.0		6	0.1	45.7	4	0.7	D	0	6
4	R				568	11.1	70.5	556	1.0	F	20	66
INT		150	3	64.1	6405	59	32.9	3094	0.5	С		

Victoria Road Future with Development - VICF.DAT

SCATES Program Version: 2013 Date: 27-OCT-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: VICF VICTORIA ROAD 2031 BITZIOS VOLUMES

			AM PEA	٩K			F	PM PEA	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	15	1750	Α	0	0.0	18	1750	Α	0	0.0	102	1750	Α	0	0.0
1T	2907	3710	Α			1850	3710	Α			7	3710	Α		
1R	84	1850	S			78	1850	S			36	1850	S		
2L	28	1750	В			42	1750	В			102	1750	В		
2T	171	1750	В			112	1750	В			457	1750	В		
2R	132	1850	S			139	1850	S			36	1850	S		
3L	125	1750	Α	0	0.0	142	1750	Α	0	0.0	102	1750	Α	0	0.0
ЗT	1856	5670	Α	0	958	1831	5670	Α	0	140	7	5670	Α	0	108
ЗR	0	0	S			0	0	S			0	0	S		
4L	59	1750	В			41	1750	В			102	1750	В		
4T	141	3600	В			284	3600	В			457	1850	В		
4R	29	1850	S			39	1850	S			36	1850	S		
Туре	= CO(00				А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	
File	= VIC	CF				1	22	4.0	0	0	0	0 '	0	0	
						2	5	4.0	0	0	0	0 '	0	0	
TCS :	= 49	1				3	5	4.0	0	0	0	0 '	0	0	
						4	24	4.0	0	0	0	0 '	0	0	
	F	PEDES	TRIAN	VOLU	ME	WAL	<-CLE/	ARANCE	= -	TRAM [DATA	PI	EDEST	TRA	M
Арр	P#/	۹M	P#PM	Pi	#B	Wall	((Clear				F	ACT	FAC	т
1	40)	40	:	20	6		16	()%		Ę	50	10	0
2	0		0	(0	0	(C	()%			100	10	0
3	0		0	(0	0	(C	()%			100	10	0
4	0		0	(0	6	-	18	()%		Ę	50	10	0
															-

		ļ	AM PEA	٩K			F	M PEA	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	347	1750	S	0	0.0	816	1750	S	0	0.0	102	1750	S	0	0.0
1T	1600	5880	Α	0	449	609	5880	Α	0	59	7	5880	Α	72	0
1R	702	3700	G			546	3700	G			108	3700	G		
2L	588	1750	S			218	1750	S			102	1750	S		
2T	6	3920	E			6	3920	E			457	3920	E		
2R	228	3700	D			779	3700	D			108	3700	D		
ЗL	449	1750	S	0	0.0	476	1750	S	0	0.0	102	1750	S	0	0.0
ЗT	1787	5880	Α			1229	5880	Α			7	5880	Α		
ЗR	109	3700	G			166	3700	G			108	3700	G		
4L	22	1750	GE			43	1750	GE			102	1750	GE		
4T	6	3920	Е			6	3920	E			457	3920	E		
4R	564	3700	D			666	3700	D			108	3700	D		
Туре	= D0[00				А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	

ROAD DELAY SOLUTIONS

File =	VICF			1	32	4.0	0	0	0	0	
				2	30	4.0	0	0	0	0	
TCS =	110			3	32	4.0	0	0	0	0	
				4	5	4.0	0	0	0	0	
	PEDE	STRIAN V	/OLUME	WALK-	CLEAF	RANCE	TR	AM DA	TA	PEDEST	TRAM
Арр	P#AM	P#PM	P#B	Walk	C1	Lear				FACT	FACT
1	50	50	25	6	26	5	0%			50	100
2	50	50	25	6	24	1	0%			50	100
3	50	50	25	6	26	5	0%			50	100
4	0	0	0	0	0		0%			100	100

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade 0 3 0 0 2 0 0 3 0 0 2 0 N Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 LT 9999 1750 LT 9999 1750 LT 9999 1750 T 9999 1960 R 9999 1850 T 9999 1960 TR 9999 1850 1 T 9999 1960 R 35 1850 T 9999 1960 T 9999 1960 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM
 Apprch 0 0 0 0 Depart O File = VICF TCS = 491 Type = COCO _____ APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 DownLanesGradeDownLanesGradeDownLanesGrade06004060040 Tidal Ν Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane L 50 1750 L 9999 1750 L 110 1750 L 65 1750 T 9999 1960 T 9999 3920 T 9999 1960 T 9999 3920 1 2 T 9999 1960 R 9999 1850 T 9999 1960 R 120 1850 T 9999 1960 R 100 1850 3 R 100 1850 4 T 9999 1960 R 70 1850 R 120 1850 5 R 70 1850 6 R 120 1850 7 8 NoParkingNoParkingNoParkingAMPMBUSAMPMBUSAMPMBUS00000000000000000000000000000 AM PM BUS Apprch 0 0 Depart File = VICF Type = D0D0 TCS = 110 AM PEAKPM PEAKBUSINESSGT%GT%CLCLGT%GT%CLCLCORDISOLCORDISOLCORDISOLCORDISOLCORDISOL82.982.914014072.872.810510526.826.8565617117127.273.273.273.2 Ph А В С D Е dlay dlay dlay dlay dlay dlay 0.7 0.7 F G
 dlay
 44
 44
 AB
 dlay
 17
 17

 Stps
 4.0
 4.0
 Stps
 2.5
 2.5

 DS
 0.98
 0.98
 1
 DS
 0.75
 0.75
 AB dlay 44 44 AB dlay 3 3 Sea Stps2.52.5Stps0.70.7DS0.750.751DS0.480.48 Mode 1

ROAD DELAY SOLUTIONS

File = VICF	-	Bay Slip		Туре
TCS = 491		Act Req 35 27 11 27	0 0	0000
	4 12	2 0 18	0 ersections are (optimised
AM PEAK		PM PEAK	BI	USINESS
Ph GT% GT% CL CL	GT% GT%	5 CL	CL GT% GT%	CL CL
CORD ISOL CORD ISOL A 36.9 37.6 140 112 B				
C D 19.9 20.6	30.0 30.0	I	15.8 15.8	
E 13.6 17.0 F dlav dlav		dlav		dlav dlav
F dlay dlay G 29.6 24.8 2.7 2.1			dlay 1 9 15 8 15 8	dlay dlay
Seq ADEG dlay 67 57				
		-	3.7	-
Mode 1 DS 0.89 0.89				
File = VICF	A Bay	' Bay Slip	Slip	Туре
	Rec	Act Req	Act	
TCS = 110	1 90	70 20	50	DODO
	2 99			
	3 27			
	4	20	65	
	Bays	if all inte	ersections are (optimised
				

TCS	=	491 I	solate	ed Opei	ration	Degree	e of Sa	turati	on foi	° PM P€	eak VIC	CF	
		C	o-ord	inated	Cycle	Lengt	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.45	72	0	7	0	6	0.45	72	0	7	0	6
1	Т	0.73	72	5	1040	17	54	0.73	72	5	1040	17	54
1	R	0.75	72	1	67	1	6	0.75	72	1	67	1	6
2	L	0.38	25	0	32	1	24	0.38	25	0	32	1	24
2	Т	0.38	25	1	85	3	24	0.38	25	1	85	3	24
2	R	0.75	25	2	133	3	24	0.75	25	2	133	3	24
3	L	0.50	72	0	61	1	42	0.50	72	0	61	1	42
3	Т	0.50	72	4	784	17	42	0.50	72	4	784	17	42
3	R												
4	L	0.43	25	0	31	1	36	0.43	25	0	31	1	36
4	Т	0.43	25	3	218	6	30	0.43	25	3	218	6	30
4	R	0.54	25	0	32	1	36	0.54	25	0	32	1	36
INT		0.75	105					0.75	105				

TCS = 491 Pedestrian - Vehicle Delay PM Peak File = VICF Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				18	0.0	7.3				18	0.0	7.3
1	Т	40	0.5	46.7	1850	5.2	10.2	40	0.5	46.7	1850	5.2	10.2
1	R				78	0.9	40.6				78	0.9	40.6
2	L				42	0.4	33.8				42	0.4	33.8
2	Т	0	0.0		112	1.1	33.8	0	0.0		112	1.1	33.8
2	R				139	2.1	53.8				139	2.1	53.8
3	L				142	0.3	7.7				142	0.3	7.7
3	Т	0	0.0		1831	3.9	7.7	0	0.0		1831	3.9	7.7
3	R												
4	L				41	0.4	34.3				41	0.4	34.3
4	Т	0	0.0		284	2.7	34.3	0	0.0		284	2.7	34.3
4	R				39	0.5	44.7				39	0.5	44.7
INT		40	1	46.7	4576	17	13.8	40	1	46.7	4576	0	0.0

TCS = 491 Pedestrian - Vehicle Delay - Stops PM Peak File = VICF ----- Delays & Stops after Co-ordinated Evaluation------A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 0 1 L 18 0.0 2.0 0.0 Α 0 6 2.0 40 0.5 46.7 1850 0 0.0 0 1 T 1.0 Α 6 1 R 78 0.0 0.0 0 0.0 А 0 6 2 42 0.4 33.8 0.8 12 L 32 С 1 2 Т 0 0.0 112 1.1 33.8 85 0.8 С 2 24 2 R 139 2.1 53.8 133 1.0 D 3 24 3 L 30.7 С 1 6 142 1.2 84 0.6 3 T 0 0.0 1831 15.6 30.7 1088 0.6 С 17 42 3 R 0.4 34.3 4 L 41 31 0.8 С 1 6 4 T 284 2.7 34.3 218 0.8 С 30 0 0.0 6 4 R 39 0.5 44.7 32 0.8 D 1 6 INT 40 1 46.7 4576 25 19.6 1704 0.4 В

TCS = 491 Isolated Operation Degree of Saturation for Business Peak VICF ---- Co-ordinated Cycle Length ---- Isolated Cycle Length -----GT Delay Stops Queue Metre DS DS GT Delay Stops Queue Metre A M 6 0.30 0.30 1 L Т 0.02 6 0.02 R 0.13 6 0.13 L 0.48 24 0.48 Т 0.48 24 0.48 R 0.24 6 0.24 0.30 6 0.30 L 3 T 0.01 6 0.01 3 R 4 L 0.43 24 0.43 0 43 4 T 0.43 18 0.43 1 194 2 18 4 R 0.46 24 0.46 INT 0.48 0.48

TCS	=	491	Pedestr	ian		cle Dela solated	-		Peak F	ile =	VICF		
			Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	Μ	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				102	0.5	19.2				102	0.5	19.2
1	Т	20	0.1	22.3	7	0.0	18.1	20	0.1	22.3	7	0.0	18.1
1	R				36	0.2	18.1				36	0.2	18.1
2	L				102	0.1	4.7				102	0.1	4.7
2	Т	C	0.0		457	0.6	4.7	0	0.0		457	0.6	4.7
2	R				36	0.2	22.4				36	0.2	22.4
3	L				102	0.5	19.2				102	0.5	19.2
3	Т	C	0.0		7	0.0	18.1	0	0.0		7	0.0	18.1
3	R												
4	L				102	0.1	4.5				102	0.1	4.5
4	Т	C	0.0		457	0.6	4.5	0	0.0		457	0.6	4.5
4	R				36	0.2	22.9				36	0.2	22.9
INT		20) 0	22.3	1444	3	8.0	20	0	22.3	1444	0	0.0

TCS = 491 Pedestrian - Vehicle Delay - Stops Business Peak File = VICF ----- Delays & Stops after Co-ordinated Evaluation------A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 1 L 102 0.0 0.2 0 0.0 Α 0 6 1 T 20 0.1 22.3 0.2 0.0 7 0.0 0 А 0 6 1 R 36 0.0 0.0 0 0.0 0 6 А 1 2 L 102 0.1 4.7 46 0.4 Α 6 2 T 0.0 457 0.6 4.7 205 0.4 2 24 0 Α 2 R 36 0.2 22.4 28 0.8 В 0 6 3 L 102 0.0 0.4 2 0.0 A 0 6 3 T 0 0.0 0 0.0 A 0 7 0.0 0.4 6 3 R 4 L 102 0.1 4.5 43 0.4 А 1 6 4 T 194 0 0.0 457 0.6 4.5 0.4 А 2 18 4 R 36 0.2 22.9 29 0.8 В 0 6 20 INT 0 22.3 1444 2 4.7 548 0.4 Α

TCS = 491 Isolated Operation Degree of Saturation for AM Peak VICF

		C	o-ord:	inated	Cycle	Lengtl	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.34	112	0	4	0	6	0.34	112	0	4	0	6
1	Т	0.98	112	27	2836	38	126	0.98	112	27	2836	38	126
1	R	0.72	112	1	66	1	6	0.72	112	1	66	1	6
2	L	0.80	20	1	27	1	54	0.80	20	1	27	1	54
2	Т	0.80	20	3	163	6	54	0.80	20	3	163	6	54
2	R	0.96	20	6	211	8	54	0.96	20	6	211	8	54
3	L	0.44	112	0	35	1	36	0.44	112	0	35	1	36
3	Т	0.44	112	2	513	14	36	0.44	112	2	513	14	36
3	R												
4	L	0.45	20	1	49	2	30	0.45	20	1	49	2	30
4	Т	0.45	20	2	116	5	30	0.45	20	2	116	5	30
4	R	0.75	20	1	29	1	30	0.75	20	1	29	1	30
INT		0.98	140					0.98	140				

TCS = 491 Pedestrian - Vehicle Delay AM Peak File = VICF Isolated Operation --- Co-ordinated Cycle Length --- Isolated Cycle Length -----A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver 0.0 3.8 0.0 3.8 1 L 15 15 40 0.7 64.1 2907 26.5 32.9 1 T 40 0.7 64.1 2907 26.5 32.9 1 R 84 1.0 42.8 84 1.0 42.8 0.5 69.1 2 L 0.5 69.1 28 28 0 0.0 2 T 0.0 3.2 68.4 3.2 68.4 171 171 2 R 6.3 170.9 6.3 170.9 132 132 3 L 4.3 0.1 4.3 125 0.1 125 3 T 0 0.0 1856 2.2 4.3 0 0.0 1856 2.2 4.3 3 R 4 L 59 0.9 54.9 59 0.9 54.9 4 T 0.0 141 2.2 54.9 0 0.0 141 2.2 54.9 4 R 29 0.7 83.9 29 0.7 83.9 40 INT 1 64.1 5547 44 28.4 40 1 64.1 5547 0 0.0

TCS	=	491 I	Pedestr	ian ·	• Vehi	cle Del	Lay - S	Stops A	M Peak	File :	= VICF	
			- Delay	's & St	tops at	fter Co	o-ordir	nated E	valuat	ion		
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS		
1	L				15	0.1	32.7	0	0.0	С	0	6
1	Т	40	0.7	64.1	2907	26.4	32.7	0	0.0	С	0	6
1	R				84	0.0	0.0	0	0.0	А	0	6
2	L				28	0.5	69.1	27	1.0	Е	1	12
2	Т	0	0.0		171	3.2	68.4	163	1.0	Е	6	54
2	R				132	6.3	170.9	211	1.6	F	8	54
3	L				125	0.2	5.3	26	0.2	А	1	6
3	Т	0	0.0		1856	2.7	5.3	383	0.2	А	14	36
3	R											
4	L				59	0.9	54.9	49	0.8	D	2	12
4	Т	0	0.0		141	2.2	54.9	116	0.8	D	5	24
4	R				29	0.7	83.9	29	1.0	F	1	6
INT		40	1	64.1	5547	43	28.0	1004	0.2	С		

TCS	=	110 I	solate	ed Oper	ration	Degree	e of Sa	turati	on for	PM Pe	eak VIC	F	
		C	o-ordi	inated	Cycle	Length	ר- ר ר		Isola	ated Cy	/cle Le	ength -	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.50	98	0	95	2	12	0.50	98	0	95	2	12
1	Т	0.27	41	4	375	11	24	0.27	41	4	375	11	24
1	R	0.80	19	7	495	14	42	0.80	19	7	495	14	42
2	L	0.20	67	0	82	2	18	0.20	67	0	82	2	18
2	Т	0.02	19	0	4	0	6	0.02	19	0	4	0	6
2	R	0.80	27	8	676	17	54	0.80	27	8	676	17	54
3	L	0.35	82	0	131	3	24	0.35	82	0	131	3	24
3	Т	0.80	27	13	1049	27	54	0.80	27	13	1049	27	54
3	R	0.80	6	3	176	5	18	0.80	6	3	176	5	18
4	L	0.12	22	0	31	1	6	0.12	22	0	31	1	6
4	Т	0.02	13	0	5	0	6	0.02	13	0	5	0	6
4	R	0.80	23	8	590	16	48	0.80	23	8	590	16	48
INT		0.80	105					0.80	105				

TCS = 110 Pedestrian - Vehicle Delay PM Peak File = VICF Isolated Operation

		Co-ordinated			Cvolo	Longth							
		(2	0		isolated Gyble Length					
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				816	0.1	0.5				816	0.1	0.5
1	Т	50	0.6	46.7	609	3.7	22.0	50	0.6	46.7	609	3.7	22.0
1	R				546	6.9	45.2				546	6.9	45.2
2	L				218	0.5	8.0				218	0.5	8.0
2	Т	50	0.6	46.7	6	0.1	35.3	50	0.6	46.7	6	0.1	35.3
2	R				779	8.4	38.7				779	8.4	38.7
3	L				476	0.5	3.6				476	0.5	3.6
3	Т	50	0.6	46.7	1229	12.8	37.5	50	0.6	46.7	1229	12.8	37.5
3	R				166	3.0	65.0				166	3.0	65.0
4	L				43	0.4	33.3				43	0.4	33.3
4	Т	0	0.0		6	0.1	40.4	0	0.0		6	0.1	40.4
4	R				666	7.7	41.7				666	7.7	41.7
INT		150	2	46.7	5560	44	28.5	150	2	46.7	5560	0	0.0

Page | 108

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia
тсѕ	=	110 F								File = ion			
А	М	Peds	-		•								
1	L		2		816	0.0	0.0	.0	0.0	А	0	6	
1	Т	50	0.6	46.7	609	13.3	78.5	795	1.3	F	11	24	
1	R				546	0.8	5.0	16	0.0	А	0	6	
2	L				218	0.5	8.0	82	0.4	Α	2	18	
2	Т	50	0.6	46.7	6	0.1	35.3	4	0.7	С	0	6	
2	R				779	8.4	38.7	676	0.9	С	17	54	
3	L				476	0.0	0.0	0	0.0	А	0	6	
3	Т	50	0.6	46.7	1229	2.6	7.5	0	0.0	Α	0	6	
3	R				166	0.0	0.0	0	0.0	А	0	6	
4	L				43	0.4	33.3	31	0.7	С	1	6	
4	Т	0	0.0		6	0.1	40.4	5	0.8	С	0	6	
4	R				666	7.7	41.7	590	0.9	С	16	48	
INT		150	2	46.7	5560	34	21.8	2199	0.4	В			

TCS	=	110 I	solate	ed Opei	ration	Degree	e of S	aturati	on fo	r Busir	ness Pe	eak VI(CF
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.10	32	0	41	1	6	0.10	32	0	41	1	6
1	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
1	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
2	L	0.07	47	0	16	0	6	0.07	47	0	16	0	6
2	Т	0.44	15	2	342	5	18	0.44	15	2	342	5	18
2	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
3	L	0.10	32	0	41	1	6	0.10	32	0	41	1	6
3	Т	0.00	15	0	5	0	6	0.00	15	0	5	0	6
3	R	0.34	5	1	91	2	6	0.34	5	1	91	2	6
4	L	0.15	22	0	60	1	6	0.15	22	0	60	1	6
4	Т	0.51	13	2	359	5	18	0.51	13	2	359	5	18
4	R	0.40	5	1	92	2	6	0.40	5	1	92	2	6
INT		0.51	56					0.51	56				

TCS = 110 Pedestrian - Vehicle Delay Business Peak File = VICF Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				102	0.2	5.3				102	0.2	5.3
1	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
1	R				108	0.7	24.1				108	0.7	24.1
2	L				102	0.0	0.8				102	0.0	0.8
2	Т	25	0.2	22.3	457	2.2	17.1	25	0.2	22.3	457	2.2	17.1
2	R				108	0.7	24.1				108	0.7	24.1
3	L				102	0.2	5.3				102	0.2	5.3
3	Т	25	0.2	22.3	7	0.0	14.7	25	0.2	22.3	7	0.0	14.7
3	R				108	0.7	24.1				108	0.7	24.1
4	L				102	0.3	11.2				102	0.3	11.2
4	Т	0	0.0		457	2.4	18.8	0	0.0		457	2.4	18.8
4	R				108	0.7	24.2				108	0.7	24.2
INT		75	0	22.3	1768	8	16.6	75	0	22.3	1768	0	0.0

TCS = 110 Pedestrian - Vehicle Delay - Stops Business Peak File = VICF ----- Delays & Stops after Co-ordinated Evaluation-----A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 1 L 102 0.0 0.0 0 0.0 А 0 6 0.3 25 0.2 22.3 0.0 0.4 2 0 6 1 T 7 Α 1 R 108 0.2 5.0 2 0.0 А 0 6 2 102 0 6 L 0.0 0.8 16 0.2 А 2 Т 25 0.2 22.3 457 2.2 17.1 342 0.7 В 5 18 2 R 108 0.7 24.1 91 0.8 В 1 6 3 L 0.0 0 6 102 0.0 0 0.0 А 3 T 0.2 22.3 25 0.0 0.0 0 0.0 А 0 6 7 0.0 3 R 108 0.0 0 6 0 0.0 А 4 L 102 0.3 11.2 60 0.6 А 1 6 4 T 457 18.8 359 0.8 18 0 0.0 2.4 В 5 4 R 108 0.7 24.2 92 0.9 В 1 6 INT 75 0 22.3 1768 963 0.5 7 13.2 А

Page | 110

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS = 110 Isolated Operation Degree of Saturation for AM Peak VICF --- Co-ordinated Cycle Length --- Isolated Cycle Length -----GT Delay Stops Queue Metre DS DS GT Delay Stops Queue Metre A M 6 0.21 106 0 20 1 L 0.21 134 0 16 1 1 6 0.68 80 9 1012 78 0.54 57 8 973 24 54 1 T 27 1 R 0.89 37 11 650 22 84 0.89 24 11 684 19 60 2 L 0.51 93 2 269 8 48 0.53 71 2 295 7 42 2 Т 0.03 15 0 5 0 6 0.02 15 0 5 0 6 6 276 2 261 30 R 0.89 10 6 10 36 0.89 8 9 1 3 3 L 84 1 135 0.37 99 162 36 0.34 24 5 3 T 0.89 23 1555 96 0.89 19 1572 48 47 38 38 78 3 R 0.82 5 3 124 5 18 0.66 5 2 97 3 12 4 L 0.05 37 15 6 0.05 0 1 28 0 15 1 6 4 0 4 4 T 0.02 27 0 0 6 0.01 24 0 6 4 R 0.89 24 11 552 20 66 0.89 19 9 569 17 54 INT 0.89 140 0.89 112 _____

TCS	=	110	Pedestr	ian -	- Vehi	cle Dela	ay AM	Peak	File =	VICF			
					I	solated	Opera	ation					
			Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
А	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				347	0.0	0.1				347	0.0	0.2
1	Т	50	0.9	64.1	1600	9.4	21.0	50	0.7	50.2	1600	8.3	18.6
1	R				702	11.3	57.7				702	10.5	54.0
2	L				588	2.0	12.0				588	1.9	11.6
2	Т	50	0.9	64.1	6	0.1	56.0	50	0.7	50.2	6	0.1	42.1
2	R				228	6.3	99.4				228	5.5	86.9
3	L				449	1.0	8.3				449	0.6	4.6
3	Т	50	0.9	64.1	1787	22.9	46.1	50	0.7	50.2	1787	18.9	38.0
3	R				109	3.0	98.1				109	1.6	52.7
4	L				22	0.2	38.7				22	0.2	31.6
4	Т	0	0.0		6	0.1	45.6	0	0.0		6	0.1	34.4
4	R				564	11.0	70.5				564	9.3	59.7
INT		150	3	64.1	6408	67	37.8	150	2	50.2	6408	0	0.0

TCS = 110 Pedestrian - Vehicle Delay - Stops AM Peak File = VICF ----- Delays & Stops after Co-ordinated Evaluation------A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 1 L 347 0.0 0.0 0 0.0 Α 0 6 1 T 50 0.9 64.1 1600 33.5 75.5 1961 1.2 F 27 78 0.0 1 R 702 0.9 4.6 25 А 1 6 2 L 2.0 12.0 588 269 0.5 Α 8 48 2 T 50 0.9 64.1 0.1 56.0 0.8 0 6 6 5 D 2 R 228 6.3 99.4 261 1.1 F 10 36 0 3 L 449 0.0 0.0 0.0 Α 0 6 3 T 50 0.9 64.1 1787 0 0.0 0 6 4.6 9.2 А 3 R 0.0 0 6 109 0.0 0.0 0 А 15 1 4 L 22 0.2 38.7 0.7 С 6 4 T 0 0.0 6 0.1 45.6 4 0.7 D 0 6 4 R 564 11.0 70.5 552 1.0 F 20 66

59 33.0 3092

С

0.5

150 3 64.1 6408

INT

Church Street Existing – CHURCHX.DAT

SCATES Program Version: 2013 Date: 02-NOV-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: CHURCHX CHURCH STREET 2010 EXISTING VOLUMES

			AM PE/	٩K				PM PE/	٩K			E	BUSINE	SS	
AM	Vol	Sat	Phse				Sat	Phse				Sat	Phse		
					Loss					Loss				Gain	
1L	~~ ~ 4				0.0					0.0				0	0.0
1T	2974	5880	A			3010	5880	A			2094	5880	A		
1R 2L															
2L 2T															
21 2R															
3L				0	0.0				0	0.0				0	0.0
3T	3194	5880	А	-		3191	5880	А	-		2235	5880	А	Ő	97
3R															
4L															
4T															
4R															
Туре						А		Walk		H%PM					
File	= CH	URCHX				1			2	2	3				
						2		28							
TCS =	= 19	56				3			2	2	3				
						4							-DEOT	-	
			TRIAN					ARANCI	=	TRAM I	JATA		EDEST	TRA	
Арр	P#		P#PM		#B	Wall		Clear					ACT	FAC	
1	0		0		0	0		0		0%			100	10	
	-	-													
	-		-		-	-		-							
4	2	U	20	2	20	6	2	22	(J %		ć	30	10	0
2 3 4	3 0 2	-	30 0 20	(30 0 20	6 0 6	(22 0 22 	(0% 0% 0% 		-	30 100 30	10 10 10	00

			AM PEA	٩K			F	M PEA	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	18	1750	Α	0	0.0	64	1750	Α	0	0.0	29	1750	Α	0	0.0
1T	2974	5670	Α	18	0	3010	5670	Α	65	0	2094	5670	Α	30	0
1R															
2L															
2T															
2R															
3L				0	0.0				0	0.0				0	0.0
ЗT	3194	5880	Α	0	120	3191	5880	AB	0	103	2235	5880	AB	0	79
ЗR	0	1800	S			0	1800	В			0	1800	В		
4L	67	1750	В			37	1750	BC			36	1750	BC		
4T		3600					3600					3600			
4R	152	3600	В			125	3600	С			97	3600	С		
Туре	= T4					А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	

Page | 113

File =	CHURCH	х		1 2	22	4.0	2	2	3	0 '	0	
TCS =	448			2 3 4	5 28	4.0 4.0	2 0	2 0	3 0	0 '	0	0 0
	PEDE	STRIAN V	OLUME	4 WALK-			-	AM DA	-	PED	-	TRAM
Арр	P#AM	P#PM	P#B	Walk	C	lear				FAC	т	FACT
1	50	50	30	6	10	6	0%			30)	100
2	0	0	0	0	0		0%			10	0	100
3	0	0	0	0	0		0%			10	0	100
4	50	50	30	6	2	2	0%			30)	100

		AM PE	٩K			F	M PE	٩K			1	BUSIN	ESS	
AM V	ol Sa	t Phse				Sat	Phse				Sat	Phse		
1L	9 175	D A	Gain O			1750	А		Loss 0.0		1750	А		Loss 0.0
	40 556		112		3028	5560	А	0		2159	5560	Α	40	0
	0 02 175				-	0 1750	S B			-	0 1750	S B		
	92 196					1960	B				1960	B		
	-	D B		~ ~		0	В			0	-	В	0	0.0
	30 175 12 567			0.0		1750 5670	A		0.0		1750 5670	A A		0.0
ЗR	0	D S				0	S			0	0	S		
	20 175				26 188		B B			16 142				
4T 2 4R	0 0				188		B				1960	B B		
Type =					Α	Min	ELT	H%AM	H%PM				R - PD	
File =	CHURCH	x			1	5 5	4.0		2 1		0' 0'	0	0	
TCS =	11					5 5	4.0			23		0	-	
					4	5	4.0	1	1	2	-	0	-	
Ann		STRIAN P#PM				<-CLEA < C			TRAM I	DATA		EDEST ACT	TR/ FA	
	0 0	Р#РМ 0	۳# 0		0 wai				0%			100		00
2	0	0	0			C)		0%			100		00
3 4	0 0	0 0	0		0 0	C)		0% 0%			100 100		00 00
		-	-		-	-								
Tidal N Lane 1 2 3 4 5 6 7 8 Apprch Depart File =	Type T T T No AM 0 CHURCH	Length 9999 9999 9999 Parki PM 0 0	0 Sat 1960 1960 1960 BUS 0 0	Туре М АМ	e Len(lo Pai Pi	rking M E	at ⁻	Type T T T No	3 Lengtl 9999 9999 9999 9999	(1 Sat 1960 1960 1960 1960 BUS) t Ty))	oe Le No Pa	ngth	Sat
N Lane 1 2 3 4 5 6 7 8 8 Apprch Depart	Type T T T AM O CHURCH: M	3 Length 9999 9999 9999 Parki PM 0 0	0 Sat 1960 1960 1960 BUS 0 0	Type AM TCS =	e Lenç Io Pai	rking A E	sus	Гуре I T T No AM 0 0	3 Lengtl 9999 9999 9999 9999 Park: PM 0 0	(n Sa ⁺ 196(196(196(196(196(196((() t Ty))) S A	oe Le No Pa	ngth arking	Sat
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File =	Type T T T AM O CHURCH: M	3 Length 9999 9999 9999 Parki PM 0 0 X	0 Sat 1960 1960 1960 BUS 0 0	Type AM TCS =	e Len(lo Pai Pi	rking A E	sus	Гуре I T T No AM 0 0	3 Lengtl 9999 9999 9999 9999 Park: PM 0	(n Sa ⁺ 196(196(196(196(196(196((() t Ty))) S A	oe Le No Pa	ngth arking	Sat
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File =	Type T T T No AM 0 CHURCH M	3 Length 9999 9999 9999 Parki PM 0 0 X	0 Sat 1960 1960 1960 BUS 0 0	Type AM TCS =	e Lenç Io Pai Pi - 1956	rking A E	sus	Гуре I T T AM O	3 Lengtl 9999 9999 9999 9999 Park: PM 0 0	ing BUS (1960 1960 1960 (0 (0) t Ty))) S A)	No Pa M 1	ngth arking PM	Sat BUS
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File = Type = Type = 	Type T T T No AM O CHURCH M A Down	3 Length 9999 9999 9999 Parki PM 0 X PPROACI	0 Sat 1960 1960 1960 BUS 0 0	Type AM TCS =	e Leng Io Pai Pi = 1956 	rking A E DACH 2	sus	Type I T T No AM 0 0	3 Lengtl 9999 9999 9999 Park: PM 0 0	(1 Sa ⁺ 196(196(196(196() t Ty))) S Al	No Pa M 1	arkin PM ROACH anes (Sat BUS Grade
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File = Type = Type = 	Type T T T No AM O CHURCHI M M Down O	3 Length 9999 9999 9999 Parki PM 0 X PPROACI Lanes 3	0 Sat 1960 1960 BUS 0 0 H 1 Grade 0	Type AM TCS = Dowr	e Lenç lo Pai Pi = 1956 APPR(1 Lai	rking A E DACH 2 nes Gr	Sus	Type I T T AM O O O O O V O V O V O V O V O V O V O	3 Lengtl 9999 9999 9999 9999 9999 9999 0 0 0 0	(n Sa ⁺ 196(196(196(196(196(196(0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0)) t Ty))) S A)) 	No Pa M 1 APPI wn La	arkin PM ROACH anes 0 2	Sat BUS Grade 0
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File = Type = Type = Tidal N Lane 1	Type T T T AM O CHURCH M M Down O Type LT	3 Length 9999 9999 9999 Parki PM 0 0 X PPROACI Lanes 3 Length 9999	0 Sat 1960 1960 1960 BUS 0 0 0 H 1 Grade 0 Sat 1750	Type AM TCS = Dowr	e Lenç lo Pai Pi = 1956 APPR(1 Lai	rking A E DACH 2	Sus	Гуре I T T AM O O O O Cype I T	3 Lengtl 9999 9999 9999 9999 Park: PM 0 0 0 0 0 0 2 0 0 0 0 0 0	(1 Sa ⁺ 196(196(196(196(CH 3 5 Grac (1 Sa ⁺ 196() t Ty)))) de Dov) t Ty))	No Pa M I APPI Wn La De Lei LR 93	arkin PM ROACH anes 2 ngth 999	Sat BUS Grade 0 Sat 1750
N Lane 1 2 3 4 5 6 7 8 Apprch Depart File = Type = Type = Tidal N Lane	Type T T T No AM O CHURCH M M Down O Type	3 Length 9999 9999 9999 Parki PM 0 0 X PPROACI Lanes 3 Length 9999	0 Sat 1960 1960 1960 BUS 0 0 0 H 1 Grade 0 Sat 1750	Type AM TCS = Dowr	e Lenç lo Pai Pi = 1956 APPR(1 Lai	rking A E DACH 2 nes Gr	Sus	Гуре I T T AM O O O O Cype I T	3 Lengtl 9999 9999 9999 9999 Park: PM 0 0 0	(1 Sa ⁺ 196(196(196(196(CH 3 5 Grac (1 Sa ⁺ 196() t Ty)))) de Dov) t Ty))	No Pa M I APPI Wn La De Lei LR 93	arkin PM ROACH anes 0 2 ngth	Sat BUS Grade 0 Sat 1750

Page | 115

3 4 5	Т	9999	1960				Т	9999	1960			
6												
7												
8												
	No	Parkir	ια	No	Parki	na	No	Parki	na	No	Parkir	na
					1 01 11 1	ng	110	ιαικτ	ng	110	ιαικτι	iy
	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS
Apprch			-			-			-			-
Apprch Depart	AM	PM	BUS			-	AM	PM	BUS	AM	PM	BUS
	AM O O	PM 0 0	BUS 0			-	AM O	PM O	BUS 0	AM O	PM O	BUS 0
Depart	AM O O HURCHX	PM 0 0	BUS 0 0			-	AM O	PM O	BUS 0	AM O	PM O	BUS 0

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade N 0 3 0 0 2 0 0 3 0 0 2 0 Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 L 90 1750 LT 9999 1750 L 9999 1750 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1850 T 9999 1960 1 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM

 Apprch
 0
 0
 0
 0

 Depart
 0
 0
 0
 0
 File = CHURCHX Type = COCO TCS = 11 PM PEAK AM PEAK BUSINESS GT% GT% CL CL GT% GT% CL CL GT% GT% CL CL CL GT% GT% CL CL CL CCRD ISOL CORD ISOL CORD ISOL CORD ISOL CORD ISOL CORD ISOL Ph CORD ISOL
 0.0
 0.0
 105
 105
 0.0
 0.0
 110
 140
 0.0
 0.0
 108
 123

 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28#
 28# А 28# 28# 28# 28# 28# 28# в С D Е

 E
 G
 dlay dlay
 dlay dlay
 dlay dlay

 G
 0.6
 0.6
 0.7
 0.9
 0.7
 0.8

 Seq
 AB
 dlay
 18
 AB
 dlay
 18
 14
 AB
 dlay
 9
 8

 Stps
 3.7
 3.7
 Stps
 3.6
 2.8
 Stps
 1.9
 1.7

 Mode
 0
 DS
 0.80
 0.80
 0
 DS
 0.76
 0.56
 0.53

 File
 CHUPCHY
 Bay
 Bay
 Slip
 Slip
 Type

Bay Bay Slip Slip Req Act Req Act File = CHURCHX Туре TCS = 1956 М _____ PM PEAK AM PEAK BUSINESS
 Ph
 GT%
 CL
 CL
 GT%
 GT%
 CL
 CL
 GT%
 CL
 CL
 GT%
 CL
 CL
 GT%
 CL
 < Ph CORD ISOL 108 123 D Е

 F
 dlay dlay
 dlay dlay
 dlay dlay
 dlay dlay

 G
 1.3
 1.3
 1.4
 1.8
 0.8
 0.9

 Seq
 AB
 dlay
 10
 10
 ABC
 dlay
 10
 9
 ABC
 dlay
 6
 6

 Stps
 2.6
 2.6
 Stps
 2.6
 2.1
 Stps
 1.4
 1.2

 Mode
 1
 DS
 0.69
 0.69
 1
 DS
 0.72
 0.68
 1
 DS
 0.51
 0.49

 File = CHURCHX
 A
 Bay
 Bay
 Slip
 Slip
 Type

Req Act Req Act 10 0 TCS = 448Τ4 1

Page | 117

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia November 2012

B 19.1 19.1 21 C D	RD ISOL CORD ISOL	BUSINESS GT% GT% CL CL CORD ISOL CORD ISOL 80.8 77.7 108 48 19.2 22.3
E F G Seq AB dlay 20 Stps 3.8 Mode CHURCHX A TCS = 11 CHURCHX A CCS = 11 CCS = 111 CCS = 111 CCS = 1111 CCS = 1111 CCS = 11111 CCS = 11111111111111111111111111111111	dlay dlay 0.0 0.0 AB dlay 23 23 Stps 4.0 4.0 0 DS 0.80 0.80 Bay Bay Slip Sli Req Act Req Act 10 0 60 90 17 0	0.0 0.0 AB dlay 12 7 Stps 2.0 2.5 0 DS 0.55 0.61 p Type COCO
	Bays if all interse	ctions are optimised
TCS = 1956 Isolated Operation Do Co-ordinated Cycle Lo A M DS GT Delay Stops Qu 1 L	ength Isol	
1 T 0.74 78 8 1682 1 R 2 L 2 T 2 R 3 L	27 60 0.68 108	7 1322 27 60
3 T 0.78 78 9 1909 3 R 4 L 4 T 4 R	29 60 0.72 108	7 1500 29 60
INT 0.78 110	0.72 140	
TCS = 1956 Pedestrian - Vehicl Iso Co-ordinated Cycle Lo A M Peds Delay Aver Vehs Do	lated Operation ength Isol	ated Cycle Length
1 L 1 T 0 0.0 3070	8.3 9.7 0 0.0	-
1 R 2 L 2 T 30 0.4 49.2 2 R 3 L	30 0.5	64.1
	9.4 10.4 0 0.0	3255 7.4 8.2

INT 50 1 49.2 6325 18 10.1 50 1 64.1 6325 0 0.	4 T 4 B	20	0.3	49.2		20	0.4	64.1		
	INT									

Addendum - Arterial Road Network

		1956											
A 1						Delay							
1 1	T R	0	0.0		3070	0.0	0.0	0	0.0	А	0	6	
2 2	L T R	30	0.4	49.2									
3 3 3	L T R	0	0.0		3255	10.3	11.4	1139	0.4	А	29	60	
4	L T R	20		49.2									
INT 		50	1			10 				A			
TCS	=	1956											
	М	DS				Length Queue							
1 1 1	L T R	0.52	76	4	908	19	42	0.50	91	4	798	19	42
2 2 2 3	L T R L												
3 3 4	T R L	0.56	76	5	1009	20	42	0.53	91	4	886	20	42
	T R	0.56	108					0.53	123				
TCS	=	1956	Pedest	rian		cle Del solated			Peak I	ile =	CHURCH	IX	
						Length							
A 1	ML	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1 1 2	T R L	0	0.0		2157	4.5	7.5	0	0.0		2157	3.9	6.6
2 2	T R	30	0.4	48.2				30	0.5	55.6			
3 3 3	L T R	0	0.0		2302	5.0	7.8	0	0.0		2302	4.4	6.8
	L T R	20	0.3	48.2				20	0.3	55.6			
INT 		50	1	48.2		9		50	1	55.6	4459	0	0.0

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS	=	1956 P					2	•			File =	CHURCHX
А	М	Peds	-		•							
1	L		-			-						
1	Т	0	0.0		2157	0.0	0.0	0	0.0	Α	0	6
1	R											
2	L											
2	Т	30	0.4	48.2								
2	R											
3	L											
3	Т	0	0.0		2302	0.0	0.0	0	0.0	А	0	6
3	R											
4	L											
4	Т	20	0.3	48.2								
4	R											
INT		50	1	48.2	4459	0	0.0	0	0.0	Α		

TCS = 1956 Isolated Operation Degree of Saturation for AM Peak CHURCHX --- Co-ordinated Cycle Length ---- Isolated Cycle Length -----DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre А Μ 1 L 1 T 0.74 73 8 1718 27 54 0.74 73 8 1718 27 54 R 1 2 L 2 Т 2 R 3 L 0.80 73 10 2004 29 60 0.80 73 10 2004 Т 29 3 60 3 R 4 L 4 T 4 R INT 0.80 105 0.80 105 _____ TCS = 1956 Pedestrian - Vehicle Delay AM Peak File = CHURCHX Isolated Operation --- Co-ordinated Cycle Length ---- Isolated Cycle Length -----Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver А М 1 L Т 0 0.0 3033 8.5 10.1 0 0.0 3033 8.5 10.1 1 1 R 2 L 2 Т 30 0.4 46.7 30 0.4 46.7 2 R 3 L 0.0 3258 9.9 10.9 0 0.0 3258 9.9 10.9 3 T 0 3 R 4 L 4 Т 20 0.3 46.7 20 0.3 46.7 4 R 50 1 46.7 6291 18 10.5 50 1 46.7 6291 0 0.0 INT TCS = 1956 Pedestrian - Vehicle Delay - Stops AM Peak File = CHURCHX ----- Delays & Stops after Co-ordinated Evaluation------A M Peds Delay Aver Vehs Delay Aver Stops Aver LOS 1 L 0 0.0 3033 0.0 0.0 0 0.0 A 0 1 T 6 R 1 2 L 2 Т 30 0.4 46.7 2 R 3 L 1.5 1.7 265 0.1 A 3 Т 0 0.0 3258 8 18 3 R 4 L 4 T 20 0.3 46.7 4 R INT 50 1 46.7 6291 2 0.9 265 0.0 A

November 2012

TCS	=	448 I	solate	ed Oper	ration	Degree	e of Sa	turati	on fo	r PM Pe	eak CHU	JRCHX	
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength –	
Α	Μ	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.72	85	0	31	0	6	0.67	114	0	24	0	48
1	Т	0.72	85	6	1436	22	48	0.68	114	5	1143	22	48
1	R												
2	L												
2	Т												
2	R												
3	L												
3	т	0.65	94	2	985	15	30	0.63	123	2	789	15	36
3	R												
4	L	0.36	17	0	30	1	6	0.45	18	1	31	1	12
4	т												
4	R	0.56	8	2	109	4	18	0.68	9	2	110	5	18
INT		0.72	110					0.68	140				

TCS	=	448	Pedestr	ian			-		Peak F	ile =	CHURCH	łX	
					Is	solated	0pera	ation					
			Co-ordi	.nated	Cycle	Length			- Isola	ited Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				30	0.0	4.9				30	0.0	4.3
1	Т	30	0.4	48.2	2157	2.9	4.9	30	0.5	55.6	2157	2.6	4.3
1	R												
2	L												
2	Т	C	0.0					0	0.0				
2	R												
3	L												
3	Т	C	0.0		2302	1.3	2.1	0	0.0		2302	1.2	1.8
3	R												
4	L				36	0.4	39.9				36	0.5	47.5
4	Т	30	0.4	48.2				30	0.5	55.6			
4	R				97	1.3	47.5				97	1.5	55.1
INT		60) 1	48.2	4622	6	4.6	60	1	55.6	4622	0	0.0

			Pedest - Dela										RCHX
А			Delay										
	L			40.0		0.0	0.0		0.0	A	0	6	
	Т	30	0.4	48.2	2157	0.0	0.0	0	0.0	A	0	6	
	R L												
	Т	C	0.0										
2	R												
	L												
	Т	0	0.0		2302	0.1	0.2	36	0.0	A	1	6	
	R L				36	0.4	39.9	29	0.8	С	1	6	
	T	30	0.4	48.2		0.4	59.9	29	0.0	U	1	0	
	R	00	011	1012		1.3	47.5	83	0.9	D	3	12	
INT		60) 1	48.2	4622		1.4						
TCS	=	448	Isolat	ed Ope	ration	Degree	e of Sa	aturat	ion fo	r AM Pe	eak CHI	JRCHX	
			Co-ord										
	М	DS		Delay	Stops	Queue	Metre	DS	GT	Delay			
	L	0.39		0	5	0 17	6	0.39	85	0	5		6
	T R	0.67	85	4	1155	17	42	0.67	85	4	1155	17	42
	L												
	Т												
	R												
	L									_			
	Т	0.69	85	4	1286	18	42	0.69	85	4	1286	18	42
3 4	R L	0.69	12	1	59	2	12	0.69	12	1	59	2	12
	Т	0.00		•		_		0100		•	00	-	. –
4	R			2	128	4	18	0.46	12	2	128	4	18
INT		0.69	105					0.69	105				
TCS	=	448	Pedest	rian					File =	CHURCH	łX		
			Co-ord	inatod		solated				ated C		anath	
А	М		Delay										
1	L	1 ouo	Doray	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0			Doray	/	18		
1	Т	50	0.6	46.7					0.6	46.7			
1	R												
2	L												
2 2	Т	C	0.0					0	0.0				
	R L												
	T	C	0.0		3258	4.1	4.5	0	0.0		3258	4.1	4.5
	R	-						-					
4	L				67	0.9	45.9				67	0.9	45.9
	Т	50	0.6	46.7				50	0.6	46.7			
	R	100		16 7	152		43.2		4	16 7	152		
INT) 1 			10			1		6528	0	

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS	=	448 P				cle Del fter Co	2	•				НХ
A	м	Peds	-		•					LOS		
1	L		,		18	0.0		4	0.2	A	0	6
1	Т	50	0.6	46.7	3033	4.1	4.9	715	0.2	А	17	42
1	R											
2	L											
2	Т	0	0.0									
2	R											
3	L											
3	Т	0	0.0		3258	0.0	0.0	0	0.0	А	0	6
3	R											
4	L				67	0.9	45.9	59	0.9	D	2	12
4	Т	50	0.6	46.7								
4	R				152	1.8	43.2	128	0.8	D	4	18
INT		100	1	46.7	6528	7	3.8	906	0.1	А		

TCS	=	11 I	solat	ed Opei	ration	Degree	e of Sa	turati	on foi	° PM P€	ak CHL	JRCHX	
		C	o-ord:	inated	Cycle	Length	ו ו		Isola	ated Cy	/cle Le	ength ·	
Α	Μ	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.40	83	0	5	0	6	0.40	83	0	5	0	6
1	Т	0.75	83	7	1568	23	54	0.75	83	7	1568	23	54
1	R												
2	L	0.60	19	2	153	5	30	0.60	19	2	153	5	30
2	Т	0.80	19	4	258	7	48	0.80	19	4	258	7	48
2	R												
3	L	0.80	83	1	119	2	54	0.80	83	1	119	2	54
3	Т	0.80	83	7	1763	24	54	0.80	83	7	1763	24	54
3	R												
4	L	0.09	19	0	20	1	6	0.09	19	0	20	1	6
4	Т	0.56	19	2	156	5	30	0.56	19	2	156	5	30
4	R												
INT		0.80	110					0.80	110				

TCS = 11 Pedestrian - Vehicle Delay PM Peak File = CHURCHX Isolated Operation

		(Co-ordi	nated	Cycle	Length			Isola	ted Cy	cle Le	ngth -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				17	0.0	4.8				17	0.0	4.8
1	Т	0	0.0		3089	6.6	7.7	0	0.0		3089	6.6	7.7
1	R												
2	L				184	2.1	41.9				184	2.1	41.9
2	Т	0	0.0		272	3.9	51.7	0	0.0		272	3.9	51.7
2	R												
3	L				206	0.6	10.6				206	0.6	10.6
3	Т	0	0.0		3174	7.4	8.4	0	0.0		3174	7.4	8.4
3	R												
4	L				26	0.3	38.0				26	0.3	38.0
4	Т	0	0.0		190	2.2	41.5	0	0.0		190	2.2	41.5
4	R												
INT					7158	23	11.6				7158	0	0.0

TCS = 11 Pedestrian - Vehicle Delay - Stops PM Peak File = CHURCHX ----- Delays & Stops after Co-ordinated Evaluation-----

Α	Μ	Peds	Delay	Aver Vehs	Delay	Aver	Stops	Aver	LOS			
1	L			17	0.0	1.6	2	0.1	Α	0	6	
1	Т	0	0.0	3089	1.4	1.6	345	0.1	А	11	24	
1	R											
2	L			184	2.1	41.9	153	0.8	С	5	30	
2	Т	0	0.0	272	3.9	51.7	258	0.9	D	7	48	
2	R											
3	L			206	0.1	1.6	0	0.0	Α	0	6	
3	Т	0	0.0	3174	1.4	1.6	0	0.0	Α	0	6	
3	R											
4	L			26	0.3	38.0	20	0.8	С	1	6	
4	Т	0	0.0	190	2.2	41.5	156	0.8	С	5	30	
4	R											
INT				7158	11	5.7	933	0.1	Α			

тсѕ	=	11 I	solate	ed Opei	ration	Degree	e of Sa	turati	on fo	- Busir	ness Pe	eak CHL	JRCHX
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.24	83	0	2	0	6	0.26	33	0	3	0	6
1	Т	0.53	83	3	771	15	36	0.58	33	2	1030	9	24
1	R												
2	L	0.51	17	2	113	3	24	0.56	7	1	115	2	12
2	Т	0.55	17	2	137	4	30	0.61	7	1	140	2	12
2	R												
3	L	0.54	83	0	43	1	102	0.60	33	0	57	0	24
3	Т	0.55	83	3	799	15	36	0.61	33	2	1067	9	24
3	R												
4	L	0.06	17	0	12	0	6	0.07	7	0	13	0	6
4	Т	0.48	17	2	119	4	24	0.53	7	1	121	2	12
4	R												
INT		0.55	108					0.61	48				

TCS	=	11 P	edest	rian -			-		Peak F	ile =	CHURCH	łX	
						solated					. .		
						Length							
Α	М	Peds	Delay	Aver		Delay			Delay	Aver	Veh	-	
1	L				9	0.0	3.5				9	0.0	2.8
1	Т	0	0.0		2224	2.9	4.8	0	0.0		2224	2.3	3.8
1	R												
2	L				137	1.6	41 8				137	0.7	19.3
2	Т	0	0.0		165				0.0		165		19.4
2	R	Ŭ	0.0		100	1.5	72.1	Ŭ	0.0		100	0.5	1014
					100	0 0	1 0				100	0 1	2 0
3	L				120						120		
3	Т	0	0.0		2244	3.1	4.9	0	0.0		2244	2.4	3.9
3	R												
4	L				16						16		17.9
4	Т	0	0.0		145	1.7	41.6	0	0.0		145	0.8	19.2
4	R												
INT					5060	12	8.2				5060	0	0.0
TCS	=	11 P											СНХ
						fter Co							
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS			
1	L				9	0.0	1.0	1	0.1	А	0	6	
1	Т	0	0.0		2224		1.0	176		A	5	12	
1	R												
2	L				137	1.6	41 8	113	0.8	С	3	24	
2	Т	0	0.0		165					D			
2		0	0.0		105	1.5	42.1	107	0.0	D	4	50	
	R				100	0.0	~ ~	•	~ ~		0	0	
3	L				120		0.9			A		6	
3	Т	0	0.0		2244	0.6	0.9	0	0.0	Α	0	6	
3	R												
4	L				16	0.2	38.9	12	0.8	С	0	6	
4	Т	0	0.0		145	1.7	41.6	119	0.8	С	4	24	
4	R												
INT					5060	7	4.7	558	0.1	А			
TCS	=	11 I C				Degree Length							
Α	М	DS	GT			Queue I						Queue	
1	L	0.24	81	0	2	0	6	0.24	81	0	2	0	6
1	Т	0.75	81	6	1576	21	48	0.75	81	6	1576	21	48
1	R	0.75	01	0	10/0	<u> </u>		0.75	01	0	1070	<u> </u>	-10
		0 70	10	~	400	-	~~	0 70	10	~	100	-	00
2	L	0.76	16	3	192	5	36	0.76	16	3	192	5	36
2	Т	0.65	16	2	164	5	30	0.65	16	2	164	5	30
2	R												
3	L	0.76	81	0	69	1	48	0.76	81	0	69	1	48
3	Т	0.76	81	6	1583	21	48	0.76	81	6	1583	21	48
3	D												

Shepherds Bay - Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

0.07 16 0 15 0.73 16 3 196

0.07 16

0.76 105

3 R

4 L

4 T 4 R INT

0 6 0.07 16 0 15 0 6 6 36 0.73 16 3 196 6 36

105

0.76

Page | 131

.

TCS	=	11	Pedestr	ian - Vehio Is	cle Dela solated			File =	CHURCH	Х		
			Co-ordi	nated Cycle				- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L			9	0.0	3.4				9	0.0	3.4
1	Т	0	0.0	3203	5.9	6.6	0	0.0		3203	5.9	6.6
1	R											
2	L			204	2.8	49.4				204	2.8	49.4
2	Т	0	0.0	194	2.3	41.8	0	0.0		194	2.3	41.8
2	R											
3	L			133	0.3	8.1				133	0.3	8.1
3	Т	0	0.0	3174	5.9	6.7	0	0.0		3174	5.9	6.7
3	R											
4	L			20	0.2	38.1				20	0.2	38.1
4	Т	0	0.0	219	2.8	45.5	0	0.0		219	2.8	45.5
4	R											
INT				7156	20	10.1				7156	0	0.0

TCS	=	11 F		ian - Vehio s & Stops a [.]		-	-					
Δ	М	Peds	5	Aver Vehs								
1	ï	1 000	Deruy	9	0.0	4.7	4	0.4	A	0	6	
1	Т	0	0.0	3203	4.2		1247	0.4	A	21	48	
1	R	Ŭ	0.0	0200	716	4.7	1641	0.4	~	21	40	
2	1			204	2.8	49.4	192	0.9	D	5	36	
2	Т	0	0 0					0.9	-	5		
_	•	0	0.0	194	2.3	41.8	164	0.8	С	Э	30	
2	R										_	
3	L			133	0.0	1.3	0	0.0	Α	0	6	
3	Т	0	0.0	3174	1.1	1.3	0	0.0	Α	0	6	
3	R											
4	L			20	0.2	38.1	15	0.8	С	0	6	
4	т	0	0.0	219	2.8	45.5	196	0.9	D	6	36	
4	R											
INT				7156	13	6.8	1818	0.3	А			

Church Street Future without Development – CHURCHB.DAT

SCATES Program Version: 2013 Date: 02-NOV-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: CHURCHB CHURCH STREET 2031 BITZIOS BASE VOLUMES

			AM PEA	٩K			1	PM PEA	٩K	PM PEAK ers Vol Sat Phse MocV Pers					
AM	Vol	Sat	Phse			Vol	Sat	Phse			Vol	Sat	Phse		
					Loss					Loss				Gain	
1L 1T	2007	5880	^	-	0.0	3825	E000	А	-	0.0		5880	А	0	0.0
1R	3007	5660	A			3020	0000	A			2419	5000	A		
2L															
2T															
2R															
3L				0	0.0				0	0.0				0	0.0
ЗT	3490	5880	Α	0	261	3695	5880	Α	0	165	2515	5880	Α	0	149
ЗR															
4L															
4T															
4R Type	– M					А		Walk	H%AM	н⊱DМ	H%B				
• •		URCHB				1		Wain	2	2					
1 110	011	Onone				2		28	-	-	0				
TCS =	= 19	56				3			2	2	3				
						4									
		PEDES	TRIAN	VOLU	ΛE	WAL	(-CLE/	ARANCE		TRAM I	DATA	PE	EDEST	TR/	۸M
Арр		AM	P#PM		#B	Walk		Clear					ACT	FAG	
1	0		0		D	0		0		0%			100	1(
2	-	0	30		30	6	-	22)% >>		-	30	1(
3	0		0)	0 6		0)%]%			100	10	
4	2 	0	20	<u>،</u>	20			22)% 		: 	30 	1(

			AM PEA	٩K			F	PM PE	٩K			E	BUSINE	SS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	19	1750	Α	0	0.0	101	1750	A	0	0.0	42	1750	Α	0	0.0
1T	3068	5670	Α	0	1	3715	5670	Α	0	9	2374	5670	Α	0	4
1R															
2L															
2T															
2R															
3L				0	0.0				0	0.0				0	0.0
ЗT	3492	5880	Α	180	0	3727	5880	AB	418	0	2526	5880	AB	211	0
ЗR	0	1800	S			0	1800	В			0	1800	В		
4L	112	1750	В			39	1750	BC			53	1750	BC		
4T		3600					3600					3600			
4R	259	3600	В			132	3600	С			137	3600	С		
Туре	= T4					А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	

Page | 134

File =	CHURCH	В		1 2	22	4.0	2	2	3	0 '	0	
TCS =	448			3	5 28	4.0 4.0	2 0	2 0	3 0	0 '	0	0
	PEDE	STRIAN V	OLUME	4 WALK-			-	AM DA	-	PED	-	TRAM
Арр	P#AM	P#PM	P#B	Walk	С	lear				FAC	Т	FACT
1	50	50	30	6	1	6	0%			30		100
2	0	0	0	0	0		0%			10	0	100
3	0	0	0	0	0		0%			10	0	100
4	50	50	30	6	2	2	0%			30		100

		AK									BUSIN		
AM Vol Sa	at Phse	Gain L		VOI	Sat	Phse		Pers Loss		Sat	Phse	MocV Gain	
1L 4 175		0	0.0		1750	Α	0	0.0	6			0	0.0
1T 3115 556 1R 0			60 3		5560 0	A S		735		5560 0			281
2L 197 175				-	1750	B			-	1750	-		
2T 225 196	60 B				1960	В			176	1960	В		
2R 0 3L 134 175			0.0		0 1750	B		0.0	0		-	0	0.0
3T 3121 567		-			5670	A		0.0		5670		-	0.0
3R 0	0 S				0	S			0	-	-		
4L 18 175 4T 207 196					1750 1960	B B			14	1750 1960			
41 207 190 4R 0				0		B				1900			
Type = COCO				А				H%PM			L-PD	R - PD	
File = CHURCH	ΙB			1	5 5	4.0		2 1		0' 0'	0 0	0 0	
TCS = 11						4.0			2			-	
				4	5	4.0	1	1	2	-	0	-	
	ESTRIAN P#PM				<-CLEA			TRAM D	DATA			TRA FAC	
App P#AM 1 O	Р#РМ 0	0	5	wair 0	0			0%			ACT 100	гац 1(
2 0	0	0		0	0)		0%			100	10	
3 0 4 0	0 0	0 0		0 0	0			0% 0%			100 100	10	
		-		-	-							1(
N Lane Type 1 T 2 T 3 T	Length 9999	0 Sat 1960					Гуре	3) Sat) t Ty			
AM Apprch O Depart O File = CHURCH Type = M	Parki PM 0 0	1960 ng BUS 0 0	AM -CS =	P١	л в	US	T No AM O O		1960 ing BUS ()) S Al))		arkinç PM	
5 6 7 8 MM Apprch 0 Depart 0 File = CHURCH Type = M	o Parki PM O IB	1960 ng BUS 0 0	AM CS =	PN 1956	л В 5 		T AM O O	9999 Park: PM 0 0	1960 ing BUS ()) ())	M	PM	BUS
5 6 7 8 MM Apprch 0 Depart 0 File = CHURCH Type = M	o Parki PM 0 1B 	1960 ng BUS 0 0 1 	AM -CS =	۹۹ 1956 	и В 5 		T AM O O	9999 Park: PM 0 0	1960 ing BUS ((()) ())	M APP	PM ROACH	BUS
5 6 7 8 M Apprch 0 Depart 0 File = CHURCH Type = M Tidal Down	o Parki PM O IB	1960 ng BUS 0 0 1 	AM -CS =	۹۹ 1956 	и В 5 		T AM O O	99999 Park: PM 0 0	1960 ing BUS ((()) S Al)) de Dov	M APP	PM ROACH	BUS
5 6 7 8 M Apprch 0 Depart 0 File = CHURCH Type = M Tidal Down N 0 Lane Type	o Parki PM 0 1B APPROAC Lanes 3 Length	1960 ng BUS 0 0 1 	AM TCS = Down	۹۸ 1956 APPRC Lar	и В 5 	ade [T AM O O O Sown O Type I	99999 Park: PM 0 0 	1960 ing BUS ((CH 3 s Grac (n Sat)) S Al)) de Dov) t Ty	APPI wn Li pe Lei	PM ROACH anes (2 ngth	BUS 4 Grade 0 Sat
5 6 7 8 M Apprch 0 Depart 0 File = CHURCH Type = M Tidal Down N 0 Lane Type	Parki PM 0 HB APPROAC Lanes 3 Length 9999	1960 ng BUS 0 0 1 H 1 Grade 0 Sat 1750	AM TCS = Down	۹۸ 1956 APPRC Lar) DACH 2 Des Gr	ade [T AM O O O O Vype I T	99999 Park: PM 0 0 	1960 ing BUS ((CH 3 s Grac (1 Sa ⁺ 1960)) S Al)) de Dov) t Ty))	APPI wn La pe Le LR 99	PM ROACH anes (2 ngth 999	BUS 4 Grade 0 Sat

Page | 136

November 2012

3 4 5	Т	9999	1960				т	9999	1960			
6												
7												
8												
	No	Parki	ng	No	Parki	ng	No	Parki	ng	No	Parkir	ng
	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS
Apprch	0	0	0				0	0	0	0	0	0
Depart	0	0	0				0	0	0	0	0	0
File = C	HURCHI	В										
Type = T	4		-	TCS =	448							

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade 0 3 0 0 2 0 0 3 0 0 2 0 Ν Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 L 90 1750 LT 9999 1750 L 9999 1750 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1850 T 9999 1960 1 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM

 Apprch
 0
 0
 0
 0

 Depart
 0
 0
 0
 0
 File = CHURCHB Type = COCO TCS = 11 AM PEAK PM PEAK BUSINESS GT% GT% CL CL GT% GT% CL CL GT% GT% CL CL CL GT% GT% CL CL CL CCRD ISOL CORD ISOL CORD ISOL CORD ISOL CORD ISOL CORD ISOL Ph CORD ISOL
 0.0
 0.0
 105
 105
 0.0
 0.0
 128
 140
 0.0
 0.0
 101
 109
 А 28# 28# 28# 28# 28# 28# в С D Е

 E
 G
 dlay dlay
 dlay dlay
 dlay dlay
 dlay dlay

 G
 0.6
 0.6
 0.8
 0.9
 0.6
 0.7

 Seq
 AB
 dlay 21
 21
 AB
 dlay 25
 22
 AB
 dlay 13
 12

 Stps
 4.3
 4.3
 Stps
 5.0
 4.5
 Stps
 2.6
 2.4

 Mode
 0
 DS
 0.87
 0
 DS
 0.88
 0.86
 0
 DS
 0.64
 0.62

 Eilo
 CHURCHE
 Bay
 Bay
 Slip
 Slip
 Type

Bay Bay Slip Slip Req Act Req Act File = CHURCHB Type TCS = 1956 Μ -----. PM PEAK BUSINESS AM PEAK
 GT%
 CL
 CL
 GT%
 GT%
 CL
 CL
 GT%
 CL
 CL
 GT%
 CL
 CL
 GT%
 GT%
 CL
 Ph CORD ISOL 101 109 Α B 20.9 20.9 С D Е

 F
 dlay dlay
 dlay dlay
 dlay dlay
 dlay dlay

 G
 1.3
 1.3
 1.6
 1.8
 0.7
 0.8

 Seq
 AB
 dlay
 19
 19
 ABC
 dlay
 15
 14
 ABC
 dlay
 8
 8

 Stps
 3.9
 3.9
 Stps
 3.6
 3.4
 Stps
 1.9
 1.8

 Mode
 1
 DS
 0.81
 0.81
 1
 DS
 0.59
 0.58

 File = CHURCHB
 A
 Bay
 Bay
 Slip
 Slip
 Type

Req Act Req Act 10 0 TCS = 448Τ4 1

Page | 138

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia November 2012

AM PE Ph GT% GT% CORD ISOL A 81.0 81.0 B 19.0 19.0 C D	CL CL GT CORD ISOL COR 105 105 78.		CL GT% GT% ISOL CORD ISOL	
	3.8 3.8	AB dlay 26 Stps 4.0 O DS 0.80 Bay Bay Sli Req Act Rec 10 58 18	0.0 23 AB 4.2 0.81 0 p Slip Act 0 90 5 0	Stps 2.1 2.7 DS 0.56 0.62 Type COCO
		Bays if all in	tersections are	
	nated Cycle Le	gree of Saturati ngth eue Metre DS	Isolated Cycle	Length
1 T 0.88 96 1 R 2 L 2 T 2 R	13 2608	35 72 0.86	108 12 23	84 35 72
3 L 3 T 0.85 96 3 R 4 L 4 T 4 R	12 2362	34 72 0.83	108 11 210	60 34 72
INT 0.88 128		0.86	140	
TCS = 1956 Pedestr		e Delay PM Peak F ated Operation	ile = CHURCHB	
A M Peds Delay		ength lay Aver Peds		
1 L 1 T 0 0.0 1 R 2 L	3901 1	2.9 11.9 0	0.0 39	01 11.8 10.9
2 T 30 0.5 2 R	58.1	30	0.5 64.1	
3 L 3 T 0 0.0 3 R 4 L	3769 1	1.7 11.1 0	0.0 37	69 10.7 10.2

4 T 20 4 B	0.3	58.1				20	0.4	64.1			
	1	58.1	7670	25	11.5	50	1	64.1	7670	0	0.0

Addendum - Arterial Road Network

		1956 I											
A 1		Peds				Delay							
1 1	T R	0	0.0		3901	0.0	0.0	0	0.0	A	0	6	
2	L T R L	30	0.5	58.1									
	T R L	0	0.0		3769	11.9	11.3	1325	0.4	A	34	72	
	Т	20	0.3	58.1									
INT 		50	1	58.1	7670	12	5.6	1325	0.2	A			
тсѕ	=	1956	Isolate	ed Oper	ration	Dearee	of Sa	aturat:	ion for	- Busir	iess Pe	ak CHU	RCHB
A			Co-ord:	inated	Cycle	Length Queue			- Isola	ated Cy	cle Le	ngth -	
1	L T	0.62	69	6	1233	22	48	0.60	77	6	1143	22	48
	R L T R L												
3 3 4 4	T R L T	0.64	69	7	1320	23	48	0.62	77	6	1223	23	48
4 INT		0.64	101					0.62	109				
TOO	_	1056	Dadaati	aian	Vobi			incoo	Deale	-ilo -		D	
105	-	1956 I			I	solated Length	Opera	ation					
A 1	М					Delay							
1	L T R	0	0.0		2492	6.1	8.8	0	0.0		2492	5.6	8.2
2 2 2	L T R	30	0.4	44.7				30	0.4	48.7			
3	L T	0	0.0		2590	6.5	9.1	0	0.0		2590	6.0	8.4
4 4	R L T	20	0.2	44.7				20	0.3	48.7			
4 INT	R	50	1	44.7		13					5082	0	0.0

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

		1956 P					2	•			File =	CHURCHB
		Peds	-		•							
1	L		-			-						
1	Т	0	0.0		2492	0.0	0.0	0	0.0	Α	0	6
1	R											
2	L											
2	Т	30	0.4	44.7								
_	R											
3	L											
3	Т	0	0.0		2590	0.1	0.1	12	0.0	А	0	6
3	R											
4	L											
4	Т	20	0.2	44.7								
4	R											
INT		50	1	44.7	5082	0	0.1	12	0.0	A		

	=					Degree							
A M		DS	GT	Delay	Stops	Length Queue I	Metre	DS	GT	Delay	Stops	Queue	Metre
1 1 2 2 2	L T R L T R	0.77	73	9	1860	28	60	0.77	73	9	1860	28	60
3 3 4 4	L T R L T R	0.87	73	12	2476	32	66	0.87	73	12	2476	32	66
INT			105					0.87					
TCS =	=	1956	Pedesti	rian ·		cle Dela solated			ile =	CHURCH	ΙB		
	M					Length Delay							
1 T 1 F	T R	0	0.0		3149	9.2	10.5	0	0.0		3149	9.2	10.5
2 2 F	L T R	30	0.4	46.7				30	0.4	46.7			
3 T 3 F	L T R	0	0.0		3560	12.2	12.4	0	0.0		3560	12.2	12.4
4	L T R	20	0.3	46.7				20	0.3	46.7			
INT		50				21							
A N			- Delay	ys & St	tops at	cle Dela fter Co Delay	-ordir	nated E	Valuat	ion			
1 T 1 F	T R L	0	0.0		3149	0.0	0.0	0	0.0	A	0	6	
2 2 F	– T R L	30	0.4	46.7									
3 T 3 F	T R	0	0.0		3560	2.2	2.2	364	0.1	A	11	24	
4	L T R	20	0.3	46.7									
INT		50	1	46.7	6709	2	1.2	364	0.1	А			
TCS	=	448 I:				0							
-----	---	--------	--------	--------	-------	--------	-------	------	-------	---------	---------	-------	-------
		Co	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.86	103	0	62	1	36	0.84	115	0	56	1	60
1	Т	0.86	103	9	2182	27	60	0.84	115	8	1995	27	60
1	R												
2	L												
2	Т												
2	R												
3	L												
3	Т	0.75	112	3	1252	17	36	0.74	124	3	1145	17	36
3	R												
4	L	0.44	17	1	32	1	12	0.48	17	1	33	1	12
4	Т												
4	R	0.68	8	2	116	4	18	0.75	8	3	131	5	24
INT		0.86	128					0.84	140				

TCS	=	448	Pedesti	rian -		cle Del solated			ile =	CHURCH	IB			
			Co-ord:	inated					Isola	ted Cv	cle Le	nath -		
А	М		Delay											
1	L	1 Cub	Deruy	////		0.3			Deruy	////	103		10.7	
				F0 4	0700	8.6	12.1	50	0 0	64 4	0700	7.0	10.7	
1	Т	50	0.8	58.1	3789	8.6	8.1	50	0.9	64.1	3789	7.8	1.4	
1	R													
2	L													
2	Т	0	0.0					0	0.0					
2	R	-						-						
	L													
3	Т	0	0.0		3802	3.2	3.0	0	0.0		3802	2.9	2.7	
3	R													
4	L				39	0.6	50.8				39	0.6	57.1	
4	Т	50	0.8	58.1				50	0 9	64.1				
	Ŕ	00	010	0011	132	2.1	50 E		010	0111	132	2.8	76.9	
		100							•					
INT		100	2	58.1		15		100	2	64.1	7865	0	0.0	
			Pedesti											
			- Delay							10n				
Α	М	Peds	Delay	Aver	Vehs					LOS				
1	L				103	0.0	1.6	12	0.1	Α	0	6		
1	Т	50	0.8	58.1	3789	1.7				А	16	36		
1	R													
	L													
	Т	0	0.0											
2	R													
3	L													
3	Т	0	0.0		3802	0.3	0.3	138	0.0	А	5	12		
3	R													
4	L				39	0.6	50.8	32	0.8	D	1	12		
4	Т	50	0.8	58.1	03	0.0	50.0	02	0.0	D		12		
		50	0.0	50.1	400	• •				-		10		
	R				132					E	4	18		
INT		100	2	58.1	7865	5	2.2	740	0.1	Α				
			Isolate											
			Co-ord:	inated	Cycle	Length			- Isola	ted Cy	cle Le	ngth -		
А	М	DS				Queue					Stops			
1	L	0.59			17	0	30		83	-	16	0	42	
1	Т	0.59			992	17	42		83	4	943	18		
		0.59	/0	4	992	17	42	0.58	00	4	940	10	42	
1	R													
2	L													
2	Т													
2	R													
3	L													
		0		~	600	4.0	~ ~	0 50	~~	~	660	4.0	0.0	
3	Т	0.53	85	2	686	12	24	0.53	92	2	662	12	30	
3	R													
4	L	0.40	17	1	42	1	12	0.42	18	1	43	1	12	
4	Т													
4	R	0.58	8	2	119	4	18	0.58	9	2	119	4	18	
INT		0.59		_	-		_	0.58	109	_				

TCS	=	448	Pedestr	ian	- Vehio	cle Dela	ay Bus	siness	Peak F	ile =	CHURCH	ΗB	
					Is	solated	Opera	ation					
			Co-ordi	nated	Cycle	Length			- Isola	ited Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				43	0.1	5.7				43	0.1	5.6
1	Т	30	0.4	44.7	2445	3.9	5.7	30	0.4	48.7	2445	3.8	5.6
1	R												
2	L												
2	Т	C	0.0					0	0.0				
2	R												
3	L												
3	Т	C	0.0		2602	1.7	2.4	0	0.0		2602	1.7	2.4
3	R												
4	L				53	0.5	37.2				53	0.6	40.7
4	Т	30	0.4	44.7				30	0.4	48.7			
4	R				137	1.7	44.6				137	1.8	48.1
INT		60) 1	44.7	5280	8	5.4	60	1	48.7	5280	0	0.0

						cle Del fter Co							RCHB
Α					Vehs	Delay 0.0	Aver	Stops		LOS	0	6	
	Т	30	0.4	44.7	2445		1.1			A	5	12	
	R L												
	T	0	0.0										
	R												
	L T	0	0.0		2602	0.2	0.2	62	0.0	А	2	6	
	R				50	0 5	07 0	40	0 0	0	-	10	
	L T	30	0.4	44.7	53	0.5	37.2	42	0.8	С	1	12	
4	R					1.7					3	18	
INT		60	1	44.7	5280	3	2.2	422	0.1	A			
тсѕ	=	448	Isolat	ed Oper	ration	Degree	e of Sa	aturat	ion fo	∽ AM P€	eak CHL	JRCHB	
			Co-ord	inated	Cycle	Length	ı		- Isola	ated Cy	/cle Le	ength ·	
	M L	DS 0.43				Queue					Stops 6		Metre 6
	Т	0.43		6	1575	0 23	48	0.43	79	6	1575	-	
1	R												
	L												
	T R												
	L												
	Т	0.81	79	8	2026	26	54	0.81	79	8	2026	26	54
	R L	0.81	18	2	111	3	24	0.81	18	2	111	3	24
	Т			-									
4 INT	R				213	6	30	0.54 0.81		3	213	6	30
TCS	=	448	Pedest	rian		cle Del			File =	CHURCH	ΙB		
			Co-ord	inated		solatec Length			- Isola	ated Cy		anath .	
А	М					Delay							
	L					0.0					19		
	T R	50	0.6	46.7	3129	6.3	7.3	50	0.6	46.7	3129	6.3	7.3
2	L												
	Т	0	0.0					0	0.0				
	R L												
3	Т	0	0.0		3562	8.1	8.2	0	0.0		3562	8.1	8.2
	R				110		F0 F				110	4 -	F0 F
	L T	50	0.6	46.7	112	1.7	53.5	50	0.6	46.7	112	1.7	53.5
4	R				259						259		
INT		100			7081	19			1		7081	0	

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS	=	448 P				cle Del fter Co	-	•				НВ
А	М	Peds	2									
1	L		-		19	0.0	6.7	5	0.3	Α	0	6
1	Т	50	0.6	46.7	3129	5.9	6.7	785	0.3	Α	23	48
1	R											
2	L											
2	Т	0	0.0									
2	R											
3	L											
3	Т	0	0.0		3562	1.8	1.8	576	0.2	Α	17	36
3	R											
4	L				112	1.7	53.5	111	1.0	D	3	24
4	Т	50	0.6	46.7								
4	R				259	2.9	39.8	213	0.8	С	6	30
INT		100	1	46.7	7081	12	6.2	1690	0.2	Α		

TCS	=	11 I	solat	ed Opei	ration	Degree	e of Sa	turati	on fo	° PM P€	ak CHL	JRCHB	
		C	o-ord	inated	Cycle	Length	ו ו		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.34	97	0	4	0	6	0.35	78	0	4	0	6
1	Т	0.74	97	7	1527	27	60	0.75	78	7	1596	23	54
1	R												
2	L	0.59	23	2	154	5	36	0.60	19	2	154	4	30
2	Т	0.80	23	5	263	9	54	0.81	19	4	273	8	48
2	R												
3	L	0.80	97	1	124	2	102	0.81	78	1	131	2	54
3	Т	0.80	97	8	1770	28	66	0.81	78	8	1851	24	54
3	R												
4	L	0.07	23	0	16	1	6	0.07	19	0	16	1	6
4	Т	0.51	23	2	146	5	36	0.52	19	2	147	4	30
4	R												
INT		0.80	128					0.81	105				

TCS = 11 Pedestrian - Vehicle Delay PM Peak File = CHURCHB Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				14	0.0	5.1				14	0.0	4.6
1	Т	0	0.0		3079	7.3	8.6	0	0.0		3079	6.6	7.7
1	R												
2	L				186	2.5	48.1				186	2.1	39.7
2	Т	0	0.0		282	4.6	58.3	0	0.0		282	4.0	51.4
2	R												
3	L				216	0.7	11.8				216	0.7	11.3
3	Т	0	0.0		3198	8.5	9.6	0	0.0		3198	7.6	8.6
3	R												
4	L				22	0.3	43.5				22	0.2	35.9
4	Т	0	0.0		180	2.4	47.4	0	0.0		180	2.0	39.1
4	R												
INT					7177	26	13.2				7177	0	0.0

TCS = 11 Pedestrian - Vehicle Delay - Stops PM Peak File = CHURCHB ----- Delays & Stops after Co-ordinated Evaluation-----

Α	М	Peds	Delay	Aver Vehs	Delay	Aver	Stops	Aver	LOS			
1	L			14	0.0	0.3	0	0.0	Α	0	6	
1	Т	0	0.0	3079	0.2	0.3	67	0.0	Α	2	6	
1	R											
2	L			186	2.5	48.1	154	0.8	D	5	36	
2	Т	0	0.0	282	4.6	58.3	263	0.9	Е	9	54	
2	R											
3	L			216	0.1	1.8	0	0.0	Α	0	6	
3	Т	0	0.0	3198	1.6	1.8	0	0.0	А	0	6	
3	R											
4	L			22	0.3	43.5	16	0.7	D	1	6	
4	Т	0	0.0	180	2.4	47.4	146	0.8	D	5	36	
4	R											
INT				7177	12	5.8	646	0.1	А			

тсѕ	=	11 I	solate	ed Opei	ration	Degree	e of Sa	turati	on fo	r Busir	ness Pe	eak CHL	JRCHB
		C	o-ord:	inated	Cycle	Length	ו ו		Isola	ated Cy	/cle Le	ength ·	
Α	Μ	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.17	76	0	2	0	6	0.19	31	0	2	0	6
1	Т	0.53	76	3	812	15	36	0.59	31	2	1071	9	24
1	R												
2	L	0.47	17	1	111	3	24	0.53	7	1	113	1	12
2	Т	0.56	17	2	149	4	30	0.62	7	1	152	2	12
2	R												
3	L	0.56	76	0	48	1	96	0.62	31	0	63	1	24
3	Т	0.56	76	3	859	15	36	0.62	31	3	1132	9	24
3	R												
4	L	0.05	17	0	11	0	6	0.05	7	0	11	0	6
4	Т	0.43	17	1	111	3	24	0.47	7	1	113	1	12
4	R												
INT		0.56	101					0.62	46				

тсѕ	=	11 P	edestr	ian ·		cle Del solated			Peak F	ile =	CHURCH	ΙB	
		C	o-ordi	inated		Length			- Isola	ted Cv	cle Le	enath -	
А	М					Delay							
1	L		,			0.0			,		6		
1	Т	0	0.0		2211		5.0	0	0.0		2211		
		0	0.0		2211	5.1	5.0	0	0.0		2211	2.4	4.0
1	R												
2	L				136						136		
2	Т	0	0.0		180	1.9	38.8	0	0.0		180	0.9	18.4
2	R												
3	L				125	0.2	5.2				125	0.1	4.1
3	Т	0	0.0		2255		5.2		0.0		2255		
		0	0.0		2200	0.0	5.2	0	0.0		2200	2.0	4.1
3	R					• •	<u> </u>					• •	10.0
4	L				14		35.5				14		
4	Т	0	0.0		137	1.4	37.9	0	0.0		137	0.7	18.0
4	R												
INT					5064	12	8.2				5064	0	0.0
TCS	=	11 P	edestr	rian 🛛	- Vehi	cle Del	ay - 8	Stops E	Busines	s Peak	File	= CHUR	CHB
			Delav	/s & S1	tops at	fter Co	-ordir	nated E	Evaluat	ion			
Α	М	Peds											
1	L	. eue	Doray	/		0.0				A	0	6	
		0	0 0										
1	Т	0	0.0		2211	0.1	0.1	29	0.0	Α	1	6	
1	R												
2	L				136	1.4	38.2	111	0.8	С	3	24	
2	Т	0	0.0		180	1.9	38.8	149	0.8	С	4	30	
2	R	-								-	-		
3	L				105	0 0	1.0	0	0.0	А	0	6	
		•	~ ~		125							6	
3	Т	0	0.0		2255	0.6	1.0	0	0.0	А	0	6	
3	R												
4	L				14	0.1	35.5	11	0.8	С	0	6	
4	Т	0	0.0		137	1.4	37.9	111	0.8	С	3	24	
4	R												
INT					5064	6	1 0	410	0 1	А			
TINI					5004	0	4.0	410	0.1	A			
TCS	=	11 I	solate	ed Oper	ration	Dearee	of Sa	aturati	ion for	AM Pe	ak CHL	JRCHB	
						Length							
^													
A	M	DS	GT	ретау	Stops	Queue	wetre	DS	GT	ретау	Stops	Queue	wetre
1	L												
1	Т	0.74	81	6	1534	21	48	0.74	81	6	1534	21	48
1	R												
2	L	0.75	16	3	184	5	36	0.75	16	3	184	5	36
2	Т	0.76	16	3	212	6	42	0.76	16	3	212	6	42
2	R												
3	L	0.76	81	0	71	1	48	0.76	81	0	71	1	48
3	Т	0.76	81	6	1587	21	48	0.76	81	6	1587	21	48
3	R												
4	L	0.07	16	0	14	0	6	0.07	16	0	14	0	6
4	Т	0.70	16	3	182	5	36	0.70	16	3	182	5	36
4	R												
INT		0.76	105					0.76	105				

Page | 152

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS	=	11	Pedestr	ian - Vehio Is	cle Dela solated			File =	CHURCH	В		
			Co-ordi	nated Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L			4	0.0	0.0				4	0.0	0.0
1	Т	0	0.0	3177	5.7	6.4	0	0.0		3177	5.7	6.4
1	R											
2	L			199	2.7	48.1				199	2.7	48.1
2	Т	0	0.0	227	3.1	48.9	0	0.0		227	3.1	48.9
2	R											
3	L			137	0.3	8.1				137	0.3	8.1
3	Т	0	0.0	3183	5.9	6.6	0	0.0		3183	5.9	6.6
3	R											
4	L			18	0.2	38.2				18	0.2	38.2
4	Т	0	0.0	209	2.5	43.5	0	0.0		209	2.5	43.5
4	R											
INT				7154	20	10.2				7154	0	0.0

тсѕ	=	11 F		ian - Vehio s & Stops a [.]		2	•					
^	5.4		5									
	IVI	Peds	ретау	Aver Vehs	-							
1	L			4	0.0	3.0	1	0.2	Α	0	6	
1	Т	0	0.0	3177	2.6	3.0	539	0.2	Α	16	36	
1	R											
2	L			199	2.7	48.1	184	0.9	D	5	36	
2	Т	0	0.0	227	3.1	48.9	212	0.9	D	6	42	
2	R											
3	L			137	0.0	0.0	0	0.0	Α	0	6	
3	Т	0	0.0	3183	0.0	0.0	0	0.0	Α	0	6	
3	R											
4	L			18	0.2	38.2	14	0.8	С	0	6	
4	Т	0	0.0	209	2.5	43.5	182	0.9	D	5	36	
4	R											
INT				7154	11	5.6	1131	0.2	Α			

Church Street Future with Development – CHURCHF.DAT

SCATES Program Version: 2013 Date: 02-NOV-12 Time: Registered User Name. - Road Delay Solutions Pty Ltd Registered User No. - 0 Data File: CHURCHF CHURCH STREET 2031 BITZIOS VOLUMES

			AM PEA	٩K				PM PEA	٩K			E	BUSINE	SS	
AM	Vol	Sat	Phse			Vol	Sat	Phse				Sat	Phse		
					Loss					Loss				Gain	
1L	0000				0.0	0700		•		0.0		5000		0	0.0
1T 1R	3086	5880	A			3708	5880	A			2378	5880	A		
2L															
2T															
2R															
3L				0	0.0				0	0.0				0	0.0
ЗТ	3507	5880	Α	0	254	3673	5880	А	0	165	2513	5880	Α	0	147
ЗR															
4L															
4T															
4R	- M					^		Wolk	LIQ- A M	H%PM	LI%-D				
Type		URCHF				A 1		Walk	п∻АМ 2		п≈в 3				
LTTE	- UП	ОКСПГ				2		28	2	2	3				
TCS =	= 19	56				3		20	2	2	3				
						4			-	_	-				
		PEDES	TRIAN	VOLU	ΛE	WAL	<-CLE	ARANCE		TRAM	DATA	PE	EDEST	TRA	M
Арр	P#.	AM	P#PM	Pi	#B	Wall	< (Clear				FA	ACT	FAC	т
1	0		0	(C	0	(0	(0%		1	00	10	00
2	3	-	30		30	6		22		0%			30	10	
3	0		0)	0		0		0%			00	10	
4	2	0	20	2	20	6		22	(0%		3	30	10	00
															· -

			AM PEA	٨K			F	PM PE	٩K			E	BUSINE	ESS	
AM	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers	Vol	Sat	Phse	MocV	Pers
				Gain	Loss				Gain	Loss				Gain	Loss
1L	19	1750	Α	0	0.0	74	1750	Α	0	0.0	33	1750	Α	0	0.0
1T	3067	5670	Α	0	1	3634	5670	Α	0	0	2346	5670	Α	1	0
1R															
2L															
2T															
2R															
ЗL				0	0.0				0	0.0				0	0.0
ЗT	3492	5880	Α	184	0	3704	5880	AB	420	0	2518	5880	AB	213	0
ЗR	0	1800	S			0	1800	В			0	1800	В		
4L	119	1750	В			39	1750	BC			55	1750	BC		
4T		3600					3600					3600			
4R	269	3600	В			133	3600	С			141	3600	С		
Туре	= T4					А	Min	ELT	H%AM	H%PM	H%B	L/S	L-PD	R - PD	

Page | 155

File =	CHURCH	F		1 2	22	4.0	2	2	3	0 '	0	
TCS =	448			2 3 4	5 28	4.0 4.0	2 0	2 0	3 0	0 '	0	0 0
	PEDE	STRIAN V	OLUME	4 WALK-			-	AM DA	-	PED	-	TRAM
Арр	P#AM	P#PM	P#B	Walk	С	lear				FAC	т	FACT
1	50	50	30	6	1	6	0%			30)	100
2	0	0	0	0	0		0%			10	0	100
3	0	0	0	0	0		0%			10	0	100
4	50	50	30	6	2	2	0%			30		100

		AM PEA										BUSIN		
AM V	'ol Sat	Phse	MocV Gain			Sat	Phse		Pers Loss		Sat	Phse		Pers Loss
1L	9 1750	А				1750	А		0.0		1750	А		0.0
	40 5560	Α			3028	5560		0	640	2159	5560	A		238
	0 0					0	S				0	-		
	02 1750 24 1960					1750 1960	B B				1750 1960			
	0 0					0	B				0			
	30 1750			0.0	202				0.0			A		0.0
	12 5670 0 0					5670	A				5670			
	20 1750	-			-	0 1750	S B			16	0 1750	-		
	17 1960				188		B				1960	B		
	0 0				0	-	В			0	-	_		
•••	0000				A	Min			H%PM					
File =	CHURCHE				1	5 5	4.0 4.0		2 1	-	0' 0'	0	-	
TCS =	11					5		•	•	3	-	0	-	
					4			1		2	0 '	0	-	
		TRIAN				<-CLEA			TRAM [DATA				
		P#PM 0	P# 0		Wall O	< C			0%			ACT 100	FA	CT 00
2	0	0	0		-	C			0% 0%			100		00
3	0	0	0			C			0%			100		00
4	0	0	0		0	C			0%			100		00
File =	Type L T T T AM O CHURCHF	ength 9999 9999 9999 Parkin PM 0 0	Grade 0 Sat 1960 1960 1960	Type AM	Lar e Lenç No Par Pî	rking M E	ade at ⁻	Гуре Т Т Т	Lanes 3 Lengtl 9999 9999 9999 9999	s Grac (1 Sa ⁺ 1960 1960 1960 1960 BUS	de) t Ty))	L pe Le No P	anes (ngth	Grade Sat
Туре =					- 1956									
		PROACI												
Tidal N	Down 0		Grade 0	Dowr	n Lar	nes Gr	ade I		Lane: 3		de Dov)	wn L	anes (2	Grade O
Lane	Type L	-		ανΤ	e Lend	ath S	at '		Jengti			pe Le	_	
1		9999		21-1					9999					
2								-				0		
2	Т	9999						T	9999	1960)	R 9		1850

Page | 157

3 4 5	т	9999	1960				т	9999	1960			
6												
7												
8												
	No	Parkir	ng	No	Parki	ng	No	Parki	ng	No	Parkir	ng
	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS	AM	PM	BUS
Apprch	0	0	0				0	0	0	0	0	0
Depart	0	0	0				0	0	0	0	0	0
File = C	HURCHF	-										
Type = T	4			rcs =	448							

APPROACH 1 APPROACH 2 APPROACH 3 APPROACH 4 Tidal Down Lanes Grade Down Lanes Grade Down Lanes Grade Down Lanes Grade 0 3 0 0 2 0 0 3 0 0 2 0 N Type Length Sat Type Length Sat Type Length Sat Type Length Sat Lane LT 9999 1750 L 90 1750 LT 9999 1750 L 9999 1750 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1960 T 9999 1850 T 9999 1960 1 2 3 4 5 6 7 8 No Parking No Parking No Parking No Parking
 AM
 PM
 BUS
 AM
 AM
 AM
 AM

 Apprch
 0
 0
 0
 0

 Depart
 0
 0
 0
 0
 File = CHURCHF Type = COCO TCS = 11 PM PEAK GT% GT% CL CL GT% GT% CL CL GT% GT% CL CL GT% GT% CL CL CL CL CL CL CL CL CL CCRD ISOL CORD ISO AM PEAK BUSINESS Ph CORD ISOL
 0.0
 0.0
 105
 105
 0.0
 128
 140
 0.0
 0.0
 99 99 Α 28# 28# 28# 28# 28# 28# в С D Е

 E
 G
 dlay dlay
 dlay dlay
 dlay dlay
 dlay dlay

 G
 0.6
 0.6
 0.8
 0.9
 0.6
 0.6

 Seq
 AB
 dlay 22
 22
 AB
 dlay 23
 21
 AB
 dlay 13
 13

 Stps
 4.4
 4.4
 Stps
 4.7
 4.3
 Stps
 2.6
 2.6

 Mode
 0
 DS
 0.88
 0
 DS
 0.86
 0.83
 0
 DS
 0.65
 0.65

 File
 CHURCHE
 Bay
 Bay
 Slip
 Slip
 Type

 Bay Bay Slip Slip Req Act Req Act File = CHURCHF Type TCS = 1956 М -----. PM PEAK AM PEAK BUSINESS
 PM
 PM
 PEAK
 BUSINESS

 Ph
 GT%
 GT%
 CL
 CL
 GT%
 GT%
 CL
 Ph CORD ISOL 99 99 D Е

 L
 G
 dlay dlay
 dlay dlay
 dlay dlay
 dlay dlay

 G
 1.3
 1.3
 1.6
 1.8
 0.7
 0.7

 Seq
 AB
 dlay 20
 20
 ABC
 dlay 14
 14
 ABC
 dlay 8
 8

 Stps
 4.0
 4.0
 Stps
 3.4
 3.2
 Stps
 1.9
 1.9

 Mode
 1
 DS
 0.82
 0.82
 1
 DS
 0.84
 0.82
 1
 DS
 0.59
 0.59

 File
 CHURCHF
 A
 Bay
 Bay
 Slip
 Slip
 Type

 Req Act Req Act 10 0 TCS = 448Τ4 1

Page | 159

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia November 2012

AM PEAK PM PEAK BL Ph GT% GT% CL CL GT% GT% CL CL GT% GT% <th>JSINESS CL CL CORD ISOL 99 46</th>	JSINESS CL CL CORD ISOL 99 46
Stps 3.8 3.8 Stps 4.0 4.1 S	dlay dlay 0.0 0.0 dlay 11 8 Stps 2.1 2.7 DS 0.56 0.62 Type COCO
Bays if all intersections are o	•
TCS = 1956 Isolated Operation Degree of Saturation for PM Peak CH Co-ordinated Cycle Length Isolated Cycle L A M DS GT Delay Stops Queue Metre DS GT Delay Stops 1 L	_ength
1 L 1 T 0.86 96 12 2385 34 72 0.83 108 11 2181 1 R 2 L 2 T 2 R 3 L	1 34 72
3 T 0.85 96 11 2322 33 72 0.83 108 10 2123 3 R 4 L 4 T 4 R	3 33 72
INT 0.86 128 0.83 140	
TCS = 1956 Pedestrian - Vehicle Delay PM Peak File = CHURCHF Isolated Operation	
Co-ordinated Cycle Length Isolated Cycle L A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh	
1 L 1 T 0 0.0 3782 11.8 11.2 0 0.0 3782 1 R 2 L	2 10.8 10.2
2 T 30 0.5 58.1 30 0.5 64.1 2 R	
3 L 3 T 0 0.0 3746 11.5 11.0 0 0.0 3746 3 R 4 L	6 10.5 10.1

4 T 20 4 B	0.3	58.1				20	0.4	64.1			
	1	58.1	7528	23	11.1	50	1	64.1	7528	0	0.0

			- Dela	ys & S [.]	tops a [.]	cle Del fter Co	-ordir	nated E	Evaluat	ion			
A		Peds	Delay	Aver	Vehs	Delay	Aver	Stops	Aver	LOS			
1 1 1	L T R	0	0.0		3782	0.0	0.0	0	0.0	А	0	6	
2 2	L T R	30	0.5	58.1									
3 3 3	L T R	0	0.0		3746	10.8	10.4	1203	0.3	A	33	72	
4 4 4	L T R	20	0.3	58.1									
INT						11							
тсѕ	=	1956	Co-ord	inated	Cycle	Degree Length			- Isola	ated Cy	cle Le	ength -	
A 1	M	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
' 1 1	TR	0.62	67	6	1221	22	48	0.62	67	6	1221	22	48
2	L T R L												
3 3 4	T R L T	0.65	67	7	1345	23	48	0.65	67	7	1345	23	48
4 INT	R	0.65	99					0.65	99				
тсѕ	=	1956	Pedest	rian		cle Del solated			Peak F	ile =	CHURCH	IF	
					Cycle	Length							
A 1	M	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1 1	T R	0	0.0		2449	6.0	8.9	0	0.0		2449	6.0	8.9
2 2 2	L T R	30	0.4	43.7				30	0.4	43.7			
3 3 3	L T R	0	0.0		2588	6.6	9.2	0	0.0		2588	6.6	9.2
4 4	L T	20	0.2	43.7				20	0.2	43.7			
4 INT	R	50	1	43.7	5037	13		50	1	43.7	5037	0	0.0

TCS	=	1956 P					2	•			File =	
А	М	Peds	-		•							
1	L		-			-		•				
1	Т	0	0.0		2449	0.0	0.0	0	0.0	А	0	6
1	R											
2	L											
2	Т	30	0.4	43.7								
2	R											
3	L											
3	Т	0	0.0		2588	0.0	0.0	0	0.0	А	0	6
3	R											
4	L											
4	Т	20	0.2	43.7								
4	R											
INT		50	1	43.7	5037	0	0.0	0	0.0	A		

^		1956 I C	o-ordi	nated	Cycle	Length Queue			Isola	ated Cy	cle Le	ength -	 Motr
A 1	M L	DS	GI	ретау	Scops	Queue	Merre	05	GI	ретау	Scops	Queue	metre
1 1 2 2	T R L T	0.77	73	9	1858	28	60	0.77	73	9	1858	28	6
2 3 3 3	R L T R L	0.88	73	12	2507	32	66	0.88	73	12	2507	32	6
4 4 NT 	R	0.88	105					0.88	105				
CS.		1956 P											
00					Is	solated	Opera	tion					
						Length							
	M L	Peas	ретау	Aver	vens	Delay	Aver	Peas	ретай	Aver	ven	ретай	Ave
1 1 2	T R L	0	0.0		3148	9.2	10.5	0	0.0		3148	9.2	10.
2 2	T R	30	0.4	46.7				30	0.4	46.7			
3	L T R	0	0.0		3577	12.4	12.5	0	0.0		3577	12.4	12.
4	L T	20	0.3	46.7				20	0.3	46.7			
4 NT		50				22				46.7			
 A 1	 M L	1956 P Peds	Delay Delay	s & St	ops at Vehs	fter Co Delay	-ordir Aver	ated E Stops	valuat Aver	ion LOS			
1 1 2	T R L	0	0.0		3148	0.0	0.0	0	0.0	A	0	6	
2 2 3	T R L	30	0.4	46.7									
3 3 3 4	T R L	0	0.0		3577	2.1	2.1	368	0.1	A	11	24	
4 4 4	Т	20	0.3	46.7									
	R	50						368		А			

November 2012

TCS	=	448 I		•		0							
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.81	103	0	40	1	30	0.80	115	0	36	1	60
1	Т	0.84	103	8	2008	26	60	0.82	115	7	1836	26	60
1	R												
2	L												
2	Т												
2	R												
3	L												
3	Т	0.74	112	3	1230	17	36	0.73	124	3	1125	17	36
3	R												
4	L	0.44	17	1	32	1	12	0.48	17	1	33	1	12
4	Т												
4	R	0.69	8	2	118	4	18	0.75	8	3	133	5	24
INT		0.84	128					0.82	140				

TCS	=	448	Pedest	rian ·		cle Del solated			=ile =	CHURCH	IF		
			Co-ord	inatod		Length			. Isola	tod Cv		nath -	
А	М	Pode		Avor	Vohe	Delay	Avor	Dode	Dolay	Avor	Voh	Dolay	Avor
		reus	ретау	Avei	Velis 70		Aver	reus	Бетау	Avei			
1	L				/5	0.2	9.8				75		
1	Т	50	0.8	58.1	3707	7.9	7.6	50	0.9	64.1	3707	7.2	7.0
1	R												
2	L												
2	Т	0	0.0					0	0.0				
2	R	Ŭ	010					0	010				
	L												
3	Т	0	0.0		3778	3.1	3.0	0	0.0		3778	2.8	2.7
3	R												
4	L				39	0.6	50.8				39	0.6	57.1
	Т	50	<u> </u>	58.1		010	0010	50	0 0	64.1		0.0	0/11
		50	0.0	50.1	400	~ ~			0.9	04.1	400	~ ~	
	R				133		59.3				133	2.9	78.2
INT		100	2	58.1	7732	14	6.5	100	2	64.1	7732	0	0.0
A 1 1 1	M L T R		- Delay Delay	ys & S† Aver	tops at Vehs 75	cle Del fter Co Delay 0.0 1.5	o-ordin Aver 1.5	nated E Stops 8	Evaluat Aver 0.1		0		
	L T R L T	0			3778	0.4	0.4	137	0.0	А	5	12	
3	R												
4	L				39	0.6	50.8	32	0.8	D	1	12	
4	Т	50	0.8	58.1		010	0010	01	010	2			
		50	0.0	50.1	400	~ ~			~ ~	-		10	
	R				133		59.3			E	4	18	
INT		100	2	58.1	7732	5	2.2	705	0.1	Α			
TCS	=	448	Isolat	ed Opeı	ration	Degree	of Sa	aturati	ion for	Busir	ness Pe	ak CHU	IRCHF
			Co-ord	inated	Cvcle	Length			- Isola	ted Cv	cle Le	nath -	
А	М	DS				Queue							
1					14			0.58	74		14		
	L	0.58				0						0	36
1 2 2 2 3	T R L T R	0.59	74	4	989	17	42	0.59	74	4	989	17	42
	L	0		~	<u> </u>	10	~ ~	0 50	00	~	co7	10	0.4
3	Т	0.53	83	2	697	12	24	0.53	83	2	697	12	24
3	R												
4	L	0.41	17	1	44	1	12	0.41	17	1	44	1	12
4	Т			•		-				-			• =
4	R	0 50	0	2	100	4	10	0 50	0	2	100	4	18
	'n	0.59		2	122	4	10	0.59	8	2	122	4	10
INT		0.59	99					0.59	99				

TCS	=	448	Pedestr	ian	- Vehi	cle Dela	ay Bus	siness	Peak F	ile =	CHURCH	ΙF	
					Is	solated	Opera	ation					
			Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				34	0.1	5.7				34	0.1	5.7
1	Т	30	0.4	43.7	2416	3.9	5.8	30	0.4	43.7	2416	3.9	5.8
1	R												
2	L												
2	Т	0	0.0					0	0.0				
2	R												
3	L												
3	Т	0	0.0		2594	1.8	2.5	0	0.0		2594	1.8	2.5
3	R												
4	L				55	0.6	36.2				55	0.6	36.2
4	Т	30	0.4	43.7				30	0.4	43.7			
4	R				141	1.7	43.6				141	1.7	43.6
INT		60	1	43.7	5240	8	5.5	60	1	43.7	5240	0	0.0

At M Peds Delay Aver Vehs Delay Aver Vehs Delay Aver Stops Aver LOS 1 34 0.0 1.1 3 0.1 A 0 6 1 T 30 0.4 43.7 2416 0.8 1.1 195 0.1 A 5 12 1 T 30 0.4 43.7 2416 0.8 1.1 195 0.1 A 5 12 2 T 0 0.0 2594 0.2 0.2 63 0.0 A 2 6 3 T 0 0.0 2594 0.2 0.2 63 0.0 A 2 6 3 T 0 0.0 2594 0.2 0.2 63 0.0 A 2 6 3 L 0 0 143.7 540 3 2.2 427 0.1 A 1NT 0.61 Delay Stops Queue Metre DS GT Delay Stops Q				Pedest										RCHF
<pre>1 T 30 0.4 43.7 2416 0.8 1.1 195 0.1 A 5 12 2 L 2 T 0 0.0 2 R 3 L 3 T 0 0.0 2594 0.2 0.2 63 0.0 A 2 6 3 R 4 L 55 0.6 36.2 44 0.8 C 1 12 4 T 30 0.4 43.7 4 R 55 0.6 36.2 44 0.8 C 1 12 4 T 30 0.4 43.7 4 R 141 1.7 43.6 122 0.9 D 3 18 INT 60 1 43.7 5240 3 2.2 427 0.1 A TCS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF Co-ordinated Cycle Length Isolated Cycle Length Isolated</pre>														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			30	0.4	43.7	2416	0.8	1.1	195	0.1	A	5	12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0.0										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	0.0										
3 T 0 0.0 2594 0.2 0.2 63 0.0 A 2 6 3 R 55 0.6 36.2 44 0.8 C 1 12 4 T 30 0.4 43.7 55 0.6 36.2 44 0.8 C 1 12 4 T 30 0.4 43.7 5240 3 2.2 427 0.1 A TOS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Г	0	0.0		2594	0.2	0.2	63	0.0	Α	2	6	
4 T 30 0.4 43.7 4 R 141 1.7 43.6 122 0.9 D 3 18 INT 60 1 43.7 5240 3 2.2 427 0.1 A TCS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF Co-ordinated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0.43 78 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 1 R 2 L 2 T 2 R 3 L 3 T 0.82 78 9 2078 26 54 0.82 78 9 2078 26 54 3 R 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 T 4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation Co-ordinated Cycle Length Isolated Cycle Length TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation Co-ordinated Cycle Length Isolated Cycle Length A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver 1 L 2 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 2 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 2 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 119 1.8 53.7 4 T 50 0.6 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0														
4 R 141 1.7 43.6 122 0.9 D 3 18 INT 60 1 43.7 5240 3 2.2 427 0.1 A TCS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF				~ .	40 -		0.6	36.2	44	0.8	С	1	12	
INT 60 1 43.7 5240 3 2.2 427 0.1 A TCS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF Co-ordinated Cycle Length Isolated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0.43 78 0 6 0 6 1 I 0.43 78 0 6 0 6 0.43 78 7 1614 23 54 2 I 2 7 2 7 2 7 2 7 2 7 2 7 2 1614 23 54 2.5 3 7 1614 23 54 3 T 0.82 78 9 2078 26 54 0.82 19 2 118 24 4 7 4 7 4 7 4 7 4 7			30	0.4	43.7		1 7	12 6	100	0.0	Р	2	10	
TCS = 448 Isolated Operation Degree of Saturation for AM Peak CHURCHF Solated Cycle Length Isolated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre D G 0 6 0.43 78 0 6 0 6 1 L 0.43 78 0 6 0 6 0.43 78 0 6 0 6 O 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 2 L			60	1	43 7							3	10	
Co-ordinated Cycle Length Isolated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 2 L - <td< td=""><td></td><td></td><td></td><td></td><td>40.7</td><td>5240</td><td></td><td>2.2</td><td>427</td><td></td><td></td><td></td><td></td><td></td></td<>					40.7	5240		2.2	427					
Co-ordinated Cycle Length Isolated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 2 L - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
Co-ordinated Cycle Length Isolated Cycle Length Isolated Cycle Length A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 2 L - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
A M DS GT Delay Stops Queue Metre DS GT Delay Stops Queue Metre 1 L 0.43 78 0 6 0 6 0.43 78 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 1 R .	TCS =	=												
1 L 0.43 78 0 6 0.43 78 0 6 0 6 1 T 0.75 78 7 1614 23 54 0.75 78 7 1614 23 54 2 L 2 T 7 1614 23 54 0.75 78 7 1614 23 54 2 L 2 T 7 1614 23 54 0.82 78 9 2078 26 54 3 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 T 0.82 19 2 118 3 24 0.82 105 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0														
1 R 2 T 2 T 3 L 3 L 3 L 3 L 4 L 0.82 78 9 2078 26 54 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 0.82 105 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Cycle Length Isolated Operation Co-ordinated Cycle Length 1 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 19					Оетау	SLOPS 6	Queue	Metre 6	0 43	78	Delay			
1 R 2 T 2 T 3 L 3 L 3 L 3 L 4 L 0.82 78 9 2078 26 54 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 0.82 105 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Cycle Length Isolated Operation Co-ordinated Cycle Length 1 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 19					7	1614	23	54	0.75	78	7	-	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0170	, 0		1011	20	01	0170	, 0		1011	20	01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
3 L 3 T 0.82 78 9 2078 26 54 3 R 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 T		Г												
3 T 0.82 78 9 2078 26 54 0.82 78 9 2078 26 54 3 R 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 T 4 T 6 30 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 6 30 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation 10.0 5.0 19 0.0 5.0 1 L 19 0.0 5.0 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 19 0.0														
3 R 4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 0 30 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation						~~~~						~~~~		
4 L 0.82 19 2 118 3 24 0.82 19 2 118 3 24 4 T 4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 6 30 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation			0.82	78	9	2078	26	54	0.82	78	9	2078	26	54
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0 82	10	2	118	3	24	0 82	10	2	118	3	24
4 R 0.55 19 3 221 6 30 0.55 19 3 221 6 30 INT 0.82 105 0.82 105 0.82 105 3 221 6 30 TCS = 448 Pedestrian - Vehicle Delay AM Peak File = CHURCHF Isolated Operation Co-ordinated Cycle Length A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver 1 L 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 R 119 1.8 53.7 19 1.8 53.7 2 R 119 1.8 53.7 119 1.8 53.7 3 T 0 0.6 46.7 50 0.6 46.7 46.7			0.02	13	2	110	0	27	0.02	13	2	110	0	27
$TCS = 448 \text{ Pedestrian } \cdot \text{Vehicle Delay AM Peak File = CHURCHF}_{Isolated Operation} \\ Co-ordinated Cycle Length Isolated Cycle Length A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver 1 L 19 0.0 5.0 19 0.0 5.0 19 0.0 5.0 11 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 R 2 L 2 7 0 0.0 0.0 2 R 3 L 2 2 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 4 L 119 1.8 53.7 119 1.8 53.7 4 T 50 0.6 46.7 50 0.6 46.7 30.0 119 1.8 53.7 $			0.55	19	3	221	6	30	0.55	19	3	221	6	30
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	INT		0.82	105						105				
Isolated Operation A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Delay Aver														
Isolated Operation A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Delay Aver														
Isolated Operation A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Delay Aver	TCS =	=	448	Pedest	rian	- Vehi	cle Del	av AM	Peak I	File =	CHURCH	IF		
A M Peds Delay Aver Vehs Delay Aver Peds Delay Aver Veh Delay Aver 1 L 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 R 2 L 0 0.0 5.0 18 6.6 7.6 2 L 0 0.0 0.0 0.0 0.0 17 100 0.0 5.0 2 L 0 0.0 0.0 0.0 0.0 16 17 100 1.0 118 110 1.0 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119 1.8 53.7 119	100		440	reacor	Tan					TIC	ononoi			
A M Peds Delay Aver Ven Delay Aver Ven Delay Aver Ven Delay Aver 1 L 19 0.0 5.0 19 0.0 5.0 1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 R				Co-ord	inated					- Isola	ated Cy	/cle Le	ength	
1 T 50 0.6 46.7 3128 6.6 7.6 50 0.6 46.7 3128 6.6 7.6 1 R 2 L 0 0.0 50 0.6 46.7 3128 6.6 7.6 2 L 0 0.0 <td< td=""><td>A N</td><td>Λ</td><td></td><td></td><td></td><td>Vehs</td><td>Delay</td><td>Aver</td><td>Peds</td><td></td><td></td><td></td><td></td><td></td></td<>	A N	Λ				Vehs	Delay	Aver	Peds					
1 R 2 L 2 T 0 0.0 2 R 3 L 3 T 0 0.0 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R														
2 L 2 T 0 0.0 2 R 3 L 3 T 0 0.0 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R			50	0.6	46.7	3128	6.6	7.6	50	0.6	46.7	3128	6.6	7.6
2 T 0 0.0 0.0 0.0 2 R 0 0.0 0.0 0.0 3 L 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 119 1.8 53.7 119 1.8 53.7 4 L 119 1.8 53.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0														
2 R 3 L 3 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 119 1.8 53.7 119 1.8 53.7 4 T 50 0.6 46.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0			0	0 0					0	0.0				
3 L 3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 119 1.8 53.7 119 1.8 53.7 4 T 50 0.6 46.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0			U	0.0					0	0.0				
3 T 0 0.0 3562 8.5 8.6 0 0.0 3562 8.5 8.6 3 R 119 1.8 53.7 119 1.8 53.7 4 T 50 0.6 46.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0														
3 R 4 L 119 1.8 53.7 4 T 50 0.6 46.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0			0	0.0		3562	8.5	8.6	0	0.0		3562	8.5	8.6
4 T 50 0.6 46.7 50 0.6 46.7 4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0														
4 R 269 2.9 39.3 269 2.9 39.3 INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0							1.8	53.7					1.8	53.7
INT 100 1 46.7 7097 20 10.1 100 1 46.7 7097 0 0.0			50	0.6	46.7				50	0.6	46.7		<i></i>	
		ł	100	-	46 7				100	-	16 7			
	TINI		100											
		-												

Shepherds Bay – Traffic Impact Assessment © 2012 Road Delay Solutions Pty Ltd, Australia

TCS	=	448 P				cle Del fter Co	-	•				HF
А	М	Peds I	-		•							
1	L		-		19	0.0	6.8	5	0.3	Α	0	6
1	Т	50	0.6	46.7	3128	5.9	6.8	794	0.3	Α	23	54
1	R											
2	L											
2	Т	0	0.0									
2	R											
3	L											
-	Т	0	0.0		3562	1.8	1.8	588	0.2	Α	17	36
3	R											
4	L				119	1.8	53.7	118	1.0	D	3	24
-	Т	50	0.6	46.7								
4	R				269	2.9	39.3	221	0.8	С	6	30
INT		100	1	46.7	7097	12	6.3	1726	0.2	Α		

TCS	=	11 I	solat	ed Opei	ration	Degree	e of Sa	turati	on foi	° PM P€	eak CHL	JRCHF	
		C	o-ord	inated	Cycle	Length	ו ו		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.39	97	0	5	0	6	0.40	78	0	6	0	6
1	Т	0.74	97	7	1536	27	60	0.75	78	7	1606	23	54
1	R												
2	L	0.59	23	2	152	5	36	0.59	19	2	152	4	30
2	Т	0.79	23	4	257	9	54	0.80	19	4	266	7	48
2	R												
3	L	0.79	97	1	116	2	102	0.80	78	1	122	2	54
3	Т	0.79	97	8	1726	27	66	0.80	78	7	1805	23	54
3	R												
4	L	0.08	23	0	19	1	6	0.08	19	0	20	1	6
4	Т	0.54	23	3	155	6	36	0.55	19	2	156	5	30
4	R												
INT		0.79	128					0.80	105				

TCS = 11 Pedestrian - Vehicle Delay PM Peak File = CHURCHF Isolated Operation

		(Co-ordi	nated	Cycle	Length			- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver	Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L				17	0.0	5.4				17	0.0	4.8
1	Т	0	0.0		3089	7.3	8.6	0	0.0		3089	6.6	7.7
1	R												
2	L				184	2.5	48.1				184	2.0	39.7
2	Т	0	0.0		278	4.4	57.4	0	0.0		278	3.9	50.3
2	R												
3	L				206	0.6	11.3				206	0.6	10.8
3	Т	0	0.0		3174	8.3	9.4	0	0.0		3174	7.4	8.4
3	R												
4	L				26	0.3	43.7				26	0.3	36.1
4	Т	0	0.0		190	2.5	47.7	0	0.0		190	2.1	39.4
4	R												
INT					7164	26	13.1				7164	0	0.0

TCS = 11 Pedestrian - Vehicle Delay - Stops PM Peak File = CHURCHF ----- Delays & Stops after Co-ordinated Evaluation-----

Α	М	Peds	Delay	Aver Vehs	Delay	Aver	Stops	Aver	LOS			
1	L			17	0.0	0.2	0	0.0	А	0	6	
1	Т	0	0.0	3089	0.2	0.2	30	0.0	А	1	6	
1	R											
2	L			184	2.5	48.1	152	0.8	D	5	36	
2	Т	0	0.0	278	4.4	57.4	257	0.9	Е	9	54	
2	R											
3	L			206	0.1	1.8	0	0.0	А	0	6	
3	Т	0	0.0	3174	1.6	1.8	0	0.0	А	0	6	
3	R											
4	L			26	0.3	43.7	19	0.7	D	1	6	
4	Т	0	0.0	190	2.5	47.7	155	0.8	D	6	36	
4	R											
INT				7164	12	5.8	614	0.1	А			

TCS	=	11 I	solate	ed Opei	ration	Degree	e of Sa	turati	on fo	r Busir	ness Pe	eak CHL	JRCHF
		C	o-ord:	inated	Cycle	Length	1		Isola	ated Cy	/cle Le	ength ·	
Α	М	DS	GT	Delay	Stops	Queue	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.24	75	0	2	0	6	0.27	31	0	3	0	6
1	Т	0.54	75	3	823	15	36	0.60	31	2	1081	9	24
1	R												
2	L	0.48	16	1	112	3	24	0.53	7	1	114	1	12
2	Т	0.56	16	2	147	4	30	0.62	7	1	150	2	12
2	R												
3	L	0.56	75	0	46	1	96	0.62	31	0	60	0	24
3	Т	0.56	75	3	853	15	36	0.62	31	3	1119	9	24
3	R												
4	L	0.06	16	0	12	0	6	0.06	7	0	12	0	6
4	Т	0.45	16	2	118	3	24	0.50	7	1	120	2	12
4	R												
INT		0.56	99					0.62	46				

тсѕ	=	11 P	edestr	rian			-		Peak F	ile =	CHURCH	łF	
		-				solated					. .		
						Length							
Α	М	Peds	Delay	Aver		Delay		Peds	Delay	Aver	Veh	-	
1	L				9	0.0	3.6				9	0.0	2.9
1	Т	0	0.0		2224	3.1	5.0	0	0.0		2224	2.5	4.0
1	R												
2	L				137	1.4	37 5				137	0.7	18 1
2	Т	0	0.0		178				0.0		178		
2	R	Ū	0.0		170	1.5	00.1	U	0.0		170	0.5	1014
					100	0 0	E 1				100	0 1	4 4
3	L		~ ~		120			•			120		
3	Т	0	0.0		2244	3.2	5.1	0	0.0		2244	2.6	4.1
3	R												
4	L				16						16		16.9
4	Т	0	0.0		145	1.5	37.4	0	0.0		145	0.7	18.1
4	R												
INT					5073	11	8.1				5073	0	0.0
TCS	=	11 P				cle Dela fter Co							RCHF
		Peds	ретау	Aver						LOS	•	•	
1	L					0.0	0.1	0		А	0	6	
1	Т	0	0.0		2224	0.1	0.1	30	0.0	A	1	6	
1	R												
2	L				137	1.4	37.5	112	0.8	С	3	24	
2	Т	0	0.0		178	1.9	38.1	147	0.8	С	4	30	
2	R												
3	L				120	0.0	1.0	0	0.0	А	0	6	
3	Т	0	0.0		2244		1 0	0		A		6	
3	R	Ū	0.0		6677	0.0	1.0	U	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ū	0	
4	L				16	0 0	24 0	10	0 0	0	0	e	
		•	~ ~		16			12		C			
	Т	0	0.0		145	1.5	37.4	118	0.8	С	3	24	
4	R												
INT					5073	6	4.0	419	0.1	А			
TCS	=	11 I											
		C	o-ordi	inated	Cycle	Length			- Isola	ted Cy	cle Le	ength ·	
А	М	DS	GT	Delay	Stops	Queue I	Metre	DS	GT	Delay	Stops	Queue	Metre
1	L	0.24	81	Ó	2	0	6	0.24	81	Ó	2	0	6
1	Т	0.75	81	6	1576	21	48	0.75	81	6	1576	21	48
1	R	0.75	01	0	1370	21	40	0.75	01	0	1370	<u>د</u> ا	+0
		0 70	10	~	400	-	~~	0 70	10	~	100	-	00
2	L	0.76	16	3	192	5	36	0.76	16	3	192	5	36
2	Т	0.76	16	3	208	6	36	0.76	16	3	208	6	36
2	R												
3	L	0.76	81	0	69	1	48	0.76	81	0	69	1	48
3	Т	0.76	81	6	1583	21	48	0.76	81	6	1583	21	48
3	R												
-	1	0.07	16	0	15	0	6	0 07	16	0	15	0	6

Page | 173 Shepherds Bay - Traffic Impact Assessment

4 R INT

.

0.76 105

November 2012

© 2012 Road Delay Solutions Pty Ltd, Australia

0.76 105

 4
 L
 0.07
 16
 0
 15
 0
 6
 0.07
 16
 0
 15
 0
 6

 4
 T
 0.73
 16
 3
 196
 6
 36
 0.73
 16
 3
 196
 6
 36

TCS	=	11	Pedestr	ian - Vehio Is	cle Dela solated	-		File =	CHURCH	F		
			Co-ordi	nated Cycle				- Isola	ted Cy	cle Le	ength -	
Α	М	Peds	Delay	Aver Vehs	Delay	Aver	Peds	Delay	Aver	Veh	Delay	Aver
1	L			9	0.0	3.4				9	0.0	3.4
1	Т	0	0.0	3203	5.9	6.6	0	0.0		3203	5.9	6.6
1	R											
2	L			204	2.8	49.4				204	2.8	49.4
2	Т	0	0.0	226	3.0	47.7	0	0.0		226	3.0	47.7
2	R											
3	L			133	0.3	8.1				133	0.3	8.1
3	Т	0	0.0	3174	5.9	6.7	0	0.0		3174	5.9	6.7
3	R											
4	L			20	0.2	38.1				20	0.2	38.1
4	Т	0	0.0	219	2.8	45.5	0	0.0		219	2.8	45.5
4	R											
INT				7188	21	10.4				7188	0	0.0

TCS	=	11		ian - Vehio s & Stops a [.]		2	•					
А	М		5	Aver Vehs					LOS			
1		reus	Deray	9	0.0		1	0.2		0	6	
-	L	_		-		2.7			A	-		
1	Т	0	0.0	3203	2.4	2.7	508	0.2	A	15	36	
1	R											
2	L			204	2.8	49.4	192	0.9	D	5	36	
2	Т	0	0.0	226	3.0	47.7	208	0.9	D	6	36	
2	R											
3	L			133	0.0	0.0	0	0.0	А	0	6	
3	Т	0	0.0	3174	0.0	0.0	0	0.0	А	0	6	
3	R											
4	L			20	0.2	38.1	15	0.8	С	0	6	
4	Т	0	0.0	219	2.8	45.5	196	0.9	D	6	36	
4	R											
INT				7188	11	5.6	1120	0.2	Α			