
APPENDIX A: Preliminary Drainage Design Details Plan

AYOUT ETAILS	COUNCIL GREAT LAKES PARISH	REFERENCE ######## SHEET A 1
-med (1997) (201	COWEAMBAH SCALE 1:4000 on A1	SIZE AL SHEET No. 1
JTER FILE : S:\projects\Riverside\dwg\F		tted 16:10 24/08/15

APPENDIX B: Great Lakes Council IFD Data

01	-1104-2000 1110	10+10 G	LV ENGINE	UNT NG		Г пл 130.	020001024	εų		1. 04
				12						
	"RARE - R	ainfall &	RunoEf E	stimatio	n Progra	m				
	INTENSITY -	FREQUENCY	- DURATI	ON TABL	Е					
	(Results in	mm/hour)								
	FILE REFEREN	ICE: HAWKS	-NEST	. <u>k</u>						
	Values Used:					٢				
		. hr : 37.0 : hr : 7.30 : hr : 2.20)							
		. hr : 72.0 2 hr : 14.3 2 hr : 4.40	50				<u>ं के</u>			
North Contraction of the Contrac	Co-efficient	G: 0.00 F2: 4.3 F50: 16.5	2							
	TIME	1	AVERAGE I 2	RECURRENC	E INTER	VAL (ARI) 20	years 50	100	200	500
	5 mins	+ 92.9	119	150	168	192	223	246	200	302

	121		7	2	5	10	20	50	100	200	500
	5	mins	92.9	119	150	168	192	223	246	270	302
	6	mins	87.1	111	141	158	180	210	232	254	284
		mins	82.2	105	133	149	171	198	219	240	268
	8	mins	78.0	99.9	127	142	162	189	208	225	255
	9	ins	74.4	95.3	121	135	155	180	199	218 .	
	2.0	n. ns	71.2	91.3	116	130	148	173	191	210	234
	12	mins	65.9	84.4	107	120	138	160	177	194	217
	14	mins	61.5	78.8	100	112	129	150	166	182	204
	15	mir s	59.8	76.4	97.1	109	125	145	161	177	198
	16	mi s	57.8	74.1	94.3	106	121	141	156	172	192
	18	mins	54.6	70.1	89.2	100	115	134	148	163	182
· ····	20	mins	51.9	66.6	84.8	95.3	109	127	141	155	173
. And the second	25	mins	45.4	59.6	76.0	85.4	97.9	114	127	139	156
	30	mins	42.2	54.2	69.2	77.8	89.3	104	116	127	142
	40	mins	36.1	40.4	59.4	66.9	76.0	89.7	99.5	109	123
	50	mins	31.9	41.0	52.6	59.3	68.1	79.6	88.3	97.2	109
		hour	28.8	37.0	47.5	53.5	61.5	72.0	79.9	88.0	98.8
	1.5	hours	22.2	28.6	36.7	41.5	47.7	55.8	62.0	68.2	76.7
	2	hours	18.4	23.7	30.5	34.4	39.6	46.4	51.6	56.8	63.8
	3	hours	14.1	18.2	23.4	26.4	30.4	35.7	39.7	43.7	49.1
	4.5	hours	10.8	13.9	17.9	20.3	23.4	27.4	30.5	33.6	37.8
	6	hours	8.9	11.5	14.9	16.8	19.4	22.7	25.3	27.9	31.4
		hours	6.8	8.8	11.4	12.9	14.9	17.5	19.4	21.4	24.1
		hours	5.7	7.3	9.4	10.7	12.3	14.5	16.1	17.8	20.1
		hours	4.9	6.3	8.2`	9.3	10.7	12.5	14.0	15.5	17.5
		hours	4.2	5.7	7.3 '	8.3	9.6	11.3	12.5	13.8	15.6
		hours	3.5	4.7	6,1	6.9	8.0	9.4	10.4	11.5	13.0
		hours	3.2	4.1	5.3	6.0	6.9	8.1	9.0	10.0	11.2
		hours	2.8	3.6	4.7	5.3	6.1	7.2	8.0	8.9	10,0
		hours	2.3	3.0	3.8	4.4	5.0	5,9	6.6	7.3	8.2
	72	hours	1.7	2.2	2.9	3.2	3.7	4.4	4.9	5.4	6.1

APPENDIX C: PMF Generalised Short-Duration Method Calculation Sheet

Appendix 1

GSDM CALCULATION SHEET


		LOCATION INFO	RMATION	
Catchment	Riverside	Area 4-4	km²	
(1) S	SW		ion Limit	hrs
	32 . 39 .		tude152	
	area Considered:		within zokm of	
			Rough, $\mathbf{R} = \frac{1-0}{1-0}$	
Sincon , S	Subjectives, gradeling of	Energy of the second state of the second	NT FACTOR (EAF)	
		ATION ADJUSTIME	NI FACTOR (EAF)	
Mean Eleva	tion ! ს	m		
Adjustment	for Elevation (-0.05	per 300m above 1500	m)	
EAF =	-00 (0.85 - 1.00)			
	MOIS	TURE ADJUSTMEN	T FACTOR (MAF)	
MAF =	0.40 - 1.00))		
		PMP VALUE	S (mm)	
Duration (hours)	Initial Depth - Smooth (D _S)	Initial Depth - Rough (D _R)	PMP Estimate = $(D_S \times S + D_R \times R)$ $\times MAF \times EAF$	Rounded PMP Estimate (nearest 10 mm)
0.25	-	225	169	וסרו
0.50	-	325	244	240
0.75	-	415	311	310
1.0	-	480	360	360
				560
1.5	-	620	465	470
1.5 2.0	-	620 730	465	
				470
2.0		730	547	470 5 50
2.0 2.5	~	730 800	527 600	470 5 50 600
2.0 2.5 3.0	~	730 800 875	547 600 656	470 5 50 600 660

Prepared by Adrian Varela Checked by Derve Kopcsand

Date <u>10</u> / <u>9</u> / <u>12</u> Date <u>12</u> / <u>9</u> / <u>12</u>

THE ESTIMATION OF PROBABLE MAXIMUM PRECIPITATION IN AUSTRALIA: GENERALISED SHORT-DURATION METHOD JUNE 2003

APPENDIX D: PMF Flood Hazard and Flood Depth Mapping Results

Figure E.1 – Flood Hazard Mapping Across the Developed Riverside Site – 1hr PMF Storm, 100yr Tailwater

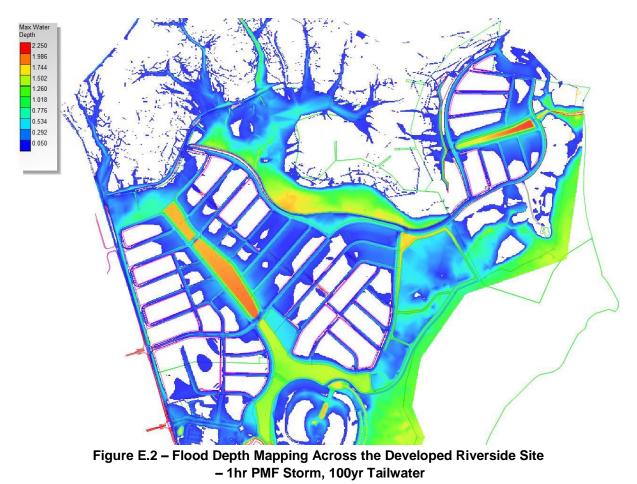
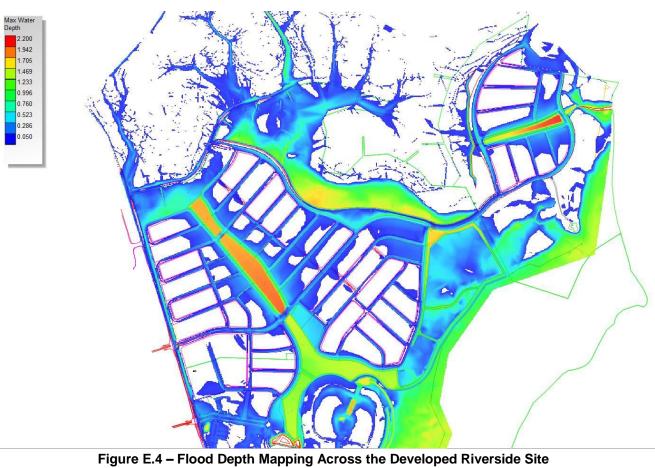



Figure E.3 – Flood Hazard Mapping Across the Developed Riverside Site – 2hr PMF Storm, 100yr Tailwater

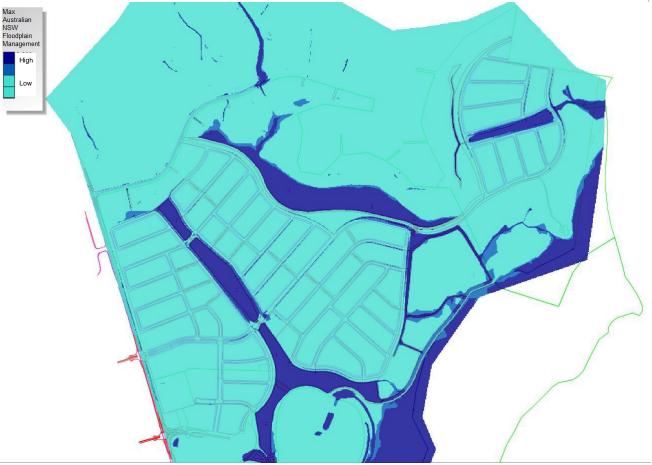
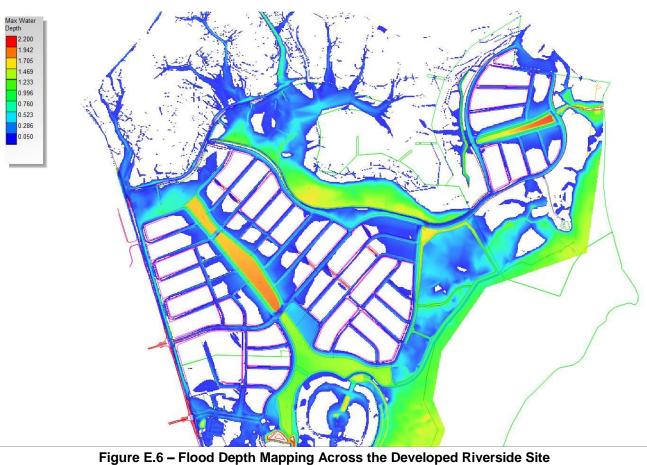



Figure E.5 – Flood Hazard Mapping Across the Developed Riverside Site – 3hr PMF Storm, 100yr Tailwater

- 3hr PMF Storm, 100yr Tailwater

Figure E.7 – Flood Hazard Mapping Across the Developed Riverside Site – 6hr PMF Storm, 100yr Tailwater

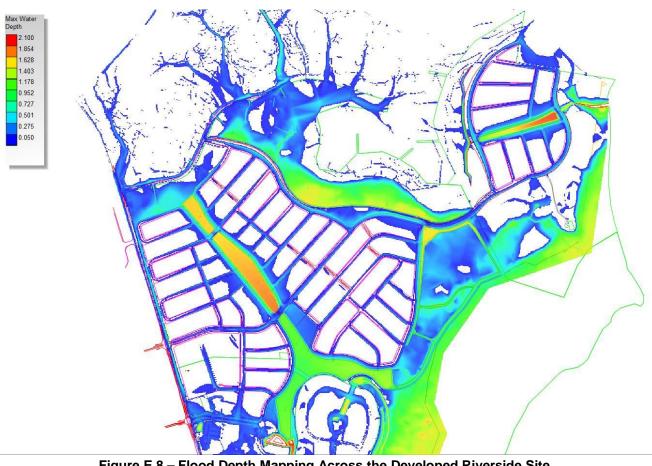


Figure E.8 – Flood Depth Mapping Across the Developed Riverside Site – 6hr PMF Storm, 100yr Tailwater

Figure E.9 – Flood Hazard Mapping Across the Developed Riverside Site – 1hr 100yr Storm, Extreme Tailwater

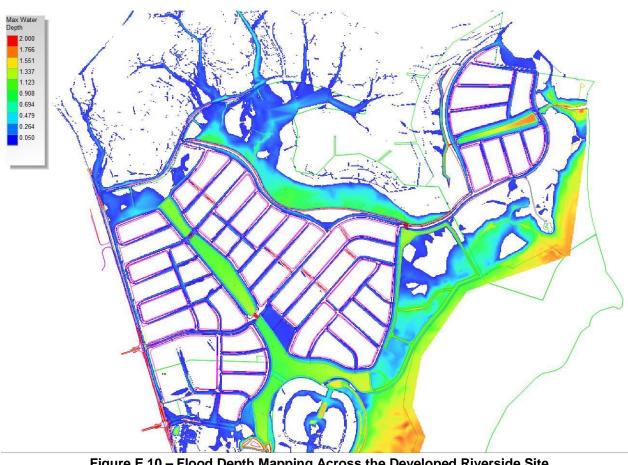
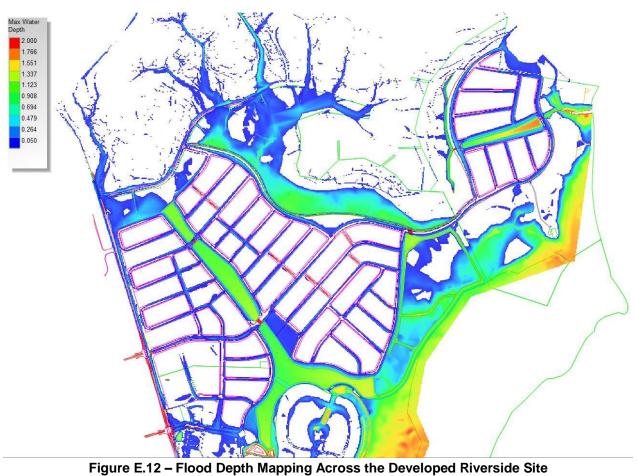
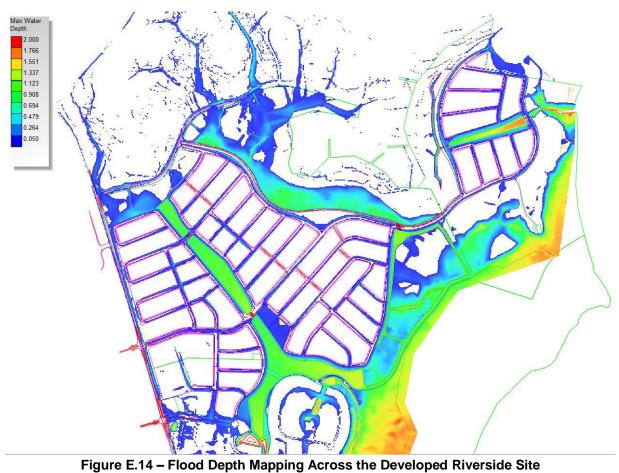



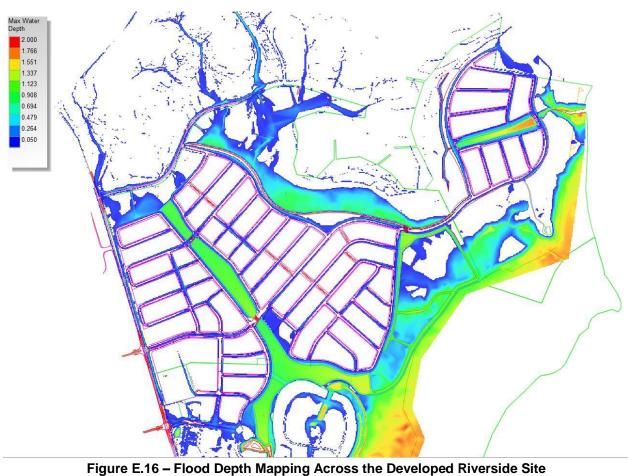
Figure E.10 – Flood Depth Mapping Across the Developed Riverside Site – 1hr 100yr Storm, Extreme Tailwater

Figure E.11 – Flood Hazard Mapping Across the Developed Riverside Site – 2hr 100yr Storm, Extreme Tailwater



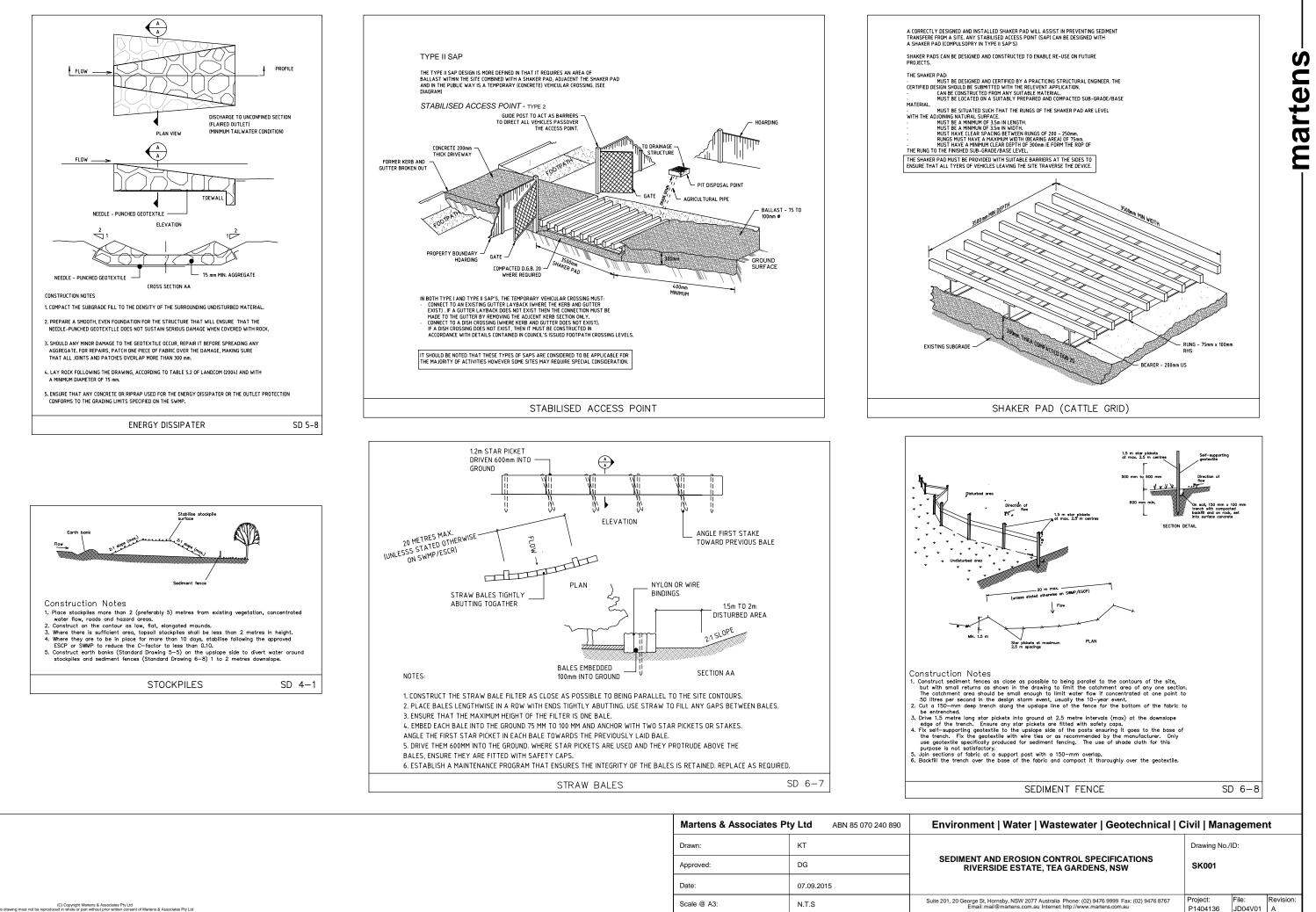
– 2hr 100yr Storm, Extreme Tailwater

Figure E.13 – Flood Hazard Mapping Across the Developed Riverside Site – 3hr 100yr Storm, Extreme Tailwater



– 3hr 100yr Storm, Extreme Tailwater

Figure E.15 – Flood Hazard Mapping Across the Developed Riverside Site – 6hr 100yr Storm, Extreme Tailwater



– 6hr 100yr Storm, Extreme Tailwater

S:\projects\Riverside\Correspondence\213366-R001001 Flood Study.docx

25 Attachment 7A – Erosion and Sediment Control Devices

	Martens & Associates P	Pty Ltd ABN 85 070 240 890	Environment Wa
	Drawn:	КТ	
	Approved:	DG	SEDIMENT AND ERC RIVERSIDE ES
	Date:	07.09.2015	
(C) Copyright Martens & Associates Pty Ltd d in whole or part without prior written consent of Martens & Associates Pty Ltd	Scale @ A3:	N.T.S	Suite 201, 20 George St, Hornsby, NS Email: mail@martens
(C) Copyright Martens & Associates Pty Ltd d in whole or part without prior written consent of Martens & Associates Pty Ltd			-

Attachment 8 – Monitoring Data Sample Table

Date:	Time:		Weather:			
Sample Type	Sampling Location	Sampling Frequency	Parameter	Target Value (mg/L)	Laboratory Result (mg/L)	Complies (Y/N)
	Myall Creek		Suspended Solids	≤ 9.060		
Treated water	Wetland Inlet collection	Fortnightly	Total Nitrogen (TKN + NOx)	≤ 0.037		
	chamber		Total Phosphorous	≤ 0.442		
	Wetland 1		Suspended Solids	≤ 5.720		
Treated water	Outlet collection	Fortnightly	Total Nitrogen (TKN + NOx)	≤ 0.022		
	chamber		Total Phosphorous	≤ 0.247		
Treated water		Fortnightly ¹	Suspended Solids	≤ 15.600		
	Wetland 2 mid - wetland		Total Nitrogen (TKN + NOx)	≤ 0.065		
			Total Phosphorous	≤ 0.755		
			Suspended Solids	≤ 11.000		
Treated water	collection	n Fortnightly ¹	Total Nitrogen (TKN + NOx)	≤ 0.046		
				Total Phosphorous	≤ 0.526	
			Suspended Solids	≤ 17.100		
Treated water		0,	Total Nitrogen (TKN + NOx)	≤ 0.074		
			Total Phosphorous	≤ 0.678		
	Bio-		Suspended Solids	≤ 17.100		
Treated water	retention collection	etention collection Fortnightly ¹²	Total Nitrogen (TKN + NOx)	≤ 0.074		
	chamber		Total Phosphorous	≤ 0.678		

Notes:

 $^{\rm L}$ Testing for wetlands should be done fortnightly for the first 3 - 6 months, monthly between 6 – 24 months and annually after 24 months.

^{2.} Testing for bioretention areas should be performed as per the manufacturer's specifications.

Concept Integrated Water Cycle Management Strategy (Revised), Riverside, Tea Gardens, NSW P1404136JR04V01.docx – January, 2013 Page 182

26