

Appendix A Engineering Plans

Figure 1 – Site Plan Drawing 22-11948-SK01 – Sewer Infrastructure Concept Drawing 22-11948-SK02 – Water Infrastructure Concept Drawing 22-11948-SK03 – Existing Services

SITE PLAN figure 1.

Appendix B Geotechnical Report GHD PTY LTD HILLVIEW HEIGHTS ESTATE SUBDIVISION - MOONEE BEACH Pacific Highway, Moonee Beach GEOTECHNICAL ASSESSMENT

CH1318/1-AB 18 October 2004 CH1318/1-AB 18 October 2004

GHD Pty Ltd 2/115 West High Street COFFS HARBOUR NSW 2450

Attention: Mr Wayne Cooper

Dear Sir,

RE: PROPOSED HILLVIEW HEIGHTS ESTATE SUBDIVISION - MOONEE BEACH GEOTECHNICAL INVSTIGATION

Coffey Geosciences Pty Ltd (Coffey) is pleased to present our report on the geotechnical investigation for the above site.

We draw your attention to the attached sheet entitled "Important Information About Your Coffey Report" which should be read in conjunction with this report.

We trust that this report meets with your requirements. If you require further information please contact the undersigned in our Coffs Harbour office.

For and on behalf of

COFFEY GEOSCIENCES PTY LTD

DAVID BARKER Senior Geotechnical Engineer

Distribution:	Original held by:	Coffey Geosciences Pty Ltd
	1 сору	Coffey Geosciences Pty Ltd (Brisbane Library)
	3 copies	GHD Pty Ltd

53B Fairlawn Street Nathan QLD 4111 Australia PO Box 108 Salisbury QLD 4107 Australia Telephone +61 7 3274 4411 Facsimile +61 7 3274 4977 Email brisbane@coffey.com.au

Coffey Geosciences Pty Ltd ACN 056 335 516

TABLE OF CONTENTS

1. INTRODUCTION	1
2. SITE DESCRIPTION & PROPOSED DEVELOPMENT	1
3. SCOPE OF WORK	1
3.1 Fieldwork	1
3.2 Laboratory Testing	1
4. SUB-SURFACE CONDITIONS	3
4.1 Stratigraphy	3
4.2 Groundwater	4
5. PAVEMENT DESIGN PARAMETERS	4
6. ACID SULFATE SOILS	5
6.1 Formation and Potential Impacts	5
6.2 Laboratory Testing	5
6.3 Discussion and Recommendations	6
7. SOIL SALINITY	7
8. EXCAVATION CONDITIONS	8
9. SITE PREPARATION AND EARTHWORKS	8

IMPORTANT INFORMATION ABOUT YOUR COFFEY REPORT

FIGURES

Figure 1 Site Plan

APPENDICES

A	Engineering Logs	

B Laboratory Test Results

G:\Coffs Harbour\Ch1300\CH1318-1\CH1318-1AB.Doc

1. INTRODUCTION

Coffey Geosciences Pty Ltd has conducted a geotechnical assessment for a proposed subdivision to be located off the Pacific Highway at Moonee Beach. The aims of the study, which was commissioned by Wayne Cooper of GHD Pty Ltd, were to assess:

- General comments on subsurface conditions and excavation conditions at the site;
- Preliminary pavement design parameters;
- Acid sulfate soils, including recommendations on likely treatment options if required, and;
- General comments on the results of testing for soil salinity.

Coffey conducted the work in general accordance with proposal no. CH1318/1-AA. This report presents the results of the site investigation.

2. SITE DESCRIPTION & PROPOSED DEVELOPMENT

The site is approximately 15ha and is situated parallel to the Pacific Highway at Moonee Beach. The site is bounded by the highway to the west, beach sand dunes to the east, a creek to the north and by vacant land to the south. We understand that the vacant land to the south is likely to become a medium density residential subdivision.

Regionally the site is situated within generally flat to moderately sloping topography. Locally, the ground surface is undulating with gentle to moderate slopes between 5° and 13°. These slopes generally form the sides of drainage gullies which run through the site from west to east and south to north. The site is currently undeveloped, except for an easement running parallel to the highway within which services have been installed. The majority of the site is covered by native trees, however towards the east the vegetation becomes thicker and shorter due to it's proximity to the ocean. Most of the gullies had standing water, and towards the east of the site in the low area behind the sand dunes the ground was wet.

Drawings provided by the client showed the general subdivision layout, though it is understood that the subdivision is at a preliminary planning stage and development details are not yet known.

3. SCOPE OF WORK

3.1 Fieldwork

Fieldwork was carried out on 15 September 2004 and comprised the excavation of nine test pits (TP1 to TP9) to depths between 1.5m and 3m by rubber tyred backhoe.

Fieldwork was conducted by a Scientist from Coffey who located the pits, took samples and recorded results of in-situ testing, and produced field logs of the subsurface conditions observed. Figure 1 shows the investigation locations. Engineering Logs are presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation.

3.2 Laboratory Testing

Laboratory testing as follows was conducted on samples recovered during fieldwork:

• Six standard compaction and soaked CBR tests;

- Five pH and electrical conductivity tests;
- Sixteen acid sulfate soils screening tests, and;
- One Peroxide Oxidisable Combined Acidity and Sulfate (POCAS) test.

Laboratory test result sheets are presented in Appendix B. The results of the laboratory testing are summarised in Tables 1, 2 and 3 below.

	•••••••				
LOCATION	DEPTH (m)	MATERIAL TYPE	FIELD MOISTURE CONTENT (%)	OPTIMUM MOISTURE CONTENT (%)	CBR (%)
TP3	0.4-0.6	CLAY	24.6	26.5	2
TP4	0.4-0.6	CLAY	19.3	22.6	6
TP5	0.4-0.6	CLAY	19.5	22.7	5
TP6	0.4-0.6	CLAY	21.5	23.2	6
TP7	0.4-0.6	CLAY	24.0	26.4	2
TP8	0.4-0.6	SAND	11.1	17.4	16

TABLE 1:SUMMARY OF CBR TEST RESULTS

	TABLE 2:	SUMMARY OF pH	I AND ELECTRICAL	CONDUCTIVITY TEST RESULTS
--	----------	---------------	------------------	---------------------------

LOCATION	DEPTH (m)	рН	ELECTRICAL CONDUCTIVITY		
TP3	0.4-0.6	4.40	0.118		
TP5	0.4-0.6	5.05	0.125		
TP6	0.4-0.6	4.43	0.350		
TP7	0.4-0.6	4.45	0.204		
TP8	0.4-0.6	7.63	0.122		

LOCATION	SAMPLE DEPTH (m)	TEXTURE	pH IN WATER	pH in 30% H ₂ O ₂									
TP1	0-0.5	Fine	5.7	3.6									
TP1	0.5-1	Fine	5.2	4.3									
TP1	1-1.5	Fine	5.4	4.8									
TP1	1.5-1.8	Fine	5.3	4.2									
TP2	0-0.5	Fine	5.7	3.8									
TP2	0.5-1	Fine	5.6	4.4									
TP2	1-1.5	Fine	5.6	3.3									
TP2	1.5-2	Fine	5.4	3.3									
TP6	0-0.5	Fine	5.5	2.5									
TP6	0.5-1	Fine	4.8	3.6									
TP6	1-1.5	Fine	4.5	4.0									
TP6	1.5-2	Fine	4.7	4.1									
TP7	0-0.5	Fine	5.4	3.5									
TP7	0.5-1	Fine	4.7	3.8									
TP7	1-1.5	Fine	4.3	3.9									
TP7	1.5-2	Fine	4.3	3.2									

TABLE 3: RESULTS OF ACID SULFATE SOILS SCREENING TESTS

Note: Texture assessed with reference to Table 4.4 ASSMAC Assessment Guidelines, 1998.

The sample from TP6 at 0-0.5m depth was sent to an external laboratory for POCAS testing. The results indicate the sample has a value of peroxide oxidisable sulphur of S_{POS} =0.02%.

4. SUB-SURFACE CONDITIONS

4.1 Stratigraphy

The Dorrigo / Coffs Harbour 1:250,000 geological map indicates that the site is on the boundary of the Coramba Beds comprising of mudstone, siltstone and greywacke with minor volcanic intervals and Quaternary Alluvium comprising of sands and clays.

The stratigraphy interpreted from the test pits TP1 to TP7 may be summarised as follows:

- Topsoil (TP1 to TP5): Silt/Clayey Silt, grey / dark brown, to depths between 0.3m and 0.4m, overlying;
- Colluvial Soil (TP2, TP6 and TP7): Silty Clay / Clay, low to medium plasticity, grey-brown / brown, to a
 depth of about 1m in TP2 and about 0.3m in TP6 and TP7, overlying;

 Residual Soil: Clay, high plasticity, generally very stiff to hard, assessed to be Sandy Clay grading to Sandy Gravelly Clay in TP2, grading to extremely weathered siltstone in TP1, to beyond the limit of investigation.

The stratigraphy interpreted from the test pits TP8 and TP9 may be summarised as follows:

- Fill (TP8 only): Silt to 0.05m depth overlying Gravelly Clay to a depth of 0.4m, overlying;
- Alluvial Soil? (TP8 only): Sand, fine to medium grained, pale brown, to a depth of 1m, overlying;
- Organic Soil (TP8 only): Organic Silt, black, some sand, to a depth of 1.1m, overlying;
- Alluvial Soil (TP8 and TP9): Sand, fine to medium grained, pale brown, to beyond the limit of investigation.

Further details of the materials intersected by the test pits are given on the Engineering Logs presented in Appendix A, with explanation sheets defining the terms and symbols used in their preparation.

4.2 Groundwater

Groundwater inflow was observed in TP2 only at 1m depth. Ground water levels may fluctuate after rain or as a consequence of other climatic effects.

5. PAVEMENT DESIGN PARAMETERS

Laboratory CBR testing indicated that site soils have a soaked CBR of between 2% and 6%. On the basis of the CBR test results, a preliminary design CBR of 2% is recommended for design of flexible pavements. Coffey can assist with pavement design if required. Site preparation as shown in Section 9 is recommended as a minimum to enable this design CBR to be achieved.

Due to the preliminary nature of the geotechnical assessment, a limited amount of sampling and testing has been carried out for assessment of preliminary pavement design parameters. It is recommended that additional sampling and testing be carried out to assess the design CBR of subgrade materials once the development design has been finalised, in particular the location of the pavements.

There are several alternatives for the construction of flexible pavements on subgrade materials with a low design CBR such as in this case, including;

- Over-excavation of existing subgrade materials and replacement with a select material which has a higher soaked CBR value. The required flexible pavement thickness will depend on the depth of over-excavation and the soaked CBR of the select material.
- Mixing of lime with the subgrade soils by in-situ pulvimixer or similar. The addition of lime to clayey subgrade soils generally results in an increased soaked CBR and thus a thinner required granular pavement thickness. This method is generally cost-effective for large areas of road where the reduction in pavement gravels offsets the increased subgrade preparation costs. Our experience suggests that a soaked CBR of up to about 7% may be achievable in clay soils with the addition of 3% lime by dry weight. It is recommended that laboratory testing be carried out to assess the effectiveness of the addition of lime to subgrade soils at this site.

6. ACID SULFATE SOILS

6.1 Formation and Potential Impacts

Acid Sulfate Soils (ASS) are soils which contain significant concentrations of pyrite which, when exposed to oxygen, in the presence of sufficient moisture, oxidises, resulting in the generation of sulfuric acid. Unoxidised pyritic soils are referred to as potential ASS (PASS). When the soils are exposed, the oxidation of pyrite occurs and sulfuric acids are generated, the soils are said to be actual ASS (AASS).

Pyritic soils typically form in waterlogged, saline sediments rich in iron and sulfate. Typical environments for the formation of these soils include tidal flats, salt marshes and mangrove swamps below about RL 5m AHD. They can also form as bottom sediments in coastal rives and creeks.

Pyritic soils of concern on low lying NSW and coastal lands have mostly formed in the Holocene period, (i.e. 10,000 years ago to present day) predominantly in the 7,000 years since the last rise in sea level. It is generally considered that pyritic soils which formed prior to the Holocene period would already have oxidised and leached during periods of low sea level which occurred during ice ages, exposing pyritic coastal sediments to oxygen.

Disturbance or poorly managed development and use of acid sulfate soils can generate significant amounts of sulfuric acid, which can lower soil and water pH to extreme levels (generally <4) and produce acid and salts, resulting in high salinity.

The low pH, high salinity soils can reduce or altogether preclude vegetation growth and can produce aggressive soil conditions which may be detrimental to concrete and steel components of structures, foundations, pipelines and other engineering works.

Generation of the acid conditions often releases aluminium, iron and other naturally occurring elements from the otherwise stable soil matrices. High concentrations of such elements, coupled with low pH and alterations to salinity can be detrimental to aquatic life. In severe cases, affected waters flowing off-site can have detrimental effect on aquatic ecosystems.

6.2 Laboratory Testing

Samples obtained for the acid sulfate assessment were screened for the presence of actual and potential ASS using laboratory methods 21Af and 21Bf of Ahern CR, Blunden B and Stone Y (eds) (1998), Acid Sulfate Soil Laboratory Methods Guidelines, ASSMAC.

The results of the acid sulfate soil screening tests are summarised in Table 3 shown in Section 3.2.

The following comments are noted from the results presented in Table 3.

- pH of 1:5 soil water solution produced pH<4 in none of the 16 samples tested. Soil water pH<4 in this test is an indication of actual acid sulfate soil.
- H₂O₂ oxidation produced pH<3 in one of the samples tested. Soil pH<3 in this test is an indication of
 potential acid sulfate soil;

On the basis of the screening results, and taking into account the relatively low pH of the water as mentioned above, it is considered that the site soils to 3m depth are not actual potential acid sulfate soils, but may be potential acid sulfate soils. To further assess the potential for acid generation, one sample was selected for additional testing and sent to an external analytical laboratory for POCAS testing. The results of the POCAS testing are presented in Appendix B and are summarised in Table 4.

Location	Depth (m)	Texture based on field logs	S _{POS} (%)	Action Criteria Value for S _{POS} ² (%)	TPA (mole/tonne)	Action Criteria Value for TPA ¹ (mole/tonne)	Action Criteria Value for TPA ² (mole/tonne)
TP6	0-0.5	Fine	0.02	0.03	<u>51</u>	62	18
		(m)	(m) based on field logs	(m) based on (%) field logs	(m) based on (%) Criteria Value for S _{POS²} (%)	(m) based on field logs Criteria (mole/tonne) SPOS ² (%)	(m) based on field logs (%) Criteria (mole/tonne) Criteria Value for SPOS ² (%) (mole/tonne) (mole/tonne)

TABLE 4: RESULTS OF POCAS TEST

Note: Values in bold and underlined exceed action criteria.

- 1. Action criteria from those presented in ASSMAC (1998) Acid Sulfate Soil Guidelines for excavations of less than 1000 tonnes of soil.
- 2. Action criteria from those presented in ASSMAC (1998) Acid Sulfate Soil Guidelines for excavations of greater than 1000 tonnes of soil.

Based on the laboratory test results, Total Potential Acidity (TPA) in the sample from TP6 at 0-0.5m depth exceeded the action criteria value in Table 4.4 of the ASSMAC Guidelines for excavations of greater than 1000 tonnes. TPA did not exceed that action criteria value for excavations of less than 1000 tonnes. Potential Oxidisable Sulfur (S_{POS}) did not exceed action criteria values.

6.3 Discussion and Recommendations

Due to the preliminary nature of the geotechnical assessment, a limited amount of sampling and testing has been carried out for assessment of acid sulfate soils. In addition, some areas which may contain acid sulfate soils were inaccessible at the time of the field investigation. It is recommended that additional sampling and testing be carried out to assess acid sulfate soils once the development design has been finalised and the location and depth of proposed excavations are known.

Reference to the Moonee Beach Acid Sulfate Soils Risk Map published by the Department of Land and Water Conservation indicates the proposed subdivision development is located partly in an area which has no known occurrence of acid sulfate soils and partly in an area which has a low probability of the occurrence of acid sulfate soils between 1m and 3m below the ground surface.

As shown on the engineering logs, most of the test pits were excavated within residual soil profiles. Residual soils are derived from the weathering of rock, and are generally not considered likely to be actual or potential acid sulfate soils, as they were not formed as discussed in Section 6.1. However, some unoxidised pyrite can remain in soils which have been weathered from pyrite containing parent rock, which can lead to acid generation when soils are excavated in significant quantities. In addition, the soil sample tested by the POCAS method was taken from 0-0.5m depth, and may contain organic material which can affect the 'acid trail' TPH result, which provides some justification for using only the 'sulfur trail' S_{POS} and TSA results.

On the basis of the preliminary assessment, it is recommended that further assessment of acid sulfate soils be carried out prior to excavation of site soils once the location and depth of excavations are known in more detail. The assessment should target alluvial soil areas below about RL5m AHD, though may include sampling and testing of some residual soils. Based on the results of the preliminary assessment, the residual soils are not considered to be potential acid sulfate soils, though test results indicate they may have some acid generating potential. Excavated soils may require treatment with up to 4kg of lime per tonne of excavated soil for excavations of greater than 1000 tonnes as a precautionary measure to neutralise acidity

produced by oxidation of the soils when excavated.

Good quality fine agricultural lime should be used to treat excavated PASS. In calculating the liming ratio a factor of safety of 1.5 has been allowed (as recommended in the ASSMAC guidelines) above the theoretical requirement to take into account the rate of lime reactivity and the possibility of inhomogeneous mixing, particularly in the cohesive soils.

The time required for applied lime to neutralise PASS is widely variable and depends on the specific properties of the neutralised soil, although the lime will begin to neutralise the acid soils from the time of application. Measurement of the neutralisation of the PASS being treated should be undertaken at a later date to provide an indication that the neutralisation process is working or has worked effectively.

Soil acidity in excavated materials should be monitored. Should field pH tests and laboratory tests show that the soil acidity has not fallen below action criteria, then the material must be reworked and additional lime treatment carried out until it is verified that the soil meets the required standard.

7. SOIL SALINITY

It is understood that the client required a preliminary assessment of soil salinity at the site. In consultation with the client and an external testing laboratory, soil samples were taken at various locations across the site at about 0.5m depth. These samples were sent to an external laboratory, who tested the sample for pH and Electrical Conductivity (EC) by making a1:5 soil:water paste. The results of this testing are shown in Table 2.

For the assessment of soil salinity, reference was made to the paper P.G. Slavich and G.H. Patterson (1993), "Estimating the Electrical Conductivity of Saturated Paste Extracts from 1:5 Soil:Water Suspensions and Texture", pp 73-81 of Aust. J. Soil Res., 1993 [Reference 1]. This paper provides a method of estimating the EC of a saturated paste extract (EC_e) from the EC of a 1:5 soil:water paste (EC_{1:5}). Soil analysis methods are based on EC_e. Reference 1 suggests that EC_e may be estimated using a conversion factor *f*, the values for which are shown in a table and vary depending on the soil texture. Table 1 in Reference 1 indicates that the conversion factor for a medium to heavy clay is about *f*=7 and for a sand *f*= 10 to 20. Estimated values of EC_e are shown in Table 5.

TEST PIT	DEPTH	EC _{1:5} (dS/m)	f	EC _e (dS/m)	
TP3	0.4-0.6	0.118 7		0.8	
TP5	0.4-0.6	0.125	0.125 7 0		
TP6	0.4-0.6	0.350	7	2.5	
TP7	0.4-0.6	0.204	7	1.4	
TP8	0.4-0.6	0.122	10	1.2	
			15	1.8	
			20	2.4	

TABLE 5: ESTIMATES OF EC.

The estimates shown in Table 5 indicate that values of ECe for the soil samples range from about 1dS/m to

2.5dS/m.

8. EXCAVATION CONDITIONS

Excavations are likely to be within the residual and alluvial materials, and may need to progress through extremely weathered material.

Based on experience with similar conditions, excavation in soil strength materials such as the hard clay residual material and medium dense alluvial material could be conducted using conventional excavators or bull dozers at least to the depth of the test pits included in Appendix A. Subsurface conditions below the limit of investigation are not known, and it is recommended that further assessment of excavation conditions be carried out if deep excavations are proposed.

Groundwater inflow was observed in one test pit at the time of the investigation, though groundwater conditions may change if rainfall is experienced prior to or during construction. The rate of water inflow is likely to be dependent on the excavation location, as water inflow in the residual clay soils are likely to significantly less than the alluvial sand soils.

9. SITE PREPARATION AND EARTHWORKS

Site preparation and earthworks suitable for pavement and structure support should consist of:

- Prior to construction of roads and placement of any fill, the proposed areas should be stripped to remove all fill, vegetation, topsoil, root affected or other potentially deleterious material;
- Following stripping, the exposed subgrade materials should be proof rolled to identify any wet or
 excessively deflecting material. As the near surface soils on site were observed to comprise clay, they
 may be susceptible to changes in strength depending on soil moisture conditions at the time of
 construction. Any such areas should be over excavated and backfilled with an approved select
 material;
- Approved bulk fill beneath roads should be placed in layers not exceeding 300mm loose thickness and compacted to a minimum density ratio of 95% Standard Compaction in accordance with AS1289 5.1.1 or equivalent. Clay subgrade fill should be placed and maintained at 60% to 90% of Optimum Moisture Content;
- The top 300mm of natural subgrade below pavements or the final 300mm of road subgrade replaced should be compacted to a minimum density ratio of 100% Standard Compaction or equivalent within the above stated moisture range;
- Fill beneath structures should be placed in layers not exceeding 300mm loose thickness and be compacted to a minimum density ratio of 95% Standard Compaction within ±2% of OMC;
- All fill should be supported by properly designed and constructed retaining walls or else battered at 1V:2H or flatter and protected against erosion;
- Earthworks should be carried out in accordance with the recommendations outlined in AS3798-1996, 'Guidelines for Earthworks for Commercial and Residential Developments'.

The extent of testing associated with this preliminary assessment is limited and variations in ground conditions

CH1318/1-AB 18 October 2004

may occur between test locations. It is recommended that further geotechnical investigations be carried out prior to development to reduce the risk of variations in ground conditions and to assess issues discussed in this report.

We draw your attention to the attached sheet entitled "Important Information About Your Coffey Report" which should be read in conjunction with this report.

Please contact David Barker or the undersigned if you require further information.

For and on behalf of COFFEY GEOSCIENCES PTY LTD

DAVID BARKER Senior Geotechnical Engineer

Information

Important information about your **Coffey** Report

As a client of Coffey you should know that site subsurface conditions cause more construction problems than any other factor. These notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report is based on project specific criteria

Your report has been developed on the basis of your unique project specific requirements as understood by Coffey and applies only to the site investigated. Project criteria typically include the general nature of the project; its size and configuration; the location of any structures on the site; other site improvements; the presence of underground utilities; and the additional risk imposed by scope-of-service limitations imposed by the client. Your report should not be used if there are any changes to the project without first asking Coffey to assess how factors that changed subsequent to the date of the report affect the report's recommendations. Coffey cannot accept responsibility for problems that may occur due to changed factors if they are not consulted.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project.

Interpretation of factual data

Site assessment identifies actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from literature and external data source review, sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, owners should retain the services of Coffey through the development stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site.

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. Your report should not be applied to any project other than that originally specified at the time the report was issued.

Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other project design professionals who are affected by the report. Have Coffey explain the report implications to design professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

Data should not be separated from the report*

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way.

Logs, figures, drawings etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel) and laboratory evaluation of field samples. These logs etc. should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Geoenvironmental concerns are not at issue

Your report is not likely to relate any findings, conclusions, or recommendations about the potential for hazardous materials existing at the site unless specifically required to do so by the client. Specialist equipment, techniques, and personnel are used to perform a geoenvironmental assessment. Contamination can create major health, safety and environmental risks. If you have no information about the potential for your site to be contaminated or create an environmental hazard, you are advised to contact Coffey for information relating to geoenvironmental issues.

Form CCR 2.1 Issue 1 Rev 0 Sheet 2 of 2

Rely on Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to a project, from design to construction. It is common that not all approaches will be necessarily dealt with in your site assessment report due to concepts proposed at that time. As the project progresses through design toward construction, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than the design disciplines. This has often resulted in claims being lodged against consultants. which are unfounded. To help prevent this problem. a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, National Headquarters, Canberra, 1987.

APPENDIX A

ENGINEERING LOGS

Co	ffey	G	eos	cience	s Pty Lt	d AC	N 056 (335 516		-	Excava	tion N	lo.	TP1	-
Er	ngi	ne	er	ring lo	og - Ex	xca	vati	ion			Sheet Office J	lob Ne		of 1 CH1318	
Clie	nt:			GHL) PTY L1	D					Date sta			15.9.200	
Prin	icipal	:									Date co	mple	ted:	15.9.200	04
Pro	ject:			PRC	POSED	SUE	BDIVI	SION - MOONEE BEA	СН		Logged	by:		ELC	Я
Tes	t pit le	oca	tion:	REF	ER TO F	IGU	RE 1				Checke	ed by:			0
					BACKHOE			Pit Orientation:		m				Surface:	
	vatior cavat			ons: ormation	2m long 0.	45m w mat		ubstance	Northing:	m		C	latum	1	
method	5 penetration	support	water	notes samples, tests, etc	depth RL metres	graphic log	classification symbol	material soil type: plasticity or particl colour, secondary and min	e characteristics,	moisture condition	consistency/ density index	200 H penetro- 300 D penetro-	ι	struc additional	ture and observations
H		N		D D D	0.5 0.5 1.0 1.5 2.0 3.0 3.5 -		CH	TOPSOIL: Silt, high plasticity, da CLAY: high plasticity, orange-br Gradual colour change to pale g Backhoe refusal on weathered s Test pit TP1 terminated at 1.8m	own.	M	VSt/H	:		OPSOIL RESIDUAL SOI XTREMELY W SILTSTONE	
	ketch				4.0										
met N BH B R E		exist back bulld rippe	ing ex hoe b ozer t	posure ccavation ucket olade	water water on dat	on no resistr ranging t refusal level te show	0	notes, samples, tests U _{s0} undisturbed sample 63m D disturbed sample B vane shear (kPa) Bs bulk sample E environmental sample R refusal	m diameter soil d		l classifica			S F St VSt H Fb VL L MD D	ensity index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense

								10000				Excava	tion	No	- 7	TP2	
E	ngi	ne	er	ring lo	Ŋġ	- Ex	kca	vat	ion			Sheet	1.a.h. 1		1 of	1 C H1318/1	
Clie	_			_	-	TYLT						Office J Date sta				5.9.2004	Coffey
-	ncipa	l:										Date co				5.9.2004	Ľ
	ject:			PRC	PC	SED	SUE	BDIVI	SION - MOONEE BEACH			Logged	•			ELC	6
	st pit	loca	tion:			TO F						Checke			_		U
						KHOE			Pit Orientation: Easting:	m					Surfa	ce:	
exc	avatio	n din	nensi	ons: 2	2m lo	ng 0.	45m w	ide	Northing	j: m				dat	um:		
ex		tion	info	ormation			mat		ubstance								
method	penetration	support	water	notes samples, tests, etc		depth	graphic log	classification symbol	material	ics,	moisture condition	consistency/ density index	kF			structure an additional obser	
	123	3 ¹⁰ N	Ŵ		RL	metres	5 5	ਤੋਂ ਨੇ MH	colour, secondary and minor component TOPSOIL: Clayey Silt, high plasticity, dark bro	ts.	Ĕ 8 M	8 8	200	40 30	TOPS		
BH		IN		D		0. <u>5</u>		CL	Silty CLAY/Clayey SILT: low plasticity, brown		IVI	St/VSt		×			
				D									× ×	×			
			15/9/04	D		1.5		СН	Sandy CLAY: high plasticity, pale grey/orange-brown, sand is fine grained		W	VSt/H			RESI	DUAL SOIL	
				D		-											
						2. <u>0</u> 											
						2. <u>5</u> - -		СН	Sandy Gravelly CLAY: high plasticity, pale grey/orange-brown, sand is fine to medium gra gravel is fine to medium grained, some quartz								
						3.0			Test pit TP2 terminated at 3m					+			
						3. <u>5</u>											
						4.0											
5	iketch	1															
me N BH B R E	thod	exist back bullo rippe	ing ex hoe b lozer t		S PI	ater water - on dat - water	no resista ranging to refusal level e shown	0	notes, samples, tests U _{so} undisturbed sample 50mm diameter U _{es} undisturbed sample 63mm diameter D disturbed sample V vane shear (kPa) Bs bulk sample E environmental sample R refusal		cription a unified	classifica			CO VS F VS H Fb VL L MI D VE	soft firm stiff t very sti hard friable very loc loose 0 mediun dense	ft ff ose n dense

Coffey Geosciences Ptv Ltd ACN 056 335 516

			I	Excavation No	TP3
Engineering lo	og - Excavati	on		Sheet	
	PTY LTD			Office Job No. Date started:	t of 1 <u>CH1318/1</u> 15.9.2004 d: 15.9.2004 ELC
Principal:				Date complete	d: 15.9.2004
Project: PRO	POSED SUBDIVI	SION - MOONEE BEACH		Logged by:	ELC
•	ER TO FIGURE 1			Checked by:	Ű
	BACKHOE	Pit Orientation: Eastir			Surface:
	2m long 0.45m wide	North	ng: m	dat	tum:
excavation information ਨ	material s	ubstance			
notes samples, tests, etc	BT metres symbol symbol	material soil type: plasticity or particle character		consistency/ density index 100 A pocket 200 d penetro- 400 meter	
E 123	RL metres రాహిదా \\\\\ MH	colour, secondary and minor compone TOPSOIL: Silt, high plasticity, grey	nts. ⊵o D	400 de CO 300 de CO	TOPSOIL
Bs	0.5 0.5 CH 1.0 1.5 2.0 3.0 4.0	CLAY: high plasticity, orange-brown Gradual colour change to pale grey/red. Test pit TP3 terminated at 2.6m		H 600 600	Î
method N natural exposure X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator	support S shoring N nil penetration 1 2 3 4 ranging to ranging to ranging to water water water level on date shown	notes, samples, tests U ₅₀ undisturbed sample 50mm diameter U ₈₃ undisturbed sample 63mm diameter D disturbed sample 63mm diameter V vane shear (kPa) Bs bulk sample E environmental sample R refusal	classification sy soil description based on unified system D dry M moist W wet Wp plastic limi W, liquid limit	classification	consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense

						Excavation No. T			TP4	Ŧ						
E	ngi	ne	er	ring lo	pq	- Ex	kca	vati	on			Sheet	1. L. N		1 of 1	
Clie	_			_	-	TYLT			-			Office J Date st			CH1318/1 15.9.2004	Coney
	ncipal	:					_					Date co			: 15.9.2004	Ě
	ject:			PRC	PC	SED	SUE	BDIVI	SION - MOONEE BEACH						ELC	O
	Test pit location: REFER TO FIGURE 1								Checke				3			
	•					KHOE			Pit Orientation: Easti	ing: m			,		Surface:	_
-	avatior									datu	m:					
ex		lion	Info	ormation			mat		ubstance			_ ×		5		
method	penetration	support	water	notes samples, tests, etc		depth	graphic log	classification symbol	material soil type: plasticity or particle characte	eristics,	moisture condition	consistency/ density index	y pocket	°a ∣	structure and additional observation	ıs
BH	123	ง N	ŝ		RL	metres	1 2 2	පි ගි MH	colour, secondary and minor compor TOPSOIL: Silt, high plasticity, grey	ients.	ЕХ D	89	200 200	669	TOPSOIL	
				Bs	-	0. <u>5</u>		СН	CLAY: high plasticity, orange-brown			H/Fb	-	600 600		
						1. <u>0</u>			Gradual colour change to pale grey/orange	∍-brown.					,	
						1. <u>5</u> - 2.0			Test pit TP4 terminated at 1.7m							
						2. <u>5</u>										
						3. <u>0</u>										
						3. <u>5</u>										
						4.0										
S	iketch	1														
me N B B R E		exist back bulld rippe	ing ex hoe b ozer t		S P 1	ater water	no resista ranging tr refusal level e shown inflow	D	notes, samples, tests Uso undisturbed sample 50mm diameter Uso undisturbed sample 63mm diameter D disturbed sample 63mm diameter V vane shear (kPa) Bs bulk sample E environmental sample R refusal	W we Wp pl	cription n unified e y oist	classifica			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense	

						Excavation No.			TP5	_								
E	ngi	ine	e	ring lo	pc	- Ex	xca	vat	on			Sheet				of 1		
	ent:			_	-	TYLT						Office J Date st				CH1318, 15.9.200	04	VOITEV
Pri	ncipa	1:									[Date co	omp	lete		15.9.200	04	
Pro	roject: PROPOSED SUBDIVISION - MOONEE BEAC							SION - MOONEE BEACH		L	Logged	l by:	:		ELC		0	
Tes	st pit	loca	tion:	REF	ER	TO F	IGU	RE 1				Checke						3
equ	ipmen	nt typ	e and	l model:	BAC	HOE			Pit Orientation: East	ing: m				R.L	. Sur	face:		_
	avatio				2m lo	ng 0.	45m w		Nort ubstance	hing: m				dat	tum:			
ex	1			ormation					ubstance			> ×	Ŧ	<u></u>				
method	penetration	support	water	notes samples, tests, etc		depth		classification symbol	material	eristics,	moisture condition	consistency/ density index	k	a penetro-			ture and observation	IS
BH n	123	3 ⁰	5		RL	metres	ه ۲۱۱۲	ο ω MH	colour, secondary and minor compor TOPSOIL: Silt, high plasticity, grey	ients.	с о D	00	ē č	869		PSOIL		
						-												
				Bs		0. <u>5</u>		СН	CLAY: high plasticity, orange-brown			н		60 60		SIDUAL SOII		
						-								60) 60)	ġ.			
						1. <u>0</u>												-
						1. <u>5</u>												_
						-			Test pit TP5 terminated at 1.7m					+				
						2. <u>0</u>												_
						-												
						2.5												
						-												_
						3.0												
						-												-
						3. <u>5</u>												
						- 3. <u>5</u>												-
						-												
	kotok					4.0												
6	Sketch	1																
me	thod				SI	upport			notes, samples, tests	classific	ation sv	/mbols a	ind		6	consistency/d	ensity index	
N X				posure cavation		shoring	N	l nil	U_{50} undisturbed sample 50mm diameter U_{63} undisturbed sample 63mm diameter	soil des	cription				N S	/S S	very soft soft	
BH B		back bullc	hoe b lozer	oucket		enetratio	o n no resista	anco	D disturbed sample V vane shear (kPa)	system					F	= · ·	firm stiff	
R E		rippe exca	er vator				no resisti ranging t refusal	0	Bs bulk sample E environmental sample	moisture D dr	у				H	-	very stiff hard	
					V	ater water	level		R refusal	W we		•			<u>۱</u>	/L	friable very loose	
						 on dat water 	e show	1			astic limi Juid limit				Ν	D	loose medium dense dense	ŧ
BH B R E					[-	water											very dense	

Coffey Geosciences Pty Ltd ACN 056 335 516

						- ,					-	Excava	tion N	lo.	TP6	
E	ngi	ne	e	ring lo	bg	- E	xca	vat	on			Sheet Office J	lob Nr		1 of 1 CH1318/1	
Clie	-			-	-	TYLI						Date st			15.9.2004	COTEV
Prir	ncipal	:									I	Date co	omplet	ted:	15.9.2004	
Pro	ject:			PRO	PC	SED	SUE	BDIVI	SION - MOONEE BEACH		I	_ogged	l by:		ELC	Q
Tes	st pit l	oca	tion:	REF	ER	TO F	IGU	RE 1			(Checke	ed by:			5
equ	ipmen	t typ	ype and model: BACKHOE Pit Orientation: Easting					ng: m			F	R.L. 9	Surface:	-		
	avatio			ons: 2 ormation	2m lo	ong 0.	45m w		North ubstance	ing: m			c	latur	n:	
ex									ubstance			~ ×	ᅻ 넏			
p	penetration	L L		notes samples,			graphic log	ficatio	material		ure	stency ty inde	pocket penetro-	meter	structure and additional observation	ne
method	<u>8</u> 123	support	water	tests, etc	RL	depth metres	graph	classification symbol	soil type: plasticity or particle character colour, secondary and minor compone	istics, ents.	moisture condition	consistency/ density index	kPa ệୡୡ	1		115
BH	123	N	-			-	////	CL	CLAY: low plasticity, grey-brown		D		288		COLLUVIAL SOIL	
				D (0-0.5m)		-		СН	CLAY: high plasticity, orange-brown			H/Fb				
				Bs (0.4-0.6m)		0. <u>5</u>							e	500 500		
				D (0.5-1m)		-								soq		
						1. <u>0</u>	V///		Gradual colour change to pale grey/red.							
				D		-	////									
						1. <u>5</u>										
				D		-										
						2.0										
						-										
						2. <u>5</u>			Test pit TP6 terminated at 2.4m							
						-										
						3. <u>0</u>										
						-										
						3. <u>5</u>										
						-										
						4.0										
S	ketch	ı														
me	thod				s	upport			notes, samples, tests	classific	ation sv	/mbols a	nd	-	consistency/density index	
N X				posure xcavation		shoring	N	nil	U_{50} undisturbed sample 50mm diameter U_{63} undisturbed sample 63mm diameter	soil des	cription				VS very soft S soft	
BH B		back	hoe b	bucket blade	р 1	enetratio	on 		D disturbed sample V vane shear (kPa)	system					F firm St stiff	
R E		rippe					no resista ranging t refusal	ance D	Bs bulk sample E environmental sample	moistur D dr					VSt very stiff H hard	
						rater v water			R refusal	M m W we	oist et				Fb friable VL very loose	
						- on dat	e show	n			astic limi Juid limit	t			L loose MD medium dense	е
						 water water 	inflow outflow								D dense VD very dense	

						E	Excava	tior	n No		TP7						
E	ngi	ne	e	ring lo	Ŋġ	- Ex	xca	vat	on			Sheet	lah	Na		of 1 CH1318/1	
Clie				-		TY L1						Office J Date st				15.9.2004	Coffey
	ncipa	l:					_					Date co			d:	15.9.2004	
	ject:			PRO	PC	SED	SUE	BDIVI	SION - MOONEE BEACH		Logged by: ELC					ELC	0
	st pit	loca	tion			TO F						Checke					0
	-					(HOE			Pit Orientation: Easting:	m					Sı	urface:	
	avatio				2m lo	ng 0.	45m w	de	Northing:	m				dat	tum:		
ex	-	tion	inf	ormation			mat		ubstance					1			
method	penetration	support	water	notes samples, tests, etc		depth	graphic log	classification symbol	material soil type: plasticity or particle characteristics		moisture condition	consistency/ density index	k	a penetro- meter		structure and additional observation	ons
	123	3 ³	Š		RL	metres	ъ ////	පි බ CL	colour, secondary and minor components. Silty CLAY: medium plasticity, grey		Ē 8 D	88	6 6 6	800		OLLUVIAL SOIL	
ВН				D (0-0.5m)		-					U						
				Bs (0.4.0.6m)		0. <u>5</u>		СН	CLAY: high plasticity, orange-brown			Н		60 60		ESIDUAL SOIL	
				(0.4-0.6m)		-								60 60			
				D (0.5-1m)		1. <u>0</u>			Gradual colour change to pale grey/red.						Ĩ		
				D		-											
						1.5											
				_		-			Some iron cementing.								
				D		2.0											
						- 2.0											
						-											
						2.5			Test pit TP7 terminated at 2.5m					+			
						-											
						3. <u>0</u>											
						-											
						3. <u>5</u>											
						-											
						4.0											
S	iketch	ו															
me N BH B R E	thod	exist back bullo rippe	ing e hoe t lozer	posure xcavation pucket blade	S PI	ater water on dat	on no resista ranging ta refusal level te shown	0	U _{s0} undisturbed sample 50mm diameter U _{s3} undisturbed sample 63mm diameter D disturbed sample Bs bulk sample E environmental sample R refusal	И mo V we Vp pla	unified	classifica				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dens D dense VD very dense	

Co	ffey Geosciences Pty Ltd ACN 05					ty Lto	d ac	N 056	335 516			Excavation			tion No. TP8		
Er	ngi	ne	er	ring lo	bg	- Ex	xca	vat	ion				Sheet Office J	lob N		1 of 1 CH1318/1	Coffey
Clie	nt:			GHL) PT	YLT	D					[Date st	arted	:	15.9.2004	Ð
Prin	ncipal:											[Date co	omple	eted:	15.9.2004	Ţ
Proj	ect:			PRC	PO	SED	SUB	DIVI	SION - MOONEE BEA	MOONEE BEACH			_ogged	l by:		ELC	2
Tes	t pit l	oca	tion:	REF	ER	TO F	IGU	RE 1				(Checke	ed by:			U
					BACK				Pit Orientation:	it Orientation: Easting: m					R.L.	Surface:	
	vatior			ons: ormation	2m lor	ng 0	45m wi mat		ubstance	Northin	ng: m			(datur	n:	
method	penetration	upport		notes samples, tests, etc	BI	depth metres	hic log	classification symbol	material soil type: plasticity or partic colour, secondary and mir	le characteris	stics,	moisture condition	consistency/ density index	200 A pocket	a	structure additional obs	
H	123	N	-			-		MH CH	FILL: Silt, high plasticity, dark <u>b</u> FILL: Gravelly Clay, orange-bro	prown	^	M		288		T <u>opsoil</u>	
						-											
				Bs		0. <u>5</u>		SP	SAND: fine to medium grained,	pale brown			MD			ALLUVIAL SOIL?	
					1	1.0											
						-	Ш	OL SP	SILT: high plasticity, black, organized		e sand	W				ORGANIC SOIL	
						1.5			SAND: fine to medium grained,	pale brown							
						1. <u>5</u>											
						-											
						2. <u>0</u>											
						-											
						2. <u>5</u>											
						_											
						3. <u>0</u>			Test pit TP8 terminated at 2.8m								
						-											
						3. <u>5</u>											
						-											
						4.0											
S	ketch	1			1	1 4.0							1				
	-																
met N BH B R E	X existing excavation BH backhoe bucket B bulldozer blade R ripper E excavator Water level on date shown			notes, samples, tests U _{so} undisturbed sample 50m U _{sa} undisturbed sample 63m D disturbed sample 63m V vane shear (kPa) Bs bulk sample E environmental sample R refusal		W we Wp pla	cription n unified	classifica				soft stiff oose um dense					
		→ water inflow → water outflow										D dens VD very	e dense				

						1	Excava	tion N	lo.	TP9	I					
Engineering log - Excavation				ion			Sheet	lah Ni		1 of 1 CH1318/1						
Clie	-			-		TYLT				Office Job No.: CH1318/1 Date started: 15.9.2004				Coffey		
	ncipa	1:										Date co				t
Pro	ject:			PRC	PC	SED	SUE	BDIVI	SION - MOONEE BEACI	4	I	Logged	I by:		ELC	Ö
	st pit location: REFER TO FIG							Checke	-			\mathbf{O}				
						KHOE		Pit Orientation: Easting: m					-	R.L.	Surface:	<u> </u>
									latur	m:						
ex		tion	info	ormation			mat		ubstance				4			
method	penetration	support	water	notes samples, tests, etc	BI	depth metres	graphic log	classification symbol	material soil type: plasticity or particle ch colour, secondary and minor c	naracteristics,	moisture condition	consistency/ density index	¹⁰⁰ A pocket ²⁰⁰ A penetro-		structure and additional observat	ions
H	123	3 %	-			-	0,	SP	SAND: fine to medium grained, pal		D	L	8 8 9		MARINE/ALLUVIAL SOIL	
_						-					М					
						0. <u>5</u>										
						-										
						1. <u>0</u>										
						-										
						1.5			Test pit TP9 terminated at 1.5m							
						-			Test pit 179 terminated at 1.5m							
						2. <u>0</u>										
						-										
						2.5										
						-										
						3.0										
						-										
						3.5										
						-										
	ketch					4.0										
	thod	net	ral com	nosuro		upport		pil	notes, samples, tests		ication sy		nd	Τ	consistency/density inde VS very soft	ex
N X BH		exist	ing ex	posure ccavation bucket		shoring		nil		ndisturbed sample 63mm diameter based on unified classification S soft						
BR			lozer t			<u>234</u>	no resista ranging t	ance	V vane shear (kPa) Bs bulk sample	moistu	re			\neg	St stiff VSt very stiff	
E			vator		l w	/ater	refusal	-	E environmental sample R refusal	D d M n	lry noist				H hard Fb friable	
					_⊻	water on dat	level e show	ı		Wp p	vet plastic limi				VL very loose L loose	
						- water				W _L li	iquid limit				MD medium de D dense	
					1-4	water	outflow								VD very dense	

Coffey Geosciences Pty Ltd ACN 056 335 516

Soil Description

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil.

Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (USC) as shown in the table on the following page.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE					
Boulders		>200mm					
Cobbles		63mm to 200mm					
Gravel	coarse	20mm to 63mm					
	medium	6mm to 20mm					
	fine	2.36mm to 6mm					
Sand	coarse	600µm to 2.36mm					
	medium	200µm to 600µm					
	fine	75µm to 200µm					

MOISTURE CONDITION

Form No. GEO5.7. Issue 3. Rev.2

- Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented Dry granular soils run freely through hands.
- Moist Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- As for moist but with free water forming on hands Wet when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH	FIELD GUIDE
	su (kPa)	
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	-	Crumbles or powders when scraped by thumb nail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)
Very Loose	Less than 15
Loose	15 - 35
Medium Dense	35 - 65
Dense	65 - 85
Very Dense	Greater than 85

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE		N OF MINOR NENT IN:
		Coarse grained	Fine grained
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	<5%	<15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	5% - 12%	15% - 30%

SOIL STRUCTURE

	ZONING	CEMENTING					
Layers	Continuous across exposure or sample	Weakly cemented	Easily broken up by hand in air or water				
Lenses	Discontinuous layers of lenticular shape	Moderately cemented	Effort is required to break up the soil by hand in air or water				
Pockets	Irregular inclusions of differential material						

GEOLOGICAL ORIGIN

WEATHERED IN PLACE SOILS

	Extremely thered material	Structure and fabric of parent rock visible
	Residual soil	Structure and fabric of parent rock not visible
TRA	NSPORTED SOIL	_S
	Aeolian soil	Deposited by wind
	Alluvial soil	Deposited by stream and rivers
	Colluvial soil	Deposited on slopes (transported downslope by gravity)
	Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.
	Lacustrine soil	Deposited by lakes
	Marine soil	Deposited in ocean basins, bays, beaches and estuaries

Explanation Sheet

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60mm and basing fractions on estimated mass)							PRIMARY NAME
	(E	xcluding part	icles larger than 60mm	n and basing fractions on e	estimated mass)		
rger		oarse han	CLEAN GRAVELS (Little or no fines)	Wide range in grain size all intermediate particl	GW	GRAVEL	
m is la		GRAVELS More than half of coarse fraction is larger than 2.0mm	CLI GRA (Litt no f	Predominantly one size more intermediate size		GP	GRAVEL
ILS n 63m	d eye)	GRAVELS han half of on is large 2.0mm	ELS INES iable t of s)	Non-plastic fines (for id ML below)	entification procedures see	GM	SILTY GRAVEL
COARSE GRAINED SOILS of material less than 6 than 0.075mm	the nake	More th	GRAVELS WITH FINES (Appreciable amount of fines)	Plastic fines (for identif below).	ication procedures see CL	GC	CLAYEY GRAVEL
RSE GR materia than 0.	sible to	oarse than	CLEAN SANDS (Little or no fines)	Wide range in grain size all intermediate sizes m	s and substantial amounts of hissing.	SW	SAND
COA 0% of	icle vi	DS If of c naller	2 말 문 기정 별 2 Predominantly one size or a range of sizes with some intermediate sizes missing.			SP	SAND
than 5	An SO% of material less than More than 50% of material less than 63mm is larger than 63mm is larger than 0.075mm Is smaller than 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm or 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm or 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm or 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm (A 0.075mm particle is about the smallest particle visible to the naked eye) (A 0.075mm (A 0.075mm particle is about the smaller than half of coarse fraction is larger than fraction is larger than 2.0mm 2.0mm (A 0.075mm or 0.07 mm (Little or (Appreciable (Little o)S H is f t of t of	Non-plastic fines (for id ML below).	entification procedures see	SM	SILTY SAND
More			SANDS WITH FINES (Appreciable amount of fines)	Plastic fines (for identif below).	SC	CLAYEY SAND	
	th		IDENTIFIC	ATION PROCEDURES ON FRACTIONS <0.2mm			
L L	noc		DRY STRENGTH	DILATANCY	TOUGHNESS		
E GRAINED SOILS 50% of material less tha smaller than 0.075mm	le is al	SILTS AND CLAYS Liquid limit less than 50	None to Low	Quick to slow	None	ML	SILT
FINE GRAINED SOILS an 50% of material le is smaller than 0.0	partic	TS AND quid lin than	Medium to high	None	Medium	CL	CLAY
RAINE of ma aller th)75mm	SIL	Low to medium	Slow to very slow	Low	OL	ORGANIC SILT
FINE G an 50% Lis sma	AYS AYS n 50		Low to medium	Slow to none	Low to medium	мн	SILT
FINE GRAINED SOILS More than 50% of material less than 63mm is smaller than 0.075mm (A 0.075mm particle is abou SILTS & CLAYS SILTS & CLAYS Liquid limit Liquid limit less greater than 50		S & Cl quid lir ter tha	High	None	High	СН	CLAY
×		SILT Lic grea	Medium to high	None	Low to medium	ОН	ORGANIC CLAY
HIGHLY ORGANIC SOILS Readily identified by colour, odour, spongy feel and frequently by fibrous texture						Pt	PEAT

COMMON DEFECTS IN SOIL

	TERM	DEFINITION	DIAGRAM
	PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.	
	JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2m in length	
le 3. Rev.2.	SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.	<u>A</u>
Form No. GEO5.7. Issue 3. Rev.2.	SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.	

TERM	DEFINITION	DIAGRAM
SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	
TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter.	
TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planer to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

Rock Description

Form No. GE05.8 Issue 3 Rev. 1.

DEFINITIONS: Substance Defect Mass	Effec Disco Any t more In en	substance, defect and mass are defined as f ively homogeneous material, may be isotropi untinuity or break in the continuity of a substar yody of material which is not effectively homog substances with one or more defects. gineering terms rock substance is any natura egrated or remoulded by hand in air or in wa	c or anisotropic nce or substanc geneous. It can ly occurring ag	es. consi grega	te of mi	nerals and organi	c material which cannot be
SUBSTANCE Rock Name –	Simp	RIPTIVE TERMS: le rock names are used rather than precise ogical classification.				STRENGTH TEF n Point Load Index, I _S 50 (MPa)	RMS Field Guide to Strength
PARTICLE SIZE – Coarse grained Medium grained Fine grained FABRIC –	0.6m 0.2m 0.6m Term	i size terms for sandstone are: m to 2mm m to 0.6mm m (just visible) to 0.2mm s for layering or penetrative fabric (eg. ing. cleavage) are:	Very I	Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Well developed	No la Laye prop Laye easily	yering or penetrative fabric ring or fabric just visible. Little effect on erties. ring or fabric distinct. Rock breaks more y parallel to layering or fabic.	Low		L	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
	eviation	Soil derived from the weathering of rock; the mass structure and substance fabric are no longer evident; there is a large	Medi	um	М	0.3 to 1	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
Extremely) Weathered	w	change in volume but the soil has not been significantly transported. Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or can be remoulded, in water. Fabric of original rock still visible.	High		Н	1 to 3	A piece of core 150mm long by 50mm diameter can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Distinctly I Weathered	W	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, c	Very	High	νн	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
		may be decreased due to deposition of weathering products in pores.	Extre High		EH	More than 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.
Slightly S Weathered	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.	Notes: 1. In	aniso	topic re	ocks the field qui	de to strength applies to the
Fresh	FR	Rock shows no sign of decomposition or staining.	str roc 2. Th ter str	ength cks m e tern m. Th ength	perper ay brea extren e term makes	dicular to the an k readily parallel hely low is not us is used in AS172 it clear that it is a	isotropy. High strength anisotropic to the planar anisotropy. ed as a rock substance strength 6-1993 but the field guide to a soil in engineering terms.
		chemical changes were caused by hot ssociated with igneous rocks the terms	an	isotroj	oic rock	s which do not fa	ength to isotropic rocks and ail parallel to the planar anisotropy int load index. The ratio may vary

Rock Description Explanation Sheet

COMMON D	DEFECTS IN ROCK MASS	ES			g	eological terms.
Term	Definition	Diagram	Мар	Graphic		HAPE TERMS
			Symbol	Log (Note 1)	Planar	The defect does not vary in orientation
Parting	A surface or crack across which the rock has little or no tensile strength.				Curved	The defect has a gradual change in orientation
	Parallel or sub parallel to layering (eg bedding) or a planar anisotropy in the	<i></i>	20 Bedd لر 20	ing	Undulating	The defect has a wavy surface
	rock substance (eg, cleavage). May be open		Cleav	age (Note 2)	Stepped	The defect has one or more well defined steps
Joint	or closed. A surface or crack across				Irregular	The defect has many sharp changes in orientation
	which the rock has little or no tensile strength but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance. May be open or closed.		60	(Note 2)		nt of defect shape is partly v the scale of observation.
Sheared Cone	Zone of rock substance with roughly parallel				ROUGHNE	SS TERMS
Note 3)	near planar, curved or undulating boundaries				Slickensided	Grooved or striated surface; usually polished
	cut by closely spaced joints, sheared surfaces	ii Au.	35	15-1	Polished	Shiny smooth surface
	or other defects. Some of the defects are usually	R.	Yer.		Smooth	Smooth to touch; few or no surface irregularities
	curved and intersect to divide the mass into lenticular or wedge shaped blocks.			1.21	Rough	Many small surfaxce irregularities (amplitude generally less than 1mm); feels like fine to coarse sand paper
Sheared Surface Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	100 C	Very rough	Many large surface irregularities (amplitude generally more than 1mm); feels like, or coarser than, very coarse
Crushed Seam (Note 3)	Seam with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock substance which may be more weathered than the host rock. The seam has soil		50 For the second		COATING	sand paper
	properties.				Stained	No visible coating but
nfilled Seam	Seam of soil substance usually with distinct				Veneer	surfaces are discoloured A visible coating of soil or mineral too thin to
	roughly parallel bounda- ries formed by the	K	-	C.F.		measure; may be patchy
	migration of soil into an open cavity or joint. Infilled seams less than 1mm thick may be described as veneer or coating on joint surface.		the second second		Coating	A visible coating up to 1mm thick . Thicker soil material is described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein
Extremely Weathered Seam	Seam of soil substance, often with gradational boundaries. Formed by weathering of the rock substance in places.		32 TRATTA		BI UUK EN	APE TERMS
		• Seam		121	Blocky	Approximately
	chole logs show the true dip of	defects and f	ace sketches	and	Tabular	equidimensional Thickness much less than
2. Part	ions the apparent dip. tings and joints are not usually	shown on the	graphic log u	nless	Columnar	length or width Height much greater than
cons	sidered significant.	nd crushed sea				cross section

APPENDIX B

LABORATORY TEST RESULTS

CONTROL TESTING LABORATORIES

Inc. Concrete Control. A.B.N. 57 056 335 516 Correspondence: P O Box 704, Coffs Harbour NSW 2450 Fax (02) 6651 5194

> 1919 Coffs Harbour: 601 Coramba Road (02) 6651 3213 3329 Byron Bay: 2/2 Banksia Drive (02) 6685 8504 9541 Armidale: 2/215 Mann Street (02) 6771 3040 9622 Mobile Laboratory No. 1

Client	GHD PTY LTI	2		A/C Ref.	CH 13	318/1
Project	SUB-DIVISIO	N		Lab. No.	1919	
Location	MOONEE BE	ACH		Test No.	25208	3
Material	SUB GRADE			Client Ref.		
Date Sampled	15/9/2004	by	ELC	Lot No.		
Date Tested	29/9/2004	by	TR, LJ, JC & BM	Page 1	of	2

CALIFORNIA BEARING RATIO REPORT

	A	В	С	D	E
	TP3	TP4	TP5	TP6	TP7
	0.4 - 0.6	0.4 - 0.6	0.4 - 0.6	0.4 - 0.6	0.4 - 0.6
LAB	ORATORY RE	PORT			
t/m3	1.52	1.59	1.61	1.60	1.52
%	26.5	22.6	22.7	23.2	26.4
%	0	0	0	0	0
%	100.0	100.0	100.0	100.0	100.0
%	99.5	99.5	100.0	100.0	99.5
SPE	CIMEN DRY D	ENISTY			
t/m3	1.51	1.58	1.61	1.60	1.51
t/m3	1.45	1.56	1.60	1.58	1.48
SPE	CIMEN MOIST	URE CONTENT	7		
%	24.6	19.3	19.5	21.5	24.0
%	26.3	22.6	22.3	23.2	26.4
%	31.0	25.6	24.8	25.5	29.7
%	35.0	27.7	26.9	27.0	34.3
%	29.9	25.0	23.9	24.9	28.3
CBF	R TEST DETAI	LS			
days	4	4	4	4	4
%	4.0	2.0	1.3	1.7	2.7
mm	2.5	2.5	2.5	5.0	2.5
%	2	6	5	6	2
	ACD	ACD	ACD	ACDJ	ACD
	t/m3 % % % \$PE t/m3 t/m3 \$PE % % % % % % % % CBF days % mm	TP3 0.4 - 0.6 LABORATORY RE 1.52 % 26.5 % 0 % 100.0 % 99.5 SPECIMEN DRY D 1/m3 1.51 1/m3 1.45 SPECIMEN MOIST % 24.6 % 26.3 % 24.6 % 26.3 % 24.6 % 26.3 % 26.3 % 26.3 % 29.9 CBR TEST DETAIl days 4 % 4.0 mm 2.5 % 2	TP3 TP4 0.4 - 0.6 0.4 - 0.6 LABORATORY REPORT 1/m3 1.52 1.59 % 26.5 22.6 % 0 0 % 100.0 100.0 % 99.5 99.5 SPECIMEN DRY DENISTY 1.58 1/m3 1.45 1.56 SPECIMEN MOISTURE CONTENT 1.56 % 24.6 19.3 % 26.3 22.6 % 31.0 25.6 % 35.0 27.7 % 29.9 25.0 CBR TEST DETAILS 4 4 % 4.0 2.0 mm 2.5 2.5 % 2 6	TP3 TP4 TP5 0.4 - 0.6 0.4 - 0.6 0.4 - 0.6 LABORATORY REPORT 1.59 1.61 ½ 26.5 22.6 22.7 % 0 0 0 % 100.0 100.0 100.0 % 99.5 99.5 100.0 % 99.5 99.5 100.0 % 99.5 99.5 100.0 % 99.5 99.5 100.0 % 99.5 1.56 1.61 t/m3 1.51 1.58 1.61 t/m3 1.45 1.56 1.60 SPECIMEN MOISTURE CONTENT % 24.6 19.3 19.5 % 26.3 22.6 22.3 % 31.0 25.6 24.8 % 35.0 27.7 26.9 % 29.9 25.0 23.9 CBR TEST DETAILS 4 4 4	TP3 TP4 TP5 TP6 0.4 - 0.6 0.4 - 0.6 0.4 - 0.6 0.4 - 0.6 LABORATORY REPORT 1.52 1.59 1.61 1.60 % 26.5 22.6 22.7 23.2 % 0 0 0 0 % 100.0 100.0 100.0 100.0 % 100.0 100.0 100.0 100.0 % 99.5 99.5 100.0 100.0 % 99.5 100.0 100.0 100.0 % 1.51 1.58 1.61 1.60 \$Vm3 1.45 1.56 1.60 1.58 SPECIMEN MOISTURE CONTENT % 24.6 19.3 19.5 21.5 % 26.3 22.6 22.3 23.2 % 31.0 25.6 24.8 25.5 % 35.0 27.7 26.9 27.0 % 29.9 25.0 <t< td=""></t<>

Test Methods

A. RTA T111 Dry Density/Moisture Relations of Road Materials (Standard Compaction).

B. RTA T112 Dry Density/Moisture Relations of Road Materials (Modified Compaction).

C. RTA T120 Determination of Moisture Content of Road Materials (Standard Method).

D. RTA T117 Determination of the California Bearing Ratio of Remoulded Specimens of Road Materials (Standard Method) (9KG Surcharge).

E. RTA T117A Determination of the California Bearing Ratio of Remoulded Specimens of Road Materials (Ten day soak period).

F. AS 1289 5 1.1 Dry Density/Moisture Relationship (Standard Compaction).

G. AS 1289 5.2.1 Dry Density/Moisture Relationship (Modified Compaction).

H. AS 1289 2.1.1 Determination of Moisture Content (Standard Method).

l. AS 1289 6.1.1 Determination of the California Bearing Ratio of A Soil -Standard Method For a Remoulded Specimens .

J. 5.0 mm result reported, NO repeat test performed.

K. Sampled according to AS 1141.3.1

L. RTA T132 Determination of the California Bearing Ratio of Road Material Modified or Stabilised. Compactive effort Std.

M. Maximum Density Determined using Test Method RTA T164 and T166.

Approved Signatory

J. MORRISON Jate:

NATA Accredited Laboratory Number: 1919 NATA endorsed test report. This document shall not be reproduced, except in full.

CONTROL TESTING LABORATORIES

Inc. Concrete Control. A.B.N. 57 056 335 516 Correspondence: P O Box 704, Coffs Harbour NSW 2450 Fax (02) 6651 5194

> 1919 Coffs Harbour: 601 Coramba Road (02) 6651 3213 3329 Byron Bay: 2/2 Banksia Drive (02) 6685 8504 9541 Armidale: 2/215 Mann Street (02) 6771 3040 9622 Mobile Laboratory No. 1

Client	GHD PTY LTE)		A/C Ref.	CH 13	318/1
Project	SUB-DIVISIO	N		Lab. No.	1919	
Location	MOONEE BE/	АСН		Test No.	25208	5
Material	SUB GRADE			Client Ref.		
Date Sampled	15/9/2004	by	ELC	Lot No.		
Date Tested	29/9/2004	by	TR, LJ, JC & BM	Page 2	of	2

CALIFORNIA BEARING RATIO REPORT

Sample No.		F			
Location/Test Pit No.		TP8			
Depth (m)		0.4 - 0.6			
LABORATORY COMPACTION	LAB	ORATORY RE	PORT		
Maximum Dry Density	t/m3	1.64	1		
Optimum Moisture Content	%	17.4			
Material Retained 19.0 mm sieve	%	2			
Compaction Specified	%	100.0			
Compaction Achieved	%	100.0			
	SPE	CIMEN DRY DI	ENISTY		
i At Compaction	t/m3	1.64			
ii After Soaking	t/m3	1.63			
	SPE	CIMEN MOIST	JRE CONTE	ENT	
Field	%	11.1			
i At Compaction	%	17.4			
ii After Soaking	%	19.8			
iii Top 30mm layer	%	21.1			
iv Rest of Sample	%	19.4			
	CBF	R TEST DETAIL	.S		
Soaking Period	days	4			
Swell	%	-0.1			
Penetration	mm	2.5			
CALIFORNIA BEARING RATIO	%	16			
Test Methods Used		CDM			
Fest Methods				•	

A. RTA T111 Dry Density/Moisture Relations of Road Materials (Standard Compaction).

B. RTA T112 Dry Density/Moisture Relations of Road Materials (Modified Compaction).

C. RTA T120 Determination of Moisture Content of Road Materials (Standard Method).

D. RTA T117 Determination of the California Bearing Ratio of Remoulded Specimens of Road Materials (Standard Method) (9KG Surcharge).

E. RTA T117A Determination of the California Bearing Ratio of Remoulded Specimens of Road Materials (Ten day soak period).

F. AS 1289 5 1.1 Dry Density/Moisture Relationship (Standard Compaction).

G. AS 1289 5.2.1 Dry Density/Moisture Relationship (Modified Compaction).

H. AS 1289 2.1.1 Determination of Moisture Content (Standard Method).

I. AS 1289 6.1.1 Determination of the California Bearing Ratio of A Soil -Standard Method For a Remoulded Specimens .

J. 5.0 mm result reported, NO repeat test performed.

K. Sampled according to AS 1141.3.1

L. RTA T132 Determination of the California Bearing Ratio of Road Material Modified or Stabilised. Compactive effort Std.

M. Maximum Density Determined using Test Method RTA T164 and T166.

Approved Signatory

Jate:.

NATA Accredited Laboratory Number: 1919 NATA endorsed test report. This document shall not be reproduced, except in full.

RESULTS OF SOIL ANALYSIS (Page 1 of 1)

5 samples supplied by Coffey on 20th September, 2004 - Lab. Job No. E2711

Analysis requested by David Barker.

Sample Site	Cepth (II)	(1:5 water)	(1:5 water) dS/m (mote 8)
TP3	0.4-0.6	4.40	0.118
TP5	0.4-0.6	5.05	0.125
ТР6	0.4-0.6	4.43	0.350
ТР7	0.4-0.6	4.45	0.204
ТР8	0.4-0.6	7.63	0.122
NOTE.			

NOTE:

2 - Methods from Stone, Y. Ahern CR, and Blunden B (1998). Acid Sulphate Soil Manual 1998. ASSMAC, Wollongbar, NSW. 1 - All analysis is Dry Weight (DW) - samples dried and ground immediately upon arrival (unless supplied dried and ground)

3 - Conductivity 1 dS/m = 1 mS/cm = 1000 μ S/cm

checked:/

CERTIFICATE OF ANALYSIS Analysis Bjo-Track Pty Lid Arts 10662723 CERTIFICATE OF ANALYSIS Analysis Bjo-Track Pty Lid Arts 10662723 Analysis Bjo-Track Pty Lid Arts 1066723 Analysis Bjo-Track Pty Lid Arts 1067 Analysis Bjo-Track Pty Lid Arts 1067 Analysis Bjo-Track Pty Lid Arts 1067 Analysis Bjo-Hyty Bio	Amalyrid By: Bio-Track Pty Ltd ABN 91 056237275 LLB REFERENCE LR2004.753 DATE OF REI CLIENT MARE DAVID BANKER C/O COFFI PROJECT MARE DAVID BANKER C/O COFFI PROJECT CANE DAVID BANKER C/O COFFI SAMPLIET ANDE DAVID BANKER C/O COFFI SAMPLIET ANDE DAVID BANKER C/O COFFI SAMPLIET DATE CAUCHATED DAVID BANKER C/O COFFICE SAMPLIET DATE CAUCHATED TATE DAVID BANKER C/O COFFICE SAMPLIET DATE CAUCHATED TATE DAVID D
医白 化乙基化乙 人名布莱里 使变得 喧	다. 고, 도, 고,

NC_E X &19A2	
LIME2 SANC_E kg/t % \$19A2	2.0
LINE1 L kg/t	2.7
N POS m/t 23uex	ጽ
Mg P CBN POS mg/kg m/t 231m a23U&X	285
	0
Ca P Mg KCl mg/kg mg/kg 23Mh 23Sm	205
11 12 12 12 12 12 12 12 12 12 12 12 12 1	0
<pre>s EQ Ca KCl % kg/t s 23Vh</pre>	0.097
s-l\s x s23Re	40.01
s 228 228	
s Pos X S ZTEe	0.02
SPSPOS XXX 230eZ3Ee	0.02
s KCl ZGC X	<0.01
15A 23H 23H	m
Z S S	51
17A 23F 23F	87 7
23 6 25 23 6 25 23 6 25	5.07
	4.13
10. DEPTH m Analytical Method Codes	TP 6 0-0.3
10- Anal	1P 6

82126832 758 8-OCT-2004 13:43 FROM: BIO-TRACK BRISBANE

Signed P. Polincon

DETERMINATION OF ACID SULFATE SOIL PROPERTIES

GHD Pty Ltd ABN 39 008 488 373

2/115 West High Street Coffs Harbour NSW 2450 T: (02) 6650 5600 F: (02) 6652 6021 E: cfsmail@ghd.com.au

© GHD Pty Ltd 2004

This document is and shall remain the property of GHD Pty Ltd. The document may only be used for the purposes for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Document Status

Rev No.	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
0	W. Cooper	V. Joseph	V. Joseph	V. Joseph	V. Joseph	Oct 04
1	W. Cooper	V. Joseph	V. Joseph	V. Joseph	V. Joseph	Dec 04
2	W. Cooper	T. Ryan	1	T. Ryan	1/	4Jun 07