

RIDER HUNT TEROTECH 1.6.2006 Date started:

Borehole No.

Project No:

Sheet

BH8

CH1613/1

3 of 4

1.6.2006 Principal: Date completed:

PROPOSED DEVELOPMENT - BLUE DOLPHIN RESORT **ELC** Project: Logged by:

Bor	ehole	Loc	atio	n: REF	ER TO) FI	GUR	Ξ1			C	hecked	by:	
drill	nodel	& m	ounti	ng:P120 T	RUCK			Eas	sting: 5	533143.425 slope:	: -90°		R.L	. Surface: 1.61
	diame							No	thing: 6	6744273.849 bearin	ng:		dati	um: AHD
dri	lling	info	rma	ition				ma	terial	substance				
method	5 penetration	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mind	or components.	moisture condition	consistency/ density index	structure and additional observations
WB		M		SPT 23,R,- N*=R		-15	- - - 1 <u>7</u>		SP	SAND: fine to medium grained,	grey <i>(continued)</i>	W	VD	SPT 30 blows for 120mm penetration
				SPT 15,30,R N*=R		-16	- - 1 <u>8</u>							SPT 30 blows for 1501mm penetration.
				SPT 12,25,R N*=R		17	- 1 <u>9</u> - -							SPT 26 blows for 105mm penetration.
				SPT 14,24,R N*=R		19	2 <u>0</u> - - - 2 <u>1</u>							SPT 26 blows for 130mm penetration.
				SPT 15,R,- N*=R		20	- - 2 <u>2</u> - -							SPT 30 blows for 140mm penetration.
				SPT R,-,- N*=R	0 0 0 0 0 0	22	2 <u>3</u> - - - - 24				1			SPT 30 blows for 115mm – penetration.
GEO 5.10 Issue 3 Rev.0 RB T T W B T T T W B T T T W B T T T W B T T T T	nethod AS auger screwing* AD auger drilling* AR roller/tricone AV washbore CT cable tool ADT diatube B blank bit AV bit TC bit BX Tubex bit shown by suffix Support C casing N Penetration 1 2 3 4 To refusal water 1 0/1/98 water left on date shown water inflow				ging to usal water leve shown	•	notes, s U ₅₀ D N N N* NC P BS R E PID WS PZ ALT	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification system moisture D dry M moist W wet Wp plastic limit W_L liquid limit	classificatio		consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense		

Client: RIDER HUNT TEROTECH Date started: 1.6.2006

Borehole No.

Project No:

Sheet

BH8

CH1613/1

4 of 4

Principal: Date completed: 1.6.2006

Borehol	orehole Location: REFER TO FIG Il model & mounting:P120 TRUCK le diameter:						Ξ1			Ch	ecked	by:		
drill mode	el & n	nounti	ng:P120 T	RUCK			Eas	sting: 5	533143.425 slope:	-90°		R.L.	Surface:	1.61
nole diam			tion						6744273.849 bearing	:		datu	m:	AHD
method 5	upport		notes samples, tests, etc	well details	RL	depth metres	aphic log	classification symbol	material soil type: plasticity or particle of colour, secondary and minor	characteristics, components.	moisture condition	consistency/ density index		structure and onal observations
WM	M		SPT 10,21,27 N*=48		23	- - 2 <u>5</u> -		SP	SAND: fine to medium grained, gr	ey (continued)	W	VD D/VD		
					25	2 <u>6</u> - - 2 <u>7</u> - - 2 <u>8</u>			End BH8 at 25.45m due to limit of investigation. Borehole terminated at 25.45m	required				
					27									
					29	3 <u>0</u> 3 <u>1</u>								
method AS AD RR W CT DT B V T TBX *bit shown	auger screwing* auger drilling* roller/tricone washbore cable tool diatube blank bit V bit TC bit X Tubex shown by suffix C casing N in penetration 1 2 3 4 water 1 2 3 4 1 3 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		N ni resistance aging to usal water leve shown	il e	notes, s U ₅₀ D N N* Nc P Bs R E PID WS PZ ALT	amples, tests undisturbed sample 50mm diameter disturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification symbol soil description based on unified clasystem moisture D dry M moist W wet Wp plastic limit W_L liquid limit			consister VS S F St VSt H Fb VL L MD D VD	ncy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense			

Client: RIDER HUNT TEROTECH Date started: 9.5.2006

Borehole No.

Project No:

Sheet

BH1

CH1613/1

1 of 1

Principal: Date completed: **9.5.2006**

Bore	hole	Lo	catio	n: REF	ER TO	TO FIGURE 1 CK Easting: 533265.923 slope:						hecked	l by:	
drill m	nodel	& m	ounti	ng:MD200	TRUCK			Eas	sting: 5	533265.923 slope:	-90°		R.L	Surface: 1.59
hole o			rme	ition						6744036.446 bearing	g:		dat	um: AHD
nethod	2 penetration	upport	water	notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mino	characteristics, r components.	moisture condition	consistency/ density index	structure and additional observations
ADT		N	11.30 11/5/06	SPT 2,4,7 N*=11			- - 1 - - - - 2		SP	SAND: fine to medium grained, d Colour change to pale brown/brov Colour change to pale grey.		D/M M	MD	ALLUVIAL SOIL Roots to 0.05m.
				SPT 3,9,10 N*=19		d1	- - 3 - - - - 4			Indurated layer at 3.25m to 3.4m, shell fragments observed. Colour change to grey.	dark brown.		D	
				SPT R N=R			- - 5 - - - 6			Indurated layer at 4.4m-4.8m. Thin bands of indurated sand beto	ween 4.8m and 6m			SPT carried out with solid cone. I blows for 50mm penetration.
					<u>,</u>	5	- - - 7 - - - - 8	<u> </u>		End BH1 at 6.0m due to limit of re investigation. Borehole terminated at 6m	quired			
AS AD RR W CT DT B V T	support S auger screwing* D auger drilling* IR roller/tricone V washbore CT cable tool OT diatube blank bit V bit TC bit BX Tubex bit shown by suffix Support C casing N in Penetration 1 2 3 4 penetration 1 2 3 4 por refusal water 1 0/1/98 water level on date shown water inflow			N ni resistance nging to usal water leve shown	el	Notes, s U ₅₀ D N N* Nc P Bs R E PID WS PZ ALT	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification syn soil description based on unified of system moisture D dry M moist W wet Wp plastic limit W _L liquid limit			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense			

Client: RIDER HUNT TEROTECH Date started: 9.5.2006

Borehole No.

Project No:

Sheet

BH2

CH1613/1

1 of 1

Principal: Date completed: **9.5.2006**

	orehole Location: REFER TO FIGURE III model & mounting:MD200 TRUCK ole diameter: Irilling information											ecked		
			ounti	ng:MD200	TRUCK				Ü	333105.125 slope:	-90°			Surface: 1.56
			rma	tion						3744107.829 bearing substance	g:		dati	um: AHD
nethod	ν penetration	support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and minor	characteristics, r components.	moisture condition	consistency/ density index	structure and additional observations
ADT		1	1.50PM 9/5/06 ►	SPT 2,2,2 N*=4		_1	- - 1 - - - 2 -			SAND: fine to medium grained, d Colour change to pale brown/brow Colour change to pale brown. Colour change to grey.		W	L	ALLUVIAL SOIL Roots to 0.05m.
			-	SPT 3,6,10 N*=16		2 -2	3 3 - - 4			Possible indurated sand layer at 3			D	
	2000000			25,R N*=R		3	5 - 1 - 1 - 1			Possible indurated sand layer at 4 Shell fragments observed Indurated dark brown sand.	.45m			SPT carried out with solid cone. blows for 140mm penetration.
						5	6 - - - 7 - -	<u> </u>		End BH2 at 6.0m due to limit of re investigation. Borehole terminated at 6m	quired			
AS AD RR W CT DT B V T	AD auger di RR roller/trik W washbo CT cable to DT diatube B blank bi V V bit T T C bit TBX Tubex *bit shown by suffix		blank bit V bit TC bit Tubex Water 10/1/98 water leve ■ 10/1/98 water leve		,	notes, s U ₅₀ D N N* Nc P Bs R E PID WS PZ ALT	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification sym soil description based on unified cla system moisture D dry M moist W wet Wp plastic limit W _L liquid limit			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense			

Client: RIDER HUNT TEROTECH Date started: 9.5.2006

Borehole No.

Project No:

Sheet

ВН3

CH1613/1

1 of 1

Principal: Date completed: **9.5.2006**

	orehole Location: REFER TO FIGUR ill model & mounting:MD200 TRUCK ble diameter: drilling information											necked	by:	
				ng:MD200	TRUCK				J	533004.455 slope:	-90°			. Surface: 1.47
				ntion			1			3744176.818 bearing substance	g:		dati	um: AHD
method	2 penetration	inpoort		notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and minor	characteristics, r components.	moisture condition	consistency/ density index	structure and additional observations
ADT	000000000000000000000000000000000000000		3pm 9/5/06	SPT 2,2,2 N*=4			- - 1 -			SAND: fine to medium grained, date of the colour change to pale brown and Colour change to pale grey at 1.0	brown at 0.7m	M W	MD	ALLUVIAL SOIL Roots to 0.05m.
	000000000000000000000000000000000000000			SPT 3,6,10		1	2 - - 3			Colour change to grey at 2.0m.			D	
	000000000000000000000000000000000000000			N*=16	0 0 0 0 0 0 0 0 0	-2	- - 4 - -			Indurated layer from 3.25 to 3.4m, Shell fragments observed Colour change to grey at 3.4m. Indurated layer from 4.4m to 4.8m			D/VD	
				25,-,- N*=R		-4	5 - -			Possibly becomes gravelly sand				SPT carried out with solid cone. blows for 140mm penetration
			6 - - - 7			End BH3 at 6m due to limit of requ Borehole terminated at 6m	uired investigation.							
meth					chuno	6	- - - 8	i	notes	amples tests	classification sym	hols and	•	consistency/density index
AS AD RR W CT OT 3 / F	auger drilling* roller/tricone washbore r cable tool diatube blank bit V bit TC bit TC bit T tubex it shown by suffix auger drilling* penetration 1 2 3 4 no resistanc ranging to water 1 0/1/98 water let on date shown			iging to usal water leve shown low		U ₅₀ D N N* NC P Bs R E PID WS PZ	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer air lift test	classification sym soil description based on unified cla system moisture D dry M moist W wet Wp plastic limit W_ liquid limit			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense			

Client: RIDER HUNT TEROTECH Date started: 9.5.2006

Borehole No.

Project No:

Sheet

BH4

CH1613/1

1 of 1

Principal: Date completed: **9.5.2006**

rill	mode	l &	mo	untii	ng:MD200	TRUCK			Eas	ting: 5	533147.421 slope:	-90°		R.L.	Surface:	1.82
ole	diam	ete	r:						Nor	thing: 6	6744309.382 bearing	g:		datu	ım:	AHD
dri	lling	in	foi	ma	tion				ma	terial	substance					
method	5 penetration	toddio	noddns	water	notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and mino	characteristics, r components.	moisture condition	consistency/ density index	additio	ructure and nal observations
Ą											SAND: fine to medium grained, be brown.	rown to dark	D	MD	ALLUVIAL S	OIL
				11:20am 11/5/06 ◀ ↑	SPT 2,5,9 N*=14		1				Colour change to PG at 0.8m.		W	D		
				11:20	SPT 1,2,6 N*=8		1	- - 3 - -			Shell fragments observed			MD		
				-	SPT 8,12,17 N*=29		3	- 4 - - 5 -						D/VD		
						o i		6			F 1814 100 1 1 5 7 6					
							5	- - - <u>7</u> -			End BH4 at 6.0m due to limit of re investigation. Borehole terminated at 6m	руштей				
								-								
							6	_ 8								
AS AD RR V CT OT S / -	ethod S auger screwing* C casing N auger drilling* R roller/tricone washbore cable tool diatube blank bit V bit TC bit support C casing N penetration 1 2 3 4 support C casing N verification 1 2 3 4 support V penetration 1 2 3 4 support 1 2 3 4		N ni resistance nging to usal water leve shown	:	notes, s U ₅₀ D N N* Nc P Bs R E PID WS PZ	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer	classification sym soil description based on unified cl system moisture D dry M moist W wet Wp plastic limit W _L liquid limit			consistence VS S F St VSt H Fb VL L MD D	cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense					

Client: RIDER HUNT TEROTECH Date started: 9.5.2006

Borehole No.

Project No:

Sheet

BH5

CH1613/1

1 of 1

Principal: Date completed: **9.5.2006**

rill	mod	el &	mo	untir	ng:MD200	TRUCK			Eas	sting: 5	533192.849 slope:	-90°		R.L	. Surface: 1.80
ole	diar	nete	er:						No	rthing: 6	6744254.937 bearing	j :		datı	um: AHD
dri	illing	g ir	for	ma	tion						substance				
method	u ک penetration		support	water	notes samples, tests, etc	well details	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle colour, secondary and minor	characteristics,	moisture condition	consistency/ density index	structure and additional observations
-								-			SAND: Fine to medium grained, b	rown.	М	L	ALLUVIAL SOIL
,			•	1/2/06	SPT 1,0,2		_1	- - 1_ - -			Colour change to pale brown at 0. Colour change to grey at 1.2m.	4m.	W		
		N*=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2 - - -						MD				
		2,2,5 N*=7 0 0 0 0 0 0		3 - - - 4			Numerous shell fragments through	nout profile.		D/VD					
					SPT 6,13,17 N*=30	1	3	5							
							5	6 - - 7 - -	<u>* 41.</u>		End BH5 at 6.0m due to limit of re investigation. Borehole terminated at 6m	quired			
nethod S auger screwing* D auger drilling* R roller/tricone / washbore T cable tool diatube blank bit V bit TC bit BX Tubex bit shown by suffix g. ADT support C casing N penetration 1 2 3 4 no resistant ranging to water 1 10/1/98 water le on date shown water inflow water outflow			N ni resistance nging to usal water leve shown		notes, s U ₅₀ D N N* NC P BS R E PID WS PZ	amples, tests undisturbed sample 50mm diameter disturbed sample standard penetration test (SPT) SPT - sample recovered SPT with solid cone pressure meter bulk sample refusal environmental sample PID measurement water sample piezometer	classification symbols soil description based on unified classystem moisture D dry M moist W wet Wp plastic limit W_L liquid limit			consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense					

Appendix B

Laboratory Test Results

RESULTS OF ACID SULFATE SOIL ANALYSIS (Page 1 of 3)

30 samples supplied by Coffey Geosciences Pty Ltd on 6th June 2006 - Lab. Job No. E5757 Analysis requested by Matt Rowbotham. - Your Project: CH1613/1

		EAL	- Nakit tr						Titratable Potential	Reduced Inorganic	Reduced Inorganic		NET ACIDITY	LIME CALCULATION	LIME CALCULATION
Sample Site	Depth	lab	FIELD/ L	AB PEROXIDE	SCREENING TE	CHNIQUE	TPA	TPA	Acidity (TPA)	Sulfur	Sulfur	Chromium Suite	TPA Only	Chromlum Suite	TPA Only
1	(m)	code	Initial pH _F	pH _{rox}			pH₀x	pH _{1PA}	mole H ⁺ /tonne	(% chromium reducible S)	(Scr)	mole H ⁺ /tonne	mole H ⁺ /tonne	kg CaCO ₃ /tonne DW	kg CaCO ₃ /tonne DW
			water	peroxide	pH change	Reaction			(to pH 6.5)	(%Scr) (note 2)	mole H ⁺ /tonne	(based on %Scrs)	(based on TPA)	(includes 1.5	safety Factor)
Method No.	Miller Heile						23B		23G	228	a- 228	note 5	note 5	note 5	note 5
5110	0.5	E5757/1		2.52	1.00	11!									
BH6	0.5m		5.38	3.52	-1.86	High	••	••		••		**		••	· · ·
BH6	1.0m	E5757/2	5.24	4.14	-1.10	Medium				0.005	3	3		0	
BH6	1.5m	E5757/3	6.11	4.09	-2.02	Low				<0.005	0	0	l	0	
вн6	2.5m	E5757/4	8.59	6.14	-2.45	Low						••	ł <u>.</u> .		.
вн6	3.5m	E5757/5	8.90	6.02	-2.88	Low	7.72	0.00	0	0.030	19	19	о	1	0
вн6	4.0m	E5757/6	8,70	6.33	-2.37	Low				••				l	l i
вн6	4.5m	E5757/7	8.37	6.10	-2.27	Medium	7.00	0.00	0	0.031	19	19	о	1	0
BH6	5.5-5.8m	E5757/8	7.44	4,75	-2.69	Medium				0.011	7	7	l	1	
BH6	7.0-7.15m	E5757/9	6.42	4.50	-1.92	Low					'	•			
BH6	10-10.15m	E5757/10	6.09	3.13	-2.96	Low	3.99	 4.95	 45	0.030	 19	 19	 45	"	"
BHG	10-10.15111	23,37710	0.09	3.13	-2.90	LOW	3.33	4.53	73	0.030	'5	13	73	'	'

NOTE

- 1 All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2 Samples analysed by SPOCAS method 23 (ie Suspension Peroxide Oxidation Combined Acidity & sulfate) and 'Chromium Reducible Sulfur' technique (Scr Method 22B)
- 3 Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.
- 4 Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5 ABA Equation: Net Acidity = Potential Sulfidic Acidity (ie. Scrs or Sox) + Actual Acidity + Retained Acidity measured ANC/FF
- 6 For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and silty clays
- 7 Denotes not requested or required
- 8 CRS, TAA and ANC are NATA certified but other SPOCAS segments are currently not NATA certification
- 9- Results at of below detection limits are replaced with '0' for calculation purposes.
- 10 Projects that disturb >1000 tonnes of soil, the ≥0.03% S classification guideline would apply.

(Classification of potential acid sulfate material if: coarse Scr≥0.03%S or 19mole H+/t; medium Scr≥0.06%S or 37mole H+/t; fine Scr≥0.1%S or 62mole H+/t)

Lab. Accred. No.: 14960

checked:

RESULTS OF ACID SULFATE SOIL ANALYSIS (Page 2 of 3)

30 samples supplied by Coffey Geosciences Pty Ltd on 6th June 2006 - Lab. Job No. E5757 Analysis requested by Matt Rowbotham. - Your Project: CH1613/1

LIME CALCULATION TPA Only
kg CaCO ₃ /tonne DW
safety Factor)
лоte 5
0
0

NOTE

- 1 All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2 Samples analysed by SPOCAS method 23 (ie Suspension Peroxide Oxidation Combined Acidity & sulfate) and 'Chromium Reducible Sulfur' technique (Scr Method 22B)
- 3 Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.
- 4 Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5 ABA Equation: Net Acidity = Potential Sulfidic Acidity (ie, Scrs or Sox) + Actual Acidity + Retained Acidity measured ANC/FF
- 6 For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and silty clays
- 7 .. Denotes not requested or required
- 8 CRS, TAA and ANC are NATA certified but other SPOCAS segments are currently not NATA certification
- 9- Results at of below detection limits are replaced with '0' for calculation purposes,
- 10 Projects that disturb >1000 tonnes of soil, the ≥0.03% S classification guideline would apply.

(Classification of potential acid sulfate material if: coarse Scr≥0.03%S or 19mole H+/t; medium Scr≥0.06%S or 37mole H+/t; fine Scr≥0.1%S or 62mole H+/t)

Lab Accord No.: 14960

checked:

RESULTS OF ACID SULFATE SOIL ANALYSIS (Page 3 of 3)

30 samples supplied by Coffey Geosciences Pty Ltd on 6th June 2006 - Lab. Job No. E5757 Analysis requested by Matt Rowbotham. - Your Project: CH1613/1

Sample Site	Depth	EAL.	FIELD/1	LAB PEROXIDE	SCREENING TE	CHNIQUE	TPA	TPA	Titratable Potential Acidity (TPA)	Reduced Inorganic	Reduced Inorganic	NET ACIDITY Chromium Suite	NET ACIDITY TPA Only	LIME CALCULATION Chromium Suite	LIME CALCULATION TPA Only
	(m)	code	initial pH _F water	pH _{rox} peroxide	pH change	Reaction	pH∞x	рНтра	mole H*/tonne (to pH 6.5)	(% chromium reducible S) (%Scr) (note 2)	(Scr)	mole H ⁺ /tonne (based on %Scrs)	mole H*/tonne (based on TPA)		kg CaCO ₃ /tonne DW
Method No.	and the second						238		23G	228	a- 22B	note 5	note 5	note 5	note 5
вн8	0.5m	E5757/21	7.50	6.17	-1.33	High				0.005	3	3		О	
BH8	1.0m	E5757/22	7.16	2.96	-4.20	High	4.56	4.98	20	0.248	155	155	20	12	2
BH8	1.5m	E5757/23	8.27	5.90	-2.37	Low							l		••
BH8	2.5m	E5757/24	8.48	6.49	-1.99	Low		٠.			<u></u>				
BH8	3.5m	E5757/25	8.20	6.21	-1.99	Low									
вн8	4.0m	E5757/26	8.53	6.52	-2.01	Low		.	<u>.</u> .	<u>.</u>	<u></u>			14	
BH8	4.5m	E5757/27	8.62	6.27	-2.35	Low		۱.,			<u></u>				·
BH8	5.5-5.7m	E5757/28	6,17	4.51	-1.66	Medium				- .	<u></u>	44	l		
BH8	7.0-7.3m	E5757/29	6.01	4.34	-1.67	Medium				••	.,	.,			
BH8	11.5-11.65m	E5757/30	6.55	3.79	-2.76	Medium	••			<0.005	Ö	0		0	
				1		1		I	1						

NOTE:

- 1 All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2 Samples analysed by SPOCAS method 23 (ie Suspension Peroxide Oxidation Combined Acidity & sulfate) and 'Chromium Reducible Sulfur' technique (Scr Method 22B)
- 3 Methods from Ahern, CR, McElnea AE, Sullivan LA (2004). Acid Sulfate Soils Laboratory Methods Guidelines. QLD DNRME.
- 4 Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5 ABA Equation: Net Acidity = Potential Sulfidic Acidity (ie. Scrs or Sox) + Actual Acidity + Retained Acidity measured ANC/FF
- 6 For Texture: coarse = sands to loamy sands; medium = sandy loams to light clays; fine = medium to heavy clays and silty clays
- 7 .. Denotes not requested or required
- 8 CRS, TAA and ANC are NATA certified but other SPOCAS segments are currently not NATA certification
- 9- Results at of below detection limits are replaced with '0' for calculation purposes.
- 10 Projects that disturb >1000 tonnes of soil, the ≥0.03% S classification guideline would apply.

(Classification of potential acid sulfate material if: coarse Scr≥0.03%S or 19mole H+/t; medium Scr≥0.06%S or 37mole H+/t; fine Scr≥0.1%S or 62mole H+/t)

図

Lab Accred No.: 14960

checked:

Appendix C

Preliminary Acid Sulphate Soil Management Plan

PRELIMINARY ACID SULPHATE SOIL MANAGEMENT PLAN

C.1.1 Additional Investigation

In terms of acid sulphate soils, the scope of work undertaken thus far for the assessment has been preliminary and further investigation work should be undertaken prior to development of the site.

The NSW ASSMAC "Acid Sulfate Soil Manual" (August 1998) suggests that for an extensive development on a site greater than 4ha in area, two investigation holes per hectare would be required to provide adequate site coverage. On this basis, sampling and testing in up to about eight additional boreholes is recommended prior to construction. The number and depth of additional boreholes should be assessed by an experienced consultant based on the proposed area and depth of soil disturbance at the site.

The depth of the additional investigations should be at least 1m beyond the proposed depth of excavation or depth of groundwater drawdown, or at least 2m below the ground surface, whichever is greater. Soil samples should be collected every 0.5m. All samples taken during the investigation should be screened for the presence of potential ASS using laboratory methods 21Af and 21Bf of Ahern CR, Blunden B and Stone Y (eds) (1998), Acid Sulfate Soil Laboratory Methods Guidelines, ASSMAC. The results of the screening tests should be assessed by an experienced consultant, and POCAS, SPOCAS or CRS tests carried out as considered appropriate.

The results of the additional investigation work should be assessed, and a final acid sulphate soil management plan prepared for the development.

C.1.2 Neutralisation by Lime

C.1.2.1 General

ASS stockpile / treatment areas must be completely surrounded by bunds designed to be of sufficient capacity to accommodate a critical storm event. Due to the granular nature of the near surface soils at this site and the likely infiltration of surface waters into the soils, the area within the bund should be evenly covered with lime at a rate of about 50kg/m². Bunds should be constructed of imported material and be of sufficiently low permeability to ensure that uncontrolled loss of water to the surrounding area does not occur. This could generally be achieved by use of clay fill. The bund should be compacted by rolling with a pad foot roller or similar to bind the material into a cohesive earth fill. A target density of about 95% Standard Compaction is recommended in all earth bunds constructed for environmental protection. Bunded areas should be graded to allow water within the bunded area to flow to a sump area, where the water may be assessed and treated as necessary.

Excavated Potential Acid Sulfate Soils (PASS) should be spread within the bunded area in layers of workable depth (typically not more than 0.3m loose thickness) and be thoroughly mixed with lime through use of a rotary hoe, pulvi-mixer or some similar mechanical process nominated by the contractor to achieve a thorough mix. The liming should be confined to areas of manageable size. Liming areas should remain bunded to allow collection of all leachate and stormwater runoff until test results indicate acceptable levels of neutralisation have been achieved.

Alternatively, the soils may be mixed with lime prior to excavation. This could be achieved by spreading the required amount of lime over the surface of the excavation, assuming a depth of about 300mm will

be treated after each application. The lime should be thoroughly mixed with the soil through use of a rotary hoe, pulvi-mixer or some similar mechanical process nominated by the contractor to achieve a thorough mix. After mixing, the material could then be excavated and stockpiled in a bunded area until test results indicate acceptable levels of neutralisation were achieved.

C.1.2.2 Liming Ratios

Good quality fine agricultural lime should be used. In calculating liming ratios, a factor of safety of 1.5 is recommended above the theoretical requirement to take into account the rate of lime reactivity and the possibility of inhomogeneous mixing.

The test results from the previous work and of the additional recommended investigations should be considered in assessing liming ratios for PASS. Liming ratios should also be confirmed by testing at the time of construction.

The time required for applied lime to neutralise ASS is widely variable and depends on the specific properties of the neutralised soil, although the lime will begin to neutralise the acid soils from the time of application. Monitoring of the neutralisation rates of the ASS to be removed should be undertaken to provide an indication of the rate of neutralisation and to confirm that the process is working effectively.

C.2.1 Management of Leachate and Excavation Water

Groundwater samples should be obtained to assess the background pH of the groundwater prior to excavation of PASS at the site. Results of this testing should be forwarded to the ASS Consultant for the project, as a review of recommended pH values for groundwater monitoring during construction may be required.

Water pumped out during dewatering should be monitored on a regular basis during the dewatering period. It is suggested that water pH be checked several times throughout the day. At a minimum, pH testing should be carried out three times per day with a minimum of four hours between readings. The results of pH monitoring should be noted, and records kept on site throughout dewatering. If pH levels are found to become consistently lower over several tests, and the pH value approaches the minimum allowable pH of 6.5, all water should be contained and treated prior to release. Once an acceptable water quality is achieved, the treated water may be released. It is recommended that monitoring of turbidity, and dissolved oxygen be carried out immediately upon beginning of pumping and then daily for a period of at least two weeks. Depending on results, monitoring of these parameters should be carried out on a maximum weekly basis thereafter. A shorter timeframe may apply depending on the results of the ongoing testing. The testing interval could be revised at a later date should no significant changes in groundwater quality be evident.

All water runoff from bunded or other treatment areas is to be collected, monitored and then neutralised prior to release. We understand that no dewatering is proposed at this time. The method of neutralisation of leachate water is either to add lime as a slurry to the collected leachate water (depending on the salinity of the water to be treated) or to use a mechanical lime spreader to spread lime over an area close to the inlet point of the collection area. The addition of lime will be undertaken in conjunction with field testing to avoid achieving excessively high pH levels. The quality of the water to be finally discharged must meet appropriate guidelines for release.

C.2.2 Monitoring Program

C.2.2.1 Materials Treated in Bunded Areas

Field testing of the pH of lime treated materials will be required to assess whether pH values are being held at greater than 4. The pH testing should be supplemented with standard ASS laboratory tests from the excavated soil. Testing will be required to produce Total Potential Acidity (TPA) results of zero or indicating a small amount of excess lime. Laboratory results indicating soil containing up to 0.5 kg H₂SO₄/tonne would be acceptable. The laboratory samples should each be made up of a minimum of 10 sub-samples from different parts of the stored materials to provide an average value of TPA.

Delivery dockets for the agricultural lime should be kept with other site records to demonstrate that adequate neutralising agent was used on site.

C.2.2.2 Excavation Monitoring

Natural soils exposed in the walls and floor of all excavations during should be checked on a regular basis for the generation of acid conditions, using an approved field pH screening test. Lime should be added to the exposed surface of the soils if values of pH<4 occur. The liming ratio for the soil units should be used, assuming the outer 100mm of soil within the exposed face will be affected. Any water collected in the excavation should also be checked for indications of acid production. Contingency measures should be put in place in accordance with this plan if water pH values of less than pH 6.5 occur.

Soils exposed within the excavation, including those above the water table, shall be maintained in a wet condition by frequent irrigation to restrict oxygen entry into the soil within the excavation. The effects of irrigation on the stability of the excavations should be assessed by a suitably experienced consultant.

C.3.1 Contingency Measures

Soil acidity in disturbed materials should be monitored. Should the field pH tests and the laboratory tests show that the soil acidity has not achieved the minimum required standard, then the material must be reworked and additional lime treatment carried out until it is verified that the soil meets the required standard.

If monitoring of the collected water at the point of discharge indicates the pH is below acceptable discharge limits then discharge must immediately cease and further treatment carried out. Hydrated lime may only be applied in the presence of the ASS Consultant who shall ensure that it is added in small increments so as not to cause unduly high water pH levels (i.e. above 8.5).

In the event that pH measurement of exposed soils in excavations does not meet required levels, lime shall be spread over the affected area and the pH levels further monitored.

Sufficient lime is to be stored in a dry location on-site to permit the immediate implementation of the above contingency measures. The lime shall be stored in a covered and bunded area to prevent accidental release to waters.