

Vipac Engineers and Scientists Limited

Level 2, 146 Leichhardt Street, Spring Hill, QLD 4000, Australia
PO Box 47, Spring Hill, Qld, 4000 Australia
t. +61 7 3377 0400 | f. +61 7 3377 0499 | e. brisbane@vipac.com.au
w. www.vipac.com.au | A.B.N. 33 005 453 627 | A.C.N. 005 453 627

Vipac Engineers & Scientists

Planit Consulting Pty Ltd

Kings Forest WWTP

Noise Assessment

70Q-17-0005-TRP-541306-0

13 April 2017

	Report Title: Noise			
	Job Title: Kings Fo			
DOCUMENT NO: 70Q-17-0005	5-TRP-541306-0	REPORT CODE: TRP		
PREPARED FOR:		PREPARED BY:		
Planit Consulting Pty Ltd		Vipac Engineers and Scientists Limited		
Level 2, 11-13 Pearl Street, Kin	gscliff Central	Level 2, 146 Leichhardt Street,		
Kingscliff, New South Wales, 24	487, Australia	Spring Hill, QLD 4000,		
		Australia		
CONTACT: Adam Smith				
Tel : 02 6674 5001		Tel: +61 7 3377 0400		
Fax: +61 2 6674 5003		Fax : +61 7 3377 0499		
PREPARED BY:	2/2			
Author:	July m	Date: 13/04/2017		
	Joseph Lee			
	Acoustic Consulting Engi	neer		
REVIEWED BY:	04			
Reviewer:	Deag	Date: 13/04/2017		
	Dr Peter Teague			
	Principal Acoustic Consul	tant		
AUTHORISED BY:	Shol.	Date:13/04/2017		
	Virginia Short			
	Senior Office Administrate	or		
REVISION HISTORY				
Revision No.	Date Issued	Reason/Comments		
0	13/04/2017	Initial Issue		
1				
2				
DISTRIBUTION				
Copy No	Location			
1	Project			
2	Client (PDF Format)	Uncontrolled Copy		
3	•	• •		
KEYWORDS:				

NOTE: This is a controlled document within the document control system. If revised, it must be marked SUPERSEDED and returned to the Vipac QA Representative. This document contains commercial, conceptual and engineering information that is proprietary to Vipac Engineers & Scientists Ltd. We specifically state that inclusion of this information does not grant the Client any license to use the information without Vipac's written permission. We further require that the information not be divulged to a third party without our written consent

EXECUTIVE SUMMARY

Vipac Engineers and Scientists Ltd (Vipac) was commissioned by Planit Consulting Pty Ltd to carry out a noise impact assessment of the proposed Waste Water Treatment Plant (WWTP) for the Kings Forest Development in the Tweed Shire.

The purpose of this assessment is to determine the potential noise impacts associated with the proposed WWTP, on Noise Sensitive Receptors (NSR's) located in the surrounding area. Noise impacts have been assessed in accordance with the NSW Industrial Noise Policy (INP) (Environment Protection Authority, 2000).

The likely noise impacts have been predicted (during both construction and operational phases) using the CONCAWE methodology in SoundPLAN. The resultant noise impacts have been assessed for the construction stage and operation stage of the WWTP.

During the construction phase two future NSR's (Future Residence and Future Neighbourhood Centre) are predicted to exceed the construction noise criteria. Where the Future NSR's are already constructed prior to the WWTP construction activities, a Construction Noise Management Plan would be required to consider managing noise levels at these NSR's to minimise potential for noise impacts.

Predicted noise levels for the operational phase of the WWTP are predicted to comply with the noise criteria at all NSR's.

TABLE OF CONTENTS

1		RODUCTION	
2		DJECT DESCRIPTION	
2.1	Site	Location and Description of the WWTP	5
2.2		e Sensitive Receptors	
3	REG	BULATORY FRAMEWORK AND NOISE CRITERIA	8
3.1	Cons	struction Stage	8
3.2	Ope	rational Stage	g
4	MET	THODOLOGY	10
4.1	Field	dwork Methodology	10
4.2	Nois	e Prediction Methodology	10
	4.2.1	Noise Model	10
	4.2.2	Meteorological Conditions	10
	4.2.3	Modelling Scenarios	11
	4.2.4	Sound Power Levels	11
5	EXIS	STING ENVIRONMENT	13
6	RES	SULTS	14
6.1	Con	struction Phase	14
6.2	Ope	rational Phase	16
7	REC	COMMENDATIONS	17
8	CON	NCLUSION	17
APF	PENDIX	A NOISE SENSITIVE RECEPTOR LOCATIONS	18
APF	PENDIX	B NOISE MONITORING RESULTS	19
APF	PENDIX	C NOISE MAPS FOR OPERATIONAL PHASE	23

1 INTRODUCTION

Vipac Engineers and Scientists Ltd (Vipac) was commissioned by Planit Consulting Pty Ltd to carry out a noise impact assessment of the proposed Waste Water Treatment Plant (WWTP) for the Kings Forest Development in the Tweed Shire, Northern New South Wales.

The purpose of this assessment is to determine the potential noise impacts associated with the proposed WWTP, on Noise Sensitive Receptors (NSR's) located in the surrounding area. Noise impacts have been assessed in accordance with the NSW Industrial Noise Policy (INP) (Environment Protection Authority, 2000).

Noise impacts have been assessed for the construction stage and operation stage of the WWTP.

2 PROJECT DESCRIPTION

2.1 SITE LOCATION AND DESCRIPTION OF THE WWTP

The proposed WWTP is to be located approximately 700m to the west of Tweed Coast Road, at the end of what is currently Depot Road/Pine Ridge Road, Kings Forest (Lot Section 1//781633), in the vicinity of the proposed Kings Forest Development.

The existing land use in the vicinity of the proposed WWTP is predominantly agricultural with some forested areas. There are existing scattered residential and farm buildings.

The location of the proposed WWTP is illustrated in Figure 2-1.

Figure 2-1: Proposed WWTP Location [Google Earth, 2016]

Noise Assessment

The proposed WWTP will incorporate 3 stages of Membrane Bio Reactor with UV disinfection, a 2ML Permeate Storage Tank for Class A treated effluent to provide feed water to an advanced water treatment plant (AWTP). The 2ML Storage Tank is for storage of excess permeates during wet weather events.

The AWTP incorporates an Ultra Filtration Membrane system, UV disinfection and Chlorine contact tank with transfer pumps to transfer the Class A+ treated effluent to the storage reservoirs. There are also three 2ML tanks for Drinking Water to provide for four days of storage.

The proposed configuration of the WWTP is shown in Figure 2-2.

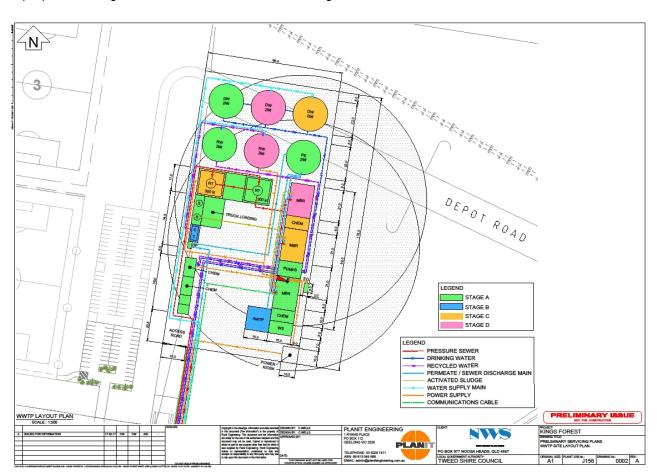


Figure 2-2: Proposed WWTP Configuration

2.2 NOISE SENSITIVE RECEPTORS

The nearest existing NSR's were identified from a review of aerial imagery and during a site visit undertaken by Vipac staff on 8/03/17. Existing NSR's surrounding the WWTP site consist of residential dwellings and farming properties. A total of 19 NSR's in the area that are within approximately 1km from the site boundaries were considered for the purposes of this assessment.

Future NSR's consist of residential dwelling and a neighbourhood centre that are part of a proposed Kings Forest development (from the development plan), located to the south of the WWTP site. Sports fields are proposed to be located immediately west of the WWTP site. Sports fields have not been considered as noise-sensitive land use, however, potential noise levels have been discussed for the sports field in relation to potential impacts to amenity.

NSR's are shown in Figure 2-2 in relation to the WWTP site. A list of the nearest potentially affected NSR's to the proposed WWTP site is provided in Appendix A. Note that for future receptors, the locations shown in

Figure 2-2 and Appendix A represent a conservative worst case scenario of receptors located closest to the WWTP.

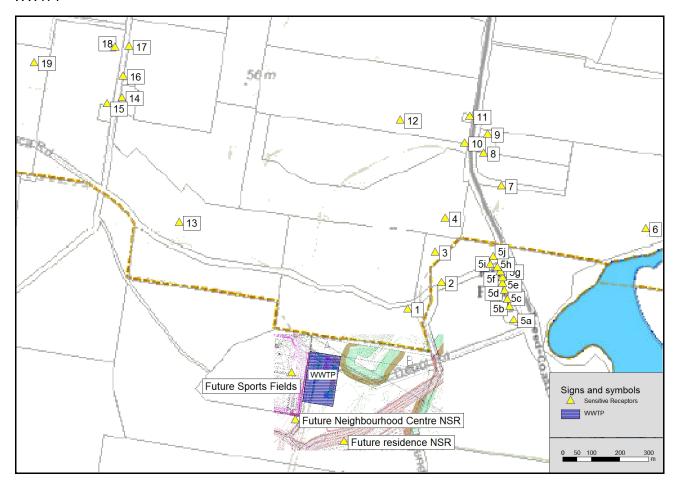


Figure 2-3: Sensitive Receptor Locations and the WWTP Boundary

Note that NSR's 1 to 12 and future NSR's are located closer to Tweed-Coast Road, while NSR's 13 to 19 are located further away. Noise monitoring was conducted at NSR's 1 and 14 to provided representative noise levels of the two areas. Noise monitoring results are discussed in Section 5.

3 REGULATORY FRAMEWORK AND NOISE CRITERIA

The regulatory framework and project noise criteria have been discussed below for the construction stage and operation stage of the WWTP.

3.1 CONSTRUCTION STAGE

The NSW Interim Construction Noise Guideline (Department of Environment and Climate Change, 2009) and contains detailed procedures for the assessment and management of construction noise impacts.

The Guideline presents two ways of assessing construction noise impacts:

- Quantitative method, which is generally suited to longer-term construction works; and
- Qualitative method, which is generally suited to short-term works (usually not more than three weeks) such as infrastructure maintenance.

It is expected that the length of the construction works associated with the proposed WWTP would be more than three weeks and therefore, a quantitative method has been used for this assessment.

Table 3-1 sets out the management levels for noise at residences and sensitive land uses, respectively. Restrictions to the hours of construction may apply to activities that generate noise at residences above the 'highly noise affected' noise management level. Noise management levels associated with the construction phase are presented in

Table 3-2, based on noise measurements taken at NSR's.

Table 3-1: Noise at Residence using Quantitative Assessment

Time of Day	Management Level L _{Aeq(15min)}
Monday to Friday - 7 am to 6pm Saturday - 8am to 1 pm No Work on Sundays or Public Holidays	Noise affected = RBL ² + 10 dB
	Highly noise affected ³ = 75 dB
Outside recommended standard hours	Noise affected = RBL ² + 5 dB

Table 3-2: Project Specific Construction Noise Levels at NSR's

rable of E. Frajost operation of the action relief						
Location	Period	RBL* dB(A)	Noise Management Levels			
NOD 4	Day	35	45			
NSR 1 (at Secret Lane)	Evening	37	42			
	Night	34	41			
NSR 14 (at Reardons Road)	Day	32	43			
	Evening	37	42			
	Night	33	41			

^{*} Note: Assessment background noise levels for 9, 10, and 11 April were used to calculate RBL levels. Background noise levels for 6, 7, 8 April were not included in the RBL calculation as background noise levels were higher with higher wind speeds. Although the background noise levels for 6, 7, 8 April are representative of the periods where wind speeds are higher, these noise levels have not been included to provide conservative noise criteria and assessment.

13/04/2017

¹ Noise levels apply at the boundary that is most exposed to construction noise and at a height of 1.5 m above ground level. If the property boundary is more than 30 m from the residence, the location for measuring or predicting noise levels is at the most noise-affected point within 30 m of the residence. Noise levels may be higher at upper floors of the noise-affected residence.

² RBL is the Rating Background Level as defined in the EPA Industrial Noise Policy.

³ L_{Aeq 15-minute} ≥ 75 dB is highly likely to generate strong community reactions and should be avoided.

The Noise Management Levels for NSR 1 has been applied to NSR's 1 to 12 and Future NSR's, while Noise Management Levels for NSR 14 has been applied to NSR's 13 to 19.

For the operational noise assessment, evening noise criteria have not been used as night time criteria are more stringent and compliance with the night criteria will also result in compliance with the evening criteria.

As outlined above, the recommended standard hours for construction works are limited to day time hours (Monday to Friday 7am to 6pm, Saturday 8am to 1pm, with no work on Sundays or Public Holidays). Therefore the day time Noise Management Levels presented in

Table 3-2 would be applicable to assess the Construction Noise Management Levels associated with "recommended standard hours".

Where works are required to take place out of hours, Noise Management Levels should be calculated for the relevant time periods when works are proposed.

3.2 OPERATIONAL STAGE

The Industrial Noise Policy (NSW Environmental Protection Authority, 2000) sets limits on the noise that may be generated by the proposed WWTP during the operational stage. These limits are dependent upon the existing noise levels at the site and are designed to ensure changes to the existing noise environment are minimised and deal with the intrusiveness of the noise and the amenity of the environment. The most stringent of the limits is taken as the limiting criterion for the noise source.

The intrusiveness noise criterion requires that the $L_{Aeq,15minutes}$ for the noise source, measured at the most sensitive receiver under worst-case conditions, should not exceed the Rated Background Level (RBL) by more than 5 dB, represented as $L_{Aeq,15minutes}$ < RBL+ 5 dB.

Noise levels at nearby NSR's associated with proposed WWTP should not exceed the Project Specific Noise Levels detailed in Table 3-3.

		dB(A)						
Location	Period	Existing L _{Aeq}	Existing RBL	Recommended Acceptable L _{Aeq}	Amenity Criteria Level	Intrusive- ness Criteria Level	Project Specific Noise Level	
NSR 1	Day	49	35	50	44	40	40	
(at Secret	Evening	54	37	45	45	42	42	
Lane)	Night	44	34	40	40	39	39	
NSR 14	Day	47	32	50	47	37	37	
(at Reardons	Evening	56	37	45	45	42	42	
Road)	Night	40	33	40	40	38	38	

Table 3-3: Project Specific Operational Noise Levels at NSR's

The Project Specific Noise Levels for NSR 1 has been applied to NSR's 1 to 12 and Future NSR's, while Project Specific Noise Levels for NSR 14 has been applied to NSR's 13 to 19.

For the operational noise assessment, evening noise criteria have not been used as night time criteria are more stringent and compliance with the night criteria will also result in compliance with the evening criteria. NSR Neighbourhood Centre would not be occupied during the night time and night time criteria would not be applicable for this NSR.

13/04/2017

¹ Recommended Acceptable L_{Aeq} noise level for residences in rural area from Table 2.1 in OEH Industrial Noise Policy.

4 METHODOLOGY

This section outlines the methodologies for the fieldwork, noise monitoring data analysis and noise prediction used for this assessment.

4.1 FIELDWORK METHODOLOGY

The fieldwork has been carried out in compliance with the following standards and guidance documents:

- Australian Standard AS 1055-1997 Acoustics Description and Measurement of Environmental Noise. Parts 1-3. Standards Australia; NSW.
- Environmental Protection Authority (EPA) Office of Environmental and Heritage (OEH) NSW Industrial Noise Policy (INP); Sydney.

4.2 NOISE PREDICTION METHODOLOGY

4.2.1 **NOISE MODEL**

Noise level predictions have been assessed using the SoundPLAN noise modelling software using the CONCAWE (Manning, 1981) noise prediction methodology. The CONCAWE method was originally developed for predicting the long-distance propagation of noise from petrochemical complexes in the United Kingdom. It is especially suited to predicting noise propagation over large distances as it accounts for a range of atmospheric conditions that can significantly influence the propagation of noise over large distances.

The prediction of noise in the environment requires the definition of the noise sources and NSR's. A number of environmental parameters affect noise propagation, including geometric spreading, obstacles such as enclosures, barriers, and buildings, meteorological conditions and ground effects.

The SoundPLAN software and calculation methodology allows the environmental parameters identified above to be modelled.

4.2.2 **METEOROLOGICAL CONDITIONS**

Two modelling scenarios were run for the WWTP under neutral weather conditions for the day and worst case weather conditions during evening/night periods. It should be noted that noise will propagate further through the atmosphere under certain weather conditions. Adverse weather conditions chosen were those highly conducive to the propagation of sound (includes the consideration of the effects of a temperature inversion). As operations occur during 24 hours 7-days a week, this situation has been considered in the noise predictions. Table 4-1 presents the weather parameters used in the CONCAWE calculations based on annual data from the Bureau of Meteorology (BoM) Weather Station at nearby Coolangatta Airport.

Table 4-1: Weather Conditions for Modelling Scenarios

Parameter	Day	Night Time	
raiametei	Neutral	Adverse	
Pasquill Stability Category	D	F	
Wind Speed (m/s)	4	3	
Wind Direction	Source to Receptor		
Humidity (%)	66	66	
Temperature (°C)	24	16	

4.2.3 MODELLING SCENARIOS

The following worst-case scenario has been modelled:

- Construction phase: All equipment running simultaneously during normal construction hours as detailed in Table 3-1. Four truck movements which are expected per day; and
- Operational phase: All equipment running simultaneously 24 hours per day, seven days per week except for truck movements which are expected to be four movements during the day period only.

4.2.4 SOUND POWER LEVELS

The significant construction noise sources used for this assessment are identified in Table 4-2 and Table 4-3. The following sources have been referred to in establishing associated sound power levels (SWL) of the noise sources:

- Vipac's database, which includes noise measurements of plant measured at existing mine sites; and
- Australian Standard AS 2436 (2010) 'Guide to Noise and Vibration Control on Construction, Demolition and Maintenance Site' which includes the database of construction and open sites as provided in British Standard BS 5228:1 (2009) 'Code of Practice for Noise and Vibration Control on Construction and Open Sites – Part 1: Noise'.

The sound power levels detailed in Table 4-2 have been adjusted for estimated percentage of time per 15 minute period as not all of the equipment will be operating at 100% at the same time.

Percentage of SWL / Unit **Equipment Description** No of unit Time per 15 dB(A) minutes Backhoe 1 104 50% **Trucks** 4/day 112 4/day 1 5% Angle Grinder 108 Vibration Roller 1 119 5% Vibration Roller (Smooth) 1 108 10% 25% **Dump Truck** 1 115 1 Concrete Pumping 109 105 Mobile Crane 1 101 5% Tracked Excavator 1 105 50% Dozer D6 1 112 50% 1 10% Water Cart 111

Table 4-2: Modelled Sound Power Levels (SWL) for Construction Stage

NWS provided details and locations for the pumps associated with the WWTP. Whilst no noise levels were provided, the noise levels were calculated from the kilowatt data from NWS and RPM data from the manufacturers.

An equation to calculate the sound pressure levels of pumps at 1m based on kilowatt data and RPM is presented in *Engineering Noise Control* (Bies & Hansen, 2009). The sound power levels are presented in Table 4-3.

Table 4-3: Modelled Sound Power Levels (SWL) for Operational Stage

Location	Tag No	Equipment Description	No of units	kW	RPM	SWL / Unit dB(A)
	PMP-4004	Drinking Water Pump Station Jockey Pump	1	2.2	2853	89
Pump Room	PMP-4003	Drinking Water Pump Station Duty Pump	3	5.5	2917	98
	PMP-5002/3	Irrigation Transfer Duty Pump	2	37	2957	104
AWTP	UF-001&2	UF Filtration Pump	2	31	400	96
Recycled	PMP-3004	Recycled Water Jockey Pump	1	2.2	2853	89
Water Pump Room	PMP-3003/2/1	Recycled Water Duty Pump	3	5.5	2917	98
	PMP-3316	Chemical Dosing Water Pump	1	3	2902	90
Chemical Dosing Area	PMP-3311	Chlorine Dosing Recycled Water Pump	1	0.024	3000	69
Boomig 7 ii ca	PMP-3314	Chlorine Dosing MBR Pump	1	0.37	3000	81
Redundancy	TRP-1001 & 1002	Redundancy Tank Transfer Pump	2	2.4	3000	92
Tanks	JM-001 -004	Redundancy Tank Jet Mixers	4	5.5	3000	99
	PMP-3211	Caustic Dosing Pump	1	0.024	3000	69
	PMP-3215	Caustic Dosing Pump	1	0.37	3000	81
	PMP-3111	PACL Dosing Pump	1	0.024	3000	69
MBR	PMP-3011	Acetic Acid Dosing Pump	1	0.024	3000	69
	PMP-2009	Permeate Pump	2	1.5	3000	90
	PMP-2010	MBR/CIP Pump	3	0.18	3000	83
	SCR-2000	Screen	1	1.1	3000	86
Trucks	-	Off-site waste disposal	4/day	-	-	112

The majority of the pumps are to be located within a building. The sound transmission loss of the building has been determined based on typical single panel Colorbond construction of 0.42 mm thickness steel, and this has been applied in the noise model.

5 EXISTING ENVIRONMENT

The existing noise environment has been determined through continuous ambient noise monitoring from 6th April 2017 to 12th April 2017 at two locations (NSR's 1 and 14) in the vicinity of the Project site. The noise monitoring locations are shown in Figure 5-1. Attended noise measurements at the sites were also performed.

Figure 5-1: Noise Monitoring Locations [Google Earth, 2016]

The weather observations during the monitoring period were obtained from the Bureau of Meteorology for the Coolangatta Airport (station number 040717), and supplemented by local rainfall observations. A wind shear correction was applied to the wind speed data to account for the difference in the weather station anemometer height and noise monitoring microphone height.

The noise monitoring details, measurement data and weather observations during the monitoring period are presented in Appendix B. The criterion determined from the noise measurements is detailed in

Table 3-2 and Table 3-3.

6 RESULTS

6.1 CONSTRUCTION PHASE

Noise prediction modelling has been carried out to assess the potential impact associated with the construction of the proposed WWTP on the noise environment at the nearest NSR's located in proximity to the site. The predicted noise levels representative of the construction phase during the day are presented in Table 6-1.

Table 6-1: Construction Phase Predicted Noise Impact

Receptor		Day time	
	Noise Level dB(A)	Criteria dB(A)	Compliant
1	44	45	Yes
2	45	45	Yes
3	43	45	Yes
4	41	45	Yes
5a	42	45	Yes
5b	43	45	Yes
5c	42	45	Yes
5d	42	45	Yes
5e	42	45	Yes
5f	42	45	Yes
5g	42	45	Yes
5h	42	45	Yes
5i	42	45	Yes
5j	42	45	Yes
6	35	45	Yes
7	39	45	Yes
8	39	45	Yes
9	38	45	Yes
10	38	45	Yes
11	38	45	Yes
12	38	45	Yes
13	42	43	Yes
14	35	43	Yes
15	35	43	Yes
16	35	43	Yes
17	34	43	Yes
18	34	43	Yes
19	33	43	Yes
Future Neighbourhood Centre	57	45	No
Future Residence NSR	54	45	No

It can be seen from Table 6-1 that noise levels from construction activities are predicted to comply with the relevant criteria with the exception of Future NSR's where noise levels may exceed by up to 12 dB(A). Where the Future NSR's are already constructed prior to the WWTP construction activities, a Construction Noise Management Plan would be required to consider managing noise levels at these NSR's to minimise potential for noise impacts.

Noise levels at the sports field are predicted to be 61 dB(A) which is not expected to impact its use for sporting purposes.

6.2 OPERATIONAL PHASE

The predicted noise levels representative of the completed operational phase during the day and night time for worst case meteorological conditions are presented in Table 6-2.

Table 6-2: Operational Phase Predicted Noise Impact

Receptor		Day time			Night time	
	Noise Level dB(A)	Criteria	Compliant	Noise Level dB(A)	Criteria	Compliant
1	24	40	Yes	25	39	Yes
2	23	40	Yes	23	39	Yes
3	21	40	Yes	21	39	Yes
4	19	40	Yes	20	39	Yes
5a	20	40	Yes	20	39	Yes
5b	20	40	Yes	20	39	Yes
5c	20	40	Yes	20	39	Yes
5d	20	40	Yes	20	39	Yes
5e	20	40	Yes	20	39	Yes
5f	19	40	Yes	20	39	Yes
5g	19	40	Yes	20	39	Yes
5h	19	40	Yes	20	39	Yes
5i	20	40	Yes	20	39	Yes
5j	19	40	Yes	19	39	Yes
6	13	40	Yes	13	39	Yes
7	16	40	Yes	17	39	Yes
8	16	40	Yes	16	39	Yes
9	15	40	Yes	15	39	Yes
10	16	40	Yes	16	39	Yes
11	15	40	Yes	15	39	Yes
12	15	40	Yes	15	39	Yes
13	19	37	Yes	19	38	Yes
14	13	37	Yes	14	38	Yes
15	13	37	Yes	13	38	Yes
16	13	37	Yes	13	38	Yes
17	12	37	Yes	12	38	Yes
18	12	37	Yes	12	38	Yes
19	11	37	Yes	11	38	Yes
Future Neighbourhood Centre	39	40	Yes	NA*	NA*	NA*
Future residence NSR	35	40	Yes	35	38	Yes

^{*} NSR Neighbourhood Centre would not be occupied during the night time.

It can be seen from Table 6-2 that noise levels from operational activities are predicted to comply with the relevant noise criteria at all NSR's.

The noise level from the WWTP at the sports field during the day is predicted to be 40 dB(A) which is not expected to impact the use of the sports fields.

7 RECOMMENDATIONS

The proposed WWTP has been assessed using a number of assumptions, including:

- Sound Power Levels that were calculated from the kilowatt data provided by NWS, and RPM data provided by manufacturers;
- Most of the equipment will be located within a building constructed of Colorbond panels of 0.42 mm thickness steel, which will attenuate noise to nearby NSR's.

For the detailed design stage of the WWTP, it is recommended that assumptions around sound power levels of equipment be verified using manufacturer or supplier noise data, or noise measurements of similar operations. The design of the building proposed to house equipment should ensure adequate noise attenuation is achieved.

Where the Future NSR's are already constructed prior to the WWTP construction activities, a Construction Noise Management Plan would be required to consider managing noise levels at these NSR's to minimise potential for noise impacts.

8 CONCLUSION

Vipac Engineers and Scientists Ltd (Vipac) was commissioned by Planit Consulting Pty Ltd to carry out a noise impact assessment of the proposed Waste Water Treatment Plant (WWTP) for the Kings Forest Development in the Tweed Shire.

The purpose of this assessment is to determine the potential noise impacts associated with the proposed WWTP, on NSR's located in the surrounding area. Noise impacts have been assessed in accordance with the NSW Industrial Noise Policy (INP) (Environment Protection Authority, 2000).

The likely noise impacts have been predicted (during both construction and operational phases) using the CONCAWE methodology in SoundPLAN. The resultant noise impacts have been assessed for the construction stage and operation stage of the WWTP.

During the construction phase two future NSR's (Future Residence and Future Neighbourhood Centre) are predicted to exceed the construction noise criteria. Where the Future NSR's are already constructed prior to the WWTP construction activities, a Construction Noise Management Plan would be required to consider managing noise levels at these NSR's to minimise potential for noise impacts.

Predicted noise levels for the operational phase of the WWTP are predicted to comply with the noise criteria at all NSR's.

Appendix A NOISE SENSITIVE RECEPTOR LOCATIONS

Table A-1 Sensitive Receptor Details

ID	Description	Universal Transverse Mercator Location (m)		
שו	Description	Χ	Υ	
1	Residential Dwelling	554831.45	6870819.85	
2	Residential Dwelling	554949.54	6870911.32	
3	Residential Dwelling	554927.34	6871018.41	
4	Residential Dwelling	554962.13	6871135.72	
6	Residential Dwelling	555661.22	6871099.61	
7	Residential Dwelling	555157.47	6871249.22	
8	Residential Dwelling	555095.58	6871363.3	
9	Residential Dwelling	555109.53	6871428.87	
5a	Residential Dwelling	555200.67	6870780.81	
5b	Residential Dwelling	555186.96	6870828.55	
5c	Residential Dwelling	555179.49	6870853.68	
5d	Residential Dwelling	555168.26	6870885.09	
5e	Residential Dwelling	555162.03	6870908.96	
5f	Residential Dwelling	555162.08	6870929.05	
5g	Residential Dwelling	555154.59	6870949.15	
5h	Residential Dwelling	555143.33	6870965.5	
5i	Residential Dwelling	555119.5	6870975.6	
5j	Residential Dwelling	555129.6	6871003.2	
10	Residential Dwelling	555030.05	6871397.97	
11	Residential Dwelling	555047.53	6871491.16	
12	Residential Dwelling	554805.81	6871477.89	
13	Residential Dwelling	554035.05	6871121.93	
14	Residential Dwelling	553835.77	6871556.04	
15	Residential Dwelling	553783.94	6871535.44	
16	Residential Dwelling	553839.4	6871631.99	
17	Residential Dwelling	553860.35	6871735.53	
18	Residential Dwelling	553812	6871732.18	
19	Residential Dwelling	553529.91	6871678.73	
-uture Neighbourhood Centre	Neighbourhood Centre	554439.52	6870434.03	
Future residence NSR	Residential Dwelling	554609.93	6870358.04	
Future Sports Fields*	Sports Fields	554426.6	6870596.44	

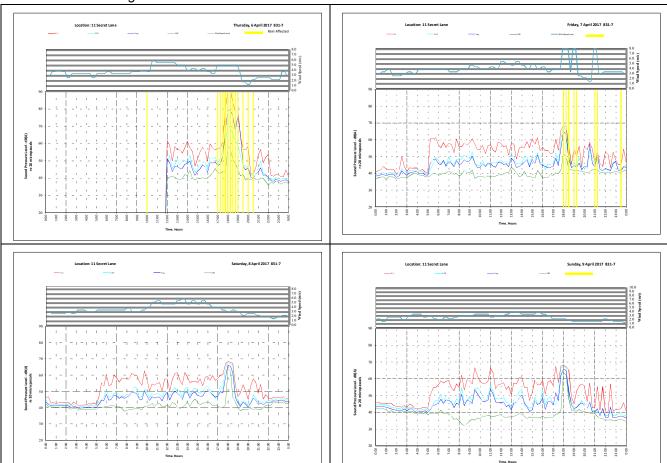
^{*} Included in the assessment but not considered a noise sensitive land use.

Appendix B NOISE MONITORING RESULTS

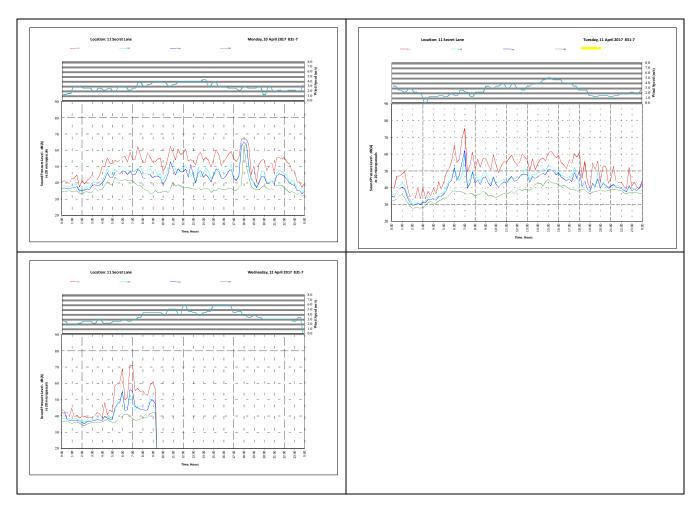
Monitoring Location 1: 11 Secret Lane, Kings Forest

Monitoring Details

Coordinates: 153°33.54 E, 28°17.27 S Microphone Height: 1.5 m free field SLM Time/Frequency weighting: Fast/A Measurement Period: 15 minutes Instrument: Larson Davis 831-7 Serial Number: 2163


Instrument calibration due date: 12th August 2018 Calibration level: 94 dB pre and post measurement

Site Comments


During the site visit on 6 April the day time noise environment consisted of noise from traffic on Tweed Coast Road (dominant), rustling of leaves, and bird and insect noise. During the site visit on 11 April the night time noise environment consisted of distant ocean noise, occasional traffic on Tweed Coast Road, occasional bird and insect noises, and aircraft flyover.

Data

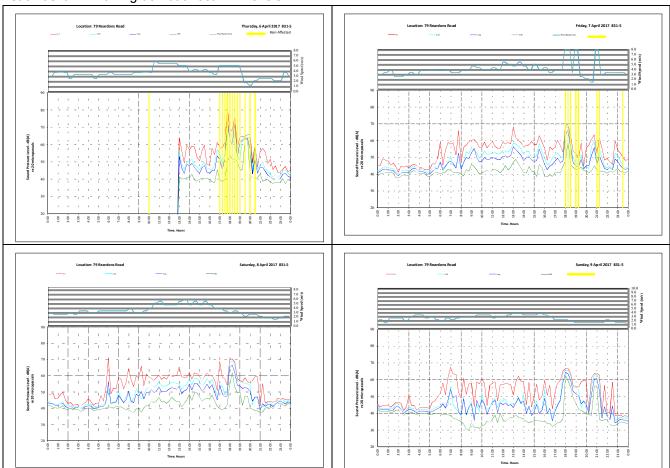
Rain periods have been highlighted in yellow in the graphs below. Periods with rain fall and wind speeds greater than 5m/s have been excluded from data analysis. High noise levels due to extraneous local events such as lawn mowing do not affect RBL levels.

Monitoring Location 2: 79 Reardons Road, Cudgen

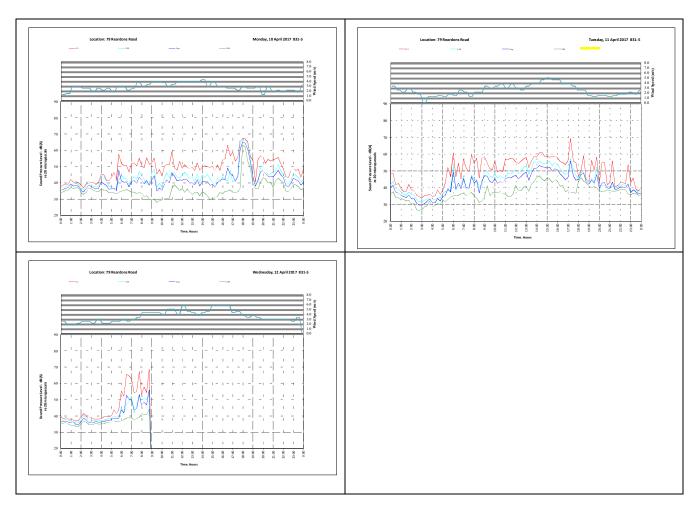
Monitoring Details

Coordinates: 153°32.96 E, 28°16.88 S Microphone Height: 1.5 m free field SLM Time/Frequency weighting: Fast/A Measurement Period: 15 minutes

Instrument: Larson Davis 831-5 Serial Number: 2160


Instrument calibration due date: 1st March 2019 Calibration level: 94 dB pre and post measurement

Site Comments


During the site visit on 6 April the day time noise environment consisted of rustling of leaves, bird and insect noises, occasional aircraft flyovers, and distant traffic (barely audible). During the site visit on 11 April the night time noise environment consisted of distant ocean noise, occasional bird and insect noises, and some distant traffic noise.

Data

Rain periods have been highlighted in yellow in the graphs below. Periods with rain fall and wind speeds greater than 5m/s have been excluded from data analysis. High noise levels due to extraneous local events such as lawn mowing do not affect RBL levels.

Appendix C NOISE MAPS FOR OPERATIONAL PHASE

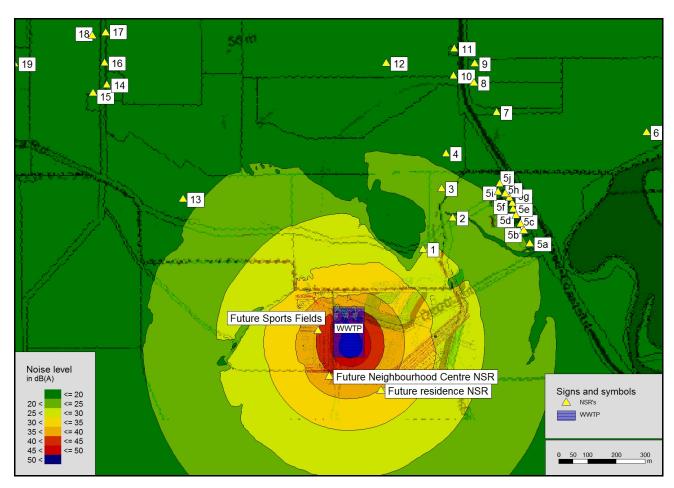


Figure C-1 Noise Map for Day Time Operational Phase

13/04/2017

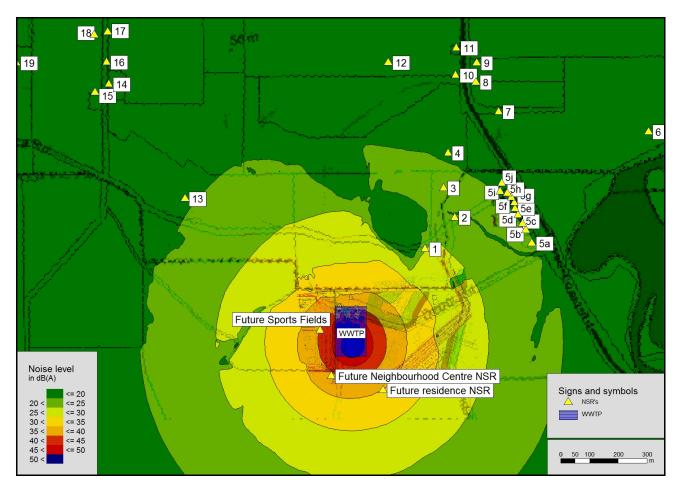


Figure C-2 Noise Map for Evening and Night Time Operational Phase

13/04/2017