

SMEC Testing Services Pty Ltd

CONSULTING GEOTECHNICAL ENGINEERS

Telephone: (02) 9756 2166 Facsimile: (02) 9756 1137 Email: smectesting@pacific.net.au Unit 14, 1 Cowpasture Place WETHERILL PARK NSW 2164

P.O., Box 6989 WETHERILI, PARK NSW 2164

GEOTECHNICAL INVESTIGATION EVELEIGH STREET, REDFERN PEMULWUY PROJECT

FOR

DEICORP PTY LIMITED

PROJECT NO. 17772/8146B REPORT NO. 10/0811

AUGUST 2010

© SMEC Testing Services Pty Limited

TABLE OF CONTENTS

PAGE NO.

1.	INTRODUCTION	1
2.	SITE CONDITIONS	2
3.	GEOLOGY	2
4.	FIELDWORK	3
5.	SUBSURFACE CONDITIONS	4
6.	EXCAVATION CONDITIONS & SUPPORT	7
7.	FOUNDATIONS	10
8.	GROUND WATER	12
9.	BATTER SLOPES	13
10.	PAVEMENT DESIGN PARAMETERS	13
11.	CONSTRUCTION ACTIVITIES	14
12.	EARTHQUAKE DESIGN SITE FACTORS	14
13.	POTENTIAL AFFECT OF CONSTRUCTION ADJACENT TO RAILWAY CORRIDOR	15
14.	FINAL COMMENTS	16
	DRAWING NO. 10/0811 : BOREHOLE LOCATIONS APPENDIX A : BOREHOLE LOGS & EXPLANATION SHEET	ſS

APPENDIX B : POINT LOAD & CBR TEST RESULTS

1. INTRODUCTION

This report presents the results of a geotechnical investigation for the proposed residential/commercial/retail development at Eveleigh Street, Redfern, known as the Pemulwuy Project. We understand the development is to comprise three separate structures which include two six storey buildings and a series of two storey townhouses. There will be underground parking, below one building at Site B. The latter will involve excavating to a maximum depth of about 9 metres below the existing groundsurface. The other structures are to be built essentially at the existing ground level.

The purpose of the investigation was to:

- determine the subsurface conditions at the site,
- provide comments on the foundation conditions,
- recommend foundation design parameters,
- comment on the temporary and permanent support of the proposed excavation,
- comment on the rock excavation,
- comment on the effect of the proposed excavation on the existing rail line immediately to the east of Site C,
- provide information on temporary batters,
- provide pavement design parameters and
- comment on construction aspects of the proposed works.

The work was undertaken at the request of Mr. G. Colbran of DeiCorp Pty Limited. SMEC Testing Services has also prepared separate reports for this site including an Acid Sulphate Assessment and Material Characterisation Assessment.

2. SITE CONDITIONS

The site is located between Lawson Street to the south, Vine Street to the north, Louis Street to the West and the Railway Corridor to the east. It is irregularly shaped with over all plan dimensions of some 200m x 400m. There is a fall of approximately 9m down towards the north.

The three proposed structures will be located as detailed below:

- Site A Located at the eastern end of the block, formed by Lawson, Eveleigh, Caroline and Abercrombie Streets. The existing development comprises two storey terraces to the south of Caroline Lane. The northern part of the site has been recently cleared of the previous development, it is grassed.
- Site B Bounded by Louis, Vine, Eveleigh and Caroline Streets. The majority of the area has been cleared and is grassed. There are a number of existing two storey terraces along Louis Street and a two storey block of units in the south western corner.
- Site C A triangular shaped block bounded by the Railway Corridor and Eveleigh Street. Again most of the area has been cleared and is grassed. There is an existing two storey building at the northern end. A relative high retaining wall supports the eastern side of Site C above the railway lines to the east.

3. GEOLOGY

The Sydney geological series sheet, at a scale of 1:100,000 show the site is underlain by Triassic Age Ashfield Shale of the Wianamatta Group near to the contact with Quaternary Age alluvial deposits. These are underlain by Triassic Age Hawkesbury Sandstone. Rocks within the Ashfield Shale formation typically comprise dark grey and black shale and laminite. The alluvial deposits comprise marine sands that were deposited as transgressive dunes. Hawkesbury Sandstone comprises medium to coarse grained quartz sandstone.

No rock outcrops were observed on the site.

4. FIELDWORK

Twenty boreholes numbered BH1 to BH20 were drilled to depths of between 3.9 and 20.0 metres at the locations shown on Drawing No. 10/0811. They were drilled between July 12 and 19, 2010. BH1, BH2, BH3, BH6, BH7, BH8 and BH9 were advanced using a Hydropower drilling rig owned and operated by Terratest Pty Limited. These locations were nominated by the client. The fieldwork was directed by one of our experienced senior technical officer who chose the borehole locations and logged the subsurface conditions encountered. In order to determine soil strengths Standard Penetration Tests (SPTs) were periodically carried out in each of the boreholes. When the rock was of sufficient strength, it was cored with a diamond encrusted cutting shoe. BH4, BH5 and BH10 to BH20 were drilled using the SMEC Testing Services (STS) Christie drilling rig. Dynamic Cone Penetrometer (DCP) testing was carried out adjacent to these holes. This testing provided a measure of the strength of the soils encountered. These were drilled by our senior technical officer.

Approximate inferred ground surface elevations for the borehole are given in Table 1.

Standpipe piezometers were installed in boreholes, BH1 to BH4, BH6 to BH9 and BH12. Piezometers are used to measure the groundwater level.

The subsurface conditions encountered are recorded on the borehole logs given in Appendix A. Photographs of the rock core retrieved are given in Appendix A together with a description of the terms used on the logs. Point Load Indices strength testing was carried out on selected samples of the rock cores. The results are given in Appendix B. Also CBR test results for the near surface materials are included in Appendix B.

BOREHOLE	APPROXIMATE
	RL
1	28.5
2	27.1
3	24.0
4	28.0
5	26.5
6	26.8
7	23.8
8	20.7
9	25.3
10	24.2
11	25.8
12	26.4
13	20.0
14	21.5
15	23.4
16	25.0
17	27.5
18	26.0
19	26.0
20	24.6

Table 1 – Approximate Ground Surface Elevations at Borehole Location

5. SUBSURFACE CONDITIONS

We have assumed the subsurface conditions encountered in the boreholes are representative of the site.

In making an assessment of the subsurface conditions across a site from a limited number of boreholes there is the possibility that variations may occur between test locations. The data derived from the site investigation programme are extrapolated across the site to from a geological model and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. No matter how comprehensive the investigation may be, it is not always possible to detect all subsurface anomalies and variations that may be present.

The subsurface conditions on the site consist of minor filling, sands and silty clays overlying weathered shale and sandstone. Details are given below:

TOPSOIL AND FILL: Topsoil and/or fill are present to depths of 0.3 to 1.4 metres.

SAND: Observed in most holes to depths varying from 1.2 to 3.0 m. The strength varied from very loose to medium dense.

SILTY CLAYS: These are present to depths of 2.5 to 4.9 metres. The strength of these materials range between soft and hard.

- SHALE/LAMINITE: Weathered shale and laminite was observed in all boreholes. Other than BH3 and BH8 it was observed to the depths of drilling. Fresh rock was found in the cored boreholes between depths of 7.9 m and 14.0 m The shale is of extremely low strength when first encountered and becomes high strength with depth.
- SANDSTONE: Fresh sandstone was encountered in BH3 and BH8 below a depth 11.7 and 17.3 metres. The rock is high strength and generally massive.

When water is used in the drilling process it can mask the real water level present. The groundwater depths were measured in the piezometers on various occasions. The depths recorded are given in Table 2

Borehole	Date	Depth to Water level below Ground Surface
1	10/07/10	
1	19/07/10	10.4
	20/07/10	10.6
	22/07/10	10.5
2	15/07/10	8.4
	19/07/10	8.7
	20/07/10	8.9
· · · · · · · · · · · · · · · · · · ·	22/07/10	8.8
3	19/07/10	5.3
	20/07/10	5.3
	22/07/10	5.4
4	19/07/10	Dry
	20/04/10	Dry
	22/07/10	Dry
6	20/07/10	6.9
	22/07/10	7.0
7	19/07/10	7.3
	20/07/10	7.1
	22/07/10	6.3
8	19/07/10	3.6
	20/07/10	3.6
	22/07/10	3.6
9	22/07/10	5.7
12	19/07/10	4.6
	20/07/10	4.6
	22/07/10	4.0

Table 2 – Ground Water Level Measurements

The results suggest that ground water is likely to be encountered during the proposed excavations.

No groundwater was encountered during the angering of the boreholes drilled using the STS rig.

0

6. EXCAVATION CONDITIONS AND SUPPORT

Essentially the following comments relate to Site B where the vast majority of the proposed excavation will be undertaken.

The construction of the basement will involve excavating near to the property boundaries. It is of course important that the excavation is adequately supported at all times and that it does not endanger the adjacent properties of infrastructure.

Conventional earth moving equipment, such as excavators, should be capable of removing the soils and some of the jointed rock to a depth of some 4 to 9 metres. Below these depths, rock excavation will more than likely require some form of assistance. Care should be taken when using this equipment not to damage adjacent buildings. Based on the subsurface conditions observed in the boreholes and general experience in this geological environment, it is expected that excavation on this site may encounter some medium and high strength shale at depth. It is important that the excavation contractor has equipment capable of removing this rock.

Excavators alone without assistance from a breaker will probably not be able to remove any significant amount of the rock below the jointed rock. Hydraulic breakers mounted on an excavator or jack hammers will be required to break up the majority of the rock before it can be removed using an excavator. Other forms of excavation that may be required include ripping, sawing and grinding.

Particular care will be required to ensure that buildings or other developments on adjacent properties are not damaged when excavating the rock. At their closest point some buildings will be close to the excavation. Some of the larger structures on the adjacent properties may be founded directly on the shale. Buildings founded directly on rock can often be susceptible to damage from vibrations transmitted directly through competent rock.

It is extremely difficult to definitively predict the affect of the above type of excavation on adjacent buildings. There are various relations available that have been used to carry out such predictions, but these do not easily take account of the natural variability of rock.

There have been many cases in Sydney where predictions based on experience of the above relationships have been proved inaccurate and adjacent structures have been damaged. For these reasons the following comments should only be taken as a guide. Particular care must be exercised when removing the rock and onsite guidance by a vibration specialist will likely be necessary during the early part of the excavation.

When excavating rock close to buildings in adjoining properties a specialist should be employed to monitor onsite vibrations and advise the permissible size of excavation equipment that can be used. If a specialist is not engaged, rock should not be excavated closer than 20 metres to adjoining buildings or railway infrastructure.

Saw cutting should be carried out before any rock breaking is commenced. It would be appropriate before commencing excavation to undertake a dilapidation survey of any adjacent structures that may potentially be damaged. This will provide a reasonable basis for assessing any future claims.

Because of the proximity of the proposed excavation to some of the property boundaries, temporary support will be required for the soils and rock. Reinforced concrete piles with shotcrete infill are probably the most cost-effective option for providing this support. The piles may be drilled and fixed into the material below the base of the excavation. This will provide one fixing point. Where the pile toe is fixed in the rock a passive pressure of 600 kPa may be adopted for the design with a minimum embedment of 1 metre in medium strength or stronger rock. Additional support may be provided using rows of anchors.

These anchors should be installed in the underlying shale/laminite or sandstone which has a minimum strength of <u>very low</u>. The anchors can be proportioned using the following allowable bond strength.

Very Low Strength	- 150 kPa
Low Strength	- 300 kPa
Medium Strength	- 500 kPa
High Strength	- 1000 kPa

The anchor band length must be kept outside a line drawn at 45 degree up from the toe of the shoring piles. A minimum bond length of 3 metres is recommended.

It is vital that an experienced engineering geologist or geotechnical engineer observes that excavation as it progresses. At that time he will be able to recommend any additional support that is required for either temporary or permanent conditions.

When considering the design of the supports, it will be necessary to allow for the groundsurface slope, loading from adjacent structures and water pressure. Where the structures are within the zone of influence of the excavation, it will be necessary to adopt K_o conditions when designing the temporary support. Anchors or props can be used to provide the required support. If anchors extend into adjoining properties, it will be necessary to obtain the permission of the property owners. When props or anchors are used for support, a rectangular earth pressure distribution should be adopted on the active side of the support. The permanent basement support should be designed assuming K_o conditions.

The following parameters are suggested for the design of the temporary and permanent retaining wall system:

Soil & Extremely low or Very Low Strength	Weathere	ed Shale
Active Earth Pressure Coefficient (Ka)	=	0.4
At Rest Pressure Coefficient (Ko)	=	0.5
Total (Bulk) Density	=	20 kN/m ³
Shale (Low Strength or Greater)		
Earth Pressure Coefficient	=	0.1 or horizontal pressure of 10 kPa (whichever is smaller)
Total (Bulk) Density	=	23 kN/m ³

7. FOUNDATIONS

Care will be required to ensure that all parts of a foundation of a particular structure bear on materials of similar stiffness. This will help reduce the potential for differential settlement.

Foundation should not bear in the existing fill, it appears to be an uncontrolled material. They also should not bear in the very loose natural sands, or in the soft natural insitu clay.

At Site A the proposed structure can either be supported on high level footings bearing in the underlying clays that have a minimum firm strength, or in the natural sands that are at least loose to medium strength. If higher load capacity is required piers bearing in the underlying shales can be used. Design parameters for these various materials are presented below.

At Site B the depth of excavation varies from some 2 metres at the northern end to over 9 metres at the southern end. The results of the investigation suggest that at the north end there will be either natural sands or soft/firm natural clay exposed. Moving south there will be stronger clays and extremely low strength weathered shale exposed. At the southern end of the basement stronger shales will be encountered. For the reasons noted above it may be appropriate to consider structurally breaking the building at a number of locations to help minimise the potential difficult settlements, unless all parts of the building bear on rock of the same stiffness.

At Site C it will be necessary to use piers bearing below the adjacent railway retaining wall on the eastern side of the site. This will then necessitate the use of similar piers elsewhere on the same site. It is unlikely that high level footings will be practical for Site C.

The following details recommended allowable bearing pressures for the potential founding materials at this site.

FOOTINGS

Founding Material	Allowable Bearing Pressure	Comments
Firm to stiff clay	100 kPa	New controlled fill compacted in thin layers to a least 95% Standard compaction, within 2 % of the optimum moisture content
Stiff clay	150 kPa	•
Very stiff or hard clay	200 kPa	
Extremely low strength shale	700 kPa	Class V Rock
Low strength shale	1 MPa	Class IV Rock
Medium strength shale	1.5 MPa	Class III Rock
High strength shale or Sandstone	3.5 MPa	Class II Rock

PIERS

Founding Material	Allowable Bearing Pressure	Comments
Very stiff or hard clay	450 kPa	Minimum length to diameter ratio of 4, Allowable shaft adhesion 20 kPa
Extremely low strength shale	700 kPa	Class V Rock, Allowable shaft adhesion 70 kPa
Low strength shale	1 MPa	Class IV Rock, Allowable shaft adhesion 100 kPa
Medium strength shale	1.5 MPa	Class III Rock, Allowable shaft adhesion 150 kPa
High strength shale or sandstone	3.5 MPa	Class II Rock, Allowable shaft adhesion 350 kPa

The differential settlement between a slab bearing on say 2 metres of firm clay and footing/piers bearing in Class II or III rock has been calculated. Assuming a heavy slab loading of 20 kPa the calculated differential settlement would be in the order of 10 to 15 mm. For a 0.6 m wide footing bearing in the same soil with an applied loading of 100 kPa the differential settlement would be in the order of 15 to 20 mm.

The above recommended bearing pressures are appropriate for the preliminary design of the Lawson Street bridge extension. Once the details of the bridge extension are finalised additional boreholes will be required at each abutment, as well as possible at some of the intermediate pier locations.

The allowable bearing pressures given above for the rock have been determined using the procedures given by Pells et al, in their paper titled "Design Loadings for Foundations on Shale and Sandstone in the Sydney Region," published in the Australian Geomechanics Journal, 1998.

In order to ensure the bearing values given can be achieved, care should be taken to ensure the bases of all excavations are free of all loose material prior to concreting. It is recommended that all footing excavations be protected with a layer of blinding concrete as soon as possible, preferably immediately after excavating, cleaning, inspection and approval. The presence of groundwater needs to be considered when pouring concrete. Piers excavations should be concreted immediately after cleaning and inspection. They must not be left open over night.

8. GROUND WATER

The monitoring of the piezometers suggest that ground water may be encountered during excavation. There will be some unknown long term flows, though they are not expected to be excessive. It will be necessary to install one or more permanent sumps and pumps in the basement to control these flows.

Given that the measured groundwater levels are within the weathered rock horizon it is considered unlikely that any temporary lowering of the ground water level due to the proposed excavation will have any significant affect on adjacent development.

For design purposes in regards to any need to seal (tank) the lower northern end of the excavation below Site B, a ground water level fluctuation of 1 metre above the measured depths can be assumed.

9. BATTER SLOPES

In the short term dry cut slopes should remain stable at a 45 degree angle. In the long term dry cut or controlled fill slopes formed at 2(H) to 1(V) should remain stable. Slopes at this angle will be subject to erosion unless protected by topsoil, vegetation and diversion drains at the crest. An angle of 4(H) to 1(V) or flatter is typically required in order to use mowers to maintain the slope.

10. PAVEMENT DESIGN PARAMETERS

Samples of the near surface sands were tested in the laboratory. The results are given in Appendix B. The tested CBR values are table below:

BH	Depth (m)	CBR
2	0.1 to 0.6	35
7	0.2 to 1.0	15
10	0.3 to 0.8	25
12	0.2 to 0.8	15

A design CBR of 10 is recommended for the sand subgrade. If clay is exposed in the final subgrade further testing will be required as the design CBR could be significantly lower than 10. A pavement design will be prepared at a later date once the traffic loading and pavement layout is finalised.

It is important during construction of the pavement that adequate provisions are made for both surface and subsurface water.

The subgrade materials should be compacted to a minimum density ratio of 100% of the Standard maximum dry density. Compaction should be verified by proof rolling and insitu density tests. Base and subbase course materials should be compacted and tested to a minimum density ratio of 98% of the Modified maximum dry density. The level of compaction should be verified by insitu density testing.

The pavement should comply with the City of Sydney requirements.

11. CONSTRUCTION ACTIVITIES

Material excavated from this site is suitable for use as temporary support of construction equipment provided it is placed in thin layers and well compacted. No deleterious material should be used as fill.

If fill is to be used for the permanent support of structures it must be placed in a controlled manner. All vegetation, existing uncontrolled fill and any soft natural soils should be removed. The exposed subgrade should be inspected by a geotechnical engineer and proof rolled if required by the engineer. Any soft areas detected should be excavated and filled as below.

Controlled fill should be placed in thin layers, not exceeding 200 mm loose thickness and compacted to a density ratio in the range of 95% to 102% of the Standard maximum dry density, at a moisture content within 2% of the optimum for the material. All filling should be undertaken using Level 1 testing and inspection as outlined in AS3798, "Guidelines on Earthworks for Commercial and Residential Developments".

The clayey soils exposed on site, either natural soil or fill, are reactive. They are susceptible to shrinkage and swelling due to changes in moisture conditions. If any structure or pavement is to be placed above these soils they should be covered as soon as practical to minimise the potential shrinkage and cracking, or swelling

12. EARTHQUAKE DESIGN SITE FACTORS

Based on the subsurface conditions observed we have determined the site factor(s) as specified in (AS 1170.4-1993) and the site sub-soil class as specified in (AS1170.4-2007).

The s value is 1.0 and the subsoil class is D_e – shallow soil site.

13. POTENTIAL AFFECT OF CONSTRUCTION ADJACENT TO RAILWAY CORRIDOR

There are two obvious potential affects of the proposed works on the adjacent railway line. These are discussed below:

Damage Due to Excavation

The only significant excavation being undertaken is on Site B. At its closest this will be over 30 metres away from the railway corridor. We consider that if the recommendation given in this report are followed and care is taken during the works, then there is little likelihood that the excavation will have any significant affect on the railway infrastructure.

Damage to Retaining Wall on East Side of Site C

Placing any additional loading on the ground supported by the railway retaining wall on the east side of Site C, could damage this wall. The present proposal is to support the new building at Site C using piers that found below the level of the adjacent railway. This will ensure that no additional loading will be applied to the wall, The boreholes in this area demonstrate that the rock at the proposed founding level and sufficient capacity to support these piers. It is generally fresh high strength rock. In this case the proposed construction on Site C should have little affect on the railway retaining wall.

We understand that Railcorp require a geotechnical engineer to assess the present condition of the wall. Also a monitoring programme needs to be prepared. This assessment will be undertaken at a later date once access is available so the front face of the wall can be inspected. Access on to the Railway Corridor will be necessary. As part of the assessment it may be necessary to drill boreholes close to the rear face of the existing structure. This will assist in assessing the likely construction of the wall. Finally, it will be important to obtain railway records of the wall design, if they are available.

In summary we see no obvious reason why the proposed construction of the Pemulwuy Project will have any significant adverse affect on the adjacent railway infrastructure.

14. FINAL COMMENTS

During construction should the subsurface conditions vary from those inferred above we should be contacted to determine if any changes should be made to our recommendations.

Given the variable soil and rock conditions that will be exposed during the excavation it is recommended that the exposed bearing surfaces should be inspected by a geotechnical engineer to ensure the bearing values given above have been achieved.

20th

Laurie Ihnativ, BE, MEngSc, MBA Manager, SMEC Testing Services Pty Limited

Introduction

These notes have been provided to outline the methodology and limitations inherent in geotechnical reporting. The issues discussed are not relevant to all reports and further advice should be sought if there are any queries regarding any advice or report.

When copies of reports are made, they should be reproduced in full.

Geotechnical Reports

Geotechnical reports are prepared by qualified personnel on the information supplied or obtained and are based on current engineering standards of interpretation and analysis.

Information may be gained from limited subsurface testing, surface observations, previous work and is supplemented by knowledge of the local geology and experience of the range of properties that may be exhibited by the materials present. For this reason, geotechnical reports should be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Where the report has been prepared for a specific purpose (eg. design of a three-storey building), the information and interpretation may not be appropriate if the design is changed (eg. a twenty storey building). In such cases, the report and the sufficiency of the existing work should be reviewed by SMEC Testing Services Pty Limited in the light of the new proposal.

Every care is taken with the report content, however, it is not always possible to anticipate or assume responsibility for the following conditions:

- Unexpected variations in ground conditions. The potential for this depends on the amount of investigative work undertaken.
- Changes in policy or interpretation by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, SMEC Testing Services Pty Limited would be pleased to resolve the matter through further investigation, analysis or advice.

Unforeseen Conditions

Should conditions encountered on site differ markedly from those anticipated from the information contained in the report, SMEC Testing Services Pty Limited should be notified immediately. Early identification of site anomalies generally results in any problems being more readily resolved and allows reinterpretation and assessment of the implications for future work.

Subsurface Information

Logs of a borehole, recovered core, test pit, excavated face or cone penetration test are an engineering and/or geological interpretation of the subsurface conditions. The reliability of the information logged depends on the method, sampling and/or drilling/testing observation spacings and the ground conditions. It is not always possible or economic to obtain continuous high quality data. It should also be recognised that the volume or material observed or tested is only a fraction of the total subsurface profile.

Interpretation of subsurface information and application to design and construction must take into consideration the spacing of the test locations, the frequency of observations and testing, and the possibility that geological boundaries may vary between observation points.

Groundwater observations and measurements outside of specially designed and constructed piezometers should be treated with care for the following reasons:

- In low permeability soils groundwater may not seep into an excavation or bore in the short time it is left open.
- A localised perched water table may not represent the true water table.
- Groundwater levels vary according to rainfall events or season.
- Some drilling and testing procedures mask or prevent groundwater inflow.

The installation of piezometers and long term monitoring of groundwater levels may be required to adequately identify groundwater conditions.

Supply of Geotechnical Information or Tendering Purposes

It is recommended tenderers are provided with as much geological and geotechnical information that is available and that where there are uncertainties regarding the ground conditions, prospective tenders should be provided with comments discussing the range of likely conditions in addition to the investigation data.

APPENDIX A

BOREHOLE LOGS & EXPLANATION SHEETS

 \odot

			ervices P	ty Ltd	D : '		TO :		7	1/0 :	4/5	_	_		G	EO.	TEC	HIN T	ICA	L LOG - CORED BOREHOL
lient: roject:		orp NS gh Stre	W et, Redfern		Projec Date :				7772 1 Jly 2		46B							B	ORE	CHOLE NO.: BH I
ocation	Refer	to Drav	ving No: 10	0/0811	Logge			лн	,				Che	cked	By: L	WI		2	Sheet	2 of 5
DRI	LLIN	G		MATERIAL STRE	NGT		stim	atad	Pee	1. 54		th		laint	Sno	lea (DE	SCO	NTINUITIES
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low		7			Extremely High	20	Joint) 40					Visual	Additional Data (Joints, partings, scams, zones etc, Description, orientation, infilling, or coating, shape, roughness, thickness, oth
H W C A S I N G				For non core log details refer to non core log sheet																
ALC RING		80%	-	Start coring @ 5.40 m No Core Shale: light grey with pockets of red brown ironstone		77														
			6.0	gravel, blocky texture PP=500	cw	3	1													-
les:				See explanation sheets for meaning of all de																Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 Anglo from Vertical (*): 0

3

)

	corp NS			Projec	t/S	TS N	lo.: 1	777	2/81	46B						BOB	REHOLE NO.: BH I
	-	et, Redfern		Date :			3, Ju	ıly 2	010							_	
DRILLIN		ving No: 10	MATERIAL STRE	Logge NGTF	_		н		_		_	Check	ed By	: LWI		Shee	et 3 of 5 ONTINUITIES
Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)		E:	Very Low		_		reng Very High	Extremely High	20			(mm) 300 100		Additional Data (Joints, partings, seams, zones etc, Description, orientation, infilling, o coating, shape, roughness, thickness, or
N I			Shale: light grey with pockels of red brown Ironstone gravel, blocky texture PP=500	CW	The states	E antaria 2 2 1						101 101 101 100 E					-
		7_0	SHALE: dark grey with red brown, staining along fracturs	HW										100			6.91-7,0 m Cz, Ir, Fe 7,03-7,08 m 3xPt,Pl, Rf, Fe 7,27 m, Sin, 0 Deg., Cy 20mm 7,27-7,62 m, Nuncrous Pt, & microfracture <u>s c</u>
ſ	100%	8.0	LAMINITE: interlaminated dark grey shale and light grey sandstone	MW		THE PARTY OF	No Western										& tight Fe 7.62-7.69 m, Sm Cy 70 mm 7.69-7.89 m, Cz, Fe, Cy bands 7.90 m, Pt, Ir, Rf, Fe 8.0 m, Jt, 50 Deg, Jr, Rf, Fe 8.03 m, Cz, 0 Deg, Jr, Rf, Fe 8.03-8.13, Jt, Ir, Cy tight
		9.0	No Core 8,54-8.78 m LAMINITE: interiaminated dark grey shale and light grey sandstone	MW			all after the second strate										8.30 m, Jl, 5 Deg., Ir, Rf, Fe 8.78-8.90 m, Cz, Ir, Fe 8.90 m, Jl, 45 Deg.,Ir, Rf, Fe 8.95-9.25 m, Numerous Jl, 0-90 Deg., Ir, Rf, 9.25-9.29 m, Cz, Fe 9.29-9.33 m, Sin, clay 40 mm
		10.0					と言うというである						ALC: NOT THE REAL PROPERTY OF				9,33-9,45 m, numerous, Ji, 0 Deg., Ir, Rf, Fe 9,59 m, Pt, 0 Deg., Ir, Rf 9,63-9,71 m, Numerous, Pt, 0 Deg., Ir, Rf 9,70 m, Cz, 50 mm 9,80-10,0 m, 3xPt, PJ, Rf 10-10,15 m, Cz, Ir 10,28-10,30 m, Cz, Ir
		11.0		FR				a local part of the						100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10.42-10.52 m, Cz, Ir
								Stand and a stand and					たん 二人口 二人口 二人口	A NOTE OF LAND IN COMMENT			11,01 m, Jt, 40 Deg., Ir, Rf 11,10- 11,20 m, Jt, 85 Deg., Ir, Rf 11,30-12,00 m, Numerous Pt, 0 Deg., Pt, Ir, J
s:		12.0		I	L			U		1							Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100

0

 \bigcirc

ent:		orp NS			-				777:		408			BOP	EHOLE NO.: BH 1
			et, Redfem	0/0011	Date :				ıly 2	010			0.1.17	 	
	: Refer		wing No: 10	0/0811 MATERIAL S				JH			_	-	Checked By: LV	Sheet	t 4 of 5
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Compor	Weathering	E:	stim: Very Low		7			😆 Extremely High	Joint Spaci		Additional Data (Joints, partings, scams, zones etc, Description, orientation, infilling, c coating, shape, roughness, thickness, o
	Loss of Pircul- ation Total Water Loss 50% Return	100%	13.0	LAMINITE: interlaminated dark grey shale and light sandstone	FR					2012년 1월 11일 - 1					 12.03 m, 0 Deg., Ir, Rf 12.15 m, Pt, 0 Deg., Ir, Rf 12.22 m, Pt, 0 Deg., Ir, Rf 12.34 m, Pt, 0 Deg., Ir, Rf 12.77 m, Pt, 0 Deg., Ir, Rf 12.84 m, Pt, 0 Deg., Ir, Rf 13.53 m, Jt, 20 Deg., Ir, Rf 13.53 m, Jt, 20 Deg., Ir, Rf 15.52 m, Jt, 25 Deg., Ir, Rf 15.85 m, Jt, 70 Deg., Ir, Rf 17.05 m, Jt, 25 Deg., Ir, Rf
			-							15					
			18,0					<u> </u>		NVA.					18.96 m, Ji, 45 Deg, Ir, Rf
8:															Contractor:
															Equipment:
															tere and the second sec
															Hole Diameter (mm):

)

	eicorp N			Proje						46B						BOR	EHOLE NO.: BH 1
		eet, Redfen		Date				uly 2	010			011.1	D 7				
DRILL		awing No:	MATERIAL STR	Logg ENGT			JΗ		_		_	Checked	By: L	.WI	I	Shee	t 5 of 5 DNTINUITIES
Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Componen	Weatt		stim: Very Low				ren Very High	Extremely High	Join 20 4		21ng (m 10 300			Additional Data (Joints, partings, seams, zones etc Description, orientation, infilling, (
	ery		BHALE: dark grey with very thin lamination of light gr slitstone		aly Low	Low	MV AND	hum		High	aly High						Description, orientation, infilling, coating, shape, roughness, thickness, o [8,42 m, Jt, 5 Deg., Ir, Rf [8,53 m, Jt, 15 Deg., Ir, Rf [8,66 m, Pt, 0 Deg., Ir, Rf [9,66 m, Pt, 0 Deg., Ir, Rf [9,99 m Jt, 90 Deg., Ir, Rf
		24.0															
es:		1															Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100

 \bigcirc

 \bigcirc

	DeiCorp NSW		Project No.: 17772/8146B	BO	REHOLE NO.:	BH
	Eveleigh Stree Refer to Dra	et, Redfern wing No. 10/0811	Date : July 12, 2010 Logged: JH		Sheet 1 of 5	-
W AT TA EB RL E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	
			LTY SAND: brown, fine to medium grained sand, scattered pebble	SM	FIRM	
			TOPSOIL/FILL			
	SPT 1.0-1.45 m 3, 2, 2	1.0	LTY CLAY: brown, some fine to coarse sand, low plasticity FILL	CL	SOFT	
	N=4		LTY SAND: black, fine grained sand LTY SAND: yellow brown, fine to medium grained sand	SM SM	VERY LOOSE VERY LOOSE	
			LTY CLAY: reddish/dark brown, medium plasticity, scattered ironstone gravel	CL	STIFF	-
		2.0				
	SPT 2.5-2.95 m 4, 8, 12		LTY CLAY: light grey with bands of ironstone gravel, medium plasticity	CL	VERY STIFF	-
	N=20	3.0Ba	ecoming silty clay, reddish brown with grey, medium to high plasticity, bands of ironstone gravel	СН		
	SPT 4.0-4.45 m 12, 16, 10R @ 4.35 m	4.0	HALE: red brown, completely weathered with bands of grey clay		EXTREMELY LOW STRENGTH	
		5.0V	BIT REFUSAL AT 4.8 M			
		-	FOR CORE LOG DETAILS REFER TO CORE LOG SHEETS			
NOTES:	D - disturbed WT - level o	f water table or fre	U - undisturbed tube sample B - bulk sample N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols	1	: Teratest : Hydro Power ueter (mm): 100	
			· · · · · · · · · · · · · · · · · · ·		n Vertical (°) 0	

ient:		orp NS			Proje						46B	5						BC	REHOLE NO.; BH 2
			et, Redfern		Date				uly 2	010			a 1	1.0					
			wing No: 1	MATERIAL STRE	Logg			ΊΗ	_	_		_	Check	ed By	y: LW	/1	_	Sh	eet 2 of 5
		<u> </u>			T		stim	ated	Roc	k St	reng	gth	Jo	oint S	pacin	ıg (m		T	
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40	100	30	001 0	0 VISUAI	Additional Data (Joints, partings, seams, zones etc., Description, orientation, infilling, or coating, shape, roughness, thickness, oth
H W C A S I N G				For non core log details refer to non core log sheets															
N M		1008/	5.0	SHALE: light and dark grey, friable exhibiting soil like properties SHALE: grey and red brown	CH HW		In S	1											4,80-5,32 m, Numerous iniero fractures, open and tight 0-90 Deg.
		100%	-	CLAY: light grey, completely weathered shale, medium to high plasticity				The state of the s					No. The Party of t						5,32-5,52 m, Sm, Cy -
			60	SHALE: Ilght grey, soil like properties SHALE: dark grey with continuous and discontinuous sandstone laminations	CW HW/ MW	1		A States							10 0 m	- State - La			5,75 m, PL PI
i s:			6.0	I		1					<u> </u>	_k	<u> </u>					1	5.96 m, Pt. Ir. Rf, Fe Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm); 100

)

ent:		corp NS			-		STSN				6B			BOI	REHOLE NO.: BH 2
		-	et, Redfern	0/0011	Date				uly 21)]0		,		_	
_	n: Refe		wing No: 1	MATERIAL STF	Log	_		ΙΗ				$-\tilde{\tau}$	Checked By: LWI	She	et 3 of 5 ONTINUITIES
T							Estim	ated	Roc	k Str	engl	th	Joint Spacing (mm)	T	
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Componer	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High		Visual	Additional Data (Joints, parings, seams, zones etc. Description, orientation, infilling, o coating, shape, roughness, thickness, or
+				SHALE dark grey with continuous and discontinuous	ни	,	+			+	1	+		-	6.03 m, 2xPt, Ir, Rf, Fe
				sandstone laminations	MV			and the							6 13 m, Jl, 0 Deg., Ir, Rf, Fe 6 20 m, 2xJt, 0 Deg., Ir, Rf, Fe 6 30 m, Jt, 0-90 Deg., Jr, Rf, Fe, Tight 6 34 m, Pt, 0 Deg., Pl, Fe
			-	LAMINATE: dark and light grey, with laminated dark g shale and light grey, sandstone, fine grain				R.					Contraction of the local division of the loc		6 49-6 58 m, 4xPl, 0 Deg., fr, Rf 6 70 m, Jl, 5 Deg., Jr, Rf, Fe, 10 mm
				laminations @ 0 Deg				22							6,82 m, Pt, 0 Deg , h , Rf
			-	-				12					1.40		6.89 m, Jt, 40 Deg., Ir, Rf
			7_0	-									1020		7.03 m, Cz, 0 Deg., Cy, 10 mm
		100%	-	1				18							7,25 m, Sm, 0 deg., Cy, 5 mm
1				1				22							7_30 m, Cz, 0 Deg , 5 mm, Fe
				4											
			-	-				X							7 53 m, Pt, Jt, 0-90 Deg , Ir, Rf, Fe 7 65-7 80 m, Numerous micro fractures light,
				1				2							105-7 30 m, Humerous miero mierores right
								16							
			-		ag FR	-				105					7,95-8,20 m, 3xJt, 50 Deg., Ir, Rf, Fe
			8.0	LAMINATE: grey bedding (laminations) @ 10 - 40 De	³ g										
				1											8 25 m, Jt, 40 Deg., 1r, Rf, Fe, tight
			<u>-</u>	-											8 36 m, Pt, 15 Deg., Ir, Rf
			-	-									12		8 54 m, Jt. 10 Deg., fr, Rf
				1											8 60 m, Pt, 10 Deg., Ir, Rf
			-	1						19			14.00		8.74 m, PI, 15 Deg., Pl, Sm
			-	-			1								8.84 m, Pt, 15 Deg., Pl, Sm
			9.0	1					1						8.90 m, Pt, 0 Deg , Ir, Rf 8.95 m, 9.0 m, Pt, 10 Deg , Ir, Rf, Fe
															9.04 m, Pl, 10 Deg., Ir, Rl
			-							10					9.15 m, Pt, 10 Deg , Ir, Rf
				-											9.34 m, Pt, 10 Deg , Ir, Rf
				1										100	
			-	-											
		100%		-						12					
			10,0	1						R					
			-							E					
				-											;
				1						8					
			-						14	÷C.				6	
			-						2					17	
ł			-	1					10						
				1					23	87					10.92-11.02 m, 5xJt, 0-70 Deg., lr. Rf
		-	11.0	-											11.09 m, 2xJt, 0 & 30 Deg., Ir, Rf
			-	-									1.2		11_18 m, Jt, 0+10 Deg., Un, Rf
			1	1						18					
			-	1											
				4						1					
				1											11.60 m, Jt, O Deg., Ir, Rf 11.70 m, Pt, O Deg., Ir, Rf
			-	1						18					11,70 m, Pl, 0 Deg., Ir, RI 11,80-12.0 m, 5xPt, 0 Deg., Ir, Rf
										10					
	_		12.0		_										
£1.															Contractor: Terratest
															Equipment: Edson RP70
															Tole Diameter (mm): 100
															Angle from Vertical (°): 0

0

J

ient:		corp NS					Proj	ect / :			17772		6B						iUbi	EHOLE NO.: BH 2
		+	eet, Redfern				Date				uly 2	010				_				
	: Refe		wing No: 10	0/0811	MA	TERIAL STR	Log		_	JΗ		_		-	hecked	By: L	WI		Sheet	4 of 5 NTINUITIES
	الايترىية.				1917	CIENTAL SIK			Estin	nated	Roc	k Str	engt	h			ing (mm)	_	500	TATING THE O
	Water	Recovery	Depth (m)	(Colour, Grain Siz	Rock Type re, Structure & M	Minor Component	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20 4	0 100) 300 1	000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, c coating, shape, roughness, thickness, o
NMLC CORING		100%		LAMINITE: grey b	edding (laminatio	ns) @ 10 - 40 Deg,	FR					a frequencia solution and a second and a second and the second and the second approximation of the second and a								 12.05 m, Pi, 0 Deg., PI, Sm 12.10 m, Pi, 0 Deg., PI, Sm 12.25 m, 2xPi, 0 Deg., PI, Sm 12.25 m, Pi, 0 Deg., PI, Sm 12.76 m, Pi, 0 Deg., PI, Sm 13.05 m, Ji, 45 Deg., Ir, Rf 13.03 m, Ji, 45 Deg., Ir, Rf 13.03 m, Ji, 80 Deg., Ir, Rf 13.03 m, Pi, 0 Deg., Ir, Rf 13.03 m, Pi, 0 Deg., Ir, Rf 13.67 m, Pi, 0 Deg., Ir, Rf 13.67 m, Pi, 0 Deg., Ir, Rf 13.68 m, Pi, 0 Deg., Ir, Rf 14.48 m, Pi, 0 Deg., Ir, Sm 14.88 m, Pi, 0 Deg., PI, Sm 15.09 m, Pi, 0 Deg., PI, Sm 15.01 m, Pi, 0 Deg., PI, Sm 15.40 m, Pi, 0 Deg., PI, Sm 15.94 m, Pi, 0 Deg., PI, Sm
		100%		SHALE: grey			FR					Name and Address of the other					a the second			17.28-17.65 m, Jt, 85 Deg., Ir, Sm, Clean 17.65 m, Jt, 5 Deg., Ie, Rf 17.80 m, Pt, 90 Deg., Jt, 50 Deg, Ir, Rf
			18.0							1					-11					
es:																				Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 Angle from Vertical (°): 0

)

 \bigcirc

ent:		corp NS			Pr	roject /	STS	No.:	1777	2/81	46B						BOI	REHOLE NO.: BH 2	-
			et, Redfern			ate :			luly 2	010							_		
			wing No: 1			ogged:	_	JH				_	Checkee	1 By: L	.W1		She		_
	ILLIN	10		MATE	RIAL STRENC		Esti	mate	l Roc	k St	reng	th	Joh	nt Spac	ing (r		T	ONTINUITIES	_
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minc	r Components)	Weathering	Extremely Low	Low Very Low	Medium	High	Very High	Extremely High				00 100	Visual	Additional Data (Joints, partings, seams, zones Description, orientation, infillin coating, shape, roughness, thickness	ig, (
4			_	SHALE: grey	FF	R				200									
			-							100						1			_
										ALC: N									1
2 1		100%	19.0							No. of Concern								.∥8,89 m, Pt, 0 Deg., Tr, Rf	
		10070								No.						k		10 07 m, 11, 0 Dog , 11, 14	
			-															10.65 m lt 20.0mm la DC	
				1						No. of Land						150		19,55 m, Jt, 30 Deg., Ir, Rf	-
										ALL ALL									7
			20,0				T						T						
																			,
			-																2
			21.0																-
																			1
																			7
																			2
			22.0																
			23.0																3
			-																
5:			24.0				_											Contractor: Terratest	-
																		Equipment: Hydro Power Hole Diameter (mm): 100	
																		Angle from Vertical (°); 0	

)

)

ojeci.	DeiCorp NSW Eveleigh Stre	et, Redfern	Project No.: 17772/8146B Date : July 12, 2010	BO	DREHOLE NO.:	BH
ocation:	Refer to Dra	wing No. 10/08	l Logged: JH		Sheet 1 of 5	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T T U F E
			SILTY SAND: dark brown, fine to medium grained sand	SM	LOOSE	N
			FILL			
		3 				
			SILTY CLAY: yellow brown, medium plasticity	CL	FIRM TO STIFF	M
	SPT 1.0-1,45 m	1.0	SILTY CLAY: light grey with red brown, high plasticity, scattered ironstone gravel	СН	STIFF	
	2, 2, 4		TELT CERT. light grey with red brown, mgn plasterty, seattered nonstone graver		SHIFF	N
	N=6					
						1
		-				
		_				
			SILTY CLAY: light grey, medium to high plasticity, trace of fine sand	CL-CH	HARD	D-
		2.0				
	1		RESIDUAL			
	SPT	_				
	2.5-2.95 m 6,11,15	2				
	N=26					
		3.0				
			HALE: light grey and red brown, completely to highly weathered shale	-	EXTREMELY LOW	-
	1				STRENGTH	
			/ BIT REFUSAL AT 3.4 M	-		-
	1	_	STANDPIPE PIEZOMETER INSTALLED			
		4.0				
	1					
	1 1					
		5.0				
		5.0				
		5.0				
		5.0				
		5.0				
		5.0				
		5.0				
		5.0				
OTES:	D - disturber		U - undisturbed tube sample B - bulk sample	Contractor	". Teratest	
DTES:					" Teratest I: Hydro Power	
DTES:			ree water N - Standard Penetration Test (SPT)	Equipment		

ient:		orp NS			Projec	t / S	TSN	10 : I	1777	2/81	46B							ROP	REHOLE NO.: BH 3
			et, Redfern		Date :				uly 2	010									
DRII			wing No: 10	MATERIAL STRE	Logge			ΊΗ			_	_	Chec	ked E	By: L	WI	_	Shee	et 2 of 5 ONTINUITIES
		9	0	MATERIAL STR			stim	ated	Roc	k St	reng	zth	J	Joint	Spac	ing ()	_	I	
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40	100	0 30	0 100	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, oth
H W S 1 N G				For nen core log delails refer to non core log sheets															
			4.0	SHALE: light grey and red brown, exihibiting soil like properties, completely weathered SHALE: red brown and grey, friable	HW		Chine Root and and						TO MANAGER						3.40-3.52 m, Sm, Cy, 120 mm 3.52-3.65 m, Numerous Pi, Ji, 0 Deg., Ir Rf, F 3.65 m, Sm, Cy, 50 mm 3.70-3.80 m, Nunerouos Pi, Ji, 0 Deg., Ir, Rf, Fe, Cy 3.80 m, Sm, Cy, 50 mm 3.90-4.00 m, Sm, Cy, 100 mm
N M L C O R L N G		100%	5.0	LAMINITE: grey brown and light grey into laminated shale, very fine grained sandstone, zone of non staining friable	HW		A STATE OF STATES IN THE STATES									a mark			4.23 m, Sm, Cy, 40 mm 4.57 m, Pt, 5 Deg., Ir, Rf, C1 4.81 - 4.84 m, Sm, Cy, 30 mm 4.89 m, Pt, 0 Deg., Ir, Rf, Fe 4.95 - 5.25 m, J1, 90 Deg., Ir, Rf, Cy 5.25 m, Sm, Cy, 30 mm 5.31 m, Sm, Cy, 20 mm 5.46 m, Sm, Cy, 50 mm
			6.0	LAMINITE: dark grey and light grey with laminated slab very fine grained sandstone, friable	, HW MW		State of the second								The second				5.6-6.05 m, Numerous Pt, Pl & Ir, Rf, Fe
CS:		ļ	L var	1															Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 ∧ngle from Vertical (°): 0

ient:		corp NS			Proje						16B							BORI	EHOLE NO.: BH 3	
			et, Redfern	2/0011	Date			13, Ju	ıly 2	010				1.5			Ļ			
_	: Refe		wing No: 1	MATERIAL STR	Logg ENGT	_	-	ЛН		_			Checke	d By:	LWI			Sheet ISCC	3 of 5	
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Componen	Weatt		stim Verv Low	Low	~			🚊 Extremely High				300 1		Visual	Additional Data (Joints, partings, seams, zones Description, orientation, infillin coating, shape, roughness, thicknes	ng, c
		100%	7.0	LAMINATE: dark grey and light grey with laminated sla very fine grained sandstone friable Note: Core breaking apart when transferring to box	ab HW MW		THE STATISTICS AND												6,15 m, Pt, 0 Deg., Tight, Fe 6,25 m, Jt, 10 Deg., Ir, Rf 6,30 m, Jt, 10 Deg., Ir, Rf 6,50-6,56 m, Sm, Cy, 60 mm 6,60 m, Jt, 10 Deg., Ir, Rf, Cy 6,71 m, Sm, Cy, 30 mm 7,12 m, Sm, Cy, 30 mm 7,42 m, Pt, 0 Deg., Pt, Sm, Fe 7,44 m, Jt, 80 Deg., Ir, Rf, C1	
		100%	9.0		FR					ALL STATES						A SHORE AND	The second s		8,20-8,35 m, JL, 90-45 Deg., Ir, Rf, Cl 8,40 m, Pi, 0 Deg., Pi, Sm, Cl 8,69 m, Pi, 0 Deg., Pi, Sm, Cl 9,17 m, Pi, 0 Deg., Pi, Sm, Cl	
			10.0							COPE-SK SIGHIN SHEET SHE						and the second	三日 二日		10,35 m, Pt, 0 Deg., Pl, Sm, Cl	
			12.0	SHALE: dark grey with scattering of very fine lamination of very fine grained sandstone						ALL OF THE PARTY O						19 1 19 2 1 19 2 1			11.30 m, Pt, 0 Deg., Pl, Sm, Cl 11,57 m, Pt, 0 Deg., Pl, Sm, Cl	
×:													,						Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 Angle from Vertical (°): 0	

 \cap

ent:	Dei	corp NS	SW		Proje	ct / S	TSN	lo.: 1	777	2/81	46B				1.00	
ject:	Evele	eigh Str	eet, Redfern		Date				uly 2						BOR	EHOLE NO.: BH 3
_	_		wing No: 1		Logg	_		JH					Checked By	: LWI	Shee	t 4 of 5
DR	ILLP	NG		MATERIAL STR	ENGT										DISCO	DNTINUITIES
						F	stim	ated	Roc	k SI	reng	th		acing (mm) 100 300 1000	5	
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Component	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High			Visual	Additional Data (Joints, partings, scams, zones etc, Description, orientation, infilling, or coating, shape, roughness, thickness, oil
			-	SHALE: dark grey with scattering of very fine laminatio	n FR											
				of very fine grained sandstone						のない						12,33 m, Pt, 0 Deg., Ir, RJ, Cl 12,45 m, Jt, 0-5 Deg., Un, RJ, Cl
																12,66 m, Pt, 0 Deg., Ir, Rf, Cl
			-													12,85 m, Ji, 30 Dog., Pl, Sm, Cl
									Per la							12,90 m, Jt, 45 Deg., Ir, Rf, Cl
			13.0													12,90 m, Ji, 45 Deg., Ir, Rf, Cl 12,95 m, Ji, 0 Deg., Ir, Rf, Cl 13,14 m, Ji, 0 Deg., Ir, Rf, Cl
		1000/														13,14 m, Jt, 0 Deg., Ir, Rf, C1
		100%							2							
			-													13,40 m, Jt, 10 Deg., Ir, Rf, Cl
																13 60 m, Jt, 25 Deg., Ir, RJ, Cl
									201							13,65 m, Jt, 25 Deg., Ir, Rf, Cl
			-						8							13,78-13,90 m, Cz, Clean
			14.0						6			1				14.05 m, Jt, Ir, Rf, Cy
																1
																14.20 m, Jt, 15 Deg., Pl, Sm, Cl
																14,26-14,30 m, Jt, 40 Deg., Ir, Rf, Cl
			-												1	14 40 m, Jt, 45 Deg., Pt, 0 Deg., Pl, Sm, Ci
									3							14 50 m, 2 x Jt, 10 Deg., Pl, Sm, Cl 14 60 m, Jt, 25 Deg., Un, Sm, Cl
																14,65 m, Jt, 10 Deg., Ir, Rf, Cl
									1							14,75 m, Jt, 15 Deg., Ir, Rf, Cl
									10							14.90 m, Jt, 70 Deg., Ir, Rf, Cl
		100%	15.0						15							15.0 m, Jt, 70 Deg., Ir, RJ, CI
									1							15 16 m, Jt, 60 Deg., Ir, Rf, Cl
									1							
							1									
																15 40 m, Ji, 30 Deg , Ir, Rf, Cl 15 50-15 60 m, 3 x Ji, 30-90 Deg , Ir, Rf, Cl
			_													15,50-15,00 m, 3 x Jt, 30-90 Deg., If, KI, CI
			-													15 70-15 80 m, Cz, Cl
																15.88 in, Ji, 2 x 45 Deg., Ir, Rf, Cl
			_						20							15.91 m, Jt, 45 Deg., Pl, Sm, Cl
			16.0													16,05 m, Jt, 45 Deg., Pl, Sm, Cl
		1														16,24 m, PI, 0 Deg., PI, Sm, CI
			-													
																16,50 m, Jt, 30 Deg., Pl, Sm, Cl
			-													16.57 m, 2 x Pi, Ir, Rp, Cl
									S.							16.67 m, Jt, 20 Deg., Ir, Rf, Cl
		100%	170 -													16,89-16,96 m, Cz, Cl
		10076	-													17,14-17,23 m, Numerous JI, 45-90 Deg., Ir, RJ, Cl
																17.31 m, Jt, 30 Deg., Ir, Rf, Cl
				SANDSTONE: light grey, fine grained						AC.						17,33 m, Pt, 0 Deg., Ir, Rf, Cl
			101							1					1	17,46 m, 2 x Jt, 0 Deg., Un, Rf, Cl
																17,65-17,70 m, Cz, Cl
				SANDSTONE: light groutbraue fine to poper	-										1	17.88 m, Pt, 0 Deg., Ir, Rf, Cl
			2	SANDSTONE: light grey/brown, fine to coarse grained												2
			18.0							0						
:				4												Contractor: Terratest
																Hole Diameter (mm): Hydro Power
																Hole Diameter (mm): 100
																Angle from Vertical (°): 0

 \bigcirc

SME	C Test	ting S	ervices P	ty Ltd											0	GEO'	ГЕCI	HNIC	CAL LOG - CORED BOREHOLE
Client:		corp NS	SW eet, Redfern		Projec Date :			lo : 1 3, Jι			46B							BO	REHOLE NO.; BH 3
			wing No: 1	0/0811	Logge	d:		JH	ily 2	010			Che	ecked	By: I	.wi		She	et 5 of 5
DF	ILLIN	NG		MATERIAL STRE	NGTI		tim	ated	Por	1.51	FADO	th		loint	Sno	ing (r		DISC	ONTINUITIES
Method	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	ņ	V		Medium			Extremely High	20					Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, other
W M L C C O R I N G				SANDSTONE: light grey, fine to coarse grained BOREHOLE DISCONTINUED AT 20.0 M	FR														18,15 m, Pt, 0 Deg., Jr, Rf, C1 18,20 m, Pt, 0 Deg., PI, Rf, C1 18,77 m, Pt, 0 Deg., PI, Rf, C1 18,92 m, Pt, 0 Deg., PI, Rf, C1 19,04 m, Jt, 0 Deg., Un, Rf, Cy 19,15 m, 2 x Pt, PL, Sm, C1 19,50 m, Pt, 0 Deg., PI, Rf, C1 19,71 m, Pt, 0 Deg., PI, Ir, Rf, C1
lotes:				See explanation sheets for meaning of all de	scriptive	: [27117	sand	SVID	nole										Contractor: Terratest Equipment: Edson RP70 Hole Diameter (mm): 100 Angle from Verifeal (*): 0

 \odot

	DeiCorp NSW Eveleigh Stree		Project No.: 17772/8146B Date : July 15, 2010	BO	REHOLE NO.:	BH 4
		awing No. 10/08			Sheet 1 of 1	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T U F F
			SILTY CLAY: dark brown, some fine sand, low plasticity TOPSOIL/FILL	CL	SOFT	N
			SAND: brown, fine grained sand, traces of some fines POSSIBLE FILL	SP	LOOSE	N
	SPT 1.0-1.45 m 3, 4, 6 N=10		SAND: yellow brown, fine grained	SP	LOOSE/MEDIUM DENSE	M
	SPT 2.5-2.95 m 3, 4, 7 N=11	2.0	SILTY CLAY: yellow brown, with red streaks, trace to some fines sand, low plasticity, scattered ironstone gravel	CL	STIFF	Л
			SILTY CLAY: red brown and light grey, medium to high plasticity	CL-CH	STIFF	N
	SPT 4.0-4.45 m 3, 9, 15	4.0	SILTY CLAY: light grey, with red, high plasticity RESIDUAL	СН	VERY STIFF	N
	N=24	5.0	SHALE: light grey and red brown, completely to highly weathered		EXTREMELY LOW STRENGTH	
			BOREHOLE DISCONTINUED AT 5.0 M STANDPIPE PIEZOMETER INSTALLED			
NOTES:	D - disturbe WT - level o	d sample of water table or :	free water N - Standard Penetration Test (SPT)		: Teratest : Hydro Power weter (mm): 100	

	DeiCorp NSW Eveleigh Stree		Project No.: 17772/8146B Date : July 15, 2010	BO	REHOLE NO.:	BH S
		wing No _* 10/08			Sheet 1 of 1	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T U F E
		_	SILTY SAND: dark brown, fine to medium grained, trace of gravel and rubble FILL	SM	LOOSE	M
	SPT 1.0-1.45 m 3, 4, 5 N=9	1.0	SAND: brown, fine grained	SP	LOOSE	N
	SPT 2.5-2.95 m 4, 6, 8		SANDY CLAY/CLAYEY SAND: brown fine to medium grained sand, low plasticity SILTY CLAY: light grey with red brown, medium to high plasticity scattered ironstone gravel	SC CL-CH	STIFF	N
	N=14	3.0				
	SPT	4.0	SILTY CLAY: light grey with red brown, high plasticity	СН	VERY STIFF TO HARD	N
	4.0-4.45 m 5, 11, 21		RESIDUAL			
	N=32	5.0	SHALE: light grey and red brown, completely to highly weathered Near V Bit Refusal BOREHOLE DISCONTINUED AT 5.0 M		EXTREMELY LOW STRENGTH	
OTES:		-		Contractor:		<u> </u>
	WT - level o	f water table or			Hydro Power eter (mm): 100	

Project:	DeiCorp NSW Eveleigh Stree	et, Redfern	Project No.: 17772/8146B Date : July 19, 2010	BO	REHOLE NO.:	BH
Location:	Refer to Dra	wing No. 10/08	311 Logged: JH		Sheet I of 4	_
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	
			SILTY SAND: dark brown, fine grained scattered pebble TOPSOIL/FILL	SM	LOOSE	Γ
			SILTY SAND: yellow brown, fine grained POSSIBLE FILL	SM	LOOSE	F
	SPT 0.8-1.25 m 4, 5, 4	1.0	SAND: yellow brown, fine grained, pockets of clayey sand	SP	LOOSE	
	N=9		SILTY CLAY: orange brown with grey, trace of fine sand, medium plasticity	CL	FIRM	
	SPT 2.3-2.75 m		SILTY CLAY; red brown with grey, medium to high plasticity	CL-CH	STIFF	
	3, 9, 13 N=22	3.0	SILTY CLAY: light grey, medium to high plasticity	СГ-СН	VERY STIFF	
	SPT 3.8-4.2 m 10, 23, 20 N=43	4.0	SHALE: grey with red brown, highly weathered		EXTREMELY LOW STRENGTH	
		-	V BIT REFUSAL @ 4.40 M			Γ
			STANDPIPE PIEZOMETER INSTALLED			
		5.0				
NOTES:	D - disturbe	d sample	FOR CORE LOG DETAILS REFER TO CORE LOG SHEETS U - undisturbed tube sample B - bulk sample	Contractor	: Teratest	
		of water table or		Equipment	: Edson 3000 leter (mm): 100	

	corp N			Projec						46B						BOR	EHOLE NO.: BH 6
		reet, Redfern awing No: 1	0/08 1	Date : Logge			9, J JH	uly 2	010			Checked 1	By// 1	wi		Shee	
DRILLI		awing NO. 1	MATERIAL STRE				л		_	_		Cilecked	by: L	, vv 1			DNTINUITIES
Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	EXTREMELY LOW	Very Low		Medium			Extremely High	Joint 20 40					Additional Data (Joints, partings, scams, zones etc, Description, orientation, infilling, o coating, shape, roughness, thickness, ot
H V C A S I I S G			For non core log details refer to non core log sheets														
N A L C C C C C C R I I N G	100%	5.0	SHALE:red brown and grey, exhibiting soil like properties SHALE: dark grey with red brown, friable LAMINITE: intertaminated dark grey shale and light grey fine grained sandstone	HW	Contraction of the second s	Dise in the	- Aller - Aller										4,40-4,55 m, Sm Cy 4,57-4,59 m, Sm, Cy, 70 mm 4,59-4,70 m, Numerous PI, Ir, Rf, Fe 4,70-4,75 m, Sm Cy, 50 mm 4,78-4,91 m, Sm Cy, 130 mm 4,91-5,45 m, Numerous JI & Pt, 0-5 Deg., Ir, Rf, Fe, Cy 4,95-5,50 m, Cz, Ir, Fe, Numerous Pt 0-5 Deg., Ir, Rf, Fe
s:				4											·	1	Contractor: Terratest Equipment: Edson 3000 Hole Diameter (mm): 100

ent:	Dei	corp N	SW		Proj	ect /	STS	No :	1777	2/81	46B						BOB	EHOLE NO.; BH 6
-		-	reet, Redfern		Date			19, J	uly 2	010							_	
	n: Refe		awing No: 10		Log	- · · ·	_	JH	_	_	_	_	Check	ed By:	LWI		Shee	
DR.	an na fi		1	MATERIAL S	TRENG	_	Estli	nated	I Ro	k St	reng	th	Jo	int Sp	acing (ONTINUITIES
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Compo	onents) Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40	100 31	00 1000	Visual	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, o coaling, shape, roughness, thickness, of
1				LAMINITE: interlaminated dark grey shale and lig	ght grey HW	t	t	1	r			F		+	1	\vdash	1	6_00-6_60 m, Numerous Jt & Pt, 0-5 Deg.,
				fine grained sandstone	MW			Lake Lake					And in case of the local division of the loc					Ir, Rf, Fe 6,37-6,40 m, Sn, Cy, 70 mm
			7.0					The state of the s					I sugarte					6,72 m, Pt, 0 Deg., Ir, Rf, Cl 5,78 m, Jt, 0 Deg., Fr, Rf, Fe 6,82 m, Jt, 0 Deg., Ir, Rf, Fe 5,86 m, Jt, 0 Deg., Ir, Rf, Fe 6,94 m, Jt, 0 Deg., Ir, Rf Fe
		100%						Statute Statute					E GEN H					7,0 m, Pt, 0 Dog., fr, Rf, Fe 7,05 m, Jt, 0 Dog., Fr, Rf, Fe, 10 mm 7,08-7,48 m, Nuncrous Jt & Pt, 0 Dog., Ir, Rf, Fe, open and tight 7,58 m, Sm, Cy, 10 mm
			8.0					and a lot of the						The second second				7,68 m, Jt, 50 Deg., Jr, Rf, Cy 7,76 m, Pt, 0 Deg., Jr, Rf, Cy 7,85 m, Cz, 5 mm 7,95 m, Jt, 0 Deg., Jr, Rf, Fe, 10 mm 8,04 m, Pt, 0 Deg., Jr, Rf
					FR			1 State	The Carlo				100 N		100			8,09 m, Sm, Cy, 5 mm 8,40 m, Jt, 90 Deg., Pl, Sm, Cl 8,42-8,94 m, Nunerous Pt, 0 Deg., Pl, Sm, C
			9.0					and the second second	Carl Designed				ALL ALL					8,98-9,10 m, JI, 85 Deg., PI, Rf, Cl 9,14 m, PI, 0 Deg., PI, Sm, Cl 9,21 m, JI, 50 Deg., Un, Rf, Cl 9,27 m, JI, 10 Deg., Un, Rf, Cl
		100%								CHE LAND				No.				9,34 m, 2xPt, 0 Deg., PI, Rf, Cl 9,41 m, Jt, 5 Deg., Un, Rf, Cl 9,50 m, Pt, 0 Deg., Ir, Rf, Cl 9,60 m, 3xPt, 0 Deg., Ir, Rf, Cl
			10.0	Lamination dipping to 20 Deg.						ないとうない				Contra 1				9,73 m, 2xPt, 0 Deg., Ir, Rf, Cl 9,77 m, Jt, 10 Deg., Ir, Rf, Cl 9,85 m, Pt, 0 Deg., Ir, Rf, Cl 9,95 m, 3xPt, 0 Deg., Ir, Rf, Cl 10,06 m, Jt, 40 Deg., Ir, Rf, Cl
										CONTRACTOR OF					- FRANCE			10,09 m, Ji, 0 Deg., Ir, Rf, Cl 10,30 m, 2xJI, 15 Deg., Ir, Rf, Cl 10,43 m, Cz, Ir, CJ 10,59 m, JI, 20 Deg., Fr, Rf, Cl 10,62 m, JI, 75 Deg., Ir, Rf, Cl
			11.0												1			10.63 m, Jt, 10 Deg., Jr, Rf, Cl 10.80 m, Jt, 0 Deg., Ir, Rf, Cl 10.92 m, Jt, 15 Deg., Pl, Sin, Cl 10.98 m, 2xJt, 30 Deg., Pl, Sm, Cl
										The state of the				star she				11,07 m, Jt, 0 & 45 Deg., Jr, Rf, Cl 11,15 m, Pt, Pl, Ir, Rf, Cl 11,20 m, Cz, 50 mm 11,33 m, Jt, 30 Deg., Jr, Sm, Cl 11,40 m, 2xJt, 30 Deg., Ir, Rf, Cl
										STORE AR				CT State				11,47 m, Ji, 0 Deg., Jr, Rf, Cl 11,61 m, Pt, 0 Deg., Pl, Sm, Cl 11,72 m, Pi, 0 Deg., Pl, Ir, Cl 11,82 m, Pt, 0 Deg., Pl, Ir, Cl
:		r	12,0				3.3		1		1	1					1	11.90-12.14 m, Ji, 70 Deg., Pl, Sm, Cl Contractor: Terratest Equipment: Edson 3000 Hole Diameter (mm): 100
																		Angle from Vertical (°): 0

>

 \bigcirc

ent: Dei	corp N	IS₩			Ргој	ect /	STS	No.:	1777:	2/814	46B							
ject: Evelc			dfern		Date				uly 2								BOR	EHOLE NO.: BH 6
ation: Refe	_	rawing N	lo: 10		Log			ΊΗ					Checked	By: L	W1		Shee	
DRILLIN	NG	-	_	MATERIAL STR	ENGI		Fetle	in lead	Roc	1 50	Con.	11-	Join	t Spac	ina (c		ISCO	I I I I I I I I I I I I I I I I I I I
Water	Recovery	Ueptn (m)		Rock Type (Colour, Grain Size, Structure & Minor Component	Weathering							Extremely High				0 1000	Visual	Additional Data (Joints, partings, scams, zones etc. Description, orientation. infilling, c coating, shape, roughness, thickness, o
N 4 L C O R L N N G	1009		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	AMINITE: Interlaminated dark grey shale and light gre fine grained sandstone SHALE: dark grey, scattered very thin light grey lamination at 0 Deg.	Py FR													12.20 m, H, 15 Deg., Ir, Rf, Cl 12, 25 m, 2xJi, 80 Deg., Ir, Rf, Cl 12.08 m, Pt, 0 Deg., PJ, Sm, Cl 12.34 m, 2xPt, 5 Deg., PJ, Sm, Cl 12.41 m, Pt, 5 Deg., PJ, Sm, Cl 12.53 m, Pt, 5 Deg., PJ, Sm, Cl 12.57 m, Pt, 5 Deg., PJ, Sm, Cl 12.60 m, Jt, 5 Deg., PJ, Sm, Cl 12.65 m, Pt, 5 Deg., PJ, Sm, Cl 12.95-14.62 m, Jt, 80-85 Deg., fr, Rf, Cl 12.95-14.42 m, Numerous Pt, 0 Deg., PI, Sm, M many drill induced 14.83 m, Pt, 0 Deg., PI, Sm, Cl
SSC .																		Contractor: Terratest
																		Equipment: Edson 3000 Hole Diameter (mm): 100 Angle from Vertical (°): 0

 \cap

	DeiCorp NSW Eveleigh Stree		Project No.: 17772/8146B Date : July 16, 2010	BO	REHOLE NO.:	BH
		wing No. 10/08			Sheet 1 of 4	
W A T T A E B R L E	S A M P L E S	DEPTH (111)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	
			SILTY SAND: dark brown, fine grained sand, organic TOPSOIL	SM	VERY LOOSE	T
	B <u>SPT</u> 1.0-1.45 m 1, 1, 1 N=2	1.0	SAND: yellow brown, fine grained	SP	VERY LOOSE	
			CLAYEY SAND: brown, fine grained sand, low plasticity	SC	SOFT	$\left \right $
			SILTY CLAY: brown, low plasticity	CL	FIRM	-
		2.0	SILTY CLAY: light grey with red brown, medium to high plasticity	CL-CH	STIFF	╞
	SPT 2.5-2.95 m 6, 9, 13 N=22	3,0			VERY STIFF	-
	SPT 4.0-4.45 m 7, 10, 15 N=25	4.0	SILTY CLAY: light grey, medium to high plasticity, blocky texture SHALE: light grey and grey, completely weathered	CL-CH	EXTREMELY LOW	
		5.0	SHALE: grey brown, completely to highly weathered		STRENGTH EXTREMELY LOW STRENGTH	
NOTES:	SPT 5.5-5.95 m 3, 15, 18 N=33 D - disturbe		U - undisturbed tube sample B - bulk sample	Contractor	Teratest	
		of water table or			Hydro Power	
			See explanation sheets for meaning of all descriptive terms and symbols		eter (mm): 100	

V A T F A E B R L	Refer to Drawing No. 10/	Logged: JH			
АТ ГА ЕВ RL				Sheet 2 of 4	
E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T T U H H
		HALE: grey brown, completely to highly weathered		EXTREMELY LOW STRENGTH	
		'BIT REFUSAL AT 6.6 M TANDPIPE PIEZOMETER INSTALLED		2	
_		FOR CORE LOG DETAILS REFER TO CORE LOG SHEETS			
OTES	D - disturbed sample			r: Teratest	
	WT - level of water table			t: Hydro Power neter (mm): 100	

ient:		orp NS			Projec	t / S'					ŝВ						BORI	EHOLE NO.: BH 7
		-	et, Redfem		Date :				ly 20	10							1	
_	_		ving No: 1		Logge		1	Н				-	Checkee	By: 1	.W1		Sheet	
DR	LLIN	(G		MATERIAL STRE	NGTI		stima	ted	Rock	Stre	neth		Joi	nt Spa	cine (nsco I	I I I I I I I I I I I I I I I I I I I
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Components)	Weathering	Extremely Low	Very Low	Low	Medium	Hiph	Very High	Extremely High				00 1000	Visual	Additional Data (Joints, partings, seams, zones etc. Description. orientation, infilling, o coating, shape, roughness, thickness, of
C A S I N				For non core log details refer non core log sheets														-
G				Start Coring at 6.6 m														
N A L C C C C C R I N S G		100%	7,0	SHALE: reddish brown and grey SHALE: dark grey, friable	CW CW HW													6.66 m, JI, 70 Deg., Ir, Rf, Fe, Cy 6.67 m, JI, 50 Deg., Ir, Rf, Fe 6.80-6.86 m, Cz, Cy 6.90 m, Pt, O Deg., Ir, Rf, Fe 7.04-7, I4 m, Numerous JI, 0-30 Deg., Ir, Rf, 7.20 m, Pt, Sm, Cy 7.34 m, Jt, 10 Deg., Ir, Rf, Fe, Cy 7.43 m, Pt, 0 Deg, PL, Sm, Cy 7.61-7.68 m, Cz, Cy 7.6 m, Pt, 5 Deg., PL, Sm, Cy 7.82 m, Pt, 0 Deg., Ir, Rf, Cy 7.94 m, JI, 80 Deg., Ir, Rf, Cy 7.94 m, JI, 80 Deg., Ir, Rf, Cy 8.15-8.24 m, Su, Cy 20 mm 8.10 m, Pt, Ir, Rf, Cy 8.34 m, Pt, 0 Deg., PL, Sm, Cy 8.54 m, Jt, 10 Deg., PL, Sm, Cy
		100%	9,0	SHALE: dark grey SHALE: dark grey with scattered very thin	FR	Contraction of the second s												8,60-9,05 m, Numerous, JI, 10 Deg., Ir, Rf, Cy & P(0 Deg., Pl, Sm, Cl 9,10 m, JI, 45 Deg., Un, Rf, Cl 9,14 m, JI, 5 Deg., Ir, Rf, Cl 9,24-9,30 m, JI, 45 Deg., Ir, Rf 9,45 m, JI, 50 Deg., Pl, Rf, Cl 9,73-9,82 m, Numerous, Pl, 0 Deg., Pl, Sm 9,85 m, JI, 40 Deg., Pl, Sm
		100%	10,0	Jamination at 5 Deg					いたの「「「「「「「「「「「「「「」」」									10,0 m, Ji, 60 Deg., Jr, Rf, Cl 10,26 m, Pt, 5 Deg., Pl, Sm, Cl 10,35 m, Ji, 40 Deg., Ir, Rf, Cl 10,39 m, Pt, 0 Deg., Pl, Sm, Cl 10,82 m, Ji, 45 Deg., Jr, Rf, Cl 10,95 m, 2 x Ji, 60 Deg., Ir, Rf, Cl
			12.0						A TANK - L - Sachar							の一日の		11, 72 m, 2 x JI, 0 Deg, Ir, Rf, Cl
es :																		Contractor: Terratest
																		Equipment: Hydro Power Hole Diameter (mm): 100 Angle from Vertical (°): 0

		orp NS'				oject	/ ST					46B							BORF	EHOLE NO.: BH 7
			et, Redfern	2/2011		ite :				ly 20	010			01 1						
ation: F	-		wing No: 10	MATERIAL STR		gged		1	H	_				Check	еа Ну	: LWI		D	Sheet ISCO	4 of 4 NTINUITIES
		-	1		T	T	-	tima	ited	Roc	k Sti	reng	th				(mm)	(1	
Water	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Componen	ts)	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High	Extremely High	20	40	100	300 1	000	Visual	Additional Data (Joints, partings, seams, zones etc Description, orientation, infilling, coating, shape, roughness, thickness, o
				SHALE: dark grey with scattered very thin lamination at 5 Deg.	FR					15				T	T		200			12,07 m, Jt, 0-5 Deg, Un, Sm, Cl
																				2
			-																	
																		State of the second		28
			13_0															1 m		a a
		100%								693										2
																		CIC II		3
			_							A STATE										28
			14.0							1								5		55
			_								2									
															II.					14 30-14 64 m, Jt, 85 Deg., Ir, Rf, Cl
											No.					0				14,44 m, Jt, 0 Deg., Ir, Rf, Cl 14,49 m, Jt, 0 Deg., Ir, Rf, RI
																2				14,56 m, 2xJi, 0 Deg., Ir, Rf, Cl 14,68 m, Pi, 0 Deg., Pl, Sm, Cl 14,88 m, Pi, 0 Deg., Pl, Sm, Cl
+	-	_	15.0	BOREHOLE DISCONTINUED AT 15.0 M	+	-	-				22			-	1	-	+	╀		
			-																	В
			-																	
			16.0																	
																		L		
			17,0																	
			-																	
			-																	
			18.0																	
																				Contractor: Terratest Hole Diameter (mm): Hydro Power
																				Hole Diameter (mm): 100 Angle from Vertical (°) 0
				See explanation sheets for meaning of all	dar'						_									angle from vertical () o

 \bigcirc

(

ient:		corp NS							777:		46B						BOR	EHOLE NO.: BH 8
			eet, Redfern	2/00/11	Dat				uly 2	010				10			_	
DRI			wing No: 1		Log	gged:		JΗ				-	Checke	ed By	/: LV	VI	 Shee	et 2 of 4 ONTINUITIES
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Co	Weat	-	Estim Very Low	Low				E Extremely High		40	Pacin 100			Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, or coating, shape, roughness, thickness, oth
H W C A S I N G				For non core log details refer to non core log.	sheets													
C O R I G			6,0	SHALE: brownish grey with orange staining a and fractures	along joints H	W	A STATE OF						日本日本					5.25 m, Jt, 5 Deg., Ir, Rf, Fe 5.30 m, Pt, 0 Deg., PJ, Sm, Fe 5.54 m, Jt, 0 Deg., Ir, Rf, Fe 5.60 m, Sm, Cy, 15 mm 5.65-5.73 m, 3xJt, 5 Deg., Ir, Rf, Fe, Cy 5.84 m, Sm, Cy, 30 mm 5.92 m, Sm, Cy, 20 mm
cs:			A															D.22 III. anii: çy, 22 III. Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 Angle from Vertical (°): 0

ent:	Deic	orp NS	W		ł	Projec	t/S	TSN	lo.: I	777:	2/8]4	46B							000	REHOLE NO.; BH 8
			et, Redfern			Date :			3, Jı	ıly 2	010								_	
			wing No: 10			Logge		_	IH	_				Check	ed B	y: LV	VI		She	And a second s
DRIL	LIN	G		MATERIAL S	TREN	GT		stim	ated	Roc	k Str	renø	th	Je	oint S	Spacio	ng (n		DISC	ONTINUITIES
Walc	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Compo	nents)	Weathering	ы	V		7		(I	Extremely High	20				0 100	Visual	Additional Data (Joints, partings, seams, zones etc., Description, orientation, infilling, o coating, shape, roughness, thickness, ot
				SHALE: brownish grey with orange staining along <u>and fractures</u> SHALE: dark grey		HW			1							5				6.04-6.13 m, Numerous JI, 0-90 Deg., Jr, RI, F 6.24 m, Pt, Pl, Sm, Cl 6.33 m, Jt, 40 Deg., Jr, Rf, Cl
¢ 1		100%	7.0						ALC: AND ALC: A					1. C.		1 Tela				6.44 m, Pt, 0 Deg., Ir, Rf, Cy 6.50 m, Ji, 30 Deg., Pl, Sm, Cl 6.60-7,05 m, Numerous Ji, 0-90 Deg., Ir, Pl, Rf, Cl 7,08 m, Sm, Cy, 20mm 7,10-9,0 m, Numerous Ji & Pt, 0-20 Deg., Ir, Rf, Cy, Cl
		100%							ないない					NAME OF TAXABLE						-
			8.0						State of the state											
			9,0			FR			たいである	The second se				A SWELL						9.10 m, Pt, 0 Deg., Ir, Rf, C1 9.11 m, Ji, 45 Deg., Ir, Rf, C1
										Troit - Change							Desired and			9.13 m, Pt, 0 Deg., Ir, Rf, Cl 9.29 m, Jt, 0 Deg., Ir, Rf, Cl 9.48 m, Pt 0 Deg., Pl, Stn, Cl 9.75 m, Pt, 0 Deg., Pl, Sm, Cl
		100%	10,0															Select Carlo		10.26 m, 2x,1t, 35 Deg., Ir, RJ. Cl 10,27 m, Pt, 0 Deg., Pl, Sm, Cl
			11.0							No. No. No.				100				Line of		10,76-10,88 m, Numarous, Pt, Jt, 0 Deg., Ir, Rf, Cl 10,90 m, Jt, 90 Deg., Un, Rf, Cl
			-							A THUR DAY				200			No. of Lot.			11.08-11.20 m, Cz, Ir, Rf 11.28 m, Pt, Pl, Sm
			12.0	SANDSTONE: light grey, fine to coarse grained							- Ditte			100 Mar 100	11 F. 1					11,53 m, Pt, 0 Deg., Ir, Rf, Cl 11,55 m, Pt, 0 Deg., Ir, Rf, Cl 11,58-11,70 m, 5 x Jt, 0 Deg., Ir, Rf, Cy 11,62 m, Jt, 0 Deg., Ir, Rf, Cl 11,88 m, Jt, 0 Deg., Ir, Rf, Cl 11,88 m, Jt, 0 Deg., Tr, Rf, Cl
33:																				Contractor: Terratest Equipment: Hydro Power Hole Diameter (mn): 100

()

	corp NS				oject	/ ST					5B						BOP	EHOLE NO.: BH 8
		eet, Redfern			ate :				y 201	0								
		awing No: 10	MATERIAL S		ogged	:	JF	1	_				Checked	By: L	.WI		Shee	
DRILLI			WATERIAL S	INENG	<u> </u>	Est	lmat	ed I	lock	Stre	ength		Join	t Spac	ing (n		I	ONTINUITIES
Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Compo	nents)	Weathering	Extremely Low	Very Low	Low	Medium	Ellah	Very High	Extremely High	20 4	0 10	0 30	0 1000	Visual	Additional Data (Joints, partings, seams, zones etc, Description, orientation, infilling, c coating, shape, roughness, thickness, o
	100%	13.0	SANDSTONE: light grey, fine to coarse grained	F	FR					THE REAL PROPERTY OF THE REAL PROPERTY OF THE REAL OF								12,96-13,02 in, Sm, Cy, 60 mm 13,24 m, 2xJi, 5 Deg., Ir, Rf, C1 13,31 m, Pi, 5 Deg., Ir, Rf, C1 13,96 m, Ji, 10 Deg., Ir, Rf, Cy 14,70 m, Pi, 0 Deg., Ir, Rf, Cy
		16.0	BOREHOLE DISCONTINUED AT 15.0 M															
cs:		18.0	<u>I</u>		1									I				Contractor: Terratest Equipment: Hydro Power Hole Diameter (mm): 100 Angle from Vertical (*): 0

Ô

	DeiCorp NSW Eveleigh Stree		Project No.: 17772/8146B Date : July 12, 2010	во	REHOLE NO.:	BH
		wing No. 10/081			Sheet I of 4	
W A T T A E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	N 0 1 1 1 1
		_	SILTY SAND: dark brown, fine to coarse sand and pebble and rubble FILL	SM	VERY LOOSE	N
	SPT 0.8-1.25 m 2, 3, 2 N=5	1.0	SAND: yellow brown, fine grained	SP	LOOSE	1
			SILTY CLAY: brown/orange brown, medium plasticity, scattered pebble	CL	FIRM	N
				CL-CH	STIFF	
	0.077	2.0	SILTY CLAY: red brown, medium to high plasticity, scattered pebbles	eren	31117	1
	SPT 2.3-2.75 m 5, 8, 14 N=19		SILTY CLAY: light grey with red brown, medium to high plasticity	CL-CH	VERY STIFF	7
			RESIDUAL			
		3,0	SHALE: light grey and brown, completely to highly weathered		EXTREMELY LOW STRENGTH	
		-	V BIT REFUSAL AT 3.5 M	_		-
		4.0	FOR CORE LOG DETAILS REFER TO CORE LOG SHEETS			
OTES:	D - disturbe WT - level c	d sample	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor Equipment	: Teratest : Edson 3000	
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	eter (mm): 100	

 \cap

.)

N I I I N I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	No: 10/0811 MATERIAL STRE		Es		н	Roc		_	eth	Ch	ecked	~			S	Sheet	HOLE NO.: BH 9 2 of 4
DRILLING Water Recovery Water Image: Comparison of the second of the se	MATERIAL STRE	NGTH	Es			Roc	k SI	tren	eth	F		~			_		
Mathem Mathem Depth (a) H Water Image: Constraint of the second se			Es	stlm	ated	Roc	k SI	tren	eth	t	Inin						NTINUITIES
W	÷	Weathering	Extremely Low	Very Low	Low	Medium	High	Very High						mm) 00 10		Visual	Additional Data (Joints, partings, seams, zones etc., Description, orientation, infilling, or coating, shape, roughness, thickness, off
M 4,0 C																	
5.0	NO CORE - 4,18 - 5,47 m	CW															3.5-3.95 m, Sm, Cy, 450 mm 4.06 m, Jt, 0 Deg., ir, Rf, Cy 4.16 m, Jt, 0 Deg., ir, Rf, Cy 5.47- 5.52 m, Cz, Fo 5.57 m, Sm, Cz, S0 mm
.s:		нw	A							ſ			100				5.68 m, Jt, 45 Deg., Ir, Rf, Fe, Cy 5.80-5.90 m, Sm, Cy, 100 mm 5.95 m, Jt, 30 Deg., Ir, Rf, Fe, Cy

)

ient:	Dei	corp NS	W		Pr	roject	/ ST	'S No	: 17	772/	814	βB				BOP	EHOLE NO.: BH 9
		-	et, Redfern			ate :				y 20	10						
_			ving No: 1			ogged	:	11	1	_	_	_	-	Checked By: LWI		Sheet	
DR	ILLIN	eG		MATERIAL	SIKEN	UTH T	Es	timat	ed I	Rock	Stre	mgt	h	Joint Spacing (n		asco I	I I I I I I I I I I I I I I I I I I I
	Water	Recovery	Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor Comp	conents)	Weathering	p	<	Τ		Τ	T	Extremely High	20 40 100 30		Visual	Additional Data (Joints, partings, seams, zones etc., Description, orientation, infilling, o coating, shape, roughness, thickness, or
+	-	-		LAMINITE: interlaminated grey brown shale, ligh	hl grey (cw			+	+	+	+	-		-	-	6.06 m, Ji, 0 Deg., Ir, Rf, Cy
		100%		very fine grained sandstone, friable		HW	ALCONT NO.										6.30 m, Ji, 5 Deg, Jr, R.C. Cy 6.20 m, Ji, 5 Deg, Jr, Rf, Fe, Cy 6.25 m, 2xJi, 45 Deg, Jr, Rf, Fe, Cy 6.38 m, Ji, 30 Deg, Jr, Rf, Fe 6.45 m, Ji, 50 Deg, Jr, Rf, Fe
				No Core 6.60-6.70 m													6.70-6.77 m, Cz, Ir, Fe, Cy
			7_0	LAMINITE: interlaminated, red grey brown shale and light grey very fine grained sam friable		CW/ HW		100									6,81 m, Ji, 5 Deg., Ir, Rf, Fe, Cy 6,88 m, Ji, 5 Deg., Ir, Rf, Fe, Cy 6,96 m, Ji, 30 Deg., Ir, Rf, Fe, Cy
۹ ۲		91,5	-	LAMINITE: interlaminated, dark grey shale and grey sendstone, lamination at 45 De		HW		No.									7,04 m, 2xJI, 20 Deg., Ir, Rf, Fc, Cy 7,15-7,40 m, Numerous, JI, 0-45 Deg., Cz, R
2			-					ALL DU									
			-	1				4									7.67 m, Pt, 45 Deg., Pl, Rf, Cy
:								1									7.77-9.15 m, Friable shale, Numerous Ji & Pl
			8,0	SHALE: dark grey, friable core jamming in slips breaking apart on removal		HW/ MW		Chilly and									and drill induced breaks
			-	1													
				-				8									
		100%	-	-				-						to Car			
				1				-									
			-	-				19						SKIN			
				-													
	-		9,0														
			_	-													9,15-9,29 m, Sm, Cy, 140 mm
			-					3									9,36 m, Jt, 0 Deg., Ir, Rf, Cy
																	9,41-9,44 m, Ji, 0-15 Deg., Ir, Rf, Cy
			-	-													9,44-9,91 m, Sm, Cy, 570 mm
			-					5									
			-	1													
			-	-												1	
			10,0	-												1	9,91-10,16 m, Numerous, Pt, 0 Deg., Ir, Rf
			-			_								1.50		1	10,25 m, Pt, 0 Deg., Pl, Sm, Cy
		100%	-	SHALE: dark grey with scattered very thin lamin	nations	FR								E.C.		1	10,32 m, Pt, 0 Deg, Pl, Sm, Cy
				-						3							10 39 m, Jt, 0 Deg., Ir, Rf, Cy 10 46 m, Jt, 0 Deg. Pl, Rf, Cy
									- 1	0				100			10,50 m, JI, 45 Deg., PI, Sm, Cy
										3			1	(12)			10.56 m, Ji, 50 Deg., Ir, Rf, Cy
			-														10,61 m, Pt, 0 Deg, Pl, Sm, Cy 10,64 m, Pt, 0 Deg, Pl, Sin, Cy
			11.0														10,04 m, Pi, 0 Deg., Pi, Sin, Cy 10,72 m, Ji, 0 Deg., Ir, Rf, Cy
			1						-1								10.77 m, Jt, 0 Deg., Ir, Rf, Cy
			-	-													10,89 m, Jt, 0-80 Deg., Ir, Rf, Cy
			12	1						2				1		1	11.09-11.12 m, Jt, 0-60 Deg, Ir, Rf, Cy 11.20-11.43 m, Numerous, Jt, 0-90 Deg, Ir,
			-														Cy
			-	1						ST							11,51 m, Pt, 0 Deg., Pl, Sm, Cy
			1	4										Dig n t		1	11,56 m, Pt, 0 Deg., Pl, Sm, Cy
				•													11.62 m, Pt, 0 Deg., Pl, Sm, Cy
			12,0												22		
s:										_			_				Contractor: Terratest
																	Equipment: Edson 3000
																	Hole Diameter (mm): 100
																	Angle from Vertical (°): 0

ent:	Dei	icorp	NSW				Projec	t / S7	TS N	o.: 1	7772/	814	6 B						Pro	DREHOLE NO.: BH 9
				edfern			Date :				ly 20	10								
_			rawing	No: 10			Logge		J	Н		_		0	Checke	d By:	LWI			neet 4 of 4
DR	ILLIN	NG	+		MATERI	AL STRE	NGTH		stime	ited	Rock	Str	cnut		Joi	nt Spa	cine (CONTINUITIES
	Water	Recovery		Depth (m)	Rock Type (Colour, Grain Size, Structure & Minor C	omponents)	Weathering	π	V									0 100	VISUAI	Additional Data (Joints, partings, seams, zones etc. Description, orientation, infilling, c coating, shape, roughness, thickness, o
N MALC CORING			13,0 14,0 15,0 16,0		BOREHOLE DISCONTINUED AT 16,0 M	aminalions	FR													12,51 m, Pt, 0 Deg., PL, Sm, Cy 12,6 m, Pt, 0 Deg., PL, Sm, Cy 14,26 m, Pt, 0 Deg., PL, Sm, Cy 14,34 m, Jt, 15 Deg., Ir, Rf, Cy 14,39 m, Jt, 0 Deg., Ir, Rf, Cy 14,39 m, Jt, 0 Deg., Ir, Rf, Cy 14,87 m, Jt, 5 Deg., Un, Rf, Cy 14,90 m, Jt, 5 Deg., Un, Rf, Cy 14,94 m, Jt, 0 Deg., Ir, Rf, Cy
				-																
			18.0														1			
s;																				Contractor: Terratest
																				Equipment: Edson 3000
																				Hole Diameter (mm): 100
																				Angle from Vertical (°): 0
																				mangle from vertical (*): U

 \bigcirc

W A T T A E B R L E	Refer to Dra S A M P L E S	DEPTH (m)	Date : July 12, 2010 Logged: JH DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B	Sheet 1 of 1 CONSISTENCY (cohesive soils) or RELATIVE DENSITY	M O I
AT TA EB RL	A M P L E	(m)		Y M	(cohesive soils) or RELATIVE	0 1
-		1		O L	(sands and gravels)	S T U R E
-			SILTY SAND: dark brown, fine to coarse sand, pebble and rubble FILL	SM	VERY LOOSE	M
	В		SAND: dark brown, fine grained sand, trace of fines	SP	LOOSE	M
		1.0	SAND: light grey with brown, fine grained sand	SP	LOOSE	N
		2.0	CLAYEY SILTY SAND: brown, fine to medium grained sand	SM	STIFF	N
		3,0	SILTY CLAY: brown/orange brown, medium plasticity, trace of fine sand	CL	VERY STIFF	M
			SILTY CLAY: light grey with red brown, medium to high plasticity, scattered ironstone gravel	CL-CH	HARD	N
		4.0	SHALE: light grey and brown, completely to highly weathered, bands of ironstone and clay		EXTREMELY LOW STRENGTH	
	D - disturbe		AUGER REFUSAL AT 5.9 M U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor: Equipment:		

Q

	DeiCorp NSW Eveleigh Street, Redfern	Project No.: 17772/8146 Date : July 19, 2010	B BU	REHOLE NO.:	BH 1
Location:	Refer to Drawing No. 10	/0811 Logged: JH		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		SILTY SAND: dark brown, fine to coarse grained sand, trace of fine gravel and nubble	SM	VERY LOOSE	M
	1,0	FILL SAND: yellow brown, fine grained	SP	LOOSE TO MEDIUM DENSE	M
		SILTY CLAY: brown/red brown, medium plasticity, scattered pebbles	CL	STIFF	N
	2.0	SILTY CLAY: red brown with grey medium to high plasticity, trace of ironstone gravel	СГ-СН	VERY STIFF VERY STIFF TO HARD	N
	3.0	SILTY CLAY: light grey with red brown, medium to high plasticity	CL-CH	HARD	P
	4.0	SHALE: grey high to moderately weathered		EXTREMELY LOW STRENGTH	7
	5.0	AUGER REFUSAL AT 4.6 M			
NOTES:	D - disturbed sample WT - level of water table	U - undisturbed tube sample B - bulk sample or free water N - Standard Penetration Test (SPT)	Contractor Equipment		

	B 1.0 2.0	Date : July 19, 2010 Logged: JH DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations) SILTY SAND: dark brown, fine to medium grained sand TOPSOIL/FILL SAND: yellow brown, fine grained, some fines SILTY CLAY: red brown with grey, medium to high plasticity, trace of fine sand	S Y M B O L SM SP		
AT TA EB RL	A M P L E DEPTH (m) S B 1.0 2.0 2.0	(Soil type, colour, grain size, plasticity, minor components, observations) SILTY SAND: dark brown, fine to medium grained sand TOPSOIL/FILL SAND: yellow brown, fine grained, some fines SILTY CLAY: red brown with grey, medium to high plasticity, trace of fine sand	Y M B O L SM SP	(cohesive soils) or RELATIVE DENSITY (sands and gravels) MEDIUM DENSE	
	B 1.0 2.0	SAND: yellow brown, fine grained, some fines	SP CL-CH	VERY STIFF	
	B	SILTY CLAY: red brown with grey, medium to high plasticity, trace of fine sand	CL-CH	VERY STIFF	
	2.0				
		SILTY CLAY: light grey with RED brown, medium to high plasticity	CL-CH	VEDV OTHER	
	3.0			VERY STIFF	
	4.0				
WT		SHALE: grey brown, completely to highly weathered SHALE: grey, moderately weathered		EXTREMELY LOW STRENGTH EXTREMELY LOW STRENGTH	
	5.0	AUGER REFUSAL AT 5.5 M			
		STANDPIPE PIEZOMETER INSTALLED			
) - disturbed sample VT - level of water table or f	free water N - Standard Penetration Test (SPT)	Equipmen	r: Teratest t: Hydro Power neter (mm): 100	

Project: I	DeiCorp NSW Eveleigh Street, Redfern	Project No.: 17772/8146B Date : July 15, 2010	BO	REHOLE NO.:	BH 1
Location:	Refer to Drawing No. 10/08	11 Logged: JH		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations) SILTY SAND: dark brown, fine to medium grained sand, scattered pebble and bricks	S Y M B O L SM	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels) LOOSE	M O I S T U R E M
		FILL			
	0.1	SAND: light grey, fine grained, trace of fines	SP	MEDIUM DENSE	N
	2.0	SANDY CLAY: light grey and orange brown, fine grained sand	SC-CL	FIRM	V
		SILTY CLAY: red brown, medium to high plasticity	CL-CH	VERY STIFF	N
	3.0	SILTY CLAY: Tight grey with red brown, medium to high plasticity	сь-сн	HARD HARD	N
	4.0	SHALE: light grey, completely to highly weathered		EXTREMELY LOW STRENGTH	
	5.0	SHALE: greyish brown, moderately weathered		EXTREMELY LOW STRENGTH	
P.					
NOTES:	D - disturbed sample WT - level of water table or		Contractor Equipment	: Teratest :: Christie	

Form I1

		et, Redfern	Date : July 15, 2010JH		REHOLE NO.:	BH 1
	Refer to Dra	wing No. 10/08			Sheet 1 of 1	
W A T E B R L E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T L F F E
			GRAVELLY SAND: black, fine to coarse grained sand, fine gravel, rubbish and ash	SM	MEDIUM DENSE	M
	S6 @ 0.3 m S7 @ 0.7 m	1.0	SAND: black/grey, fine grained, some fines	SP	MEDIUM DENSE	N
	S8 @ l.7 m	2.0	CLAYEY SAND: brown with orange brown, fine grained sand, low plasticity	SM-SC	MEDIUM DENSE	N
	S9 @ 2.6 m		SILTY CLAY: mottled light grey and yellow brown, medium to high plasticity	CL-CH	VERY STIFF	Ν
		3.0	SHALE: grey (completely to highly weathered)		EXTREMELY LOW STRENGTH	
	S10 @ 4.6 m	5.0	AUGER REFUSAL AT 4.7 M			
IOTES:	D - disturbe WT - level c	d sample	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor Equipment		
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Diam	eter (mm): 100	

 $\widehat{}$

.)

	DeiCorp NSW Eveleigh Street	, Redfern	Project No.: 17772/8146B Date : July 14, 2010	BO	REHOLE NO.:	BH 1
	Refer to Drav				Sheet 1 of 2	
W A T T A E B R L E	S A P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		-	SILTY SAND: dark brown, fine to coarse sand, scattered pebble, brick and concrete	SM	LOOSE	N
		1.0	FILL CLAYEY SAND: orange brown, fine to medium grained sand, low plasticity	SM-SC	LOOSE	M-V
			SANDY CLAY: orange brown, fine to medium grained sand, low plasticity	SC-CL	FIRM	M-7
		2.0	SILTY CLAY: light grey, high plasticity	СН	STIFF	Ν
					VERY STIFF	
		3.0	SILTY CLAY: light grey with red brown, medium to high plasticity RESIDUAL	CL-CH	HARD	N
		4.0	SHALE: light grey and brown, completely weathered SHALE: greyish brown, highly to moderately weathered		EXTREMELY LOW STRENGTH	
NOTES:	D - disturbed WT - level of		U - undisturbed tube sample B - bulk sample r free water N - Standard Penetration Test (SPT)	Contractor: Equipment:		

	DeiCorp NSW Eveleigh Street, Redfern	Project No.: 17772/8146B Date : July 14, 2010	BC	REHOLE NO.:	BH 1
ojeci. i ocation:	Refer to Drawing No. 10/0	Bate: July 14, 2010 Bit Logged: JH		Sheet 2 of 2	2
W A T T A E B R L E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T I I F F
		SHALE: greyish brown, high to moderately weathered		EXTREMELY LOW STRENGTH	7
		AUGER REFUSAL AT 6.5 M			
OTES:	D - disturbed sample	U - undisturbed tube sample B - bulk sample	Contracto		
	WT - level of water table of	r free water N - Standard Penetration Test (SPT) See explanation sheets for meaning of all descriptive terms and symbols		t: Christie neter (mm): 100	

Eveleigh Stree Refer to Dra		Date : July 14, 2	2010		BH 1
	wing No. 10/08			Sheet 1 of 1	
S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	В	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
81		SILTY SAND: dark brown, fine grained, scattered pebbles	SM	STIFF	M
@ 0.2 m		FILL		1	
S2 @ 0.6 m		SAND: light brown, fine grained, trace of fines	SP	MEDIUM DENSE	N
	1.0				
\$3 @ 1.9 m		SILTY CLAY: yellow brown with red and grey, medium to high plasticity	CL-C	CH VERY STIFF	Ν
		SILTY CLAY: mottled light grey and red brown, high plasticity	CF	HARD	(
S4 @ 2.6 m	ÌIJ				
	3.0				
S5 @ 3.9 m		SHALE: red brown with grey, completely weathered		EXTREMELY LOW STRENGTH	7
	4.0	AUGER REFUSAL AT 3.9 M			
	5.0				
		U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SP			
		See explanation sheets for meaning of all descriptive terms and symbols	Hole Di	ameter (mm): 100	
	P L E S (@ 0.2 m S2 (@ 0.6 m) S3 (@ 1.9 m S4 (@ 2.6 m) S5 (@ 3.9 m) D - disturbe	P L DEPTH S DEPTH 0 © 0.2 m	P U DESCRIPTION OF DRILLED PRODUCT Image: Stress of the stress	Product DESCRIPTION OF DELLED PRODUCT M S DEPTH (Solit type, colour, grain size, plasticity, minor componens, observations) B S1 S1 SILTY SAND: dark brown, fine grained, scattered pebbles SM S2 SAND: light brown, fine grained, trace of fines SP S2 SAND: light brown, fine grained, trace of fines SP S3 SAND: light brown, fine grained, trace of fines SP S4 SILTY CLAY: working regrained, trace of fines SP S4 SULTY CLAY: motiled light grey and red brown, high plasticity CI S4 SILTY CLAY: motiled light grey and red brown, high plasticity CI S5 SILTY CLAY: motiled light grey and red brown, high plasticity CI S4 SILTY CLAY: motiled light grey and red brown, high plasticity CI S5 SILTY CLAY: motiled light grey and red brown, high plasticity CI S5 SILTY CLAY: motiled light grey and red brown, high plasticity CI S6 SILTY CLAY: motiled light grey and red brown, high plasticity CI S6 SILTY CLAY: motiled light grey and red brown, high plasticity CI	P DESCRIPTION OF PRULID PRODUCT MB DENSITY Si (Soil type, colour, grin size, platicity, minor compenents, observation) O Image: colour openents, observation) Image: colour openents, observation, observation) Image: colour openents, observatis inteadingreal and endity andedity and endity and endity and e

_)

	DeiCorp NSW	Project No.: 17772/8146B	BO	REHOLE NO.:	BH
	Eveleigh Street, Redfern Refer to Drawing No. 10/	Date : July 14, 2010 Logged: JH		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	
	l H	SILTY SAND: dark brown, fine to medium grained sand, pieces of crushed brick	SM	LOOSE	1
	1.0	FILL SAND: brown, fine to coarse grained, some fines	SP	LOOSE TO MEDIUM DENSE	
	2.0	SAND: light brown, fine grained sand	SP	MEDIUM DENSE	
		SILTY CLAYEY SAND: brown, fine grained sand, low plasticity	SC	FIRM	M
	3.0	SILTY CLAY: red brown, medium to high plasticity, trace of fine to coarse sand	CL-CH	STIFF	
		SILTY CLAY: red brown and light grey, medium to high plasticity, scattered ironstone gravel	CL-CH	VERY STIFF	
	4,0	SHALE: light grey completely to highly weathered bands of ironstone and grey clay		EXTREMELY LOW STRENGTH	
NOTES:	D - disturbed sample	SHALE: grey highly to moderately weathered, AUGER REFUSAL AT 6.0 M U - undisturbed tube sample B - bulk sample	Contractor	EXTREMELY LOW STRENGTH	
INGTES:	WT - level of water table			t: Christie	
		See explanation sheets for meaning of all descriptive terms and symbols	Hole Dian	neter (mm): 100	

Project: 1	DeiCorp NSW Eveleigh Stree	t, Redfern	Project No.: 17772/8146B Date : July 14, 2010	во	REHOLE NO.:	BH 1
location:	Refer to Drav	wing No. 10/08	Logged: JH		Sheet 1 of 1	
W AT AB RL E	S A M P L E S	DEPTH (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
			SILTY SAND: dark brown, fine to coarse grained sandstone, pebble and bricks	SM	LOOSE	M
			FILL	ep		
		1.0	SAND: light brown, fine grained, traces of fines	SP	MEDIUM DENSE	M
			CLAYEY SAND: brown/yellow brown, fine to medium grained sand, low plasticity	SC	STIFF	N
		2.0	SILTY CLAY: red brown with grey, medium to high plasticity	CL-CH	STIFF TO VERY STIFF	N
			SILTY CLAY; mottled light grey and red brown, high plasticity	CL-CH	VERY STIFF	N
			SILTY CLAY; light grey, completely weathered bands of red brown ironstone	CL-CH	HARD	N
		3.0	RESIDUAL			
		4.0	SHALE: red brown and grey, completely to highly weathered		EXTREMELY LOW STRENGTH	
		5.0	AUGER REFUSAL AT 4.3 M			
IOTES:	D - disturbed WT - level o			Contractor		
		f water table or	free water N - Standard Penetration Test (SPT)	Equipment	: Christie eter (mm): 100	

Project: E	DeiCorp NSW Eveleigh Street, Redfern	Project No.: 17772/8146B Date : July 14, 2010	BO	PREHOLE NO.:	BH 1
location:	Refer to Drawing No. 10/08	11 Logged: JH		Sheet 1 of 1	
W A T T A E B R L E	S A M P L E DEPTH S (m)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M O I S T U R E
		GRAVELLY SAND: brown and red brown, fine to coarse sand, fine grained brick	SM	LOOSE TO MEDIUM DENSE	M
	1.0	FILL			
			01	0.000	
	2.0	SILTY CLAY: medium brown with light grey, medium plasticity	CL	STIFF	M-'
		Bands of ironstone gravel		HARD	
	3.0			STRENGTH	
	4.0	SHALE: grey with red brown, moderately weathered	-		
	5.0	AUGER REFUSAL AT 4.8			
NOTES:	D - disturbed sample		Contracto		
	WT - level of water table of	free water N - Standard Penetration Test (SPT)	Equipmen	t: Christie	
		See explanation sheets for meaning of all descriptive terms and symbols		neter (mm): 100	

	DeiCorp NSW Eveleigh Stree		Project No.: 17772/8146B Date : July 14, 2010	BO	REHOLE NO.:	BH 2
		wing No. 10/08			Sheet I of I	
W AT TA EB RL E	S A M P L E S	DEPTH (111)	DESCRIPTION OF DRILLED PRODUCT (Soil type, colour, grain size, plasticity, minor components, observations)	S Y M B O L	CONSISTENCY (cohesive soils) or RELATIVE DENSITY (sands and gravels)	M C I S T U R E
			SANDY SILTY CLAY: dark brown, fine to coarse sand, some gravel FILL	CL	VERY LOOSE	M
			GRAVELLY SILTY SAND: fine to coarse grained sand, some fines, fine gravel FILL	SM	MEDIUM DENSE	N
			SILTY CLAY: orange brown with grey medium plasticity, trace of fine sand	CL	FIRM	N
		1.0	SILTY CLAY: light grey with red brown, medium to high plasticity	CL-CH	FIRM	N
		2.0	SHALE: light grey/grey with red brown, completely weathered bands of ironstone	CL-CH	STIFF	ľ
			silty clay with red brown medium to high plasticity RESIDUAL SHALE: light grey and brown, highly weathered		EXTREMELY LOW STRENGTH	
		3.0				
			SHALE: grey, moderately weathered		EXTREMELY LOW STRENGTH	1
		4.0	AUGER REFUSAL AT 3.9 M			
		5.0				
IOTES:	D - disturbed WT - level o	d sample of water table or	U - undisturbed tube sample B - bulk sample free water N - Standard Penetration Test (SPT)	Contractor Equipment		
			See explanation sheets for meaning of all descriptive terms and symbols	Hole Dian	neter (mm): 100	

SMEC Testing Serv	ices Pty Ltd			
14/1 Cowpasture Place,	Wetherill Park	NSW	2164	

Phone: (02)9756 2166 Fax: (02)9756 1137 Email: smectesting@pacific.net,au

Dynamic Cone Penetrometer Test Report

Project: EVELEIGH STREET, REDFERN

Client: DEICORP NSW

Address: 140-152 New Canterbury Road, Petersham Test Method: AS 1289.6.3.2 Project No.: 17772/8146B Report No.: 10/0811 Report Date: July 15, 2010 Page: 1 of 3

Refer to Drawing No. 10/0811	Refer to Drawing No.	Refer to Drawing No.	Refer to			
10/0011	10/0811	10/0811	Drawing No. 10/0811			
Surface Level	Surface Level	Surface Level	Surface Level			
Penet	ration Resistan	ce (blows / 150)mm)	Depth (m)	Penetration F	Resistance (blows / 150mm)
	2	4	2	3.00 - 3.15		
	2	7	4	3.15 - 3.30		
	3	9	4	3.30 - 3.45		
	4	5	3	3.45 - 3.60		
	4	5	4	3.60 - 3.75		
	3	4	6	3.75 - 3.90		
	1	5	8	3.90 - 4.05		
	1	5	9	4.05 - 4.20		
	1	7	11	4.20 - 4.35		
	3	5	9	4.35 - 4.50		
	7	6	5	4.50 - 4.65		
	7	7	8	4.65 - 4.80		
	5	10	10	4.80 - 4.95		
	4	13	15	4.95 - 5.10		
	7	20	20	5.10 - 5.25		
	12	27	20R	5.25 - 5.40		
	20	D		5.40 - 5.55		
	27			5.55 - 5.70		
	D			5.70 - 5.85		
				5.85 - 6.00		
		Penetration Resistan 2 2 3 4 4 3 1 1 1 3 7 5 4 7 12 20 27	Penetration Resistance (blows / 150) 2 4 2 7 3 9 4 5 4 5 3 4 1 5 1 5 1 7 3 5 1 7 3 5 1 7 3 5 1 7 3 5 1 7 2 7 3 5 1 7 2 7 3 5 1 7 2 7 3 5 1 7 2 7 3 5 10 1 3 5 10 1 20 12 20 D 27 20	2743944534543461581591711359765778510104131572020122720R20D27	Penetration Resistance (blows / 150mm) Depth (m) 2 4 2 3.00 - 3.15 2 7 4 3.15 - 3.30 3 9 4 3.30 - 3.45 4 5 3 3.45 - 3.60 4 5 4 3.60 - 3.75 4 5 4 3.60 - 3.75 4 5 4 3.60 - 3.75 3 4 6 3.75 - 3.90 1 5 8 3.90 - 4.05 1 5 9 4.05 - 4.20 1 5 9 4.05 - 4.20 1 7 11 4.20 - 4.35 3 5 9 4.35 - 4.50 1 7 11 4.20 - 4.35 3 5 9 4.35 - 4.50 1 7 8 4.65 - 4.80 1 7 8 4.65 - 4.80 1 13 15 4.95 - 5.10 1 20	Penetration Resistance (blows / 15) Depth (m) Penetration I 2 4 2 $3.00 - 3.15$ 1 2 7 4 $3.15 - 3.30$ 1 3 9 4 $3.30 - 3.45$ 1 4 5 3 $3.45 - 3.60$ 1 4 5 4 $3.60 - 3.75$ 1 3 4 6 $3.75 - 3.90$ 1 3 4 6 $3.75 - 3.90$ 1 1 5 8 $3.90 - 4.05$ 1 1 5 9 $4.05 - 4.20$ 1 1 7 11 $4.20 - 4.35$ 1 1 7 11 $4.20 - 4.35$ 1 1 7 11 $4.20 - 4.35$ 1 1 7 8 $4.65 - 4.80$ 1 1 7 8 $4.65 - 4.80$ 1 1 7 10 $4.80 - 4.95$ 1 1 13 15 $4.95 - 5.10$ 1 1 20

SMEC	Testing	Services	Pty Ltd		
14/1 0.		1 117-41		MONT	3164

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: smectesting@pacific.net.au

Dynamic Cone Penetrometer Test Report

Project: EVELEIGH STREET, REDFERN

Client: DEICORP NSW

Address: 140-152 New Canterbury Road, Petersham Test Method: AS 1289.6.3.2 Project No.: 17772/8146B Report No.: 10/0811 Report Date: July 15, 2010 Page: 2 of 3

Site No.	P13	P14	P15	P16			P14		
Location	Refer to Drawing No. 10/0811	Refer to Drawing No. 10/0811	Refer to Drawing No. 10/0811	Refer to Drawing No. 10/0811			Refer to Drawing No. 10/0811		
Starting Level	Surface Level	Surface Level	Surface Level	Surface Level					
Depth (m)	Penet	tration Resistan	ice (blows / 15	0mm)	Depth (m)	Pene	ration Resistar	ice (blows / 15	Omm)
0.00 - 0.15	2	3	2	4	3.00 - 3.15		12		
0.15 - 0.30	3	6	4	8	3.15 - 3.30		16		ž. –
0.30 - 0.45	9	10	2	14	3.30 - 3.45		16		
0.45 - 0.60	13	10	1	17	3.45 - 3.60		21		
0.60 - 0.75	7	7	2	8	3.60 - 3.75		27		
0.75 - 0.90	7	5	1	9	3.75 - 3.90		D		
0.90 - 1.05	5	5	1	7	3.90 - 4.05				
1.05 - 1.20	3	4	1	4	4.05 - 4.20				
1.20 - 1.35	3	3	3	3	4.20 - 4.35				
1.35 - 1.50	3	7	4	6	4.35 - 4.50				
1.50 - 1.65	4	4	7	5	4.50 - 4.65				
1.65 - 1.80	5	4	10	8	4.65 - 4.80				
1.80 - 1.95	9	4	13	20	4.80 - 4.95				
1.95 - 2.10	11	4	20	25	4.95 - 5.10				
2.10 - 2.25	16	4	16/R	D	5.10 - 5.25				
2.25 - 2.40	20	6			5.25 - 5.40				
2.40 - 2.55	24	8			5.40 - 5.55				
2.55 - 2.70	D	12			5.55 - 5.70				
2.70 - 2.85		11			5.70 - 5.85				
2.85 - 3.00		13			5.85 - 6.00				
Remarks:	* = Pre-drille	d hole prior to	testing	d				the free	ati V
echnician: JH						Approved Sig		Laurie Ihnativ	v - Mana

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 Fax: (02)9756 1137 Email: smectesting@pacific.net.au

Project No.: 17772/8146B

Report Date: July 15, 2010

Page: 3 of 3

Report No.: 10/0811

Dynamic Cone Penetrometer Test Report

Project: EVELEIGH STREET, REDFERN

Client: DEICORP NSW

Address: 140-152 New Canterbury Road, Petersham

Test Method: AS 1289.6.3.2

0.5 0.5 8 16 6	Depth (m) 3.00 - 3.15 3.15 - 3.30 3.30 - 3.45 3.45 - 3.60	Refer to Drawing No. 10/0811 Penetratio	on Resistanc	e (blows / 15)min)
0.5 0.5 8 16 6	3.00 - 3.15 3.15 - 3.30 3.30 - 3.45 3.45 - 3.60		on Resistanc	e (blows / 15)mm)
0.5 0.5 8 16 6	3.00 - 3.15 3.15 - 3.30 3.30 - 3.45 3.45 - 3.60		on Resistanc	e (blows / 15	0mm)
0.5 8 16 6	3.15 - 3.30 3.30 - 3.45 3.45 - 3.60	D			
8	3.30 - 3.45 3.45 - 3.60				
6	3.45 - 3.60				
6					
4	3.60 - 3.75				
	3.75 - 3.90				
4	3.90 - 4.05				
4	4.05 - 4.20				
5	4.20 - 4.35				
5	4.35 - 4.50				
5	4.50 - 4.65				
7	4.65 - 4.80				
10	4.80 - 4.95				
17	4.95 - 5.10				
20	5.10 - 5.25				
24	5.25 - 5.40				
D	5.40 - 5.55				
	5.55 - 5.70				
	5.70 - 5.85				
	5.85 - 6.00				
			5.85 - 6.00		5.85 - 6.00

E1. CLASSIFICATION OF SOILS

E1.1 Soil Classification and the Unified System

An assessment of the site conditions usually includes an appraisal of the data available by combining values of engineering properties obtained by the site investigation with descriptions, from visual observation of the materials present on site.

The system used by SMEC in the identification of soil is the Unified Soil Classification system (USC) which was developed by the US Army Corps of Engineers during World War II and has since gained international acceptance and has been adopted in its metricated form by the Standards Association of Australia.

The Australian Site Investigation Code (AS1726-1981, Appendix D) recommends that the description of a soil includes the USC group symbols which are an integral component of the system.

The soil description should contain the following information in order:

Soil composition

- SOIL NAME and USC classification symbol (IN BLOCK LETTERS)
- plasticity or particle characteristics
- colour
- secondary and minor constituents (name estimated proportion, plasticity or particle characteristics, colour

Soil condition

- moisture condition
- consistency or density index

Soil structure

structure (zoning, defects, cementing)

Soil origin

interpretation based on observation eg FILL, TOPSOIL, RESIDUAL, ALLUVIUM.

E1.2 Soil Composition

(a) Soil Name and Classification Symbol

The USC system is summarized in Figure E1.2.1. The primary division separates soil types on the basis of particle size into:

- Coarse grained soils more than 50% of the material less than 60 mm is larger than 0.06 mm (60 μm).
- Fine grained soils more than 50% of the material less than 60 mm is smaller than 0,06 mm (60 μm).

Initial classification is by particle size as shown in Table E1.2.1. Further classification of fine grained soils is based on plasticity.

TABLE E1.2.1 - CLASSIFICATION BY PARTICLE SIZE

NAME	SUB-DIVISION	SIZE
Clay (1)		< 2 µm
Silt (2)		2 µm to 60 µm
Sand	Fine Medium Coarse	60 μm to 200 μm 200 μm to 600 μm 600 μm to 2 mm
Gravel (3)	Fine Medium Coarse	2 mm to 6 mm 6 mm to 20 mm 20 mm to 60 mm
Cobbles (3)		60 mm to 200 mm
Boulders (3)		> 200 mm

Where a soil contains an appropriate amount of secondary material, the name includes each of the secondary components (greater than 12%) in increasing order of significance, eg sandy silty clay.

Minor components of a soil are included in the description by means of the terms "some" and "trace" as defined in Table E1.2.2.

TABLE E1.2.2 - MINOR SOIL COMPONENTS

TERM	DESCRIPTION	APPROXIMATE PROPORTION (%)
Trace	presence just detectable, little or no influence on soil properties	0-5
Some	presence easily detectable, little influence on soil properties	5-12

The USC group symbols should be included with each soil description as shown in Table E1.2.3

TABLE E1.2.3 - SOIL GROUP SYMBOLS

SOIL TYPE	PREFIX
Gravel	G
Sand	S
Silt	M
Clay	C
Organic	0
Peat	Pt

The group symbols are combined with qualifiers which indicate grading, plasticity or secondary components as shown on Table E1.2.4

TABLE E1.2.4 - SOIL GROUP QUALIFIERS

SUBGROUP	SUFFIX
Well graded	W
Poorly Graded	Р
Silty	M
Clayey	C
Liquid Limit <50% - low to medium plasticity	L
Liquid Limit >50% - low to medium plasticity	Н

(b) Grading

"Well graded"	Good representation of all particle sizes from the largest to the smallest.
"Poorly graded"	One or more intermediate sizes poorly represented
"Gap graded"	One or more intermediate sizes absent
"Uniformly graded"	Essentially single size material.

(c) Particle shape and texture

The shape and surface texture of the coarse grained particles should be described.

Angularity may be expressed as "rounded", "sub-rounded", "sub-angular" or "angular".

Particle form can be "equidimensional", "flat" or elongate".

Surface texture can be "glassy", "smooth", "rough", pitted" or striated".

(d) Colour

The colour of the soil should be described in the moist condition using simple terms such as:

Black	White	Grey	Red
Brown	Orange	Yellow	Green
Blue			

These may be modified as necessary by "light" or "dark". Borderline colours may be described as a combination of two colours, eg. red-brown.

For soils that contain more than one colour terms such as:

- Speckled Very small (<10 mm dia) patches
- Mottled Irregular
- Blotched Large irregular (>75 mm dia)
- Streaked Randomly oriented streaks

(e) Minor Components

Secondary and minor components should be individually described in a similar manner to the dominant component.

E1.3 Soil Condition

(a) Moisture

Soil moisture condition is described as "dry", "moist" or "wet".

The moisture categories are defined as:

Dry (D) - Little or no moisture evident. Soils are running. Moist (M) - Darkened in colour with cool feel. Granular soil particles tend to adhere. No free water evident upon remoulding of cohesive soils.

In addition the moisture content of cohesive soils can be estimated in relation to their liquid or plastic limit. (b) Consistency

Estimates of the consistency of a clay or silt soil may be made from manual examination, hand penetrometer test, SPT results or from laboratory tests to determine undrained shear or unconfined compressive strengths. The classification of consistency is defined in Table E1.3.1.

TABLE	E1.3.1	- CONSISTENCY	OF	FINE-GRAINED
		SOILS		

TERM	UNCONFINED STRENGTH (kPa)	FIELD IDENTIFICATION
Very Soft	<25	Easily penetrated by fist. Sample exudes between fingers when squeezed in the fist.
Soft	25 - 50	Easily moulded in fingers. Easily penetrated 50 mm by thumb.
Firm	50 – 100	Can be moulded by strong pressure in the fingers. Penetrated only with great effort.
Stiff	100 - 200	Cannot be moulded in fingers. Indented by thumb but penetrated only with great effort.
Very Stiff	200 - 400	Very tough. Difficult to cut with knife. Readily indented with thumb nail.
Hard	>400	Brittle, can just be scratched with thumb nail. Tends to break into fragments.

Unconfined compressive strength as derived by a hand penetrometer can be taken as approximately double the undrained shear strength ($q_u = 2 c_u$).

(c) Density Index

The insitu density index of granular soils can be assessed from the results of SPT or cone penetrometer tests. Density index should not be estimated visually. TABLE E1.3.2 - DENSITY OF GRANULAR SOILS

TERM	SPT N	STATIC	DENSITY
	VALUE	CONE	INDEX
		VALUE	(%)
		q _c (MPa)	
Very Loose	0-3	0 - 2	0 - 15
Loose	3-8	2 - 5	15 - 35
Medium Dense	8-25	5 - 15	35 - 65
Dense	25-42	15 - 20	65 - 85
Very Dense	>42	>20	>85

E1.4 Soil Structure

(a) Zoning

A sample may consist of several zones differing in colour, grain size or other properties. Terms to classify these zones are:

Layer - continuous across exposure or sample

Lens - discontinuous with lenticular shape

Pocket - irregular inclusion

Each zone should be described, their distinguishing features, and the nature of the interzone boundaries.

(b) Defects

Defects which are present in the sample can include:

- fissures
- roots (containing organic matter)
- tubes (hollow)
- casts (infilled)

Defects should be described giving details of dimensions and frequency. Fissure orientation, planarity, surface condition and infilling should be noted. If there is a tendency to break into blocks, block dimensions should be recorded

E1.5 Soil Origin

Information which may be interpretative but which may contribute to the usefulness of the material description should be included. The most common interpreted feature is the origin of the soil. The assessment of the probable origin is based on the soil material description, soil structure and its relationship to other soil and rock materials.

Common terms used are:

"Residual Soil" - Material which appears to have been derived by weathering from the underlying rock. There is no evidence of transport.

"Colluvium" - Material which appears to have been transported from its original location. The method of movement is usually the combination of gravity and erosion.

"Landslide Debris" - An extreme form of colluvium where the soil has been transported by mass movement. The material is obviously distributed and contains distinct defects related to the slope failure. "Alluvium" - Material which has been transported essentially by water. Usually associated with former stream activity.

"Fill" - Material which has been transported and placed by man. This can range from natural soils which have been placed in a controlled manner in engineering construction to dumped waste material. A description of the constituents should include an assessment of the method of placement.

E1.6 Fine Grained Soils

The physical properties of fine grained soils are dominated by silts and clays.

The definition of clay and silt soils is governed by their Atterberg Limits. Clay soils are characterised by the properties of cohesion and plasticity with cohesion defines as the ability to deform without rupture. Silts exhibit cohesion but have low plasticity or are non-plastic.

The field characteristics of clay soils include:

- dry lumps have appreciable dry strength and cannot be powdered
- volume changes occur with moisture content variation
- feels smooth when moist with a greasy appearance when cut.

The field characteristics of silt soils include:

- dry lumps have negligible dry strength and can be powdered easily
- dilatancy an increase in volume due to shearing is indicted by the presence of a shiny film of water after a hand sample is shaken. The water disappears upon remoulding. Very fine grained sands may also exhibit dilatancy.
- low plasticity index
- feels gritty to the teeth

E1.7 Organic Soils

Organic soils are distinguished from other soils by their appreciable content of vegetable matter, usually derived from plant remains.

The soil usually has a distinctive smell and low bulk density.

The USC system uses the symbol Pt for partly decomposed organic material. The O symbol is combined with suffixes "O" or "H" depending on plasticity.

Where roots or root fibres are present their frequency and the depth to which they are encountered should be recorded. The presence of roots or root fibres does not necessarily mean the material is an "organic material" by classification.

Coal and lignite should be described as such and not simply as organic matter.

E2 CLASSIFICATION OF ROCKS

E2.1 Uniform Rock Description

The aim of a rock description for engineering purposes is to give an indication of the expected engineering properties of the material.

In a similar manner to soil materials, the assessment of site conditions where rock is encountered has to be based on the use of a descriptive method which is uniform and repeatable. Description has to:

- provide a clear identification of the rock substance and its engineering properties, and
- include details of the features which affect the engineering properties of the rock mass.

There is no internationally accepted system for rock description but SMEC Testing Services Pty Ltd has adopted a method which incorporates terminology defined by common usage in the engineering geological profession. Most feature definitions are as recommended by the International Society of Rock Mechanics and by the Standards Association of Australia.

For uniform presentation the different features are described in order:

Rock Substance

- NAME (in block letters)
- Mineralogy
- Grain Size
- Colour
- Fabric
- Strength
- Weathering/Alteration

Rock Mass

- Defect type
- Defect orientation
- Defect features
- Defect spacing

E2.2 Rock Substance

(a) Rock name

Each rock type has a specific name which is based on:

- mineralogy
- grain size
- fabric
- origin

The only method of determining the precise rock name is by thin section petrography.

Field identification of rocks for engineering purposes should be based on the use of common, easily understood, simple, geological names. In many cases knowledge of the precise name is of little consequence in the assessment of site conditions. If required the "field name" can be qualified by reference to a petrographic report. Reference to local geological reports often provides information on the rock types which may be expected. (b) Mineralogy

The rock description should include the identification of the prominent minerals. This identification is usually restricted to the more common minerals in medium and coarse grained rocks.

(c) Grain Size

Rock material descriptions should include general grouping of the size of the predominant mineral grains as defined in Table E2.2.1. The maximum size, or size range, of the larger mineral grains or rock fragments should be recorded.

TABLE E2.2.1. - GRAIN SIZE GROUPS

TERM	GRAIN SIZE (mm)	
Very Coarse	>60	
Coarse	2 - 60	
Medium	0.06 - 2	
Fine	0.002 - 0.06	
Very Fine	< 0.002	
Glassy		

(d) Colour

The colour of the rock should be described in the moist condition using simple terms such as:

Black	White	Grey	Red
Brown	Orange	Yellow	Green
Blue			

These may be modified as necessary by "light" or "dark". Borderline colours may be described by a combination of two colours, eg: grey-blue.

(e) Fabric

The fabric of a rock includes all the features of texture and structure, though the term refers specifically to the arrangement of the constituent grains or crystals in a rock. The fabric can provide an indication of the mode of formation of the rock:

- in sedimentary rocks bedding indicates depositional conditions,
- in igneous rocks the texture indicates the rate of cooling, and
- in metamorphic rocks the foliation indicates the stress conditions

Descriptions of fabric should include structure orientation, either with reference to North and horizontal, or to a plane normal to the core axis.

Tables E2.2.2, E2.2.3 and E2.2.4 list common textural features of sedimentary, igneous and metamorphic rocks with the subdivision of stratification spacing in Table E2.2.5.

TABLE E2.2.2 - COMMON STRUCTURES IN IGNEOUS ROCKS

122	IUNLOUS KC	JC K3
ſ	STRATIFICATION (Planar)	STRATIFICATION
L		(Irregular)
[Bedding	Washout
ſ	Cross Bedding	Slump Structure
I	Graded Bedding	Shale Breccia
[Lamination	
[Cross Lamination	

TABLE E2.2.3 - COMMON STRUCTURES IN IGNEOUS ROCKS

	FINE	COARSE
	GRAINED	GRAINED
	ROCKS	ROCKS
Uniform Grain	Massive	Massive
Size	Flow Banded	Granitic
	Vesicular	Pegmatitic
Different Grain Size	Porphyritic	Porphyritic

TABLE E.2.2.4 - COMMON STRUCTURES IN

METAMORPHIC ROCKS		
FINE GRAINED ROCKS	COARSE GRAINED	
	ROCKS	
Slatey Cleavage	Granoblastic	
Spotted	Porphyroblastic	
Hornsfelsic	Lincated	
Foliated	Gneissic	
Mylonitic	Mylonitic	

TABLE E2.2.5 - STRATIFICATION SPACING

TERM	SEPARATION (mm)
Very Thickly Bedded	>2000
Thickly Bedded	600 - 2000
Medium Bedded	200 - 600
Thinly Bedded	60 - 200
Very Thinly Bedded	20 - 60
Laminated	6 - 20
Thinly Laminated	<6

(f) Strength

Substance strength is one of the most important engineering features of a rock and every description should include at least an estimate of the rock strength class of the material. This estimate can be calibrated by test results, either by Point Loan Strength Index or by Unconfined Compressive Strength.

The rock strength class in As 1726-1981 is defined by Point Loan Strength Index $I_{si}(50)$. The relationship between Point Loan and Unconfined Strength is commonly assumed to be about 20, but can range from 4 (in some carbonate rocks) to 40 (in some igneous rocks). It is necessary to confirm the relationship for each rock type and project. classification should be based on material at field moisture content, as some rocks give a significantly higher strength when tested dry.

Table E2.2.6 defines the rock strength classes, with indicative field tests listed in Table E2.2.7 which assist in classification when testing equipment is not available.

TABLE E2.2.6 - CLASSIFICATION OF ROCK STRENGTH

SYMBOL	TERM	POINT	APPROX
		LOAD	Qu (MPa)
		STRENGTH	
		(MPa)	
EL	extremely	< 0.03	<1
	low		
VL	very low	0.03 - 0.1	1 - 3
L	low	0.1 - 0.3	3 - 10
M	medium	0.3 - 1	10 - 30
Н	high	1 - 3	30 - 70
VH	very high	3 - 10	70 - 200
EH	extremely	>10	>200
	high		

TABLE E2.2.7 - FIELD TESTS FOR ROCK STRENGTH CLASSIFICATION

STRENGTH	FIELD TEST
CLASS	
Extremely Low	Indented by thumb nail with difficulty
Very Low	Scratched by thumb nail
Low	Easily broken by hand or pared with a
	knife
Medium	Broken by hand or scraped with a knife
High	Broken in hand by firm hammer blows
Very High	Broken against solid object with several
	hammer blow
Extremely High	Difficult to break against solid object
	with several hammer blows

(g) Weathering/Alteration

In addition to the description of rock substance as examined, an assessment is required of the extent to which the original rock material has been affected by subsequent events. The usual processes are:

- Weathering Decomposition due to the effect of surface or near surface activities
- Alteration Chemical modification by the action of materials originating from within the mantle below.

The classification of weathering/alteration presented in Table E2.2.8 is based on the extent/degree to which the original rock substance has been affected. This classification has little engineering significance, as the properties of the rock as examined may bear no relationship to the properties of the fresh rock.

TABLE E2.2.8 - CLASSIFICATION OR ROCK WEATHERING/ALTERATION

TERMS	DEFINITION	
Fresh (Fr) Rock substance unaffected.		
Fresh Stained (FR St)		
Slightly (SW)	Partial staining or discolouration of rock substance.	
Moderately (MW)	Staining or discolouration extends throughout the whole rock substance.	
Highly (HW)	Rock substance partly decomposed.	
Completely (CW)	Rock substance entirely decomposed.	

E2.3 Rock Mass

The engineering properties of rock mass reflect the effect which the presence of defects has on the properties of the rock substance. Description of the rock mass properties consists of supplementing the description covered by Section E2.2 with data on the defects which are present.

(a) Defect type

The different defect types are described in Table E2.3.1.

(b) Defect orientation

Descriptions of defects should include orientation, either of individual fractures or of groups of fractures. Orientation should be with reference to North and horizontal, or to a plane normal to the core axis.

TABLE E2.3.1 - ROCK DEFECT TYPES

TYPE	SYMBOL	DESCRIPTION
Parting	Pt	A defect parallel or subparallel to a layered arrangement of mineral grains or micro-fractures which has caused planar anistrophy in the rock substance.
Joint	Jt	A defect across which the rock substance has little tensile strength and is not related to textural or structural features with the rock substance.
Sheared Zone	SZ	A zone with roughly parallel planar boundaries or rock substance containing closely spaced, often slickensided, joints.
Crushed Zone	CZ	A zone with roughly parallel planar boundaries of rock substance composed of disoriented, usually angular, fragments of rock.
Seam	Sın	A zone with roughly parallel boundaries infilled by soil or decomposed rock.

(c) Defect features

The character of a defect is described by its continuity, planarity, surface roughness, width, and infilling.

- Continuity In outcrop the extent of a joint, bedding plane or similar defect both along and across the strike can be measured. In core, continuity measurement is restricted to defects nearly parallel to the core axis.
- Planarity Described as "Planar", "Irregular", "Curved" or "Undulose".
- Roughness Described as "Rough", "Smooth", "Polished" or "Slickensided".
- Width Measured in millimetres normal to the plane of nthe defect

- Infilling Described as "Clean", "Stained", "Veneer" (<1 mm) or "Infill" (>1 mm). The coating or infilling material should be identified.
- (d) Defect spacing

The spacing of defects, particularly where they occur in parallel groups or sets, provides an indication of the rock block sizes which:

- have to be supported in the face or roof of an excavation
- will be produced by the excavation operation.

It is preferable to provide measured data but discontinuity spacing is grouped as shown in Table E2.3.2.

DESCRIPTION	SPACING (mm)
Extremely Widely Spaced	>6000
Very Widely Spaced	2000 - 6000
Widely Spaced	600 - 2000
Medium Spaced	200 - 600
Closely Spaced	60 - 200
Very Closely Spaced	20 - 60
Extremely Closely Spaced	<20

TABLE E2.3.2 - DISCONTINUITY SPACING

APPENDIX B

0

 \bigcirc

POINT LOAD & CBR TEST RESULTS

hone: (02)97	56 2166 Fax: (02	2)9756 1137	Email: smectest	ing@pacific.ne	et.au					A Accredited fo with ISO/I	
				Point Le	oad Strei	ngth Inde.	x Report		v	This Docume reproduced	nt may not be except in full
roject: Evel	eigh Street, Red	fem				-0			I	Project No.:	17772/814
lient: DeiC	Corp NSW									Report No.:	10/0828
ddress: Sho	p 5/140-152 Ne	ew Canterbu	ry Road, Peters	sham NSW 2	049				R	leport Date:	21/07/201
	AS4133.4.1										1 of 7
erms of Reg				covered unde	r NATA	Terms of Reg				covered unde	er NATA
ate Sample	s Drilled / Take	n: 13/07/20	10			Date Sample	s Drilled / Take	n: 13/07/20	10		
Borehole No	. 1					Borehole No	. I				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moistur
10.92	D	0.427	SH	BE	М	17.45	D	1.416	SH	BE	М
10.92	А	0.602	SH	BE	М	17.45	А	1.694	SH	BE	М
11.30	A	0.825	SH	BE	М	18.25	D	1.396	SH	BE	М
11.83	A	0.798	SH	BE	М	18.25	A	2.839	SH	BE	М
12.43	D	0.438	SH	BE	М	19.67	D	1.036	SH	BE	М
12.43	A	0.800	SH	BE	М	19.67	A	1.212	SH	BE	М
13.17	А	1.125	SH	BE	М						
14.05	D	0.512	SH	BE	М						
14.05	A	1.002	SH	BE	М	-	***	***	(***)		***
14.95	A	1.441	SH	BE	М						
15.18	D	0.632	SH	BE	M				.		***
15.18	A	1.857	SH	BE	М	-					
16.46	D	0.652	SH	BE	M					***	
16.46	A	1.544	SH	BE	M					3.10	***
					*		**				
	STRUCTUR			TEST TYPE	Ξ		MOISTURE	CONDITIC		ROCK TYP	
	MA= MASSI			A= AXIAL	DAT		W= WET			SS= SAND	
	BE= BEDDE LA= LAMIN			D= DIMETI I= IRREGU			M= MOIST D= DRY			ST= SILTS SH= SHAL	
	LA= LAMIN CR≈ CRYST			C = CUBE						SH= SHAL YS= CLAY	
temarks:	on enibi			C COBL						IG= IGNEC	
											ner Heighes
									Approved Si	2	

hone: (02)97:	56 2166 Fax: (02	2)9756 1137	Email: smectest	ting@pacific_ne	et au					with ISO/I	
				Point Le	oad Strei	ngth Inde.	x Report		v	This Docume reproduced	ntmaynotbe exceptin full
roject: Evele	igh Street, Red	fern				0	1		ł	Project No.:	17772/814
Client: DeiC										Report No.:	
	o 5/140-152 Ne	ew Canterbu	ry Road, Peter	sham NSW 2	049				R	leport Date:	
Test Method:		1 2 1 7		1 1	NT A 77 A		1 0 1	1 1 1 1			2 of 7
erms of Reg	ceedure: Geote istration)	chnical inve	stigation (Not	covered unde	I NATA	Terms of Rep	oceedure: Geote gistration)	chnical inve	estigation (Not	covered unde	TNATA
Date Samples	Drilled / Take	n: 12/07/20	10			Date Sample	s Drilled / Take	n: 12/07/20	10		
Borehole No.	2					Borehole No	. 2				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture
5,94	А	0.085	SH	BE	М	11,42	А	1,266	SH	BE	М
6.06	D	0.291	SH	BE	М	12,16	D	1.656	SH	BE	М
6,06	A	0,238	SH	BE	М	12.16	A	1.659	SH	BE	М
6,60	A	0,202	SH	BE	М	12,89	D	1,234	SH	BE	М
6.80	D	0,384	SH	BE	М	12,89	A	1.441	SH	BE	М
6.80	A	0.234	SH	BE	М	13.25	D	1.307	SH	BE	М
7.72	А	0,483	SH	BE	М	13.25	A	1.041	SH	BE	М
8.57	D	0,718	SH	BE	М	14,30	D	1,656	SH	BE	М
8,57	A	1.704	SH	BE	М	14.30	А	1.125	SH	BE	М
8.66	D	0.454	SH	BE	М	16.20	D	1.717	SH	BE	М
8.66	A	1.036	SH	BE	M	18,15	A	0.884	SH	BE	М
9,50	A	1.382	SH	BE	М	18.15	D	1.328	SH	BE	М
10.32	D	0.390	SH	BE	М						
10.32	A	0.889	SH	BE	М						
			202 201		1227	30			•••		
	STRUCTUR MA= MASSI			TEST TYPE A= AXIAL	2		MOISTURE W= WET	CONDITIO	ON	ROCK TYP SS= SAND	
	BE= BEDDE	ED		D= DIMETI	RAL		M= MOIST			ST= SILTS	TONE
	LA= LAMIN			I= IRREGU	LAR		D= DRY			SH= SHAL	Е
	CR= CRYST	ALLINE		C= CUBE						YS=CLAY	
Remarks:										IG= IGNEC	DUS
										Jan	ros religios
									Approved Si	1	

hone: (02)97	56 2166 Fax: (02	2)9756 1137	Email: smectest	ing@pacific.ne	et.au					with ISO/I-	r compliance EC 17025 nt may not be except in full
				Point Le	oad Stre	ngth Inde:	x Report			reproduced	except in full
roject: Evel	eigh Street, Red	fern							1	Project No.:	17772/814
lient: DeiC	-									Report No.:	
	p 5/140-152 No AS4133.4.1	ew Canterbu	ry Road, Peters	sham NSW 2	049				R	Report Date:	
	ceedure: Geote	chnical Inve	estigation (Not	covered unde	NATA	Sampling Pro	oceedure: Geote	chnical Inve	estigation (Not	Page:	
erms of Reg		enneur mite	SuBarion (1101)		11/11/1	Terms of Reg			Sugarion (1401	covered unde	
Date Sample:	s Drilled / Take	n: 14/07/20	10			Date Sample	s Drilled / Take	n: 14/07/20	10		
Borehole No	. 3					Borehole No	. 3				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture
4.62	D	0.054	SH	BE	М	11.62	D	0.659	SH	BE	М
4.62	A	0.092	SH	BE	М	11.62	А	1.212	SH	BE	М
5.40	A	0.035	SH	BE	М	12.41	D	0.861	SH	BE	М
6.20	D	0.035	SH	BE	М	12.41	A	1.146	SH	BE	М
6.20	A	0.047	SH	BE	М	13.73	D	0.566	SH	BE	М
6.68	D	0.043	SH	BE	М	13.73	A	0.666	SH	BE	М
6.68	A	0.052	SH	BE	М	15.36	D	0.504	SH	BE	М
8.46	D	0.777	SH	BE	М	15.36	A	0.544	SH	BE	М
8.46	A	0.577	SH	BE	М	16.31	D	0.372	SH	BE	М
8.70	A	0.749	SH	BE	M	17.00	D	0.923	SH	BE	М
9.48	A	1.673	SH	BE	М	17.00	A	0.586	SH	BE	М
10.26	D	0.384	SH	BE	М	17.83	D	0.687	SS	BE	М
10.26	A	1.538	SH	BE	М	17.83	A	1.572	SS	BE	М
11.10	D	1.140	SH	BE	М	19.20	D	0.656	SS	BE	М
11.10	А	1.397	SH	BE	М	19.20	А	1.537	SS	BE	М
	STRUCTUR	Е		TEST TYPE	8		MOISTURE	CONDITIC	ON	ROCK TYP	Έ
	MA= MASSI			A= AXIAL			W= WET			SS= SANDS	
	BE= BEDDE			D= DIMETH			M= MOIST			ST= SILTS	
	LA= LAMIN CR= CRYST			I≕ IRREGUI C= CUBE	LAK		D= DRY			SH= SHAL YS= CLAY	
Remarks:	UN-UNISI	ALLINE		C-COBE						YS=CLAY IG=IGNEC	
- Jan 19 19 19 19 19 19 19 19 19 19 19 19 19											Jora ekigdar
									Approved Sig	enatory	an Seatting Bar

4/1 Cowpas	ting Services	therill Park		in a land in	at au				NAT	Accreditation	
hone: (02)97	56 2166 Fax: (02	2)9756 1137	Email: smectest	ing@pacific.ne	et.au				V	A Accredited fo with 150/1 This Docume	nt may not be
				Point L	oad Stre	ngth Inde:	x Report			reproduced	except in full.
Project: Evel	eigh Street, Red	fern					-			Project No.:	17772/814
Client: DeiC										Report No .:	
	p 5/140-152 Ne	ew Canterbu	ry Road, Peter	sham NSW 2	049				F	Report Date:	
1.	AS4133.4.1	-11-1			NI A TE A			-1	diamina Olar		4 of 7
Ferms of Reg	ceedure: Geote gistration)	chnical inve	sugation (Not	covered unde	TNATA	Terms of Reg	oceedure: Geote gistration)	cnnical invo	estigation (Not	coverea una	T NAIA
Date Sample:	s Drilled / Take	n: 19/07/20	10			Date Sample	s Drilled / Take	n: 19/07/20	010		
Borehole No	. 6					Borehole No	. 6				
Depth	Test Type	ls(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture
6.70	A	0.238	SH	BE	М	S ***			-		-
7.54	D	0.120	SH	BE	М					;***;	
7.54	A	0.248	SH	BE	М						
8.27	A	0.344	SH	BE	М		Ť.				1000
9.44	D	1.032	SH	BE	М			: .			
9.44	A	1.160	SH	BE	М	3.000		1555)	-		1
9.90	D	1.245	SH	BE	М	(111				-	
9.90	A	1.645	SH	BE	M	:		1999			51121
10.68	D	1.447	SH	BE	М	***	-)	-		(****)
11.44	D	1.490	SH	BE	М						
11.44	A	1.654	SH	BE	M						
14.71	D	0.881	SH	BE	M						
14.71	A	1.371	SH	BE	М					Stere	
		***		-					-		
					1000					1222	-
	STRUCTUR			TEST TYPE	3		MOISTURE	CONDITIO	NC	ROCK TYP	
	MA= MASSI			A= AXIAL			W= WET			SS= SAND	
	BE= BEDDE			D= DIMETI			M= MOIST			ST= SILTS	
	LA= LAMIN CR= CRYST			I= IRREGU C= CUBE	LAK		D= DRY			SH= SHAL YS= CLAY	
Remarks:	UN=UKYSI	ALLINE		C- COBE						YS= CLAY IG= IGNEC	
tenurks.										ä	me thighes
									Approved Si	V	
Technician	IR						Iamee 1	lugher (
echnician: J	J.H.						James 1	lughes - (QA Manager		

-	ture Place, Wet 56 2166 Fax: (02			ing@pacific.ne	et.au				NAT	A Accredited fo with ISO/I	
				Point L	ad Stra	ngth Inde:	r Report		V	This Docume reproduced	except in full
roject: Evel	eigh Street, Red	fern			Juu Direi	ngin mue.	к кероп		1	Project No.:	17772/814
lient: DeiC										Report No.:	
	p 5/140-152 Ne	ew Canterbu	ry Road, Peter	sham NSW 2	049					eport Date:	
est Method:	-										5 of 7
ampling Pro erms of Reg	ceedure: Geote istration)	chnical Inve	stigation (Not	covered under	r NATA	Sampling Pro Terms of Reg	oceedure: Geote gistration)	chnical Inve	estigation (Not	covered unde	er NATA
Date Samples	s Drilled / Take	n: 16/07/20	10			Date Sample	s Drilled / Take	n: 16/07/20	10		
Borehole No	. 7					Borehole No	. 7				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture
9.18	D	0.054	SH	BE	М			1222	2000		
9.18	A	0.069	SH	BE	М			-		•••	
9.92	D	0.446	SH	BE	M						
9.92	A	0.674	SH	BE	М	÷	8 9 0		**	**	-
10.30	D	0.993	SH	BE	М			1000			
11.05	D	0.850	SH	BE	М	-			2000		
11.05	A	0.743	SH	BE	М			***			
12.05	D	0.753	SH	BE	М			202	-	222	
12.05	A	0.722	SH	BE	М	5440)	54440		(346)	-	
12.66	D	0.862	SH	BE	M	(111)					-
12.66	A	0.771	SH	BE	М				5576		
14.04	D	0.970	SH	BE	М				•••		
14.04	A	1.208	SH	BE	М	***	***			***	
		(1999)									
***		***			#		**				
	STRUCTUR	Е		TEST TYPE	E		MOISTURE	CONDITIC	ON	ROCK TYP	PΕ
	MA= MASSI			A= AXIAL			W= WET			SS= SAND	STONE
	BE= BEDDE			D= DIMETI			M= MOIST			ST= SILTS	
	LA= LAMIN			I= IRREGU	LAR		D= DRY			SH= SHAL	
	CR= CRYST	ALLINE		C= CUBE						YS= CLAY	
Remarks:										IG= IGNEC	DUS
										Å	Come Highes
									Approved Si	gnatory/	

-)

14/1 Cowpas	sting Service sture Place, We 56 2166 Fax: (0)	therill Park		ing@pacific.no	et.au					Accredited fo with ISO/3	requirements e compliance EC 17025 ot may not be
1.1.1.T				Point Le	oad Stre	ngth Inde:	x Report		100	reproduced i	
	eigh Street, Red	lfern								v	17772/81461
Client: DeiC	Corp NSW 19 5/140-152 No	ou Contorb	m. Dood Datas	ham NEW 2	0.40					Report No.:	
Test Method:		ew Canterbu	iry Koau, Peter	snam in 5 w 2	049				r	Report Date: Page:	
	ceedure: Geote	chnical Inve	estigation (Not	covered unde	r NATA	Sampling Pro	oceedure: Geote	chnical Inve	stigation (Not		
Terms of Reg						Terms of Reg					
Date Sample	s Drilled / Take	n: 15/07/20	10			Date Sample	s Drilled / Take	n: 15/07/20	10		
Borehole No	. 8					Borehole No	. 8				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	ls(50) (Mpa)	Rock Type	Rock Structure	Moisture
6.20	D	0.910	SH	BE	М					-	
6.20	А	0.175	SH	BE	М	(1 -1-1)				7 444 5	-
6.37	D	0.303	SH	BE	М	1.575		: :			
6.37	A	0.140	SH	BE	М						
9.34	D	0.433	SH	BE	М			1000		-	
9.52	D	0.818	SH	BE	М						
9.52	А	0.587	SH	BE	М			2772)		-	
10.32	D	0.543	SH	BE	М		*				
10.32	А	0.655	SH	BE	М			(121)		2444	
11.23	D	0.512	SH	BE	М			(100)	394		-
11.23	А	0.559	SH	BE	М						1.000
12,08	D	0.861	SS	BE	М				122		
12.08	A	1.751	SS	BE	М			-		2000	-
14.10	D	1.338	SS	BE	М					3 649 5	
14.10	А	1.119	SS	BE	М	-		١ .	-	9555	
Remarks:	STRUCTUR MA= MASS BE= BEDDE LA= LAMIN CR= CRYST	IVE ED IATED		TEST TYPE A= AXIAL D= DIMET) I= IRREGU C= CUBE	RAL		MOISTURE W= WET M= MOIST D= DRY	CONDITIC		1	STONE FONE STONE DUS
Technisian	111						Tomo- T	Jughes O		gnatory	
Technician: .	J,r1,						James I	-ugnes - Q	A Manager		

hone: (02)97	56 2166 Fax: (02	2)9756 1137	Email: smectes	ing@pacific.n	et.au					with IBO/II	r compliance EC 17025 nt may not be
				Point L	oad Strei	ngth Inde:	x Report		•	reproduced (acept in full.
	eigh Street, Red	fern]	Project No.:	17772/814
lient: DeiC										Report No.:	
	p 5/140-152 Ne	ew Canterbu	iry Road, Peter	sham NSW 2	049				R	Report Date:	
	AS4133.4.1					<u> </u>				Page:	
erms of Reg				covered unde	r NATA	Terms of Reg	- ·			covered unde	r NATA
Date Sample	s Drilled / Take	n: 20/07/20	10			Date Sample	s Drilled / Take	n: 20/07/20	10		
Borehole No	. 9					Borehole No	o. 9				
Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moisture	Depth	Test Type	Is(50) (Mpa)	Rock Type	Rock Structure	Moistu
10.24	A	0.990	SH	BE	М						3 <u>44</u>
11.04	D	1.055	SH	BE	М			(222)		-	344
11.04	A	0.997	SH	BE	М						
11.65	A	0.668	SH	BE	М			•••	95 95		••••
11.95	D	0.628	SH	BE	М			3444		ंबस्य	2000
11.95	Α	1.322	SH	BE	М				***		
12.56	D	1.319	SH	BE	М						
12.56	A	0.931	SH	BE	М			7 		1222	
13.11	D	0.555	SH	BE	М					2000	
13.11	A	0.933	SH	BE	M						
14.55	D	0.733	SH	BE	М			••••			
14.55	A	0.987	SH	BE	М					162	
***				••••					(****):		:(***
									-		
	-	-			-					200	
	STRUCTUR			TEST TYPE	ł		MOISTURE	CONDITIC		ROCK TYP	
	MA= MASSI			A= AXIAL			W= WET			SS= SANDS	
	BE= BEDDE			D= DIMETI			M= MOIST			ST= SILTS	
	LA= LAMIN			I= IRREGU	LAR		D= DRY			SH= SHALI	
temarks:	CR= CRYST	ALLINE		C= CUBE						YS= CLAY IG= IGNEO	
voinarks.										4	- Highes
									Approved Sig	V	

*		etherill Park NSW				BLATA accredit	ited Latorston Number 2750 comment is insured in uance with NATA's action requirements ted for compliance ISO/IEC 17025
hone: (02)975	6 2166 Fax: (0	02)9756 1137 Email:	smectesting@pacific.r	iet.au			ISO/IEC 17025 comment may not be iced except in full
		Calife	ornia Rearing	Ratio Determ	ination Repor		iced except in full.
roject: Evele	igh Street, Re	v	nina Dearing	Runo Derei m	indition Repor	Project No.:	17772
	orp NSW Pty					Report No.:	
		terbury Road, Peters	sgam NSW 2049			Report Date:	13/08/2010
est Method:	AS1289.2.1.1	, 5.1.1, 6.1.1				Page:	1 of 1
√o. of Days S	oaked: 4					Compactive Effort:	Standard
					Targ	et Compaction (%):	100
Client Reques						Surcharge (Kg):	4.5
ampling Pro	ceedure: AS 1	289.1.2.1 Clause 6.5	5.3 - Power Auger Di	rilling (Not covered u	under NATA Terms o	f Registration)	
STS / Sar	nple No.	8146B / 1	8146B / 2	8146B / 3	8146B / 4		
Sample I	Location	Borehole 2 Refer to Drawing No: 10/0811	Borchole 7 Refer to Drawing No: 10/0811	Borehole 10 Refer to Drawing No: 10/0811	Borehole 12 Refer to Drawing No: 10/0811		
Material D	escription	Silty Sand, brown, scattered pebbles	Sand, yellow- brown	Sand, dark brown	Sand, brown/yellow- brown, some fines		
Depth of S	ample (m)	0.1 - 0.6	0.2 - 1.0	0.3 - 0.8	0.2 - 0.8		
Sample	e Date	12/07/2010	12/07/2010	12/07/2010	12/07/2010		
Oversize on (%	ó)	1.9	Nil	0.3	0.2		
Field Moist (%	6)	11.0	7.5	6.8	4.5		
Optimum Conte	st (%)	11.9	10.4	12.2	13.1		
Maximum I (t/r		1.92	1.83	1.72	1.66		
Dry Density (t/m³)	Before Soaking	1.91	1.82	1.72	1.66		
	After Soaking	1.91	1.82	1.72	1.66		
Relative Compactio (%)	Before Soaking	99.8	99.4	100.0	99.7		
9 ° I	After Soaking	99.8	99.4	100.0	99.7		
Moisture Content (%)	Before Soaking	12.0	10.7	12.0	12.8		
	After Soaking	13.1	13.3	16.7	18.7		
Moisture R Soakir		101.2	103.1	98.3	97.5		
Moisture Content after test	Top 30mm	13.2	14.8	16.3	18.0		
ture rent test	Entire Depth	12.7	14.1	16.9	18.8		
Swell after S	Soaking (%)	0.0	0.0	0.0	0.0		
CBR Va	lue (%)	35	15	25	15		
Penetrat	ion (mm)	5.0	2.5	2.5	2.5		
Remarks:	+19mm mate	erial excluded from t	est		Approved Signatory	11	1 1

Technician: MB, AK

Form: RPS25

 \bigcirc

Date of Issue:08/09/06

Lincoln Coleman - Senior Geotechnician