

REPORT DISTRIBUTION

Preliminary Site Investigation with Limited Sampling Site C, Pemulwuy Project - Eveleigh Street, Redfern NSW

El Report No.: E23309 AA_Rev0 Date: 6 April 2017

Copies		Recipient	
1	Soft Copy (PDF – Secured, issued by email)	Mr Greg Colbran DeiCorp Constructions NSW Pty Ltd Suite 3.01, 161 Redfern Street, REDFERN NSW 2016	
	Original (Saved to Digital Archives)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009	

Author

Luiser

Technical Reviewer

S. forte

		NATHAN FOSTER Senior Environmental Sc	ientist
Revision	Details	Date	Amended By
0	Original	6 April 2017	-

© 2017 El Australia (El)

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by EI.

EXECUTIVE SUMMARY

Background and Objectives

DeiCorp Constructions NSW Pty Ltd engaged El Australia (El) to conduct a Preliminary Site Investigation (PSI) with Limited Sampling for a land parcel at Site C Pemulwuy Project – 77-123 Eveleigh Street, Redfern NSW ('the site'). The site covers a total area of approximately 2,500 m².

The site, which was largely vacant land at the time of PSI site works but had been used for both commercial and residential purposes previously, is proposed for redevelopment. The development will include construction of a multi storey mixed residential / commercial building. El consider the development qualifies as a HIL-B / HIL-C Development – *Residential with Minimal Opportunities for Soil Access*, and *Public Open Spaces* as defined in NEPM (2013).

This PSI was completed to provide an appraisal on the environmental conditions at the site for due diligence purposes. The primary objectives of this PSI were to evaluate the potential for site contamination and to investigate the degree of any potential contamination by the means of reviewing site history, intrusive sampling and laboratory analysis.

Key Findings

The work was conducted with reference to the regulatory framework outlined in **Section 1.2** of this report and assessment findings indicated the following:

- The site, which was largely vacant land at the time of PSI site works but had been used for both commercial and residential purposes previously .The newly proposed development will include construction of a multi storey mixed residential / commercial building. El consider the development qualifies as a HIL-B / HIL-C Development *Residential with Minimal Opportunities for Soil Access*, and *Public Open Spaces* as defined in NEPM (2013).
- The intrusive investigation program carried out in this PSI comprised the drilling of eight boreholes (identified as BH101M to BH108), followed by installation of one groundwater monitoring wells. Soil samples were collected from depths between 0.1 m to 3.8 mBGL, from both the fill and natural soil horizons;
- The subsurface layers observed during the intrusive investigation comprised a layer of anthropogenic fill / topsoil, overlying residual silty clay, followed by shale bedrock.
- Laboratory analytical results of the tested soil samples indicated heavy metals, TRH, BTEX, PAH, OCP/OPP, PCB, and asbestos below adopted human-health criteria.
- Laboratory analytical results of the tested soil samples identified the following exceedances in ecological investigation levels:
 - Copper concentrations in samples BH107_0.7-0.8 (310 mg/kg) and BH108_0.4-0.5 (63 mg/kg);
 - Nickel concentrations in BH108_0.4-0.5 (81 mg/kg); and
 - Zinc concentrations in sample BH108_0.4-0.5 (560 mg/kg).

- With considerations given to the site development, it will require that the fill soils in and around the landscaping area will be removed during the excavation phase, and therefore not pose a risk of contamination.
- A groundwater monitoring event was completed by sampling at one newly installed monitoring wells (BH101M) and a well installed previously by SMEC (SMEC-BH2) on 14 March 2017;
- Groundwater seepage was not observed during auger drilling of the test bores, down to a
 maximum depth of 8.8 mBGL. Standing groundwater levels measured in the two monitoring
 wells were between 4.961 m to 8.015 mBGL. Groundwater flow was inferred to be generally
 towards the north to north-west.
- Laboratory analytical results indicated the concentrations of BTEX, TRH, PAH, VOCs and total phenols in the collected groundwater samples were below the adopted assessment criteria. Heavy metals concentrations were mostly below the adopted criteria, with the exception of the following:
 - Zinc in all both monitoring wells at concentrations of 46 μg/L (BH101M) and 54 μg/L (SMEC BH2), exceeded the GILs of 8 μg/L for Fresh Waters;

Based on EI's experience, heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments, and not considered to represent a cause for environmental concern.

- Heavy metal concentrations reported in both wells were largely comparable, demonstrating that there was no material increase of heavy metal concentrations in groundwater at down gradient locations of the site.
- A conceptual site model (CSM) was derived for the site in this PSI. The CSM identified potential contaminating sources that may occur at the site and evaluated the likelihood for relevant exposure pathways to be complete during and after the proposed development. Based on the findings of this assessment, possible risks to sensitive receptors are low.

Conclusions and Recommendations

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 13**), EI concludes that gross and/or widespread contamination was not identified at the site in soils and groundwater, and possible risks to sensitive receptors are low. In light of the proposed demolition of existing structures and the presence of some heavy metals exceeding ecological criteria, recommendations for site management following demolition are provided below:

- Undertake a site inspection of freshly exposed surfaces following the demolition and removal of slab/ hardstand. Inspect particularly for foreign materials, any potential contamination sources, unexpected finds, and hazardous materials (asbestos containing) deposited following demolition;
- Manage fill according to the steps outlined **Section 12**.

CONTENTS

EXE	ECUTIVE SUMMARY	I
1.	INTRODUCTION	1
	1.1 BACKGROUND AND PURPOSE	1
	1.2 REGULATORY FRAMEWORK	1
	1.3 PROJECT OBJECTIVES	2
	1.4 SCOPE OF WORKS	2
2.	SITE DESCRIPTION	4
	2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING	4
	2.2 Surrounding Land Use	4
	2.3 REGIONAL SETTING	5 6
	2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE 2.5 SITE WALKOVER INSPECTION	0 7
~		
3.	SITE HISTORY AND SEARCHES 3.1 SITE LAND TITLES INFORMATION / HISTORICAL AERIAL REVIEW	8
	 3.1 SITE LAND TITLES INFORMATION / HISTORICAL AERIAL REVIEW 3.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPH REVIEW 	8 12
	3.3 Council Information	13
	3.4 NSW EPA DATABASES	13
4.	CONCEPTUAL SITE MODEL	15
4.	4.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES	15
	4.2 Chemicals of Concern	15
	4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS	15
	4.4 DATA GAPS	18
5.	SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)	19
••	5.1 DATA QUALITY OBJECTIVES (DQO)	19
	5.2 DATA QUALITY INDICATORS	24
6.	ASSESSMENT METHODOLOGY	26
	6.1 SAMPLING RATIONALE	26
	6.2 Investigation Constraints	26
	6.3 Assessment Criteria	26
	6.4 Soil Investigation	28
	6.5 GROUNDWATER INVESTIGATION	29
7.	DATA QUALITY ASSESSMENT	32
8.	RESULTS	34
	8.1 Soil Investigation Results	34
	8.2 GROUNDWATER INVESTIGATION RESULTS	35
	8.3 LABORATORY ANALYTICAL RESULTS	36
9.	SITE CHARACTERISATION	39
	9.1 FILL MATERIALS ON SITE	39
	9.2 GROUNDWATER CHARACTERISATION	39
	9.3 REVIEW OF CONCEPTUAL SITE MODEL	39
10.	CONCLUSIONS	40
11.	RECOMMENDATIONS	42
12.	SITE FILL MANAGEMENT	43
13.	STATEMENT OF LIMITATIONS	44

REFERENCES

ABBREVIATIONS

Page | iii

TABLES (In Text)

SITE IDENTIFICATION, LOCATION AND ZONING	4
SURROUNDING LAND USES	5
REGIONAL SETTING INFORMATION	5
SUMMARY OF REGISTERED WATER BORES WITHIN 500 M OF THE SITE	6
SUMMARY OF AERIAL PHOTOGRAPH REVIEW	12
PRELIMINARY CONCEPTUAL SITE MODEL	16
SUMMARY OF PROJECT DATA QUALITY OBJECTIVES	20
DATA QUALITY INDICATORS	24
ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER	27
SUMMARY OF SOIL INVESTIGATION METHODOLOGY	28
SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY	29
GENERALISED SUBSURFACE PROFILE	34
MONITORING WELL CONSTRUCTION DETAILS	35
GROUNDWATER FIELD DATA	35
SUMMARY OF SOIL ANALYTICAL RESULTS	36
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS	38
	SURROUNDING LAND USES REGIONAL SETTING INFORMATION SUMMARY OF REGISTERED WATER BORES WITHIN 500 M OF THE SITE SUMMARY OF AERIAL PHOTOGRAPH REVIEW PRELIMINARY CONCEPTUAL SITE MODEL SUMMARY OF PROJECT DATA QUALITY OBJECTIVES DATA QUALITY INDICATORS ADOPTED INVESTIGATION LEVELS FOR SOIL AND GROUNDWATER SUMMARY OF SOIL INVESTIGATION METHODOLOGY SUMMARY OF GROUNDWATER INVESTIGATION METHODOLOGY GENERALISED SUBSURFACE PROFILE MONITORING WELL CONSTRUCTION DETAILS GROUNDWATER FIELD DATA SUMMARY OF SOIL ANALYTICAL RESULTS

TABLES

- TABLE T1 SUMMARY OF ANALYTICAL RESULTS SOIL (PROPOSED RESIDENTIAL AREA)
- TABLE T2
 SUMMARY OF ANALYTICAL RESULTS SOIL (PROPOSED LANDSCAPE AREA)
- TABLE T3 SUMMARY OF ANALYTICAL RESULTS GROUNDWATER
- TABLE T4 SUMMARY OF SOIL RPD DATA
- TABLE T5 SUMMARY OF GROUNDWATER RPD DATA

FIGURES

FIGURE 1 LOCALITY PLAN

FIGURE 2 SAMPLING LOCATIONS PLAN

APPENDICES

APPENDIX A PROPOSED DEVELOPMENT PLANS & SITE SURVEY PLAN

APPENDIX B REGISTERED GROUNDWATER BORE SEARCH

APPENDIX C SITE PHOTOGRAPHS

APPENDIX D BOREHOLE LOGS

APPENDIX E FIELD DATA SHEETS & CALIBRATION RECORDS

APPENDIX F CHAIN OF CUSTODY AND SAMPLE RECEIPT FORMS

APPENDIX G LABORATORY ANALYTICAL REPORTS

APPENDIX H QA/QC ASSESSMENT

APPENDIX I LABORATORY QA/AC POLICIES AND DQOS

APPENDIX J LAND TITLE RECORDS

1. INTRODUCTION

1.1 BACKGROUND AND PURPOSE

DeiCorp Constructions NSW Pty Ltd engaged El Australia (El) to conduct a Preliminary Site Investigation (PSI) with Limited Sampling for a land parcel at Site C Pemulwuy Project – 77-123 Eveleigh Street, Redfern NSW ('the site').

As shown in **Figure 1**, the site is located approximately 3.5 km south-west of the Sydney Central Business District, within the Local Government Area of the City of Sydney Council. The site comprised of multiple cadastral allotments (see **Table 2-1**) covering a total area of approximately 2,500 m². The site comprised largely vacant lots at the time of investigation, with the exception of one large unoccupied concrete building (77-85 Eveleigh Street, Redfern, NSW). A site layout plan is presented as **Figure 2**.

The site was proposed for redevelopment into a multi storey mixed commercial and residential-use development. The primary purposes of this PSI were to characterise the environmental conditions of the site for due diligence purposes.

The Client supplied EI with the following architectural drawings to assist in the preparation of this report:

- Architectural drawings prepared by Nordon Jago Architects Pty Ltd Project No. DEI00210, Drawing Nos. 0DA011D, 0DA010, dated June 2010;
- Architectural drawings prepared by Bonacci Group Pty Ltd Project No. 2021886, Drawing No. SK10-SK17, stamped 21 February 2017; and
- Site survey plan prepared Daw & Walton Consulting Surveyors Project: Detail Survey @ Eveleigh Street, Redfern NSW 2016, Drawn on 12/10/2011.

Based on the above drawings, we understand that the proposed development involves the demolition of all existing site structures and the construction of an 18 storey, mixed commercial and residential building, with minimal opportunities for soil access. Based on the above information, El considers the development qualifies as a HIL-B / HIL-C Development – Residential with Minimal Opportunities for Soil Access, and Public Open Spaces as defined in NEPM (2013).

Development drawings and site survey plans are attached in Appendix A.

1.2 REGULATORY FRAMEWORK

The following regulatory framework and guidelines were considered during the preparation of this report:

- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality;
- DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition);
- EPA (1995) Sampling Design Guidelines;

- NEPC (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater,
- NEPC (2013) Schedule B(2) Guideline on Site Characterisation;
- Contaminated Land Management Act (1997);
- State Environment Protection Policy 55 (SEPP 55) Remediation of Land, and
- OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites.

1.3 PROJECT OBJECTIVES

The primary objectives of this investigation were to:

- Evaluate the potential for site contamination on the basis of historical land uses, anecdotal and documentary evidence of possible pollutant sources;
- To investigate the degree of any potential contamination by means of intrusive sampling and laboratory analysis, for relevant contaminants; and
- Where site contamination is confirmed, make recommendations for the appropriate management of any contaminated soils and/or groundwater.

1.4 SCOPE OF WORKS

In order to achieve the above objectives, and in accordance with El proposal P14419.1 (dated 2 March 2017), the scope of works was as follows:

1.4.1 Desktop Study

- Review of relevant hydrogeological and soil landscape maps for the project area;
- Review of all previous environmental reports;
- Review of existing underground services on site;
- A search of historical aerial photographs archived at the NSW Land and Property Information in order to review previous site use and the historical sequence of land development in the neighbouring area;
- A site history survey involving a detailed search of Council records for information relation to operational site history;
- A limited land titles search based on site history, also conducted through NSW Land and Property Information; and
- A search of NSW EPA Land Information records under the *Contaminated Land Management Act* 1997 and *Protection of the Environment Operations Act* 1997;

1.4.2 Field Work & Laboratory Analysis

• A detailed site walkover inspection;

- Installation of one groundwater monitoring well to a maximum depth of 9 mBGL, constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the newly constructed groundwater monitoring well, as well as monitoring bores previously installed by SMEC Testing Services; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program.

1.4.3 Data Analysis and Reporting

The final task of this assessment involved the preparation of this PSI report to document desktop study findings, the conceptual site model, data quality objectives, investigation methodologies and results. The report also provides a record of observations made during the detailed site walkover inspection, borehole and monitoring well construction logs and a discussion of laboratory analytical results in regards to potential risks to human health, the environment and the aesthetic uses of the land.

2. SITE DESCRIPTION

2.1 PROPERTY IDENTIFICATION, LOCATION AND PHYSICAL SETTING

The site identification details and associated information are presented in **Table 2-1**, while the site locality is shown in **Figure 1**.

Attribute	Description
Street Address	77-123 Eveleigh Street, Redfern NSW
Location Description	Approx. 3.5 km south-west of Sydney CBD, bounded by residential properties to the north, vacant parcels of land then residential properties to the west, Lawson Street then Redfern Station and commercial / residential properties and south, and a railway corridor to the east.
	Approximate coordinates for the southern corner of the site under GDA94- MGA56 are: Easting: 333432.152, Northing: 6248420.499, with the northern corner being Easting: 333495.313, Northing: 6248518.921
	(Source: http://maps.six.nsw.gov.au).
Site Area	Approx. 2,500 m ²
	(Source: http://maps.six.nsw.gov.au)
Lot and Deposited Plan (DP)	The site comprises the following allotments: Lot 1 DP 996782; Lots A&B DP 326761, Lot B DP 81200, Lots 11 and 12 in DP 1183218, Lot 1 DP 996783, Lot 1 DP 741715, Lot 1 DP 779120, Lot A&B DP
	439127, Lot 1 DP 797845, Lot 1 DP 194785, Lot 1 DP 88846, Lot 1 DP 708931, Lot 1 DP 996784, Lots 1 to 5 DP 230305, Lot 1 DP 995857 and Lot 1 DP 803299.
State Survey Marks	Two State Survey Marks (SSM) are located within close proximity of the site.
	SS66942 is situated near the western-central portion of the site, at the corner of Eveleigh Street and Caroline Street.
	SS57496 is situated approximately 50 m west of the central portion of the site, at the corner of Caroline Street and Louis Street.
	(Source: http://maps.six.nsw.gov.au)
Local Government Authority	Council of the City of Sydney
Parish	Petersham
County	Cumberland County
Current Zoning	D – Business Zone – Mixed Use
	(State Environmental Planning Policy [State Significant Precincts] 2005)
Current Land Uses	The site comprised largely vacant lots at the time of investigation, with the exception of one large unoccupied concrete building (77-85 Eveleigh Street, Redfern, NSW).

Table 2-1 Site Identification, Location and Zoning

2.2 SURROUNDING LAND USE

The site is situated within an area of mixed land uses. Current uses of surrounding land are described in **Table 2-2**.

Direction Relative to Site	Land Use Description
North	Residential properties
South	Lawson Street, Redfern Station and then commercial / residential properties.
East	Railway corridor
West	Vacant land / residential properties

Table 2-2 Surrounding Land Uses

2.3 REGIONAL SETTING

Regional topography, geology, soil landscape and hydrogeological information are summarised in **Table 2-3**.

Attribute	Description		
Topography	The local topography falls slightly towards the north to north-west at approximately 5° to 10° .		
Site Drainage	Consistent with the general slope of the site, main drainage pathway for stormwater on site is anticipated to be in the form of overland flow, north to north-west. Some subsurface infiltration is also expected in the grassed areas of the site where ground surface was not sealed.		
Regional Geology	The site lies on Ashfield Shale (Rwa) of the Wianamatta Group, based on information referenced from the Department of Mineral Resources Geological Map Sydney 1:100,000 Geological Series Sheet 9130 (DMR 1991).		
	Ashfield Shale typically comprises black to dark-grey shale and laminite.		
Soil Landscapes	The Soil Conservation Service of NSW Soil Landscapes of the Sydney 1:100,000 Sheet (Chapman and Murphy, 1989) indicates that the landscape comprises gentle undulating rises on Wianmatta Group shale and Hawkesbury Shale. Local relief to 30m, slopes are usually <5%. Broad rounded crests and ridges are evident with gently inclined slopes.		
	Soils are shallow to moderately deep (<100cm) <i>Red and Brown Podzolic Soils</i> on crests, upper slopes and well drained area; deep (150-300cm) <i>Yellow Podzolic Soils</i> and <i>Soloths</i> on lower slopes and in areas of poor drainage.		
Acid Sulfate Soil Risk	With reference to the Botany Bay Acid Sulfate Soil Risk Map (1:25,000 scale; Murphy, 1997), the subject land lies within the map class description of <i>No Known Occurrence</i> . In such cases, acid sulfate soils (ASS) are not known or expected to occur and "land management activities are not likely to be affected by ASS materials".		
	The Council of the City of Sydney Local Environmental Plan 2012- Acid Sulfate Soils Risk Class 1:1,000 scale Map Sheet 016 indicates that the site is located within a Class 5 area. Acid sulfate soils are not typically found in Class 5 areas. Areas classified as Class 5 are located within 500 metres on adjacent Class 1, 2, 3 or 4 land.		
	With reference to SMEC Testing Services Pty Ltd <i>Acid Sulfate Soil Assessment</i> (2010), the property is underlain by Ashfield Shale and therefore is not consistent with the geomorphic criteria for the presence of ASS.		
	It is therefore deemed that the need for further Acid Sulphate soil management was considered unwarranted and the risks associated with Acid Sulfate soils were considered negligible.		

Table 2-3 Regional Setting Information

Attribute	Description
Likelihood & Depth of Filling	Field observations during intrusive investigation indicated that the thickness of fill / top soil layer present on site ranged from approximately 0.0 to 2.8 metres.
Typical Soil Profile	Sandy / silty clay fill overlying residual silty clay, then shale bedrock.
Depth to Groundwater	Groundwater inflow was not encountered during auger drilling of the boreholes, down to a maximum depth of approximately 9.8 mBGL.
	Standing groundwater levels measured in the two monitoring wells were between 5 m to 8 mBGL approximately.
Aquifer Types	Intermittent seepage may be present in the fill and the residual silty clay layer following rainfall events.
	The main aquifer is fractured shale, where groundwater moves via the fractures within the rock mass. Based on observations made in this PSI, the encountered shale aquifer appeared to be confined to semi-confined.
Nearest Surface Water Feature	Lake Northam, located approximately 800 m north-west of the site, is expected to be the nearest receiving surface water body.
Groundwater Flow Direction	Groundwater flow direction in the vicinity of the site is inferred to be slightly to the north / north-west.
Hydraulic Conductivity	Groundwater flow through the Ashfield Shale is documented to be influenced by the bedrock fracture system with hydraulic conductivities estimated to range between 8.6 $x10^{-9}$ and $1.7x10^{-4}$ m/day (Domenico and Schwartz, 1990).
Aquifer Porosity	Porosity of shale varies between 0% and 10% (DIPNR, 2005).
Groundwater Seepage Velocity	Based on the estimates of hydraulic conductivity and literature-supplied aquifer hydraulic conductivity and porosity, the potential seepage velocity within the shale aquifer is estimated to be 1.4×10^{-4} to 6×10^{-9} m/day.
	It should be noted that groundwater seepage velocity in shale aquifer is also highly influenced by the presence of discontinuities in the rock mass.
Groundwater Salinity	Based on the GME data (645 – 1,282 μ S/cm), groundwater is generally <i>fresh</i> to marginally <i>brackish</i> (NSW Public Works, 2011).

2.4 GROUNDWATER BORE RECORDS AND GROUNDWATER USE

An online search of registered groundwater bores was conducted by EI on 22 March 2017 through the NSW Office of Water (Ref. http:// realtimedata.water.nsw.gov.au/water.stm). There was 1 registered bore within 500 m of the site. A summary of the identified registered bore is presented with selected details in **Table 2-4**. A bore location plan and detailed information regarding the listed bores is attached in **Appendix B**.

Table 2-4	Summary of Registered Water Bores within 500 m of the site
-----------	--

Bore No.	Drilled Depth (m)	SWL*	Bore Purpose
GW113862	-	-	Monitoring

Notes:

- Data not recorded;

* SWL – Standing water level measured in m BGL.

2.5 SITE WALKOVER INSPECTION

El staff made a number of observations during a detailed site inspection on 9 March 2017. Selected photos taken during the site walkover inspection are presented in **Appendix C**. The recorded observations are summarised below:

- The site generally slopes towards the north to north-west on approximately a 5-10% gradient.
- The site comprises an area of vacant land next to a railway corridor to the east (Photograph 1). The vacant land is covered by bare soil and grass patches in average condition, and contains a number of parked cars. Localised fuel and oil contamination may be apparent, with the possibility of uncontrolled fill being used to cover the area.
- The railway corridor to the east may provide a source for asbestos fibre contamination onto the site.
- A park is also present on site (Pemulwuy Park) which includes a playground (**Photograph 2**) and bitumen covering the area in good condition.
- The area immediately to the north of the park is made up of overgrown grasses and weeds, with branches placed in a small stockpile (**Photograph 3**).

77-85 Eveleigh Street

- The building is double-storey and cement rendered.
- An apparent electrical sub-station kiosk was located on the exterior of 77-85 Eveleigh Street (**Photograph 4**).
- The flooring and interior roof of the property comprise of concrete in average condition (Photograph 5). Some of the concrete flooring has been removed in areas (Photographs 6 and 7), with what appears to be cored holes drilled into the ground surface (Photograph 8).
- Many of the walls are covered in graffiti, with the floors covered in old appliances and refuse (**Photograph 9**).
- Towards the northern exterior of 77-85 Eveleigh Street, a shed with possible asbestos containing material (ACM) is located (Photographs 10 and 11). Further corroding appliances, a gas tank and household rubbish is stored next to the shed (Photograph 12) identifying possible contamination into open soils.

Evidence of underground petroleum storage system (UPSS) was not identified during the site walkover inspection.

3. SITE HISTORY AND SEARCHES

3.1 SITE LAND TITLES INFORMATION / HISTORICAL AERIAL REVIEW

A historical land titles search was conducted through Scott Ashwood Pty Ltd. Copies of relevant documents resulting from this search are presented in **Appendix J**. A summary of all the previous and current registered proprietors along with information obtained from the available historical aerial photographs, in relation to past potential land uses are presented in **Table 3-1**. The following historical aerial photographs either received from NSW Land & Property Information or sourced from Six Maps, were reviewed as part of this PSI:

- 1930: 20 February 1930, B/W, Run 16, Map 3428, Sydney Survey Runs;
- 1943: Sydney 1943 Imagery, Six Maps (<u>http://maps.six.nsw.gov.au/</u>);
- 1961: Cumberland Series, B/W, Run 36E, NSW 1042 5011, Lands Photo;
- 1986: 2 August 1986, Run 23E, NSW 3527 127, Department of Land and Property Information;
- 1994: 4 October 1994, Run 11, NSW 153 164, Department of Land and Property Information;
- 2000: 28 September 2000, Google Earth Imagery (<u>http://www.earth.google.com</u>); and
- 2014: 4 January 2014, Six Maps (<u>https://maps.six.nsw.gov.au/</u>).

 Table 3-1
 Summary of Owners and Historical Aerial Photography

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations (where documented)	Site Description Based on Historical Aerial Photographs	Associated Business
As regards Lot	1 D.P. 803299		
18.12.1916 (1916 – 1994)	Chief Commissioner for Railways and Tramways. <i>Now</i> State Rail Authority of New South Wales	 1930: The lot appears to be a fenced, grassed area. There is uncertainty in the photograph to properly determine the use of the lot. 1943: No significant change noted. 1961: No significant change noted. 1986: Possible small building erected on the lot. There is uncertainty in the photograph to properly determine the use of the lot. 	Residential / Open Space / Commercial
29.11.1994 (1994 to Date)	# Aboriginal Housing Company Limited	 1994: The lot appears to be a vacant grassed area. There is uncertainty in the photograph to properly determine the use of the Lot. 2004: No significant change noted. 2014: No significant change noted. 	Open Space

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations (where documented)	Site Description Based on Historical Aerial Photographs	Associated Business
# Denotes Curre	ent Registered Proprietor		
Easements & L	eases: -NIL		
As regards Lot	B D.P. 81200		
11.03.1925 (1925 to 1930)	Hercules George King (Railway Employee)	1930 : The lot appears to be residential. There is uncertainty in the photograph to properly determine the use of the lot.	Residential
27.05.1930 (1930 to 1955)	Herbert Henry Arthur (Manufacturer) - Also known as Herbert Henry Pevensey Arthur	1943: The lot appears to possibly be commercial, with an apparent warehouse bordering the railway corridor. There is uncertainty in the photograph to properly determine the use of the lot.	Commercial / Residential
17.08.1955 (1955 to 1972)	Kenneth Wilton Crowe (Master Carrier)	1961: No significant change noted.	-
01.03.1972 (1972 to 1972)	Artis Properties Pty Limited	-	-
01.03.1972 (1972 to 1974)	New South Wales Bridge Association Limited	-	-
22.11.1974 (1974 to 2013)	Murawina Limited	1986: The previous warehouse like building has been demolished and a vacant parcel of land now is now present across the lot. What looks like a children's playground encompasses part of the lot.	Open Space
		1994 : No significant change noted. 2004: No significant change noted.	
22.05.2013 (2013 to 2013)	Australian Securities and Investments Commission	-	-
22.05.2013 (2013 to Date)	# Aboriginal Housing Company Limited	2014: No significant change noted.	-
# Denotes Curre Easements & L	ent Registered Proprietor .eases: - NIL		
As regards Lot	A D.P. 326761		
01.05.1919 (1919 to 1928)	Thomas Hill (Ironfounder)	-	-
27.03.1928 (1928 to 1928)	Rowland Wesley Small (Medical Bio Chemist)	-	-

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations (where documented)	Site Description Based on Historical Aerial Photographs	Associated Business
21.11.1928 (1928 to 1930)	George Cross (Estate Agent)	1930: The lot appears to be residential in nature.	Residential
17.09.1930 (1930 to 1955)	Herbert Henry Arthur (Manufacturer) Also known as Herbert Henry Pevensey Arthur	1943: No significant change noted.	
17.08.1955 (1955 to 1972)	Kenneth Wilton Crowe (Master Carrier)	1961: No significant change noted.	
01.03.1972 (1972 to 1972)	Artis Properties Pty Limited		
01.03.1972 (1972 to 1974)	New South Wales Bridge Association Limited	-	Residential / Commercial / Recreational
22.11.1974 (1974 to 2013)	Murawina Limited	 1986: A building has been erected encompassing the entire lot and neighbouring lot. 1994: No significant change noted 2004: No significant change noted. 	
22.05.2013 (2013 to 2013)	Australian Securities and Investments Commission	-	
22.05.2013 (2013 to Date)	# Aboriginal Housing Company Limited	2014: No significant change noted.	
<u># Denotes Curre</u> Easements & L	ent Registered Proprietor .eases: - NIL		
As regards Lot	B D.P. 326761		
01.05.1919 (1919 to 1928)	Thomas Hill (Ironfounder)	-	-
27.03.1928 (1928 to 1928)	Rowland Wesley Small (Medical Bio Chemist)	-	-
21.11.1928 (1928 to 1945)	George Cross (Estate Agent)	1930: The lot appears to be residential in nature.1943: No significant change noted.	Residential

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations (where documented)	Site Description Based on Historical Aerial Photographs	Associated Business
02.10.1945 (1945 to 1955)	Herbert Henry Pevensey Arthur (Company Director) Also known as Herbert Henry Arthur	-	
17.08.1955 (1955 to 1972)	Kenneth Wilton Crowe (Master Carrier)	1961: No significant change noted.	
01.03.1972 (1972 to 1972)	Artis Properties Pty Limited	-	
01.03.1972 (1972 to 1974)	New South Wales Bridge Association Limited	-	Residential / Commercial / Recreational
22.11.1974 (1974 to 2013)	Murawina Limited	 1986: A large building has been erected encompassing the entire lot and neighbouring lot. 1994: No significant change noted 2004: No significant change noted. 	
22.05.2013 (2013 to 2013)	Australian Securities and Investments Commission	-	
22.05.2013 (2013 to Date)	# Aboriginal Housing Company Limited	2014: No significant change noted.	
# Denotes Curre Easements & L	ent Registered Proprietor eases: - NIL		
As regards Lot	1 D.P. 996782		
17.11.1920 (1920 to 1928)	William Ernest Keats (Builder)	-	-
26.11.1928 (1928 to 1945)	George Cross (Clerk)	1930: The lot appears to be residential in nature.1943: No significant change noted.	Residential
02.10.1945 (1945 to 1955)	Herbert Henry Pevensey Arthur (Company Director) Also known as Herbert Henry Arthur	-	
17.08.1955 (1955 to 1972)	Kenneth Wilton Crowe (Master Carrier)	1961: No significant change noted.	

Date of Acquisition and Term Held	Registered Proprietor(s) & Occupations (where documented)	Site Description Based on Historical Aerial Photographs	Associated Business
01.03.1972 (1972 to 1972)	Artis Properties Pty Limited	-	-
01.03.1972 (1972 to 1974)	New South Wales Bridge Association Limited	-	Residential / Commercial Recreational
22.11.1974 (1974 to 2013)	Murawina Limited	1986: A large building has been erected encompassing the entire lot and neighbouring lot.	
		1994: No significant change noted	
		2004: No significant change noted.	
22.05.2013 (2013 to 2013)	Australian Securities and Investments Commission	-	
22.05.2013 (2013 to Date)	# Aboriginal Housing Company Limited	2014: No significant change noted.	

In summary, available land title records and historical aerial photography indicated that the site has historically been used for a variety of purposes. Up until the 1960s and 1970s it apparent use was largely residential with light commercial business, however moving forward evidence of commercial and community use can be seen. Certain portions of the site have also remained vacant for some decades.

3.2 SURROUNDING LANDS HISTORICAL AERIAL PHOTOGRAPH REVIEW

As part of the Site Land Titles Information / Historic Aerial Review, an assessment of surrounding land uses using historical aerial photographs sourced from NSW Land and Property Information was carried out. A summary of the pertinent information identified at surrounding land parcels from the reviewed photographs is presented in **Table 3-2**.

Aerial Photograph	Surrounding Land Uses Based on Historical Aerial Photographs	
1930	The surrounding area appears to consist of light commercial / industrial and low- medium density residential properties. A railway corridor is evident to the east of the site.	
1943	The surrounding land use remained primarily unchanged.	
1961	The surrounding land use remained primarily unchanged.	
1986	The surrounding land use remained primarily unchanged, with the exception of medium-high residential properties being built in the region.	

Table 3-2 Summary of Aerial Photograph Review

Aerial PhotographSurrounding Land Uses Based on Historical Aerial Photographs1994The surrounding land use remained primarily unchanged.	
2014	The surrounding land use remained primarily unchanged.

3.3 COUNCIL INFORMATION

An application to access records held by Council of the City of Sydney was initiated on 8 March 2017. Council correspondence was received 15 March 2017 by The City of Sydney Council. A review of the Building and Development Applications identified a letter, dated 13 November 1986, from the Murawina Aboriginal Pre-School and Women's Hostel, to the Council of the Municipality of South Sydney, concern about a 'grease pit' within the children's playground is made known. The grease pit supposedly needs to be cleaned manually once per month, and was referred to external contractors by the council.

There were no further records to outline what may have occurred past this date, however such a matter may be a potential source of contamination for future activity and construction.

3.4 NSW EPA DATABASES

3.4.1 Contaminated Land Record of Notices Under Section 58 of the CLM Act 1997

An on-line search of the contaminated land public record of EPA Notices was conducted on 23 March 2017.

The contaminated land public record is a searchable database of:

- Orders made under Part 3 of the Contaminated Land Management Act 1997 (CLM Act);
- Approved voluntary management proposals under the CLM Act that have not been fully carried out and where the approval of the Environment Protection Authority (EPA) has not been revoked;
- Site audit statements provided to the NSW EPA under section 53B of the CLM Act that relate to significantly contaminated land;
- Where practicable, copies of anything formerly required to be part of the public record; and
- Actions taken by NSW EPA under section 35 or 36 of the *Environmentally Hazardous Chemicals Act 1985* (EHC Act).

The search identified no properties within notices under Section 58 of the CLM Act 1997 within close proximity to the site.

3.4.2 List of NSW Contaminated Sites Notified to the EPA

A search through the List of NSW Contaminated Sites notified to the EPA under Section 60 of the CLM Act 1997 was conducted on 23 March 2017. This list is maintained by NSW EPA and includes properties on which contamination has been identified. Not all notified land is deemed to be impacted

significantly enough to warrant regulation by the NSW EPA. The search identified the following properties:

- BP Service Station (116 Regent Street, Redfern NSW) located approximately 250 m south-east of the site, whose management class is under assessment from the EPA. Given the distance from the site, it is considered to pose a low risk as a potential off-site contamination source.
- Frasers Development (Wellington Street, Chippendale NSW) located approximately 500 m north of the site, whose management class is under assessment from the EPA. Given the distance from the site, it is considered to pose a low risk as a potential off-site contamination source.

3.4.3 POEO Public Register

A search of the Protection of the Environment Operations (POEO) Act public register was conducted on 23 March 2017. The public register contains records relating to environmental protection licences, applications, notices, audits, pollution studies, and reduction programmes. The search did not identify the site, or any location ≤500 m of the site on the register.

4. CONCEPTUAL SITE MODEL

In accordance with NEPM (2013) *Schedule B2 – Guideline on Site Characterisation* and to aid in the assessment of data collection for the site, EI adopted a preliminary conceptual site model (CSM) to assess plausible pollutant linkages between potential contamination sources, migration pathways and receptors. The CSM provides a framework for the review of the reliability and useability of the data collected and to identify data gaps in existing and future site characterisation.

4.1 CHEMICAL HAZARDS AND CONTAMINATION SOURCES

On the basis of site history findings (described in **Section 3**) El consider potential chemical hazards and on-site contamination sources to be as follows:

- Fill material imported from unknown origin and of unknown quality;
- Potential use of pesticides on or underneath building pads and sealed surfaces;
- Hydrocarbon spills and leakages from vehicles, from the use of car parking areas;
- Degradation of painted and metallic surfaces on building exteriors;
- Any contamination resulting from possible un-controlled demolition of building structures;
- Potential asbestos-containing materials in building structures; and
- Deeper, natural soils containing residual impacts, acting as potential secondary sources of contamination.

4.2 CHEMICALS OF CONCERN

The following chemicals of concern were selected for screening purposes in this DSI, based on findings from the PSI and field observations made during the site walkover inspection:

- Soil heavy metals (HMs), Total Recoverable Hydrocarbons (TRH), Polycyclic Aromatic Hydrocarbons (PAHs), the monocyclic aromatic hydrocarbon (MAH) compounds: *benzene, toluene, ethylbenzene and total xylenes* (BTEX), organochlorine and organophosphorus pesticides (OCP/ OPP), polychlorinated biphenyls (PCB), and asbestos.
- Groundwater HMs, TRH, BTEX, PAH, Phenols, and volatile organic compounds (VOC).

4.3 POTENTIAL SOURCES, EXPOSURE PATHWAYS AND RECEPTORS

Potential contamination sources, exposure pathways and human and environmental receptors that were considered relevant for this assessment are summarised along with a qualitative assessment of the potential risks posed by complete exposure pathways in **Table 4-1**.

Page | 15

Table 4-1 Preliminary Conceptual Site Model

Contaminated Media	Transport Mechanism	Exposure Pathway	Potential Receptor	Likelihood of Exposure and Comments
Impacted soils	Disturbance of surficial and	Ingestion and dermal contact, inhalation of	Construction and maintenance workers	Possible If redevelopment commences.
	subsurface soils during construction, future maintenance, and use of the site post redevelopment	asbestos fibres, dust particulates, volatile organic compounds during site redevelopment and/or future use	End users of the site post redevelopment	Unlikely for end users If the site has been successfully remediated before conclusion of the redevelopment works.
	Atmospheric dispersion from soil to outdoor air spaces	Inhalation of asbestos fibres from impacted soil Inhalation of particles of	Construction and maintenance workers End users of the site	Possible If uncontrolled demolition of site structures has resulted in release of asbestos-containing materials (ACM) to surficial soils.
contaminated soil.post redevelopmentPossible exposure to mobilised asbestos d can be reduced by carrying out Hazardous possible ACM, and removing ACM by a qu with WorkCover requirements using approp Unlikely for end users If the site has been successfully remediate redevelopment works.Volatilisation & diffusion from soil to indoor air spacesInhalation of vapours from VOC impacted soilConstruction and maintenance workers End users of the site post redevelopmentPossible Risk of volatile intrusion into indoor air space assessment if significant contamination is i Volatile intrusion in outdoor areas is consid levels of ventilation.Plant uptake of contamination present in root zonePlant uptakeEcological receptors (e.g. future site vegetation)Unlikely No signs of stress were observed on existin Unlikely an issue for future site vegetation i	Possible exposure to mobilised asbestos dust during site excavation. Risk can be reduced by carrying out Hazardous Materials Survey to identify possible ACM, and removing ACM by a qualified person in accordance with WorkCover requirements using appropriate WH&S measures.			
				If the site has been successfully remediated before conclusion of the
	Risk of volatile intrusion into indoor air spaces may require further			
				Volatile intrusion in outdoor areas is considered a very low risk due to high
	contamination	Plant uptake	(e.g. future site	Unlikely No signs of stress were observed on existing site vegetation. Unlikely an issue for future site vegetation if the site has been successfully remediated before conclusion of the redevelopment works.

Impacted	Contact with	Dermal contact, ingestion	Construction and	Low likelihood
Groundwater	impacted	and inhalation of vapours	maintenance workers	There is no basement construction, therefore interception of the water
	groundwater	Potential seepage into	Offsite groundwater	table is unlikely.
		deep basements	users	Low likelihood for off-site groundwater users
			Offsite users of constructed basements	Beneficial domestic groundwater users were not identified within 500 m of the site.
			that are not water tight	Reticulated water supply is available in the region.
	Volatilisation from	Contact with groundwater	Offsite groundwater	Low likelihood
groundwater to indoor or outdoor air spaces	if extracted for recreational use	users	Beneficial recreational groundwater users were not identified within 500 m of the site.	
			Reticulated water supply is available in the region.	
		Inhalation of vapours from	End users of the site	Low likelihood
		impacted groundwater		The majority of residential areas will be built on concrete slabs.
Building fabrics	Release of	Ingestion and dermal	Construction and	Possible
containing hazardous materials hazardous during uncontrolled materials demolition of building fabrics	contact, inhalation of	maintenance workers	If uncontrolled demolition of site structures has resulted in release of	
	demolition of building	airborne contaminants	End users of the site post redevelopment	hazardous materials. Risk can be reduced by carrying out Hazardous Materials Survey to identify possible hazardous materials, and removing hazardous materials by a qualified person in accordance with WorkCover requirements using appropriate WH&S measures.

4.4 DATA GAPS

The following data gaps within the CSM were identified:

- Uncertainty in regard to the presence of onsite contamination from identified sources (listed in **Section 4.1**) require confirmation;
- The degree and extent of contamination on site, if any; and
- Potential presence of any contamination from other unknown onsite and offsite sources.

5. SAMPLING, ANALYTICAL AND QUALITY PLAN (SAQP)

The SAQP plays a crucial role in ensuring that the data collected as part of this, and ongoing environmental works carried out at the site, are representative and provide a robust basis for site assessment decisions. This SAQP includes the following:

- Data quality objectives, including a summary of the objectives of the DSI;
- Investigation methodology including media to be sampled, details of analytes and parameters to be monitored and a description of intended sampling points;
- Sampling methods and procedures;
- Field screening methods;
- Analysis Methods;
- Sample handling, preservation and storage; and
- Analytical QA/QC.

5.1 DATA QUALITY OBJECTIVES (DQO)

In accordance with the USEPA (2006) *Data Quality Assessment* and the DEC (2006) *Guidelines for the NSW Site Auditor Scheme*, the process of developing Data Quality Objectives (DQO) was used by the El assessment team to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process that was applied for this assessment is documented in **Table 5-1**.

Table 5-1 Summary of Project Data Quality Objectives

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
1. State the Problem Summarise the contamination	The site is to be redeveloped into a multi storey mixed commercial and residential-use development.	-
problem that will require new environmental data, and identify the resources available to resolve the problem; develop a conceptual	 Historical information and site inspection identified the potential for contamination to be present in site soil and/or groundwater, contributed by various potential sources listed in Section 4.1: Based on the site history information collected, a preliminary conceptual site model of the site has been developed, and is present in Section 4. 	
site model	 The PSI was required to provide data to characterise the environmental conditions of the site, and to verify if the site is suitable, or can be made suitable for the proposed development. 	
2. Identify the Goal of the Study	The decisions needed to be made are:	-
(Identify the decisions) Identify the decisions that need to	 Has the nature, extent and source of any soil, vapour and/or groundwater impacts onsite been defined? 	
be made on the contamination problem and the new environmental data required to make them	• What impact do the site specific, geologic and hydrogeological conditions have on the fate and transport of any impacts that may be identified?	
	 Does the level of impact coupled with the fate and transport of identified contaminants represent an unacceptable risk to identified human and/or environmental receptors on or offsite? 	
	 Does the collected data provide sufficient information to allow the selection and design of an appropriate remedial strategy, if necessary? 	

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
3. Identify Information Inputs (Identify inputs to decision) Identify the information needed to support any decision and specify which inputs require new environmental measurements	 The main inputs to the decision making process include: Proposed future land use and layout of the development; Regional and site settings including site geology, topography and surrounding land uses; Observations and information gathered from a site walkover inspection and review of historical site records (aerial photographs, historical land title records, council records, etc.); Areas of concern identified during the site inspection prior to intrusive investigations; National and NSW EPA guidelines under the NSW <i>Contaminated Land Management Act 1997</i>; Investigation sampling to verify the presence of onsite contamination and to evaluate the potential risks to sensitive receptors; and At the end of the assessment, a decision must be made regarding whether the soils and groundwater are suitable for the proposed development, or if additional investigation or remedial works are required to make the site suitable. 	-
4. Define the Boundaries of the Study Specify the spatial and temporal aspects of the environmental media that the data must represent to support decision	Lateral – the cadastral site boundaries, presented in Table 2.1 ; Vertical – from the existing ground level to a maximum depth of 9.8 mBGL for soil and groundwater investigation; Temporal – Results are valid on the day of sample collection and remain valid as long as no changes occur on site or contamination (if present) does not migrate on site or on to the site from off-site sources.	Vertical – depth of investigation was limited in the northern portion of the site due to auger refusal infilling, as detailed in Section Error! Reference source not found
5. Develop the Analytic Approach (Develop a decision rule) To define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single statement that describes a logical basis for choosing from alternative actions	 The decision rules for the investigation were: If the concentrations of contaminants in the data exceed the land use criteria; then assess the need to further investigate the extent of impacts onsite and the need for remediation works. Decision criteria for QA/QC measures are defined by the Data Quality Indicators (DQI) in Table 5-2 	-

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
6. Specify Performance or Acceptance Criteria (Specify limits on decision errors)	Specific limits for this project are to be in accordance with the National and NSW EPA guidance, and appropriate indicators of data quality and standard procedures for field sampling and handling. This should include the following points to quantify tolerable limits:	-
Specify the decision-maker's	The null hypothesis for the investigation is that:	
acceptable limits on decision errors, which are used to establish performance goals for limiting uncertainties in the data	 The 95% Upper Confidence Limits (UCL) of the mean for contaminants of concern exceed relevant residential, recreational, or commercial / industrial land use criteria across the site. 	
	 Sampling on a 17.5 m grid will allow detection of a circular hotspot with a nominal diameter of 20.5 m with 95% certainty; 	
	The acceptance of the site will be based on the probability that	
	 The 95% UCL of the mean of the data will satisfy the given site criteria. Therefore a limit on the decision error will be 5% that a conclusive statement may be incorrect; and 	
	 The standard deviation of the results is less than 50% of the relevant remediation acceptance criterion; and 	
	 No single results exceeds the remediation acceptance criteria by 250% or more; and 	
	 Soil concentrations for chemicals of concern that are below investigation criteria made or approved by the NSW EPA will be treated as acceptable and indicative of suitability for the proposed land use(s); and 	
	 If contaminant concentrations in groundwater exceed the adopted criteria, further investigation will be considered prudent. If no contamination is detected in groundwater, further action will not be warranted. 	

DQO Steps (NSW DEC, 2006)	Details	Comments (changes during investigation)
7. Develop the Detailed Plan for	• The minimum sampling points for the site is eight (8) based on the site area (EPA, 1995);	-
Obtaining Data (Optimise the design for obtaining data)	 Soil sampling locations were set using a combined targeted and systematic sampling pattern across the accessible areas of the site; 	
Identify the most resource- effective sampling and analysis design for general data that are expected to satisfy the DQOs	 An upper soil profile sample (soil extracted immediately beneath the concrete hardstand / pavement, or at approximately 0.1 m below ground level where surface cover was absent) was collected to test for chemicals of concern, in order to assess the conditions of the fill layer and impacts from activities above ground; 	
	• Further sampling was also carried out at deeper intervals. These samples would be selected for testing based on field observations (including visual and olfactory evidence, as well as soil vapour screening in headspace samples), whilst giving consideration to characterise the deeper soil horizons;	
	 One groundwater monitoring well was installed at the site to characterise groundwater quality entering and exiting the site; and 	
	 Instructions were issued to guide field personnel in the required fieldwork activities. 	

5.2 DATA QUALITY INDICATORS

To ensure that the investigation data collected was of an acceptable quality, the investigation data set was assessed against the data quality indicators (DQI) outlined in **Table 5-2**, which related to both field and laboratory-based procedures. The assessment of data quality is discussed in **Section 7**.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
data	 Results are less than 10 times the limits of reporting (LOR);
	 Results are less than 20 times the LOR and the RPD is less than 50%; or
	 Heterogeneous materials or volatile compounds are encountered.
	In cases where an RPD value was considered unacceptable, the analytical results of primary and duplicate samples were both reviewed against the adopted assessment criteria. If the review indicates the variations in data between the primary and duplicate samples would result in a different conclusion (i.e. the higher concentration is failing the assessment criteria), the higher concentration would be used for assessment.
Accuracy – A	Data accuracy would be assessed through the analysis of:
quantitative measure of the closeness of	 Field trip blank samples to assess potential cross contamination;
reported data to the "true" value	 Laboratory method blanks, which are analysed for the analytes targeted in the primary samples;
	 Laboratory matrix spike and matrix spike duplicate sample sets;
	Laboratory control samples;
	 Calibration of instruments against known standards; and
	• Variation in results reported by the primary and secondary laboratories for primary and duplicate samples.
Representativeness – The confidence	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
(expressed qualitatively) that data are	 Field trip spike samples to assess potential volatile loss during sample transportation;
representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities;
	 The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods); and
	Consistency between field vapour screening information and laboratory results.

Table 5-2 Data Quality Indicators

QA/QC Measures	Data Quality Indicators
Completeness – A measure of the	Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
amount of useable	 Standard operating procedures for sampling protocols were adhered to;
data from a data collection activity	 Copies of all COC documentation are presented, reviewed and found to be properly completed;
	 It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment; and
	 Investigation works completed were generally consistent with the proposed scope of works (Section 1.4).
Comparability – The confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event	Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to standard operation procedures and regulator-endorsed or published guidelines and standards on each data gathering activity.
	 Sampling was conducted by the same sampler where possible to enhance project continuity and minimise variability in sampling technique;
	 Sampling under inclement weather conditions was avoided to minimise variability contributed by weather conditions; and
	 In addition, the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

6. ASSESSMENT METHODOLOGY

6.1 SAMPLING RATIONALE

With reference to the preliminary CSM described in **Section 4**, soil and groundwater investigation works were planned in accordance with the following rationale:

- Drilling of test boreholes at eight locations (identified as BH101M to BH108), distributed in a triangular grid pattern across accessible areas of the site;
- Installation of one groundwater monitoring well to a maximum depth of 9 mBGL, constructed to standard environmental protocols to investigate potential groundwater contamination;
- Multiple level soil sampling within fill and natural soils and one round of groundwater sampling from the newly constructed groundwater monitoring well, as well as monitoring bores previously installed by SMEC Testing Services; and
- Laboratory analysis of selected soil and groundwater samples for relevant analytical parameters as determined from the site history survey and field observations during the investigation program.

6.2 INVESTIGATION CONSTRAINTS

The locations and completion depths of sampled test bores did not fully achieve the planned investigation scope described in the DQO (**Table 5-1**), due to the following physical obstruction;

• Buried materials (possibly buried slabs, rock boulders or iron-indurated gravel) within site filling resulted in auger refusal.

Two of the boreholes, (BH107 and BH108) encountered auger refusal before reaching the target depth (0.5 m below the natural soil interface). BH107 was completed within the fill horizon (0.8 mBGL) as was BH08 (0.6 mBGL).

6.3 ASSESSMENT CRITERIA

The assessment criteria proposed for this project are outlined in **Table 6-1**. These were selected from available published guidelines that are endorsed by national or state regulatory authorities, with due consideration of the exposure scenario that is expected for various parts of the site, the likely exposure pathways and the identified potential receptors.

Environmental Media	Adopted Guidelines	Rationale
Soil	NEPM, 2013	Soil Health-based Investigation Levels (HILs)
	Soil HILs, EILs, HSLs, ESLs & Management Limits for TPHs	Soil samples to be assessed against the NEPM 2013 HIL-B and HIL-C thresholds. HIL-B for residential sites with minimal access to soils and HIL-C for developed open spaces (which applies to parks, playgrounds, playing fields, secondary schools and footpaths) based on the proposed development layout.
		For boreholes located in or around the proposed landscaping areas (BH107 and BH108), soil samples are assessed against the HIL-C thresholds for public open space, as explained in Schedule B7 in NEPM 2013.
		Ecological Investigation Levels (EILs)
		Soil samples located in or around the proposed landscaping area (BH107 and BH108) are also assessed against the NEPM 2013 EILs for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene, which have been derived for protection of terrestrial ecosystems. EILs only apply to the top 2 m of soil (root zone).
		Soil Health-based Screening Levels (HSLs)
		The NEPM 2013 Soil HSL-A&B thresholds for residential sites for vapour intrusion are applied to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX & naphthalene. Soils in the proposed landscaping areas may be assessed against HSL-C for public open space, however HSL A&B is considered more conservative than HSL-C and HSL-D. Therefore, in this regard soil samples are only assessed against HSL A&B.
		Soils asbestos results to be assessed against the NEPM 2013 Soil HSL thresholds for "all forms of asbestos".
		Ecological Screening Levels (ESLs)
		Soil samples located in or around the proposed landscaping areas (BH107 and BH108), are assessed against the NEPM 2013 ESLs for selected petroleum hydrocarbons & TRH fractions for protection of terrestrial ecosystems. ESLs only apply to the top 2m of soil (root zone).
		Management Limits for Petroleum Hydrocarbons
		Should the ESLs and HSLs be exceeded for petroleum hydrocarbons, soil samples will also be assessed against the NEPM 2013 <i>Management Limits</i> for the TRH fractions F1 – F4 to assess propensity for phase-separated hydrocarbons (PSH), fire and explosive hazards & adverse effects on buried infrastructure.
Groundwater	NEPM, 2013 GILs for Fresh	Groundwater Investigation Levels (GILs) for Fresh Waters and Marine Waters
	Waters and Marine Waters	NEPM 2013 provides GILs for typical, slightly-moderately disturbed aquatic ecosystems, which are based on the ANZECC & ARMCANZ 2000 Trigger Values (TVs) for the 95% level of protection of aquatic ecosystems; however, the 99% TVs were applied for the bio-accumulative metals <i>cadmium</i> and <i>mercury</i> . The nearest receiving surface water receptor, Lake Northam, is considered to be of freshwater (OEH, 2006). Therefore Freshwater GILs are adopted for assessment in this DSI.
		Due to the ANZECC (2000) criteria for TRH being below the laboratory limit of reporting, the PQL for each TRH fraction was adopted as the GIL for aquatic ecosystems, in accordance with the procedure described in DEC (2007) <i>Guidelines for the Assessment and Management of Groundwater Contamination</i> .

Table 6-1 Adopted Investigation Levels for Soil and Groundwater

Environmental Media	Adopted Guidelines	Rationale
	NEPM, 2013 Groundwater HSLs for Vapour Intrusion	Health-based Screening Levels (HSLs) The NEPM 2013 groundwater HSLs for vapour intrusion were used to assess for potential human health impacts from residual vapours resulting from petroleum, BTEX and naphthalene impacts. The <i>HSL A</i> and <i>HSL B</i> thresholds for residential sites are applied for groundwater. <i>HSL C</i> thresholds for public open space may be applied at well locations within the proposed landscaping area. HSL A&B is considered more conservative than HSL-C and HSL-D, therefore in this regard groundwater samples are only assessed against HSL A&B.

For the purposes of this investigation, the adopted soil assessment criteria are referred to as the Soil Investigation Levels (SILs) and the adopted groundwater assessment criteria are referred to as the Groundwater Investigation Levels (GILs). SILs and GILs are presented alongside the analytical results in the corresponding summary tables, which are discussed in **Section 8.3**.

6.4 SOIL INVESTIGATION

The soil investigation works conducted at the site are described in **Table 6-2**. Test bore locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	Soil Investigations were carried out on 3 March 2017.
	Eight boreholes (named BH101M to BH108) were drilled and sampled, followed by installation of a groundwater monitoring well at BH101M.
	Soil sampling and logging of subsurface conditions were completed by an El Engineer.
Drilling Method & Investigation Depth	Boreholes BH101M to BH108 were drilled with a track-mounted drilling rig fitted with solid flight augers, to depths between 0.6 m and 9.8 mBGL approximately.
	Borehole locations are provided on Figure 2.
Soil Logging	Drilled soils were classified in the field with respect to lithological characteristics and evaluated on a qualitative basis for odour and visual signs of contamination. Soil classifications and descriptions were based on the Unified Soil Classification System (USCS) and Australian Standard (AS) 4482.1-2005. Bore logs are presented in Appendix D .
Field Observations (including visual and olfactory signs of potential contamination)	Field observations, including observed anthropogenic inclusions in soils, staining and odour, were recorded on borehole logs.
	A summary of recorded field observations is provided in Section 8.1 .
Soil Sampling	Soil samples were collected using a dry grab method (unused, dedicated nitrile gloves) and placed into laboratory-supplied, acid-washed, solvent-rinsed glass jars with Teflon-lined lids. Gloves were replaced between sampling locations.
	Blind field duplicates were split from the primary samples without mixing and placed into glass jars.
	A small amount of duplicate was split from each soil sample and placed into a zip- lock bag for VOC screening by Photo-ionisation Detector (PID).
	A small amount of duplicate was split from each fill sample and placed into a zip-lock bag for asbestos analysis.

Table 6-2 Summary of Soil Investigation Methodology

Activity/Item	Details
Decontamination Procedures	<i>Drilling Equipment</i> - The drilling rods, hand auger and trowel were decontaminated between sampling locations with potable water until the augers were free of all residual materials.
	Sampling Equipment – Decontamination was not required as the sampling gloves were replaced between sampling locations.
Sample Preservation	Samples were stored in cooled (ice brick-filled) chests, whilst on-site and in transit to the laboratory. All samples were submitted and analysed within the required holding period, as documented in laboratory reports discussed in a later section.
Management of Soil Cuttings	Soil cuttings were used as backfill for completed boreholes.
Quality Control & Laboratory Analysis	A number of soil samples were submitted for analysis of previously identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra- laboratory duplicates ('field duplicates') tested blind by the primary laboratory SGS and an inter-laboratory field duplicate tested by the secondary laboratory Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions. COC certificates and laboratory sample receipt documentation were provided to El for confirmation purposes, as discussed in Section 7 .
Soil Vapour Screening	Screening for potential VOCs in all collected soil samples was conducted in field using a Photo-ionisation Detector (PID) fitted with a 10.6 eV lamp.

6.5 GROUNDWATER INVESTIGATION

The groundwater investigation works conducted at the site are described in **Table 6-3**. Monitoring well locations are illustrated in **Figure 2**.

Activity/Item	Details
Fieldwork	One groundwater monitoring well was installed and developed on 9 March 2017.
	One groundwater monitoring well installed in a previous geotechnical investigation performed by SMEC (2010) was also used for this assessment (SMEC – BH2).
	Water level gauging, well purging, field testing and groundwater sampling was carried out on 19 March 2017, in a Groundwater Monitoring Event (GME).
	Well development and the GME were both carried out by an EI Engineer.
Well Construction	Test bores were converted to groundwater monitoring wells as follows:
	One, 8.8 m deep well identified as BH101M.
	Well construction details are tabulated in Table 8-2 and documented in the bore logs presented in Appendix D . The monitoring well was installed to screen the shale water bearing zone.

Table 6-3	Summary of Groundwater Investigation Methodolog
Table 6-3	Summary of Groundwater investigation methodolog

Activity/Item	Details
Well Construction	Well construction was in general accordance with the standards described in Victoria EPA, 2000 and involved the following:
	• 50 mm, Class 18 uPVC, threaded, machine-slotted screen and casing;
	base and top of each well was sealed with a uPVC cap;
	 annular, graded sand filter was used to approximately 500 mm above top of screen interval;
	 granular bentonite was applied above the annular filter to the ground level, in order to seal the screened interval;
	• surface completion comprised a steel gatic cover set in neat cement and finished flush with the ground level.
Well Development	Well development was conducted for the well following installation. This involved agitation within the full length of the water column using a dedicated, HDPE, disposable bailer, followed by removal of water and accumulated sediment using a the same bailer, until no further reduction in suspended sediment was observed (i.e. after removal of several well volumes), or the well was purged dry.
Well Survey (Elevation and location)	Locations of the monitoring wells were measured from fixed points marked on the site survey plan provided by the client (Appendix A). Well elevations at ground level were extrapolated from the spot elevations marked on the survey plan. Well elevations at ground level were extrapolated in metres relative to Australian Height Datum (m AHD).
Well Gauging & Groundwater Flow Direction	Monitoring wells BH101M and SMEC – BH2 were gauged for standing water level (SWL, depth to groundwater) prior to well purging at the commencement of the GME on 14 March 2017.
	The measured standing water levels were converted to RL in metres relative to Australian Height Datum (mAHD) based on extrapolated ground elevation, measured well stick-up and water levels. Groundwater flow direction was inferred based on the calculated SWL in RL (Table 8-3).
Well Purging & Field Testing	Monitoring well BH101M was purged and sampled using low-flow/minimal drawdown sampling method with a MicroPurge kit (MP15) and a portable MicroPurge pump following well gauging. The MicroPurge system incorporates a low-density polyethylene (LDPE) pump bladder, and a Teflon-lined LDPE sample delivery tube. The system used for this investigation employed pressurised carbon dioxide gas to regulate groundwater flow. Pump pressure and pumping cycles were adjusted accordingly to regulate extraction flow rate, and to minimise drawdown of water level during the sampling process.
	Field measurement of water quality parameters was conducted continuously on purged groundwater with a water quality meter (Hanna Multi Parameter 9828) positioned within an open flow-through cell. Groundwater parameters tested in the field were Dissolved Oxygen (DO), Electrical Conductivity (EC), Redox, Temperature and pH. The measured parameters were recorded onto a field data sheet (Appendix E), along with the purged water volume at the time of measurement.
	Groundwater sampling was performed when three consecutive readings of groundwater parameter indicated stabilisation.
	Total water volume purged and stabilised groundwater parameters at each groundwater monitoring well are summarised in Table 8-3 .
Groundwater sampling	For BH101M, once three consecutive stabilised field measurements were recorded for the purged waters, this was considered to indicate that representative groundwater quality had been achieved and final physio-chemical measurements were recorded.
	Groundwater samples were then collected by decanting samples directly into containers via sample delivery tube (if the MicroPurge system was used).
	For SMEC-BH2 the low-flow/minimal drawdown sampling method could not be used due to the installed well being too narrow in size to allow for the placement of the MicroPurge pump Therefore, a disposable bailer was used to purge and sample the monitoring bore.

Details

Activity/Item

Decontamination Procedure	Decontamination was not required on the bailer, pump bladder and delivery tube of the MicroPurge System, as they were dedicated to each groundwater monitoring well. The remainder of the MicroPurge system, the interface probe and the water quality meter were decontaminated with a solution of potable water and Decon 90. This was followed by rinsing with potable water, then a final rinse with de-ionised rinsate water (supplied by the primary laboratory) between each sampling location.
Sample Preservation	 Sample containers were supplied by the laboratory with the following preservatives: one, 1 litre amber glass, acid-washed and solvent-rinsed bottle; two, 40ml glass vials, pre-preserved with dilute hydrochloric acid, Teflon-sealed; and one, 250mL, HDPE bottle, pre-preserved with dilute nitric acid (1 mL). Samples for metals analysis were field-filtered using 0.45 µm pore-size filters. All containers were filled with sample to the brim then capped and stored in ice brick-filled chests, until completion of the fieldwork and during sample transit to the laboratory.
Quality Control & Laboratory Analysis	All groundwater samples were submitted for analysis of previously identified chemicals of concern by SGS Laboratories (SGS). QA/QC testing comprised intra-laboratory duplicates ('field duplicates') tested blind by SGS and an inter-laboratory field duplicate tested by Envirolab Services (Envirolab). All samples were transported under strict Chain-of-Custody (COC) conditions and COC certificates and laboratory sample receipt documentation were provided to EI for confirmation purposes.
Sample Transport	After sampling, cooled sample chests were transported to SGS Australia Pty Ltd using strict Chain-of-Custody (COC) procedures. Inter-laboratory duplicate samples were forwarded to Envirolab Services Pty Ltd (Envirolab) for QA/QC analysis. A Sample Receipt Advice (SRA) was provided by each laboratory to document sample condition upon receipt. Copies of SRA and COC certificates are presented in Appendix F .

7. DATA QUALITY ASSESSMENT

The assessment of data quality is defined as the scientific and statistical evaluation of environmental data to determine if these data meet the objectives of the project (Ref. USEPA 2006). Data quality assessment includes an evaluation of the compliance of the field sampling and laboratory analytical procedures and an assessment of the accuracy and precision of these data from the laboratory quality control measurements obtained.

The data quality assessment process for this assessment included a review of analytical procedures to confirm compliance with established laboratory protocols and an assessment of the accuracy and precision of analytical data from a range of quality control measurements. The QC measures generated from the field sampling and analytical program were as follows:

- suitable records of fieldwork observations including borehole logs;
- relevant and appropriate sampling plan (density, type, and location);
- use of approved and appropriate sampling methods;
- preservation and storage of samples upon collection and during transport to the laboratory;
- complete field and analytical laboratory sample COC procedures and documentation;
- sample holding times within acceptable limits;
- use of appropriate analytical procedures and NATA-accredited laboratories; and
- required LOR (to allow for comparison with adopted investigation levels);
- frequency of conducting quality control measurements;
- laboratory blanks;
- field duplicates;
- laboratory duplicates;
- matrix spike/matrix spike duplicates (MS/MSDs);
- surrogates (or System Monitoring Compounds);
- analytical results for replicated samples, including field and laboratory duplicates and interlaboratory duplicates, expressed as Relative Percentage Difference (RPD); and
- checking for the occurrence of apparently unusual or anomalous results, e.g. laboratory results that appear to be inconsistent with field observations or measurements.

The findings of the data quality assessment in relation to the soil and groundwater investigations at the site are discussed in detail in **Appendix H**. QA/QC policies and DQOs are presented in **Appendix I**.

On the basis of the analytical data validation procedure employed the overall quality of the soil and groundwater analytical data produced for the site were considered to be of an acceptable standard for interpretive use.

8. RESULTS

8.1 SOIL INVESTIGATION RESULTS

8.1.1 Site Geology and Subsurface Conditions

The general site geology encountered during the drilling of soil investigation was a layer of anthropogenic fill / topsoil, overlying residual silty clay, followed by shale bedrock. The geological information obtained during the investigation is summarised in **Table 8-1** and borehole logs from these works are presented in **Appendix D**.

Layer	Description	Observed depths to top & bottom of layer						
		Top (mBGL)	Bottom (mBGL) 2.8					
Fill / Topsoil	Concrete or asphalt (where present) up to 180 mm thick, overlying SAND / Silty CLAY / Sandy CLAY fill materials, generally black-dark brown-grey, with rootlets inclusions at boreholes outside building footprints, occasionally with, gravel inclusions, no odour.	0.0						
Residual soil	Silty CLAY, medium to high plasticity, grey - orange mottled red - grey, no odour.	0.9	3.5					
Bedrock	SHALE, brown-light grey grading to dark brown-black, no odour.	3.5	9.8+					

Table 8-1 Generalised Subsurface Profile

Notes:

+ Termination depth of borehole

8.1.2 Field Observations and PID Results

Soil samples were obtained from the test bores at various depths ranging between 0.1 m and 3.8 mBGL. All examined soil samples were evaluated on a qualitative basis for odour and visual signs of contamination (e.g. hydrocarbon odours, oil staining, petrochemical filming, asbestos fragments, ash, charcoal) and the following observations were noted:

- Asbestos fragments were not observed in examined drilling cuttings or on ground surfaces, however, loose fibrous cemented sheeting fragments however were note on external buildings and on a shed around the exterior or 77-85 Eveleigh Street (Section 2.5).
- Unusual odours were not detected in drilling cuttings; and
- Soil headspace samples were field-screened using a portable PID.. The PID results of soil headspace samples ranged between 0.2 and 4.8 ppm. PID results are detailed in borehole logs presented in **Appendix D**.

8.2 **GROUNDWATER INVESTIGATION RESULTS**

8.2.1 Monitoring Well Construction

A total of one groundwater monitoring wells was installed at the site. Well construction details for the installed groundwater monitoring wells are summarised in **Table 8-2**.

Table 8-2	Monitoring Well Construction Details
-----------	--------------------------------------

Well ID	Well Depth (mBGL) Ground Level RL (mAHD)		Stick-up (m)	RL TOC (mAHD)	Screen Interval (mBGL)	Lithology Screened
BH101M	8.8	25.17	-0.12	25.05	5.8 - 8.8	Shale

Notes:

mBGL - metres below ground level.

RL - Reduced Level – ground level extrapolated from the site survey plan, in metres relative to Australian Height Datum (m AHD).

Stick-up - Distance from the top of well casing to ground level. Negative values indicate stick-up is below ground level. RL TOC - Reduce level at the top of well casing in mAHD.

8.2.2 Field Observations and Water Test Results

A GME was conducted on the installed well (BH101M), along with the well installed by SMEC (SMEC-BH2) on 14 March 2017. On this date, standing water levels (SWLs) were measured within each well prior to well purging, the results of which were recorded with well purge volumes and field-based water test results. A summary of the recorded field data is presented in **Table 8-3** and copies of the completed Field Data Sheets are included in **Appendix E**.

SWL (m BTOC)	RL (TOC)	WL [†] (m AHD)			Field pH	Field pH Field EC (µS/cm)		Redox (mV)					
BH101M (Grey, mode	erate turbidi	ty, no sheen, r	no odour)									
4.961	25.17	20.209	3.0	2.09	7.58	1267	20.91	-31.7					
SMEC-BH	SMEC-BH2 (Grey, moderate turbidity, no sheen, no odour)												
8.015	27.80	19.785	2.0	1.71	6.35	1282	21.77	30.1					

Table 8-3 Groundwater Field Data

Notes:

GME - Groundwater monitoring event.

SWL - Standing Water Levels as measured from TOC (top of well casing) prior to groundwater sampling.

m BTOC - metres below top of well casing

RL (TOC) - Reduced Level, elevation at TOC in metres relative to Australian Height Datum (m AHD).

⁺ WL - Calculated groundwater level, in m AHD (calculated as RL (TOC) – SWL)

L – litres (referring to volume of water purged from the well prior to groundwater sample collection).

EC – groundwater electrical conductivity as measured onsite using portable EC meter.

 μ S/cm – micro Siemens per centimetre (EC units).

DO - Dissolved Oxygen in units of milligrams per litre (mg/L)

Redox – Oxidation and reduction potential. Redox reported in **Table 8-3** has been adjusted relative to standard hydrogen electrode (by adding 205 mV to field reading, as advised by the test equipment manufacturer). Refer to **Appendix E** for field redox readings pre-adjustment.

All groundwater parameters (pH, EC, Redox, Temperature and DO) were tested on site.

With reference to **Table 8-3**, groundwater flow direction was inferred to be generally towards the north to north-west. The field pH data indicated that the groundwater ranged between mildly acidic and

mildly alkaline (pH ranged from 6.35 to 7.58) with oxidising conditions. Electrical conductivity measurements (EC) which ranged from 645 to 1,282 μ S/cm indicated that the groundwater was fresh in terms of water salinity.

8.3 LABORATORY ANALYTICAL RESULTS

8.3.1 Soil Analytical Results

A summary of laboratory results showing test sample quantities, minimum/maximum analyte concentrations and samples found to exceed the SILs, is presented in **Table 8-4**. More detailed tabulations of results showing the tested concentrations for individual samples alongside the adopted soil criteria are presented in **Tables T1** and **T2** at the end of this report. Completed documentation used to track soil sample movements and laboratory receipt (i.e. COC and SRA forms) are copied in **Appendix F** and all laboratory analytical reports for tested soil samples are presented in **Appendix G**.

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
Heavy Metal				
13	Arsenic	<3	36	None
13	Cadmium	<0.3	1.2	None
13	Chromium (Total)	2	18	None
13	Copper	1	310	Samples exceeding adopted ESL: BH107_0.7-0.8 (310 mg/kg) BH108_0.4-0.5 (63 mg/kg)
13	Lead	8	630	None
13	Mercury	<0.5	0.23	None
13	Nickel	<0.5	81	Samples exceeding adopted ESL: BH108_0.4-0.5 (81 mg/kg)
13	Zinc	4	560	Samples exceeding adopted ESL: BH108_0.4-0.5 (560 mg/kg)
Hydrocarbon s				
13	F1 TRH	<25	<25	None
13	F2 TRH	<25	26	None
13	F3 TRH	<90	180	None
13	F4 TRH	<120	<120	None
13	Benzene	<0.1	<0.1	None
13	Toluene	<0.1	<0.1	None
13	Ethylbenzene	<0.1	<0.1	None
13	Total xylenes	<0.3	<0.3	None
13	Naphthalene	<0.1	<0.1	None
PAHs				
13	Benzo(a)pyrene	<0.1	4.4	None

Table 8-4 Summary of Soil Analytical Results

No. of primary samples	Analyte	Min. Conc. (mg/kg)	Max. Conc. (mg/kg)	Sample locations exceeding investigation levels
13	Carcinogenic PAHs	<0.3	6.3	None
13	Total PAH	<0.8	44	None
Asbestos				
8	Asbestos	No asbestos detected	No asbestos detected	None detected in tested soil samples
OCPs, OPPs	and PCBs			
8	OCPs	Not Detected	Not Detected	None
8	OPP	Not Detected	Not Detected	None
8	Total PCBs	<1	<1	None

Heavy Metals

With reference to **Table T1 and T2**, all heavy metals concentrations were below HIL B - *Residential Sites with Minimal Access to Soils*, and HIL-C - *Proposed Open Spaces.*

Copper concentrations in samples BH107_0.7-0.8 (310 mg/kg) and BH108_0.4-0.5 (63 mg/kg) exceeded the derived ecological investigation level (EIL) of 60 mg/kg. Nickel concentrations in BH108_0.4-0.5 (81 mg/kg) exceeded an EIL of 30 mg/kg. Finally, Zinc concentrations in sample BH108_0.4-0.5 (560 mg/kg) also exceeded the derived EIL (70 mg/kg).

Samples BH107_0.7-0.8 and BH108_0.4-0.5 were collected from the fill horizon, with a deeper sample not collected due to manual auger refusal.

TRHs

As shown in **Table T1 and T2**, all total recoverable hydrocarbons (TRH) concentrations were below adopted human health HSL A&B criteria and ecological ESLs criteria.

BTEX and Naphthalene

As shown in **Table T1 and** T2, all BTEX and Naphthalene concentrations in the tested soil samples were below the laboratory's practical quantitation limits (PQLs) and below the adopted human health and ecological risk assessment criteria.

PAHs

As shown in **Table T1 and T2**, all PAH concentrations were below human health criteria adopted for risk assessment HSL A&B, and the criteria for ecological risk assessment ESLs.

Asbestos

As summarised in **Table T1**, no detectable asbestos concentrations or traces of respirable fibres were identified in any of the tested soil samples.

OCPs, OPPs and PCBs

With reference to **Table T1**, no detectable concentration of any of the screened OCP, OPP and PCB compounds was identified in any of the tested samples. All laboratory PQLs were also within the corresponding SILs.

8.3.2 Groundwater Analytical Results

Laboratory analytical results for groundwater samples are summarised in **Table T3**, which also include the adopted GILs. Completed documentation used to track groundwater sample movements and laboratory receipt (COC and SRA forms) are copied in **Appendix F**. Copies of the laboratory analytical reports are attached in **Appendix G**.

No. of primary samples	Analyte	Min. Conc. (µg/L)	Max. Conc. (µg/L)	Sample locations exceeding investigation levels
Heavy Metal				
2	Arsenic	<1	6	None
2	Cadmium	<0.1	0.1	None
2	Chromium (Total)	<1	<1	None
2	Copper	<1	1	None
2	Lead	<1	<1	None
2	Mercury	<0.0001	<0.0001	None
2	Nickel	5	7	None
2	Zinc	46	54	Samples exceeding adopted GIL: BH101M (46 µg/L) SMEC-BH2 (54 µg/L)
Hydrocarbons				
2	F1 TRH	<50	<50	None
2	F2 TRH	<60	<60	None
2	F3 TRH	<500	<500	None
2	F4 TRH	<500	<500	None
2	Benzene	<0.5	<0.5	None
2	Toluene	<0.5	<0.5	None
2	Ethyl benzene	<0.5	<0.5	None
2	o-xylene	<0.5	<0.5	None
2	m/p-xylene	<1	<1	None
PAHs				
2	Benzo(a)pyrene	<0.1	<0.1	None
2	Naphthalene	<0.1	<0.1	None

 Table 8-5
 Summary of Groundwater Analytical Results

9. SITE CHARACTERISATION

9.1 FILL MATERIALS ON SITE

Soil samples analysed by the testing laboratory indicated concentrations of heavy metals, TRH, BTEX, PAH, OCP/OPP, PCB, and asbestos below adopted human-health criteria. Ecological exceedances were identified in two locations (BH107_0.7-0.8 and BH108_0.4-0.5). Copper concentrations in samples BH107_0.7-0.8 (310 mg/kg) and BH108_0.4-0.5 (63 mg/kg), as well as Nickel concentrations in BH108_0.4-0.5 (81 mg/kg) and finally, Zinc concentrations in sample BH108_0.4-0.5 (560 mg/kg), were observed to be above adopted ecological investigation levels (EILs). Both of these samples were collected from the fill horizon, with a deeper sample not able to be collected due to manual auger refusal at both locations. Although ecological exceedances were noted, health investigation levels were considerably under their respective limits (HIL-C).

Furthermore, with considerations given to the site development, it is recommended that surface filling soils are stripped and removed from the site following demolition works and prior to construction. Fill soils in and around the proposed landscaping area should also be removed prior to construction to minimise any potential effects to plants used for landscaping. A guide for the excavation, waste classification and offsite removal of filling materials is provided in **Section 12**.

9.2 GROUNDWATER CHARACTERISATION

Groundwater samples were collected from the two monitoring wells on-site. Laboratory analytical results indicated that BTEX, TRH, PAHs and VOC concentrations in all groundwater samples were below the adopted assessment criteria. Most of the tested heavy metal concentrations were below the adopted criteria, with the exception of zinc in both monitoring wells (BH101M, 46 μ g/L) (SMEC-BH2, 54 μ g/L). Based on EI's experience, heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urbanised environments, and are not considered to represent a cause for environmental concern.

9.3 REVIEW OF CONCEPTUAL SITE MODEL

On the basis of investigation findings, the preliminary CSM discussed in **Section 4** was considered appropriate in identifying contamination sources, migration mechanisms and exposure pathways, as well as potential onsite and offsite receptors. Previously known data gaps, as outlined in **Section 4.4**, have largely been addressed.

10. CONCLUSIONS

The property located at 77-123 Eveleigh Street, Redfern NSW was the subject of a Preliminary Site Investigation (PSI) with Limited Sampling. This PSI was completed to provide an appraisal on the environmental conditions at the site for due diligence purposes. The primary objectives of this PSI were to evaluate the potential for site contamination and to investigate the degree of any potential contamination by the means of reviewing site history, intrusive sampling and laboratory analysis. The key findings of this assessment are as follows:

- The site, which was largely vacant land at the time of PSI site works but had been used for both commercial and residential purposes previously. The newly proposed development will include construction of a multi storey mixed residential / commercial building. El consider the development qualifies as a HIL-B / HIL-C Development *Residential with Minimal Opportunities for Soil Access*, and *Public Open Spaces* as defined in NEPM (2013).
- The intrusive investigation program carried out in this PSI comprised the drilling of eight boreholes (identified as BH101M to BH108), followed by installation of one groundwater monitoring wells. Soil samples were collected from depths between 0.1 m to 3.8 mBGL, from both the fill and natural soil horizons;
- The subsurface layers observed during the intrusive investigation comprised a layer of anthropogenic fill / topsoil, overlying residual silty clay, followed by shale bedrock.
- Laboratory analytical results of the tested soil samples indicated heavy metals, TRH, BTEX, PAH, OCP/OPP, PCB, and asbestos below adopted human-health criteria .
- Laboratory analytical results of the tested soil samples identified the following exceedances in ecological investigation levels:
 - Copper concentrations in samples BH107_0.7-0.8 (310 mg/kg) and BH108_0.4-0.5 (63 mg/kg);
 - Nickel concentrations in BH108_0.4-0.5 (81 mg/kg); and
 - Zinc concentrations in sample BH108_0.4-0.5 (560 mg/kg).
- With considerations given to the site development, it will require that the fill soils in and around the landscaping area will be removed during the excavation phase, and therefore not pose a risk of contamination.
- A groundwater monitoring event was completed by sampling at one newly installed monitoring wells (BH101M) and a well installed previously by SMEC (SMEC-BH2) on 14 March 2017;
- Groundwater seepage was not observed during auger drilling of the test bores, down to a
 maximum depth of 8.8 mBGL. Standing groundwater levels measured in the two monitoring
 wells were between 4.961 m to 8.015 mBGL. Groundwater flow was inferred to be generally
 towards the north to north-west.
- Laboratory analytical results indicated the concentrations of BTEX, TRH, PAH, VOCs and total phenols in the collected groundwater samples were below the adopted assessment criteria.

Heavy metals concentrations were mostly below the adopted criteria, with the exception of the following:

Zinc in all both monitoring wells at concentrations of 46 μg/L (BH101M) and 54 μg/L (SMEC - BH2), exceeded the GILs of 8 μg/L for Fresh Waters;.

Based on EI's experience, heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments, and not considered to represent a cause for environmental concern.

- Heavy metal concentrations reported in both wells were largely comparable, demonstrating that there was no material increase of heavy metal concentrations in groundwater at down gradient locations of the site.
- A conceptual site model (CSM) was derived for the site in this PSI. The CSM identified potential contaminating sources that may occur at the site and evaluated the likelihood for relevant exposure pathways to be complete during and after the proposed development. Based on the findings of this assessment, possible risks to sensitive receptors are low.

Based on the findings of this report and with consideration of the Statement of Limitations (**Section 13**), EI concludes that gross and/or widespread contamination was not identified at the site in soils and groundwater, and possible risks to sensitive receptors are low. In light of the proposed demolition of existing structures and the presence of some heavy metals exceeding ecological criteria, recommendations for site management following demolition are provided in **Section 11**.

11. RECOMMENDATIONS

Based on the findings of the PSI, EI recommend the following:

- Undertake a site inspection of freshly exposed surfaces following the demolition and removal of slab/ hardstand. Inspect particularly for foreign materials, any potential contamination sources, unexpected finds, and hazardous materials (asbestos containing) deposited following demolition;
- Manage fill according to the steps outlined **Section 12**.

eiaustralia

12. SITE FILL MANAGEMENT

Following demolition, surficial filling soils are to be removed from the development footprint, as well filling soils located within the proposed landscaping area. The following steps are to be undertaken post-demolition by an environmental consultant:

- While asbestos was not reported in tested fill samples, or detected during examination of drilling cuttings, the presence of asbestos-containing materials (ACM) on existing site structures was observed. As such, an inspection of the site is to be performed following demolition. The site inspection should include observation of freshly exposed surfaces following demolition and slab/hardstand removal to assist with identifying any foreign materials, any potential contamination sources, unexpected finds, and hazardous materials;
- Surficial filling soils should be stripped from the site footprint and placed into stockpiles for waste classification purposes. Stockpiles should be managed in accordance with development consent requirements;
- The collection of representative soil samples from each of stockpiled materials for laboratory analytical testing should be completed In accordance with the NEPM (2013) guidelines. Stockpiled soils will be sampled for waste classification purposes in accordance with the following methodology:
 - Collection of one sample per 25 m³ of stockpiled material for the fill/soils, as per NEPM (2013) guidelines A minimum of three samples is required for waste classification of stockpiles < 25 m³;
 - For stockpiles > 200 m³ in size (up to 2,500 m³), a minimum of ten samples are to be collected with statistical analysis applied and classification according to the 95 % UCL of the average concentration of the assessed analytes
 - Collection of one intra-laboratory duplicate for every 10 primary samples collected and one inter-laboratory duplicate for every 20 primary samples collected;
 - Collection of one rinsate blank per sampling round;
- Collected samples of fill should be analysed by NATA registered laboratory for chemicals of concern of heavy metals (arsenic, cadmium, chromium, copper, lead, nickel, mercury, zinc), petroleum hydrocarbons (TPH), benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphorous pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos (presence/absence), sufficient for waste classification. Leachate analysis following TCLP testing may also be required;
- Assess laboratory data against criteria listed in NSW EPA (2014) *Waste Classification Guidelines* and prepare a waste classification certificate (WCC) for the fill;
- The fill should be excavated and disposed of, at an appropriately licence landfill according to the determination of the WCC. Documentary receipts and evidence of disposal of classified waste fill/soils at an appropriately-licensed landfill facility should be retained. NSW EPA requires a cradle to grave approach in the management of waste, as such; non-compliance with the waste guidelines can result in significant fines in accordance with the NSW *Protection of the Environment Operations Act 1997*.

13. STATEMENT OF LIMITATIONS

The findings presented in this report are the result of discrete and specific sampling methodologies used in accordance with best industry practices and standards. Due to the site-specific nature of soil sampling from point locations, it is considered likely that all variations in subsurface conditions across a site cannot be fully defined, no matter how comprehensive the field investigation program.

While normal assessments of data reliability have been made, EI assumes no responsibility or liability for errors in any data obtained from previous assessments conducted on site, regulatory agencies (e.g. Council, EPA), statements from sources outside of EI, or developments resulting from situations outside the scope of works of this project.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. In addition, site characteristics may change at any time in response to variations in natural conditions, chemical reactions and other events, e.g. groundwater movement and or spillages of contaminating substances. These changes may occur subsequent to El's investigations and assessment.

El's assessment is necessarily based upon the result of the site investigation and the restricted program of surface and subsurface sampling, screening and chemical testing which was set out in the proposal. Neither El, nor any other reputable consultant, can provide unqualified warranties nor does El assume any liability for site conditions not observed or accessible during the time of the investigations.

This report was prepared for DeiCorp Constructions NSW Pty Ltd and no responsibility is accepted for use of any part of this report in any other context or for any other purpose or by other third parties. This report does not purport to provide legal advice.

This report and associated documents remain the property of EI subject to payment of all fees due for this assessment. The report shall not be reproduced except in full and with prior written permission by EI.

REFERENCES

- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, October 2000.
- ASSMAC (1998) *Acid Sulfate Soils Assessment Guidelines*, part of the ASS Manual, Acid Sulfate Soil Management Advisory Committee (ASSMAC), Wollongbar, NSW, Australia, 28 August 1998, 59 p.
- Australian Standard (2005) Table E1 *Minimum sampling points required for site characterisation*, in Guide to the investigation and sampling of sites with potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds, Standards Australia, AS 4482.1-2005, p45.
- Chapman, G.A. and Murphy, C.L. (1989) Soil Landscapes of the Sydney 1:100 000 sheet, Soil Conservation Service of NSW, Sydney, September 1989.
- DEC (2006) *Guidelines for the NSW Site Auditor Scheme (2nd Edition)*, Dept. of Environment and Conservation, New South Wales, DEC 2006/121, April 2006.
- DEC (2007) *Guidelines for the Assessment and Management of Groundwater Contamination*, Dept. of Environment and Conservation, New South Wales, DEC 2007/144, June 2007.
- DIPNR (2005), *Groundwater Basics for Understanding Urban Salinity*, Department of Infrastructure, Planning and Natural Resources, 2005.
- DMR (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1) *Geological Survey of New South Wales*, Department of Mineral Resources.
- Domenico, P.A. and Schwartz, F.W. (1990) Physical and Chemical Hydrogeology, Wiley, 1990.
- EPA (1995) Sampling Design Guidelines Environment Protection Authority of New South Wales, Contaminated Sites Unit, EPA 95/59, September 1995.
- EPA (2014) *Waste Classification Guidelines*, NSW Environment Protection Authority, November 2014.
- Google Earth V 7.1.1.1888. (September 28, 2000). Eveleigh Street, Redfern, Australia. 33° 53' 24.70"S, 151° 11' 58.38"E, Eye alt 432m. DigitalGlobe 2016. http://www.earth.google.com [March 23, 2017].
- Murphy CL (1997) Acid Sulfate Soil Risk of the Botany Bay Sheet Department of Land and Water Conservation, Sydney, Second Edition. Supplied by the Sydney South Coast, Geographical Information Systems Unit.
- Naylor SD, Chapman GA, Atkinson G, Murphy CL, Tulau MJ, Flewin TC, Milford HB and Morand DT (1998) *Guidelines for the Use of Acid Sulfate Soil Risk Maps*, Department of Land and Water Conservation, Sydney, Second Edition.
- NEPM (2013) Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, Schedule B2 Guideline on Site Characterisation and Schedule B4 Guideline on site-specific health risk assessments, National Environmental Protection (Assessment of Site Contamination) Measure 1999, National Environmental Protection Council, December 1999, Amendment 2013.
- NSW Public Works (2011) *Brackish groundwater: a viable community water supply option?*, NSW Public Works, published by Australian National Water Commission, December 2011.

- NHMRC (2008) *Guidelines For Managing Risks in Recreational Water,* Australian Government, National Health and Medical Research Council, February 2008.
- NHMRC (2016) *Australian Drinking Water Guidelines 6 2011,* Australian Government, National Health and Medical Research Council, Version 3.2, updated February 2016.
- OEH (2006) NSW Water Quality and River Flow Objectives Sydney Harbour and Parramatta River, NSW Office of Environment and Heritage, http://www.environment.nsw.gov.au/ieo/SydneyHarbour/index.htm, published on 1 May 2006, accessed on 18 July 2016.
- OEH (2011) *Guidelines for Consultants Reporting on Contaminated Sites*, NSW Office of Environment and Heritage (OEH), OEH 2011/0650, 23 p
- City of Ryde (2012) Ryde Local Environment Plan 2012, City of Sydney Council.
- SMEC Testing Services (August 2010) Geotechnical Investigation Eveleigh Street, Redfern Pemulwuy Project for DeiCorp Pty Limited, prepared by SMEC Testing Services Pty Ltd, Report No. 10/0811, dated August 2010.
- SMEC Testing Services (August 2010) *Geotechnical Investigation Pemulwuy Project, Redfern Groundwater Report*, prepared by SMEC Testing Services Pty Ltd, Report No. 10/0986 LWI/emv, dated 25 August 2010;
- USEPA (2006) Data Quality Assessment: A Reviewers Guide EPA QA/G-9R. USEPA Office of Environmental Information, EPA/240/B-06/002, February 2006.
- Victoria EPA (2000) *Groundwater Sampling Guidelines*, Environment Protection Authority, State Government of Vitoria, Publication 669, April 2000.
- WADOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. Published by the Western Australian Department of Health, May 2009.
- SEPP 55 (1998) State Environmental Planning Policy No 55—Remediation of Land under the Environmental Planning and Assessment Act 1979, Minister for Urban Affairs and Planning, NSW Department of Planning & Environment.

ABBREVIATIONS

A CN4	Askastas containing materials
ACM	Asbestos-containing materials
ASS	Acid sulfate soils
ANZECC	Australian and New Zealand Environment Conservation Council
	5
B(α)P	Benzo(α)pyrene (a PAH compound), - B(α)P TEQ Toxicity Equivalent Quotient
BH	Borehole
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
COC	Chain of Custody
DA	Development Application
DEC	Department of Environment and Conservation, NSW (see OEH)
DECC	Department of Environment and Climate Change, NSW (see OEH)
DECCW	Department of Environment, Climate Change and Water, NSW (see OEH)
DIPNR	Department of Infrastructure, Planning, and Natural Resources
DNAPL	Dense, non-aqueous phase liquid
DO	Dissolved Oxygen
DP	Deposited Plan
EC	Electrical Conductivity
EI	El Australia
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
ESL	Ecological Screening Level
F1 TRH	TRH $C_6 - C_{10}$ less the sum of BTEX concentrations (Ref. NEPM 2013, Schedule B1)
F2 TRH	TRH > $C_{10} - C_{16}$ less the concentration of naphthalene (Ref. NEPM 2013, Schedule B1)
F3 TRH	$TRH > C_{16} - C_{34}$
F4 TRH	$TRH > C_{34} - C_{40}$
GIL	Groundwater Investigation Level
GME	Groundwater Monitoring Event
HIL	Health-based Investigation Level
HSL	Health-based Screening Level
km	Kilometres
LNAPL	Light, non-aqueous phase liquid
m	Metres
mAHD	Metres Australian Height Datum
mBGL	Metres Below Ground Level
mg/L	Milligrams per litre
µg/L	Micrograms per litre
mV	Millivolts
MW	Monitoring well
NATA	National Association of Testing Authorities, Australia
NEPC	National Environmental Protection Council
NSW	New South Wales
OEH	Office of Environment and Heritage, NSW (formerly DEC, DECC, DECCW)
PAHs	Polycyclic Aromatic Hydrocarbons
pН	Measure of the acidity or basicity of an aqueous solution
PSH	Phase-separated hydrocarbons
PSI	Preliminary Site Investigation
PQL	Practical Quantitation Limit (limit of detection for respective laboratory instruments)

QA/QC	Quality Assurance / Quality Control
RAP	Remediation Action Plan
SRA	Sample receipt advice (document confirming laboratory receipt of samples)
SWL	Standing Water Level
TDS	Total dissolved solids (a measure of water salinity)
TCLP	Toxicity Characteristics Leaching Procedure
TPH	Total Petroleum Hydrocarbons (superseded term equivalent to TRH)
TRH	Total Recoverable Hydrocarbons (non-specific analysis of organic compounds)
THM	Trihalomethane
UCL	Upper Confidence Limit
USEPA	United States Environmental Protection Agency
UPSS	Underground Petroleum Storage System
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds (specific organic compounds which are volatile)

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

FIGURES

- Approximate site boundary _ __ _
- Approximate borehole location \bigcirc
- Approximate borehole/monitoring well location \bigcirc
- Approximate location of proposed landscaping area

Drawn:	D.R.	DeiC
Approved:	C.Y.	77
Date:	13-03-17	

Preliminary Site Investigation w/- Limited Sampling 77-123 Eveleigh Street, Redfern NSW

Sampling Location Plan

2

Project: E23309 AA_Rev0

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

TABLES

Table T1 - Summary of Soil Analytical results (Proposed Residential Area)

		Sar					Heavy	Metals					P/	AHs			B	TEX			T	RHs					
Site Area	Sample ID	npling Depth (@ m BGL)	Sampling Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as B(α)P TEQ)	Benzo(ɑ)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total OCPs	Total OPPs	Total PCBs	Asbestos
	BH101M	0.6-0.7		5	0.4	13	45	630	<0.05	4.9	360	2.8	2.0	19	0.2	<0.1	<0.1	<0.1	<0.3	<25	<25	180	<120	ND	ND	<1	ND
	BH101M	1.5-1.6		14	<0.3	15	4	12	<0.05	<0.5	5	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
Pro	BH102	0.5-0.6		<3	<0.3	4	1	8	<0.05	1.0	6	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<1	ND
sodc	BH103	0.2-0.3		4	<0.3	9.9	23	130	0.08	8.1	86	3.1	2.2	20	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	110	<120	ND	ND	<1	ND
ed Re	BH103	1.9-2.0		22	0.5	18.0	6	40	<0.05	0.9	23	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	NA	NA	NA
siden	BH104	0.6-0.7	9/1	36	0.6	13	53	160	0.13	6.7	280	3.1	2.2	23	0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	97	<120	ND	ND	<1	ND
tial D	BH104	1.9-2.0	03/20	6	0.4	18.0	2.3	22	<0.05	<0.5	16.0	<0.3	0.1	1.9	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
wellir	BH105	0.1-0.2	17	<3	<0.3	5.6	13.0	45	0.07	3.8	54.0	0.7	0.4	4.5	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<1	ND
sbi	BH105	2.7-2.8		7	0.6	15	7	30	<0.05	0.9	15	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
	BH106	0.2-0.3		11	0.4	10	51	85	0.05	9.4	130	1.6	1.1	9.6	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	170	<120	ND	ND	<1	ND
	BH106	1.5-1.6		<3	<0.3	2	1.9	10	<0.05	<0.5	4	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	NA	NA	NA	NA
	BH107	0.7-0.8		NA	NA	NA	NA	NA	NA	NA	NA	0.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	BH108	0.4-0.5		NA	NA	NA	NA	NA	NA	NA	NA	<0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HIL B - <i>Resid</i>	ential with minimal	l opportunities l	or soil access	500	150	500 Cr(VI)	30,000	1,200	120	1,200	60,000	4	NR	6 ILs 400										NR	NR	1	
									depths 0 m to <						3	0.5	160	55	40	45	110						
	A/B Low - High	-						Source	depths 1 m to <	2 mBGL					NL	0.5	220	NL	60	70	240						
	Soil texture classi	ification – Sand						Source	e depths 2 m to <	4 mBGL					NL	0.5	310	NL	95	110	440						
					•			So	urce depths >4 m	BGL	•				NL	0.5	540	NL	170	200	NL						
EILs / ESLs	- urban residentia	al and public op	nen space ¹	100	NR	190	60	1,100	NR	30	70	NR	0.7	NR	170	50	85	70	105	180*	120*	300*	2800*	180	NR	NR	NR
•	ement Limits – R <i>e</i> : <i>pen space</i> - Coar	,																		700	1000	2500	10000				
Asbestos	contamination HSL Residen		CM (%w/w)																								0.04
Asbestos conta	mination HSL for N (%w/		riable Asbestos																								0.001

Notes: All results are recorded in mg/kg

	Highlighted values indicates concentration exceeds Human Helath Based Soil Crit Highlighted values indicates concentration exceeds EIL / ESL.	teria	
	Highlighted values indicates concentration exceeds Management Limits		
HIL B	NEPC 1999 Amendment 2013 'HIL B" Health Based Investigation Levels applicable for residential e	xposure settings with minimal op	portunities for soil access, including dwellings with fully and permanently paved yard space such as high rise buildings and apartments.
*	NEPM (2013) ESL Moderate Reliability Criteria		
NR	No current published criterion.		
NL	Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water pl	hase cannot dissolve any more of	f the individual chemical
NA	Not Analysed i.e. the sample as not analysed.		
ND	Not Detected' i.e. the sample was below detection limits.		
1	Coarse Grained soil values were applied, being the most conservative of the material types.		
F1	TPH C_6 - C_{10} less the sum concentration of BTEX.	F3	TPH C _{>16} -C ₃₄
F2	TPH $C_{>10}$ - C_{16} less the concentration of Naphthalene.	F4	TPH C _{>34} -C ₄₀

Table T2 - Summary of Soil Analytical results - Proposed Landscape / Open Space Area

		ş					Heavy	Metals					P	AHs			BT	EX			TF	RHs					
Site Area	Sample ID	mpling Depth (@ m BGL)	Sampling Date	As	Cd	Cr	Cu	Pb	Hg	Ni	Zn	Carcinogenic PAHs (as Β(α)Ρ ΤΕQ)	Benzo(α)pyrene	Total PAHs	Naphthalene	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1	F2	F3	F4	Total OCPs	Total OPPs	Total PCBs	Asbestos
Proposed Landscape Space	BH107	0.7 - 0.8	9/03	9	1.2	18	310	280	0.23	24	560	0.4	0.2	2.1	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<1	ND
lscape ace	BH108	0.4 - 0.5	/2017	<3	0.4	6	63	8	<0.05	81.0	48	<0.3	<0.1	<0.8	<0.1	<0.1	<0.1	<0.1	<0.3	<25	<25	<90	<120	ND	ND	<1	ND
													s	ILs													
	HIL C - Public	ic Open Space		300	90	300 Cr(VI)	17,000	600	80	1,200	30,000	3	NR	300										NR	NR	1	
HSL C	- Recreational / O Classificat	Open Space Soil tion - Sand	Texture					Source	e depths 0 m to <1 e depths 1 m to <2 e depths 2 m to <4	2 mBGL					NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL						
															NL	NL	NL	NL	NL	NL	NL						
EILs / ESL	.s - urban resident	ntial and public op	en space 1	100	NR	190	60	1,100	NR	30	70	NR	0.7	NR	170	50	85	70	105	180*	120*	300*	2800*	180	NR	NR	NR
Manaç	gement Limits – R <i>public op</i> Coarse graine	oen space	nd and																	700	1000	2500	10000				
Asbestos	contamination HS	SL - Bonded AC ational C	M (%w/w)																								0.02
Asbestos conta	amination HSL for (%v	r Non Bonded / Fr w/w)	iable Asbestos																								0.001

Notes: All results are recorded in mg/kg

Highlighted values indicates concentration exceeds Human Helath Based Soil Criteria
Highlighted values indicates concentration exceeds EIL / ESL.
Highlighted values indicates concentration exceeds Management Limits

HIL B NEPC 1999 Amendment 2013 HIL B* Health Based Investigation Levels applicable for residential exposure settings with minimal opportunities for soil access, including dwellings with fully and permanently paved yard space such as high rise buildings and apartments.

NEPM (2013) ESL Moderate Reliability Criteria

NR No current published criterion.

NL Not Limiting' If the derived soil vapour limit exceeds the soil concentration at which the pore water phase cannot dissolve any more of the individual chemical

NA Not Analysed i.e. the sample as not analysed.

ND Not Detected' i.e. the sample was below detection limits.

1	Coarse Grained soil values were applied, being the most conservative of the material types.	F3	TPH C>16-C34
F1	TPH C6-C10 less the sum concentration of BTEX.	F4	TPH C _{>34} -C ₄₀
F2	TPH C _{>10} -C ₁₆ less the concentration of Naphthalene.		

Table T3 – Summary of Groundwater Investigation Results

				Heavy M	letals						BTEX				TR	RHs		PA	Hs			
Sample ID	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Benzene	Toluene	Ethylbenzene	o-xylene	m/p-xylene	F1	F2	F3	F4	Benzo(a)pyrene	Naphthalene	Total VOCs	Acetone	Total Phenolics
BH101M	6	<0.1	<1	<1	<1	<0.1	7	46	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<0.1	<0.1	<10	<10	NA
SMEC-BH2	<1	0.1	<1	1	<1	<0.1	5	54	<0.5	<0.5	<0.5	<0.5	<1	<50	<60	<500	<500	<0.1	<0.1	<10	<10	NA
GIL	24 as AS(III)	0.2	N.R. (Cr III)	1.4	3.4	0.06	11	8 ¹	0002	NR ²	NR ²	350	200	1000 ²	10002	N.R.	N.R.	N.R.	16	N.R.	N.R.	320
GIL	13 as AS(V)	0.2	1 ¹ (Cr VI)	1.4	3.4	0.00		8	800 ²	NR	NR	330	200	1000	1000 ²	N.K.	N.K.	N.K.	10	N.K.	N.K.	320
ANZECC Low			3.3 (CrIII)																			
Reliability			- (Cr VI)			-			-	180	80			-				0.2	-	N.R.	N.R.	-

Notes: All results are in units of µg/L.

GIL Groundwater Investigation Level. All GIL values sourced from *National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013 Schedule (B1) –* Guideline on Investigation Levels for Soil and Groundwater, (NEPC) Investigation levels apply to Fresh Waters for typical slightly-moderately disturbed systems.

- N.R. No current publish criterion.
- N.D. Not Detected.
- N.A. Not analysed.

1 Indicated threshold value may not protect key species from chronic toxicity, refer to ANZECC & ARMCANZ (2000) for further guidance.

2 NEPM (2013) Table 1A(4) Groundwater HSL A & HSL B for vapour intrusion at the contaminant source depth ranges in sands 2m to <4m, considered most representative of fractured bedrock aquifer.

3 Chemical for which possible bioaccumulation and secondary poisoning effects should be considered, refer to ANZECC & ARMCANZ (2000) for further guidance.

- F1 TPH C_6 - C_{10} less the sum concentration of BTEX.
- F2 TPH $C_{>10}$ - C_{16} less the concentration of Naphthalene.
- F3 TPH C_{>16}-C₃₄
- F4 TPH C_{>34}-C₄₀
- Indicates concentration value exceeding the adopted GIL.

Indicates concentration value exceeding ANZECC low reliability values

Table T4 - Summary of Soil RPD Data

			Т	RH			BT	ΈX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laboratory D	Duplicate - Soil Investi	gation															
BH101M_0.6-0.7	FILL - SAND	<25	<25	180	<120	<0.1	<0.1	<0.1	<0.3	5	0.4	13.0	45	630	< 0.05	4.9	360
QD1	BFD	<25	<25	100	<120	<0.1	<0.1	<0.1	<0.3	5	0.4	1.3	60	720	0.16	3.5	390
	RPD	0.00	0.00	57.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	163.64	28.57	13.33	104.76	33.33	8.00
QD1 BFD <25 <25 100 <120 <0.1 <0.1 <0.3 5 0.4 1.3 60 720 0.16 3.5 390 RPD 0.00 0.00 57.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 163.64 28.57 13.33 104.76 33.33 8.00 Inter-Laboratory Dublicate - Soil Investion V<																	
BH101M_0.6-0.7	FILL - SAND	<25	<25	180	<120	<0.1	<0.1	<0.1	<0.3	5	0.4	13.0	45	630	< 0.05	4.9	360
QT1	BFD	<25	<50	130	<100	<0.2	<0.5	<1	<1	5	<0.4	16	46	580	0.2	6	320
	RPD	0.00	NA	32.26	NA	NA	NA	NA	NA	0.00	0.00	20.69	2.20	8.26	120.00	20.18	11.76
Trip Blank																	
TB	Soil					<.01	<0.1	<0.1	<0.3	-	-	-	-	-	-	-	-
Trip Spikes																	
TS	Soil	-	-	-	-	95%	95%	97%	NA	-	-	-	-	-	-	-	-
Rinsate Blanks																	
QR1	De-ionised water	<50	<60	<500	<500	<0.5	1.2	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.0001	<1	<5
QR1B	De-ionised water	<50	<60	<500	<500	<0.5	1.1	<0.5	<1.5	<1	<0.1	<1	<1	<1	<0.0001	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)

RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Table T5 - Summary of Groundwater RPD Data

			TF	RH			BT	ΈX					Heavy	Metals			
Sample identification	Description	F1*	F2**	F3 (>C ₁₆ - C ₃₄)	F4 (>C ₃₄ - C ₄₀)	Benzene	Toluene	Ethylbenzene	Xylene (total)	Arsenic	Cadmium	Chromium (Total)	Copper	Lead	Mercury	Nickel	Zinc
Intra-laborate	ory Duplicate - Ground	dwater Invest	igation								-			-	-	-	-
BH101M	Groundwater	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	6	<0.1	<1	<1	<1	< 0.0001	7	46
GWQD1	BFD	<50	<60	<500	<500	<0.5	<0.5	<0.5	<1.5	6	<0.1	<1	1	<1	<0.0001	7	47
	RPD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.15
Trip Blank																	
TB	De-ionised water	-	-	-	-	<0.5	<0.5	<0.5	<1.5	-	-	-	-	-	-	-	-
Trip Spikes																	
TS	Soil	-	-	-	-	94%	95%	96%	-	-	-	-	-	-	-	-	-
Rinsate Blan	ks																
QR1	De-ionised water	<50	<60	<500	<500	<0.5	1.8	<0.5	<1.5	<1	<0.1	<1	4	<1	<0.0001	<1	<5

NOTE: All results are reported in mg/kg (soil) or µg/L (water)

66.67RPD calculated by halving detection limit exceeds 30-50% range referenced from AS4482.1 (2005)66.67RPD exceeds 30-50% range referenced from AS4482.1 (2005)

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

APPENDIX A

PROPOSED DEVELOPMENT PLANS & SITE SURVEY PLAN

Project No. 16107 Notes

This Drawing is copyright © of turner. No reproduction without permission. UNLESS NOTED otherwise this drawing is not for construction. ALL dimensions and levels are to be checked on site prior to the commencement of work. Inform turner of any discrepancies for clarification before proceeding with work. Drawings are not to be scaled. Use only figured dimensions, refer to consultant documentation for Further information.

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number 20476 Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

20		· · · · · · · · · · · · · · · · · · ·
	COPYRIGHT All rights reserved. These drawings, plans and specifications and the copyright therein are the property of the Bonacci Group and must not be used, reproduced or copied wholly or in part without the written permission of the Bonacci	

	These drawings, plans and specifications and the copyright therein Group and must not be used, reproduced or copied wholly or in pa of the Bonacci Group.			
ж—				
20				
10	P1 Issued for Review	08/03/17_RC		
П	Rev Description	Date By App	Rev Description	Date By App

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

Drawir Title

Lower Ground Level

1:400 @A3 21.02.17

		Lev Da AU	rlir	ngh	urs	st N	 	 	et	

T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•
	Proj Nan	ect ne	F	b e	m	ul	wı	JV	/																							

Precinct 3	Designed RC	Project Director Approved	Date	North
	Drawn			
Lower Ground Floor	Scale 1:200	Project Ref	Drawing No	Rev
Precast Concrete Profile	Date @ A1 Sheet	2021886	SK10	P1
	1	•		

AWING IS NOT FOR CONSTRUCTION

Project No. 16107

NOTES IT © OF TURNER. NO REPRODUCTION WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS D ALL DIMENSIONS AND LEVELS ARE TO BE CHECKED ON SITE PRIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR CLARIFICATION BEFORE PROCEDING WITH WORK. DRAWINGS ARE NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION FOR FURTHER INFORMATION.

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number 20476 Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

s—		
	COPYRIGHT	All rights reserved.

	These drawings, plans and specifications and the copyright there Group and must not be used, reproduced or copied wholly or in of the Bonacci Group.			
<u></u> %—				
- 20				
¢	P1 Issued for Review	08/03/17_RC		
	Rev Description	Date By App	Rev Description	Date By App

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

Upper Ground Level

1:400 @A3 21.02.17

Level 7 ONE Oxford Street
Darlinghurst NSW 2010 AUSTRALIA

T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

Name Pemulwuy	

Precinct 3	Designed RC	Project Director Approved	Date	North
Drawing Upper Ground Floor Precast Concrete Profile	Scale 1:200 Date @ A1 Sheet	Project Ref 2021886	Drawing No	Rev P1

Project No. 16107 NOTES

ALL DIMENSIONS AND LEVEL CLARIFICATION BEFORE PRO FOR FURTHER INFORMATION. OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

	Group a	IGHT rawings, plans and specifications and the copyright nd must not be used, reproduced or copied wholly pnacci Group.		he Bo	nacci			 			
- 30 - 30								 			
۶ <u>–</u>	P1	Issued for Review	08/03/17	RC				 			
	Rev	Description	Date	Ву	Арр	Rev	Description	Date	Ву	Арр	

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

CLIENT Proje Name BONACCI

Level 1

1:400 @A3 21.02.17

	Precinct 3		Designed RC	Project Director Approved	d Date	(North	
oject me	Pemulwuy							
•		••••		· · · · · · · ·		• •	•••	
2	Level 7 ONE Oxford Street Darlinghurst NSW 2010 AUSTRALIA	F +61	2 8668 0000 2 8668 0088 studio.com.au					

Precinct 3	Designed RC Drawn	Project Director Approved	Date (North
Title Level 1 Precast	Scale 1:200	Project Ref	Drawing No	Rev
Concrete Profile	Date @ A1 Sheet	2021886	SK13	P1

Project No. 16107 NOTES

09

ION WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. RIOR TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR ARE NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION ALL DIMENSIONS AND LEVELS ARE TO BE CLARIFICATION BEFORE PROCEDING WITH FOR FURTHER INFORMATION.

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number 20476 Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

		IGHT Irawings, plans and specifications and the copy ind must not be used, reproduced or copied wh		the Bor	nacci						
ж—	of the B	onacci Group.									
								·			
°—											
<u>۽ </u>	P1	Issued for Review	08/03/17	RC							
	Rev	Description	Date	Ву	Арр	Rev	Description	Dat	e By	и Арр	

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

Level 2

1:400 @A3 21.02.17

Level 7 ONE Oxford Street Darlinghurst NSW 2010 AUSTRALIA

T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

Project Name	Pemulwuy					
	Precinct 3	Designed RC Drawn	Project Director Approved	Date	North	

Drawing TitleLevel 2 - Precast Concrete ProfileScale 1:200 Date @ A1 SheetProject RefDrawing NoRev2021886SK14P1		(
	Date @ A1	 0	

LESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR

Project No. 16107 NOTES

10 ALL DIMENSIONS AND LEVEL CLARIFICATION BEFORE PRI FOR FURTHER INFORMATION

DLCS Quality Endorsed Company ISO 9001:2008, Registration Nu Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

P1 Issued for Review 08/03/17 RC	
D1 logued for Povious 09/02/17 DC	
D1 logued for Povious 08/02/17 DC	

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

CLIENT

Level 3, 4, 5

1:400 @A3 21.02.17

R	Level 7 ONE Oxford Street Darlinghurst NSW 2010 AUSTRALIA	T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au			· · · ·
	ulwuy inct 3	Designed RC Drawn	Project Director Approved	Date	North

Precinct 3	Designed RC	Project Director Approved	Date	North
ing Loval 2 E Dracat	Drawn			
^{ing} Level 3-5 Precast	Scale 1:200	Project Ref	Drawing No	Rev
Concrete Profile	Date @ A1 Sheet	2021886	SK15	P1

Project No. 16107 NOTES

I WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. R TO THE COMMENCEMENT OF WORK. INFORM TURNER OF ANY DISCREPANCIES FOR E NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION ALL DIMENSIONS AND LEVELS ARE TO B. CLARIFICATION BEFORE PROCEDING WI. FOR FURTHER INFORMATION.

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number 20476 Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

8-	
----	--

These Group	'RIGHT e drawings, plans and specifications and the copy o and must not be used, reproduced or copied wh Bonacci Group.		he Bona	acci						
							·			
<u>P1</u>	Issued for Review	08/03/17	RC							
Rev	Description	Date	Ву и	Арр	Rev	Description	D	Date	Ву	Арр

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

Drawin Title

Level 6 - 16

1:400 @A3 21.02.17

Level 7 ONE Oxford Street Darlinghurst NSW 2010 AUSTRALIA
--

T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

Project Name	Pemulwuy		

Precinct 3	Designed RC	Project Director Approved	Date	North
	Drawn			
Level 6-16 Precast	Scale 1:200	Project Ref	Drawing No	Rev
Concrete Profile	Date @ A1 Sheet	2021886	SK16	P1
		•		

WITHOUT PERMISSION. UNLESS NOTED OTHERWISE THIS DRAWING IS NOT FOR CONSTRUCTION. TO THE COMMENCEMENT OF WORK INFORM TURNER OF ANY DISCREPANCIES FOR NOT TO BE SCALED. USE ONLY FIGURED DIMENSIONS. REFER TO CONSULTANT DOCUMENTATION

Project No. 16107 NOTES

12 ALL DIMENSIONS AND LEVELS. CLARIFICATION BEFORE PROCL FOR FURTHER INFORMATION.

DLCS Quality Endorsed Company ISO 9001:2008, Registration Number 20476 Nominated Architect: Nicholas Turner 6695, ABN 86 064 084 911

8—	•																																			•																						•
----	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

	COPYRIGHT These drawings, plans and specifications and the copyr Group and must not be used, reproduced or copied wh of the Bonacci Group.						
20 							
°	P1 Issued for Review Rev Description	08/03/17 RC Date By App	Rev	Description	Date	e By	 App

Rev. A Response to DRP No.2 Comments & Bluesky Briefing Session

Level 17

1:400 @A3 21.02.17

Level 7 ONE Oxford Street Darlinghurst NSW 2010 AUSTRALIA

T +61 2 8668 0000 F +61 2 8668 0088 turnerstudio.com.au

Project Name Pemulwuy

Precinct 3 Designed RC Drawn		Project Director Approved	Date	North
Title Level 17 Precast Concrete Profile	Scale 1:200 Date @ A1 Sheet	Project Ref 2021886	Drawing No	Rev P1

	Development Application			
	Rev	Description	Date	
	A	Preliminary DA Issue For Review	11.07.11	
NORDON · JAGO	В	Preliminary DA Issue For Review	20.07.11	
	С	Preliminary Environmental Assessment Issue (PEA)	28.07.11	
	D	Site Plan Extension	12.10.11	
	E	Development Application Issue	14.12.11	
ARCHITECTS				

CNR PARRAMATTA RD & JOHNSTON ST - PO BOX 254 - ANNANDALI - NSW 2038 - T.02 9517 2822 F.02 9517 2833 STEPHEN J. NORDON REGISTRATION No. NSW - 4704 GRAHAM P. JAGO REGISTRATION No. NSW - 4926 Survey Adapted From PDF Copy Of Survey Prepared By Denny Linker

TITLE

General Notes:

Architectural Drawings To Be Read In Conjunction With All Other Consultants Detailed Drawings, Reports And Specifications.

All Levels Indicated Taken To Australian Height Datum (AHD) Refer To 0DA900 For Abbreviation Schedule And Proposed Outline Colour Seclections And Finishes Selections.

Site Underlay Based On Survey Carried Out By Denny Linker For Previous Application and Subsequent Survey Work Carried Out By Daw & Walton Consulting Surveyors - Refer To Drawing 302808.

Pemulwuy Project, Mixed Use Development, REDFERN

J:\DEI00210 Pemulwuy Project\4 NJA Documentation\5 CADD\3 DA\01 Model\01 Current\DEI00210_0DA Site Master 111212.rvt	JOB No.		DEI00210
		June 2010	
Existing Site Plan	SCALE	A1 @	As indicated
	DWG No.		

	D	evelopment Application	
	Rev	Description	Date
	А	Preliminary DA Issue For Review	11.07.11
	В	Preliminary DA Issue For Review	20.07.11
	С	Development Application Issue	14.12.11
NORDON · JAGO	D	Dop Amendments	24.08.12
A R C H I T E C T S			1

CNR PARRAMATTA RD & JOHNSTON ST - PO BOX 254 - ANNANDALE - NSW 2038 - T.02 9517 2822 F.02 9517 2833 STEPHEN J. NORDON REGISTRATION No. NSW - 4704 GRAHAM P. JAGO REGISTRATION No. NSW - 4926 0m 5m 10m 15m 20m 25m Scale Bar 1:500 Om TITLE

General Notes:

Architectural Drawings To Be Read In Conjunction With All Other Consultants Detailed Drawings, Reports And Specifications.

All Levels Indicated Taken To Australian Height Datum (AHD) Refer To 0DA900 For Abbreviation Schedule And Proposed Outline Colour Seclections And Finishes Selections.

Site Underlay Based On Survey Carried Out By Denny Linker For Previous Application and Subsequent Survey Work Carried Out By Daw & Walton Consulting Surveyors - Refer To Drawing 302808.

Pemulwuy Project, Mixed Use Development, REDFERN

		0DA011 D
	DWG No.	
Proposed Site Plan	SCALE	A1 @ As indicated
	DATE	June 2010
J:\DEI00210 Pemulwuy Project\4 NJA Documentation\5 CADD\3 DA\01 Model\01 Current\DEI00210_0DA Site Master 120417.rvt	JOB No.	DEI00210

CAROLINE

NOTES

- TREE SPREADS SHOWN 'APPROXIMATELY' ONLY -
- VISIBLE SERVICES (AT TIME OF SURVEY) SHOWN ONLY
- NO SERVICE PITS ACCESSED/OPENED SHOWN AS LABELED
- ALL PITS SHOULD BE ACCESSED, CONFIRMED AND HAVE SUBSURFACE EXTENTS MEASURED BY THE -RELEVANT AUTHORITIES, PRIOR TO ADOPTION.

- ALL PIPES, CABLES & DUCTS IN THE EXCAVATION AREA SHOULD BE ACCURATELY LOCATED BY A "PIPE LOCATOR" OR BY THE RELEVANT AUTHORITY, PRIOR TO ANY EXCAVATION IS UNDERTAKEN.

LEGEND

- ELECTRICAL POLE
- 🔎 TELSTRA PIT
- 🖃 HYDRANT
- M WATER METER
- TRANS TRANSFORMER
- SIGNPOST
- © ELECTRICITY PILLAR
- 🖂 UNKNOWN PIT
- TREE
- 🛞 SEWER MAN HOLE

	Scale: 1:500 (@A1)
rveyed on: DECEMBER 2011	North: MGA
Martin Elliott	Datum: SSM 66942
awn on:12/10/2011	RL: 26.88 (AHD)
Martin Elliott	Contour Int: 2.5 Major, 0.5 Minor

APPENDIX B Registered Groundwater Bore Search

APPENDIX C Site Photographs

Photo 1: Area of vacant land next to railway corridor

Photo 2: Pemulwuy Park.

Photo 3: Overgrown grasses to the north of Pemulwuy Park.

Photo 4: Electrical Kiosk

Photo 5: Flooring and interior of 77-85 Eveleigh Street.

Photo 6; Area of removed flooring at 77-85 Eveleigh Street.

Photo 7: Area of removed flooring at 77-85 Eveleigh Street.

Photo 8: Cored holes at removed section of flooring at 77-85 Eveleigh Street.

Photo 9: Areas of 77-85 Eveleigh Street covered in graffiti.

Photo 10: Area at the north side of 77-85 Eveleigh Street, with possible ACM around the shed.

Photo 11: Possible ACM at the north side of 77-85 Eveleigh Street.

Photo 12: Household appliances next to the shed.

APPENDIX D Borehole Logs

							E	30	REHOLE: BH102
Contamination Remee			77-12 Refe E233	23 Eve r to Fig 809	leigh Jure 2	Investigation w/ Limited Sampling St, Redfern NSW 2 Contractor Geosense Dr ctions (NSW) Pty Ltd Drill Rig Hanjin D&B 8 Inclination -90°	-	'ty Ltd	Sheet1 OF 1Date Started9/3/17Date Completed9/3/17LoggedCYDate: 9/3/17Checked NFDate: 30/3/17
Drillin	g	Sampling				Field Material Des	criptio	on	
	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION		CONSISTENCY	
LIQY - MOS 1 1 2 2 3 3 4		BH102_0.2-0.3 ES 0.20 m PID = 2.5 ppm BH102_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 0.2 ppm BH102_0.9-1.0 ES 0.90-1.00 m 0.90 m PID = 1 ppm BH102_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 1.6 ppm BH102_2.0-2.1 ES 2.00-2.10 m 2.00 m PID = 1.1 ppm			Cl	ASPHALT: 50mm thick. FILL: SAND; fine to coarse grained, dark brown-dark grey, with trace gravel, brick and concrete fragments, no odour. From 0.4m, dark brown, with trace of clay and gravel fragments. Silty CLAY; medium plasticity, orange, no odour. From 1.1m, grey mottled red. Hole Terminated at 2.10 m Target Depth Reached. Borehole Backfilled with Drilling Spoil.			PAVEMENT FIL RESIDUAL SOIL - - - - - - - - -
5	5.0	This bore	nole log	g shoul	d be	read in conjunction with Environmental Investigations Aus	ralia's	acco	mpanying standard notes.

٦

Г

¢	eia		str	Geotechnie	Project Location Position Job No. Client	77-12 Refe E233	23 Eve r to Fig 609	leigh Jure 2	Investigation w/ Limited Sampling St, Redfern NSW 2 Contractor Geosense Drilli tions (NSW) Pty Ltd Drill Rig Hanjin D&B 8D Inclination -90°	ing P		Sheet 1 OF 1 Date Started 9/3/17 Date Completed 9/3/17 Logged CY Date: 9/3/17 Checked NF Date: 30/3/17
		-	ling	1	Sampling				Field Material Desc			Γ
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0.0 — - - - - - - - - - - - - - - - - - - -		BH103_0.2-0.2 ES 0.20-0.30 m 0.20 m PID = 1.3 ppm BH103_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 3.8 ppm				ASPHALT: 30mm thick. FILL: SAND; fine to medium grained, pale grey, with some fine to coarse gravel, no odour.	M		FILL
AD/T	-	GWNE	- - 1.5 — - -	1.20	BH103_1.5-1.6 ES 1.50-1.60 m 1.50 m PID = 4.8 ppm			- Cl-	FILL: Sandy CLAY; medium plasticity, pale grey, with fine grained sand, no odour.	м	-	RESIDUAL SOIL
			- 2.0 — - - - - - - - - - - 	2.50	BH103 1.9-2.0 ES 1.90-2.00 m 1.90 m PID = 3 ppm BH103 2.4-2.5 ES 2.40-2.50 m			СН				
			3.0		2.40 m PID = 2.2 ppm				Hole Terminated at 2.50 m Target Depth Reached. Borehole Backfilled with Drilling Spoil.			
			3.5 — - - 4.0 — -									
			- 4.5 — - - 5.0 —									
			0.0		This boreh	nole log	g shoul	d be	read in conjunction with Environmental Investigations Austra	alia's	acco	mpanying standard notes.

Co	ntamina		emediation	Geotechnie	Position Job No. Client	77-12 Refe E233	23 Eve r to Fig 809	eleigh jure 2	Contractor Geosense I tions (NSW) Pty Ltd Drill Rig Hanjin D&B Inclination -90°	8D	-	Sheet1 OF 1Date Started9/3/17Date Completed9/3/17LoggedCYDate: 9/3/13Checked NFDate: 30/3/
METHOD	PENETRATION RESISTANCE	WATER	DEPTH Build (metres)	DEPTH	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	Field Material De		CONSISTENCY U	STRUCTURE AND ADDITIONAL OBSERVATIONS
×		~	0.0	RL	BH104_0.1-0.2 ES 0.10-0.20 m 0.10 m PID = 2.2 ppm BH104_0.6-0.7 ES 0.60-0.70 m			-	FILL: SAND; fine to coarse grained, black, with trace gravel, no odour.			FILL
AD/T	-	GWNE	- - 1.0 — -	1.00	BH104_1.0-1.1 ES 1.00-1.10 m PID = 2.5 ppm			-	FILL: Silty SAND; fine to medium grained, yellow-pale brown, nodour.			
			1.5 — - -	1.70	BH104_1.5-1.6 ES 1.50-1.60 m 1.50 m - PID = 1.2 ppm			CI- CH	FILL: Silty CLAY; medium plasticity, orange, with trace sand and fine gravel, no odour. Silty CLAY; medium to high plasticity, orange mottled grey, no odour.			RESIDUAL SOIL
			2.0		BH104_1.9-2.0 ES 1.90-2.00 m PID = 2.8 ppm BH104_2.4-2.5 ES							
			-2.5	2.50	2.40-2.50 m 2.40 m PID = 4.2 ppm		×		Hole Terminated at 2.50 m Target Depth Reached. Borehole Backfilled with Drilling Spoil.			
			- - 3.5 —									
			- - 4.0 — -									
			- 4.5 — -	-								
			- 5.0 —	-					read in conjunction with Environmental Investigations Au			

C	eia	A A A A A A A A A A A A A A A A A A A		Geotechnik		77-12 Refei E233	23 Eve to Fig 09	leigh Jure 2	Investigation w/ Limited Sampling St, Redfern NSW 2 Contractor Geosense Drill ctions (NSW) Pty Ltd Drill Rig Hanjin D&B 8E Inclination -90°	ing P		REHOLE: BH105 Sheet 1 OF 1 Date Started 9/3/17 Date Completed 9/3/17 Logged CY Date: 9/3/17 Checked NF Date: 30/3/17
		-	ling	1	Sampling				Field Material Desc			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
AD/T	-	GWNE	0.0	0.90	BH105_0.1-0.2 ES 0.10-0.20 m 0.10 m PID = 2.7 ppm BH105_0.5-0.6 ES 0.50-0.60 m 0.50 m PID = 2.4 ppm BH105_1.0-1.1 ES 1.00-1.10 m PID = 1.1 ppm BH150_1.9-2.0 ES 1.90-2.00 m 1.90 m PID = 1.8 ppm			-	FILL: SAND; fine to coarse grained, dark brown, with trace rootlets, no odour.	- M	-	FILL
			- 2.5 — - - - - 3.0 — - - - - - -	2.40	BH105 2.7-2.8 ES 2.70-2.80 m 2.70 m PID = 0.6 ppm BH105 3.4-3.5 ES			CI-CH	Silty CLAY; medium to high plasticity, orange mottled grey, no odour.	м		RESIDUAL SOIL
			3.5 - - 4.0 - - - -	3.50	BH105 3.4-3.5 ES 3.40 m PID = 1.2 ppm		x		Hole Terminated at 3.50 m Target Depth Reached. Borehole Backfilled with Drilling Spoil.			
			4.5		This boref	nole log	ı shoul	d be	read in conjunction with Environmental Investigations Austr	alia's	acco	mpanying standard notes.

Г

¢	eia	AU tion R	str	Geotechni	Project Location Position Job No. Client	77-12 Refe E233	23 Eve r to Fig 309	eleigh gure 2	Contractor Geos	sense Drilling in D&B 8D		Sheet 1 OF 1 Date Started 9/3/17 Date Completed 9/3/17 Logged CY Date: 9/3/17 Checked NF Date: 30/3/17
		Dril	lina		Sompling					rial Descript	ion	
METHOD	PENETRATION RESISTANCE	<u> </u>	DEPTH DEPTH (metres)	<i>DEPTH</i> RL	Sampling SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	N N N N	CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
DT			0.0 —	0.15			\boxtimes	-	CONCRETE: 150mm thick.	-		CONCRETE HARDSTAND
AD/T	-	GWNE	- - 0.5 — -	0.50	BH107_0.3-0.4 ES 0.30-0.40 m 0.30 m PID = 1.4 ppm			- - -	FILL: SAND; fine grained, pale yellow, with trace rootlets odour.	s, no	-	FILL
			- 1.0 — -	0.80	BH107_0.7-0.8 ES 0.70-0.80 m 0.70 m PID = 2.2 ppm		××	×	Hole Terminated at 0.80 m Refusal in fill Borehole Backfilled with Drilling Spoil.			
			- 1.5 — - -									
			- 2.0 — - -									
			2.5 — - - -									
			3.0 — - - -									
			3.5	•								
			4.0 — - - -									
			4.5 — - - -									
	I		5.0 —	<u>I</u>	This bore	hole log	g shou	ld be	read in conjunction with Environmental Investigation	ions Australia	s acco	pmpanying standard notes.

Г

eiaustralia Contamination Remediation Geotechnical

Project Preliminary Site Investigation w/ Limited Sampling Location

77-123 Eveleigh St, Redfern NSW

Position

Job No. Client

Refer to Figure 2 E23309

DeiCorp Constrctions (NSW) Pty Ltd

Contractor Geosense Drilling Pty Ltd Hanjin D&B 8D Drill Rig -90° Inclination

Sheet	1 OF 1
Date Started	9/3/17
Date Completed	9/3/17
Logged CY	Date: 9/3/17
Checked NF	Date: 30/3/17

			Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION	RESISTANCE	WALER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
DT				0.0	0.10			\bigotimes	-	CONCRETE: 180mm thick.	-		CONCRETE HARDSTAND	Τ-
AD/T	-		GWNE	- - 0.5—	0.18	BH108_0.4-0.5 ES 0.40-0.50 m 0.40 m PID = 1.8 ppm			-	FILL: SAND; fine to coarse grained, dark grey to black, with medium to coarse gravel, no odour.	м	-	FILL	-
:3 E2309B0REHOLE LOGS.GPJ <-DrawingFile>> 30(03/2017 1840 830.004 Datget Lab and InSthuTool - DGD Lb: EA 1.03201407-05Pt; EIA 1.03201407-05						0.40 m PID = 1.8 ppm				Hole Terminated at 0.60 m Refusal in fill. Borehole Backfilled with Drilling Spoil.				
IS AU BOREHC				-										
EIA LIB 1.03.GLB Log IS AU BOREHOLE 3				5.0 —		This borehole		shoul	d be	read in conjunction with Environmental Investigations Aust	l alia's	acco	I mpanying standard notes.	

BOREHOLE: BH108

APPENDIX E Field Data Sheets & Calibration Records

		WATER	SAMPLIN		SHEET								
		MATER		IO TIELE	C		9	eiaustralia					
Site Addre	ess: 77	-123 F	Eveleigh	St. Ree	Hern			per: 1=23309					
Client:		auch pe	icard		1		Date: 🚺	43/17					
Field Staff	f:	CW	1	1	2		Sampling Location ID 3410 LM						
Well Loca	tion:	BM II	01		Round No):							
MEDIUM			Groundwat	ter 🏏 🗆 S	Surface Wa	ater	□Stormw	ater DOther:					
SAMPLIN	IG POINT	INFO		#1									
Well Insta	Ilation Dat	e: 🕅	3 8 15	#1 7			Stickup (n	n):					
Initial Wel	I Depth (m	nbgl): 🕻	F-6 '				Screen In	terval (mBTOC): 6_6-4.6					
Previous	Sampling		.3		,		Previous	SWL (mBTOC):					
PID REAL	DINGS		1										
PID Head	space (pp	m): -				b,	PID Back	ground (ppm): —					
	hing Spac							and the second					
PRE PUR			1	<u>р</u> , е				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
	I Depth (m	ibgl):	8.6	2			Well Head	d Condition: Good					
SWL (mb		4.0	ACI	-			Water Co						
	and the second se	D HYDRO	CARBON	IS (PSH)									
	PSH (mbto		rone	1 * -			PSH Visu	ally Confirmed (Bailer):					
	kness (mr		NA		*								
		and the second se	1411		4			EL CONTRACT OF CONTRACT					
Sampling			Bladde	14	□Peristalti	<u>с П</u>	Submersit	ole 🛛 Other:					
	Pump Inle	t: 7.					Fill Timer:						
	essure Reg			18	1	1	Discharge						
		Δ.		0				CPM2					
	Conditions	144				1.	Pump off						
Pump on		1:50					Pumpon	ume. Croot pre					
			IERS				Rump To	st Date and Time:					
Probe Ma	ke and Mo		-	=0	-								
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour etc.)					
1:50	0.5	4.961	21.73	645	-77.1	4.11	7.67	Corey Maderate turbidity					
1:53	1-0		21.34	957	- 53.4	2.79	7.63	no sheen no adour s					
1:57	1.5		20.94	1141	-37.1	2.41	7.60	-					
2:00	2.0		20.91	1267	-29.1	2-09	2.58						
2:03	2.5		20.91	1265	-33-1	2.09	7.58						
2:09	3.0	V	20.91	1267	-31.7	2.09	7.58						
							Č.						
Stab	ilisation ra	ande.											
CORP. Co. Co. Contraction of the	secutive re		±0.2°C	±3%	±20mV	±10%	±0.2						
		and a second	RVATIONS										
UTHER (JOIMMEN	13/UBSEI	VATIONS	.									
SIGNATI	JRE:												
								· · · · · · · · · · · · · · · · · · ·					

N.C.W

Rev 1 20150604SH Form OP 017

Z:\11 - Templates\Field Forms_Worksheets\Water Sampling Field Sheet 2015\Water Sampling Field Sheet Rev1 20150604

New windt

1

14

a a

				NG FIELI	D SHEET			eiaustralia
Site Addr	ress: R	edfe	m				Job Num	ber: 623309
Client:	Peic	Ex O					Date: V	+/3/17
Field Stat		P.F						Location ID BHEF (CBMZM)
Well Loca	ation:	31104	/ TCAL	nn)			Round No	
MEDIUM			Groundwa		Surface W	ator	Stormy	
	NG POINT		Croundwa		Surface W	ater	LISTOHIM	
	allation Da						011-1	1 20 015
							Stickup (r	
	ll Depth (r							nterval (mBTOC): 1
the state of the s	Sampling	Date:	1	and the state of t		1	Previous	SWL (mBTOC):
PID REA							the state	in the second
PID Head	dspace (pp	om):				en la	PID Back	(ground (ppm):
PID Brea	thing Space	ce (ppm):				100	18. X.	
PRE PUF	RGE							
Total We	ll Depth (n	nbal): /~	17.8				Well Hea	d Condition: x Good
	otoc):	and the second se	× ×	Cubh	1 20			blumn (m): >
			OCARBON					500mm (m). 🛩 👘
				NO (POH)			DOLLY	
	PSH (mbt		one				PSH Visu	ually Confirmed (Bailer): 100 ve
	kness (mr		014					10 ¹
PURGE A	AND SAM	PLE	in le	.11			-2-2	
Sampling	g Method		Bladde	er [□Peristalt	ic D	Submersil	ble Dother:
Depth of	Pump Inle	t:	the by	4			Fill Timer	
	essure Reg	82.52	si):	1.000	i.		Discharge	
	Conditions			100				a mile. Daren Linin /
			1. A.	10			Cycle:	
Pump on	The second s				ý.		Pump off	time:
	QUALITY		TERS	1				
Probe Ma	ke and Mo	odel:					Bump Te	st Date and Time:
Time	Volume (L)	SWL (mbtoc)	Temp (°C)	EC (µS/cm)	Redox (mV)	DO (mg/L)	pH (units)	Comments (colour, turbidity, odour etc.)
			Ϋ́.		12		-	Grey moderate torbidity
		0		1 7	iv	P		no sheen no oddur.
		P U	rgec	LL	1 11	uh de	mplo	1
1	5		U				1-0	
-	Carlos and C							
	26		71.27	1282	30.1	1.71	6.35	
	~~		LITT	LEVE	Je. 1	111	0.05	
			- All					
	Citra Contractor	and and	States and		h			
							de la	
							家	9
			Sec. 1				8	and the second se
			1994				192	
	2		1987.45	11			2.	19
					1			
	12011110			1			11	
	ilisation ra		±0.2°C	±3%	+2014	+400/	10.0	irs.
3 cons	ecutive rea	adings	10.2 6	£3 %	±20mV	±10%	±0.2	
OTHER C	OMMENT	S/OBSER	VATIONS	5:		12	54	1
							1	
		- (×1
1								Et all and
SIGNATU	RE:					14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	All
a children a children a							1	
1 Maria		i e					296.655	AV 1

R

El Australia Suite 6.01, 55 Miller Street PYRMONT, NSW, 2009

ABN 42 909 129 957 E service@eiaustralia.com.au W www.eiaustralia.com.au T 02 9516 0722

CALIBRATION CERTIFICATE FOR PHOTO IONISATION DETECTOR

Instrument:	Mini RAE 3000
Serial Number	: 592-906667 - EI PID02 🗹 OR 592-901345 - EI PID03 🗌
Instrument Cor	nditions: Good

Calibration gas species: Isobutylene.

Calibration gas concentration: <u>foo</u>ppm

Gas bottle number: Lot 218055 Cyl 4

This PID has been calibrated to Isobutylene gas with the span concentration displayed as

<u>100-</u>ppm at <u>100</u> ppm span setting (allowable range +/-10ppm from span setting).

The PID is initially zero calibrated in fresh air.

Remaining gas in bottle: <u>270</u> psi (if reading is <250 psi, notify Equipment Manager to arrange new gas bottle order)

The above detector was calibrated in accordance with manufacturer's specifications.

Signed: CARMEN Yz Date: 9/3/2017 Time: 6:30 AM

APPENDIX F Chain of Custody and Sample Receipt Forms

CLIENT DETAILS	3	LABORATORY DETA	ILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23309 - Eveleigh St, Redfern E23309 6	Samples Received Report Due SGS Reference	Wed 15/3/2017 Mon 20/3/2017 SE163046

_ SUBMISSION DETAILS

This is to confirm that 6 samples were received on Wednesday 15/3/2017. Results are expected to be ready by Monday 20/3/2017. Please quote SGS reference SE163046 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 15/3/2017 Yes 11.1°C Three Days Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 6 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

- CLIENT DETAILS -

Client EI AUSTRALIA

Project E23309 - Eveleigh St, Redfern

- SUMMARY	OF ANALYSIS		1				
No.	Sample ID	Mercury (dissolved) in Water	PAH (Polynuclear Aromatic Hydrocarbons) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	VOCs in Water	Volatile Petroleum Hydrocarbons in Water
001	BH101M	1	22	7	9	79	8
002	BH104M	1	22	7	9	79	8
003	GWQD1	1	-	7	9	12	8
004	GWQR1	1	-	7	9	12	8
005	GWQTB1	-	-	-	-	12	-
006	GWQTS1	-	-	-	-	12	-

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

	1 of			11100	Sam	ple N	/latrix									Ana	lysis								Comments
	releigh dfein			Project No: F23309			t, etc.)	AHs tos	AHs							change)	onductivity)								HM <u>A</u> Arsenic Cadmium Chromium
Laborato	Unit 16, ALEXA	stralia 33 Maddox S NDRIA NSW 2 94 0400 F: 02	2015	99			OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TEX			os	pH / CEC (cation exchange)	pH / EC (electrical conductivity)	IS	it			TCLP PAHs	TCLP HM A	TCLP HM ^B	Copper Lead Mercury Nickel Zinc
Sample	Laborator		Sa	ampling	WATER		HERS	AA /	AAL	A A L	SH/B.	TRH/BTEX	PAHs	VOCs	Asbestos	H/CE	H/EC	sPOCAS	872			CLP	CLP	CLP	
ID	ID	Туре	Date	Time	WA	SOIL	OT	ΞŎ	H	I	۲ ۲	μ	ΡĄ	>	As	PF	ph	SF	2			TC	T	T	HM ^B Arsenic
BHIOIN	ĵ	JPUL							/					V	/										Cadmium Chromium
BHIOYA									\checkmark					N											Lead
GWapi	3																								Mercury Nickel
CWari	4	V				1				\checkmark															
GWOTB	5	VC				10													~	ſ					
CWQTS	>	VU																	~	ſ					LABORATORY TURNAROUND
						5																			Standard
-	HS Alexand	ria Laborator	y .																						24 Hours 48 Hours 72 Hours
- Recei	red: 15-Ma	ar - 2017			-		-							-		-									
					<u> </u>		Sam	oler's Na	ame (El	l):			Rece	ived by	(SGS)):	<u> </u>	-							L
Investigat	or: I attest th with stan	at these sam dard El field s	ples were ampling p	collected in rocedures.	accord	ance												7			6				
Container	Comments			man nature			life	15	Prin C Sign Date	nature a	20	HJ C)	11:37		Sui	Con	atamina	non Ailler S	Street	t, PYR	MONT NSW 2009				
S= solvent P= natural	washed, acid r HDPE plastic b vial, Teflon Sej	insed glass bottle ottle						ORT			ry resi	ults to:	lab@	Deia	ustra	lia.co	om.a	u			lat			6 0722 alia.co	

CLIENT DETAILS	3	LABORATORY DETA	AILS
Contact	Carmen Yi	Manager	Huong Crawford
Client	EIAUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	carmen.yi@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project Order Number Samples	E23309 - 77-123 Eveleigh St, Redfern E23309 18	Samples Received Report Due SGS Reference	Fri 10/3/2017 Fri 17/3/2017 SE162924

SUBMISSION DETAILS

This is to confirm that 18 samples were received on Friday 10/3/2017. Results are expected to be ready by Friday 17/3/2017. Please quote SGS reference SE162924 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Yes SGS Yes 10/3/2017 Yes 11.3°C Standard Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis Yes Ice Bricks 16 Soil, 2 Water COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

Extra sample received, BH106_1.0-1.1. 24 soil samples have been placed on hold.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/en/terms-and-conditions as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

CLIENT DETAILS

Client EI AUSTRALIA

Project E23309 - 77-123 Eveleigh St, Redfern

Nie	Convela ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Metals in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
No. 001	Sample ID BH101_0.6-0.7	28	13	26	11	7	10	12	8
002	BH101_1.5-1.6	-	-	26	-	7	10	12	8
003	BH102_0.5-0.6	28	13	26	11	7	10	12	8
004	BH103_0.2-0.3	28	13	26	11	7	10	12	8
005	BH103_1.9-2.0	-	-	26	-	7	10	12	8
006	BH104_0.6-0.7	28	13	26	11	7	10	12	8
007	BH104_1.9-2.0	-	-	26	-	7	10	12	8
008	BH105_0.1-0.2	28	13	26	11	7	10	12	8
009	BH105_2.7-2.8	-	-	26	-	7	10	12	8
010	BH106_0.2-0.3	28	13	26	11	7	10	12	8
011	BH106_1.5-1.6	-	-	26	-	7	10	12	8
012	BH107_0.7-0.8	28	13	26	11	7	10	12	8
013	BH108_0.4-0.5	28	13	26	11	7	10	12	8
014	QD1	-	-	-	-	7	10	12	8
015	TS1	-	-	-	-	-	-	9	-
016	TB1		-	_	-	_	-	12	_

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS __

Client EI AUSTRALIA

Project E23309 - 77-123 Eveleigh St, Redfern

- SUMMARY	OF ANALYSIS				
No.	Sample ID	Fibre Identification in soil	Mercury in Soil	Moisture Content	VOCs in Water
001	BH101_0.6-0.7	2	1	1	-
002	BH101_1.5-1.6	-	1	1	-
003	BH102_0.5-0.6	2	1	1	-
004	BH103_0.2-0.3	2	1	1	-
005	BH103_1.9-2.0	-	1	1	-
006	BH104_0.6-0.7	2	1	1	-
007	BH104_1.9-2.0	-	1	1	-
008	BH105_0.1-0.2	2	1	1	-
009	BH105_2.7-2.8	-	1	1	-
010	BH106_0.2-0.3	2	1	1	-
011	BH106_1.5-1.6	-	1	1	-
012	BH107_0.7-0.8	2	1	1	-
013	BH108_0.4-0.5	2	1	1	-
014	QD1	-	1	1	-
016	TB1	-	-	1	-
017	QR1	-	-	-	12
018	QR1B	-	-	-	12

CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction .

CLIENT DETAILS __

Client EI AUSTRALIA

- SUMMARY OF ANALYSIS

Project E23309 - 77-123 Eveleigh St, Redfern

No.	Sample ID	Mercury (dissolved) in Water	Trace Metals (Dissolved) in Water by ICPMS	TRH (Total Recoverable Hydrocarbons) in Water	Volatile Petroleum Hydrocarbons in Water
017	QR1	1	7	9	8
018	QR1B	1	7	9	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

	Sheet	of	4				Sar	nple	Matri	×								Δ	-1			Contraction of the local division of the loc		-		
	Site: 77 -	123	Eveleigh	Street	Pr	roject No:			Τ	1	Τ	T	Τ	1	1		T	Ana	alysis				Γ	1		Comments
	Site: 77 - Reelfer			511001	E	23309			etc.)	Hs	s s							lge)	uctivity)							HM A Arsenic
		Unit 16, 3 ALEXAN	stralia 33 Maddox DRIA NSW 94 0400 F: (2015	499		1		OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	×				CEC (cation exchange)	pH / EC (electrical conductivity)							Cadmium Chromium Copper Lead Mercury
	Sample ID	Laboratory ID	Container Type	9	Sampli	ng	WATER		ERS (i	A /TI	АЛR	≜ /TR	I/BTE	TRH/BTEX	S	s	Asbestos	CEC (EC (el	SAS			PAHs	A MH	HMB	Nickel Zinc
\mathbf{F}			- ype	Date		Time	NAN	SOIL	OTH	HM OC	MH	MH	TRH	TRH	PAHs	vocs	Asbe)/Hd	H/E	sPOCAS			TCLP	TCLP	TCLP	ZINC
F	B4101_0.2-0	3	J,ZLB	9/3/2	017	AM/PM		X							-	-	-	-	<u> </u>	~~			Ĕ	Ĕ	4	HM <u>B</u> Arsenic
F	" - 0.6-0.7	i						×		X												$\left - \right $				Cadmium Chromium
ŀ	"- 1.0 -/1							1									-+									Lead
•	- 1.5-1.6	2						11			X								-+							Mercury Nickel
ŀ	- 2.0-2.1															-+		-+					-+			
Br	102-0.2-0.3							11			-+		-+													
2	-0.5-0.6	3						$\uparrow \uparrow$		X						-+-								_		LABORATORY
11	-0.9-1.0							$\uparrow \uparrow$	-		-		-+					SGS	EHS	Alexan	dria Labo	ratory		\square		Standard
13	-1.5-1.6							$\uparrow\uparrow$							-+											24 Hours
r í	- 2.0-2.1							$\uparrow \uparrow$	-	-																48 Hours
BH	103-0.2-0.3	4						$\uparrow \uparrow$	-	X	-	+		\rightarrow	-+			SE	162 eived:	10-M	COC ar - 2017					72 Hours
11	-0.5-0.6	- 		¥			1.		+	\rightarrow		+	-		-+			,	1							Other
Inv	estigator: I att	test that th	iese sample	es were co	ollecte	ed in acco	ordan	se s	ampler	's Name	e (EI):			F	Receive	ed by (So	GS):									
		i stanuaru	El field san	npling pro	cedu	res.			CARN	LEN	YI									_			14			
Ja	mpler's Comn	nents:						_	Print						Print					_		V				
_									Signatu	re	,	•	-	_	A . (Signatu	DCL'	isin	0		_	ρ	ia	10	-ti	ra	lia
J= 5	ntainer Type: solvent washed, a	acid rinsed,	Teflon sealed,	glass iaR				-	Date	7	7	\leq		-	Date				3		Conta	ministion	Ren	ediatio	n i far	A action of the
2= r	solvent washed, natural HDPE pla = glass vial, Teflo	acid rinsed (glass bottle					INA		10/ RTAN		1017	-		2151	17	C	3=3	30	Su	ite 6.01, 5	55 Mille	r Stre	et, P 16 07	YRMO	NT NSW 2009
LB	= Zip-Lock Bag	in Septum						Ple	ease e	-mail I	v i∶ aborai	on ro	oulta t			iaustr						lab@e				

Sheet	of	¥						San	nple	Matri	×					-			^		_		_				
Site: 77 -	123	Evel	eial	Chm	F	Projec	ct No:	the state of the s	Τ	Τ	+	1	Τ	T	Τ	1	T	T	An	alysis		T T					Comments
Site: 77 - Reelfe)1VE	2 7.	E233	309			etc.)	Hs so	ू इ							nge)	uctivity)							HM A Arsenic
Laboratory:	SGS Au Unit 16, ALEXAN P: 02 85	33 Ma	ddox s	2015						OTHERS (i.e. Fibro, Paint, etc.)	HM A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	HM ^A /TRH/BTEX/PAHs	H/BTEX	X/Lead	×				pH / CEC (cation exchange)	pH / EC (electrical conductivity)							Cadmium Chromium Copper Lead Mercury
Sample ID	Laboratory ID		tainer /pe	D	Samp ate		ime	WATER	SOIL	OTHERS (i.	HM A /TF OCP/OP/	HM ^A /TR	HM ^A /TRH/BTEX	TRH/BTEX/Lead	TRH/BTEX	PAHs	VOCs	Asbestos	H / CEC (H / EC (el	sPOCAS			TCLP PAHs	TCLP HM A	TCLP HM B	Nickel Zinc
BH103-1.5-1.6		J,ZL	LB	9/3	12017	AM	/FM		Х						-		-	4	<u>a</u>	a	<u>s</u>			۲ ۲	12	12	HM ^B Arsenic
"-1.9-2.0	5								1			X															Cadmium Chromium
1-2.4-2.5																											Lead Mercury
BH104-0.1-0.2																											Nickel
11_0.6-0.7	6										X									+							
4-1.0-1.1				_											-+			-+									LABORATORY
1-1.5-1.6															\neg	-+				-+	-+						TURNAROUND
11-1.9-2.2	7											x				*											X Standard
" _ 2.4 - 2.5																	-+			+	+		+				24 Hours
8-1105-0-1-0.2	8	-+		-							X					1		-+	-								48 Hours
1-0.5-0.6										2																	72 Hours
1-1.0-1.1		1		V		V												-					$\left - \right $				Other
nvestigator: I a wit	ttest that t h standard	hese sa d El fiel	amples Id sam	s were	collec	ted in	n acco	ordanc	e S	ampler	's Name	e (EI):			R	eceive	d by (S	GS):			+						
Sampler's Com			+	Print						$\frac{Print}{\Delta}$.	00	N'i e						R									
ontainer Type: = solvent washed, = solvent washed	ent washed, acid rinsed,Teflon sealed, glass jaR rent washed, acid rinsed class bottle										re				S	Signatur Date	re	<i>C</i> -	she	8		Cos	NUMBER OF	ion 1 Re	media:	ion I G	lia
= natural HDPE pl C= glass vial, Tefl LB = Zip-Lock Bag	astic bottle	ylass bo				RTAN -mail I		tory re	sults t			117 austr		2 <u>3</u> com.			uite 6.01		Ph: 9	516 C	PYRM()722).com.a	DNT NSW 2009					
																			5011.	uu							COC July 2016 FORM v 3 - SGS

Sheet3	of	4				Sam	ple N	/latrix									Ana	lysis								Comments
Site: 77 - Redfer	123 ~~	Eveleigh	Street	Pro E2	ject No: -3309			etc.)	Hs	łs							ange)	conductivity)								_{НМ} <u>А</u> Arsenic Cadmium
	SGS Aus Unit 16, ALEXAN		Street, 2015					OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	X			0	pH / CEC (cation exchange)	pH / EC (electrical con					Hs	۸A	HM B	Chromium Copper Lead Mercury Nickel
Sample ID	Laboratory ID	Container Type	Si Date	amplin	g Time	WATER	SOIL	OTHERS (HM A /T OCP/OF	HM ≜ /TI	HM ≜ /TI	TRH/BTI	TRH/BTEX	PAHs	VOCs	Asbestos	pH / CEO	pH / EC	sPOCAS				TCLP PAHs	TCLP HM	TCLP HN	Zinc HM ^B
1-1.9-2.0		J,71B	9/3/2	-017	ANPM		Х															Arsenic Cadmium				
4 -2.7-2.8										×												Chromium Lead				
"-3.4-3.5																										Mercury Nickel
BH106-0.2-0.3									×																	NICKEI
BH106-0.5-0.6																										
Bit106-1.5-1.6										X			()).													LABORATORY
BH106-2.4-2.5												1														
BH106-3. 2-3.																										Standard
Builoh _ 3.7-32																							1			24 Hours
BH107-0.3-0.																										48 Hours
1 - 0.7-0.8									X																	72 Hours
By 108 - 0-4-0.		1				-			X					\neg											_	Other
Investigator: I		t these samp	les were (collec	ted in ac	corda	-	Sampl	er's Nar	ne (El)	:			Receiv	/ed by (SGS):			_							
, v	ith standa	rd El field sa	00100		A	m2-	ch	ont	;					and the second se					6	10						
Sampler's Co	mments:		Prin	per-		cor			Print		1								Ŷ.		1.					
			ŀ	Signa	ature					A - Signa	ture	ans	ino				e	919	U	St	Ira	alia				
Container Type J= solvent wash			Date						Date		2		2		Suite	Con	(armen)ti	on I R	emedia	tion ()	Sectochescal IONT NSW 2009					
S= solvent wash P= natural HDPE	ed, acid rins	ed glass bottle	u, giass jah	ς.			ŀ	MP	DRTA					10	3	17.0	C	5	30	Curt			Ph: 9	9516	0722	
VC= glass vial, 1 ZLB = Zip-Lock B	eflon Septu								e e-ma			resul	ts to: I	ab@	eiau	strali	a.cor	n.au				lab(@eiau	ustrali	a.com	COC July 2016 FORM v.3 - SGS

Sheet <u>4</u> of <u>4</u>						Sample Matrix Analysis													Comments						
Site: 77 -	123	Eveleigh	Street	Project No:												(6)	ivity)								HM <u>A</u> Arsenic
Sheet <u>4</u> of <u>4</u> Site: 77 - 123 Eveleigh Street Project No: Redferr E23309							t, etc.)	AHs tos	NHs							hange	conductivity)								Cadmium
Laboratory: SGS Australia Unit 16, 33 Maddox Street, ALEXANDRIA NSW 2015 P: 02 8594 0400 F: 02 8594 0499							OTHERS (i.e. Fibro, Paint, etc.)	HM ^A /TRH/BTEX/PAHs OCP/OP/PCB/Asbestos	/TRH/BTEX/PAHs	HM ^A /TRH/BTEX	TRH/BTEX/Lead	EX			S	pH / CEC (cation exchange)	pH / EC (electrical co					AHs	٨A	HM B	Chromium Copper Lead Mercury Nickel
Sample ID	Laboratory Container Sampling ID Type			WATER	L	IERS	A A A	HM [≜] /T	ΛAΛ	H/BT	TRH/BTEX	PAHs	vocs	Asbestos	/ CE(/EC	sPOCAS	8tex			TCLP PAHs	TCLP HM	LP HA	Zinc	
			Date	Time		SOIL	Eo	Ξŏ	Ĩ		Ĕ	Ц Ц	PA	2	As	Hd	Hd	sP	87			10	10	TCLP	HM ^B Arsenic
QDI	14	L	9/3/201	7 AM/PM		×				X															Cadmium
1111			L																						Chromium Lead
TSI	15	VC	LAB PRI	EPARED		×													×						Mercury Nickel
TBI	16	VC				X													×						
QRI	17	15,1P,2Ve	9/3/201	7 AM/PM	×					X															
QRIB	18		J	V	X					X															LABORATORY TURNAROUND
																									Standard
																									48 Hours
																									72 Hours
																					-		-		Other
																							\rightarrow		
Investigator: I attest that these samples were collected in accordance							Sampler's Name (EI):						Received by (SGS):												
with standard EI field sampling procedures.							As Dev shopt 1																		
Sampler's Comments:							As per sheet 1 Print						Print					\neg							
								Signature						A-OCLISINO Signature					eiaustra					alla	
Container Type: J= solvent washed, acid rinsed, Teflon sealed, glass jaR							Date							Date 117 O 7-14					Contamination Remediation Geo						Geotechascal
S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle							10317 @ 3.50										20	Ph: 9516 0722							
VC= glass vial, Teflon Septum ZLB = Zip-Lock Bag							Please e-mail laboratory results to: lab@eiaustralia.com.au											lab@eiaustralia.com.au							

SAMPLE RECEIPT ADVICE

Client Details	
Client	El Australia
Attention	Carmen Yi

Sample Login Details	
Your Reference	E23309, Redfern
Envirolab Reference	163319
Date Sample Received	10/03/2017
Date Instructions Received	10/03/2017
Date Results Expected to be Reported	17/03/2017

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	1 Soil
Turnaround Time Requested	Standard
Temperature on receipt (°C)	12.5
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au

Sample and Testing Details on following page

Sample Id	vTRH(CG-	svTRH (C10-C40) in	Acid Extractable
	C10)/BTEXN in Soil	Soil	metals in soil
QT1	\checkmark	\checkmark	\checkmark

The ' \checkmark ' indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS**.

Sheet 1 of	-			Samp	Sample Matrix	trix							Analysis	ysis						Comments
		-	-	T	F	+	$\left \right $		E	F	F	L		ſ	-		$\left \right $			
-123 Even	29-123 Evoleigh Greet.		Project No:										(vity)						HM A
Reeffer	5		E23309				sot						อดิทธิปร	itonbri						Arsenic Cadmium Chromium
ratory: Envir 12 As CHA P: 02	Laboratory: Envirolab Services 12 Ashley Street, CHATSWOOD NSW 2067 P: 02 9910 6200	2067				.e. Fibro, Paint	PCB/Asbes	SH/BTEX	bs9J/X	X			cation exc	electrical co			sНı	A	a V	Copper Lead Mercury Nickel
Sample Laboratory	tory Container	Sampling	gling	ER			b/Ob	_	ata/H	-16 -16		sotsed	CEC) DE (SADO		≺q q_	лн 91	лн 91	Zinc
4.3		Date	Time	TAW	NOS		00		ят			deA	Hq	Hd)92 D		LCI	ICI	ICI	HMB
-	7	9/3/2017	AN/PM		×			×												Arsenic Cadmium Chromium
																				Lead
															ENVIROLAB		Envirolab Services	vices ey St		Mercury Nickel
															and do	Ch L	Ph: (02) 9910 6	5200		
			•													0	03.17			
															Time Re	eived:	30			LABORATORY
						-									1 00 0	np. Cool/Ambient				v Chardend
															Security	ntact	en/None			24 Hours
																				48 Hours
																				72 Hours
dator: Lattast	Investigator: Lattest that these samples were collected in accordance	nles were co	lected in acc	corda	-	ampler	Sampler's Name (EI):		Ŕ	Received by (Envirolab):	y (Envin	olab):							
with sta	with standard EI field sampling procedures.	ampling proc	edures.	5	3	CH	CHRMEN		YI.									2		
Sampler's Comments:	ıts:					Print					Print A	licholag	5			C				ciler
						Signature.	ere .	N	2.		Signature	0	X			Contan		Remed	L liation	Contamination Remediation Geotechnical
Container Type: J= solvent washed, acid	Container Type: J= solvent washed, acid rinsed, Tefton sealed, glass jaR	led, glass jaR				Date	101	3/20	t		Date /c	(1.50-01	. 17		Sui	te 6.01, 5	5 Miller	Iler Street, PYR Ph. 0516 0722	t, PYR	Suite 6.01, 55 Miller Street, PYRMONT NSW 2009 Db: 0516.0722
S= solvent washed, acid rinsed P= natural HDPE plastic bottle VC= glass vial, Teflon Septum	S= solvent washed, acid rinsed glass bottle P= natural HDPE plastic bottle CC glass vial, Teflon Septum 21 B - 7 in-1 ock Bao	۵				MPOF lease e	IMPORTAN Please e-mail la	T: borato	IMPORTANT: Please e-mail laboratory results to: lab@eiaustralia.com.au	s to: la	b@eis	austra	lia.cor	n.au			lab@eiaustralia.com.au com.au	austra	alia.co	m.au coc July 2016 FORM v.3 - SGS
ZID-LOCK Day					1						,				-					and and some some some

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

APPENDIX G Laboratory Analytical Reports

ANALYTICAL REPORT

ontact	Carmen Yi	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722 (Not specified)	Telephone	+61 2 8594 0400 +61 2 8594 0499
Facsimile Email	carmen.yi@eiaustralia.com.au	Facsimile Email	au.environmental.sydney@sgs.com
Project	E23309 - 77-123 Eveleigh St, Redfern	SGS Reference	SE162924 R1
Order Number	E23309	Date Received	10/3/2017
Samples	18	Date Reported	4/4/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE162942R0. dated 17/3/17 issued by SGS Environment, Health and Safety due to amended PAH results for #1 following re-analysis.

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sith

Andy Sutton Senior Organic Chemist

Km/m/

Ly Kim Ha Organic Section Head

mos

Huong Crawford Production Manager

S. Ravendr.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE162924 R1

VOC's in Soil [AN433] Tested: 13/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.002	SE162924.003	SE162924.004	SE162924.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-			-
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1	TS1
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LUK	SE162924.011	SE162924.012	SE162924.013	SE162924.014	SE162924.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[95%]
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[97%]
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[97%]
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	[100%]
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	[95%]
Total Xylenes*	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	-
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	-
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	-

			TB1
			SOIL
			- 9/3/2017
PARAMETER	UOM	LOR	SE162924.016
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes*	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 13/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
		1.05	9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.002	SE162924.003	SE162924.004	SE162924.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	-	-	- 5012	-
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
			9/3/2017			9/3/2017
PARAMETER	UOM	LOR	SE162924.011	SE162924.012	SE162924.013	SE162924.014
TRH C6-C9	mg/kg	20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25

SE162924 R1

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 14/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.002	SE162924.003	SE162924.004	SE162924.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	130	<45	<45	67	<45
TRH C29-C36	mg/kg	45	65	<45	<45	48	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	180	<90	<90	110	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	190	<110	<110	120	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	61	<45	<45	<45	67
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	150
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	97	<90	<90	<90	170
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	220
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210	<210

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
			9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.011	SE162924.012	SE162924.013	SE162924.014
TRH C10-C14	mg/kg	20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	71
TRH C29-C36	mg/kg	45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	100
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110
TRH C10-C40 Total	mg/kg	210	<210	<210	<210	<210

SE162924 R1

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL -	SOIL	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	9/3/2017 SE162924.001	9/3/2017 SE162924.002	9/3/2017 SE162924.003	9/3/2017 SE162924.004	9/3/2017 SE162924.005
Naphthalene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.3	<0.1	<0.1	0.3	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.5	<0.1	<0.1	1.2	<0.1
Anthracene	mg/kg	0.1	0.3	<0.1	<0.1	0.2	<0.1
Fluoranthene	mg/kg	0.1	3.2	<0.1	0.1	2.3	<0.1
Pyrene	mg/kg	0.1	3.4	<0.1	0.2	3.4	<0.1
Benzo(a)anthracene	mg/kg	0.1	2.1	<0.1	<0.1	1.7	<0.1
Chrysene	mg/kg	0.1	1.6	<0.1	<0.1	1.7	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	2.1	<0.1	<0.1	1.7	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	1.1	<0.1	<0.1	1.5	<0.1
Benzo(a)pyrene	mg/kg	0.1	2.0	<0.1	<0.1	2.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.8	<0.1	<0.1	1.6	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	0.1	<0.1	<0.1	0.3	<0.1
Benzo(ghi)perylene	mg/kg	0.1	0.9	<0.1	<0.1	1.5	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>2.8</td><td><0.2</td><td><0.2</td><td>3.1</td><td><0.2</td></lor=0<>	TEQ	0.2	2.8	<0.2	<0.2	3.1	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>2.8</td><td><0.3</td><td><0.3</td><td>3.1</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	2.8	<0.3	<0.3	3.1	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>2.8</td><td><0.2</td><td><0.2</td><td>3.1</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	2.8	<0.2	<0.2	3.1	<0.2
Total PAH (18)	mg/kg	0.8	19	<0.8	<0.8	20	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	19	<0.8	<0.8	20	<0.8

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
Naphthalene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	0.5	<0.1	<0.1	<0.1	0.3
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	1.8	0.3	0.4	<0.1	0.4
Anthracene	mg/kg	0.1	0.4	<0.1	0.1	<0.1	0.2
Fluoranthene	mg/kg	0.1	4.2	0.3	0.6	<0.1	0.8
Pyrene	mg/kg	0.1	3.5	0.5	0.9	<0.1	1.3
Benzo(a)anthracene	mg/kg	0.1	1.9	0.1	0.3	<0.1	0.5
Chrysene	mg/kg	0.1	1.9	0.1	0.4	<0.1	0.7
Benzo(b&j)fluoranthene	mg/kg	0.1	2.0	0.2	0.4	<0.1	1.0
Benzo(k)fluoranthene	mg/kg	0.1	1.1	<0.1	0.2	<0.1	0.6
Benzo(a)pyrene	mg/kg	0.1	2.2	0.1	0.4	<0.1	1.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.4	0.1	0.4	<0.1	1.2
Dibenzo(ah)anthracene	mg/kg	0.1	0.3	<0.1	<0.1	<0.1	0.2
Benzo(ghi)perylene	mg/kg	0.1	1.3	0.1	0.3	<0.1	1.5
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>3.1</td><td><0.2</td><td>0.6</td><td><0.2</td><td>1.6</td></lor=0<>	TEQ	0.2	3.1	<0.2	0.6	<0.2	1.6
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.1</td><td><0.3</td><td>0.7</td><td><0.3</td><td>1.6</td></lor=lor<>	TEQ (mg/kg)	0.3	3.1	<0.3	0.7	<0.3	1.6
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.1</td><td>0.2</td><td>0.6</td><td><0.2</td><td>1.6</td></lor=lor>	TEQ (mg/kg)	0.2	3.1	0.2	0.6	<0.2	1.6
Total PAH (18)	mg/kg	0.8	23	1.9	4.5	<0.8	9.6
Total PAH (NEPM/WHO 16)	mg/kg	0.8	23	1.9	4.5	<0.8	9.6

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 14/3/2017 (continued)

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5
			SOIL	SOIL	SOIL
			9/3/2017		
PARAMETER	UOM	LOR	SE162924.011	SE162924.012	SE162924.013
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.2	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.4	<0.1
Pyrene	mg/kg	0.1	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	0.1	<0.1	0.3	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.3	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	0.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	0.2	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td><0.2</td><td>0.3</td><td><0.2</td></lor=0<>	TEQ	0.2	<0.2	0.3	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.4</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.4	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.3</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.3	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	2.1	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	2.1	<0.8

SE162924 R1

OC Pesticides in Soil [AN420] Tested: 14/3/2017

			BH101_0.6-0.7	BH102_0.5-0.6	BH103_0.2-0.3	BH104_0.6-0.7	BH105_0.1-0.2
			SOIL -	SOIL -	SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	9/3/2017 SE162924.001	9/3/2017 SE162924.003	9/3/2017 SE162924.004	9/3/2017 SE162924.006	9/3/2017 SE162924.008
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

OC Pesticides in Soil [AN420] Tested: 14/3/2017 (continued)

			BH106_0.2-0.3	BH107_0.7-0.8	BH108_0.4-0.5
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	9/3/2017 SE162924.010	9/3/2017 SE162924.012	9/3/2017 SE162924.013
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1

SE162924 R1

OP Pesticides in Soil [AN420] Tested: 14/3/2017

			BH101_0.6-0.7	BH102_0.5-0.6	BH103_0.2-0.3	BH104_0.6-0.7	BH105_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.003	SE162924.004	SE162924.006	SE162924.008
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

			BH106_0.2-0.3	BH107_0.7-0.8	BH108_0.4-0.5
PARAMETER	UOM	LOR	SOIL - 9/3/2017 SE162924.010	SOIL - 9/3/2017 SE162924.012	SOIL - 9/3/2017 SE162924.013
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2

SE162924 R1

PCBs in Soil [AN420] Tested: 14/3/2017

			BH101_0.6-0.7	BH102_0.5-0.6	BH103_0.2-0.3	BH104_0.6-0.7	BH105_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.003	SE162924.004	SE162924.006	SE162924.008
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			BH106_0.2-0.3	BH107_0.7-0.8	BH108_0.4-0.5
			SOIL	SOIL	SOIL
			-	-	-
			9/3/2017		
PARAMETER	UOM	LOR	SE162924.010	SE162924.012	SE162924.013
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

SE162924 R1

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 15/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	9/3/2017 SE162924.001	9/3/2017 SE162924.002	9/3/2017 SE162924.003	9/3/2017 SE162924.004	9/3/2017 SE162924.005
Arsenic, As	mg/kg	3	5	14	<3	4	22
Cadmium, Cd	mg/kg	0.3	0.4	<0.3	<0.3	<0.3	0.5
Chromium, Cr	mg/kg	0.3	13	15	3.8	9.9	18
Copper, Cu	mg/kg	0.5	45	4.4	1.0	23	6.2
Lead, Pb	mg/kg	1	630	12	8	130	40
Nickel, Ni	mg/kg	0.5	4.9	<0.5	1.0	8.1	0.9
Zinc, Zn	mg/kg	0.5	360	5.3	5.8	86	23

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
Arsenic, As	mg/kg	3	36	6	<3	7	11
Cadmium, Cd	mg/kg	0.3	0.6	0.4	<0.3	0.6	0.4
Chromium, Cr	mg/kg	0.3	13	18	5.6	15	10
Copper, Cu	mg/kg	0.5	53	2.3	13	7.3	51
Lead, Pb	mg/kg	1	160	22	45	30	85
Nickel, Ni	mg/kg	0.5	6.7	<0.5	3.8	0.9	9.4
Zinc, Zn	mg/kg	0.5	280	16	54	15	130

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
			-	-	-	-
PARAMETER	UOM	LOR	9/3/2017 SE162924.011	9/3/2017 SE162924.012	9/3/2017 SE162924.013	9/3/2017 SE162924.014
Arsenic, As	mg/kg	3	<3	9	<3	5
Cadmium, Cd	mg/kg	0.3	<0.3	1.2	0.4	0.4
Chromium, Cr	mg/kg	0.3	1.9	18	5.8	13
Copper, Cu	mg/kg	0.5	1.9	310	63	60
Lead, Pb	mg/kg	1	10	280	8	720
Nickel, Ni	mg/kg	0.5	<0.5	24	81	3.5
Zinc, Zn	mg/kg	0.5	3.6	560	48	390

Mercury in Soil [AN312] Tested: 16/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.002	SE162924.003	SE162924.004	SE162924.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	0.08	<0.05

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
Mercury	mg/kg	0.05	0.13	<0.05	0.07	<0.05	0.05

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1
			SOIL	SOIL	SOIL	SOIL
						-
			9/3/2017			9/3/2017
PARAMETER	UOM	LOR	SE162924.011	SE162924.012	SE162924.013	SE162924.014
Mercury	mg/kg	0.05	<0.05	0.23	<0.05	0.16

Moisture Content [AN002] Tested: 15/3/2017

			BH101_0.6-0.7	BH101_1.5-1.6	BH102_0.5-0.6	BH103_0.2-0.3	BH103_1.9-2.0
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.002	SE162924.003	SE162924.004	SE162924.005
% Moisture	%w/w	0.5	11	19	10	6.3	16

			BH104_0.6-0.7	BH104_1.9-2.0	BH105_0.1-0.2	BH105_2.7-2.8	BH106_0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.006	SE162924.007	SE162924.008	SE162924.009	SE162924.010
% Moisture	%w/w	0.5	9.2	18	5.1	13	5.1

			BH106_1.5-1.6	BH107_0.7-0.8	BH108_0.4-0.5	QD1	TB1
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			9/3/2017	9/3/2017	9/3/2017	9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.011	SE162924.012	SE162924.013	SE162924.014	SE162924.016
% Moisture	%w/w	0.5	1.7	15	7.0	13	<0.5

Fibre Identification in soil [AN602] Tested: 16/3/2017

			BH101_0.6-0.7	BH102_0.5-0.6	BH103_0.2-0.3	BH104_0.6-0.7	BH105_0.1-0.2
			SOIL	SOIL	SOIL	SOIL	SOIL
			9/3/2017			9/3/2017	9/3/2017
PARAMETER	UOM	LOR	SE162924.001	SE162924.003	SE162924.004	SE162924.006	SE162924.008
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			BH106_0.2-0.3	BH107_0.7-0.8	BH108_0.4-0.5
			SOIL	SOIL	SOIL
			- 9/3/2017		
PARAMETER	UOM	LOR	SE162924.010	SE162924.012	SE162924.013
Asbestos Detected	No unit	-	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01

SE162924 R1

VOCs in Water [AN433] Tested: 13/3/2017

			QR1	QR1B
		1.05	WATER - 9/3/2017	WATER - 9/3/2017
PARAMETER	UOM	LOR	SE162924.017	SE162924.018 <0.5
Benzene	µg/L	0.5	<0.5	<0.5
Toluene	µg/L	0.5	1.2	1.1
Ethylbenzene	µg/L	0.5	<0.5	<0.5
m/p-xylene	µg/L	1	<1	<1
o-xylene	µg/L	0.5	<0.5	<0.5
Total Xylenes	µg/L	1.5	<1.5	<1.5
Total BTEX	µg/L	3	<3	<3
Naphthalene	µg/L	0.5	<0.5	<0.5

SE162924 R1

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 13/3/2017

			QR1	QR1B
			WATER	WATER
			- 9/3/2017	
PARAMETER	UOM	LOR	SE162924.017	SE162924.018
TRH C6-C9	µg/L	40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50

SE162924 R1

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 13/3/2017

			QR1	QR1B
			WATER	WATER
			- 9/3/2017	
PARAMETER	UOM	LOR	SE162924.017	SE162924.018
TRH C10-C14	µg/L	50	<50	<50
TRH C15-C28	µg/L	200	<200	<200
TRH C29-C36	µg/L	200	<200	<200
TRH C37-C40	µg/L	200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500
TRH C10-C36	µg/L	450	<450	<450
TRH C10-C40	µg/L	650	<650	<650

SE162924 R1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 13/3/2017

			QR1	QR1B
			WATER	WATER
PARAMETER	UOM	LOR	- 9/3/2017 SE162924.017	- 9/3/2017 SE162924.018
Arsenic, As	μg/L	1	<1	<1
Cadmium, Cd	μg/L	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1
Copper, Cu	µg/L	1	<1	<1
Lead, Pb	µg/L	1	<1	<1
Nickel, Ni	µg/L	1	<1	<1
Zinc, Zn	µg/L	5	<5	<5

SE162924 R1

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 16/3/2017

			QR1	QR1B
			WATER	WATER
			9/3/2017	
PARAMETER	UOM	LOR	SE162924.017	SE162924.018
Mercury	mg/L	0.0001	<0.0001	<0.0001

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."

AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and
	(c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Carmen Yi	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	carmen.yi@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23309 - 77-123 Eveleigh St, Redfern	SGS Reference	SE162924 R1
Order Number	E23309	Date Received	10 Mar 2017
Samples	8	Date Reported	04 Apr 2017

COMMENTS ·

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(4354).

This report cancels and supersedes the report No.SE162942R0. dated 17/3/17 issued by SGS Environment, Health and Safety due to amended PAH results for #1 following re-analysis.

No respirable fibres detected in all soil samples using trace analysis technique.

Asbestos analysed by Approved Identifier Yusuf Kuthpudin.

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

kinty

Ly Kim Ha Organic Section Head

Un

Huong Crawford Production Manager

Kamrul Ahsan Senior Chemist

Australia

Australia

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 t +61 2 8594 0400 f +61 2 8594 0499

594 0499

www.sgs.com.au

ANALYTICAL REPORT

Fibre Identifica	ition in soil				Meth	od AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification		Est.%w/w*
SE162924.001	BH101_0.6-0.7	Soil	106g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found Organic Fibres Detected		<0.01
SE162924.003	BH102_0.5-0.6	Soil	137g Sand, Soil	09 Mar 2017	No Asbestos Found		<0.01
SE162924.004	BH103_0.2-0.3	Soil	102g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01
SE162924.006	BH104_0.6-0.7	Soil	140g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01
SE162924.008	BH105_0.1-0.2	Soil	60g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01
SE162924.010	BH106_0.2-0.3	Soil	127g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01
SE162924.012	BH107_0.7-0.8	Soil	145g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01
SE162924.013	BH108_0.4-0.5	Soil	72g Sand, Soil, Rocks	09 Mar 2017	No Asbestos Found		<0.01

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf).
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES

Amosite Chrysotile	-	Brown Asbestos White Asbestos	NA LNR	-	Not Analysed Listed, Not Required
Crocidolite Amphiboles	-	Blue Asbestos Amosite and/or Crocidolite	*	-	NATA accreditation does not cover the performance of this service. Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone Facsimile Email	61 2 95160722 (Not specified) emmanuel.woelders@eiaustralia.com.au	Telephone Facsimile Email	+61 2 8594 0400 +61 2 8594 0499 au.environmental.sydney@sgs.com
Project Order Number Samples	E23309 - Eveleigh St, Redfern E23309 6	SGS Reference Date Received Date Reported	SE163046 R0 15/3/2017 20/3/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES -

Ady Sitte

Andy Sutton Senior Organic Chemist

Kamrul Ahsan Senior Chemist

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

20/03/2017

SE163046 R0

VOCs in Water [AN433] Tested: 16/3/2017

NATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYNATYRueaab				BH101M	BH104M	GWQD1	GWQR1	GWQTB1
PAARTER PAARTERPROVINCE				WATER	WATER	WATER	WATER	WATER
numbernumb								-
Tankenyell	PARAMETER	UOM	LOR					
Sphemeppl0.50.400.410.410.410.430.40seyemppl0.50.45 </td <td>Benzene</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td>	Benzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
myseedopo	Toluene	µg/L	0.5	<0.5	<0.5	<0.5	1.8	<0.5
systemngh <t< td=""><td>Ethylbenzene</td><td>µg/L</td><td>0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td></t<>	Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Tank byomeppl1617.5014.50 <th< td=""><td>m/p-xylene</td><td>µg/L</td><td>1</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></th<>	m/p-xylene	µg/L	1	<1	<1	<1	<1	<1
TabTabPASS <td>o-xylene</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><0.5</td>	o-xylene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
numbernumb	Total Xylenes	µg/L	1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Distriguingpd<	Total BTEX	µg/L	3	<3	<3	<3	<3	<3
protentionpit344<	Naphthalene	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Non-mature pp1 0.0 4.3.0 <t< td=""><td>Dichlorodifluoromethane (CFC-12)</td><td>µg/L</td><td>5</td><td><5</td><td><5</td><td>-</td><td>-</td><td>-</td></t<>	Dichlorodifluoromethane (CFC-12)	µg/L	5	<5	<5	-	-	-
barenetware introductionation introductio	Chloromethane	µg/L	5	<5	<5	-	-	-
oblemberinit<	Vinyl chloride (Chloroethene)	µg/L	0.3	<0.3	<0.3	-	-	-
Technologenergyupl14111Adom (ryapanca)upl10410410410	Bromomethane	µg/L	10	<10	<10	-	-	-
Actes Argenore IpL 40	Chloroethane	µg/L	5	<5	<5	-	-	-
biolongingpplff <th< td=""><td>Trichlorofluoromethane</td><td>µg/L</td><td>1</td><td><1</td><td><1</td><td>-</td><td>-</td><td>-</td></th<>	Trichlorofluoromethane	µg/L	1	<1	<1	-	-	-
1.1.4.constanceppl0.544.56.1.5000AnylentiteppL0.544.54.5.500AnylentiteppL24.24.2000AnylentitieppL0.24.24.2000CancendusitionppL0.24.24.2000MiscicationsphereppL0.54.454.0.5000MiscicationsphereppL0.54.0.54.0.5000VisiosatioppL0.54.0.54.0.5000MiscicationsphereppL0.54.0.54.0.5000MiscicationsphereppL0.54.0.54.0.50000MiscicationsphereppL0.54.0.54.0.50000MiscicationsphereppL0.54.0.54.0.50000Constant/MiscicationsphereppL0.54.0.54.0.500002.24drioophereppL0.54.54.0.5000002.24drioophereppL0.54.54.0.5000002.24drioophereppL0.54.54.0.500	Acetone (2-propanone)	µg/L	10	<10	<10	-	-	-
AryunitéµpL634344.51.01.0Dationantara (Maryone chirolog)µpL8460.70.00.0Aryonationantara (Maryone chirolog)µpL2.24.20.70.00.0Carlon studiedµpL0.54.70.10.00.00.0Birs 1-2 chirology studiedµpL0.54.70.0	lodomethane	µg/L	5	<5	<5	-	-	-
Debromethane (Methylene othorol) Mpl 6 45 45 1 1 Alp cloude ppl 2 42 -2 Alp cloude ppl 2 42 Carbon staffed ppl 0.2 42 MBE (Methylene-March ethylene) ppl 0.5 40.5 40.5 1 cheromethane ppl 0.5 40.5 40.5 1 cheromethane ppl 0.5 40.5 40.5	1,1-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
Abj chickié µA ?2 </td <td>Acrylonitrile</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td> <td>-</td>	Acrylonitrile	µg/L	0.5	<0.5	<0.5	-	-	-
Denon studiedup1242424242434.0times 1.2 definitionedup10.540.54.04.04.04.0MBE (Mutry definitionedup10.540.54.0.54.0.54.0.54.0.5Min Standingup10.540.54.0.54.0.54.0.54.0.5Min Lack definitionedup10.540.54.0.54.0.54.0.54.0.5Min Lack definitionedup10.540.54.0.54.0.54.0.54.0.5Demonstromethereup10.540.54.0.54.0.54.0.54.0.54.0.5Demonstromethereup10.540.54.0.54.0.54.0.54.0.54.0.54.0.54.0.52.2 definitionedup10.540.54.0.5	Dichloromethane (Methylene chloride)	µg/L	5	<5	<5	-	-	-
bars ypl 0.5 40.5 40.5 40.5 40.5 40.5 MBE (why barsbay endy) ypl 0.2 0.4 0.4 0.4 0.4 Mars (why barsbay endy) ypl 0.5 0.45 0.5 0.5 0.5 Mars (why barsbay endy) ypl 0.5 0.40	Allyl chloride	µg/L	2	<2	<2	-	-	-
MBE (Mely-terbuly tether) µgL 2 42 42 42 42 42 43	Carbon disulfide	µg/L	2	<2	<2	-	-	-
1.1.doktorowthane µgL 0.5 40.5 40.5 40.5 40.5 40.5 Viry scatal µgL 10 410 410 4.0 4.0 KC (2-barmen) µgL 0.5 40.5 40.5 40.5 40.5 4.0 4.0 Bromochhomethane µgL 0.5 40.5 40.5 40.5 4.0 4.0 2.2 doktorowthane µgL 0.5 40.5 40.5 4.0 4.0 4.0 1.2 doktorowthane µgL 0.5 40.5 40.5 4.0 4.0 4.0 1.1 doktorowthane µgL 0.5 40.5 40.5 4.0 4.0 4.0 1.1 doktorowthane µgL 0.5 40.5 40.5 40.5 4.0 4.0 4.0 1.1 doktorowthane (frekhorowthane	trans-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
Viry notate µpL 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	MtBE (Methyl-tert-butyl ether)	µg/L	2	<2	<2	-	-	-
MEK (2-batanon) µpL 10 <10 <10 <10 <10 <10 ch-12-dibbroethene µpL 0.5 <0.5	1,1-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
ds1.2 dichtoroethene ppl. 0.5	Vinyl acetate	µg/L	10	<10	<10	-	-	-
Branchloromethane ppl 0.5 40.5	MEK (2-butanone)	µg/L	10	<10	<10	-	-	-
Chordorm (THM) µg1 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	cis-1,2-dichloroethene	µg/L	0.5	<0.5	<0.5	-	-	-
2.2 delthorpropane µpl 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Bromochloromethane	µg/L	0.5	<0.5	<0.5	-	-	-
1.2 delationedmane µgL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Chloroform (THM)	µg/L	0.5	<0.5	<0.5	-	-	-
1.1.4.trichloroethane µµl. 0.5 <0.5	2,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1.1.dickloropropene ypL 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td>1,2-dichloroethane</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td> <td>-</td>	1,2-dichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
Carbon tetrachonicie µg/L 0.5 <0.5 <0.5 <0.5 <0.5 Dibromomethane µg/L 0.5 <0.5	1,1,1-trichloroethane	µg/L	0.5	<0.5	<0.5	-	-	-
Dbrownenthane µg/L 0.5 <0.5 <0.5 <0.5 <0.5 1.2-dichloropropane µg/L 0.5 <0.5	1,1-dichloropropene	µg/L	0.5	<0.5	<0.5	-	-	-
1.2-dichloropropane μg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 </td <td>Carbon tetrachloride</td> <td>µg/L</td> <td>0.5</td> <td><0.5</td> <td><0.5</td> <td>-</td> <td>-</td> <td>-</td>	Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-	-	-
Trichloroethylene,TCE) µgL 0.5 <0.5 <0.5 <0.5 <0.5 2.nitropropane µgL 100 <100	Dibromomethane	µg/L	0.5	<0.5	<0.5	-	-	-
2-nitropropane µg/L 100 <100 <100 <100 <100 <100 <100 Bromodichloromethane (THM) µg/L 0.5 <0.5	1,2-dichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
Bromodichloromethane (THM) μg/L 0.5 <0.5 <0.5 <0.5 <0.5 MIBK (4-methyl-2-pentanone) μg/L 0.5 <5	Trichloroethene (Trichloroethylene,TCE)	µg/L	0.5	<0.5	<0.5	-	-	-
MBK (4-methyl-2-pentanone) µg/L 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <t< td=""><td>2-nitropropane</td><td>µg/L</td><td>100</td><td><100</td><td><100</td><td>-</td><td>-</td><td>-</td></t<>	2-nitropropane	µg/L	100	<100	<100	-	-	-
dis-1.3-dichloropropene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	Bromodichloromethane (THM)	µg/L		<0.5	<0.5	-	-	-
trans-1.3-dichloropropene µg/L 0.5 <0.5 <0.5 1,1,2-trichloropropane µg/L 0.5 <0.5	MIBK (4-methyl-2-pentanone)	µg/L	5	<5	<5	-	-	-
1,1,2-trichloroethane µg/L 0.5 <0.5		µg/L	0.5	<0.5	<0.5	-	-	-
1,3-dichloropropane µg/L 0.5 <0.5	trans-1,3-dichloropropene	µg/L	0.5		<0.5	-	-	-
Dibromochloromethane (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1,1,2-trichloroethane	µg/L				-	-	-
2-hexanone (MBK) µg/L 5 <5 <5 1.2-dibromoethane (EDB) µg/L 0.5 <0.5		µg/L				-	-	-
1.2-dibromoethane (EDB) µg/L 0.5 <0.5		µg/L				-	-	-
Tetrachloroethene (Perchloroethylene,PCE) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
1,1,2-2tetrachloroethane µg/L 0.5 <0.5						-	-	-
Chlorobenzene µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						-	-	-
Bromoform (THM) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5						-	-	-
cis-1,4-dichloro-2-butene µg/L 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td></th<>						-	-	-
Styrene (Vinyl benzene) µg/L 0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.						-	-	-
1,1,2,2-tetrachloroethane μg/L 0.5 <0.5 <0.5						-	-	-
		µg/L				-	-	-
1,2,3-trichloropropane µg/L 0.5 <0.5	1,1,2,2-tetrachloroethane	µg/L				-	-	-
	1,2,3-trichloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
trans-1,4-dichloro-2-butene µg/L 1 <1 <1	trans-1,4-dichloro-2-butene	µg/L	1	<1	<1	-	-	-

SE163046 R0

VOCs in Water [AN433] Tested: 16/3/2017 (continued)

			BH101M	BH104M	GWQD1	GWQR1	GWQTB1
			WATER	WATER	WATER	WATER	WATER
						WATER	WATER
			15/3/2017	15/3/2017	15/3/2017	15/3/2017	15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002	SE163046.003	SE163046.004	SE163046.005
Isopropylbenzene (Cumene)	µg/L	0.5	<0.5	<0.5	-	-	-
Bromobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
n-propylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
2-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
4-chlorotoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3,5-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
tert-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trimethylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
sec-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,4-dichlorobenzene	µg/L	0.3	<0.3	<0.3	-	-	-
p-isopropyltoluene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
n-butylbenzene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2-dibromo-3-chloropropane	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,4-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Hexachlorobutadiene	µg/L	0.5	<0.5	<0.5	-	-	-
1,2,3-trichlorobenzene	µg/L	0.5	<0.5	<0.5	-	-	-
Total VOC	µg/L	10	<10	<10	-	-	-

SE163046 R0

VOCs in Water [AN433] Tested: 16/3/2017 (continued)

			GWQTS1
			14/ATED
			WATER
			15/3/2017
PARAMETER	UOM	LOR	SE163046.006
Benzene	µg/L	0.5	[94%]
Toluene	µg/L	0.5	[95%]
Ethylbenzene	µg/L	0.5	[96%]
m/p-xylene	µg/L	1	[94%]
o-xylene	µg/L	0.5	[98%]
Total Xylenes	µg/L	1.5	-
Total BTEX	µg/L	3	-
Naphthalene	µg/L	0.5	-
Dichlorodifluoromethane (CFC-12)	µg/L	5	-
Chloromethane	µg/L	5	-
Vinyl chloride (Chloroethene)	µg/L	0.3	-
Bromomethane	µg/L	10	-
Chloroethane	µg/L	5	-
Trichlorofluoromethane	µg/L	1	-
Acetone (2-propanone)	µg/L	10	-
lodomethane	µg/L	5	-
1,1-dichloroethene	µg/L	0.5	-
Acrylonitrile	μg/L	0.5	-
Dichloromethane (Methylene chloride)	μg/L	5	-
Allyl chloride	µg/L	2	-
Carbon disulfide	µg/L	2	-
trans-1,2-dichloroethene	μg/L	0.5	-
MtBE (Methyl-tert-butyl ether)	µg/L	2	-
1,1-dichloroethane	µg/L	0.5	-
Vinyl acetate	µg/L	10	-
MEK (2-butanone)	µg/L	10	-
cis-1,2-dichloroethene	µg/L	0.5	-
Bromochloromethane	µg/L	0.5	-
Chloroform (THM)	µg/L	0.5	-
2,2-dichloropropane	µg/L	0.5	_
1,2-dichloroethane	μg/L	0.5	
1,1,1-trichloroethane	μg/L	0.5	-
1,1-dichloropropene	μg/L	0.5	
Carbon tetrachloride	μg/L	0.5	
Dibromomethane	μg/L	0.5	
1,2-dichloropropane	μg/L	0.5	
Trichloroethene (Trichloroethylene,TCE)		0.5	
2-nitropropane	μg/L		
	µg/L	100	-
Bromodichloromethane (THM)	µg/L	0.5	-
MIBK (4-methyl-2-pentanone)	µg/L	5	-
cis-1,3-dichloropropene	µg/L	0.5	-
trans-1,3-dichloropropene	µg/L	0.5	-
1,1,2-trichloroethane	µg/L	0.5	-
1,3-dichloropropane	µg/L	0.5	-
Dibromochloromethane (THM)	µg/L	0.5	-
2-hexanone (MBK)	µg/L	5	-
1,2-dibromoethane (EDB)	µg/L	0.5	-
Tetrachloroethene (Perchloroethylene,PCE)	µg/L	0.5	-
1,1,1,2-tetrachloroethane	µg/L	0.5	-
Chlorobenzene	µg/L	0.5	-
Bromoform (THM)	µg/L	0.5	-
cis-1,4-dichloro-2-butene	µg/L	1	-
Styrene (Vinyl benzene)	μg/L	0.5	-
1,1,2,2-tetrachloroethane	µg/L	0.5	-
1,2,3-trichloropropane	µg/L	0.5	-

SE163046 R0

VOCs in Water [AN433] Tested: 16/3/2017 (continued)

			GWQTS1
			WATER
			15/3/2017
PARAMETER	UOM	LOR	SE163046.006
Isopropylbenzene (Cumene)	µg/L	0.5	-
Bromobenzene	μg/L	0.5	-
n-propylbenzene	µg/L	0.5	-
2-chlorotoluene	μg/L	0.5	-
4-chlorotoluene	μg/L	0.5	-
1,3,5-trimethylbenzene	µg/L	0.5	-
tert-butylbenzene	µg/L	0.5	-
1,2,4-trimethylbenzene	µg/L	0.5	-
sec-butylbenzene	µg/L	0.5	-
1,3-dichlorobenzene	µg/L	0.5	-
1,4-dichlorobenzene	µg/L	0.3	-
p-isopropyltoluene	μg/L	0.5	-
1,2-dichlorobenzene	µg/L	0.5	-
n-butylbenzene	μg/L	0.5	-
1,2-dibromo-3-chloropropane	μg/L	0.5	-
1,2,4-trichlorobenzene	µg/L	0.5	-
Hexachlorobutadiene	μg/L	0.5	-
1,2,3-trichlorobenzene	µg/L	0.5	-
Total VOC	µg/L	10	-

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 16/3/2017

			BH101M	BH104M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER
			15/3/2017			15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002	SE163046.003	SE163046.004
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10	µg/L	50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50	<50	<50	<50

TRH (Total Recoverable Hydrocarbons) in Water [AN403] Tested: 16/3/2017

			BH101M	BH104M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER
			- 15/3/2017	- 15/3/2017	- 15/3/2017	- 15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002	SE163046.003	SE163046.004
TRH C10-C14	µg/L	50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH >C10-C16 (F2)	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500
TRH C10-C36	µg/L	450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650

PAH (Polynuclear Aromatic Hydrocarbons) in Water [AN420] Tested: 16/3/2017

			BH101M	BH104M
			WATER	WATER
			- 15/3/2017	- 15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002
Naphthalene	μg/L	0.1	<0.1	<0.1
2-methylnaphthalene	μg/L	0.1	<0.1	<0.1
1-methylnaphthalene	μg/L	0.1	<0.1	<0.1
Acenaphthylene	μg/L	0.1	<0.1	<0.1
Acenaphthene	µg/L	0.1	<0.1	<0.1
Fluorene	µg/L	0.1	<0.1	<0.1
Phenanthrene	µg/L	0.1	<0.1	<0.1
Anthracene	µg/L	0.1	<0.1	<0.1
Fluoranthene	µg/L	0.1	<0.1	<0.1
Pyrene	µg/L	0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	0.1	<0.1	<0.1
Chrysene	µg/L	0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	μg/L	0.1	<0.1	<0.1
Benzo(k)fluoranthene	µg/L	0.1	<0.1	<0.1
Benzo(a)pyrene	μg/L	0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	<0.1
Dibenzo(ah)anthracene	μg/L	0.1	<0.1	<0.1
Benzo(ghi)perylene	µg/L	0.1	<0.1	<0.1
Total PAH (18)	μg/L	1	<1	<1

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 17/3/2017

			BH101M	BH104M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER
			15/3/2017			15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002	SE163046.003	SE163046.004
Arsenic, As	µg/L	1	6	<1	6	<1
Cadmium, Cd	µg/L	0.1	<0.1	0.1	<0.1	<0.1
Chromium, Cr	µg/L	1	<1	<1	<1	<1
Copper, Cu	µg/L	1	<1	1	1	4
Lead, Pb	µg/L	1	<1	<1	<1	<1
Nickel, Ni	µg/L	1	7	5	7	<1
Zinc, Zn	μg/L	5	46	54	47	<5

Mercury (dissolved) in Water [AN311(Perth)/AN312] Tested: 17/3/2017

			BH101M	BH104M	GWQD1	GWQR1
			WATER	WATER	WATER	WATER
						-
			15/3/2017			15/3/2017
PARAMETER	UOM	LOR	SE163046.001	SE163046.002	SE163046.003	SE163046.004
Mercury	mg/L	0.0001	<0.0001	<0.0001	<0.0001	<0.0001

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded. Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM LOR sis. ↑↓ Unit of Measure. Limit of Reporting. Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

APPENDIX H QA/QC Assessment

H1 QUALITY CONTROL PROGRAM

H1.1 INTRODUCTION

For the purpose of assessing the quality of data presented in this Detailed Site Investigation, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed internal QC samples. Details of the field and laboratory QC samples, and other Data Quality Indicators used in this DSI are reviewed in **Table H-1**.

Table H-13-1 Sampling Data Quality Indicators

For the purpose of assessing the quality of data presented in this Detailed Site Investigation, EI collected field QC samples for analysis. The primary laboratory, SGS Australia Pty Ltd (SGS) and secondary laboratory, Envirolab Services Pty Ltd (Envirolab) also prepared and analysed QC samples. Details of the field and laboratory QC samples are provided, with the allowable acceptance ranges for the data presented in **Table H-1**.

QA/QC Measures	Data Quality Indicators
Precision – A quantitative measure of the variability (or reproducibility) of data	Data precision would be assessed by reviewing the performance of blind field duplicate sample sets, through calculation of relative percentage differences (RPD). Data precision would be deemed acceptable if RPDs are found to be less than 30%. RPDs that exceed this range may be considered acceptable where:
	 Results are less than 10 times the limits of reporting (LOR);
	 Results are less than 20 times the LOR and the RPD is less than 50% or
	Heterogeneous materials or volatile compounds are encountered.
Accuracy – A quantitative	Data accuracy would be assessed through the analysis of:
measure of the closeness of reported data to the "true" value	 Method blanks, which are analysed for the analytes targeted in the primary samples;
	 Matrix spike and matrix spike duplicate sample sets;
	 Laboratory control samples; and
	Calibration of instruments against known standards.
Representativeness – The confidence (expressed qualitatively) that data are	To ensure the data produced by the laboratory is representative of conditions encountered in the field, the laboratory would carry out the following:
representative of each medium present onsite	 Blank samples will be run in parallel with field samples to confirm there are no unacceptable instances of laboratory artefacts;
	 Review of relative percentage differences (RPD) values for field and laboratory duplicates to provide an indication that the samples are generally homogeneous, with no unacceptable instances of significant sample matrix heterogeneities; and
	• The appropriateness of collection methodologies, handling, storage and preservation techniques will be assessed to ensure/confirm there was minimal opportunity for sample interference or degradation (i.e. volatile loss during transport due to incorrect preservation / transport methods).

Table H-13-2 Sampling Data Quality Indicators

Data Quality Indicators
Analytical data sets acquired during the assessment will be evaluated as complete, upon confirmation that:
 Standard operating procedures (SOPs) for sampling protocols were adhered to; and
 Copies of all COC documentation are presented, reviewed and found to be properly completed.
It can therefore be considered whether the proportion of "useable data" generated in the data collection activities is sufficient for the purposes of the land use assessment.
Given that a reported data set can comprise several data sets from separate sampling episodes, issues of comparability between data sets are reduced through adherence to SOPs and regulator-endorsed or published guidelines and standards on each data gathering activity.
In addition the data will be collected by experienced samplers and NATA- accredited laboratory methodologies will be employed in all laboratory testing programs.

H1.2 CALCULATION OF RELATIVE PERCENTAGE DIFFERENCE (RPD)

The RPD values were calculated using the following equation:

$$RPD = \frac{|C_0 - C_R|}{[(C_0 + C_R)/2]} \times 100$$

Where:

Co = Concentration obtained for the primary sample; and

 C_R = Concentration obtained for the blind replicate or split duplicate sample.

H2 FIELD QA/QC DATA EVALUATION

The field quality assurance/quality control (QA/QC) samples collected during the soil investigation works were as follows:

- Two blind field duplicates (water/soil);
- Two inter-laboratory duplicate (water/soil);
- Two trip blanks (water/soil);
- Two trip spikes (water/soil); and
- Two rinsate blanks (water/soil).

Analytical results for tested soil QA/QC samples, including the calculated RPD values between primary and duplicate samples, are presented in **Table 4 and 5 (T4-T5)**.

H2.1 SOIL INVESTIGATION

H2.1.1 Blind Field Duplicate

Sample QD-1 was collected as a blind field duplicate (BFD) of the primary sample BH101M_0.6-0.7 on 9 March 2017. The preparation of the BFD sample involved the collection of a bulk quantity of soil from the same sampling point without mixing, before dividing the material into identical sampling vessels. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias. The BFD soil sample was analysed for TRHs, BTEX, selected heavy metals.

Calculated RPD values were found to be within the Data Acceptance Criteria, with the exception of heavy metals; chromium (163.64%), and mercury (104.76%), as well as TRH (F3) (57.14%). Exceedances can be attributed to material heterogeneity.

H2.1.2 Inter-Laboratory Duplicate

Sample QT-1 was collected as an inter-laboratory duplicate (ILD) of the primary ample BH101M_0.6-0.7 on 9 March 2017. The preparation of the ILD sample was identical to the BFD sample, as described above, and was analysed for TRHs, BTEX, and selected heavy metals.

The calculated RPD values were within the Data Acceptance Criteria, with the exception of mercury (120%). Exceedances can be attributed to material heterogeneity.

Furthermore, soil samples were placed immediately into jars following sampling to reduce the loss of volatiles from samples. Analytical results indicated that the samples collected were representative of the soils present at respective sampling locations.

H2.1.3 Trip Blank

One soil trip blank (QTB-1) sample was prepared and analysed by the primary laboratory (SGS) for BTEX. Analytical results for this sample were below the laboratory LOR, indicating that satisfactory sample transport and handling conditions were achieved.

H2.1.4 Trip Spike

One soil trip spike (QTS-1) sample was submitted to the primary laboratory for BTEX analysis, the results for which were reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

H2.1.5 Rinsate Blank

One equipment rinsate blank sample (QR1) was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analyses. Analytical results were reported below the laboratory LOR, with the exception of toluene (1.2 μ g/L). One rinsate blank (QR1B) consisting of clean rinsate water, was submitted to the primary laboratory and tested for toluene. Reported concentrations of toluene (1.1 μ g/L) suggest that the hit of toluene within QR1 was in fact a result of laboratory supplied rinsate, and not a result of incorrect sampling procedures. Furthermore, it was concluded that decontamination procedures performed during the field works had been effective.

H2.1 GROUNDWATER INVESTIGATION

H2.1.1 Blind Field Duplicate

One groundwater BFD sample was collected in total, as follows:

Sample GWQD1 was collected from the primary sample BH101M on 14 March 2017.

The preparation of BFD samples involved the decanting of the groundwater collected from the respective monitoring well into two separate groups of appropriately labelled sampling containers. Volumes were split equally between the groups of sampling bottles such that the sample contained in each individual bottle, contained a similar proportion of each water volume. Sample mixing did not occur prior to decanting, in order to preserve the concentrations of volatiles potentially present within the sample. The duplicate sample was then presented blind to the primary laboratory (SGS) to avoid any potential analytical bias.

The BFDs were analysed for TRHs, BTEX, and selected heavy metals. The RPD values calculated for all the analytes tested were found to be within the Data Acceptance Criteria (DAC).

H2.1.3 Trip Blank

A trip blank (TB) sample (GWQTB1), prepared by the primary laboratory, was analysed for BTEX by the primary laboratory during groundwater testing. TB results were reported below the laboratory LOR, indicating that ideal sample transport and handling conditions were achieved.

H2.1.4 Trip Spike

A trip spike (TS) sample (GWQTS1) was submitted to the primary laboratory for BTEX analysis, the results for which were all reported within the RPD acceptance levels for trip spike recovery. It was therefore concluded that satisfactory sample transport and handling conditions were achieved.

H2.1.5 Rinsate Blank

A rinsate blank (RB) sample (GWQR1) was submitted to the primary laboratory for TRHs, BTEX and selected heavy metals analyses. Analytical results were reported below the laboratory LOR for most analytes, with the exception of toluene ($1.8 \mu g/L$) and copper ($4.0 \mu g/L$). It was noted that concentrations of toluene in groundwater sampled on the same date were recorded under PQLs. As the concentration of toluene in the rinsate sample was much higher than recorded in the groundwater, cross-contamination was ruled out as the cause of the elevated toluene level. With regard to copper, it was noted that concentrations in groundwater sampled on the same date were below PQLs. Heavy metal concentrations exceeding water quality criteria are ubiquitous in groundwater systems in long-standing urban/industrial environments, and therefore, cross-contamination was ruled out as the cause for an elevated copper level.

In view of this finding it was concluded that decontamination procedures performed during the field works had been effective.

H2.3 ASSESSMENT OF FIELD QA/QC DATA

All samples were classified in the field with respect to soil/fill characteristics and any observable signs of contamination based on visual and odour assessment, in regards to soil and groundwater.

All samples, including field QC samples, were transported to the primary and secondary laboratories under strict Chain-of-Custody conditions and appropriate copies of relevant documentation were included in the respective reports.

The overall completeness of documentation produced under the field program of the subject assessment was considered to be adequate for the purposes of drawing valid conclusions regarding the environmental condition of the site.

Based on the results of the field QA/QC data, EI considered the field QA/QC programme carried out during the investigation works to be appropriate and the results to be acceptable.

H3 LABORATORY QA/QC

H3.1 LABORATORY ACCREDITATION

To undertake all analytical testing, EI commissioned SGS as the primary laboratory and Envirolab as the secondary laboratory. SGS and Envirolab, both established analytical laboratories which operate in accordance with the guidelines set out in ISO/IEC Guide 25 "General requirements for the competence of calibration and testing laboratories", conducted all respective analyses using National Association Testing Authorities (NATA)-registered procedures.

In relation to contingencies, should the pre-determined DQOs not be achieved, in accordance with each laboratory's QC policy (**Appendix G**), respective tests are accordingly repeated. Should the results again fall outside the DQOs, then sample heterogeneity may be assumed and written comment will be provided to this effect on the final laboratory certificate. The laboratory QA/QC reports are included in **Appendix G**.

H3.2 SAMPLE HOLDING TIMES

All sample holding times were within standard environmental protocols as tabulated in **Appendix G**, **Tables QC1** and **QC2**.

H3.3 TEST METHODS AND PRACTICAL QUANTITATION LIMITS (PQLS)

Practical Quantitation Limits for the tested parameters during the assessments of soils are presented in **Appendix G**, **Tables QC3** and **QC4**.

H3.4 METHOD BLANKS

Concentrations of all parameters in method blanks during the assessment were below the laboratory PQLs and were therefore within the DAC.

H3.5 LABORATORY DUPLICATE SAMPLES

The RPD values of Laboratory Duplicate Samples (LDS) for the analysis batches were all within acceptable ranges and conformed to the DAC, with the exception of chromium for sample SE 162924.010 due to sample heterogeneity.

H3.6 LABORATORY CONTROL SAMPLES

The Laboratory Control Samples (LCS) for the analysis batches were within acceptable ranges and conformed to the DAC.

H3.7 MATRIX SPIKES

The matrix spikes of the analysis batches were within acceptable ranges and conformed to the DAC, with the exception of lead and zinc for sample SE 162924.001 due to sample heterogeneity.

H3.8 CONCLUDING REMARK

Based on the laboratory QA/QC results, EI considers that although a small number of discrepancies were identified, the data generally confirms that the analytical results for soil and groundwater laboratory testing were valid and useable for interpretation purposes.

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

APPENDIX I Laboratory QA/AC Policies and DQOs

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Emmanuel Woelders	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	emmanuel.woelders@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23309 - Eveleigh St, Redfern	SGS Reference	SE163046 R0
Order Number	E23309	Date Received	15 Mar 2017
Samples	6	Date Reported	20 Mar 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met (within the SGS Alexandria Environmental laboratory).

SAMPLE SUMMARY

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Mercury (dissolved) in Wa	ter						Method: ME-(AU)-[ENV]AN311(Perth)/AN3
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120601	15 Mar 2017	15 Mar 2017	12 Apr 2017	17 Mar 2017	12 Apr 2017	20 Mar 2017
BH104M	SE163046.002	LB120601	15 Mar 2017	15 Mar 2017	12 Apr 2017	17 Mar 2017	12 Apr 2017	20 Mar 2017
GWQD1	SE163046.003	LB120601	15 Mar 2017	15 Mar 2017	12 Apr 2017	17 Mar 2017	12 Apr 2017	20 Mar 2017
GWQR1	SE163046.004	LB120601	15 Mar 2017	15 Mar 2017	12 Apr 2017	17 Mar 2017	12 Apr 2017	20 Mar 2017
PAH (Polynuclear Aromati	ic Hydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	16 Mar 2017
BH104M	SE163046.002	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	16 Mar 2017
GWQD1	SE163046.003	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	16 Mar 2017
GWQR1	SE163046.004	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	16 Mar 2017
Trace Metals (Dissolved) i	n Water by ICPMS						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120608	15 Mar 2017	15 Mar 2017	11 Sep 2017	17 Mar 2017	11 Sep 2017	20 Mar 2017
BH104M	SE163046.002	LB120608	15 Mar 2017	15 Mar 2017	11 Sep 2017	17 Mar 2017	11 Sep 2017	20 Mar 2017
GWQD1	SE163046.003	LB120608	15 Mar 2017	15 Mar 2017	11 Sep 2017	17 Mar 2017	11 Sep 2017	20 Mar 2017
GWQR1	SE163046.004	LB120608	15 Mar 2017	15 Mar 2017	11 Sep 2017	17 Mar 2017	11 Sep 2017	20 Mar 2017
FRH (Total Recoverable H	lydrocarbons) in Water						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
BH104M	SE163046.002	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
GWQD1	SE163046.003	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
GWQR1	SE163046.004	LB120488	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
VOCs in Water							Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
BH104M	SE163046.002	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
GWQD1	SE163046.003	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
GWQR1	SE163046.004	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
GWQTB1	SE163046.005	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
GWQTS1	SE163046.006	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
Volatile Petroleum Hydroc	arbons in Water						Method:	ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101M	SE163046.001	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
BH104M	SE163046.002	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
GWQD1	SE163046.003	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
GWQR1	SE163046.004	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	17 Mar 2017
GWQTB1	SE163046.005	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017
GWQTS1	SE163046.006	LB120493	15 Mar 2017	15 Mar 2017	22 Mar 2017	16 Mar 2017	25 Apr 2017	20 Mar 2017

Method: ME-(AU)-[ENV]AN420

Method: ME-(AU)-[ENV]AN433

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Water

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
2-fluorobiphenyl (Surrogate)	BH101M	SE163046.001	%	40 - 130%	84
	BH104M	SE163046.002	%	40 - 130%	82
d14-p-terphenyl (Surrogate)	BH101M	SE163046.001	%	40 - 130%	100
	BH104M	SE163046.002	%	40 - 130%	106
d5-nitrobenzene (Surrogate)	BH101M	SE163046.001	%	40 - 130%	90
	BH104M	SE163046.002	%	40 - 130%	86
VOCs in Water				Method: M	

/OCs in Water				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101M	SE163046.001	%	40 - 130%	107
	BH104M	SE163046.002	%	40 - 130%	113
	GWQD1	SE163046.003	%	40 - 130%	100
	GWQR1	SE163046.004	%	40 - 130%	105
	GWQTB1	SE163046.005	%	40 - 130%	105
	GWQTS1	SE163046.006	%	40 - 130%	105
d4-1,2-dichloroethane (Surrogate)	BH101M	SE163046.001	%	40 - 130%	105
	BH104M	SE163046.002	%	40 - 130%	123
	GWQD1	SE163046.003	%	40 - 130%	110
	GWQR1	SE163046.004	%	40 - 130%	112
	GWQTB1	SE163046.005	%	40 - 130%	118
	GWQTS1	SE163046.006	%	40 - 130%	118
d8-toluene (Surrogate)	BH101M	SE163046.001	%	40 - 130%	100
	BH104M	SE163046.002	%	40 - 130%	93
	GWQD1	SE163046.003	%	40 - 130%	106
	GWQR1	SE163046.004	%	40 - 130%	106
	GWQTB1	SE163046.005	%	40 - 130%	111
	GWQTS1	SE163046.006	%	40 - 130%	114
Dibromofluoromethane (Surrogate)	BH101M	SE163046.001	%	40 - 130%	118
	BH104M	SE163046.002	%	40 - 130%	127
	GWQD1	SE163046.003	%	40 - 130%	108
	GWQR1	SE163046.004	%	40 - 130%	105
	GWQTB1	SE163046.005	%	40 - 130%	111
	GWQTS1	SE163046.006	%	40 - 130%	104

Volatile Petroleum Hydrocarbons in Water

•					
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101M	SE163046.001	%	40 - 130%	100
	BH104M	SE163046.002	%	40 - 130%	121
	GWQD1	SE163046.003	%	40 - 130%	100
	GWQR1	SE163046.004	%	40 - 130%	105
d4-1,2-dichloroethane (Surrogate)	BH101M	SE163046.001	%	60 - 130%	114
	BH104M	SE163046.002	%	60 - 130%	121
	GWQD1	SE163046.003	%	60 - 130%	110
	GWQR1	SE163046.004	%	60 - 130%	112
d8-toluene (Surrogate)	BH101M	SE163046.001	%	40 - 130%	107
	BH104M	SE163046.002	%	40 - 130%	93
	GWQD1	SE163046.003	%	40 - 130%	106
	GWQR1	SE163046.004	%	40 - 130%	106
Dibromofluoromethane (Surrogate)	BH101M	SE163046.001	%	40 - 130%	108
	BH104M	SE163046.002	%	40 - 130%	118
	GWQD1	SE163046.003	%	40 - 130%	108
	GWQR1	SE163046.004	%	40 - 130%	105

Method: ME-(AU)-[ENV]AN318

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water			Method: ME-(AU	J)-[ENV]AN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB120601.001	Mercury	mg/L	0.0001	<0.0001

PAH (Polynuclear Aromatic Hydrocarbons) in Water

PAH (Polynuclear Aromatic Hydrocarbo	ns) in Water		Meth	od: ME-(AU)-[ENV]
Sample Number	Parameter	Units	LOR	Result
LB120488.001	Naphthalene	µg/L	0.1	<0.1
	2-methylnaphthalene	µg/L	0.1	<0.1
	1-methylnaphthalene	μg/L	Its LOR /L 0.1 /L 0.1	<0.1
	Acenaphthylene	μg/L	0.1	<0.1
	Acenaphthene	µg/L	0.1	<0.1
	Fluorene	μg/L	0.1	<0.1
	Phenanthrene	µg/L	0.1	<0.1
	Anthracene	µg/L	0.1	<0.1
	Fluoranthene	μg/L	0.1	<0.1
	Pyrene	μg/L	0.1	<0.1
	Benzo(a)anthracene	μg/L	0.1	<0.1
	Chrysene	μg/L	0.1	<0.1
	Benzo(a)pyrene	μg/L	0.1	<0.1
	Indeno(1,2,3-cd)pyrene	μg/L	0.1	<0.1
	Dibenzo(ah)anthracene	µg/L	0.1	<0.1
	Benzo(ghi)perylene	µg/L	0.1	<0.1
Surrogates	d5-nitrobenzene (Surrogate)	%	-	104
	2-fluorobiphenyl (Surrogate)	%	-	122
120488.001 Surrogates	d14-p-terphenyl (Surrogate)	%	-	112

Trace Metals (Dissolved) in Water by ICPMS

· · · · · · · · · · · · · · · · · · ·				
Sample Number	Parameter	Units	LOR	Result
LB120608.001	Arsenic, As	μg/L	1	<1
	Cadmium, Cd	μg/L	0.1	<0.1
	Chromium, Cr	μg/L	1	<1
	Copper, Cu	μg/L	1	<1
	Lead, Pb	μg/L	1	<1
	Nickel, Ni	µg/L	1	<1
	Zinc, Zn	µg/L	5	<5

TRH (Total Recoverable Hydrocarbons) in Water

TRH (Total Recoverable Hydrocarbons) in Water							
Sample Number	Parameter	Units	LOR	Result			
LB120488.001	TRH C10-C14	µg/L	50	<50			
	TRH C15-C28	µg/L	200	<200			
	TRH C29-C36	µg/L	200	<200			
	TRH C37-C40	µg/L	200	<200			

VOCs in Water				Meth	Method: ME-(AU)-[ENV]A	
Sample Number		Parameter	Units	LOR	Result	
LB120493.001	Fumigants	2,2-dichloropropane	μg/L	0.5	<0.5	
		1,2-dichloropropane	μg/L	0.5	<0.5	
		cis-1,3-dichloropropene	μg/L	0.5	<0.5	
		trans-1,3-dichloropropene	μg/L	0.5	<0.5	
		1,2-dibromoethane (EDB)	μg/L	0.5	<0.5	
	Halogenated Aliphatics	Dichlorodifluoromethane (CFC-12)	μg/L	5	<5	
	Chloromethane	μg/L	5	<5		
		Vinyl chloride (Chloroethene)	μg/L	0.3	<0.3	
		Bromomethane	μg/L	10	<10	
		Chloroethane	μg/L	5	<5	
		Trichlorofluoromethane	μg/L	1	<1	
		lodomethane	μg/L	5	<5	
		1,1-dichloroethene	µg/L	0.5	<0.5	
		Dichloromethane (Methylene chloride)	μg/L	5	<5	
		Allyl chloride	μg/L	2	<2	
		trans-1,2-dichloroethene	μg/L	0.5	<0.5	
		1,1-dichloroethane	μg/L	0.5	<0.5	
		cis-1,2-dichloroethene	µg/L	0.5	<0.5	

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

ple Number 0493.001	Halogenated Aliphatics	Parameter Bromochloromethane 1,2-dichloroethane 1,1,1-trichloroethane	Units μg/L μg/L	0.5	Result <0.5 <0.5
		1,2-dichloroethane			
			P9/2		
		1, 1, 1-themoreurane	μg/L	0.5	<0.5
		1,1-dichloropropene		0.5	<0.5
			μg/L		
		Carbon tetrachloride	μg/L	0.5	<0.5
		Dibromomethane	µg/L	0.5	<0.5
		Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	<0.5
		1,1,2-trichloroethane	μg/L	0.5	<0.5
		1,3-dichloropropane	μg/L	0.5	<0.5
		Tetrachloroethene (Perchloroethylene,PCE)	μg/L	0.5	<0.5
		1,1,1,2-tetrachloroethane	μg/L	0.5	<0.5
		cis-1,4-dichloro-2-butene	µg/L	1	<1
		1,1,2,2-tetrachloroethane	μg/L	0.5	<0.5
		1,2,3-trichloropropane	µg/L	0.5	<0.5
		trans-1,4-dichloro-2-butene	μg/L	1	<1
		1,2-dibromo-3-chloropropane	μg/L	0.5	<0.5
	Lieleneneted Arrows Par-	Hexachlorobutadiene	μg/L	0.5	<0.5
	Halogenated Aromatics	Chlorobenzene	μg/L	0.5	<0.5
		Bromobenzene	μg/L	0.5	<0.5
		2-chlorotoluene	μg/L	0.5	<0.5
		4-chlorotoluene	µg/L	0.5	<0.5
		1,3-dichlorobenzene	μg/L	0.5	<0.5
		1,4-dichlorobenzene	μg/L	0.3	<0.3
		1,2-dichlorobenzene	µg/L	0.5	<0.5
		1,2,4-trichlorobenzene	µg/L	0.5	<0.5
		1,2,3-trichlorobenzene	μg/L	0.5	<0.5
	Monocyclic Aromatic	Benzene	μg/L	0.5	<0.5
	Hydrocarbons	Toluene	μg/L	0.5	<0.5
	riyulocarbons			0.5	<0.5
		Ethylbenzene	μg/L		
		m/p-xylene	μg/L	1	<1
		o-xylene	μg/L	0.5	<0.5
		Styrene (Vinyl benzene)	µg/L	0.5	<0.5
		Isopropylbenzene (Cumene)	μg/L	0.5	<0.5
		n-propylbenzene	μg/L	0.5	<0.5
		1,3,5-trimethylbenzene	μg/L	0.5	<0.5
		tert-butylbenzene	μg/L	0.5	<0.5
		1,2,4-trimethylbenzene	µg/L	0.5	<0.5
		sec-butylbenzene	μg/L	0.5	<0.5
		p-isopropyltoluene	μg/L	0.5	<0.5
		n-butylbenzene	μg/L	0.5	<0.5
	Nitrogopous Compounds	Acrylonitrile			<0.5
	Nitrogenous Compounds		μg/L	0.5	
	Oxygenated Compounds	Acetone (2-propanone)	μg/L	10	<10
		MtBE (Methyl-tert-butyl ether)	µg/L	2	<2
		Vinyl acetate	μg/L	10	<10
		MEK (2-butanone)	μg/L	10	<10
		MIBK (4-methyl-2-pentanone)	μg/L	5	<5
		2-hexanone (MBK)	μg/L	5	<5
	Polycyclic VOCs	Naphthalene	μg/L	0.5	<0.5
	Sulphonated	Carbon disulfide	μg/L	2	<2
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	91
		d4-1,2-dichloroethane (Surrogate)	%	-	96
		d8-toluene (Surrogate)	%	-	103
		Bromofluorobenzene (Surrogate)	%	-	105
	Trihalomethanes	Chloroform (THM)	μg/L	0.5	<0.5
		Bromodichloromethane (THM)	µg/L_	0.5	<0.5
		Dibromochloromethane (THM)	μg/L	0.5	<0.5
		Bromoform (THM)	μg/L	0.5	<0.5
Patrolaum Hude	carbons in Water			Moth	od: ME-(AU)-[EN

SE163046 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Water (continued)

Method: ME-(AU)-[ENV]AN433

Sample Number		Parameter	Units	LOR	Result
LB120493.001		TRH C6-C9	μg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	87
		d4-1,2-dichloroethane (Surrogate)	%	-	103
		d8-toluene (Surrogate)	%	-	99
		Bromofluorobenzene (Surrogate)	%	-	107

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved)	in Water			Metho	d: ME-(AU)-[I	envjan311(p	erth)/AN312	
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163029.087	LB120601.014	Mercury	µg/L	0.0001	-0.0196	-0.018	200	0
SE163046.004	LB120601.019	Mercury	µg/L	0.0001	<0.0001	<0.0001	200	0

AH (Polynuclear Aromatic Hydrocarbons) in Wat

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163046.001	LB120488.012		Naphthalene	µg/L	0.1	<0.1	0.01	200	0
			2-methylnaphthalene	µg/L	0.1	<0.1	0	200	0
			1-methylnaphthalene	µg/L	0.1	<0.1	0	200	0
			Acenaphthylene	µg/L	0.1	<0.1	0	200	0
			Acenaphthene	µg/L	0.1	<0.1	0	200	0
			Fluorene	µg/L	0.1	<0.1	0	200	0
			Phenanthrene	µg/L	0.1	<0.1	0.01	200	0
			Anthracene	µg/L	0.1	<0.1	0.01	200	0
			Fluoranthene	µg/L	0.1	<0.1	0	200	0
			Pyrene	µg/L	0.1	<0.1	0	200	0
			Benzo(a)anthracene	µg/L	0.1	<0.1	0.01	200	0
			Chrysene	μg/L	0.1	<0.1	0.01	200	0
			Benzo(b&j)fluoranthene	µg/L	0.1	<0.1	0	200	0
			Benzo(k)fluoranthene	µg/L	0.1	<0.1	0	200	0
			Benzo(a)pyrene	µg/L	0.1	<0.1	0	200	0
			Indeno(1,2,3-cd)pyrene	µg/L	0.1	<0.1	0	200	0
			Dibenzo(ah)anthracene	µg/L	0.1	<0.1	0	200	0
			Benzo(ghi)perylene	µg/L	0.1	<0.1	0	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.5	0.39	30	14
			2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.36	30	15
			d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.47	30	6
race Metals (Dis	solved) in Water by IC	PMS					Meth	nod: ME-(AU)-	[ENV]AN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163053.003	LB120608.014		Arsenic, As	µg/L	1	-0.006	-0.01	200	0
			Cadmium, Cd	µg/L	0.1	0.004	0	200	0
			Chromium, Cr	µg/L	1	0.174	0.181	200	0
			Copper, Cu	µg/L	1	0.657	0.62	172	0
			Lead, Pb	µg/L	1	0.026	0.016	200	0
			Zinc, Zn	μg/L	5	1.502	1.284	200	0
SE163093.005	LB120608.024		Zinc, Zn	µg/L	5	101.647	102.197	20	1
RH (Total Recov	erable Hydrocarbons)	in Water					Meth	nod: ME-(AU)-	[ENV]AN
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD S
SE163046.001	LB120488.012		TRH C10-C14	μg/L	50	<50	0	200	0
			TRH C15-C28	µg/L	200	<200	0	200	0
			TRH C29-C36	µg/L	200	<200	0	200	0
			TRH C37-C40	µg/L	200	<200	0	200	0
			TRH C10-C36	µg/L	450	<450	0	200	0
			TBU 0/0 0/0						

VOCs in Water

VOCs in Water							Meth	od: ME-(AU)-	[ENV]AN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162968.002	LB120493.020	Monocyclic	Benzene	μg/L	0.5	<0.5	0	200	0
		Aromatic	Toluene	µg/L	0.5	1.5	1.54	62	0
			Ethylbenzene	µg/L	0.5	<0.5	0	200	0
			m/p-xylene	µg/L	1	<1	0	200	0
			o-xylene	µg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.0	4.98	30	0
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.5	4.82	30	13
			d8-toluene (Surrogate)	µg/L	-	4.9	4.93	30	1
			Bromofluorobenzene (Surrogate)	µg/L	-	4.8	5.53	30	14

650

60

500

500

µg/L

µg/L

µg/L

µg/L

<650

<60

<500

<500

0

0

0

0

200

200

200

200

0

0

0

0

TRH C10-C40

TRH >C10-C16 (F2)

TRH >C16-C34 (F3)

TRH >C34-C40 (F4)

TRH F Bands

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE163046.004	LB120493.021	Monocyclic	Benzene	µg/L	0.5	<0.5	0	200	0
		Aromatic	Toluene	μg/L	0.5	1.8	1.6	60	10
			Ethylbenzene	μg/L	0.5	<0.5	0	200	0
			m/p-xylene	µg/L	1	<1	0	200	0
			o-xylene	μg/L	0.5	<0.5	0	200	0
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	5.3	5	30	5
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	5.6	4.85	30	14
			d8-toluene (Surrogate)	μg/L	-	5.3	4.91	30	8
			Bromofluorobenzene (Surrogate)	µg/L	-	5.3	5.65	30	7
olatile Petroleum	n Hydrocarbons in Wa	ater					Meth	od: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
CE460068.000									
SE162968.002	LB120493.020		TRH C6-C10	µg/L	50	<50	0	200	0
SE 102908.002	LB120493.020		TRH C6-C10 TRH C6-C9	μg/Lμg/L	50 40	<50 <40	0	200 200	0
SE 102908.002	LB120493.020	Surrogates							
5E 102908.002	LB120493.020	Surrogates	TRH C6-C9	μg/L	40	<40	0	200	0
5E 102908.002	LB120493.020	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L	40	<40 5.0	0 4.98	200 30	0
SE 102908.002	LB120493.020	Surrogates	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L	40 - -	<40 5.0 5.5	0 4.98 4.82	200 30 30	0
SE 102908.002	LB120493.020	Surrogates VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L	40 - - -	<40 5.0 5.5 4.9	0 4.98 4.82 4.93	200 30 30 30	0 0 13 1
SE 102908.002	LB120493.020		TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	40 - - - -	<40 5.0 5.5 4.9 4.8	0 4.98 4.82 4.93 5.53	200 30 30 30 30 30	0 0 13 1 1 14
	LB120493.020		TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0)	μg/L μg/L μg/L μg/L μg/L μg/L	40 - - - - 0.5	<40 5.0 5.5 4.9 4.8 <0.5	0 4.98 4.82 4.93 5.53 0	200 30 30 30 30 30 200	0 0 13 1 14 0
			TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - - - 0.5 50	<40 5.0 5.5 4.9 4.8 <0.5 <50	0 4.98 4.82 4.93 5.53 0 0	200 30 30 30 30 200 200	0 0 13 1 14 0 0
			TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - - 0.5 50 50	<40 5.0 5.5 4.9 4.8 <0.5 <50 <50	0 4.98 4.82 4.93 5.53 0 0 0	200 30 30 30 200 200 200 200	0 0 13 1 14 0 0 0
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - - 0.5 50 50 40	 <40 5.0 5.5 4.9 4.8 <0.5 <50 <50 <50 <40 	0 4.98 4.82 4.93 5.53 0 0 0 0 0	200 30 30 30 200 200 200 200 200	0 0 13 1 14 0 0 0 0 0
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - 0.5 50 50 40 -	 <40 5.0 5.5 4.9 4.8 <0.5 <50 <50 <40 5.3 	0 4.98 4.82 4.93 5.53 0 0 0 0 0 5	200 30 30 30 200 200 200 200 30	0 0 13 1 14 0 0 0 0 0 5
		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - 0.5 50 50 40 - -	<40 5.0 5.5 4.9 4.8 <0.5 <50 <50 <40 5.3 5.6	0 4.98 4.82 4.93 5.53 0 0 0 0 0 5 4.85	200 30 30 200 200 200 200 30 30	0 0 13 1 14 0 0 0 0 0 5 5
SE162968.002		VPH F Bands	TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) Benzene (F0) TRH C6-C10 minus BTEX (F1) TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	40 - - 0.5 50 50 40 - - -	<40 5.0 5.5 4.9 4.8 <0.5 <50 <50 <50 <40 5.3 5.6 5.3	0 4.98 4.82 4.93 5.53 0 0 0 0 0 5 4.85 4.91	200 30 30 200 200 200 200 200 30 30 30	0 0 13 1 14 0 0 0 0 0 5 5 14 8

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear A	-Tomauc Hyurocar				_		Nethod: ME-(Al	
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B120488.002		Naphthalene	µg/L	0.1	25	40	60 - 140	62
		Acenaphthylene	μg/L	0.1	29	40	60 - 140	73
		Acenaphthene	μg/L	0.1	27	40	60 - 140	69
		Phenanthrene	µg/L	0.1	29	40	60 - 140	74
		Anthracene	µg/L	0.1	30	40	60 - 140	75
		Fluoranthene	μg/L	0.1	33	40	60 - 140	82
		Pyrene	µg/L	0.1	34	40	60 - 140	85
		Benzo(a)pyrene	µg/L	0.1	31	40	60 - 140	76
	Surrogates	d5-nitrobenzene (Surrogate)	µg/L	-	0.5	0.5	40 - 130	92
		2-fluorobiphenyl (Surrogate)	µg/L	-	0.4	0.5	40 - 130	84
		d14-p-terphenyl (Surrogate)	µg/L	-	0.5	0.5	40 - 130	98
race Metals (Disso	olved) in Water by	ICPMS					Method: ME-(Al	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recoverv
B120608.002		Arsenic, As	μg/L	1	21	20	80 - 120	103
		Cadmium, Cd	μg/L	0.1	22	20	80 - 120	110
		Chromium, Cr	μg/L	1	22	20	80 - 120	110
		Copper, Cu	μg/L	1	22	20	80 - 120	112
		Lead, Pb	μg/L	1	22	20	80 - 120	112
		Nickel, Ni	μg/L	1	23	20	80 - 120	113
		Zinc, Zn	μg/L	5	22	20	80 - 120	109
			μg/L	5	22			
RH (Total Recove	rable Hydrocarbo	ns) in Water					Nethod: ME-(A	J)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B120488.002		TRH C10-C14	μg/L	50	900	1200	60 - 140	75
		TRH C15-C28	μg/L	200	1300	1200	60 - 140	107
		TRH C29-C36	μg/L	200	1600	1200	60 - 140	132
	TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	1200	60 - 140	88
		TRH >C16-C34 (F3)	µg/L	500	1500	1200	60 - 140	126
		TRH >C34-C40 (F4)	μg/L	500	770	600	60 - 140	129
OCs in Water						,	Nethod: ME-(A	U)-IENVIAN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB120493.002	Halogenated	1,1-dichloroethene	μg/L	0.5	50	45.45	60 - 140	109
10120100.002	Aliphatics	1,2-dichloroethane	μg/L	0.5	50	45.45	60 - 140	110
	/ liphates	Trichloroethene (Trichloroethylene,TCE)	μg/L	0.5	50	45.45	60 - 140	110
	Halogenated	Chlorobenzene		0.5	50	45.45	60 - 140	109
		Benzene	μg/L	0.5	50	45.45	60 - 140	109
	Monocyclic Aromatic		μg/L	0.5	50			109
	Aromatic	Toluene	μg/L			45.45	60 - 140	
		Ethylbenzene	μg/L	0.5	50	45.45	60 - 140	109
		m/p-xylene	μg/L	1	100	90.9	60 - 140	109
	0	o-xylene	μg/L	0.5	50	45.45	60 - 140	109
	Surrogates	Dibromofluoromethane (Surrogate)	μg/L		4.7	5	60 - 140	93
		d4-1,2-dichloroethane (Surrogate)	μg/L		5.0	5	60 - 140	99
		d8-toluene (Surrogate)	μg/L	-	4.8	5	60 - 140	96
		Bromofluorobenzene (Surrogate)	μg/L		4.3	5	60 - 140	86
	Trihalomethan	Chloroform (THM)	μg/L	0.5	50	45.45	60 - 140	109
olatile Petroleum I	Hydrocarbons in V	Vater				I	Method: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
		TRH C6-C10	µg/L	50	940	946.63	60 - 140	99
B120493.002		TRH C6-C9	μg/L	40	760	818.71	60 - 140	93
_B120493.002				-	5.5	5	60 - 140	110
LB120493.002	Surrogates	Dibromofluoromethane (Surrogate)	00/1					
.B120493.002	Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-				
_B120493.002	Surrogates	d4-1,2-dichloroethane (Surrogate)	µg/L		5.7	5	60 - 140	113
_B120493.002	Surrogates			-				

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolve	od) in Water				Me	thod: ME-(AU)-	[ENV]AN311	I (Perth)/AN312
QC Sample							Spike	Recovery%
SE162968.001	LB120601.004	Mercury	mg/L	0.0001	0.0086	<0.0001	0.008	107

Trace Metals (Dissolved) in Water by ICPMS

· · · · ·	ssolved) in Water by							nod: ME-(AU	
QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recover
SE163046.001	LB120608.004		Arsenic, As	µg/L	1	28	6	20	110
			Cadmium, Cd	µg/L	0.1	23	<0.1	20	112
			Chromium, Cr	µg/L	1	22	<1	20	108
			Copper, Cu	µg/L	1	21	<1	20	103
			Lead, Pb	µg/L	1	22	<1	20	108
			Nickel, Ni	µg/L	1	28	7	20	105
			Zinc, Zn	µg/L	5	67	46	20	107
OCs in Water							Mett	nod: ME-(AU)-[ENV]AN
QC Sample	Sample Number	1	Parameter	Units	LOR	Result	Original	Spike	Recove
SE162968.001	LB120493.022	Monocyclic	Benzene	µg/L	0.5	45	<0.5	45.45	98
		Aromatic	Toluene	µg/L	0.5	45	<0.5	45.45	100
			Ethylbenzene	µg/L	0.5	47	<0.5	45.45	104
			m/p-xylene	µg/L	1	94	<1	90.9	103
			o-xylene	µg/L	0.5	48	<0.5	45.45	106
		Polycyclic	Naphthalene	µg/L	0.5	<0.5	<0.5	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.6	4.7	-	113
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.6	5.1	-	113
			d8-toluene (Surrogate)	µg/L	-	5.6	4.3	-	112
			Bromofluorobenzene (Surrogate)	µg/L	-	5.6	5.6	-	111
olatile Petroleu	m Hydrocarbons in V	Vater					Meth	nod: ME-(AU	I)-[ENV]AN
QC Sample	Sample Number	r	Parameter	Units	LOR	Result	Original	Spike	Recove
SE162968.001	LB120493.022		TRH C6-C10	μg/L	50	870	<50	946.63	92

SE162968.001	LB120493.022		TRH C6-C10	µg/L	50	870	<50	946.63	92
			TRH C6-C9	μg/L	40	740	<40	818.71	90
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	5.6	4.7	-	113
			d4-1,2-dichloroethane (Surrogate)	µg/L	-	5.6	5.1	-	113
			d8-toluene (Surrogate)	µg/L	-	5.6	4.3	-	112
			Bromofluorobenzene (Surrogate)	µg/L	-	5.6	5.6	-	111
		VPH F	Benzene (F0)	µg/L	0.5	45	<0.5	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	µg/L	50	590	<50	639.67	92

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Carmen Yi	Manager	Huong Crawford
Client	EI AUSTRALIA	Laboratory	SGS Alexandria Environmental
Address	SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	carmen.yi@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23309 - 77-123 Eveleigh St, Redfern	SGS Reference	SE162924 R0
Order Number	E23309	Date Received	10 Mar 2017
Samples	18	Date Reported	17 Mar 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

DuplicateTotal Recoverable Metals in Soil/Waste Solids/Materials by ICPOES1 itemMatrix SpikeTotal Recoverable Metals in Soil/Waste Solids/Materials by ICPOES2 items

Samples clearly labelled	Yes	Complete documentation received	Yes
Sample container provider	SGS	Sample cooling method	Ice Bricks
Samples received in correct containers	Yes	Sample counts by matrix	16 Soil, 2 Water
Date documentation received	10/3/2017	Type of documentation received	COC
Samples received in good order	Yes	Samples received without headspace	Yes
Sample temperature upon receipt	11.3°C	Sufficient sample for analysis	Yes
Turnaround time requested	Standard		

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St Alexandr PO Box 6432 Bourke Rd BC Alexandr Australia

Australia

t +61 2 8594 0400 f +61 2 8594 0499

8594 0400 www.sgs.com.au 8594 0499

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Fibre Identification in soil Method: ME-(AU)-[ENV]AN602 Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due BH101 0.6-0.7 SE162924.001 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 BH102_0.5-0.6 SE162924.003 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 BH103 0.2-0.3 SE162924.004 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 BH104_0.6-0.7 SE162924.006 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 BH105 0.1-0.2 SE162924.008 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 17 Mar 2017 BH106_0.2-0.3 SE162924.010 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 BH107 0.7-0.8 SE162924.012 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 BH108 0.4-0.5 SE162924.013 LB120533 09 Mar 2017 10 Mar 2017 09 Mar 2018 16 Mar 2017 09 Mar 2018 17 Mar 2017 Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed 09 Mar 2017 QR1 SE162924.017 LB120504 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 16 Mar 2017 QR1B SE162924.018 LB120504 09 Mar 2017 10 Mar 2017 16 Mar 2017 06 Apr 2017 06 Apr 2017 16 Mar 2017 Mercury in Soi Method: ME-(AU)-[ENV]AN312 Sampled Sample Name QC Ref Extraction Due Analysis Due Analysed Sample No. Received Extracted BH101_0.6-0.7 SE162924.001 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH101_1.5-1.6 SE162924.002 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH102 0.5-0.6 LB120491 09 Mar 2017 10 Mar 2017 SE162924.003 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 09 Mar 2017 10 Mar 2017 16 Mar 2017 17 Mar 2017 BH103_0.2-0.3 SE162924.004 LB120491 06 Apr 2017 06 Apr 2017 06 Apr 2017 BH103_1.9-2.0 SE162924.005 LB120491 09 Mar 2017 10 Mar 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH104 0.6-0.7 SE162924.006 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH104 1.9-2.0 SE162924.007 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH105_0.1-0.2 SE162924.008 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 06 Apr 2017 BH105 2.7-2.8 SE162924.009 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 17 Mar 2017 BH106_0.2-0.3 SE162924.010 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH106 1.5-1.6 SE162924.011 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH107 0.7-0.8 SE162924.012 LB120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 BH108_0.4-0.5 10 Mar 2017 SE162924.013 LB120491 09 Mar 2017 06 Apr 2017 16 Mar 2017 17 Mar 2017 06 Apr 2017 OD1 SE162924 014 I B120491 09 Mar 2017 10 Mar 2017 06 Apr 2017 16 Mar 2017 06 Apr 2017 17 Mar 2017 Method: ME-(AU)-[ENV]AN002 **Moisture Content** Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH101 0.6-0.7 SE162924.001 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 10 Mar 2017 BH101_1.5-1.6 SE162924.002 LB120406 09 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 23 Mar 2017 SE162924.003 09 Mar 2017 10 Mar 2017 15 Mar 2017 16 Mar 2017 BH102_0.5-0.6 LB120406 20 Mar 2017 BH103_0.2-0.3 SE162924.004 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH103_1.9-2.0 SE162924.005 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH104_0.6-0.7 SE162924.006 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 SE162924.007 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH104_1.9-2.0 LB120406 SE162924.008 LB120406 09 Mar 2017 10 Mar 2017 BH105 0.1-0.2 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH105 2.7-2.8 SE162924.009 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH106 0.2-0.3 SE162924.010 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH106_1.5-1.6 SE162924.011 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 20 Mar 2017 15 Mar 2017 16 Mar 2017 BH107 0.7-0.8 SE162924.012 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 BH108_0.4-0.5 SE162924.013 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 QD1 SE162924.014 LB120406 09 Mar 2017 10 Mar 2017 23 Mar 2017 15 Mar 2017 20 Mar 2017 16 Mar 2017 15 Mar 2017 SE162924.016 LB120406 09 Mar 2017 10 Mar 2017 20 Mar 2017 TB1 23 Mar 2017 16 Mar 2017 **OC Pesticides in Soli** Method: ME-(AU)-IENVIAN420 Sample Name QC Ref Analysis Due Analysed Sample No. Sampled Received Extraction Due Extracted 09 Mar 2017 23 Mar 2017 BH101 0.6-0.7 SE162924.001 10 Mar 2017 LB120317 14 Mar 2017 23 Apr 2017 17 Mar 2017 BH101 1.5-1.6 SE162924.002 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 BH102 0.5-0.6 SE162924.003 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 10 Mar 2017 BH103_0.2-0.3 SE162924.004 LB120317 09 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 17 Mar 2017 BH103_1.9-2.0 SE162924.005 23 Apr 2017 BH104 0.6-0.7 SE162924.006 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 BH104_1.9-2.0 SE162924.007 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 BH105 0.1-0.2 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 17 Mar 2017 SE162924.008 LB120317 23 Apr 2017 09 Mar 2017 23 Mar 2017 17 Mar 2017 SE162924.009 10 Mar 2017 14 Mar 2017 BH105_2.7-2.8 LB120317 23 Apr 2017 BH106 0.2-0.3 SE162924.010 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017 BH106 1.5-1.6 SE162924.011 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 17 Mar 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

OC Pesticides in Soil (contir	nued)						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH107_0.7-0.8	SE162924.012	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH108_0.4-0.5	SE162924.013	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
QD1	SE162924.014	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.6-0.7	SE162924.001	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH101_1.5-1.6	SE162924.002	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH102_0.5-0.6	SE162924.003	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH103_0.2-0.3	SE162924.004	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH103_1.9-2.0	SE162924.005	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH104_0.6-0.7	SE162924.006	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH104_1.9-2.0	SE162924.007	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_0.1-0.2	SE162924.008	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_2.7-2.8	SE162924.009	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_0.2-0.3	SE162924.010	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_1.5-1.6	SE162924.011	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH107_0.7-0.8	SE162924.012	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH108_0.4-0.5	SE162924.013	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
QD1	SE162924.014	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
PAH (Polynuclear Aromatic	Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.6-0.7	SE162924.001	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH101_1.5-1.6	SE162924.002	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH102_0.5-0.6	SE162924.003	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH103_0.2-0.3	SE162924.004	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH103_1.9-2.0	SE162924.005	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH104_0.6-0.7	SE162924.006	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	16 Mar 2017
BH104_1.9-2.0	SE162924.007	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_0.1-0.2	SE162924.008	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_2.7-2.8	SE162924.009	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_0.2-0.3	SE162924.010	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_1.5-1.6	SE162924.011	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH107_0.7-0.8	SE162924.012	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH108_0.4-0.5	SE162924.013	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
QD1	SE162924.014	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
PCBs in Soil							Method:	ME-(AU)-[ENV]AN420
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.6-0.7	SE162924.001	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH101_1.5-1.6	SE162924.002	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH102_0.5-0.6	SE162924.003	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH103_0.2-0.3	SE162924.004	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH103_1.9-2.0	SE162924.005	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH104_0.6-0.7	SE162924.006	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH104_1.9-2.0	SE162924.007	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_0.1-0.2	SE162924.008	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH105_2.7-2.8	SE162924.009	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_0.2-0.3	SE162924.010	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH106_1.5-1.6	SE162924.011	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH107_0.7-0.8	SE162924.012	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
BH108_0.4-0.5	SE162924.013	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
QD1	SE162924.014	LB120317	09 Mar 2017	10 Mar 2017	23 Mar 2017	14 Mar 2017	23 Apr 2017	17 Mar 2017
	Soil/Waste Solids/Materi	als by ICPOES					Method: ME-(AU)-[ENV]AN040/AN320
Total Recoverable Metals in	r con mach condomican				Extraction Due	Extracted	Analysis Due	Analysed
		QC Ref	Sampled	Received			Analysis Due	Allalvseu
Sample Name	Sample No.	QC Ref LB120475	Sampled 09 Mar 2017	Received 10 Mar 2017				
Sample Name BH101_0.6-0.7	Sample No. SE162924.001	LB120475	09 Mar 2017	Received 10 Mar 2017 10 Mar 2017	05 Sep 2017	15 Mar 2017	05 Sep 2017	17 Mar 2017
BH101_0.6-0.7 BH101_1.5-1.6	Sample No. SE162924.001 SE162924.002		09 Mar 2017 09 Mar 2017	10 Mar 2017 10 Mar 2017	05 Sep 2017 05 Sep 2017	15 Mar 2017 15 Mar 2017		
Sample Name BH101_0.6-0.7	Sample No. SE162924.001	LB120475 LB120475	09 Mar 2017	10 Mar 2017	05 Sep 2017	15 Mar 2017	05 Sep 2017 05 Sep 2017	17 Mar 2017 17 Mar 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES (continued) Method: ME-(AU)-[ENV]AN040/AN320 Sample No. QC Ref Analysis Due Analysed Sample Name Sampled Received Extraction Due Extracted BH104 0.6-0.7 SE162924 006 I B120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 BH104_1.9-2.0 SE162924.007 LB120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 BH105 0.1-0.2 SE162924.008 LB120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 BH105_2.7-2.8 SE162924.009 LB120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 BH106 0.2-0.3 LB120475 10 Mar 2017 SE162924.010 09 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 BH106_1.5-1.6 SE162924.011 LB120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 SE162924.012 BH107 0.7-0.8 LB120475 09 Mar 2017 10 Mar 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 05 Sep 2017 BH108 0.4-0.5 SE162924.013 LB120475 09 Mar 2017 10 Mar 2017 05 Sep 2017 15 Mar 2017 05 Sep 2017 17 Mar 2017 09 Mar 2017 10 Mar 2017 15 Mar 2017 17 Mar 2017 QD1 SE162924.014 LB120475 05 Sep 2017 05 Sep 2017 Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Name Extraction Due Analysis Due Analysed Sample No. QC Ref Sampled Received Extracted QR1 SE162924.017 LB120297 09 Mar 2017 10 Mar 2017 05 Sep 2017 13 Mar 2017 05 Sep 2017 14 Mar 2017 QR1B SE162924.018 LB120297 09 Mar 2017 10 Mar 2017 05 Sep 2017 13 Mar 2017 05 Sep 2017 14 Mar 2017 Method: ME-(AU)-[ENVIAN403 TRH (Total Recoverable Hydrocarbons) in Soil Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH101_0.6-0.7 SE162924.001 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH101 1.5-1.6 09 Mar 2017 10 Mar 2017 SE162924.002 LB120317 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH102_0.5-0.6 SE162924.003 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 SE162924.004 LB120317 10 Mar 2017 BH103_0.2-0.3 09 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH103 1.9-2.0 SE162924.005 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 09 Mar 2017 BH104 0.6-0.7 SE162924.006 LB120317 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 10 Mar 2017 BH104_1.9-2.0 SE162924.007 LB120317 09 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH105 0.1-0.2 SE162924.008 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH105_2.7-2.8 SE162924.009 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 BH106 0.2-0.3 SE162924.010 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 23 Mar 2017 14 Mar 2017 BH106_1.5-1.6 SE162924.011 LB120317 09 Mar 2017 10 Mar 2017 23 Apr 2017 16 Mar 2017 BH107 0.7-0.8 SE162924.012 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 16 Mar 2017 23 Apr 2017 BH108 0.4-0.5 SE162924 013 LB120317 09 Mar 2017 10 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017 SE162924.014 LB120317 10 Mar 2017 QD1 09 Mar 2017 23 Mar 2017 14 Mar 2017 23 Apr 2017 16 Mar 2017

TRH (Total Recoverable H	Method: ME-(AU)-[ENV]AN403							
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE162924.017	LB120279	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017
QR1B	SE162924.018	LB120279	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017

/OC's in Soil							Method: I	ME-(AU)-[ENV]AN43
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH101_0.6-0.7	SE162924.001	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH101_1.5-1.6	SE162924.002	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH102_0.5-0.6	SE162924.003	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH103_0.2-0.3	SE162924.004	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH103_1.9-2.0	SE162924.005	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH104_0.6-0.7	SE162924.006	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH104_1.9-2.0	SE162924.007	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH105_0.1-0.2	SE162924.008	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH105_2.7-2.8	SE162924.009	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH106_0.2-0.3	SE162924.010	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH106_1.5-1.6	SE162924.011	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH107_0.7-0.8	SE162924.012	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
BH108_0.4-0.5	SE162924.013	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
QD1	SE162924.014	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
TS1	SE162924.015	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017
TB1	SE162924.016	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
QR1	SE162924.017	LB120292	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017		
QR1B	SE162924.018	LB120292	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017		
Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENVIAN4										

Volatile Petroleum Hydrocarbons in Soil

```
Sample Name
           Sample No. QC Ref
```


Method: ME (ALD JEND/JANI492

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued)

Volatile Petroleum Hydrocarbons in Soil (continued) Method: Me-(AU)-(ENV)AN433										
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed		
BH101_0.6-0.7	SE162924.001	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH101_1.5-1.6	SE162924.002	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH102_0.5-0.6	SE162924.003	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH103_0.2-0.3	SE162924.004	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH103_1.9-2.0	SE162924.005	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH104_0.6-0.7	SE162924.006	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH104_1.9-2.0	SE162924.007	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH105_0.1-0.2	SE162924.008	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH105_2.7-2.8	SE162924.009	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH106_0.2-0.3	SE162924.010	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH106_1.5-1.6	SE162924.011	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH107_0.7-0.8	SE162924.012	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
BH108_0.4-0.5	SE162924.013	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
QD1	SE162924.014	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
TS1	SE162924.015	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
TB1	SE162924.016	LB120283	09 Mar 2017	10 Mar 2017	23 Mar 2017	13 Mar 2017	22 Apr 2017	15 Mar 2017		
√olatile Petroleum Hydrod	olatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433									

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
QR1	SE162924.017	LB120292	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017
QR1B	SE162924.018	LB120292	09 Mar 2017	10 Mar 2017	16 Mar 2017	13 Mar 2017	22 Apr 2017	14 Mar 2017

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery 9
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	82
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	79
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	79
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	80
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	75
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	78
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	85
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	87
P Pesticides in Soil				Method: ME	-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	82
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	100
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	102
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	82
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	100
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	82
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	96
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	100
d14-p-terphenyl (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	72
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	96
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	92
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	72
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	98
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	70
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	96
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	88
AH (Polynuclear Aromatic Hydrocarbons) in Soll				Method: ME	-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH101_0.6-0.7	SE162924.001	%	70 - 130%	82
	BH101_1.5-1.6	SE162924.002	%	70 - 130%	82
	BH102_0.5-0.6	SE162924.003			100
	D11102_0.0-0.0	SE 102924.003	%	70 - 130%	100
	BH103_0.2-0.3	SE162924.004	%	70 - 130% 70 - 130%	100
	BH103_0.2-0.3	SE162924.004	%	70 - 130%	102
	BH103_0.2-0.3 BH103_1.9-2.0	SE162924.004 SE162924.005	%	70 - 130% 70 - 130%	102 92
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7	SE162924.004 SE162924.005 SE162924.006	% % %	70 - 130% 70 - 130% 70 - 130%	102 92 82
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0	SE162924.004 SE162924.005 SE162924.006 SE162924.007	% % %	70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008	% % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH105_2.7-2.8	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010	% % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116 82
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3 BH106_1.5-1.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116 82 90
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3 BH106_1.5-1.6 BH107_0.7-0.8	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012	% % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 90
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3 BH106_1.5-1.6 BH107_0.7-0.8 BH108_0.4-0.5	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.011 SE162924.012 SE162924.013	% % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100
114-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3 BH106_1.5-1.6 BH108_0.4-0.5 BH101_0.6-0.7 BH101_1.5-1.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001	% % % % % % % %	70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.5-1.6 BH108_0.4-0.5 BH101_0.6-0.7 BH101_0.5-0.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003	% % % % % % % % %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_2.7-2.8 BH106_0.2-0.3 BH106_1.5-1.6 BH108_0.4-0.5 BH101_0.6-0.7 BH101_1.5-1.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001	% % % % % % % %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_1.5-1.6 BH101_0.6-0.7 BH101_0.6-0.7 BH101_0.6-0.7 BH101_0.5-0.6 BH102_0.5-0.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004	% % % % % % % % % %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.5-0.6 BH101_1.5-1.6 BH102_0.5-0.6 BH103_0.2-0.3 BH103_1.9-2.0	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_1.5-1.6 BH101_0.6-0.7 BH101_0.6-0.7 BH101_0.5-0.6 BH103_0.2-0.3 BH104_0.6-0.7 BH101_1.5-1.6 BH103_0.2-0.3 BH103_0.2-0.3 BH104_0.6-0.7	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.006	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH108_0.4-0.5 BH101_0.6-0.7 BH102_0.5-0.6 BH103_0.2-0.3 BH103_1.9-2.0 BH104_1.9-2.0	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94
J14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_0.1-0.2 BH106_0.2-0.3 BH106_1.5-1.6 BH101_0.6-0.7 BH101_0.6-0.7 BH102_0.5-0.6 BH103_0.2-0.3 BH103_0.2-0.3 BH104_1.9-2.0 BH104_0.6-0.7 BH103_0.2-0.3 BH104_0.6-0.7 BH104_0.6-0.7 BH104_0.6-0.7	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_0.1-0.2 BH106_0.2-0.3 BH106_1.5-1.6 BH108_0.4-0.5 BH103_0.2-0.3 BH104_0.6-0.7 BH103_0.2-0.3 BH103_0.2-0.3 BH103_0.2-0.3 BH103_1.9-2.0 BH104_1.9-2.0 BH105_0.1-0.2 BH105_0.1-0.2	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.003 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.4-0.5 BH108_0.4-0.5 BH103_0.2-0.3 BH103_0.2-0.3 BH103_0.2-0.3 BH103_0.2-0.3 BH104_0.6-0.7 BH104_0.6-0.7 BH104_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.009 SE162924.009 SE162924.009 SE162924.001	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.4-0.5 BH101_0.6-0.7 BH103_0.2-0.3 BH103_0.2-0.3 BH103_0.2-0.3 BH104_0.6-0.7 BH104_1.9-2.0 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.1-0.2 BH106_0.2-0.3	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.005 SE162924.007 SE162924.008 SE162924.009 SE162924.009 SE162924.010 SE162924.010 SE162924.010 SE162924.010	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH101_0.6-0.7 BH101_0.6-0.7 BH103_0.2-0.3 BH104_0.6-0.7 BH104_0.6-0.7 BH104_0.2-0.3 BH104_0.2-0.3 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_1.5-1.6 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_1.5-1.6 BH106_0.2-0.3	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.013 SE162924.013 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.012	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 96 88
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH101_0.6-0.7 BH102_0.5-0.6 BH103_0.2-0.3 BH104_1.9-2.0 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.5 BH101_0.6-0.7	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.009 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.013 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.005 SE162924.006 SE162924.007 SE162924.007 SE162924.009 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.011	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 90 96 100 72 84 96 92 114 72 94 98 116 70 78 96
d14-p-terphenyl (Surrogate)	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH101_0.6-0.7 BH101_0.6-0.7 BH101_0.6-0.7 BH103_0.2-0.3 BH104_1.9-2.0 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH105_0.2-0.3 BH106_0.2-0.3 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.7 BH106_0.2-0.7	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.001 SE162924.010 SE162924.011 SE162924.011 SE162924.012 SE162924.011 SE162924.012 SE162924.013 SE162924.011 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001	% % <td< td=""><td>70 - 130% 70 - 130%</td><td>102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 98 88 116 70 78 88 88 88 82</td></td<>	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 98 88 116 70 78 88 88 88 82
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH101_0.6-0.7 BH101_0.5-0.6 BH103_0.2-0.3 BH104_1.9-2.0 BH105_2.7-2.8 BH106_0.2-0.3 BH105_0.1-0.2 BH105_0.2-0.3 BH105_0.2-0.3 BH105_0.2-0.3 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.5 BH101_0.6-0.7 BH102_0.5-0.6	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.010 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.012 SE162924.011 SE162924.012 SE162924.013 SE162924.013 SE162924.011 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.002 SE162924.002	% %	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 98 116 70 78 96 88 88 88 84 94
	BH103_0.2-0.3 BH103_1.9-2.0 BH104_0.6-0.7 BH105_0.1-0.2 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.3 BH101_0.6-0.7 BH101_0.6-0.7 BH101_0.6-0.7 BH103_0.2-0.3 BH104_1.9-2.0 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH105_0.2-0.3 BH106_0.2-0.3 BH105_0.1-0.2 BH105_0.1-0.2 BH105_0.2-0.3 BH106_0.2-0.3 BH106_0.2-0.7 BH106_0.2-0.7	SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.010 SE162924.011 SE162924.011 SE162924.012 SE162924.013 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.002 SE162924.003 SE162924.004 SE162924.005 SE162924.006 SE162924.007 SE162924.008 SE162924.009 SE162924.001 SE162924.010 SE162924.011 SE162924.011 SE162924.012 SE162924.011 SE162924.012 SE162924.013 SE162924.011 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001 SE162924.001	% % <td< td=""><td>70 - 130% 70 - 130%</td><td>102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 98 88 88 88 88 88</td></td<>	70 - 130% 70 - 130%	102 92 82 98 100 116 82 90 96 100 72 84 96 92 114 72 94 98 116 70 78 98 88 88 88 88 88

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Units Criteria Parameter Sample Name Sample Numb d5-nitrobenzene (Surrogate) BH104_1.9-2.0 SE162924.007 % 70 - 130% 88 BH105_0.1-0.2 SE162924.008 70 - 130% 92 % BH105 2.7-2.8 SE162924.009 % 70 - 130% 108 BH106_0.2-0.3 SE162924.010 70 - 130% 72 % BH106_1.5-1.6 SE162924.011 70 - 130% 96 % BH107 0.7-0.8 SE162924.012 % 70 - 130% 94 BH108_0.4-0.5 SE162924.013 % 70 - 130% 94 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Parameter Sample Name Sample Num Units Criteria Recovery % Tetrachloro-m-xylene (TCMX) (Surrogate) BH101 0.6-0.7 SE162924.001 % 60 - 130% 82 SE162924.003 60 - 130% BH102_0.5-0.6 % 79 BH103_0.2-0.3 SE162924.004 79 % 60 - 130% BH104 0.6-0.7 SE162924.006 % 60 - 130% 80 BH105_0.1-0.2 SE162924.008 % 60 - 130% 75 BH106_0.2-0.3 SE162924.010 60 - 130% 78 % 60 - 130% BH107 0.7-0.8 SE162924.012 % 85 BH108_0.4-0.5 SE162924.013 % 60 - 130% 87 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Parameter Sample Name Sample Numb Units Criteria Recovery % Bromofluorobenzene (Surrogate) BH101 0.6-0.7 SE162924.001 % 60 - 130% 79 SE162924.002 85 BH101_1.5-1.6 % 60 - 130% BH102_0.5-0.6 SE162924.003 % 60 - 130% 79 BH103 0.2-0.3 SE162924.004 % 60 - 130% 97 BH103_1.9-2.0 SE162924.005 % 60 - 130% 84 BH104 0.6-0.7 SE162924.006 60 - 130% % 87 BH104 1.9-2.0 SE162924.007 % 60 - 130% 85 SE162924.008 86 BH105_0.1-0.2 % 60 - 130% BH105_2.7-2.8 SE162924.009 60 - 130% 89 % BH106_0.2-0.3 SE162924.010 % 60 - 130% 96 BH106_1.5-1.6 SE162924.011 % 60 - 130% 88 BH107 0.7-0.8 SE162924.012 60 - 130% 82 % BH108_0.4-0.5 SE162924 013 % 60 - 130% 82 QD1 SE162924.014 % 60 - 130% 84 TS1 SE162924.015 60 - 130% 90 % TB1 SE162924.016 % 60 - 130% 97 d4-1,2-dichloroethane (Surrogate) BH101_0.6-0.7 SE162924.001 60 - 130% 73 % BH101_1.5-1.6 SE162924.002 60 - 130% % 76 BH102 0.5-0.6 SE162924.003 % 60 - 130% 98 BH103_0.2-0.3 SE162924.004 60 - 130% 87 % 60 - 130% 78 BH103 1.9-2.0 SE162924.005 % BH104 0.6-0.7 SE162924.006 % 60 - 130% 76 SE162924.007 78 BH104_1.9-2.0 % 60 - 130% BH105_0.1-0.2 SE162924.008 60 - 130% % 76 BH105 2.7-2.8 SE162924.009 % 60 - 130% 82 89 BH106_0.2-0.3 SE162924.010 % 60 - 130% BH106 1.5-1.6 SE162924.011 % 60 - 130% 83 BH107 0.7-0.8 SE162924.012 % 60 - 130% 76 BH108_0.4-0.5 SE162924.013 % 60 - 130% 79 QD1 SE162924.014 60 - 130% 81 % TS1 SE162924.015 % 60 - 130% 86 93 TB1 SE162924.016 % 60 - 130% d8-toluene (Surrogate) BH101_0.6-0.7 SE162924.001 % 60 - 130% 70 BH101 1.5-1.6 SE162924.002 % 60 - 130% 73 BH102_0.5-0.6 SE162924.003 60 - 130% 78 % BH103_0.2-0.3 SE162924.004 60 - 130% 86 % BH103 1.9-2.0 SE162924.005 % 60 - 130% 74 BH104_0.6-0.7 SE162924.006 % 60 - 130% 71 BH104_1.9-2.0 SE162924.007 % 60 - 130% 74 BH105 0.1-0.2 SE162924.008 % 60 - 130% 73 BH105_2.7-2.8 SE162924.009 60 - 130% % 79

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued)				Method: M	E-(AU)-[ENV]AN43
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
d8-toluene (Surrogate)	BH106_0.2-0.3	SE162924.010	%	60 - 130%	88
	BH106_1.5-1.6	SE162924.011	%	60 - 130%	81
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	71
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	73
	QD1	SE162924.014	%	60 - 130%	73
	TS1	SE162924.015	%	60 - 130%	84
	TB1	SE162924.016	%	60 - 130%	90
Dibromofluoromethane (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	79
	BH101_1.5-1.6	SE162924.002	%	60 - 130%	93
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	77
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	78
	BH103_1.9-2.0	SE162924.005	%	60 - 130%	98
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	88
	BH104_1.9-2.0	SE162924.007	%	60 - 130%	87
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	98
	BH105_2.7-2.8	SE162924.009	%	60 - 130%	70
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	78
	BH106_1.5-1.6	SE162924.011	%	60 - 130%	71
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	77
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	92
	QD1	SE162924.014	%	60 - 130%	90
	TS1	SE162924.015	%	60 - 130%	71
	TB1	SE162924.016	%	60 - 130%	77
VOCs in Water				Method: M	E-(AU)-[ENV]AN4:
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE162924.017	%	40 - 130%	115
	QR1B	SE162924.018	%	40 - 130%	114
d4-1,2-dichloroethane (Surrogate)	QR1	SE162924.017	%	40 - 130%	85
	QR1B	SE162924.018	%	40 - 130%	83
d8-toluene (Surrogate)	QR1	SE162924.017	%	40 - 130%	86

Volatile Petroleum Hydrocarbons in Soil

Dibromofluoromethane (Surrogate)

Volatile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]AN433
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	79
	BH101_1.5-1.6	SE162924.002	%	60 - 130%	85
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	79
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	97
	BH103_1.9-2.0	SE162924.005	%	60 - 130%	84
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	87
	BH104_1.9-2.0	SE162924.007	%	60 - 130%	85
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	86
	BH105_2.7-2.8	SE162924.009	%	60 - 130%	89
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	96
	BH106_1.5-1.6	SE162924.011	%	60 - 130%	88
	BH107_0.7-0.8	SE162924.012	%	60 - 130%	82
	BH108_0.4-0.5	SE162924.013	%	60 - 130%	82
	QD1	SE162924.014	%	60 - 130%	84
d4-1,2-dichloroethane (Surrogate)	BH101_0.6-0.7	SE162924.001	%	60 - 130%	73
	BH101_1.5-1.6	SE162924.002	%	60 - 130%	76
	BH102_0.5-0.6	SE162924.003	%	60 - 130%	98
	BH103_0.2-0.3	SE162924.004	%	60 - 130%	87
	BH103_1.9-2.0	SE162924.005	%	60 - 130%	78
	BH104_0.6-0.7	SE162924.006	%	60 - 130%	76
	BH104_1.9-2.0	SE162924.007	%	60 - 130%	78
	BH105_0.1-0.2	SE162924.008	%	60 - 130%	76
	BH105_2.7-2.8	SE162924.009	%	60 - 130%	82
	BH106_0.2-0.3	SE162924.010	%	60 - 130%	89
	BH106_1.5-1.6	SE162924.011	%	60 - 130%	83

SE162924.018

SE162924.017

SE162924.018

QR1B

QR1

QR1B

40 - 130%

40 - 130%

40 - 130%

%

%

%

85

85

83

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Recovery % Sample Name Sample Number Units Criteria Parameter d4-1,2-dichloroethane (Surrogate) BH107_0.7-0.8 SE162924.012 % 60 - 130% 76 BH108_0.4-0.5 SE162924.013 % 60 - 130% 79 QD1 SE162924.014 % 60 - 130% 81 d8-toluene (Surrogate) BH101_0.6-0.7 SE162924.001 % 60 - 130% 70 BH101_1.5-1.6 SE162924.002 % 60 - 130% 73 BH102 0.5-0.6 SE162924.003 % 60 - 130% 78 BH103_0.2-0.3 SE162924.004 % 60 - 130% 86 60 - 130% 74 BH103_1.9-2.0 SE162924.005 % 71 BH104 0.6-0.7 SE162924.006 % 60 - 130% BH104_1.9-2.0 SE162924.007 % 60 - 130% 74 60 - 130% 73 BH105_0.1-0.2 SE162924.008 % SE162924.009 79 BH105 2.7-2.8 % 60 - 130% BH106 0.2-0.3 SE162924.010 % 60 - 130% 88 BH106_1.5-1.6 SE162924.011 % 60 - 130% 81 BH107 0.7-0.8 SE162924.012 % 60 - 130% 71 BH108_0.4-0.5 SE162924.013 % 60 - 130% 73 QD1 SE162924.014 % 60 - 130% 73 Dibromofluoromethane (Surrogate) BH101 0.6-0.7 SE162924.001 % 60 - 130% 79 BH101_1.5-1.6 SE162924.002 % 60 - 130% 93 BH102_0.5-0.6 SE162924.003 60 - 130% 77 % BH103 0.2-0.3 SE162924.004 % 60 - 130% 78 BH103_1.9-2.0 SE162924.005 % 60 - 130% 98 BH104_0.6-0.7 SE162924.006 % 60 - 130% 88 BH104 1.9-2.0 SE162924.007 % 60 - 130% 87 BH105 0.1-0.2 SE162924 008 % 60 - 130% 98 BH105_2.7-2.8 SE162924.009 60 - 130% 70 % BH106_0.2-0.3 SE162924.010 % 60 - 130% 78 BH106_1.5-1.6 SE162924.011 % 60 - 130% 71 BH107_0.7-0.8 SE162924.012 60 - 130% 77 % BH108 0.4-0.5 SE162924.013 % 60 - 130% 92 QD1 SE162924.014 % 60 - 130% 90

Volatile Petroleum Hydrocarbons in Water				Method: ME-(AU)-[ENV]AN433	
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Bromofluorobenzene (Surrogate)	QR1	SE162924.017	%	40 - 130%	115
	QR1B	SE162924.018	%	40 - 130%	114
d4-1,2-dichloroethane (Surrogate)	QR1	SE162924.017	%	60 - 130%	85
	QR1B	SE162924.018	%	60 - 130%	83
d8-toluene (Surrogate)	QR1	SE162924.017	%	40 - 130%	86
	QR1B	SE162924.018	%	40 - 130%	85
Dibromofluoromethane (Surrogate)	QR1	SE162924.017	%	40 - 130%	85
	QR1B	SE162924.018	%	40 - 130%	83

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/A				NVJAN311(Perth)/AN312
Sample Number	Parameter	Units	LOR	Result
LB120504.001	Mercury	mg/L	0.0001	<0.0001

Mercury in Soil

Mercury in Soil	arcury in Soil Method: ME-(AU)-[ENV]AN			nod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB120491.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB120317.001	Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
	Alpha BHC	mg/kg	0.1	<0.1
	Lindane	mg/kg	0.1	<0.1
	Heptachlor	mg/kg	0.1	<0.1
	Aldrin	mg/kg	0.1	<0.1
	Beta BHC	mg/kg	0.1	<0.1
	Delta BHC	mg/kg	0.1	<0.1
	Heptachlor epoxide	mg/kg	0.1	<0.1
	Alpha Endosulfan	mg/kg	0.2	<0.2
	Gamma Chlordane	mg/kg	0.1	<0.1
	Alpha Chlordane	mg/kg	0.1	<0.1
	p,p'-DDE	mg/kg	0.1	<0.1
	Dieldrin	mg/kg	0.2	<0.2
	Endrin	mg/kg	0.2	<0.2
	Beta Endosulfan	mg/kg	0.2	<0.2
	p,p'-DDD	mg/kg	0.1	<0.1
	p,p'-DDT	mg/kg	0.1	<0.1
	Endosulfan sulphate	mg/kg	0.1	<0.1
	Endrin Aldehyde	mg/kg	0.1	<0.1
	Methoxychlor	mg/kg	0.1	<0.1
	Endrin Ketone	mg/kg	0.1	<0.1
	Isodrin	mg/kg	0.1	<0.1
	Mirex	mg/kg	0.1	<0.1
Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	81
P Pesticides in Soil			Meth	od: ME-(AU)-[ENV]AN42
Sample Number	Parameter	Units	LOR	Result
LB120317.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	ma/ka	0.5	<0.5

(OP	Pesti	cide	əs in	Soil

Sample Number	Parameter	Units	LOR	Result
LB120317.001	Dichlorvos	mg/kg	0.5	<0.5
	Dimethoate	mg/kg	0.5	<0.5
	Diazinon (Dimpylate)	mg/kg	0.5	<0.5
	Fenitrothion	mg/kg	0.2	<0.2
	Malathion	mg/kg	0.2	<0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
	Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
	Bromophos Ethyl	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5
	Ethion	mg/kg	0.2	<0.2
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	72
	d14-p-terphenyl (Surrogate)	%	-	74
PAH (Polynuclear Aromatic Hydrocarbons) in S	Soil		Meth	od: ME-(AU)-[ENV]AN420
Sample Number	Parameter	Units	LOR	Result
LB120317.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1

SE162924 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Paramet Units Result LB120317.001 Fluoranthene mg/kg 0.1 < 0.1 Pyrene mg/kg 0.1 <0.1 <0.1 Benzo(a)anthracene mg/kg 0.1 Chrysene mg/kg 0.1 < 0.1 Benzo(a)pyrene 0.1 <0.1 mg/kg Indeno(1,2,3-cd)pyrene 0.1 <0.1 mg/kg <0.1 Dibenzo(ah)anthrace mg/kg 0.1 Benzo(ghi)perylene mg/kg 0.1 < 0.1 Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) % 76 2-fluorobiphenyl (Surrogate) % 72 d14-p-terphenyl (Surrogate) % 74 PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Units Parameter LOR LB120317 001 Arochlor 1016 mg/kg 0.2 <0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 mg/kg 0.2 < 0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 0.2 <0.2 mg/kg Arochlor 1254 mg/kg 0.2 < 0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) <1 mg/kg 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 81 % Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB120475.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 <0.3 mg/kg Chromium, Cr mg/kg 0.3 <0.3 <0.5 Copper, Cu 0.5 mg/kg Lead, Pb mg/kg 1 <1 Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn 0.5 <0.5 mg/kg Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318 Sample Number LOR Result Parameter Units LB120297.001 Arsenic, As <1 µg/L 1 Cadmium, Cd 0.1 <0.1 µg/L Chromium, Cr µg/L 1 <1 Copper, Cu µg/L 1 <1 Lead, Pb <1 µg/L 1 Nickel. Ni <1 µg/L 1 Zinc, Zn µg/L 5 <5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Parameter Units Result LB120317.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg <100 TRH C37-C40 mg/kg 100 TRH C10-C36 Total 110 <110 mg/kg TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403 LOR Sample Number Units Result Parameter LB120279.001 TRH C10-C14 µg/L 50 <50 TRH C15-C28 200 <200 µg/L TRH C29-C36 200 <200 µg/L TRH C37-C40 µg/L 200 <200 VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Numb Units LOR Parameter

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

/OC's in Soil (continu	ed)			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB120283.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	77
		d4-1,2-dichloroethane (Surrogate)	%	-	82
		d8-toluene (Surrogate)	%	-	80
		Bromofluorobenzene (Surrogate)	%	-	89
	Totals	Total BTEX	mg/kg	0.6	<0.6
OCs in Water				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
B120292.001	Monocyclic Aromatic	Benzene	µg/L	0.5	<0.5
	Hydrocarbons	Toluene	µg/L	0.5	<0.5
		Ethylbenzene	µg/L	0.5	<0.5
		m/p-xylene	µg/L	1	<1
		o-xylene	µg/L	0.5	<0.5
	Polycyclic VOCs	Naphthalene	µg/L	0.5	<0.5
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82
	-	d4-1,2-dichloroethane (Surrogate)	%	-	83
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%	-	111
/olatile Petroleum Hy	drocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
_B120283.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	77
	Ū	d4-1,2-dichloroethane (Surrogate)	%	-	82
		d8-toluene (Surrogate)	%	-	80
/olatile Petroleum Hy	drocarbons in Water			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB120292.001		TRH C6-C9	µg/L	40	<40
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	82
		d4-1,2-dichloroethane (Surrogate)	%	-	83
		d8-toluene (Surrogate)	%	-	85
		Bromofluorobenzene (Surrogate)	%		111

Method: ME-(AU)-IENVIAN312

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Fenitrothion

Malathion

Chlorpyrifos (Chlorpyrifos Ethyl)

Parathion-ethyl (Parathion)

Azinphos-methyl (Guthion)

Bromophos Ethyl

Methidathion

Ethion

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water

Mercury (dissolved)	in Water				Metho	d: ME-(AU)-[envjan311(p	erth)/AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162928.013	LB120504.014	Mercury	µg/L	0.0001	-0.0344	-0.0308	168	0
SE162994.083	LB120504.016	Mercury	µg/L	0.0001	<0.0001	<0.0001	189	0

Mercury in Soil

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.005	LB120491.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE162924.014	LB120491.024	Mercury	mg/kg	0.05	0.16	0.14	63	15

Moisture Content

Moisture Content							Meth	od: ME-(AU)-	(ENVJAN00)
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162877.005	LB120406.011		% Moisture	%w/w	0.5	14	14	37	1
SE162904.001	LB120406.022		% Moisture	%w/w	0.5	6.7	6.8	45	0
SE162908.006	LB120406.033		% Moisture	%w/w	0.5	65	66	32	0
SE162924.010	LB120406.044		% Moisture	%w/w	0.5	5.1	5.6	49	9
SE162924.016	LB120406.050		% Moisture	%w/w	0.5	<0.5	<0.5	200	0
OC Pesticides in S	Soil						Meth	od: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.010	LB120317.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	0	200	0
			Alpha BHC	mg/kg	0.1	<0.1	0	200	0
			Lindane	mg/kg	0.1	<0.1	0	200	0
			Heptachlor	mg/kg	0.1	<0.1	0	200	0
			Aldrin	mg/kg	0.1	<0.1	0	200	0
			Beta BHC	mg/kg	0.1	<0.1	0	200	0
			Delta BHC	mg/kg	0.1	<0.1	0	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	0	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	0	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	0	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	0	200	0
			Dieldrin	mg/kg	0.2	<0.2	0	200	0
			Endrin	mg/kg	0.2	<0.2	0	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	0	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	0	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	0	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	0	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	0	200	0
			Methoxychlor	mg/kg	0.1	<0.1	0	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	0	200	0
			Isodrin	mg/kg	0.1	<0.1	0	200	0
			Mirex	mg/kg	0.1	<0.1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.112	30	4
OP Pesticides in S	Soil						Meth	od: ME-(AU)-	(ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.010	LB120317.026		Dichlorvos	mg/kg	0.5	<0.5	0	200	0
			Dimethoate	mg/kg	0.5	<0.5	0	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	0	200	0

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

0.2

0.2

0.2

0.2

0.2

0.5

0.2

0.2

<0.2

<0.2

<0.2

<0.2

<0.2

<0.5

< 0.2

<0.2

0

0

0

0

0.01

0

0

0

200

200

200

200

200

200

200

200

0

0

0

0

0

0

0

0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Arochlor 1242

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

P Pesticides in S								od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE162924.010	LB120317.026	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.45	30	9
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.41	30	10
AH (Polynuclear	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	[ENV]/
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
E162873.003	LB120317.025		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	C
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	C
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.6	30	7
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.5	30	9
SE162924.010	LB120317.026		Naphthalene	mg/kg	0.1	<0.1	0.02	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	0	200	0
			Acenaphthylene	mg/kg	0.1	0.3	0.26	67	7
			Acenaphthene	mg/kg	0.1	<0.1	0	200	0
			Fluorene	mg/kg	0.1	<0.1	0.01	200	0
			Phenanthrene	mg/kg	0.1	0.4	0.25	63	30
			Anthracene	mg/kg	0.1	0.2	0.16	84	27
			Fluoranthene	mg/kg	0.1	0.8	0.65	44	16
			Pyrene	mg/kg	0.1	1.3	0.99	39	20
			Benzo(a)anthracene	mg/kg	0.1	0.5	0.5	50	2
			Chrysene	mg/kg	0.1	0.7	0.7	44	1
			Benzo(b&j)fluoranthene	mg/kg	0.1	1.0	1.03	40	1
			Benzo(k)fluoranthene	mg/kg	0.1	0.6	0.47	49	2
			Benzo(a)pyrene	mg/kg	0.1	1.1	1.1	39	2
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	1.2	1.15	38	6
			Dibenzo(ah)anthracene	mg/kg	0.1	0.2	0.13	97	2
			Benzo(ghi)perylene	mg/kg	0.1	1.5	1.41	37	8
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.6</td><td>1.5721</td><td>23</td><td>2</td></lor=0<>	TEQ (mg/kg)	0.2	1.6	1.5721	23	2
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>1.6</td><td>1.5721</td><td>29</td><td>2</td></lor=lor<>	TEQ (mg/kg)	0.3	1.6	1.5721	29	2
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>1.6</td><td>1.5721</td><td>23</td><td>2</td></lor=lor>	TEQ (mg/kg)	0.2	1.6	1.5721	23	2
			Total PAH (18)	mg/kg	0.8	9.6	8.86	39	8
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.43	30	18
		-	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.45	30	9
			d14-p-terphenyl (Surrogate)	mg/kg	_	0.4	0.41	30	1
CBs in Soil								od: ME-(AU)-	
					1.07	<u> </u>			
Driginal	Duplicate		Parameter	Units	LOR	Original		Criteria %	RPD
E162924.010	LB120317.024		Arochlor 1016	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	0	200	0
			Areshing 1212		~ ~	-0.0	0	000	

<0.2

0

200

0.2

mg/kg

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original Duplicate Parameter Units LOR Original Duplicate SE 16924.010 LB12337.624 Arction 1264 mpkp 0.2 4.0.2 0.0 Arction 1264 mpkp 0.2 4.0.2 0.0 Arction 1262 mpkp 0.2 4.0.2 0.0 Total RECoverable Metals In SoutWasto Solide/Materials by ICPOES Method 0.0 0.0 Original Duplicate Parameter Units LOR Original 0.0 </th <th></th> <th>od: ME-(AU)-</th> <th></th>			od: ME-(AU)-						
-						-		Criteria %	
E162924.010	LB120317.024		Arochlor 1248	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	0	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	0	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	0	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0.112	30	4
otal Recoverable	Metals in Soil/Waste	Solids/Materials by	ICPOES				Method: ME-	(AU)-[ENV]A	N040/A
Priginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
E162924.010	LB120475.014		Arsenic, As	mg/kg	3	11	10	39	1
			Cadmium, Cd	mg/kg	0.3	0.4	0.4	107	1
			Chromium, Cr		0.3	10	15	34	34
						51	58	31	1
								31	1
								35	1
								32	4
E400000 000	1 0400475 007								
E 102920.UU8	LD1204/5.02/								8
								66	3
			Chromium, Cr	mg/kg	0.3	13.876471529	944.8511084356	33	7
			Copper, Cu	mg/kg	0.5	33.262029803	394.6189916831	1 31	2
			Lead, Pb	mg/kg	1	18.23534274	5 18.755351287	31	(
			Nickel, Ni	mg/kg	0.5	12.406789803	394.0130186138	31	4
			Zinc, Zn	mg/kg	0.5	62.15607294	151.026198811	31	4
ace Metals (Diss	olved) in Water by IC	PMS					Meth	od: ME-(AU)-	(ENV)
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPI
E162928.013	LB120297.009		Arsenic, As	µg/L	1	-0.012	0.01	200	C
			Cadmium, Cd		0.1	-0.002	-0.001	200	C
							-0.017	200	C
							-0.054	200	C
								200	
								200	C
								200	
DH (Total Decov	andela Ubudana anteana			µg/L	5	-0.02			
) in Soli	Parameter	Units	LOR	Original		od: ME-(AU)- Criteria %	
-						-		200	
E 102073.003	LB120317.020								
							110	70	6
							160	57	6
							<100	200	0
							270	69	6
			TRH C10-C40 Total	mg/kg	210	260	240	115	1
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	(
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	(
			TRH >C16-C34 (F3)	mg/kg	90	260	240	66	7
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	(
E162924.010	LB120317.025		TRH C10-C14	mg/kg	20	<20	0	200	(
			TRH C15-C28	mg/kg	45	67	71	95	6
			TRH C29-C36	mg/kg	45	150	166	58	
			TRH C37-C40	mg/kg	100	<100	0	200	
			TRH C10-C36 Total		110	220	237	78	8
				mg/kg					
			TRH C10-C40 Total	mg/kg	210	<210	186	147	(
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	0	200	(
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	0	200	(
			TRH >C16-C34 (F3)	mg/kg	90	170	186	80	8
			TRH >C34-C40 (F4)	mg/kg	120	<120	0	200	(
OC's in Soil							Meth	od: ME-(AU)-	(ENVI)
riginal	Duplicate		Parameter	Units	LOR				1
			i urumeter	Units	LOK				

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Surrogates

VPH F Bands

Dibromofluoromethane (Surrogate)

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

TRH C6-C10 minus BTEX (F1)

d8-toluene (Surrogate)

Benzene (F0)

TRH C6-C10

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.010		Manager							0 KPD
SE162924.010	LB120283.014	Monocyclic Aromatic	Benzene Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic		mg/kg					0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.7	50	
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	4.4	50	3
			d8-toluene (Surrogate)	mg/kg	-	4.4	4.2	50	5
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	4.5	50	6
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE162924.014	LB120283.022	Monocyclic	Benzene	mg/kg	0.1	<0.1	0	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	0.05	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	0.02	200	0
			m/p-xylene	mg/kg	0.2	<0.2	0.06	200	0
			o-xylene	mg/kg	0.1	<0.1	0.02	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0.05	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.99	50	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	3.84	50	5
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.59	50	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.18	50	0
		Totals	Total Xylenes*	mg/kg	0.3	<0.3	0.08	200	0
			Total BTEX	mg/kg	0.6	<0.6	0.15	200	0
OCs in Water							Meth	od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD ^o
SE162924.017	LB120292.011	Monocyclic	Benzene	µg/L	0.5	<0.5	0.05	200	0
52102324.017	LD120232.011	Aromatic	Toluene	μg/L	0.5	1.2	0.83	80	36
		Alomatic	Ethylbenzene	μg/L	0.5	< 0.5	0.03	200	0
			m/p-xylene	μg/L	1	<0.5	0.03	200	0
			o-xylene		0.5	<0.5	0.05	200	0
		Delvevelie		μg/L	0.5	<0.5	0.03	200	0
		Polycyclic	Naphthalene	μg/L	- 0.5				2
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L		4.3	4.18	30	
			d4-1,2-dichloroethane (Surrogate)	μg/L		4.3	4.16	30	2
			d8-toluene (Surrogate)	μg/L		4.3	3.67	30	16
			Bromofluorobenzene (Surrogate)	µg/L	-	5.7	4.98	30	14
olatile Petroleum	Hydrocarbons in So	il					Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE162924.010	LB120283.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9		20	<20	<20		

			TRH C6-C9	mg/kg	20	<20	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.5	3.99	30	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.0	3.84	30	5
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.59	30	2
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.18	30	0
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	-0.15	200	0
Volatile Petroleum	Hydrocarbons in Wa	iter					Meth	nod: ME-(AU)-	(ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.017	LB120292.011		TRH C6-C10	µg/L	50	<50	0	200	0
			TRH C6-C9	µg/L	40	<40	0	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	µg/L	-	4.3	4.18	30	2

SE162924.014

LB120283.022

3.9

4.5

4.4

4.8

< 0.1

<25

<25

-

_

-

0.1

25

25

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

3.7

4.4

4.2

4.5

< 0.1

<25

0

30

30

30

30

200

200

200

7

3

5

6

0

0

0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum	Hydrocarbons in Wa	ter (continued)					Meth	od: ME-(AU)-	ENVJAN433
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE162924.017	LB120292.011	Surrogates	d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.3	4.16	30	2
			d8-toluene (Surrogate)	μg/L	-	4.3	3.67	30	16
			Bromofluorobenzene (Surrogate)	μg/L	-	5.7	4.98	30	14
		VPH F Bands	Benzene (F0)	μg/L	0.5	<0.5	0.05	200	0
			TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	-1.07	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil					1	Nethod: ME-(A	U)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120491.002	Mercury	mg/kg	0.05	0.20	0.2	70 - 130	99

OC Pesticides in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery 9
LB120317.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	89
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	94
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	114
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	89
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	97
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	102
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.12	0.15	40 - 130	79
P Pesticides in Se	oil					N	lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B120317.002		Dichlorvos	mg/kg	0.5	2.5	2	60 - 140	124
		Diazinon (Dimpylate)	mg/kg	0.5	2.5	2	60 - 140	124
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.9	2	60 - 140	97
		Ethion	mg/kg	0.2	2.2	2	60 - 140	110
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.6	0.5	40 - 130	118
		d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	40 - 130	108
					0.0	0.0	10 100	100
AH (Polynuclear /	Aromatic Hydroca				0.0		lethod: ME-(A	
•	-		Units	LOR	Result			
Sample Number	-	arbons) in Soil		LOR 0.1		N	lethod: ME-(A	U)-[ENV]AN
Sample Number	-	arbons) in Soil Parameter	Units		Result	A Expected	<mark>/ethod: ME-(A</mark> Criteria %	U)-[ENV]AN Recovery
ample Number	-	arbons) in Soil Parameter Naphthalene	Units mg/kg	0.1	Result 4.3	Expected 4	Aethod: ME-(A Criteria % 60 - 140	U)-[ENV]AN Recovery 107
ample Number	-	arbons) in Soil Parameter Naphthalene Acenaphthylene	Units mg/kg mg/kg	0.1 0.1	Result 4.3 4.2	Expected 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104
ample Number	-	arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	Units mg/kg mg/kg mg/kg	0.1 0.1 0.1	Result 4.3 4.2 4.3	Expected 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109
ample Number	-	arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	Units mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	Result 4.3 4.2 4.3 4.3	Expected 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106
ample Number	-	arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	Units mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1	Result 4.3 4.2 4.3 4.3 4.3 4.3 4.4	Expected 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106 111
ample Number	-	Arbons) In Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	Result 4.3 4.2 4.3 4.3 4.3 4.3 4.4 3.4	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106 111 84
ample Number	-	arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.3 4.2 4.3 4.3 4.3 4.4 3.4 4.4	K Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106 111 84 111
ample Number		Arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	Units mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Result 4.3 4.2 4.3 4.3 4.4 3.4 4.4 3.6	Expected 4 4 4 4 4 4 4 4 4 4	Aethod: ME-(A Criteria % 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106 111 84 111 90
ample Number		Arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	Result 4.3 4.2 4.3 4.3 4.4 3.4 4.4 3.6 0.6	Expected 4 4 4 4 4 4 4 5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	U)-[ENV]AN Recovery 107 104 109 106 111 84 111 90 112
Sample Number B120317.002		Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	Result 4.3 4.2 4.3 4.3 4.4 3.4 4.4 3.6 0.6 0.6	Expected 4 4 4 4 4 4 4 5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	U)-[ENV]AN Recovery 107 104 109 106 111 84 111 90 112 118 108
AH (Polynuclear / Sample Number .B120317.002 CBs in Soil Sample Number	Surrogates	Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Phenanthrene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	Units mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -	Result 4.3 4.2 4.3 4.3 4.4 3.4 4.4 3.6 0.6 0.6	Expected 4 4 4 4 4 4 4 5 0.5 0.5	Aethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 130 40 - 130 40 - 130	U)-[ENV]AN Recovery 107 104 109 106 111 84 111 90 112 118 108

Total Recoverable Metals in Soil/Waste Solids/Materials by ICPOES

TOTAL RECOVERADIE METALS IN S	boil/waste Solids/Materials by ICPOES				Meulou.	ME-(AU)-[ENV	vjANU40/AN320
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120475.002	Arsenic, As	mg/kg	3	47	50	80 - 120	95
	Cadmium, Cd	mg/kg	0.3	48	50	80 - 120	97
	Chromium, Cr	mg/kg	0.3	48	50	80 - 120	97
	Copper, Cu	mg/kg	0.5	47	50	80 - 120	95
	Lead, Pb	mg/kg	1	49	50	80 - 120	98
	Nickel, Ni	mg/kg	0.5	49	50	80 - 120	98
	Zinc, Zn	mg/kg	0.5	48	50	80 - 120	95
Trace Metals (Dissolved) in W	/ater by ICPMS				N	lethod: ME-(A	U)-[ENV]AN318
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB120297.002	Arsenic, As	μg/L	1	21	20	80 - 120	106
	Cadmium, Cd	μg/L	0.1	22	20	80 - 120	109
	Chromium, Cr	μg/L	1	22	20	80 - 120	109
	Copper, Cu	μg/L	1	22	20	80 - 120	109
	Lead, Pb	μg/L	1	22	20	80 - 120	111
	Nickel, Ni	μg/L	1	21	20	80 - 120	106
	Zinc, Zn	µg/L	5	21	20	80 - 120	107

Method: ME_(ALI)_TENVIAN040/AN320

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Hard SolutionIndex of the sector	·	erable Hydrocarbo	•		1.000			Method: ME-(A	
Index of the sector of the		r							Recovery
Tell Sense Tell Sense Tell Sense Tell Sci Cla (19)Tell Sense Tell Sci Cla (19)Normal Sci Cla (19)Sci Cla (19)Normal Sci Cla (19)Normal <b< td=""><td>LB120317.002</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>	LB120317.002								
Part FactorPictor <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
THI <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></b<>									
<table-container>Tell Rel<</table-container>		TRH F Bands							
National second									
Sample Number Parameter Units Units Units Units Units Units Units Expected Citation 5.7 Receive 1512270.002 THPI (15:C78 19d 19d <td></td> <td></td> <td>TRH >C34-C40 (F4)</td> <td>mg/kg</td> <td>120</td> <td><120</td> <td>20</td> <td>60 - 140</td> <td>85</td>			TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	85
IBN07000IPRICEIP	RH (Total Recov	erable Hydrocarbo	ns) in Water					Method: ME-(A	U)-[ENV]A
Interfaceind <td>Sample Number</td> <td>r</td> <td>Parameter</td> <td>Units</td> <td>LOR</td> <td>Result</td> <td>Expected</td> <td>Criteria %</td> <td>Recover</td>	Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
Print Pi Banonppt2004001000100000.10000.10000.10000.10000.0000.0000.10000.000	LB120279.002		TRH C10-C14	µg/L	50	1000	1200	60 - 140	85
Firl FieldField - Calif of (3)GalG			TRH C15-C28	µg/L	200	1200	1200	60 - 140	101
TellCell (F3)pcl500100120000-140120761Cell (F4)12073060-140120Farancio (F4)UnitsCell80073060-140730Farancio (F4)UnitsCell80073060-140730Farancio (F4)UnitsCell80073060-140780Farancio (F4)ManogatoCell2.32.960-140780Farancio (F4)ManogatoCell2.32.960-140780Farancio (F4)ManogatoCell2.82.960-140780Farancio (F4)ManogatoCell2.82.960-140780Farancio (F4)ManogatomajlaCell2.82.960-140780Farancio (F4)ManogatomajlaCell2.86.0160780Galaciana (Sangato)majlaCell7.86.0160780Galaciana (Sangato)majlaCellGalaciana (Sangato)1.86.0160171Galaciana (Sangato)pplG5G4.4560-140111171160160161161161161161161161161161161161161161161161161161 <td< td=""><td></td><td></td><td>TRH C29-C36</td><td>µg/L</td><td>200</td><td>1400</td><td>1200</td><td>60 - 140</td><td>117</td></td<>			TRH C29-C36	µg/L	200	1400	1200	60 - 140	117
TRII + C34-C40 [F4]µgl500700000001100CC in bootCC in bootColspan=16NamosolResourceR		TRH F Bands	TRH >C10-C16 (F2)	µg/L	60	1100	1200	60 - 140	93
Chi nali Use in the control of the contro			TRH >C16-C34 (F3)	µg/L	500	1300	1200	60 - 140	110
Sample Number Parameter Units LOR Result Expected Criteria %, Resource B12028.002 Monocycle Berzene mgAg 0.1 2.3 2.9 60-140 78 B12028.002 Aremate Ethyberzene mgAg 0.1 2.3 2.9 60-140 78 Brownes Ethyberzene mgAg 0.1 2.6 2.9 60-140 78 Brownes mgAg 0.1 2.6 2.9 60-140 78 Brownes mgAg 0.1 2.6 2.9 60-140 78 Brownes mgAg - 4.6 5 60-140 78 Brownes Brownes mgAg - 4.6 5 60-140 78 Brownes Parameter Parameter Mitts LOR Result Exopeted 760-140 78 Brownes Parameter Parameter pgL 0.5 51 45.45 60-140 71			TRH >C34-C40 (F4)	µg/L	500	730	600	60 - 140	122
BarageManeyaleBaranempsk (112.39.00.17.3ArometicTokinempsk (10.10.20.20.0 <td>'OC's in Soil</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>Method: ME-(A</td> <td>U)-[ENV]A</td>	'OC's in Soil						1	Method: ME-(A	U)-[ENV]A
Armain Bip/denzeme Toluen mg/g 0.1 2.3 2.9 00.10 0.1 Bip/denzeme mg/s 0.1 2.5 2.5 0.0 <td< td=""><td>Sample Number</td><td>r</td><td>Parameter</td><td>Units</td><td>LOR</td><td>Result</td><td>Expected</td><td>Criteria %</td><td>Recove</td></td<>	Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recove
Annelse Ellipsecse moyes moyes 	LB120283.002	Monocyclic	Benzene	mg/kg	0.1	2.3	2.9	60 - 140	78
nipsynei nipsynei nipsynei nipsynei 0.2 0.2 0.2 0.0		Aromatic	Toluene		0.1	2.3	2.9	60 - 140	81
			Ethylbenzene	mg/kg	0.1	2.6	2.9	60 - 140	89
Surgets BurgetsDeconducomethane (Surgets)mpt 4.1.24.3560.1406264-12.2 <td< td=""><td></td><td></td><td>m/p-xylene</td><td>mg/kg</td><td>0.2</td><td>5.2</td><td>5.8</td><td>60 - 140</td><td>89</td></td<>			m/p-xylene	mg/kg	0.2	5.2	5.8	60 - 140	89
d4.1.2 dchlorosethane (Surogate) mgkg d.6 5 60-140 92 dd-lourne (Surogate) mgkg 6.1 5 00-140 92 OCI mgkg 6.1 5 00-140 92 OCI mgkg 6.1 5 00-140 101 OCI Manocycia Berzene Units LOR Result Critoria % Recourse Barosene ggl 0.5 51 45.45 00-140 101 Manocycia Berzene ggl 0.5 51 45.45 00-140 111 mjx-yrine ggl 0.5 51 45.45 00-140 111 oxyrene ggl 0.5 51 45.45 00-140 111 oxyrene ggl 0.5 51 45.45 00-140 101 dd-Loure (Surogate) ggl 0.5 51 45.45 00-140 101 dd-Loure (Surogate) ggl 0.5 51			o-xylene	mg/kg	0.1	2.6	2.9	60 - 140	88
d8-douene (Surrogate) mg/kg - 4.6 5 60-140 20 Brondbuorbenzene (Surrogate) mg/kg - 5.1 5.0 0.1 0.0 <td></td> <td>Surrogates</td> <td>Dibromofluoromethane (Surrogate)</td> <td>mg/kg</td> <td>-</td> <td>4.3</td> <td>5</td> <td>60 - 140</td> <td>85</td>		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	85
Brondburobenzene (Surrogate)mg/kg.5.1560 - 140101CCC in WaterSample NumberParameterUnitsLORReportedCriteria %RecoreB120292.02MonocycleBerzeneupl0.55.14.64.560 - 1401112Envjenceneupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401111-ox/ereupl0.55.14.64.560 - 1401812-ox/ereUpl0.90.55.14.64.560 - 1401812-ox/ereUpl0.65.15.660 - 14098260 - 140982-ox/ereUpl-4.8560 - 14098260 - 140982-ox/ereUpl-4.8560 - 14098260 - 140982-ox/ereUpl-4.8560 - 14098260 - 140982Fithelocoton in SUTHOROCOTON INCOMMENTER (Surrogate)mp/kg2222			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
COS in Water Number Parameter Units LOR Result Expocted Critoria % Recover B12/2222.002 Monocyclic Berzene µpL 0.5 51 45.45 60.140 112 E12/222.002 Monocyclic Berzene µpL 0.5 51 45.45 60.140 112 Envidence µpL 0.5 51 45.45 60.140 112 Envidence µpL 0.5 51 45.45 60.140 112 mip-xylene µpL 0.5 51 45.45 60.140 112 oxylene µpL 0.5 51 45.45 60.140 112 oxylene µpL 0.5 51 45.45 60.140 192 Oxylene µpL 1.41.2 60.140 112 100 90.6 61.40 90 Gallal Petroleum Hydrocarbora in SU Freeroleum Hydrocarbora in SU Freeroleum Hydrocarbora in SU 50 60.140 90 <tr< td=""><td></td><td></td><td>d8-toluene (Surrogate)</td><td>mg/kg</td><td>-</td><td>4.6</td><td>5</td><td>60 - 140</td><td>92</td></tr<>			d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	92
Sample Number Parameter Units LOR Result Expected Criteria % Recover LB12022.002 Monocyclic Benzene µpL 0.5 51 45.45 60 - 140 112 Ethydenzene µpL 0.5 51 45.45 60 - 140 112 mix-yelne µpL 1 100 0.9 60 - 140 111 oxylene µpL 1 100 0.9 60 - 140 111 oxylene µpL - 4.7 5 60 - 140 112 oxylene µpL - 4.8 5 60 - 140 112 oxylene µpL - 4.8 5 60 - 140 193 d41.2-dichlorcethane (Surrogate) µpL - 4.8 5 60 - 140 98 Bromolucomethane (Surrogate) µpL - 4.8 5 60 - 140 98 Bromolucomethane (Surrogate) µpL - 4.8 5 60 - 140			Bromofluorobenzene (Surrogate)	mg/kg	-	5.1	5	60 - 140	101
B120292.002 A cmateBenzeneµgL0.55145.4560.140112ArmateµgL0.55145.4560.140112EthybenzeneµgL0.55145.4560.140112n/pxyleneµgL110090.960.140111oxyleneµgL110090.960.140111oxyleneµgL-5.05560.140112d-1.2 clichoroethane (Surogate)µgL-5.05560.140189d-1.2 clichoroethane (Surogate)µgL-4.3560.14066Bromoflucomethane (Surogate)µgL-4.3560.14066Bromofluconethane (Surogate)µgL-4.3560.14066Bromofluconethane (Surogate)µgL-4.3560.14066Bromofluconethane (Surogate)µgL-4.3560.14060SurogatesParanetermgkg202123.260.1406041.2 clichoroethane (Surogate)mgkg-4.6560.1406041.2 clichoroethane (Surogate)mgkg-4.6560.1406060.140Gurogate)mgkg-4.6560.1406060.140Gurogate)mgkg-4.6560.1406060.140Gurogate)mgkg-4.6560.14060 <tr< td=""><td>OCs in Water</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Method: ME-(A</td><td>U)-[ENV]A</td></tr<>	OCs in Water							Method: ME-(A	U)-[ENV]A
BarneµgL0.55145.4560-140112AronaceTolueneµgL0.55145.4560-140112EthyloneaneµgL0.55145.4560-140111nip:yeineµgL10090.960-140111oxyleneµgL110090.960-140111dip:yeineµgL110090.960-140111oxyleneµgL1505145.4560-140112dip:yeineµgL1505160-140112dip:yeineµgL1505160-140112dip:yeineµgL1505160-140112dip:yeineµgL110090.960-140112dip:yeineµgL110090.960-140112dip:yeineµgL11100100112dip:yeineµgL111<10	Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recover
kind kind <td< td=""><td>LB120292.002</td><td>Monocyclic</td><td></td><td>µg/L</td><td>0.5</td><td>51</td><td>45.45</td><td>60 - 140</td><td>112</td></td<>	LB120292.002	Monocyclic		µg/L	0.5	51	45.45	60 - 140	112
mp-xylene mp/x 1 100 90.9 60.140 111 oxylene pp/L 0.5 5.1 45.45 60.140 112 binorofluoromethane (Surogate) pp/L 0.50 5.0 45.4 60.140 933 d4.12.dichloroethane (Surogate) pp/L - 4.7 5 60.140 933 d4.10.diconethane (Surogate) pp/L - 4.8 5 60.140 969 delotene (Surogate) pp/L - 4.3 5 60.140 969 for the Petroleum Hytorotene Isore mg/L - 4.3 5 60.140 969 Surogate Parameter Units LOR Result Expected Criteria % 60.140 969 LB120283.002 TRH C6-C10 mg/kg 25 <24.5		Aromatic	Toluene	µg/L	0.5	51	45.45	60 - 140	112
oxylene pg/L 0.5 51 45.45 60.140 112 Surrogates Dibromofluoromethane (Surrogate) pg/L - 4.7 5 60.140 933 d4.1.2 dichloroethane (Surrogate) pg/L - 5.0 5 60.140 993 d4.1.2 dichloroethane (Surrogate) pg/L - 4.3 5 60.140 993 d4.1.2 dichloroethane (Surrogate) pg/L - 4.3 5 60.140 993 Surrogates Farroffuorobenzene (Surrogate) pg/L - 4.3 5 60.140 993 Surgates TRH C6-C10 mg/Rg 25 25 24.65 60.140 993 Surrogates Dibromofluoromethane (Surrogate) mg/Rg - 4.3 5 60.140 993 Surrogates Dibromofluoromethane (Surrogate) mg/Rg - 4.5 60.140 924 Gat-12. dichloroethane (Surrogate) mg/Rg - 4.6 5 60.140 924 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>51</td><td>45.45</td><td>60 - 140</td><td>112</td></t<>						51	45.45	60 - 140	112
Surrogates Diromofluoromethane (Surrogate) µg/L - 4.7 5 60 - 140 93 d4-12-dichloroethane (Surrogate) µg/L - 5.0 5 60 - 140 99 d8-totune (Surrogate) µg/L - 4.8 5 60 - 140 96 d8-totune (Surrogate) µg/L - 4.8 5 60 - 140 96 d8-totune (Surrogate) µg/L - 4.8 5 60 - 140 96 for total (Surrogate) µg/L - 4.3 5 60 - 140 96 for total (Surrogate) mg/R 25 <25			Ethylbenzene	µg/L	0.5	0.	40.40	00 - 140	
d4-1.2-dichloroethane (Surrogate) µg/L - 5.0 5 60 - 140 99 d8-loluene (Surrogate) µg/L - 4.8 5 60 - 140 96 Bromofluorobenzene (Surrogate) µg/L - 4.3 5 60 - 140 96 Solatle Petroleum Hytrocarbons In Sol Ket/AU/Fet/AU Ket/AU/Fet/AU Ket/AU/Fet/AU Sample Number Parameter mg/kg 25 225 24.65 60 - 140 99 Surrogates Dibromofluoromethane (Surrogate) mg/kg 20 21 23.2 60 - 140 99 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.3 5 60 - 140 99 d8-loluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-loluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-loluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-loluene (Surroga			· · ·						111
d8-toluene (Surrogate) bromofluorobenzene (Surrogate) µg/L - 4.8 5 60 - 140 96 Sample Vurbear µg/L - 4.3 5 60 - 140 96 Sample Vurbear Parameter verback verback Verback KE-(AU)-(ENV)/ Sample Vurbear Parameter Units LOR Result Expected Criteria % Recove B120283.002 TRH C6-C10 mg/kg 25 <25			m/p-xylene	μg/L	1	100	90.9	60 - 140	111
Bromofluorobenzene (Surrogate) μgL - 4.3 5 60 - 140 86 Coldite Detroleum Hydrocarbons In Sol Interter Carbons In Sol Sample Number Parameter Units LOR Result Expected Oriental Recover LB120283.002 TRH C6-C10 mg/kg 25 <25 24.65 60 - 140 99 Marco Colspan=16 TRH C6-C10 mg/kg 20 21 23.2 60 - 140 99 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.3 5 60 - 140 99 d4-1.2-dichloroethane (Surrogate) mg/kg - 4.6 5 60 - 140 90 Montluorobenzene (Surrogate) mg/kg - 4.6 5 60 - 140 90 Other Expected mg/kg - 5.1 5 60 - 140 90 Montluorobenzene (Surrogate) mg/kg - 5.1 5 60 - 140 90 Sample Number Parameter Parameter <td></td> <td>Surrogates</td> <td>m/p-xylene o-xylene</td> <td>μg/L μg/L</td> <td>1 0.5</td> <td>100 51</td> <td>90.9 45.45</td> <td>60 - 140 60 - 140</td> <td>112</td>		Surrogates	m/p-xylene o-xylene	μg/L μg/L	1 0.5	100 51	90.9 45.45	60 - 140 60 - 140	112
Violatile Patroleum Hydrocarbons in Soli Method: ME-(AU)-[ENV]A Sample Number Parameter Units LOR Result Expected Criteria % Recove B120283.002 TRH C6-C10 mg/kg 25 <25		Surrogates	m/p-xylene o-xylene Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L	1 0.5 -	100 51 4.7	90.9 45.45 5	60 - 140 60 - 140 60 - 140	112 93
Sample Number Parameter Units LOR Result Expected Criteria % Recove LB120283.002 TRH C6-C10 mg/kg 25 <25		Surrogates	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L	1 0.5 - -	100 51 4.7 5.0	90.9 45.45 5 5	60 - 140 60 - 140 60 - 140 60 - 140	112 93 99
Sample Number Parameter Units LOR Result Expected Criteria % Recove LB120283.002 TRH C6-C10 mg/kg 25 <25		Surrogates	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	1 0.5 - -	100 51 4.7 5.0 4.8	90.9 45.45 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 93 99 96
LB120283.002 TRH C6-C10 mg/kg 25 <25 24.65 60 - 140 99 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.3 5 60 - 140 90 41.2-dichloroethane (Surrogate) mg/kg - 4.3 5 60 - 140 92 42.12-dichloroethane (Surrogate) mg/kg - 4.6 5 60 - 140 92 43.1 5 60 - 140 92 93	′olatile Petroleum		m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L	1 0.5 - -	100 51 4.7 5.0 4.8	90.9 45.45 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 93 99 96 86
TRH C6-C9 mg/kg 20 21 23.2 60 - 140 90 Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.3 5 60 - 140 85 d4-1,2-dichloroethane (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-toluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 Bromofluorobenzene (Surrogate) mg/kg - 4.6 5 60 - 140 92 Bromofluorobenzene (Surrogate) mg/kg - 4.6 5 60 - 140 92 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg - 5.1 5 60 - 140 130 rotatile Petroleum Hydrocarbons in Water result Expected Criteria % Recover Sample Number Parameter LOR Result Expected Criteria % Recover LB120292.002 TRH C6-C10 TRH C6-C10 µg/L 50 940 946.63 60 - 140 93 Surrog		n Hydrocarbons in S	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll	μg/L μg/L μg/L μg/L μg/L μg/L	1 0.5 - - -	100 51 4.7 5.0 4.8 4.3	90.9 45.45 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A	112 93 99 96 86 U)-[ENV]A
Surrogates Dibromofluoromethane (Surrogate) mg/kg - 4.3 5 60 - 140 85 d4-1,2-dichloroethane (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-toluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 Bromofluorobenzene (Surrogate) mg/kg - 4.6 5 60 - 140 92 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg - 5.1 5 60 - 140 130 rotecture term Sample Number Parameter VInts LOR Result Expected Criteria % Recove LB120292.002 TRH C6-C10 TRH C6-C10 µg/L 50 940 946.63 60 - 140 93 Surrogates Dibromofluoromethane (Surrogate) µg/L 50 940 946.63 60 - 140 93 d4-12-dichloroethane (Surrogate) µg/L 50 5 60 - 140 113 d8-toluene (Surrogate) µg/L	Sample Number	n Hydrocarbons in S	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter	μg/L μg/L μg/L μg/L μg/L μg/L Units	1 0.5 - - - LOR	100 51 4.7 5.0 4.8 4.3 Result	90.9 45.45 5 5 5 5 5 Expected	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria %	112 93 99 96 86 U)-[ENV]A Recover
d4-1,2-dichloroethane (Surrogate) mg/kg - 4.6 5 60 - 140 92 d8-toluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 Bromofluorobenzene (Surrogate) mg/kg - 5.1 5 60 - 140 92 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg - 5.1 5 60 - 140 130 colattile Petroleum Hydrocarbons in Water Parameter VINts LOR Result Expected Criteria Recove LB120292.002 TRH C6-C10 TRH C6-C10 µg/L 50 940 946.63 60 - 140 99 LB120292.002 TRH C6-C9 µg/L 50 940 946.63 60 - 140 99 Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 93 d8-toluene (Surrogate) µg/L - 5.7 5 60 - 140 113 d8-toluene (Surrogate) µg/L - 5.6 5	Sample Number	n Hydrocarbons in S	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg	1 0.5 - - - LOR 25	100 51 4.7 5.0 4.8 4.3 Result <25	90.9 45.45 5 5 5 5 5 5 5 5 2 Expected 24.65	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Vethod: ME-(A Criteria % 60 - 140	112 93 99 96 86 U)-[ENV]A Recove 99
d8-toluene (Surrogate) mg/kg - 4.6 5 60 - 140 92 Bromofluorobenzene (Surrogate) mg/kg - 5.1 5 60 - 140 101 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25	Sample Number	n Hydrocarbons in S r	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioli Parameter TRH C6-C10 TRH C6-C9	μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg	1 0.5 - - - - - - - 25 20	100 51 4.7 5.0 4.8 4.3 Result <25 21	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-{A Criteria % 60 - 140 60 - 140	112 93 99 96 86 U)-[ENV]A Recove 99 90
Bromofluorobenzene (Surrogate) mg/kg - 5.1 5 60 - 140 101 VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 25 7.25 60 - 140 130 Colatile Petroleum Hytocarbons in Water between the standing of th	Sample Number	n Hydrocarbons in S r	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) icili Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - 25 20 -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140	112 93 99 96 86 U)-[ENV]A Recove 99 90 85
VPH F Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 7.25 60 - 140 130 Volatile Petroleum Hytrocarbons in Water bethod: ME-(AU)-[ENV]A Method: ME-(AU)-[ENV]A Sample Number Parameter LOR Result Expected Criteria % Recover LB120292.002 TRH C6-C10 mg/L 50 940 946.63 60 - 140 99 TRH C6-C9 mg/L 40 760 818.71 60 - 140 93 Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 113 d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 113 Bromofluorobenzene (Surrogate) µg/L - 5.6 5 60 - 140 113 Bromofluorobenzene (Surrogate) µg/L - 5.6 5 60 - 140 113 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 113	Sample Number	n Hydrocarbons in S r	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioil Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - 25 20 -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6	90.9 45.45 5 5 5 5 5 5 Expected 24.65 23.2 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	112 93 99 96 86 U)-(ENV)/ Recove 99 90 85 92
Method: ME-(AU)-[ENVIA Sample Number Parameter Units LOR Result Expected Criteria % Recove LB120292.002 TRH C6-C10 µg/L 50 940 946.63 60 - 140 99 TRH C6-C9 µg/L 40 760 818.71 60 - 140 93 Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 110 d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 1112 Bromofluorobenzene (Surrogate) µg/L - 5.6 5 60 - 140 1112 Bromofluorobenzene (Surrogate) µg/L - 5.6 5 60 - 140 1112	Sample Number	n Hydrocarbons in S r	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - 25 20 - - - -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	1112 93 99 96 86 U)-[ENV]A Recove 99 90 85 92 92
Sample Number Parameter Units LOR Result Expected Criteria % Recover LB120292.002 TRH C6-C10 µg/L 50 940 946.63 60 - 140 99 TRH C6-C9 µg/L 40 760 818.71 60 - 140 93 Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 110 d4-1,2-dichloroethane (Surrogate) µg/L - 5.7 5 60 - 140 113 Bromofluorobenzene (Surrogate) µg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 102	Sample Number	n <mark>Hydrocarbons in S</mark> r Surrogates	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) koll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) B*-toluene (Surrogate) Bromofluorobenzene (Surrogate)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - - - - - - - - - -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Wethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	1112 93 99 96 86 U)-[ENV]A Recove 99 90 85 92 92 92 101
TRH C6-C10 µg/L 50 940 946.63 60 - 140 99 TRH C6-C9 µg/L 40 760 818.71 60 - 140 93 Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 110 d4-1,2-dichloroethane (Surrogate) µg/L - 5.7 5 60 - 140 113 d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 102	Sample Number	n Hydrocarbons in S r Surrogates VPH F Bands	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1)	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - - - - - - - - - - - - - - - -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 7.25	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	112 93 99 96 86 U)-[ENV]A Recove 99 90 85 92 92 92 101 130
TRH C6-C9 µg/L 40 760 818.71 60 - 140 93 Surogates Dibromofluoromethane (Surrogate) µg/L - 5.5 50 60 - 140 110 d4-1,2-dichloroethane (Surrogate) µg/L - 5.7 5 60 - 140 113 d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 102	Sample Number LB120283.002 'olatile Petroleum	surrogates VPH F Bands	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - - 25 20 - - - - 25 25	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25	90.9 45.45 5 5 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 5 7.25	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Nethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Solution 60 - 140 Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solu	112 93 99 96 86 U)-(ENV)A Recove 99 90 85 92 92 101 130 U)-(ENV)A
Surrogates Dibromofluoromethane (Surrogate) µg/L - 5.5 5 60 - 140 110 d4-1,2-dichloroethane (Surrogate) µg/L - 5.7 5 60 - 140 113 d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 102	Sample Number LB120283.002 [/] olatile Petroleum Sample Number	surrogates VPH F Bands	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter	μg/L	1 0.5 - - - 25 20 - - - 25 - 25 - LOR	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25 Expected	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Nethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria %	112 93 99 96 86 U)-(ENV)A Recove 99 90 85 92 92 101 130 U)-(ENV)A Recove
d4-1,2-dichloroethane (Surrogate) μg/L - 5.7 5 60 - 140 113 d8-toluene (Surrogate) μg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) μg/L - 5.1 5 60 - 140 102	Sample Number LB120283.002 [/] olatile Petroleum Sample Number	surrogates VPH F Bands	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) icili Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	1 0.5 - - - 25 20 - - - 25 - 25 - 25 - 25 -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 7.25 Expected 946.63	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Nethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140	112 93 99 96 86 U)-(ENV)A Recove 99 90 85 92 92 101 130 U)-(ENV)A Recove 99
d8-toluene (Surrogate) µg/L - 5.6 5 60 - 140 112 Bromofluorobenzene (Surrogate) µg/L - 5.1 5 60 - 140 102	Sample Number LB120283.002 [/] olatile Petroleum Sample Number	r Surrogates VPH F Bands n Hydrocarbons in V	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) tioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10	μg/L	1 0.5 - - - 25 20 - - - 25 - 25 - 25 - 25 -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940 760	90.9 45.45 5 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 7.25 Expected 946.63 818.71	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Nethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Kethod: ME-(A) Kethod: ME-(A) Ketho	1112 93 99 96 86 U)-(ENV)A Recove 99 90 85 92 92 101 130 U)-(ENV)A Recove 99 93
Bromofluorobenzene (Surrogate)	Sample Number LB120283.002 'olatile Petroleum Sample Number	r Surrogates VPH F Bands n Hydrocarbons in V	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-10uene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 TRH C6-C10 Dibromofluoromethane (Surrogate)	μg/L μg/kg mg/kg mg/kg	1 0.5 - - - 25 20 - - - 25 25 - - - 25 - 25	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940 760 5.5	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25 Expected 946.63 818.71 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 Method: ME-(A Criteria % 60 - 140 60	1112 93 99 96 86 U)-(ENV) Recove 99 90 85 92 92 101 130 U)-(ENV) Recove 99 93 110
	Sample Number LB120283.002 'olatile Petroleum Sample Number	r Surrogates VPH F Bands n Hydrocarbons in V	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) toll Parameter TRH C6-C10 TRH C6-C9 Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) d8-toluene (Surrogate) Vator Parameter TRH C6-C10 <	μg/L mg/kg mg/kg	1 0.5 - - - 25 20 - - - - 25 25 - - - - 25 - 25	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940 760 5.5 5.7	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25 Expected 946.63 818.71 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	1112 93 99 96 86 U)-(ENV)A Recove 99 90 85 92 92 101 130 U)-(ENV)A Recove 99 93 110
	Sample Number LB120283.002 'olatile Petroleum Sample Number	r Surrogates VPH F Bands n Hydrocarbons in V	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C	μg/L mg/kg μg/L μg/L μg/L μg/L μg/L μg/L	1 0.5 - - - 25 20 - - - - 25 25 - - - - 25 - 25	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940 760 5.5 5.7 5.6	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25 Expected 946.63 818.71 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	112 93 99 96 86 WJ-[ENV]A Recove 99 90 85 92 101 130 UJ-[ENV]A Recove 99 93 110 113
	Sample Number LB120283.002 /olatile Petroleum	r Surrogates VPH F Bands n Hydrocarbons in V	m/p-xylene o-xylene Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d8-toluene (Surrogate) Bromofluorobenzene (Surrogate) ioll Parameter TRH C6-C10 TRH C6-C9 Dibromofluorobenzene (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) d4-1,2-dichloroethane (Surrogate) Vater Parameter TRH C6-C10 TRH C6-C10 TRH C6-C10 minus BTEX (F1) Vater Parameter TRH C6-C10 TRH C6-C	μg/L mg/kg μg/L μg/L μg/L μg/L μg/L μg/L	1 0.5 - - - 25 20 - - - - 25 25 20 - - - - 25 25 20 - - - - - 25 20 - - - - - - - - - - - - - - - - - -	100 51 4.7 5.0 4.8 4.3 Result <25 21 4.3 4.6 4.6 5.1 <25 Result 940 760 5.5 5.7 5.6	90.9 45.45 5 5 5 5 Expected 24.65 23.2 5 5 5 5 5 5 7.25 Expected 946.63 818.71 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 Kethod: ME-(A Criteria % 60 - 140 60 -	112 93 99 96 86 WJ-[ENV]A Recove 99 90 85 92 101 130 UJ-[ENV]A Recove 99 93 110 113

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312 QC Sample Sample Number Parameter Units LOR Result Original Spike Recovery%									
	Mercury (dissolve	d) in Water				Met	thod: ME-(AU)-	[ENV]AN311	(Perth)/AN312
	QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162994.083 LB120504.017 Mercury mg/L 0.0001 0.0075 <0.0001 0.008 94	SE162994.083	LB120504.017	Mercury	mg/L	0.0001	0.0075	<0.0001	0.008	94

Mercury in Soil

Mercury in Soil						Met	hod: ME-(AU	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162908.004	LB120491.004	Mercury	mg/kg	0.05	0.17	<0.05	0.2	71

PAH (Polynuclea	r Aromatic Hydrocart	bons) in Soil					Met	nod: ME-(Al	J)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE162924.002	LB120317.024		Naphthalene	mg/kg	0.1	4.1	<0.1	4	102
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.0	<0.1	4	101
			Acenaphthene	mg/kg	0.1	3.9	<0.1	4	99
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	4.0	<0.1	4	101
			Anthracene	mg/kg	0.1	3.9	<0.1	4	98
			Fluoranthene	mg/kg	0.1	3.5	<0.1	4	87
			Pyrene	mg/kg	0.1	4.2	<0.1	4	104
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.6	<0.1	4	90
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ</td><td>0.2</td><td>3.6</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ	0.2	3.6	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.7</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	3.7	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.7</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.7	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	31	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	74
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	80
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	72
otal Recoverab	le Metals in Soil/Was	te Solids/Materia	Is by ICPOES				Method: ME	-(AU)-[ENV	AN040/AN32
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E162924.001	LB120475.004		Arsenic, As	mg/kg	3	50	5	50	90
			Cadmium, Cd	mg/kg	0.3	45	0.4	50	90
			Chromium, Cr	mg/kg	0.3	58	13	50	89
			Copper, Cu	mg/kg	0.5	93	45	50	94
			Lead, Pb	mg/kg	1	720	630	50	171 ⑨
			Nickel, Ni	mg/kg	0.5	49	4.9	50	88
			Zinc, Zn	mg/kg	0.5	390	360	50	63 (9)
ace Metals (Di	ssolved) in Water by	ICPMS					Mett	nod: ME-(Al	J)-[ENV]AN3
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
E162904.005	LB120297.004		Lead, Pb	µg/L	1	22	<1	20	113
				19-				-	

TRH (Total Recoverable Hydrocarbons) in Soll

QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE162924.002	LB120317.024	TRH C10-C14	mg/kg	20	36	<20	40	90
		TRH C15-C28	mg/kg	45	<45	<45	40	93
		TRH C29-C36	mg/kg	45	<45	<45	40	93
		TRH C37-C40	mg/kg	100	<100	<100	-	-
		TRH C10-C36 Total	mg/kg	110	110	<110	-	-
		TRH C10-C40 Total	mg/kg	210	<210	<210	-	-

Method: ME-(AU)-[ENV]AN403

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample	Sample Numbe	ns) in Soll (continu	Parameter	Units	LOR	Result	Original	nod: ME-(AU Spike	Recovery
SE162924.002	LB120317.024	TRH F Bands			25	36	<25	40	90
SE 102924.002	LB120317.024	TKH F Ballus	TRH >C10-C16 (F2) TRH >C10-C16 (F2) - Naphthalene	mg/kg mg/kg	25	36	<25	- 40	- 90
					90	<90	<90	40	- 98
			TRH >C16-C34 (F3)	mg/kg	120	<120	<120	-	90
			TRH >C34-C40 (F4)	mg/kg	120	<120			-
OC's in Soil							Met	nod: ME-(AU)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recovery
SE162924.001	LB120283.004	Monocyclic	Benzene	mg/kg	0.1	2.0	<0.1	2.9	69
		Aromatic	Toluene	mg/kg	0.1	2.1	<0.1	2.9	70
			Ethylbenzene	mg/kg	0.1	2.3	<0.1	2.9	77
			m/p-xylene	mg/kg	0.2	4.5	<0.2	5.8	76
			o-xylene	mg/kg	0.1	2.3	<0.1	2.9	76
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.0	-	84
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.7	3.7	-	74
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.5	-	75
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.0	-	82
		Totals	Total Xylenes*	mg/kg	0.3	6.8	<0.3	-	-
			Total BTEX	mg/kg	0.6	13	<0.6	-	-
OCs in Water							Met	nod: ME-(AU)-[ENV]AN
QC Sample	Sample Numbe	2	Parameter	Units	LOR	Result	Original	Spike	Recover
SE162927.019	LB120292.012	Monocyclic	Benzene	µg/L	0.5	rtoount	0.06	45.45	106
52102021.010	20120202.012	Aromatic	Toluene	μg/L	0.5		0.08	45.45	88
		/ tomate	Ethylbenzene	μg/L	0.5		0.04	45.45	105
			m/p-xylene	μg/L	1		0.14	90.9	103
			o-xylene	μg/L	0.5		0.05	45.45	100
		Polycyclic	Naphthalene	μg/L	0.5		0.06		-
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.8	4.61		95
		Sunogates	d4-1,2-dichloroethane (Surrogate)	μg/L		5.0	4.65		101
						4.9	4.03	-	98
			d8-toluene (Surrogate)	μg/L			5.52	-	
			Bromofluorobenzene (Surrogate)	μg/L	-	5.7			114
olatile Petroleur	m Hydrocarbons in \$	Soil					Met	nod: ME-(AU)-[ENV]AN4
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Result	Original	Spike	Recover
SE162924.001	LB120283.004		TRH C6-C10	mg/kg	25	<25	<25	24.65	90
			TRH C6-C9	mg/kg	20	<20	<20	23.2	81
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.2	4.0	-	84
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.7	3.7	-	74
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.5	-	75
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	4.0	-	82
		VPH F	Benzene (F0)	mg/kg	0.1	2.0	<0.1	-	-
		Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	7.25	128
olatile Petroleur	n Hydrocarbons in \	Vater					Met	nod: ME-(AU)-[ENV]AN
QC Sample	Sample Numbe	r	Parameter	Units	LOR	Original	Spike	Recovery%	, D
SE162927.019	LB120292.012		TRH C6-C10	µg/L	50	0	946.63	98	1
			TRH C6-C9	μg/L	40	0	818.71	104	1
		Surrogates	Dibromofluoromethane (Surrogate)	μg/L	-	4.61	-	95	1
			d4-1,2-dichloroethane (Surrogate)	μg/L	-	4.65	-	101	1
			d8-toluene (Surrogate)	μg/L		4.13	-	98	1
			Bromofluorobenzene (Surrogate)	μg/L	-	5.52	-	114	1
		VPH F	Benzene (F0)	μg/L	0.5	0.06	-	-	1

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- O LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service, available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained herein reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This test report shall not be reproduced, except in full.

Table QC1 - Containers, F	Table QC1 - Containers, Preservation Requirements and Holding Times - Soil							
Parameter	Container	Preservation	Maximum Holding Time					
Acid digestible metals and metalloids - Total and TCLP (As,Cd.,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon Lid	Nil	6 months					
Mercury	Glass with Teflon Lid	Nil	28 days					
TPH / BTEX / VOC / SVOC / CHC	Glass with Teflon Lid	4°C, zero headspace	14 days					
PAHs (total and TCLP)	Glass with Teflon Lid	4°C ¹	14 days					
Phenols	Glass with Teflon Lid	4°C ¹	14 days					
OCPs, OPPs and total PCBs	Glass with Teflon Lid	4°C ¹	14 days					
Asbestos	Sealed Plastic Bag	Nil	N/A					

Table QC2 - Containers, Preservation Requirements and Holding Times - Water							
Parameter	Container Volume (mL)	Preservation	Maximum Holding Time				
Heavy Metals	125mL Plastic	Field filtration 0.45µm HNO ₃ / 4°C	6 months				
Cyanide	125mL Amber Glass	pH > 12 NaOH / 4°C	6 months				
TPH (C6-C9) / BTEX / VOCs SVOCs / CHCs	4 x 43mL Glass	HCI / 4°C ¹	14 days				
TPH (C10-C36) / PAH / Phenolics OCP / OPP / TDS / pH	3 x 1L Amber Glass	None / 4°C ¹	28 days				

Notes: ¹ = Extraction within 14 days, Analysis within 40 days.

Table QC3 - Analytical Parameters, PQLs and Methods - Soil									
Parameter	Unit	PQL	Method Reference						
Metals in Soil									
Arsenic - As ¹	mg / kg	1	USEPA 200.7						
Cadmium - Cd ¹	mg / kg	0.5	USEPA 200.7						
Chromium - Cr ¹	mg / kg	1	USEPA 200.7						
Copper - Cu ¹	mg / kg	1	USEPA 200.7						
Lead - Pb ¹	mg / kg	1	USEPA 200.7						
Mercury - Hg ²	mg / kg	0.1	USEPA 7471A						
Nickel - Ni ¹	mg / kg	1	USEPA 200.7						
Zinc - Zn ¹	mg / kg	1	USEPA 200.7						
Total Petroleum Hydrocarbons (TPHs) in Soil									
C ₆ -C ₉ fraction	mg / kg	25	USEPA 8260						
C ₁₀ -C ₁₄ fraction	mg / kg	50	USEPA 8000						
C ₁₅ -C ₂₈ fraction	mg / kg	100	USEPA 8000						
C ₂₉ -C ₃₆ fraction	mg / kg	100	USEPA 8000						
BTEX in Soil									
Benzene	mg / kg	1	USEPA 8260						
Toluene	mg / kg	1	USEPA 8260						
Ethylbenzene	mg / kg	1	USEPA 8260						
m & p Xylene	mg / kg	2	USEPA 8260						
o- Xylene	mg / kg	1	USEPA 8260						
	Other Organic C	ontaminants i	n Soil						
PAHs	mg / kg	0.05-0.2	USEPA 8270						
CHCs	mg / kg	1	USEPA 8260						
VOCs	mg / kg	1	USEPA 8260						
SVOCs	mg / kg	1	USEPA 8260						
OCPs	mg / kg	0.1	USEPA 8140, 8080						
OPPs	mg / kg	0.1	USEPA 8140, 8080						
PCBs	mg / kg	0.1	USEPA 8080						
Phenolics	mg / kg	5	APHA 5530						
	As	bestos							
Asbestos	mg / kg	Presence / Absence	AS4964-2004						

Notes:

1. Acid Soluble Metals by ICP-AES

2. Total Recoverable Mercury

Parameter	Unit	PQL	Method	Parameter	Unit	PQL	Method
	Heavy	Metals		Chlorinated	Hydroc	arbons	(CHCs)
Antimony - Sb	μg/L	1	USEPA 200.8	1,2-dichlorobenzene	μg/L	1	USEPA 8260B
Arsenic - As	μg/L	1	USEPA 200.8	1,3-dichlorobenzene	μg/L	1	USEPA 8260B
Beryllium - Be	μg/L	0.5	USEPA 200.8	1,4-dichlorobenzene	μg/L	1	USEPA 8260B
Cadmium - Cd	μg/L	0.1	USEPA 200.8	1,2,3-trichlorobenzene	μg/L	1	USEPA 8260B
Chromium - Cr	μg/L	1	USEPA 200.8	1,2,4-trichlorobenzene	μg/L	1	USEPA 8260B
Cobalt - Co	μg/L	1	USEPA 200.8	Hexachlorobutadeine	μg/L	1	USEPA 8260B
Copper - Cu	μg/L	1	USEPA 200.8	1,1,2-trichloroethane	μg/L	1	USEPA 8260B
Lead - Pb	μg/L	1	USEPA 200.8	Hexachloroethane	μg/L	10	USEPA 8270D
Mercury - Hg	μg/L	0.5	USEPA 7471A	Other CHCs	μg/L	1	USEPA 8260B
Molybdenum - Mo	μg/L	1	USEPA 200.8	Volatile Orga		npounds	
Nickel - Ni	μg/L	1	USEPA 200.8	Aniline	μg/L	10	USEPA 8260B
Selenium - Se	μg/L	1	USEPA 200.8	2,4-dichloroaniline	μg/L	10	USEPA 8260B
Silver - Ag	μg/L	1	USEPA 200.8	3,4-dichloroaniline	μg/L	10	USEPA 8260B
Tin (inorg.) - Sn	μg/L	1	USEPA 200.8	Nitrobenzene	μg/L	50	USEPA 8260B
Nickel - Ni	μg/L	1	USEPA 200.8	2,4-dinitrotoluene	μg/L	50	USEPA 8260B
Zinc - Zn	μg/L	1	USEPA 200.8	2,4,6-trinitrotoluene	μg/L	50	USEPA 8260B
Total Petro		drocarb		Phenolic Compounds			
C ₆ -C ₉ fraction	μg/L	10	USEPA 8220A / 8000	Phenol	μg/L	10	USEPA 8041
C ₁₀ -C ₁₄ fraction	μg/L	50	USEPA 8000	2-chlorophenol	μg/L	10	USEPA 8041
C ₁₅ -C ₂₈ fraction	μg/L	100	USEPA 8000	4-chlorophenol	μg/L	10	USEPA 8041
C ₂₉ -C ₃₆ fraction	μg/L	100	USEPA 8000	2, 4-dichlorophenol	μg/L	10	USEPA 8041
	BT	ΈX		2,4,6-trichlorophenol	μg/L	10	USEPA 8041
Benzene	μg/L	1	USEPA 8220A	2,3,4,6-tetrachlorophenol	μg/L	10	USEPA 8041
Toluene	μg/L	1	USEPA 8220A	Pentachlorophenol	μg/L	10	USEPA 8041
Ethylbenzene	μg/L	1	USEPA 8220A	2,4-dinitrophenol	μg/L	10	USEPA 8041
m- & p-Xylene	μg/L	2	USEPA 8220A	Miscella	aneous	Paramet	ers
o-Xylene	μg/L	1	USEPA 8220A	Total Cyanide	μg/L	5	APHA 4500C&E-CN
Polyciclic Are	omatic H	lydrocar	bons (PAHs)	Fluoride	μg/L	10	APHA 4500 F-C
PAHs	μg/L	0.1	USEPA 8270	Salinity (TDS)	mg/L	1	APHA 2510
Benzo(a)pyrene	μg/L	0.01	USEPA 8270	рН	units	0.1	APHA 4500H+
OrganoChlorine Pesticides (OCPs)				OrganoPhos	phate P	esticide	s (OPPs)
Aldrin	μg/L	0.001	USEPA 8081	Azinphos Methyl	μg/L	0.01	USEPA 8141
Chlordane	μg/L	0.001	USEPA 8081	Chloropyrifos	μg/L	0.01	USEPA 8141
DDT	μg/L	0.001	USEPA 8081	Diazinon Dimotheoto	μg/L	0.01	USEPA 8141
Dieldrin Endosulfan	μg/L μg/L	0.001	USEPA 8081 USEPA 8081	Dimethoate Fenitrothion	μg/L	0.01 0.01	USEPA 8141 USEPA 8141
Endrin	μg/L μg/L	0.001	USEPA 8081	Malathion	μg/L μg/L	0.01	USEPA 8141
Heptachlor	μg/L	0.001	USEPA 8081	Parathion	μg/L μg/L	0.01	USEPA 8141
Lindane	μg/L	0.001	USEPA 8081	Temephos	μg/L	0.01	USEPA 8141
Toxaphene	μg/L	0.001	USEPA 8081	Polychlorin			
				Individual PCBs	μg/L	0.01	USEPA 8081

Table QC4 - Analytical Parameters, PQLs and Methods - Groundwater

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Duplicates and Split Samples	The assessment of split duplicate is undertaken by calculating the Relative Percent Difference (RPD) of the duplicate concentration compared with the primary sample concentration. The RPD is defined as: $RPD = 100 \text{ x} \frac{ X_1 - X_2 }{\text{mean}(X1, X2)}$ Where: X ₁ and X ₂ are the concentrations of the primary and duplicate samples.	 The acceptable range depends upon the levels detected: 0-150% RPD (when the average concentration is <5 times the LOR/PQL) 0-75% RPD (when the average concentration is 5 to 10 times the LOR/PQL) 0-50% RPD (when the average concentration is >10 times the LOR/PQL)
Rinsate & Trip Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>
Laboratory prepared Frip Spike	The Trip Spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70 - 130%
	Laboratory QC	
_aboratory Duplicates	Assessment of Lab Duplicate RPD as per Blind Duplicates and Split Samples.	Lab Duplicate RPD < 15% (Inorganics) Lab Duplicate RPD < 30% (Organics) for sample result > 10 LOR
Surrogates	Assessment is undertaken by determining the percent recovery of the known surrogate spike (SS) or addition to the sample.	at least 2 SS recoveries to be within 70-130% subject to matrix effects (Organics)
Matrix Spikes Laboratory Control Samples	% Recovery = $100 \times \frac{C - A}{B}$ Where: A = Concentration of analyte determined in the original sample; B = Added Concentration; and C = Calculated Concentration.	80-120% (Inorganics / Metals) 60-140% (Organics) 10-140% (SVOC and Speciated Phenols) If the result is outside the above ranges, the result must be <3x Standard Deviation of the Historical Mean (calculated over the past 12 months).
Sample Matrix Spike Duplicates	Recovery RPD	<30% (Inorganics & Organics)
Calibration Check Standars	Continuous Calibration Verification (CCV)	CCV must be within ±15% (inorganics) CCV must be within ±25% (inorganics)
Reagent, Method & Calibration Check Blanks	Each blank is analysed as per the original samples.	Analytical Result <lor pql<="" td=""></lor>

SGS Environmental Services is accredited by NATA for Chemical Testing (Reg.No.2562) and Quality System compliance to ISO/IEC 17025. The QC parameters contained within are designed to meet NEPM 1999 requirements.

Quality Control samples included in any analytical run are listed below.

Reagent/Analysis Blank (BLK) Method Blank (MB)	Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. A reagent blank is prepared and analysed with every batch of samples plus with each new batch of solvent prior to use.
Sample Matrix Spike (MS) & Matrix Spike Duplicate (MSD)	Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and <u>prior to the extraction/digestion procedure</u> . They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water may be used. A duplicate spiked sample is analysed at least every 20 samples.
Surrogate Spike (SS)	At least one but up to three surrogate compounds are added to all samples requiring analysis for organics prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Where possible they are surrogate compounds recommended by the USEPA.
Control Matrix Spike (CMS)	To ensure spike recoveries can be determined for every batch of samples a control matrix is spiked with identical concentrations of target analyte(s) and then analysed. These results allow recoveries to be determined in the event that the matrix spikes are unusable (eg. matrix spikes performed on heavily contaminated samples). These are analysed at least every 20 samples.
Internal Standard (IS)	Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Where possible they are standard compounds recommended by the USEPA.
Lab Duplicates (D)	A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.
Lab Control Standards/Samples (LCS)	Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity. Thereafter they are analysed at least every one in 20 samples plus at the end of each analytical run. This data is not reported.
Continuous Calibration Verification (CCV) or	A calibration check standard or CCV and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.
Calibration Check Standard & Blank	Calibration Standards are checked old versus new with a criteria of ±10%

Quality Assurance Programs are listed below:

Statistical analysis of Quality Control data (SQC)	Quality control data is plotted on control charts using the APHA procedure with warning and control limits at 2 and 3 standard deviations respectively. See also QMS Procedure "Statistical Quality Control".
Certified Reference Materials (CRM/SRM)	Certified Reference Materials and Standards are regularly analysed. These materials/standards have certified reference values for various parameters.
Proficiency Testing	Regular proficiency test samples are analysed by our laboratories. SGS Environmental participates in a number of programs. Results and proficiency status are compiled and sent to participating laboratory post data interpretation. Failure to comply with acceptable values result in further investigations.
Inter-laboratory & Intra- laboratory Testing	SGS Environmental Services has schedules in the Quality Systems to participate in Inter/Intra laboratory testing conducted internally and by other parties.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all inorganic tests. All recoveries are to be reported to 3 significant figures.	 Failure to meet the internal acceptance criteria will result in sample batch repeats dependent upon investigation outcomes. For data to be accepted: Inorganics (water samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab Duplicates RPD to be <15%*. Note: If client <u>field</u> duplicates do not meet this criteria it may indicate heterogeneity and shall be noted on the data reports for QC samples. Sample (and if applicable Control) Matrix Spike ⁴ Duplicate recovery RPD to be <30%. Where CRMs are used, results to be within ±2 standard deviations of the expected value. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. Inorganics (soil samples) For all inorganic analytes the Reagent & Method Blanks must be less than the LOR. The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within ±15%. Control Standards must be 80-120% of the accepted value. The Calibration Check Blanks must be less than the LOR. Lab duplicate RPD to be <30%* for sample results greater than 10 times LOR. Sample Matrix Spike Duplicate (MS⁴/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D). Where CRMs are used, results to be within ±2 standard deviations of the expected value.
	 Where CRMs are used, results to be within ± 2 standard deviations of the expected value.

	Organics
	 Volatile & extractable Reagent & Method Blanks must contain levels less than or equal to LOR.
	 The Calibration Check Standards or Continuous Calibration Verification (CCV) must be within [±]25%. Some analytes may have specific criteria.
	 Control Standards (LCS/CMS) and Certified Reference Materials (CRM) recoveries are to be within established control limits or as a default 60-140% unless compound specific limits apply.
	 Retention times are to vary by no more than 0.2 min.
Data Acceptance Criteria Unless otherwise specified in the method or method manual the following general criteria apply to all organic tests. All recoveries are to be reported to 3 significant figures.	• At least two of three routine level soil sample Surrogate Spike (SS) recoveries are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as acceptance criterion. Any recoveries outside these limits will have comment.
	 Water sample Surrogates Spike (SS) recoveries are to be within 40- 130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion. Any recoveries outside these limits will have comment.
	 Lab Duplicates (D) must have a RPD <30%*.
	 Sample Matrix Spike Duplicate (MS^A/MSD) recovery RPD to be <30%. In the event that the matrix spike has been applied to samples whose matrix or contamination is problematic to the method then these acceptance criteria apply to the Control Matrix Spike (CMS/D).

*Only if results are at least 10 times the LOR otherwise no acceptance criteria for RPD's apply. Application of more stringent criteria shall be applied for clean water sample from water boards and any other nominated client contracts. Nominal 10xLOR criteria are dropped to 5xLOR where specified. ⁴ Matrix do not readily equate to definitive recovery due to inherent matrix interferences and thus do not have recovery compliance values set. As a guide inorganic recoveries should be between 70-130% and for organics 60-130%

Batch Structure Summary

An analytical batch is nominally considered as 20 samples or smaller. As a standard template the following should be **used as a guide** according to the above Quality Control Types:

1	MB	16	UNK_DUP
2	STD1	17	MS
3	STD2	18	MS_DUP
4	STD3	19	UNK 11
5	LCS	20	UNK 12
6	BLK	21	UNK 13
7	UNK 1	22	UNK 14
8	UNK 2	23	UNK 15
9	UNK 3	24	UNK 16
10	UNK 4	25	UNK 17
11	UNK 5	26	UNK 18
12	UNK 6	27	UNK 19
13	UNK 7	28	UNK 20 (SS if applicable)
14	UNK 8	29	UNK_DUP
15	UNK 9	30	CCV
16	UNK 10 (SS if applicable)	31	CRM / SRM / CMS / LCS

Detailed Site Investigation Report 77-123 Eveleigh Street, Redfern NSW Report No. E22964 AA_Rev0

APPENDIX J Land Title Records

Report Generated 2:03:02 PM, 8 March, 2017 Copyright © Land and Property Information ABN: 84 104 377 806 This information is provided as a searching aid only. While every endeavour is made to ensure the current cadastral pattern is accurately reflected, the Registrar General cannot guarantee the information provided. For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

Page 1 of 7

This negative is a photograph made as a permanent record of a document in the custody of the Registrar General this day. 3rd July, 1990 10 20 30 40 50 60 70 Table of mm 1 10 120 130 140

E 1 20 1:pe2 (20:512 0081200 P /Rev:31-Jul-1992 /Sts:0K.0K. /Pg:shll /Prt:08-Mar-2017 15:05 /Seg:1 of 1 Mistereleigh /Sio:M

ST

437987

326761

35.85

23.605

HOLDEN

DP

SELY 10.04

DP

NELY 0.145

NWLY

ŝ

2

SMLY 7-245

1.325

SELY

ST

EVELEIGH

Staff: Unknown /Doc: DP234111 (Deposited Plan-LTO Charting Maps) /Rev: 17 Sep 2007 /Prt: 8 Mar 2017 15:13 /Seq: 2 of 4 /Src: Pixel Warning: Supplied for historical reference purposes only.

6 534111

ED PLAN	
C 26-6-1968	
of my plan in 3 September, 1966	
of the plan of	
ertificate No	
•	
ouncil Clerk	
TES BACK IS EET	
323	D. & S34111
	Juade
et to an inch	3
R Per 65/507426 A.L F.B. Mike 3310	
F.B. Mike 3310 C.B 172-178	1

 \sim

ς.

Historical Title

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE 7/3/2017 9:22PM

FOLIO: 1/803299

First Title(s): OLD SYSTEM
Prior Title(s): CA46577

Recorded	Number	Type of Instrument	C.T. Issue
3/7/1990	CA46577	CONVERSION ACTION	FOLIO CREATED EDITION 1

29/11/1994	U826862	TRANSFER	EDITION 2
4/9/1997		AMENDMENT: LOCAL GOVT AREA	
14/3/2004	AA472866	DEPARTMENTAL DEALING	
14/9/2015	AJ811575	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

eveleigh

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/803299

SEARCH DATE	TIME	EDITION NO	DATE
8/3/2017	2:05 PM	2	29/11/1994

LAND

LOT 1 IN DEPOSITED PLAN 803299 AT REDFERN LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP803299

FIRST SCHEDULE

ABORIGINAL HOUSING COMANY LIMITED

(T U826862)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 U826862 COVENANT

NOTATIONS

NOTE: THE CERTIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES NOT INCLUDE SECURITY FEATURES INCLUDED ON COMPUTERISED CERTIFICATES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS RECOMMENDED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE IDENTITY OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND COMPRISED IN THIS FOLIO.

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

eveleigh

PRINTED ON 8/3/2017

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------7/3/2017 9:22PM

FOLIO; B/81200

ž

.

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 4493 FOL 228

Recorded	Number	Type of Instrument	C.T. Issue
2/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
13/8/1993		CONVERTED TO Auto consol 4493-228	CONSOL CREATED CT NOT ISSUED
14/3/2004	AA472866	DEPARTMENTAL DEALING	

*** END OF SEARCH ***

eveleigh

PRINTED ON 7/3/2017

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------7/3/2017 9:23PM

FOLIO: AUTO CONSOL 4493-228

1 1

Recorded 13/8/1993	Number	Type of Instrument CONSOL HISTORY RECORD CREATED FOR AUTO CONSOL 4493-228	C.T. Issue
		PARCELS IN CONSOL ARE: A-B/81200.	
29/11/1996 29/11/1996		A/326761 ADDED A/81200 EXCISED	
22/5/2013	AH542886	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	
22/5/2013	AH622818	APPLICATION TO RECORD A NEW	
22/5/2013	AH542931	REGISTERED PROPRIETOR TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 1

*** END OF SEARCH ***

eveleigh

Req:R324932 /Doc:DL AH622818 /Rev:24-May-2013 /Sts:NO.OK /Pgs:ALL /Prt:08-Mar-2017 15:03 /Seq:1 of 1 Ref:eveleigh /Src:M

	Form: 04RP Release: 40	APPLICATION TO RECORD NEW REGISTERED PROPRIETO New South Wales Section 46C Real Property Act 1900 Section 12(4) Trustee Act 1925						
	PRIVACY NOTE: Section 31B of the Real Property Act 1900 (RP Act) authorises the Registrar General to collect the information required by this form for the establishment and maintenance of the Real Property Act Register. Section 96B RP Act requires that the Register is made available to any person for search upon payment of a fee, if any. STAMP DUTY Office of State Revenue use only							
	STAMP DUTY	2) RCM SECTION MALES DOTY 13-03-2013 0007011437-001 SECTION 308-0RIGINAL VOID 0000015						
(A)	TORRENS TITLE	Folio Identifier 1/996782 and Auto Consol 4493 Folio 228	2					
(B)	REGISTERED DEALING	Number Torrens Title	19972					
(C)	LODGED BY	Document Name, Address or DX, Telephone, and Customer Account Number if any Collection Customer Account Number:123155F Sox Ashurst Australia DX 388 Sychey Tel: 02 9258 6000 Reference: CST RKP 02 2036 9163	provision in the					
(D)	APPLICANT	AUSTRALIAN SECURITIES AND INVESTMENTS COMMISSION	8					
(E)	PRESENT REGID PROPRIETOR	IURAWINA LIMITED &	AC					
(F)	NEW REGD PROPRIETOR	AUSTRALIAN SECURITIES AND INVESTMENTS COMMISSION						
	 APPLICATION UNDER SECTION 46C REAL PROPERTY ACT 1900 In regard to the above land , the applicant requests the Registrar General to record the new registered proprietor on the above folio of the Register, the land having vested in the new registered proprietor pursuant to— Section 601AD (2) Corporations Act 2001 upon the deregistration of Murawina Limited ACN 001 244 257 on 22 November 2009 							
(G) (l)	In regard to the a	The section 12(4) TRUSTEE ACT 1925 $f_{\rm eve}$, the applicant requests the Registrar General to record the new $f_{\rm eve}$ on the folio of the Register consequent on—						
	I certify I am an e signed this dealing [See note* below] Signature of with Mc Name of withers:	Signature of applicant:						
(K)	This section is to	e completed where a notice of sale is required and the relevant data has been forwarded through eNOS.						

The applicant certifies that the eNOS data relevant to this dealing has been submitted and stored under eNOS ID No. ______ Full name: _______ Signature:

* s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of 1

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: AUTO CONSOL 4493-228

SEARCH DATE	TIME	EDITION NO	DATE
8/3/2017	2:05 PM	1	22/5/2013

LAND

LAND DESCRIBED IN SCHEDULE OF PARCELS LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM SEE SCHEDULE OF PARCELS

FIRST SCHEDULE

ABORIGINAL HOUSING CO LTD

(TZ AH542931)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 AH542886 THIS EDITION ISSUED PURSUANT TO S.111 REAL PROPERTY ACT, 1900

NOTATIONS

UNREGISTERED DEALINGS: NIL

SCHEDULE OF PARCELS

LOT B IN DP81200 LOT A IN DP326761

DP81200 DP326761.

TITLE DIAGRAM

*** END OF SEARCH ***

eveleigh

PRINTED ON 8/3/2017

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

FOLIO: B/326761

14

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 4461 FOL 213

Recorded	Number	Type of Instrument	C.T. Issue
2/9/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
16/2/1990		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
4/9/1997		AMENDMENT: LOCAL GOVT AREA	
14/3/2004	AA472866	DEPARTMENTAL DEALING	
3/8/2012	AH138990	DEPARTMENTAL DEALING	
22/5/2013	AH542886	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	
22/5/2013	AH713826	APPLICATION TO RECORD A NEW	
22/5/2013	AH542914	REGISTERED PROPRIETOR TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 1

*** END OF SEARCH ***

eveleigh

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Req:R324733 /Doc:DL AH713826 /Rev:24-May-2013 /Sts:NO.OK /Pgs:ALL /Prt:08-Mar-2017 14:48 /Seq:1 of 1 Ref:eveleigh /Src:M

.

.....

•	by this form for	the establis	NEW REGIST New Section 46C I	he Real Property Ac	t Register. S		-	# ⁽ /s
	STAMP DUTY		ate Revenue use only		NEW-51 29-04 SECT (outh Wales Duty -2013 OC On 308-original Ty pryable	07934010-001	her Da
(A)	TORRENS TITLE	B/326761	Currently Being	9 VO1 4461 101:	213			(red):
(B)	REGISTERED DEALING	Number		Tomens		iA		credite
(C)	LODGED BY	Document Collection Box	Name, Address or DX, Teleph Customer Account Num Ashurst Australia DX 388 Sydney			er if any	CODE	24+ 257 (Deregistered) 50 2 24/3
(D)	APPLICANT	238N Australia	Reference: CST RKP 02 In Securities and Inve	and the second se	sion		RP	
(E)	PRESENT REGID PROPRIETOR	MURAWINA	LIMITED Ø					N 001
(F)	NEW REGID PROPRIETOR	AUSTRALIA	N SECURITIES AND INVI	ESTMENTS COMMIS	SION			& ALN
	 (G) APPLICATION UNDER SECTION 46C REAL PROPERTY ACT 1900 In regard to the above land , the applicant requests the Registrar General to record the new registered proprietor on the above folio of the Register, the land having vested in the new registered proprietor pursuant to— (H) Section 601AD(2) Corporations Act 2001 upon deregistration of Murawina Limited (H) Section 601AD(2) November 2009 							
(G) (I)	In regard to the at	ove	12(4) TRUSTEE ACT 1925 of the Register consequent on	, the applicant rec	puests the Reg	gistrar General to n	coord the new	
	signed this dealing [See note* below] Signature of witnes	gible witness in my presence s: MAG	and that the applicant re. OSERHINE ROW ER ASIC VEEN ST Q. 4000	Signature of a Signature of a The Common S Investments Com 601AE(2) of Peter Rola	applicant: Seal of the nmission is a the Co	Australian Security Australian Security affixed pursuant to reportions Act	2001	-
(K)	This section is to	be completed	where a notice of sale is rea	quired and the releva	nt data has i	been forwarded thi	rough eNOS.	

 The applicant
 certifies that the eNOS data relevant to this dealing has been submitted and stored under ENOS ID No.

 Full name:
 Signature:

* s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of 1 Feb 1303

÷

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: B/326761

SEARCH DATE	TIME	EDITION NO	DATE
8/3/2017	2:05 PM	1	22/5/2013

LAND

LOT B IN DEPOSITED PLAN 326761 LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP326761

FIRST SCHEDULE

ABORIGINAL HOUSING CO LTD

(TZ AH542914)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 AH542886 THIS EDITION ISSUED PURSUANT TO S.111 REAL PROPERTY ACT, 1900

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

eveleigh

PRINTED ON 8/3/2017

* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------7/3/2017 9:22PM

FOLIO: 1/996782

First Title(s): OLD SYSTEM Prior Title(s): CA73674

Recorded 13/12/1994	Number DP996782	Type of Instrument DEPOSITED PLAN	C.T. Issue LOT RECORDED FOLIO NOT CREATED
5/9/1997		AMENDMENT: LOCAL GOVT AREA	
15/12/1997	CA73674	CONVERSION ACTION	FOLIO CREATED EDITION 1
14/3/2004	AA472866	DEPARTMENTAL DEALING	
22/5/2013	AH622818	APPLICATION TO RECORD A NEW REGISTERED PROPRIETOR	
22/5/2013	AH542931	TRANSFER WITHOUT MONETARY CONSIDERATION	EDITION 2

*** END OF SEARCH ***

eveleigh

InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.

Req:R324932 /Doc:DL AH622818 /Rev:24-May-2013 /Sts:N0.0K /Pgs:ALL /Prt:08-Mar-2017 15:03 /Seq:1 of 1 Ref:eveleigh /Src:M

	Form: 04RP Release: 40	a.	NEW REGISTER	N TO RECORD RED PROPRIETO			
	PRIVACY NOTE: 1	Section 31B of	Section 46C Real Section 12(4) the Real Property Act 1900 (RP Act	I Property Act 1900 Trustee Act 1925 D authorises the Recist	AH6228 trar General to collect the infor		Į.
	the Register is ma	une establisi ide available to	nment and maintenance of the o any person for search upon payr	Real Property Act R	legister. Section 96B RP Ac	t requires that	ageriz
	STAMP DUTY		ite Revenue use only	nan or aros, ir ary.	MEN COUTH DALES ONTH		5
		(2)			NEW SOUTH WALES DUTY 13-03-2013 SECTION 308-ORIGINAL NO OUTY PAYABLE		001 244 257 (Deresistinal) 2010
(A)	TORRENS TITLE	Folio Identifier 1/996782 and Auto Consol 4493 Folio 228			tro		
(B)	REGISTERED DEALING	Number Torrens Title			ered 121		
(C)	LODGED BY	Document	Name, Address or DX. Telephon	e, and Qustomer Accor	umt Number if any		2
		Document Name, Address or DX, Telephone, and Customer Account Number if any CODE Collection Customer Account Number:123155F Box Box Ashurst Australia				150	
		238N		02 9258 6000		RP	\$
(D)	APPLICANT	AUSTRALIAN SECURITIES AND INVESTMENTS COMMISSION			8		
(E)	PRESENT REGD PROPRIETOR	MURAWINA LIMITED &			\$ ACN -		
(F)	NEW REGD PROPRIETOR	AUSTRALI	AN SECURITIES AND INVES	TIMENTS COMMISS	ION		8
	 G) APPLICATION UNDER SECTION 46C REAL PROPERTY ACT 1900 In regard to the above land , the applicant requests the Registrar General to record the new registered proprietor on the above folio of the Register, the land having vested in the new registered proprietor pursuant to— H) Section 601AD (2) Corporations Act 2001 upon the deregistration of Murawina Limited ACN 001 244 257 on 22 November 2009 						
(G)	APPLICATION UN In regard to the a		12(4) TRUSTEE ACT 1925	, the applicant requ	ests the Registrar General to	record the new	
(I)	registered proprie	tor on the foli	o of the Register consequent on—		-		
	DATE 19	عا عو اع	\$				
	1 certify 1 am an eligible witness and that the applicant signed this dealing in my presence. Certified correct for the purposes of the Real Property Act 1900 by the applicant. [See note* below] Certified correct for the purposes of the Real Property Act 1900 by the applicant.						
	Name of witness:	IRA JOSEF	R 601AE(2) of ST Refer Ridgert	Signature of an al of the Australia nission is affixed pu the Corporation	In Securities and in Securities and in Securities and in Section 24, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10		>
(K)	This section is to The applicant		d where a notice of sale is requ certifies that the eNOS da	<i>tired and the relevan</i> ta relevant to this de	<i>u data has been forwarded i</i> aling has been submitted an	<i>hrough eNOS.</i> d stored under	

eNOS ID No. Full name: Signature: * s117 RP Act requires that you must have known the signatory for more than 12 months or have sighted identifying documentation. ALL HANDWRITING MUST BE IN BLOCK CAPITALS Page 1 of 1 []]]

Title Search

Information Provided Through John McLaren & Co (NSW) Ph. 02 9231 4872 Fax. 02 9233 6557

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 1/996782

SEARCH DATE	TIME	EDITION NO	DATE
8/3/2017	2:05 PM	2	22/5/2013

LAND

LOT 1 IN DEPOSITED PLAN 996782 AT RDEFERN LOCAL GOVERNMENT AREA SYDNEY PARISH OF ALEXANDRIA COUNTY OF CUMBERLAND TITLE DIAGRAM DP996782

FIRST SCHEDULE

ABORIGINAL HOUSING CO LTD

(TZ AH542931)

SECOND SCHEDULE (2 NOTIFICATIONS)

1 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)

2 LIMITED TITLE. LIMITATION PURSUANT TO SECTION 28T(4) OF THE REAL PROPERTY ACT, 1900. THE BOUNDARIES OF THE LAND COMPRISED HEREIN HAVE NOT BEEN INVESTIGATED BY THE REGISTRAR GENERAL.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

eveleigh

PRINTED ON 8/3/2017

^{*} Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. InfoTrack an approved NSW Information Broker hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 96B(2) of the Real Property Act 1900.