

SHEPHERDS BAY Urban Renewal Development Stage A Section 75W Application to Mod 3

Traffic Impact Assessment

DOCUMENT STATUS

Document	D:\Documents\weadowbank\stage A\kepor\snepnetas bay stage A na kevision k 575w.docx
Author	Glen Varley (Road Delay Solutions Pty Ltd)
Signed	Glarly
Reviewe	d Gavin Carrier (Holdmark)
Date	Revision K (May 2018)

COPYRIGHT

© Road Delay Solutions Pty Ltd AUSTRALIA (2017) All rights reserved

The information contained within this document, produced by Road Delay Solutions Pty Ltd, is solely for the use of the Client identified and for the sole purpose or purposes, for which it has been prepared. Road Delay Solutions Pty Ltd undertakes no duty to, or accepts any responsibility for, use by any third party who may rely upon this document. No section, nor any element of this document, may be removed, reproduced, electronically stored or transmitted, in any form, without the written permission of Road Delay Solutions Pty Ltd.

DISCLAIMER

Road Delay Solutions Pty Ltd assumes no responsibility or liability for the predictive nature of any traffic volumes, and resultant conclusions, detailed in this document. Any data surveys and/or modelling projections are subject to significant uncertainties and unanticipated change, without notice. While all source data, employed in the preparation of this document, has been diligently collated and checked, Road Delay Solutions Pty Ltd is unable to assume responsibility for any errors resulting from erroneous data.

ROAD DELAY SOLUTIONS PTY LTD, 2/12 Flitton Valley Close | FRENCHS FOREST NSW 2086 | AUSTRALIA A.B.N. 40 127 220 964

gvarley@bigpond.com

0414 800 912

Prepared for

Reference: 20180379

May 2018

CONTENTS

AB:	STRACT		. i
	Original Conce	pt Application Modelling	. i
	Stage A Envelo	oe	. ii
	Stage A Section	n 75W Revision	. ii
	Model Purpose		. ii
	Traffic Generati	on and Distribution	iii
		ehicle Generation Model Comparison	
	Model Scenario	S	V
	Year 2026 Base	Case 'No Stage A' Base Model	vi
	Year 2026 Stage	e A Model	/ii
	Figure 2 S	tage A Passenger Vehicle Distribution	⁄iii
	Parking		ix
	Table 2 C	alculated Stage A Vehicle Generation	X
	The Proposed Tr	affic Management Solution	Χİ
	Figure 3 A	Approved and Committed Infrastructure	хii
1	INTRODUCTIO	DN	1
	Former Concep	t Application Modelling	1
	Former Mod 3		2
2	LOCATION		3
	Figure 4 S	hepherds Bay Stages 1 -9 and Stage A Footprint	3
3	EXISTING CO	NDITIONS	4
	ROAD NETWOR	Κ	4
	Figure 5 N	Meadowbank Road Hierarchy	4
	9	MEA Precinct Model Road Network	
	Existing Traffic	Controls	6
	Traffic Counts		6
	Table 3 C	Current Road Network Growth Rates	7
4	FUTURE CONI	DITIONS	8

Sta	age A		8
	Figure 7	Development Footprint	1
	Figure 8	The Current Approved 10 Storey Stage A Development Perspective	1
	Model Purpos	e	2
	Traffic Genera	ation	2
	Table 4	Vehicle Generation Model Comparison	3
	Table 5	RMS Vehicle Generation Rates	4
	Table 6	Stage A S75W Calculated Vehicle Generation	4
	Table 7	Residential Vehicle Generation by Development Stage	
	Figure 9	Projected MEA Growth Levels	5
	Residential Ve	ehicle Trip Distribution	6
	Figure 10	Meadowbank Precinct JTW Distribution and Mode Choice	7
	Retail Vehicle	Trip Distribution	8
	Figure 11	Current Competing Retail Operations	8
	Mode Share	3	9
	Committed Sh	nepherds Bay Infrastructure	11
5	TRAFFIC IME	PACTS	12
	Year 2026 Bas	e Case 'No Stage A' Base Model	12
	Table 8	Modelled Vehicle Growth Projections	13
	Figure 12	2026 AM Base Traffic Projections - No Stage A Development	14
	Figure 13	2026 PM Base Traffic Projections - No Stage A Development	
	Figure 14	2026 Base Model Congestion Levels	16
	Year 2026 Sta	ge A Model	17
	Figure 15	Stage A Passenger Vehicle Distribution	17
	Figure 16	2026 AM Stage A Model Traffic Projections	19
	Figure 17	2026 PM Stage A Model Traffic Projections	20
	Well Street,	Parsonage Street and Porter Street	21
	Figure 18	Well Street, Parsonage Street and Porter Street	22
	Parsonage Str	reet and Loop Road	23
	Figure 19	Parsonage Street and The Loop Road	24
	Constitution	Road and Bowden Street	25
	Figure 20	Constitution Road and Bowden Street Operational Performance	26
	Constitution	Road and Belmore Street	27
	Figure 21	Constitution Road and Belmore Street Operational Performance	27
	Railway Roa	nd Pedestrian Crossing	28

6	TRAFFIC MANAGEMENT SOLUTION	29
	Figure 22 Approved and Committed Infrastructure	30
	Figure 23 Pedestrian and Bicycle Destination Distances	31
	Figure 24 Proposed Traffic Management in Context	
	Table 9 Committed and Approved Stage A Infrastructure	
	Passenger Vehicle Access	
	Figure 25 Passenger Vehicle Entry – Parsonage Street	
	Service and Heavy Vehicle Access	
	Figure 26 Loading Dock Entry - Church Street	
	Figure 27 Loading Dock Exit – Well Street	
7	LOADING DOCK MANAGEMENT PLAN	38
	Legal Obligations	39
	The Tenant	39
	Senior Staff Members	40
	Communication	40
	Access Conditions	40
	Loading Dock Management	41
	Loading Dock Operating Hours	41
	Vehicle Movements	42
	Lighting	44
	Security	44
	Cleaning and Maintenance	44
	High Visibility Clothing	45
	Smoking Zones	45
8	PUBLIC TRANSPORT	46
	Rail	46
	Figure 28 Meadowbank Railway Station Entry Promenade	47
	Buses	47
	Table 10 Bus Services	48
	Ferry	48
	Figure 29 Sydney Ferries Network	
9	PEDESTRIAN AND BICYCLE PLAN	50

Figure 30	Bicycle Path Network Ryde	51
Proposed Ped	estrian and Bicycle Infrastructure	52
Figure 31	Podium Treatment	52
Figure 32	Considered Traffic Signals - Parsonage Street and Loop Road	54
Figure 33	Pedestrian Cyclist Management Plan	56
Figure 34	Typical Pedestrian Refuge Treatment	56
10 CONCLUSIO	N	57
APPENDIX A – TI	RAFFIC COUNTS	60
APPENDIX B – PI	ERFORMANCE INDICATORS	73
General		73
Table A1: I	Performance Indicators by Control Method	73
Average Ve	hicle Delay (AVD)	74
Degree of Sa	aturation (DS)	75
Table A2:	Qualified Level of Service by Control Method	75
APPENDIX C – S	IDRA MOVEMENT SUMMARIES	76

ABSTRACT

Road Delay Solutions Pty Ltd has been engaged by Holdmark Property Group to undertake investigation of the traffic impacts associated with a Section 75W Application for the Shepherds Bay Urban Renewal Project Stage A.

Stage A is commonly known as the parcel of land 157 Church Street and 8 Parsonage Street, Meadowbank.

This assessment specifically focuses on the committed infrastructure projects associated with the *Department of Planning & Infrastructure Concept Approval*, *MP09_0216* Mod 3 and any further identified improvements to sustain the vehicle generation associated with the proposal under this Section 75W Application.

The study incorporates the full Shepherds Bay development, Stages 1 through 9 and Stage A, assuming full occupancy and the associated traffic generation impacts.

Original Concept Application Modelling

Originally, mesoscopic comptuer based road network modelling, accompanying the Concept Application for the full Shepherds Bay Development, including Stage A, Mod 1, was predicated upon...

- → 3,000 residential apartments,
- → 10,000m² of Commercial Floor Space,
- → A vehicle generation rate of 0.32vph per apartment,
- → The addition of 90 vehicle trips associated with supplimentary retail and recreational activities, and
- → A total vehicle generation of 1,250vph.

The original input parameters for the Concept Stage A, Mod 1 model, comprised...

- → 10,000m² of commercial floor space,
- → A peak hour vehicle generation rate of 2 trips per 100m² of GLFA,
- → Passenger vehicle entry via Well Street, and
- → Passenger vehicle exit onto Parsonage Street.

Stage A Envelope

The Stage A building envelope will not be changed and will adopt the already approved envelope established by the Planning Assessment Commission (PAC) in Mod 2. Specifically, the 15-storey height that forms part of the former Mod 3 application has been reduced to 10 storeys. All other elements as provided for Stage A by Mod 2 will also be retained, such as the publicly accessible, open form plaza, as well as 'the shed' retail tenancy.

Stage A Section 75W Revision

The traffic generating land uses proposed under the Stage A, 10 storey envelope, are...

- → 42 residential apartments,
- → 42 serviced apartments.
- → A Supermarket with a GFA of 2,928m² and a calculated (80% of GFA) GLFA of 2,342m² excluding common areas, walkways, garbage rooms and shared loading dock,
- → Specialty shops with a GFA of 1,128m² and a calculated GLFA of 903m², and
- → A Café with a GFA of 100m².

Stage A is to provide for...

- → A total vehicle generation of 443vph during each commuter peak,
- → Loading dock access from a dedicated entry lane adjacent to the deceleration lane, northbound in Church Street,
- → Passenger vehicle access from a dedicated left turn lane, southbound in Parsonage Street,
- > Construction of pedestrian refuges in Well Street and Parsonage Street, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

Model Purpose

A mesoscopic traffic model has been created for the Meadowbank Employment Area (MEA). This is the most appropriate level of traffic modelling given the scope of the study area, where intersections are the primary cause of congestion.

The model has been developed using the *Netanal Version 2017* software which, iteratively, calculates intersection/lane capacity, vehicle delays and queueing affects at all intersections within the network in the determination of a motorist's route choice.

Mesoscopic models are typically used to highlight the needs and assess the impacts of congestion on the road network for the morning and evening commuter peak hour periods. *Netanal* calculates the impact of a network of coordinated traffic signal sites, applying the calculated signal timing offsets and reports the resultant turn movements at every intersection or node within the model.

For this assessment, year 2026 models have been built for...

- → A typical weekday morning peak hour period (7:30AM 8:30AM), and
- → A typical weekday evening peak period (5:00PM 6:00PM).

Traffic Generation and Distribution

All projected traffic generation rates applied to the developments within the MEA were based on the industry standard *RMS Guide to Traffic Generating Developments*.

The original Stage A Concept Model was prepared prior to the current stage definition and unit allocations. Five (5) stages were adopted in the concept model with Stage 5 now referred to as Stage A. The former concept stages 1 to 4 are now referred to as Stages 1 through 9 and previously presented a total, modelled, vehicle generation of 1,277vph, being...

\rightarrow	Total modelled vehicle generation	1,277vph
\rightarrow	Nominal retail and service vehicle trips	90vph
\rightarrow	Stages 1 through 4 (now Stages 1 -9) 3,000 residential apartments	962vph
\rightarrow	Stage 5 (now Stage A) - 10,000m ² of commercial floor space	225vph

Stage A, Mod 2, proposed a calculated a total vehicle generation for Stages 1 through 9 and inclusive of Stage A, of 1,148vph during the peak periods. This equates to 566vph for Stage A alone, each peak.

This Stage A Section 75W, proposes a calculated vehicle generation for all development stages of 1,020vph, which is a reduction of 128vph when compared to the former Mod 3, 15 storey envelope, and equates to 443vph for Stage A alone, each peak.

MODEL COMPARISON TABLE									
	CONCEPT M	ODEL		CURRENT 2026 MODEL					
Original Concept Stage	Apartments or Commercial Floor Space	Adopted Generation Rate*	Generation (vph)	Section 75W Stage	Apartments or Commercial Floor Space	Adopted Generation Rate	Generation (vph)		
Stages 1 - 4	3,005	0.32	962	Stages 1 -9	1,988	0.29	577		
Stage 5 (Commercial)	10,000	0.0225	225	Stage A (Residential)	42	0.29	12		
-				Serviced Apartments	42	0.40	17		
Nominal (Retail/Service)	-	-	90	Stage A (Retail)	4,156	Various	414		
				Service Vehicles (Loading Dock)	-	-	5		
TOTAL			1,277	, ,			1,020		

^{*} Note Generation rate utilised in the Concept Model did not allow for mode shift creating a 'Worst Case' Scenario

Table 1 Vehicle Generation Model Comparison
Source Road Delay Solutions, 2018

Traffic distribution utilised in the modelling for year 2026 was drawn from numerous sources. Residential distribution was based on the applied *BTS* trip matrices, published in 2011 and revised by the *BTS* in October 2016. The retail distribution has been determined by a catchment analysis of similar operations.

To determine and apply the distribution of traffic generated by the proposed supermarket within the model, an analysis of the current supermarket operations of the Gladesville Shopping Village was undertaken.

This investigation revealed that patrons to the Gladesville site were generally attracted from a radial catchment no greater than 5 kilometres. It was found that the supermarket generally attracted some 72% of patrons from within a 1.5 kilometre radius of the site, a further 19% within 2kms and the majority of the remaining 8%, some 3.5kms. This distribution pattern has been applied within the trip matrices of the future year 2026 model. The distribution of traffic was proportionately applied to the percentage of residential lots within adjoining catchments.

The retail distribution was determined by a simple survey of 126 patrons entering, by vehicle, into the basement carpark of the Gladesville Shopping Village and observed heading to the supermarket. These patrons were asked to roughly estimated the distance they had travelled or their origin. The survey did not include pedestrian foot traffic.

Some 25% of patrons surveyed commented that they frequently utilised competing supermarkets and that the Gladesville store was not their sole source of groceries.

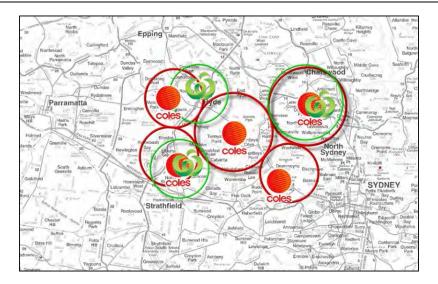


Figure 1 Current Competing Retail Operations
Source Road Delay Solutions, 2017

Model Scenarios

The mesoscopic modelling prepared during this assessment has focused on the outcomes in year 2026 of the Shepherds Bay Urban Renewal Development with and without the proposed Stage A development.

The former modelling prepared by *Road Delay Solutions*¹² and subsequent reviews by *Bitzios Consulting*³ and *ARUP Consulting*, have been utilised as a base from which the committed infrastructure and future year 2026 road network have been drawn.

The respnsibilities of each consulting group, during assessment of the Concept Application, are outlined as follows...

→ Road Delay Solutions - Engaged by Holmark to prepare the calibrated base 2010 model and future year 2026 model to determine the required infrastructure to sustain the level of development proposed in the MEA, with particular focus on the Shepherds Bay Urban Renewal,

¹ Concept Plan, Shepherds Bay Urban Renewal Meadowbank, Strategic Model 2026, Traffic Impact Assessment – Road Delay Solutions, July 2012

² Shepherds Bay, Meadowbank, Draft Addendum, Arterial Road Network, Traffic Signal Operation Assessment, Road Delay Solutions, November 2012

³ Meadowbank Employment Area, Traffic Needs Assessment, Bitzios Consulting, September 2012

- → Bitzios Consulting Engaged by Ryde Council to undertake a peer review of the Traffic Impact Assessment by Road Delay Solutions and further prepare a model to determine the necessary infrastructure requirements of developments within the MEA, and
- ARUP Consulting Engaged by the Department of Planning to review and audit the modelling and outcomes of both modelling reports.

No remodelling of a calibrated base case has been undertaken for this assessment given the impacts currently experienced during construction within the precinct. Traffic counts indicate that the construction work has had an impact on travel patterns and volumes through the precinct and it was considered the traffic volumes recorded by ROAR in December 2014 provided the last coherent base to model the current traffic patterns throughout this report.

The new future year 2026 base and Stage A models, which have been prepared for this report, have been updated with the latest *BTS Journey to Work* (JTW) data for the MEA transferred into the *BTS* 2011 published trip matrices.

This assessment further analyses the committed infrastructure under the population and employment growth demands as currently recognised by the *BTS* in 2016.

Year 2026 Base Case 'No Stage A' Base Model

A revised future year 'No Stage A' Base model was created for year 2026 to reflect the likely impacts of the Shepherds Bay development Stages 1 through 9, but excluding Stage A. This particular model incorporates...

- → Use of the BTS trip matrices published in 2011 and revised to reflect the background traffic growth extrapolated, by zone, from population and employment levels prescribed in the BTS Travel Zone Explorer (2017) which calculated as 1% per annum,
- → The committed infrastructure treatments outlined in the Shepherds Bay Concept Approval, with the exception of traffic signal control at the Constitution Road intersection with Bowden Street and mid block pedestrian crossing in Railway Road,
- → The traffic growth associated with the full occupancy of the Shepherds Bay development Stages 1 through 9, and
- ightarrow Local planned growth within the MEA outlined in Council's DCP's of 2011 and 2014.

The 2026 Base model identifies no significant requirement for infrastructure improvement within the MEA beyond the implementation of the committed infrastructure, with the notable exception of the Constitution Road intersection with Bowden Street roundabout control.

The model reports oversaturation of the critical through movements on Constitution Road. The roundabout was recommended for traffic signal control in the Traffic Impact Assessment for Stages 6 and 7 of the Shepherds Bay Development. The single lane roundabout will invariably fail as traffic volumes increase with development, but the resultant traffic volumes, over the prescribed four (4) hour period, fail to satisfy the current *RMS* warrant for signalisation.

Year 2026 Stage A Model

The Stage A model incorporates the traffic generation associated with the mixed land use calculated for the Stage A development, added to the background growth exhibited in the year 2026 Base model.

Residential and retail passenger vehicle traffic to and from the Stage A development is introduced via the introduction of a 62m long dedicated left turn lane in Parsonage Street and a fourth leg approach at the Loop Road roundabout, respectively.

No vehicular access to Stage A is proposed from the Loop Road/Parsonage Street roundabout. Vehicles destined for Stage A will be able to travel northbound from the roundabout in Parsonage Street and perform a U-Turn manouevre at the Well Street roundabout. Vehicles will then enter the dedicated left turn lane and proceed onto the site.

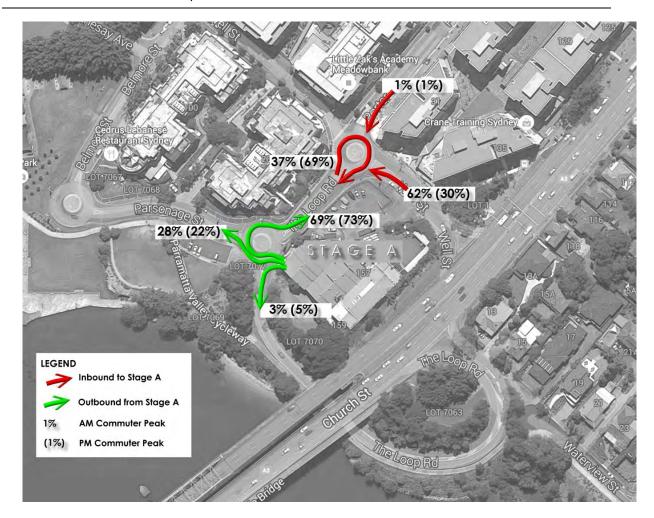


Figure 2 Stage A Passenger Vehicle Distribution
Source Year 2026 Netanal Model - Road Delay Solutions, 2017

Two (2) critical intersections were identified from the model...

- Parsonage Street, Well Street and Porter Street (Roundabout control), and
- Parsonage Street and the Loop Road (Roundabout control).

Both intersections report a satisfactory Level of Service (LoS) during both the 2026 AM and PM commuter peaks. Focus was on the 95th percentile queue lengths, reported from the year 2026 Sidra models. The inbound movements to Stage A, juxtaposed with the introduction of the U-Turn manouevre in Parsonage Street at the Well Street roundabout, pose concern for adverse impact on the Church Street arterial corridor. The resultant 95th percentile queue lengths reported for the inbound movements to the site are...

- → Parsonage Street southbound AM 20m / PM 28m, and
- → Well Street westbound AM 46m / PM 107m.

Well Street affords some 50m storage for westbound motorists. With the PM model reporting a queue length of 107m, there will be a need to permit queueing vehicles to utilise the deceleration lane on Church Street. The deceleration lane provides storage of up to 125m. It is considered that the potential use of the deceleration lane to accommodate queued traffic from the Well Street roundabout, is acceptable during the evening commuter peak given the high congestion levels and significantly reduced vehicle speeds nothbound on Church Street.

The deceleration lane is also intended to facilitate access, by heavy vehicles, to the loading dock for Stage A. It is considered the reduced speeds and congestion levels during the evening peak will moderate the potential for rear end collision by bothe passenger and heavy vehicles within the deceleration lane.

Parking

Stage A Section 75W proposes to provide for a combined 296 car parking spaces to be contained within a five (5) level, basement, carkpark on site, which brings the total parking spaces for Stages 1 through 9, inclusive of Stage A to 2,919.

Section 75W Traffic Impact Assessment

STAGE A SECTION 75W VEHICLE GENERATION TABLE										
Development	Area	Daily	AM Peak Hour	PM Peak Hour	AM Peak Hour Generation	PM Peak Hour Generation	AM Outbound Trips	AM Inbound Trips	PM Outbound Trips	PM Inbound Trips
Component	(Units &/or GLFA m²)	RMS Trip Rate	GLFA RMS Trip Rate/m ²	GLFA RMS Trip Rate/m²	(vph)	(vph)	(vph)	(vph)	(vph)	(vph)
Residential Apartments	42	0.72	0.29	0.29	12	12	9	3	3	9
Serviced Apartments	42	1.44	0.4	0.4	17	17	13	4	4	13
Specialty Shops*	903	1.21	0.125	0.125	113	113	85	28	28	85
Café	100	0.11	0.08	0.08	8	8	6	2	2	6
Supermarket*	2,343	1.21	0.125	0.125	293	293	103	190	190	103
TOTAL	3,346	4,029			443	443	215	228	228	215

^{*}The Supermarket and Specialty Shops Generation rate is based on RMS Technical Direction TDT 2013/04a for the highest weekday generation - 12.5 vph/100m2 of GLFA

Table 2 Calculated Stage A Vehicle Generation

Source Road Delay Solutions, 2018

 $The \ combined \ retail\ GLFA\ excludes\ common\ areas\ such\ as\ walkways,\ garbage\ storage\ and\ the\ shared\ loading\ dock\ and\ constitutes\ 80\%\ of\ GFA$

The Proposed Traffic Management Solution

After analysis of the year 2026 Base and Stage A models a proposed framework of engineering treatments was formulated to sustain the projected traffic volumes.

This framework forms the basis of a Traffic Management Solution which incorporates the committed infrastructure and seeks to address the needs of motorists, pedestrians and cyclists. The proposed infrastructure involves...

- → Construction of a Pedestrian Refuge in Well Street,
- → Reconstruction of the left turn kerb return from Church Street into Well Street to achieve a radius of 6m,
- → Reconstruction of the median island at the intersection of Church Street and Well Street to allow a minimum left turn vehicular swept path of 7.5m wide. The island/median is to also extend westbound in Well Street to sufficiently prevent right turn egress from the proposed loading dock exit,
- → Reconstruction of the deceleration lane, northbound, in Church Street to accommodate a service entry lane to the proposed Stage A loading dock,
- → Construction of a pedestrian refuge in the Loop Road prior to the roundabout at Parsonage Street,
- → Construction of a fourth leg onto the Loop Road roundabout at Parsonage Street to facilitate egress only from the Stage A car park,
- → Construction of a dedicated, 3.5m wide, left turn lane facilitating access by passenger vehicle to the Stage A car park, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

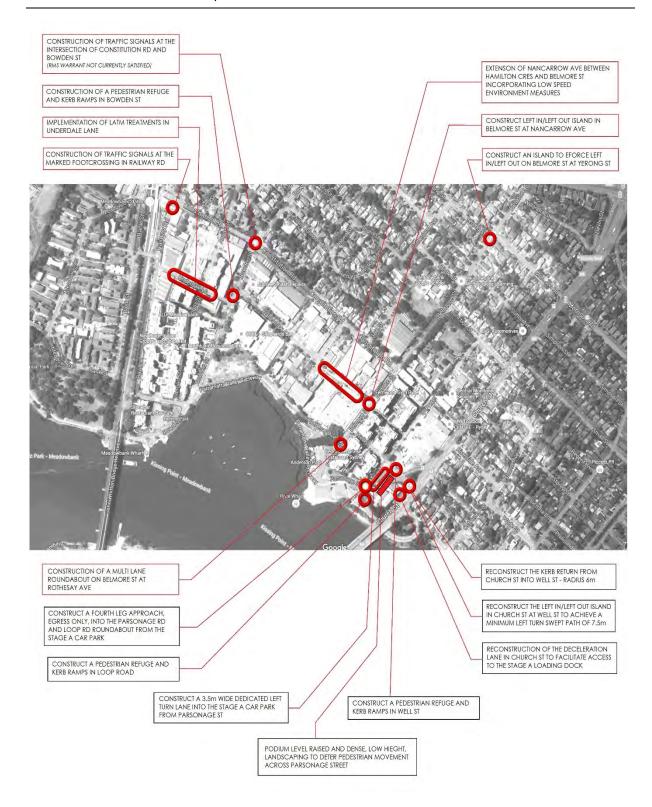


Figure 3 Approved and Committed Infrastructure
Source Road Delay Solutions, 2018

1 INTRODUCTION

Road Delay Solutions Pty Ltd has been engaged by Holdmark Prperty Group to undertake investigation of the traffic impacts associated with a Section 75W Application for the Shepherds Bay Urban Renewal Project Stage A. Stage A is commonly known as the parcel of land 157 Church Street and 8 Parsonage Street, Meadowbank.

This assessment specifically focuses on the committed infrastructure projects associated with the *Department of Planning & Infrastructure Concept Approval*, *MP09_0216* and any further, identified, improvements to sustain the increased vehicle generation associated with land use modification under the Section 75W Application.

The study incorporates the full Shepherds Bay development ,Stages 1 through 9 and Stage A, assuming full occupancy and the associated traffic generation impacts.

Former Concept Application Modelling

Formerly, comptuer based road network modelling, accompanying the Concept Application for the full Shepherds Bay Development Stages 1 through 9, including Stage A, was predicated upon...

- → 3,000 residential apartments,
- → 10,000m² of Commercial Floor Space,
- → A vehicle generation rate of 0.32vph per apartment,
- → The addition of 90 vehicle trips associated with supplimentary retail and recreational activities, and
- → A total vehicle generation of 1,250vph.

The input parameters for the former Stage A concept model comprised...

- → 10,000m² of commercial floor space,
- → A peak hour vehicle generation rate of 2 trips per 100m² of GLFA,
- > Passenger vehicle entry via Well Street, and
- > Passenger vehicle exit onto Parsonage Street.

No loading dock provision was modelled during the former preparation of the concept application.

Former Mod 3

The former Mod 3 applied specifically to Stage A, proposed under a 15 storey envelope, the following...

- → 8,176m² of floor space for serviced apartments or 82 serviced apartments, and
- → 4,008m² of floor space for residential apartments or 42 residential apartments.
- → A Supermarket with a GLFA of 3,548m² excluding common areas, walkways, garbage rooms and shared loading dock,
- → Specialty shops with a GLFA of 461m², and
- → A Café with a GLFA of 251m².

Stage A, under the former Mod 3 proposed...

- → A total vehicle generation of 566vph during each commuter peak,
- → Loading dock access from a dedicated entry lane adjacent to the deceleration lane, northbound in Church Street.
- → Passenger vehicle access from a dedicated left turn lane, southbound in Parsonage Street.
- → Construction of pedestrian refuges in Well Street and Parsonage Street, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

2 LOCATION

Situated on the parcel of land generally bounded by Church Street to the east, Well Street to the north, Parsonage Street to the west and The Loop Road to the south, the Stage A development is located within the precinct known as the Meadowbank Employment Area (MEA).

Identifiable as 157 Church Street and 8 Parsonage Street, the site is intended for mixed use, consisting of...

- → High end residential apartments,
- → Furnished, serviced apartments,
- → Retail Supermarket floor space,
- > Retail specialty shop floor space, and
- → A Café.

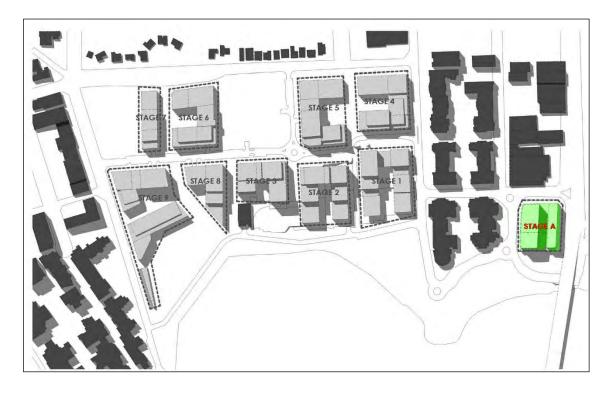


Figure 4 Shepherds Bay Stages 1 -9 and Stage A Footprint Robertson + Marks Architects, Revision L, 2014

3 EXISTING CONDITIONS

ROAD NETWORK

Church Street is classified by the RMS as a *State Road* and provides the key north-south transport corridor in the area. It typically comprises six (6) traffic lanes (ie. 3 lanes in each direction), with opposing traffic flows separated by a central concrete median island.

Victoria Road is also classified by the RMS as a *State Road* providing a pivotal east-west transport link on the Sydney Metropolitan road network. Typically comprising six (6) trafficable lanes, with opposing traffic flows separated by a central concrete median island.

Junction Street, **Belmore Street** and **Constitution Road** form part of a *collector road* system which permit traffic to enter and leave the Meadowbank Precinct.

Generally consisting of a single trafficable lane in each direction, and with kerbside parking permitted at select locations only, the collector road network affords both local and cross regional traffic the ability to by pass congestion on the arterial road network.

Well Street, Parsonage Street, and The Loop Road are part of the local road network under the auspices of Ryde City Council. And are proposed as the primary vehicular access for Stage A.

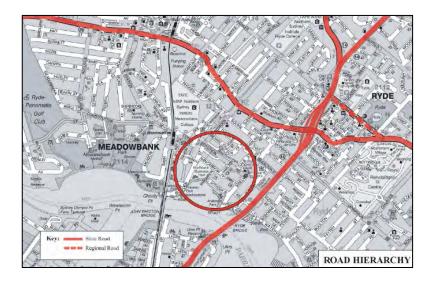


Figure 5 Meadowbank Road Hierarchy
Source Google Maps, 2017

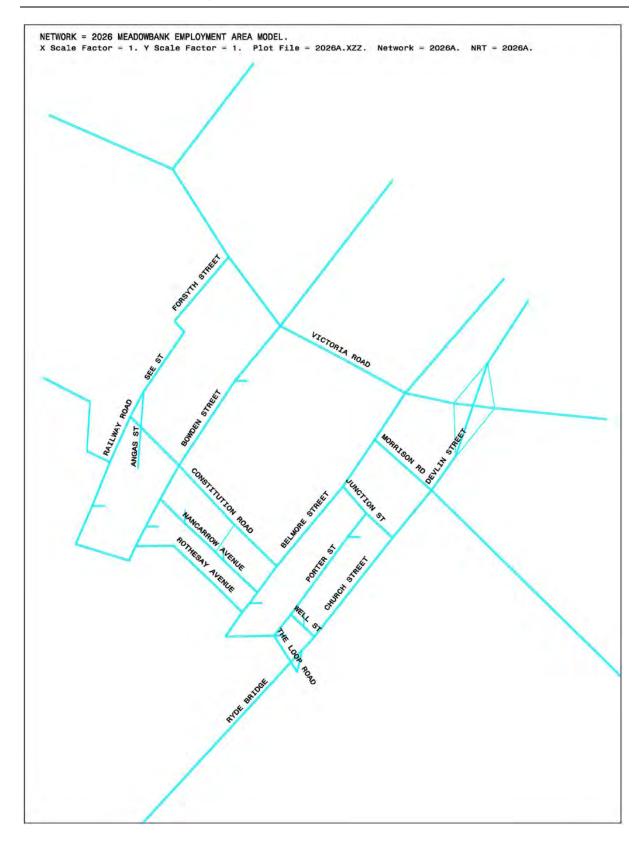


Figure 6 MEA Precinct Model Road Network Source Road Delay Solutions, 2018

Existing Traffic Controls

The existing key traffic controls on the surrounding road network, in the vicinity of the Shepherds Bay development site, are...

- → A 70 km/h speed limit on Church Street
- → A 60 km/h speed limit in Victoria Road,
- → A 50km/h speed limit on Well Stret, The Loop Road and Parsonage Street,
- → A 50 km/h speed limit on all other local roads in the area,
- → Traffic signals on Church Street at its intersection with both Junction Street and Morrison Road,
- → Traffic signals in Belmore Street at its intersection with both Constitution Road and Junction Street,
- Central median islands in Church Street and in Victoria Road ptecluding right turn movements, with the exception of those permitted at key traffic signal controlled intersections,
- → A roundabout in Constitution Road at its intersection with Bowden Street, and
- → Single lane circulating roundabouts in the Loop Road Street at its intersection with both Parsonage Street and Well Street.

Traffic Counts

Road Delay Solutions commissioned ROAR Data to annually count key intersections within the MEA, in particular the intersections of Constitution Road with both Bowden Sreet and Belmore Street. These counts have been collected in or around November of each year from 2011 to 2014, inclusive.

The 2014 counts, along with the projected traffic volumes for the respective stages of development, are presented in *Appendix A*.

From the counts, the annual growth rates on each road corridor have been calculated and utilised in the operational computer based modelling of the select infrastructure upgrades associated with the planning approval.

From the collated traffic data, the annual growth in traffic has been determined by Road corridors. Understandably a negative growth rate is currently reported through the precinct given...

- → The transformation of local land uses,
- > The vacation of local business prior to the development construction, and
- → The impedance of construction activities for Shepherds Bay and the surrounding developments.

NOTE A positive growth rate is anticipated with the occupancy of Stage 1, onwards.

While the *Bureau of Transport Statistics* (*BTS*) currently lists vehicle growth on the Metropolitan Arterial Road Network as some 1.2%, for the purpose of this assessment, an average compounded 1% growth rate annually, has been reported within the MEA and represents the level of precinct development and to assimilate the growth in cross regional traffic flow.

On top of the 1% annual growth rate, each stage of the Shepherds Bay development has been added to the future traffic projections to enable assessment of a 'worst case' situation.

	Vehicles	Average			
Road Corridor	2011	2012	2013	2014	Growth
AM Constitution Road Eastbound	686	692	628	621	-3.2%
AM Constitution Road Westbound	488	452	441	435	-3.7%
AM Bowden Road Northbound	420	438	363	371	-3.5%
AM Bowden Street Southbound	377	369	254	266	-9.5%
AM Belmore Street Northbound	322	337	304	300	-2.1%
AM Belmore Street Southbound	146	152	138	133	-2.9%
AM Railway Parade Northbound	766	770	632	621	-6.4%
AM Railway Parade Southbound	323	437	352	355	5.6%

PM Constitution Road Eastbound	429	340	417	513	8.3%
PM Constitution Road Westbound	619	768	667	580	-0.7%
PM Bowden Road Northbound	413	384	255	189	-22.2%
PM Bowden Street Southbound	374	389	510	540	13.7%
PM Belmore Street Northbound	322	346	331	284	-3.7%
PM Belmore Street Southbound	228	223	246	152	-10.0%
PM Railway Parade Northbound	302	344	375	372	7.4%
PM Railway Parade Southbound	815	849	906	919	4.1%
Average Annual Growth Rate					-29.0%

Table 3 Current Road Network Growth Rates

Source Road Delay Solutions, 2015

4 FUTURE CONDITIONS

STAGE A

This Section 75W Application applies specifically to Stage A, proposing under a 10 storey envelope and indicatively the following specifications (subject to DA)...

- → 4,608m² of floor space for serviced apartments or 42 serviced apartments, and
- → 4,270m² of floor space for residential apartments or 42 apartments, being...
 - o Eight (8) 1 bedders,
 - o Twenty four (24) 2 bedders, and
 - o Ten (10) 3 bedders.

Therefore, the Stage A, 10 storey envelope, traffic generating landuses include...

- → 42 serviced apartments,
- → 42 residential apartments,
- → A Supermarket with a GFA of 2,928m² inclusive of common areas, walkways, garbage rooms and shared loading dock,
- → Specialty shops with a GFA of 1,128m², and
- → A Café with a GFA of 100m².

Stage A, under this Section 75W application is to provide for...

- → A total vehicle generation of 443vph during each commuter peak,
- → Loading dock access from a dedicated entry lane adjacent to the deceleration lane, northbound in Church Street,
- → Passenger vehicle access from a dedicated left turn lane, southbound in Parsonage Street.
- → Construction of pedestrian refuges in Well Street and Parsonage Street, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

Vehicular access to Stage A is proposed to adequately define and distinguish the passenger vehicle access from that for service and heavy vehicles.

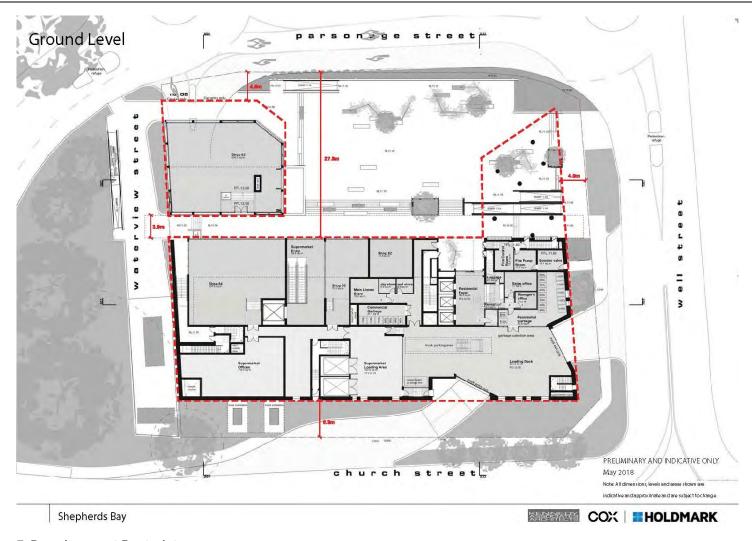


Figure 7 Development Footprint Source COX, 2018

Figure 8 The Current Proposed 10 Storey Stage A Development Perspective COX, 2018

Model Purpose

A mesoscopic traffic model has been created for the Meadowbank Employment Area (MEA). This is the most appropriate level of traffic modelling given the scope of the study area, where intersections are the primary cause of congestion.

The models have been developed using the *Netanal Version 2017* software which, iteratively, calculates intersection/lane capacity, vehicle delays and queueing affects at all intersections within the network in the determination of motorist route choice.

Mesoscopic models are typically used to highlight the needs and assess the impacts of congestion on the road network for the morning and evening commuter peak hour periods. Netanal calculates the impact of a network of coordinated traffic signal sites, applying the calculated cycle commencement offsets and reports the resultant turn movements at every intersection or node within the model.

For this assessment, the year 2026 model scenarios have been built for...

- → A typical weekday morning peak hour period (7:30AM 8:30AM), and
- → A typical weekday evening peak period (5:00PM 6:00PM).

Traffic Generation

All projected traffic generation rates applied to development within the MEA have been based on the industry standard *RMS Guide to Traffic Generating Developments* and supplimental Technical Directions.

The former Concept Model was prepared prior to the current stage definition and unit allocations. Five (5) stages were adopted in the concept model with Stage 5 now referred to as Stage A. The former concept stages 1 to 4 are now referred to as Stages 1 through 9 and previously presented a total, modelled, vehicle generation of 1,277vph, being...

→ Stage 5 (now Stage A) - 10,000m² of commercial floor space
 → Stages 1 through 4 (now Stages 1 -9) 3,000 residential apartments
 → Nominal retail and service vehicle trips
 225vph
 962vph
 90vph

Normalitetali and service vehicle trips 70vpm

→ Total modelled vehicle generation 1,277vph

This Stage A Section 75W Application proposes a combined vehicle generation, for all development stages, of 1,148vph, which is a reduction of 129vph when compared to the former concept model.

MODEL COMPARISON TABLE									
	CONCEPT M	ODEL			CURRENT 2026	MODEL			
	Apartments or	Adopted	Conciduon		Apartments or	Adopted	Generation		
Concept Stage	Commercial Floor Space	Generation Rate*	(vph)	Section 75W Stage	Commercial Floor Space	Generation Rate	(vph)		
Stages 1 - 4	3,005	0.32	962	Stages 1 -9	1,988	0.29	577		
Stage 5 (Commercial)	10,000	0.0225	225	Stage A (Residential)	42	0.29	12		
-				Serviced Apartments	82	0.40	33		
Nominal (Retail/Service)	-	-	90	Stage A (Retail)	4,260	Various	521		
				Service Vehicles (Loading Dock)	-	-	5		
TOTAL			1,277				1,148		

^{*} Note Generation rate utilised in the Concept Model did not allow for mode shift creating a 'Worst Case' Scenario

Table 4Vehicle Generation Model ComparisonSourceRoad Delay Solutions, 2017

Based upon the *RMS Technical Direction TDT 2013/04a* high density residential apartment developments, the traffic generation for Stage A has adopted a conservative generation rate of 0.29 vehicles per hour (vph) per apartment, for both the morning and evening commuter peak periods, respectively. This generation rate is commensurate with sub-regional precincts, considered conservative and aid in determining the appropriate warrants for infrastructure.

Following discussions with a number of generic service providers such as Coles Gladesville Shopping Village, Council's garbage operators, etc... the heavy vehicle generation, associated with the Stage A retail and service operations is considered to be in the order of 1% of the total vehicle generation, equating to some 5-6 trucks during each one (1) hour commuter peak period.

Garbage services, utilising the proposed loading dock, will invariably coordinate with the Shepherds Bay residential development Stages 1 through 9 and are anticipated to occur between the hours of 1pm to 2:30pm, daily.

Woolworths has indicated that 14m rigid trucks are the preferred delivery vehicle for this particular supermarket size.

To substatiate the heavy vehicle generation rates adopted, observations were undertaken at two (2) loading docks servicing simillar size supermarket and specialty retail operations in Gladesville and in Mona Vale.

Both loading docks reported only minimal heavy vehicular activity during the commuter peak periods with only 4-5 trucks, and service vehicles, arriving during that time.

Vehicle Generation Period	RMS Vehicle Generation Rate					
	Sydney Average	Sydney Range	Regional Average	Regional Range		
AM peak (1 hour) vehicle trips per unit	0.19	0.07-0.32	0.53	0.39-0.67		
AM peak (1 hour) vehicle trips per car space	0.15	0.09-0.29	0.35	0.32-0.37		
AM peak (1 hour) vehicle trips per bedroom	0.09	0.03-0.13	0.21	0.20-0.22		
PM peak (1 hour) vehicle trips per unit	0.15	0.06-0.41	0.32	0.22-0.42		
PM peak (1hour) vehicle trips per car space	0.12	0.05-0.28	0.26	0.11-0.40		
PM peak (1 hour) vehicle trips per bedroom	0.07	0.03-0.17	0.15	0.07-0.22		
Daily vehicle trips per unit	1.52	0.77-3.14	4.58	4.37-4.78		
Daily vehicle trips per car space	1.34	0.56-2.16	3.22	2.26-4.18		
Daily vehicle trips per bedroom	0.72	0.35-1.29	1.93	1.59-2.26		

NB. A residential generation rate of 0.29vph per apartment has been adopted for modelling purposes.

Table 5RMS Vehicle Generation RatesSourceExtract from RMS Technical Direction TDT 2013/04a, 2013

STAGE A SECTION 75W VEHICLE GENERATION TABLE											
Development Component	Area	Daily	AM Peak Hour	PM Peak Hour	AM Peak Hour Generation	PM Peak Hour Generation	AM Outbound Trips	AM Inbound Trips	PM Outbound Trips	PM Inbound Trips	
	(Units &/or GLFA m²)	RMS Trip Rate	GLFA RMS Trip Rate/m²	GLFA RMS Trip Rate/m²	(vph)	(vph)	(vph)	(vph)	(vph)	(vph)	
Residential Apartments	42	0.72	0.29	0.29	12	12	9	3	3	9	
Serviced Apartments	42	1.44	0.4	0.4	17	17	13	4	4	13	
Specialty Shops*	903	1.21	0.125	0.125	113	113	85	28	28	85	
Café	100	0.11	0.08	0.08	8	8	6	2	2	6	
Supermarket*	2,343	1.21	0.125	0.125	293	293	103	190	190	103	
TOTAL	3,346	4,029			443	443	215	228	228	215	

^{*}The Supermarket and Specialty Shops Generation rate is based on RMS Technical Direction TDT 2013/04a for the highest weekday generation -12.5vph/100m2 of GLFA

Table 6 Stage A \$75W Calculated Vehicle Generation

Source Road Delay Solutions, 2018

 $The combined \ retail \ GLFA\ excludes\ common\ areas\ such\ as\ walkways,\ garbage\ storage\ and\ the\ shared\ loading\ dock\ and\ constitutes\ 80\%\ of\ GFA$

	No of	RESIDENTIAL VEHICLE GENERATION							
Construction Stage	Apartments (units)	Adopted Rate per Unit	Generation (vph)	AM Outbound (80%)	AM Inbound (20%)	PM Outbound (20%)	PM Inbound (80%)		
1	246	0.29	71	57	14	14	57		
2 and 3	498	0.29	144	116	29	29	116		
4 and 5	511	0.29	148	119	30	30	119		
6 and 7	311	0.29	90	72	18	18	72		
8 and 9	422	0.29	122	98	24	24	98		
Stage A Residential	42	0.29	12	10	2	2	10		
Stage A Serviced Apartments	42	0.4	17	13	3	3	13		
TOTALS	2,072		606	484	121	121	484		

Table 7 Residential Vehicle Generation by Development Stage
Road Delay Solutions, 2018

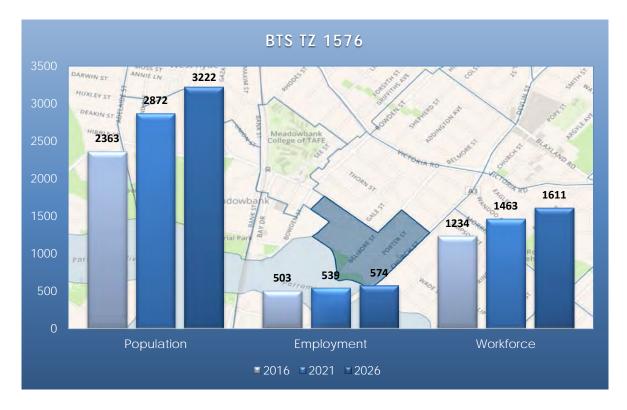


Figure 9 Projected MEA Growth Levels

Source BTS Zone Explorer, 2017

Residential Vehicle Trip Distribution

Traffic distribution has been drawn from numerous sources. Residential distribution was based on the applied *BTS* trip matrices, published in 2011, and utilised in the modelling for year 2026.

The retail distribution has been determined by a catchment analysis of simillar operations in Gladesville.

The residential vehicle distribution pattern utilised in the modelling has been based upon the applied trip matrices published by the *BTS* in 2011 and aggregated to correspond with the *BTS JTW Explorer* for Travel Zones (TZ) 1576 and 1591. Given the reduced population currently within the MEA zone, as a result of construction associated with the Shepherds Bay development, the adjacent TZ 1591 (*predominantly medium to high density residential*) has also been utilised to form a realistic appraisal of JTW distribution patterns from the precinct and provide a resalistic comparison to the applied year 2026 trip matrices.

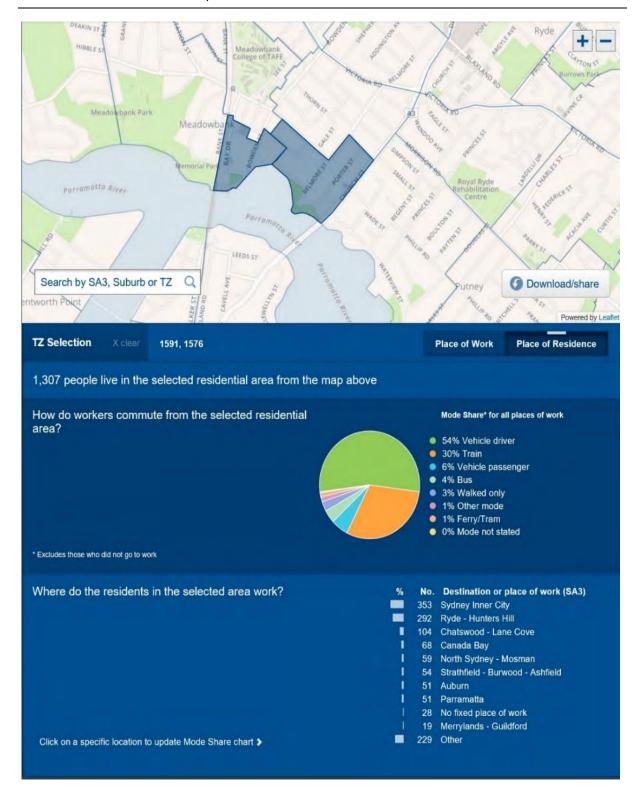


Figure 10 Meadowbank Precinct JTW Distribution and Mode Choice
Source BTS JTW Explorer, 2017

Retail Vehicle Trip Distribution

An analysis of the current supermarket operations in the Gladesville Shopping Village was undertaken and found that patrons were generally attracted from a radial catchment of less than 5 kilometres, given the proximity of competing operations. It was found that the Gladesville supermarket generally attracted some 72% of patrons from within a 1.5 kilometre radius of the site, a further 19% within 2kms with the majority of the remaining 8%, some 3.5kms. This distribution pattern has been applied within the trip matrices of the future year 2026 model.

The distribution of traffic was proportionately applied to the percentage of residential lots within adjoining catchments.

The retail distribution was determined by a simple survey of 126 patrons entering, by vehicle, into the basement carpark of the Gladesville Shopping Village and observed heading to the supermarket. These patrons were asked to roughly estimated the distance they had travelled. The survey did not include pedestrian foot traffic.

Some 25% of patrons surveyed commented that they frequently utilised competing supermarkets and that the Gladesville store was not their sole source of groceries.

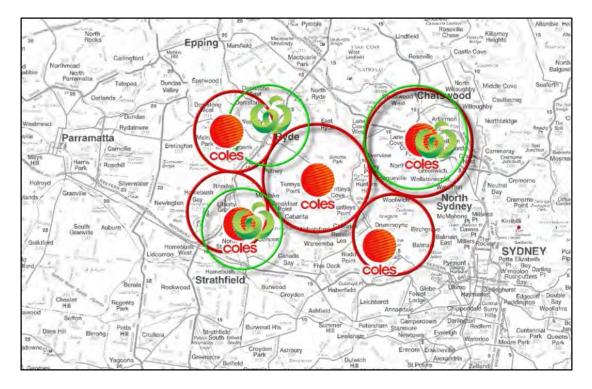


Figure 11 Current Competing Retail Operations
Source Road Delay Solutions, 2016

Mode Share

The current predominant available transport mode choices for JTW have been catalogued from those available within, or adjacent to, the MEA, and as defined within the BTS TZ 1576 (Ryde Council Depot) and TZ 1591.

The latest *Household Travel Survey* (HTS) data shows that average weekday trips grew by 1.0% between 2009/10 and 2010/11, which was slower than the 1.6% rate of population growth in the *Sydney Statistical Division* (SSD).

The private motor vehicle remains the dominant mode of transport embraced by the wider Sydney community. However, the *BTS* reports the *MEA* exhibits a significant public transport share, with a higher than metropolitan average of 35% attributed to train, bus and ferry modes.

In line with NSW 2021 targets, growth in public transport trips has been higher than growth in private vehicle passenger trips. Vehicle driver trips have increased by 1.5%, while train and bus trips increased by 2.6% and 2.3%, respectively. These inherent increases can be attributed to increased traffic congestion on the arterial road system, greater frequency of public transport services and improved intermodal/interchange provisions. This is clearly evident within the MEA.

With a walking distance in the order of 1.2km from Stage A to the Meadowbank Railway Station, it is anticipated that a significant reduction in the use of public transport for JTW trips will result. The TZ to the immediate north of the MEA, between Victoria Road and Constitution Road (TZ 1573 – Ryde), reports a combined train, bus and ferry mode share of only 9% of JTW trips. It is anticipated that this is the cumulative result of walking distance to train and ferry in conjunction with a lack of current pedestrian amenity.

Planners invariably work on the basis that commuter bus users will walk no more than 400 metres from home to the nearest stop. Data suggests travellers will walk further to catch a train, so the maximum walk distance to a station has been adopted as 800 metres.

Travel surveys have shown the median walk distance to a bus in heavily built up areas of Sydney and Melbourne is some 500 metres, with only 25% walking more than 800 metres. The data, anecdotally, suggests that train travellers infrequently elect to walk more than 800 metres if the prevailing pedestrian environment is condusive.

That is, if flat or lightly undulating, dedicated and sheltered travel paths are available incorporating minimal road crossings.

Bicycle to train is an ever growing opportunity for both efficiency and health choices. This may offer some relief from commuter traffic generation but it is considered negliable in this instance. While the walking and cycling distances may be extended for multi mode commuter trips, the same cannot be said for retail patrons. Carrying heavy shopping bags over distances greater than 600m has rarely been observed or reported.

The BTS data for those zones around the periphery of the MEA support these observations.

It can therefore be concluded that...

- → The distance between the site and Meadowbank Railway Station will deter a significant number from walking to the railway station,
- → With the exception of bus travel, residents and retail patrons would be reluctant to adopt multiple travel modes,
- → Bus services, which currently operate along Church Street, Well Street and Parsonage Street, will provide the greatest opportunity for mode shift,
- → The dependency on private motor vehicle usage at the site will increase to a share in excess of 70%, and
- → Car share and Car Pooling opportunities will be enhanced.

It is for the above reasons, no mode shift has been adopted in the mesoscopic modelling and the full traffic generation of 443vph has been incorporated into the model's trip matrices.

Committed Shepherds Bay Infrastructure

During the planning and approval stage, the form and level of infrastructure required, to sustain the urban renewal development, was diligently assessed.

Holdmark has expressed it's commitment to constructing the following infrastructure during the staged construction of the development, in accordance with the Department of Planning and Infrastructure Approval MP09_0216.

The committed infrastructure upgrades include...

- → The extension of Nancarrow Avenue between Hamilton Crescent and Belmore Street,
- → The provision of left in/left out at the intersection of Belmore Street and Hamilton Crescent,
- → The provision of left in/left out at the intersection of Belmore Street and Yerong Street,
- → Underdale Lane Local Area Traffic Management (LATM) measures,
- → Installation of a pedestrian refuge on Bowden Street near Nancarrow Avenue,
- → Installation of roundabout in Belmore Street at Rothesay Avenue,
- → The provision of left in/left out at the intersection of Belmore Street and Yerong Street,
- Installation of traffic signals at the intersection of Constitution Road and Bowden Street, subject to RMS warrants, and
- → Installation of traffic signals on Railway Road at the current pedestrian crossing near Meadowbank Railway Station, subject to RMS warrants.

The full infrastructure program, including the necessary improvements to sustain the Stage A development, are set out in the *Traffic Management Solution* following.

5 TRAFFIC IMPACTS

Investigations into the operational traffic impacts associated with the development's vehicle generation has been undertaken using the computer based programs Netanal and SIDRA. In particular, the following intersections have been scrutinised in detail...

- → Well Street, Parsonage Street and Porter Street,
- → Parsonage Street and The Loop Road,
- > Constitution Road with Belmore Street, and
- → Constitution and Bowden Street, have been closely scrutinised.

Year 2026 Base Case 'No Stage A' Base Model

A future year 'No Stage A' Base model was created for year 2026 to reflect the likely impacts of the Shepherds Bay development Stages 1 through 9, excluding Stage A. This model incorporates...

- → The committed infrastructure treatments outlined in the Shepherds Bay Concept Approval, with the exception of traffic signal control at the Constitution Road intersection with Bowden Street and mid block pedestrian crossing in Railway Road,
- → The background traffic growth extrapolated, by zone, from population and employment levels prescribed in the BTS Travel Zone Explorer (2017),
- → The traffic growth associated with the full occupancy of the Shepherds Bay development Stages 1 through 9, and
- → Local planned growth within the MEA outlined in Council's DCP's of 2011 and 2014.

The 2026 Base model reports a total of some 9.4% background growth from 2014 within the MEA study area. Beyond this, local LEP 3A development, including Shepherds Bay Stages 1 through 9, further increase traffic volumes within the precinct.

VFHICLE	GROWTH	PROJECTIONS
---------	--------	--------------------

ROAD LINK	2014 AM PEAK	2026 AN	2026 AM PEAK		2026 PM PEAK		
ROAD LINK		26AM BASE	26AM20		26PM BASE	26PM9	
CHURCH ST NB	2985	3495	3680	3079	3003	3214	
CHURCH ST SB	3184	2704	2606	3106	3077	3157	
WELL ST WB	376	450	630	830	826	847	
WELL ST EB	22	72	237	23	40	255	
BELMORE ST NB	300	451	506	284	529	550	
BELMORE ST SB	243	585	617	326	466	503	
CONSTITUTION RD WB	435	696	849	632	1178	1152	
CONSTITUTION RD EB	681	1204	1197	526	858	890	
BOWDEN RD NB	471	666	670	274	463	463	
BOWDEN RD SB	266	392	401	613	743	762	

Table 8Modelled Vehicle Growth ProjectionsSourceRoad Delay Solutions, Year 2026 Netanal Model, 2018

The 2026 Base model identifies no significant requirement for infrastructure improvement beyod the implementation of the committed infrastructure within the MEA, with the notable exception of the Constitution Road intersection with Bowden Street roundabout control. The model reports oversaturation of the critical through movements on Constitution Road.

The roundabout was recommended for traffic signal control in the Traffic Impact Assessment for Stages 6 and 7 of the Shepherds Bay Development. The single lane circulating roundabout will invariably fail as traffic volumes increase with local development. However, the resultant projected traffic volumes, during the *RMS* prescribed four (4) hour period, fail to satisfy the current warrant for signalisation.

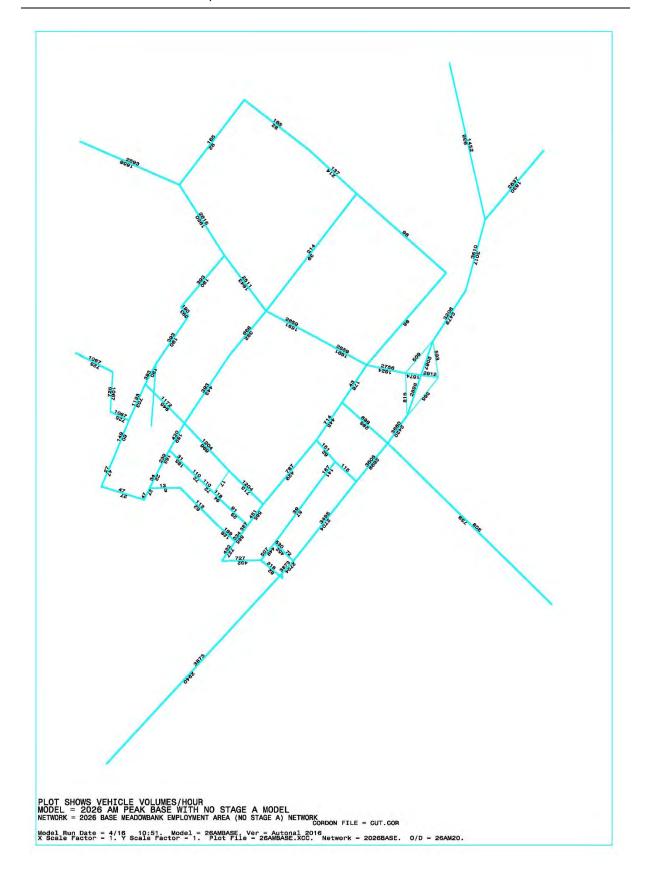


Figure 12 Source 2026 AM Base Traffic Projections - No Stage A Development Road Delay Solutions, Year 2026 Netanal Model, 2018

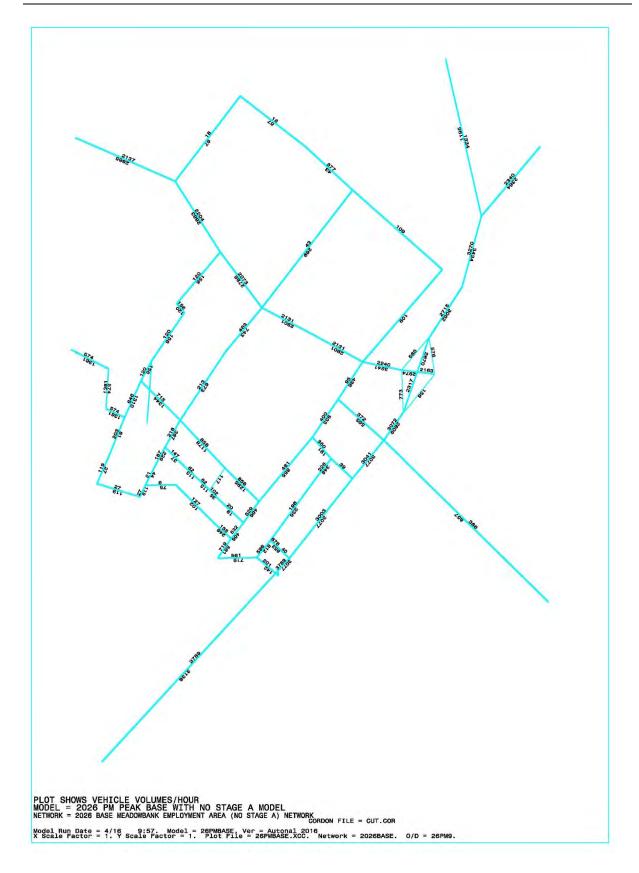


Figure 13 Source 2026 PM Base Traffic Projections - No Stage A Development Road Delay Solutions, Year 2026 Netanal Model, 2018

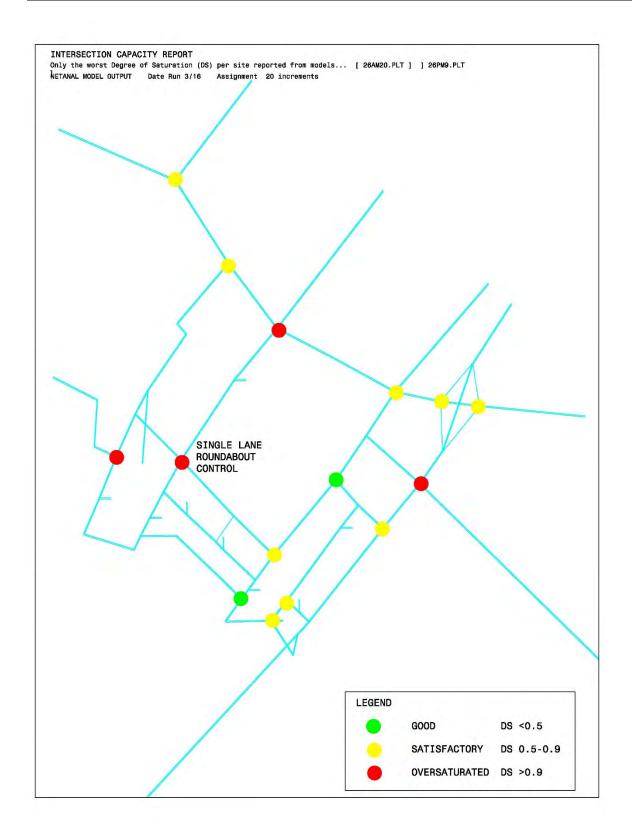


Figure 14 2026 Base Model Congestion Levels
Source Road Delay Solutions, Year 2026 Netanal Model, 2018

Year 2026 Stage A Model

The Stage A model incorporated the traffic generation associated with the mixed land use calculated for the development, added to the background growth exhibited in the year 2026 Base model.

Residential and retail passenger vehicle traffic to and from the Stage A development is proposed via the introduction of a 62m long dedicated left turn lane in Parsonage Street and a fourth leg approach at the Loop Road roundabout, respectively.

No vehicular access to Stage A is proposed from the Loop Road/Parsonage Street roundabout. Vehicles destined for Stage A will be able to travel northbound from the roundabout in Parsonage Street and perform a U-Turn manouevre at the Well Street roundabout. Vehicles will then enter the dedicated left turn lane and proceed into the site.

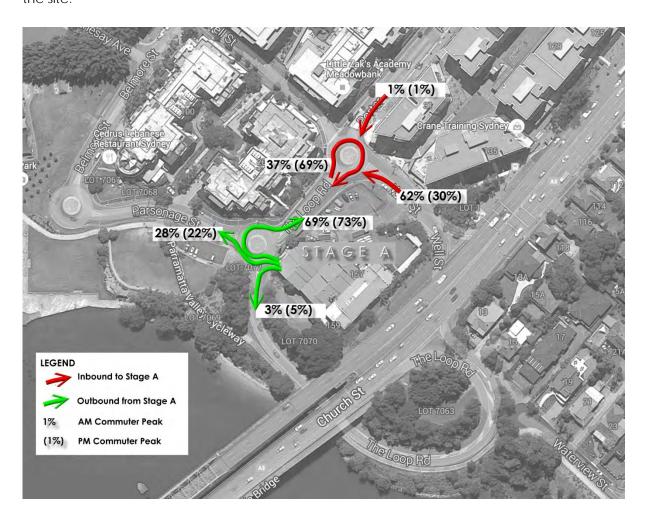


Figure 15 Stage A Passenger Vehicle Distribution
Source Year 2026 Netanal Model - Road Delay Solutions, 2018

The two (2) critical intersections identified in the model are...

- Parsonage Street, Well Street and Porter Street (Roundabout), and
- → Parsonage Street and the Loop Road (Roundabout).

Both intersections report a satisfactory Level of Service (LoS) during both the AM and PM commuter peaks. Focus was on the 95th percentile queue lengths, reported from the year 2026 Sidra models. The inbound movements to Stage A, juxtaposed with the introduction of the U-Turn manouevre in Parsonage Street at the Well Street roundabout, pose concern for adverse impact on the Church Street arterial corridor. The resultant 95th percentile queue lengths reported for the inbound movements to the site are...

- → Parsonage Street southbound AM 20m / PM 28m, and
- → Well Street westbound AM 46m / PM 107m.

Well Street affords some 70m storage for westbound motorists. With the PM model reporting a queue length of 107m, there will be a need to permit queueing vehicles to utilise the deceleration lane on Church Street. The deceleration lane provides storage of up to 125m. It is considered that the potential use of the deceleration lane to accommodate queued traffic from the Well Street roundabout, is acceptable during the evening commuter peak given the high congestion levels and significantly reduced vehicle speeds nothbound on Church Street.

The deceleration lane is also intended to facilitate access, by heavy vehicles, to the loading dock for Stage A. It is considered the reduced speeds and congestion levels during the evening peak will moderate the potential for rear end collision by bothe passenger and heavy vehicles within the deceleration lane.

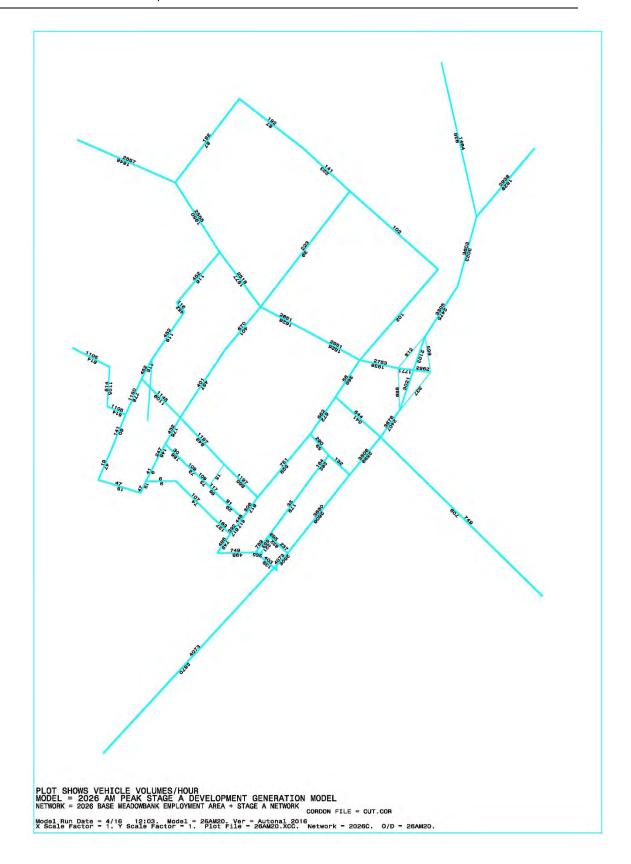


Figure 16 2026 AM Stage A Model Traffic Projections
Source Road Delay Solutions, Year 2026 Netanal Model, 2018

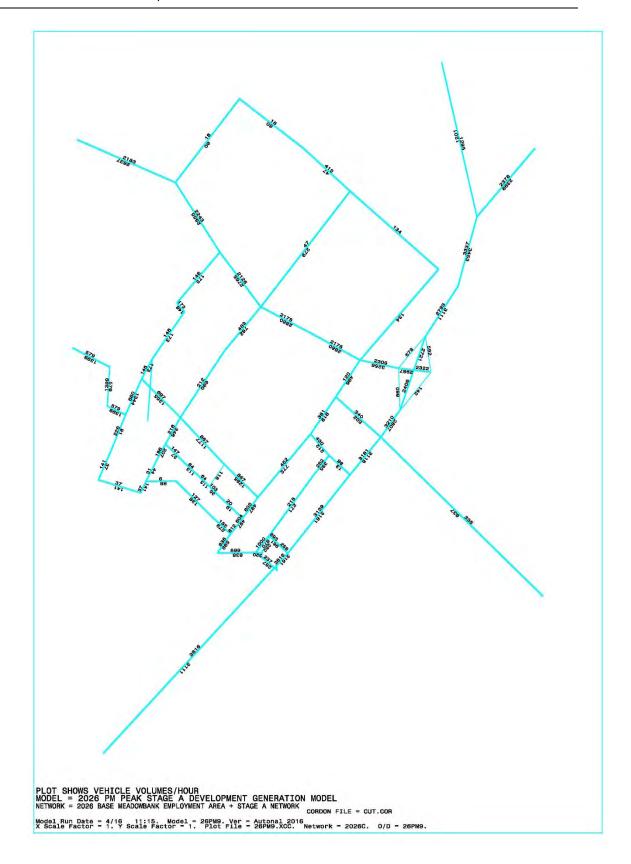


Figure 17 2026 PM Stage A Model Traffic Projections
Source Road Delay Solutions, Year 2026 Netanal Model, 2018

Well Street, Parsonage Street and Porter Street

Well Street serves as a critical gateway to the MEA and the Stage A development.

The mesoscopic modelling has identified that traffic in Well Street and Parsonage Street will increase dramatically during the morning and evening peak periods with the advent of some 9.4% background growth and the Shepherds Bay Urban Renewal, including Stage A.

During the planning stages of the project the Stage A site proposed some 10,000m² of commercial floor space, generating a projected 205vph.

With the amended mixed land use proposed in this application, the calculated vehicle generation has risen to 576vph, an increase of 371vph or 181%.

SIDRA INTERSECTIO						•		
WELL STREET, PARSON	WELL STREET, PARSONAGE STREET ANI		2014		2026 BASE		2026 + STAGE A	
Layout	Performance Measure	AM	PM	AM	PM	AM	PM	
	DS			0.367	0.736			
8 8	AVG	NO	COUNTS	6.3	8.0			
The state of the s	LoS			А	А			
SIDRA INTERSECTIO						•		
WELL STREET, PARSON	AGE STREET AND		O14	2026	BASE	2026 +	STAGE A	
Layout	Performance Measure	AM	PM	AM	PM	AM	PM	
	DS					0.641	0.837	
U-TURN PROVISION FOR ACCIESS TO STAGE A	AVG					8.2	14.0	
	LoS					А	Α	

Figure 18 Well Street, Parsonage Street and Porter Street
Source Road Delay Solutions, SIDRA 2018

Modelling of the existing roundabout operation has reported a good level of Service (LoS) 'A' for both the AM and PM peak hour commuter periods with an effective spare capacity in excess of 100%.

With the advent of the Stage A development in year 2026, the resultant Los reported was also 'A' for both the AM and PM peak hours with no effective spare capacity.

The roundabout will take on the function of allowing access from the west to the Stage A development.

Several improvements are recommended in Well Street to aid pedestrian activity. The reduction of the kerb radius of the left turn slip lane entering Well Street from Church is intended to reduce the speed of vehicles allowing the introduction of a pedestrian refuge, incorporating kerb ramps.

Parsonage Street and Loop Road

The Parsonage Street intersection with the Loop Road roundabout is proposed to facilitate passenger vehicle access to and from the Stage A car park. A fourth leg from the Stage A car park into the current roundabout is proposed.

No access to the Stage A car park from the roundabout is recommended. Modelling indicates that if access were to be allowed from the roundabout the resultant increase in vehicle delay to southbound traffic in Parsonage Street would incite periodic queueing, extending back into Well Street and further on into Church Street.

Currently, the roundabout reports a good LoS 'A' during both the AM and PM peak commuter periods. The low recorded vehicle volumes through the intersection is considered the result of the level of construction associated with the Shepherds Bay development and the lack of vehicle generation. Modelling indicates these volumes will increase with future residential occupation throughout the precinct.

Modelling of the projected 2026 traffic demand reported that the single lane circulating roundabout, inclusive of the fourth leg and calculated traffic generation from the Stage A development, will return good LoS 'A' during the AM peak and LoS 'B' during the PM peak hour and retain 17-20% effective spare capacity during the AM and PM peaks, respectively. The 95th percentile queue lengths in the Parsonage Street approach are reported as 20m and 28m in the AM and PM peaks, respectively

Consideration has been given to the installation of traffic signals at the intersection but was rejected after modelling indicated incresed vehicle delays in the southbound Parsonage Street approach would result in 95th percentile queue lengths in the order of some 200m, extending back onto Church Street.

Further, no specific RMS warrant could be met for the installation of signals. However, it is considered that traffic signals would afford pedestrians and cyclists the safest form of road crossing through the intersection.

Figure 19 Parsonage Street and The Loop Road
Source Road Delay Solutions, SIDRA 2018

Constitution Road and Bowden Street

The intersection was itemised by Council, under the 2005 works program and again identified by Urban Horizon in July of 2010, to be reconstructed and operate under the control of traffic signals.

The intersection, modelled utilising the 2014 traffic demands, is controlled by a single lane circulating roundabout and reports operation at a Level of Service (LoS) 'A' during both the morning and evening commuter peak periods.

With the addition, to the projected 2026 background traffic growth, the Shepherds Bay Stages 1 through 9 and Stage A projected vehicle generations, the operational performance of the roundabout controlled intersection is reported by SIDRA modelling as an unsatisfactory LoS 'E' during the morning peak and LoS 'F' during the evening.

The intersection reports the possible oversaturation and 95th percentile queue lengths in excess of 700 metres, during the morning peak, in the eastbound approach of Constitution Road.

The RMS warrant, which the authority is adhereing to stringently for signalisation of the site, requires Constitution Road to realise 900vph in each direction for four (4) one (1) hour periods of a single day.

It is considered that the single lane roundabout, while providing key access to Stages 4 through 9, will fail to deliver an adequate LoS with the vehicle generations following occupancy of development Stages 6 and 7. It is considered that signals are warranted to allow satisfactory performance with development Stages 6 and 7.

The installation of traffic signal will further enhance and improve pedestrian safety at the intersection. The inroduction of marked foot crossings on each approach will create improved 'connectivity' between pedestrian paths on all approaches, which currently have only pedestrian refuges located in Bowden Street, north, and Constitution Road, west.

CONSTITUTION I	N PERFORMANC							
			2014		2026 BASE		2026 + STAGE A	
Layout	Performance Measure	AM	PM	АМ	PM	AM	PM	
The state of the s	DS	0.615	0.689					
8.5 ya.	AVG	7.5	9.8					
The state of the s	LoS	Α	Α					
SIDRA INTERSECTIO CONSTITUTION I			ES					
CONSTITUTION			14	2026	BASE	2026 + 9	STAGE A	
Layout	Performance Measure	АМ	PM	АМ	PM	АМ	PM	
And the state of t	DS			1.072	0.893	1.090	0.901	
	AVG			40.6	35.1	43.0	34.8	
The state of the s	LoS			D	D	D	С	

Figure 20 Constitution Road and Bowden Street Operational Performance
Road Delay Solutions, SIDRA 2018

It has been recommended that the existing single lane circulating roundabout be removed and that traffic signals be designed and installed prior to the issue of the Stage 6 Occupation Certificate.

Under the projected vehicle demands of the Stage A development, a signalised intersection is reported to perform as follows...

- → LoS 'D' during the AM peak,
- → AM peak 95th percentile queue length of 238m in the Constitution Road eastbound approach,
- → Los 'C in the PM peak, and
- → PM peak 95th percentile queue length of 216m in the westbound approach.

It is recommended that the operational performance of the site be monitored for a number of years, following the installation of traffic signals and completion of the residential component of the development, to ensure a satisfactory level of service and identification of any possible 'triggers' for future upgrade.

Constitution Road and Belmore Street

The intersection of Constitution Road with Belmore Street currently operates at a satisfactory LoS during both the morning and evening peak commuter periods.

With the advent of Stage A and full occupation of the Shepherds Bay development, no adverse impact in operation is reported by the SIDRA modelling.

SIDRA INTERSECTIO CONSTITUTION F							
	Performance		2014		2026 BASE		STAGE A
Layout	Measure	AM	PM	AM	PM	AM	PM
And the state of t	DS	0.387	0.514	0.733	0.859	0.825	0.859
	AVG	20.0	17.2	27.9	38.5	32.8	39.3
	LoS	С	В	С	D	С	D

Figure 21 Constitution Road and Belmore Street Operational Performance
Road Delay Solutions, SIDRA 2018

Railway Road Pedestrian Crossing

Based upon traffic counts undertaken by *R.O.A.R. Data*, and the projected vehicle generation with 100% occupation of all stages of the Shepherds Bay development, the site fails to satisfy the current *RMS* warrant for traffic signal installation and no further action is considered necessary, at this time.

The projected volume of pedestrian demand during two, typical, consecutive one-hour periods, in the morning commuter peak is 746 with the corresponding vehicle flows in Railway Road of 890 northbound and 2,330 southbound.

Extensive queuing was noted, extending to the south in Railway Road from the existing marked foot-crossing, to the railway overbridge roundabout at Bank Street.

The projected volume during two, one-hour periods, of the evening commuter peak totalled 465 with corresponding vehicle flows of 1,483 northbound and 1,532 southbound with extensive queuing noted, extending back into Constitution Road, during the evening peak.

No recent accident history has been reported at the site.

The *RMS* warrant requires the pedestrian flows to exceed 250 persons/hour for each of four (4) consecutive one (1) hour periods with conflicting vehicle flows of no less than 600vph, in each direction.

With the addition of pedestrian and vehicle generation projected from Stage A, the mid block site does not satisfy the warrant for the installation of traffic signals, at this stage. While vehicle traffic is relatively high during the two hours or each commuter peak, the traffic and pedestrian volumes drop markedly in the shoulder hour, either side of the peaks.

The site should be further monitored with future growth, following occupancy of all stages of development, to assess further, the warrant for traffic signal installation.

6 TRAFFIC MANAGEMENT SOLUTION

The management solution has been prepared to address all aspects of person mobility in and around the Stage A development site. From vehicular access to pedestrian and cyclist movements, JTW to retail operations, the recommended solution addresses the identified needs of residents, retail patrons, employees and recreational participants alike.

The limited, useable, development frontage, close proximity to a congested major arterial corridor, the demands of a burgeoning precinct accommodating significant urban renewal combined with the influence of significant cross regional traffic flow ('rat runs') have posed foremidable challenges and have guided the selection of infrastructure in accordance with the Department of Planning publication Development Near Rail Corridors and Busy Roads – Interim Guide.

After analysis of the year 2026 Base and Stage A models a proposed framework of engineering treatments was formulated to sustain the projected traffic demands.

The proposed framework of infrastructure, incorporates the committed infrastructure and seeks to combine to address the needs of motorists, pedestrians and cyclists. The proposed infrastructure involves...

- → Construction of a Pedestrian Refuge in Well Street,
- → Reconstruction of the left turn kerb return from Church Street into Well Street to achieve a radius of 6m,
- → Reconstruction of the median island at the intersection of Church Street and Well Street to allow a minimum left turn vehicular swept path of 7.5m wide. The island/median is to also extend westbound in Well Street to sufficiently prevent right turn egress from the proposed loading dock exit,
- → Reconstruction of the deceleration lane, northbound, in Church Street to accommodate a service entry lane to the proposed Stage A loading dock,
- → Construction of a pedestrian refuge in the Loop Road prior to the roundabout at Parsonage Street,
- → Construction of a fourth leg onto the Loop Road roundabout at Parsonage Street to facilitate egress only from the Stage A car park,
- → Construction of a dedicated, 3.5m wide, left turn lane facilitating access by passenger vehicle to the Stage A car park, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

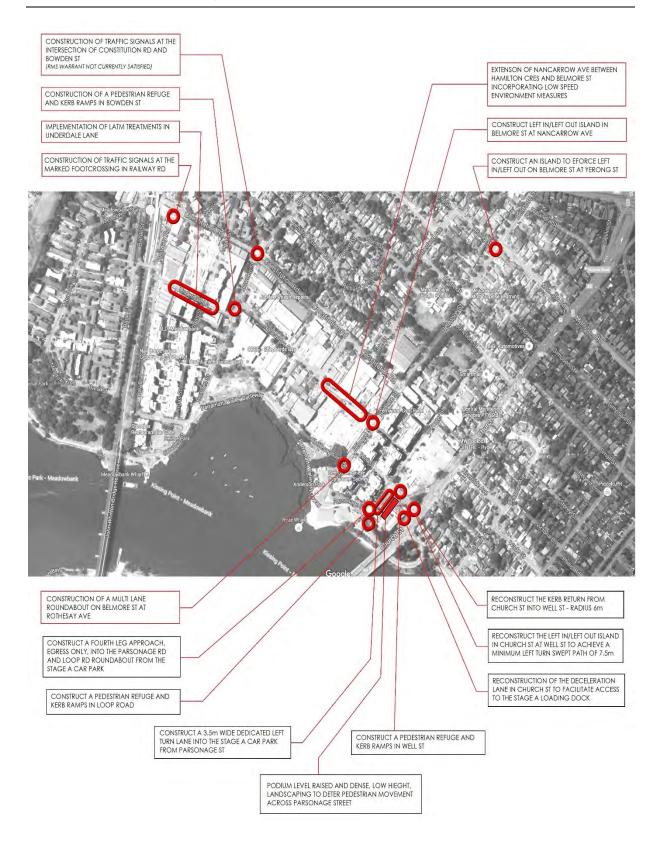


Figure 22 Approved and Committed Infrastructure
Source Road Delay Solutions, 2018

TRANSPORT DESTINATIONS

CHURCH STREET BUS STOP NORTHBOUND	120m
CHURCH STREET BUS STOP SOUTHBOUND	154m
BELMORE STREET BUS STOPS	300m
MEADOWBANK FERRY TERMINAL	240m
MEADOWBANK RAILWAY STATION	1.2km

Pedestrian and Bicycle Destination Distances Road Delay Solutions, 2018 Figure 23

Source

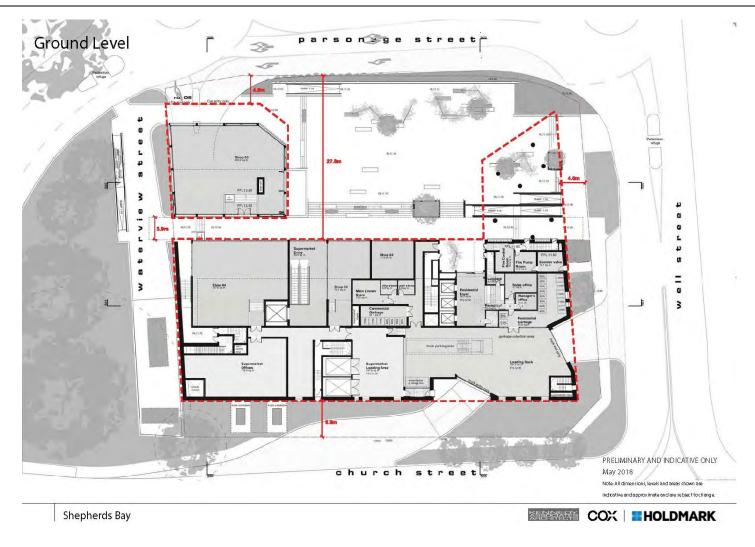


Figure 24 Proposed Traffic Management in Context COX, 2018

Page 32 of 125 Shepherds Bay Stage A © Road Delay Solutions Pty Ltd (2018)

APPROVAL ITEM NO.	COMMITTED INFRASTRUCTURE
24	NANCARROW ROAD EXTENSION AND ROAD RESERVE UPGRADES (Stage 4) - Nancarrow Avenue extension, - Nancarrow Avenue Local Area Traffic Management (LATM) measures and all road reserve upgrades including associated pedestrian footpaths and bicycle ways, and - Implementation of a left-in/left-out arrangement at Belmore Street/Hamilton Crescent intersection (The design is to be completed prior to the issue of the Stage 1 occupancy certificate and construction is to be completed prior to Stage 4)
24A	ROAD AND PEDESTRIAN INFRASTRUCTURE UPGRADES (Stages 2/3) (a) Installation of a temporary east/west pedestrian link, which connects the stairway at the northern end of the foreshore link between Stages 1, 2 and 3. The pedestrian link shall provide access to the public on a 24 hour basis and maintained until the provision of the Nancarrow Avenue extension. (b) Underdale Lane Local Area Traffic Management (LATM) measures; (c) Installation of a pedestrian refuge at Bowden Street / Nancarrow Avenue, and (d) Installation of roundabout at Belmore Street / Rothesay Avenue. (Design to be completed prior to Stage 2 and construction completed prior to the issue of the Stage 2 occupancy certificate)
25	YERONG STREET / BELMORE STREET INTERSECTION UPGRADE (Stage 4) - The implementation of left-in/left-out arrangement at Belmore Street intersection with Yerong Street. (Design and construction to be completed prior to DA for stage 4)
26	ROADS AND MARITIME SERVICES REQUIREMENTS (SEE ALSO 11.2) - Investigation of warrants pertaining to the installation of traffic signals on Railway Road with the pedestrian crossing at Meadowbank Railway Station, and -The installation of traffic signals at the intersection of Constitution Road with Bowden Street. (Where the study reveals that RMS warrants would be met for the provision of signals at either of these locations, concept design of the upgrade of the intersection to Council's and RMS's satisfaction is to be included with the DA and the works are to be completed by the proponent prior to the issue of first occupation certificate of any building of that stage)
11.1	PEDESTRIAN SIGNALS ON RAILWAY ROAD AT MEADOWBANK RAILWAY STATION - Installation of traffic signals - Advance warning signs - Lighting adjustments - Pavement re-sheets – 20mm AC10
11.2	SIGNALLING AT BOWDEN STREET AND CONSTITUTION ROAD - Removal of existing roundabout - Kerb alignment - Pavement construction and revitalisation - Utility adjustments incl. lighting - Installation of traffic signals - Pavement markings - Signposting - Footway modifications
11.3	ROUNDABOUT AT ROTHESAY AVENUE/BELMORE STREET - Removal of existing signposting - Central island dowelled to existing pavement - Inscribed radius min. 8m (dependent upon the turning path of a 12.5m service vehicle) - Single lane circulating - Splitter island in each approach (painted or raised kerb) - Significant kerb realignment - Drainage adjustments - Utility modification - Signage - Pavement markings - Intersection pavement re-sheet - 20mm AC 10
11.4	YERONG STREET AND BELMORE STREET LEFT IN/OUT - Removal of southern most splitter island in Belmore Street, south of Yerong Street - Removal of existing signposting - Installation of painted or raised splitter island in Yerong Street (dowel to existing pavement if raised) - Installation of signposting - Preparation and pavement re-sheet - 20mm AC 10 - Pavement markings

	HAMILTON "LANE" AND NANCARROW "LANE" LATM AND TWO-WAY CONSTRUCTION BETWEEN BELMORE AND
	BOWDEN
	- Installation of raised Watts profile speed humps or raised thresholds
	- Single lane circulating roundabout
	- Inscribed radius capable of accommodating the swept path movement of a 12.5m service vehicle
11.5	- Painted splitter island in each approach
	- Kerb realignment
	- Drainage adjustments
	- Utility modification
	- Signage
	- Pavement markings
	UNDERDALE LANE LATM SCHEME
I	- Installation of two (2) raised "Watts" profile speed bumps
11.6	- Kerb realignment
11.0	- Drainage adjustments
	Signage
	- Pavement markings Pavement markings
	HAMILTON LANE/BELMORE STREET LEFT IN/OUT
11.7	- Installation of painted or raised splitter island in Hamilton Crescent (dowelled to existing pavement if raised)
11.7	- Installation of signposting
	- Pavement markings
11.8	INTRODUCTION OF A PEDESTRIAN FACILITY ON BOWDEN STREET AT UNDERDALE LANE
11.0	- Construction of a raised threshold and marked foot crossing
	LAND TO BE DEDICATED
40	Land comprising the two-way road link to be constructed between Belmore and Bowden Streets, being the
12	connection of Nancarrow Avenue to Hamilton Crescent to be dedicated to Council. This requires the
	dedication, by the proponent, of an area of land of approximately 325m² to the council.
STAGE A	CTA OF A ADDDOVED MOD O INFRACIDITOTION
	STAGE A APPROVED MOD 2 INFRASTRUCTURE
IDENTIFIED	
IDENTIFIER	
	CONSTRUCTION OF A PEDESTRIAN REFUGE ON WELL STREET
IDENTIFIER 1A	
	CONSTRUCTION OF A PEDESTRIAN REFUGE ON WELL STREET - Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street - Construction of kerb ramps to facilitate crossing point
1A	- Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street
	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point
1A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m
1A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET
1A 2A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a
1A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway
1A 2A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the
1A 2A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street – Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock
1A 2A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street – Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET
1A 2A 3A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading
1A 2A 3A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock
1A 2A 3A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET
1A 2A 3A 4A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge
1A 2A 3A 4A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street – Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout
1A 2A 3A 4A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of Kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREEET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of a proportiate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Construction of a 3.5m wide single lane entry to the Stage A car park
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Construction of the eastern kerb line in Parsonage Street
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Reconstruction of the eastern kerb line in Parsonage Street Installation of pavement markings
1A 2A 3A 4A 5A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of Kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Construction of the eastern kerb line in Parsonage Street Installation of signposting Installation of signposting
1A 2A 3A 4A 5A 6A	Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the Island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of a 150mm high raised concrete pedestrian refuge Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a raised island to prevent entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Construction of a 3.5m wide single lane entry to the Stage A car park Reconstruction of the eastern kerb line in Parsonage Street Installation of signposting PARSONAGE ROAD PEDESTRIAN TREATMENT
1A 2A 3A 4A 5A 6A	 Construction of a 150mm high concrete pedestrian refuge 127m to the west of Church Street Construction of kerb ramps to facilitate crossing point RECONSTRUCTION OF THE LEFT TURN KERB RETURN IN WELL STREET AT CHURCH STREET Reconstruction of kerb return in the left turn slip lane from the Church Street deceleration lane into Well Street - Radius 6m RECONSTRUCTION OF THE MEDIAN ISLAND ON CHURCH STREET AT WELL STREET Reconstruction of the island in the Church Street deceleration lane into Well Street to achieve a minimum 7m wide carriageway Incorporation of a 900mm wide central median in Well Street to prohibit right turn movements from the Stage A loading dock CONSTRUCTION OF A SERVICE DRIVEWAY IN CHURCH STREET Construction of a 5.2m wide driveway between the Church Street deceleration lane to the loading dock CONSTRUCTION OF A PEDESTRIAN REFUGE IN THE LOOP ROAD AT PARSONAGE STREET Installation of kerb ramps to facilitate the crossing points CONSTRUCTION OF A FOURTH LEG TO THE LOOP ROAD ROUNDABOUT Construction of a single lane approach from the Stage A car park onto the Loop Road roundabout Construction of a single lane entry to the Stage A car park from the roundabout Installation of appropriate signposting CONSTRUCTION OF A DEDICATED LEFT TURN LANE IN PARSONAGE STREET SOUTHBOUND Construction of the eastern kerb line in Parsonage Street Installation of signposting Installation of signposting

Section 75W Traffic Impact Assessment

Table 9	Committed and Approved Stage A Infrastructure
Source	Road Delay Solutions, 2018

Passenger Vehicle Access

Determination of the site access has proven problematic with limited ingress and egress opportunity after consideration of four (4) critical factors...

- 1. Church Street is an arterial road under the control of the RMS and currently exhibits particularly significant congestion northbound during the morning and evening peak commuter periods. As such, The RMS is reticent to allow potential access from Church Street which may further exacerbate the traffic conditions and pose a potential safety hazard.
- 2. The relatively higher surface levels of The Loop Road carriageway to those of the development and the presence of historical machinery associated with the Ryde Bridge, located on the parcel of land to the south of the site, prevent the construction of a viable entry ramp to meet with the level of the basement carpark slab.
- 3. The short length of Well Street (some 40m) and the potential for a queue formed from vehicles entering the site spilling back onto Church Street, negates the opportunity for access from Well Street.
- 4. The strict confines of the Design Award Process have limited the opportunity for potential access locations. The passenger vehicle access must conform with the design form rather than dictate. The nominated access has been chosen to seemlessly amalgamate with the building structure.

Therefore, Parsonage Street was considered the optimum location for passenger vehicle access. Through the employment of a dedicated left turn lane onto the site, storage capacity and queue management could be achieved.

A dedicated left turn lane of some 48m long provides for approximately 8 vehicles, this combined with the anticipated 2026 southbound 95th percentile queue length in Porter Street of 40m, would suggest that sufficient storage distance can generally be achieved during the evening peak commuter period.

The 7:30am - 8:30am morning commuter peak is not considered to be the critical given the retail activities, with the exception of Woolworths (7am-8am opening time), would generally commence to trade from 8:30am.

The proposed Parsonage Street access is to incorporate a 'sheltered' entry from the southbound dedicated lane only. No ingress to the site is proposed from the roundabout on Parsonage Street at The Loop Road. This is to be reinforced by the use of a raised concrete median/island and hazard signposting, serving as a physical barrier to vehicular entry from the roundabout.

Sensitivity modelling suggests that vehicles entering the site from the roundabout would, with priority over southbound vehicles in Porter Street, increase the reported 95th percentile queue length to some 200m, which would regularly spill back onto Church Street.

Egress from the site is proposed at the roundabout as this will afford southbound vehicles in Porter Street priority and not have a detrimental effect on queueing. Vehicles entering the site from the west may do so from...

- → Porter Street, north of Well Street, or
- → Enter Porter Street from Parsonage Street, at The Loop Road, travel north and perform a 'U'-Turn at the Well Street roundabout.

The mesoscopic modelling reported only 5vph performing the latter 'U'-Turn manoeuvre.

Simillarly, motorists from the north entering from The Loop Road, can turn into Porter Street and perform a 'U'-Turn at Well Street. The modelling again indicates only 2vph performing this manoeuvre.

The passenger vehicle entry is a proposed 6.6m wide driveway comprising 3m wide ingress and egress laneways being separated by a 0.6m wide median, connecting with the roundabout at the intersection of Loop Road at Parsonage Street. The driveways will permit access to the proposed passenger vehicle parking provision within the basement levels on the site.

Figure 25 Passenger Vehicle Entry – Parsonage Street COX, 2017

Service and Heavy Vehicle Access

Service and heavy vehicle entry is proposed from the deceleration lane on Church Street, immediately south of the Well Street intersection. The access provides for the entry of garbage services, emergency vehicles and retail deliveries. The access has been designed to accommodate up to 19m articulated vehicles and should pose no significant impedence to arterial traffic flow on Church Street.

Figure 26 Loading Dock Entry - Church Street COX, 2017

Figure 27 Loading Dock Exit – Well Street COX, 2017

7 LOADING DOCK MANAGEMENT PLAN

Managing loading dock operations is critical in ensuring the workplace is without risks to health and safety. Vehicles including powered mobile plant moving in and around the hardstand area, reversing, loading and unloading can cause serious injury.

This Loading Dock Management Plan (LDMP) has been prepared by Road Delay Solutions as a guide outlining the procedures and conditions to be considered within the loading dock hardstand area associated with Stage A of the Shepherds Bay Urban Renewal.

The operational procedures are a critical component of the LDMP. The procedural requirements commence with the driver's approach to the site and continue until such time as they leave.

An efficient operation, of which the LDMP is a part, permits companies to avoid delays, minimise accidents, prevent product damage, meet timeframes and ultimately, satisfy customer demands and expectations.

Optimum operational procedures can only exist if the loading dock is properly designed, operated and maintained. With effective loading dock processes, companies can realise significant gains in productivity, energy efficiency, and safety, while cutting costs.

Information contained in this document is relevant to all individuals accessing the loading dock.

As the Stage A loading dock will serve numerous operators from the supermarket to the specialty shops, Café to the residential waste management, each operator, hereby named the 'Tenant' will be responsible to ensure that the policies and procedures, as outlined, are observed and performed by all people within their respective organisations. This includes principal contractors, drivers, service personnel and other agents involved in the daily operation of the facility.

The retail and waste management operations are currently speculative but each Tenant must adhere to following guidelines.

Legal Obligations

Generally, it can be stated that everyone actively employed within the boundaries of the loading dock has a work health and safety duty.

The following outline these obligations and duties under law as they pertain to the *Tenant* and senior or delegated staff members.

The Tenant

The *Tenant* will be directly responsible for all the traffic management and material handling operations associated with the site.

Specifically, ensuring that the traffic management is executed in a way that will accommodate the differing vehicle classes and their movement to and from the loading dock.

The *Tenant* must ensure, so far as is reasonably practicable, that workers and other person are not exposed to health and safety risks arising from the daily operation of the business or undertaking.

The *Tenant* must further ensure, so far as is reasonably practicable, adequate provision has been made to permit staff, contractors, service personnel and the public the ability to enter and exit the site without risk to health and/or safety.

The *Tenant* and loading dock management staff must ensure mobile powered plant does not coincide with pedestrians or other powered mobile plant.

If there is a possibility of conflict, the plant must be fitted with a warning device alerting persons who may be at risk from its movement.

It is each *Tenant's* moral obligation to inform staff, agents and/or contractors of any commonly known local road issues pertaining to the surrounding precinct which might prove beneficial in the operation of vehicles accessing the site.

When managing traffic flow each *Tenant* must consider the appropriate action(s) to be set in place, prior to operations, to eliminate or reduce the incidence of vehicular and pedestrian conflicts.

These considerations include, but are not limited to...

- Movements within the dock and access driveways,
- Pedestrian site access,
- During loading dock operations peak traffic scheduling versus non-peak times,
- → Emergency vehicle access and egress, including fire service, ambulance, and police,
- → Any appropriate pavement marking(s) for loading area adherence and layover provision,
- Emergency evacuation procedures,
- Communication, and
- → Waste management, and the clear delineation as to the location and presence of any permanent compactors, skip bins, or equivalent.

Senior Staff Members

Directors and managers have a duty to exercise due diligence to ensure the business or undertaking complies with the Work Health and Safety (WHS) Act and Regulations.

This includes taking reasonable steps to ensure the business or undertaking has and uses appropriate resources and processes to eliminate or minimise risks from traffic at the workplace.

Communication

A clear line of communication is to be maintained between each *Tenant* and/or designated staff, contractors and service personnel utilising the loading dock.

It is beneficial that the *Tenants* set in place a regular line of communication to manage delivery scheduling and general loading dock operations and activities to avoid conflicts which might arise from competing arrival times.

Access Conditions

The loading dock entry is to be from the deceleration lane on Church Street. Northbound motorists leaving the Ryde Bridge, move left into the deceleration lane prior to Well Street and then proceed into the driveway to the loading dock.

The dock entry will be secured by an electronically operated roller door which must remain open during operational hours. The door will only be closed when no scheduled deliveries are pending.

Exit from the dock is onto Well Street with all drivers directed to turn left. This manouevre will allow, northbound, eastbound and westbound vehicles to utlise Parsonage Street, then Belmore Street or Constitution Avenue. Vehicles travelling south will exit onto Well Street and make their way to the Loop Road enabling them to travel south over the Ryde Bridge.

All drivers must be aware of their vehicle class, height and wieght when utilising the local roads through the precinct with respect to their legal obligations under the Motor Traffic Act.

Loading Dock Management

Each *Tenant* may delegate the safe operation of the loading dock to a suitably qualified and/or experienced staff member, hereby referred to as the Dock Manager (DM).

Each Tenant and nominated DM is responsible for...

- → The effective management of service vehicle delivery and operational outcomes within the site, pertaining to the loading dock, stock rooms and waste retention areas,
- → The efficient unloading of all deliveries, waste and recycling pickups,
- → The coordination and clear understanding of delivery schedules from direct suppliers and distribution centres.
- → Effective coordination/communication with each of the other Tenants to ensure coincidental arrivals do not occur.
- → The education of drivers and/or suppliers as to appropriate delivery routes to and from the dock, with particular attention to the legal obligations by vehicle class,
- The assurrance that all deliveries, in particular the supermarket, are rostered in two hour intervals to allow for unloading and egress,
- → No queueing of delivery vehicles entering the loading dock will be permitted. The Tenant must ensure any vehicle approaching the loading dock is directed to delay entry until such time as the dock entry is clear to access, and
- → All entries and exits will be performed in a forward direction only.

Any transgression or violation contravening the above conditions may be logged by any *Tenant* and relayed to both the building supervisor, in a timely fashion.

Loading Dock Operating Hours

Given the retail operations for Stage A are speculative at this time, no operating hours can be confirmed.

At this time, the operating hours are estimated to be 6am till 11pm, Monday to Sunday. Any change to these hours must be immediately relayed to Holdmark for correction. Highly visible signs will be erected within and outside the loading dock advising the dock operating times.

The electronic roller shutters at the entry and exit will remain open during operating hours. During all other times the roller shutters will be closed (see Security).

Waste and recycling collections for each Tenant must be actioned within the operating hours.

The loading dock roller shutter will be closed outside of these hours.

Vehicle Movements

The respective Tenants are responsible for their specific loading dock operations.

All vehicle drivers entering the loading dock must...

- → Enter the loading dock in a forward direction only from the northbound deceleration lane on Church Street,
- → Exit the loading dock in a forward direction only onto Well Street and left turn only towards Parsonage Street,
- → Enter the loading dock at an appropriate speed (10kmh) commendurate with the surrounding environment,
- → Enter the loading dock only if the dock area is clear and free of obstruction or there is sufficient space to completely traverse the footway area on Chuch Street,
- → Not queue in the driveway before entering the loading dock,
- → Ensure all loading and unloading procedures occur soley within the designated loading dock area,
- → Ensure no goods are loaded or unloaded on the roads surrounding the site,
- → Leave the loading dock immediately after all goods have been delivered,
- Not park or leave delivery vehicles within the loading dock area outside of the prescribed operating hours, and
- → Adhere to all directions made by the respective Tenant and/or DM.

Each driver and/or delivery provider will be issued with a Driver Direction Sheet outlining the following...

- 1. You must arrive within your allotted delivery time window. Be punctual or advise the respective DM of any change.
- 2. Enter and exit the dock in a forward direction.

- 3. The maximum vehicle length permitted within the loading dock is 14m.
- 4. Do not attempt arrival before 6am on any day.
- 5. Do not wait, queue or park on the surrounding local streets.
- 6. Do not attempt unloading and delivery of manifest from the surrounding local streets. Your actions will be actionable by your supervisors and further deliveries by your company may be jeopardised.
- 7. Deactivate any radio and/or music media systems when entering the dock.
- 8. Do not leave your vehicle unattended while in the loading dock.
- 9. Adhere to all directions made by the DM.
- 10. All vehicles must be offsite by 11pm daily.
- 11. Any breaches of these conditions may result in a site ban.

The supermarket operations may have up to 10 trucks (Class 5 - 14m rigid trucks) and up to 20 direct suppliers/vendors arrivals per day during periods of high turn over, such as at Christmas and Easter.

Typically, arrivals will be fewer, each day, outside of the busy trading peaks. One (1) supermarket delivery by 14m rigid truck and one (1) smaller vehicle by direct supplier, may occur during the peak AM and PM commuter traffic periods. The remaining retail outlets and Café are anticipated generate, at most, three (3) arivals (estimated maximum vehicle size Class 3 - 4 tonne pantechs) during the commuter peak periods.

A maximum of five (5) arrivals in an hour are anticipated at the loading dock during the morning and evening peak traffic periods.

No queueing of vehicles in the loading dock driveway, prior to entering the loading dock, will be permitted. Delivery scheduling is the sole responsibility of each *Tenant* and it must be maintained that schedules for competing usage of the dock must allow sufficient time to deliver and clear the dock.

The 14m rigid trucks are to unload from the rear, after reversing to the flush dock located on the southern wall of the loading dock area.

Smaller, vehicles must have a designated loading/unloading areas within the loading dock. This area may be defined by pavement parking or symbol. These smaller delivery or service vehicles must park within their designated areas and leave the loading dock area via the Well Street exit upon completion.

ROAD DELAY SOLUTIONS

A designated emergency vehicle space must be clearly defined, within the loading dock, by pavement marking, sign or symbol. This space must remain free of obstruction and be available at all times, with the exception of emergency use.

Lighting

The loading dock, arrival and departure areas must be well lit during the hours of operation. The maintenance of all lighting will be the responsibility of the building supervisor.

It is the responsibility of each *Tenant* or delegated staff member to notify the building services manager of any failure in the lighting system.

Security

The loading dock will be secured by use of an electronic roller shutter at both the entry on Church Street and exit on Well Street outside of the stated operating hours.

Access to the loading dock outside the normal operating hours will be logged electronically by the entry system and will be made available to each *Tenant* to undertake the appropriate action, as deemed necessary.

Should access be required outside the normal operating hours, each *Tenant* must be notified in writing and permission sought for any such action.

If entry is granted outside of the normal operating hours, all responsibility will be on the *Tenant* or delegated staff to ensure no unauthorised entry. Upon leaving, the roller shutters are to be closed.

Cleaning and Maintenance

It is the responsibility of each *Tenant*, upon finalising delivery, to ensure the loading dock area is clean and free of obstruction.

Any maintenance issues must be logged and reported to the building supervisor for rectification.

High Visibility Clothing

All persons moving or working within the loading dock are required at all times to wear a high-visibility jacket in order to minimise risks associated with plant and/or vehicle movements.

This clothing can be in the form of high-visibility vests and must meet the requirements of AS/ NZS 4602.1. Specifically, it is the *Tenant's* responsibility to ensure that high-visibility clothing is worn at all times within the loading dock.

With one exception, the above requirements must be observed by the *Tenant's* staff, contractors and service personnel. Entries by the general public, whether by vehicle or foot are exempt.

Six (6) high visibility jackets, conforming to Australian and New Zealand Standards, must be situated in a convenient location within the loading dock for use by any *Tenant* or delegated staff.

Smoking Zones

Smoking is only to be permitted within any designated smoking areas and not within 4m of the loading zone or any materials being handled.

Work place safety is not only crutial ensuring the health of persons utilising the warehouse facility but equally important to the economic viability of operations.

For further information and guidelines regarding Risk Management and Codes of Practice please reference the following...

Phone 1300 551 832 | Email Info@swa.gov.au | Web www.swa.gov.au

WORKCOVER

NSW www.workcover.nsw.gov.au

8 PUBLIC TRANSPORT

The Metropolitan Strategy, under the auspices of 'Draft SEPP 66 – Integration of Land Use and Transport', prescribes guiding provisions that aim to ensure the urban structure, building forms, land use locations, development design, subdivision and street layouts to help achieve the following planning objectives...

- → Improving accessibility to housing, employment and services by walking, bicycling and public transport,
- Improving the choice of transport and reducing the dependancy on private vehicle usage,
- Moderating growth in the demand for travel and the distances travelled, especially by car.
- > Support the efficient and viable operation of public transport services, and
- Providing for the efficient movement of freight.

The provision seeks to influence mode choice made by both community and business.

The State Government's has invested in 300 new buses across the state, which has resulted in 400 new jobs for bus drivers and 150 jobs in bus construction.

Rail

Meadowbank Railway Station is located near the corner of Railway Road and Constitution Road, some 1.2km from the development. The railway station is approximately 13.5 minutes walk utilising the Underdale Lane pedestrian link from Nancarrow Avenue. This time extends to 15-16 minutes when travelling on Constitution Road.

The railway station is located on the Northern Line, approximately mid-way between Strathfield and Hornsby Railway Stations. The Northern Line operates on a loop comprising Hornsby, the City Circle and Strathfield, via the Epping-Chatswood rail link.

Weekday train services operate every 15 minutes during weekday commuter peak periods, and every 30 minutes outside peak periods. Weekend services also operate every 30 minutes.

Figure 28 Meadowbank Railway Station Entry Promenade
Source Google Street View, 2017

Meadowbank Railway Station is located four stops south of Epping Station, a major bus rail interchange with connecting rail services to the City via Macquarie University, Chatswood and North Sydney, and connecting bus services to the Hills District.

To the south Meadowbank Railway Station is located four stops from Strathfield Station, a major bus rail interchange with connections to the North Shore and Western Line, the South Line (to Campbelltown), the Inner West Line between the City Circle and Liverpool, as well as most intercity rail services (ie. to Newcastle, Lithgow and Southern Highlands).

Buses

Bus services through the MEA are operated by Sydney Buses with weekday services operating every 30 minutes and additional services during the commuter peak periods.

Weekend services generally operate every 60 minutes. Bus stops are located at regular intervals along both sides of Bowden Street and Constitution Road, as well as along Church Street and Victoria Road.

While rail provision is some 1.2km from the Stage A development site, frequent bus services are readily available on Church Street and Belmore Street providing access to the principle centres such as Sydney CBD, Parramatta CBD, Macquarie Park and Strathfield and Chatswood. It is considered that buses will afford residents of Stage A convenient public transport opportunity and the best chance to reduce dependancy on private vehicle usage.

Route No.	Nearest Bus Stop	Service Route
507	Constitution Road	Meadowbank Station to Sydney CBD & Macquarie University
513	Bowden Street	Meadowbank Wharf to Carlingford Court
533	Church Street	Chatswood to Olympic Park
458	Church Street	Burwood Station to Top Ryde
459	Church Street	Strathfield Station to Macquarie University
534	Victoria Road	West Ryde Station to Chatswood Station
520	Victoria Road	Parramatta Station to Sydney CBD
524	Victoria Road	Parramatta Station to Top Ryde

Table 10Bus ServicesSourceTransport NSW, 2018

Ferry

Current ferry services during the morning commuter peak, stopping at the Meadowbank wharf, exhibit a spare capacity of some 20 -30 passengers over the hour.

To promote this transport mode, residents will be directed to the www.Transportnsw.info web site to plan their trip and how they can utilise the complimentary Opal Card provided in the 'Welcome Pack'.

It will be promoted by the Body Corporate/Corporate Executive at the AGMs that ferries provide a relaxing means of travel for both recreational and JTW trips. Given the close proximity of the Meadowbank Ferry Wharf, the transport mode is a viable and efficient means to travel.

Operator	Mode	Key	Route Name	Frequency		
Transport Sydney Ferries		-0-	Parramatta River Ferry	1-2 per hour Every Da	У	
Operator			Route Name	Frequency		

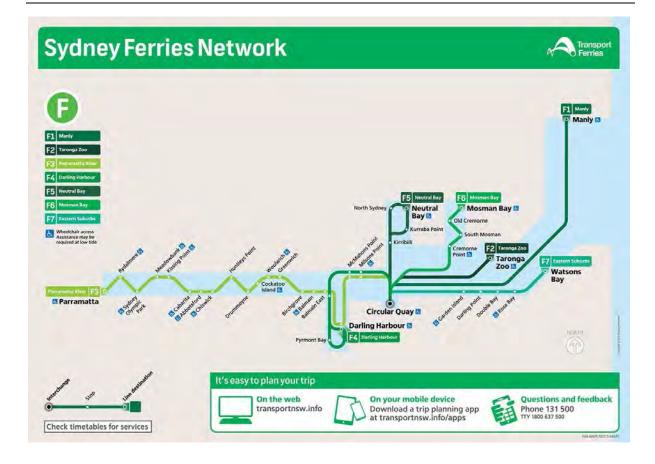


Figure 29 Sydney Ferries Network
Source Transport NSW, 2018

9 PEDESTRIAN AND BICYCLE PLAN

Planning to enable pedestrians, bicyclists, and motorists to travel safely and conveniently is a balancing placing a high priority on planning methods and policies that favor alternative modes of travel.

There are a number of cycleways and shared pedestrian paths providing convenient access to and from the Shepherds Bay development for those residents who do not wish to drive or use public transport for JTW and recreational activities.

Bicycle parking facilities are to be provided at the rate of one (1) bicycle space per eight (8) residential apartments.

Studies have shown that in Sydney, over 50% of trips are less than 5km. Such trips are ideally suited to walking or cycling.

The nearby, shared, off-road pedestrian and cycleway path which is located along the foreshore continues towards the west to Parramatta and towards the east to the City, using a combination of on and off-road cycleways and pedestrian paths.

An on-road cycleway connects with the foreshore shared pedestrian and cycleway path and follows a generally north-south alignment along Bowden Street and Angus Street to connect with West Ryde Railway Station and other on-road cycleways which extend further to the north. A shared pedestrian and cycleway path also extends southward across Ryde Bridge to the Rhodes peninsula where it connects to other on and off-road cycleways that extend to the south to Concord and Olympic Park.

The Shepherds Bay development will enhance the options available to residents for walking and cycling through the provision of three (3) new east-west cycle links between Bowden Street and Belmore Road. The improved permeability for pedestrians and cyclists offered by these links will provide more direct links for the majorty of residents, including Stage A, when walking or cycling to nearby facilities such as the local primary school, TAFE College, local shops and railway station.

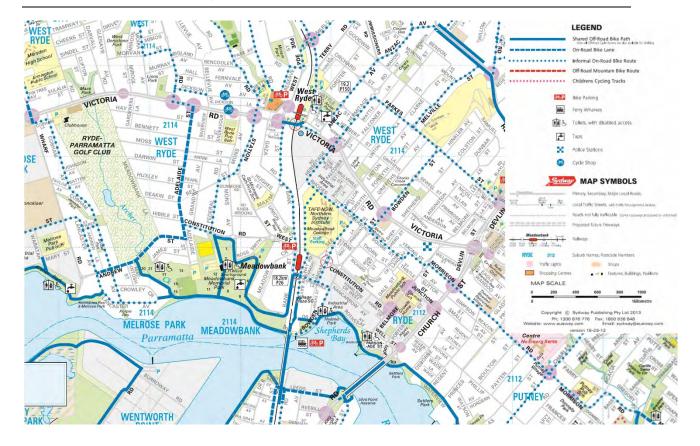


Figure 30 Bicycle Path Network Ryde
Source Ryde City Council, 2018

Improved pedestrian links will be provided along all east-west and north-south road links, with additional mid-block pedestrian links to be provided generally following a north-south alignment. The improved pedestrian links will significantly enhance the accessibility to bus services for residents.

Travel surveys have shown the median walk distance to a bus stop in heavily built up areas of Sydney and Melbourne is some 500 metres, with only 25% electing to walk more than 800 metres. The data suggests that a small percentage of train travellers may infrequently elect to walk more than 800 metres if the prevailing pedestrian environment is condusive.

This may offer some relief from commuter traffic generation associated with Stage A but it is considered negliable in this instance. The distance of 1.2km between the site and Meadowbank Railway Station will invariably deter pedestrians from walking to the station.

The BTS report bicycle to train, as a two mode JTW travel trip throughout the metro Area is slowly on the increase. If bicycle parking provisions were to cater for a greater

number at Meadowbank Railway Station, it is not unforseeable that a small number of residents may choose to ride to the station as part of their JTW trip.

Proposed Pedestrian and Bicycle Infrastructure

The preparation of the pedestrian and bicycle management plan endeavoured to establish a framework of measures to provide safe and efficient connectivity between the site and adjoining facilities.

To promote pedestrian and bicycle access to Stage A, three (3) significant treatments are proposed...

- → Construction of a pedestrian refuge and kerb ramps in Well Street, some 127m west of Church Street,
- → Construction of a pedestrian refuge and kerb ramps in the Loop Road, to the immediate east of the Parsonage Street roundabout, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

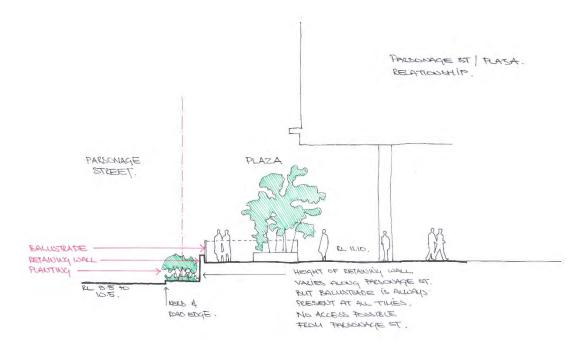


Figure 31 Podium Treatment Cox/Kennedy, 2018

Projected vehicular traffic volumes in Well Street and Parsonage Street proved prohibitive to the introduction of a marked foot crossing. The width of Parsonage Street and a subsequent walking time of some 1.5m per second would incur significant delay to vehicles and pose the threat of causing queue lengths for southbound motorists extending back onto Church Street.

The pedestrian refuge proposed in Well Street will predominently service the residential community to the north of the site.

The Loop Road pedestrian refuge will provide the majority of pedestrians from the west and foreshore areas access to the site. The location was selected given the lower volume of vehicular traffic on the Loop Road and the close proximity to the foreshore shared path.

The installation of traffic signals replacing the Loop Road roundabout were considered as the best and safest option for pedestrian movements.

Three (3) significant issues were raised during the assessment of traffic signals at the Loop Road intersection with Parsonage Street...

- → SIDRA modelling indicated significant queues, in excess of 200m in the Parsonage Street approach, southbound,
- → The right turn movement from the Loop Road would need to be banned, and
- → The RMS warrant for traffic signals could not be met.

To efectively install traffic signals, the site would require significant reconstruction to generally, facilitate two (2) lane approaches, as shown in the following figure. Banning of the right turn movement from the Loop Road would hinder access to Stage A by sending motorists into Belmore Street and back down Porter Street. This would impact the introduction of the proposed dedicated left turn lane to the Stage A car park and necessitate a significant dedication of land from the site which would adversly affect the development FSR.

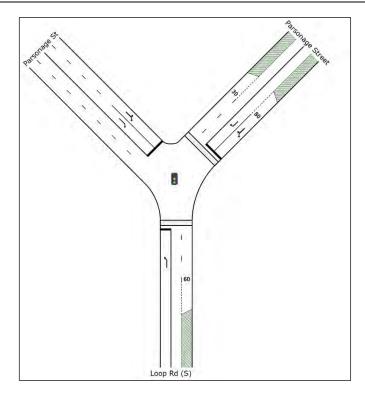


Figure 32 Considered Traffic Signals – Parsonage Street and Loop Road
Source Road Deay Solutions, 2018

The modelling undertaken for the assessed traffic signals adopted a conservative pedestrian demand on each approach of 100 persons per hour. This is considered excessive, particularly during the AM peak commuter period but with the exception of the inherent delays to vehicle traffic, resulted in a pedestrian level of service 'B' on all approaches.

It is considered that the JTW pedestrian demand from Stage A, given the distance to the Meadowbank Railway Station, will be relatively low. The dominent pedestrian demand will be for the retail operations and the Café.

It was for the above reasons the possible installation of traffic signals at the intersection of Parsonage Street and The Loop Road was dismissed, at this time.

The proposed treatments under this application were based on the pedestrian demand peaks occurring outside the commuter peak periods with maximum demand anticipated during recreational activities, on weekends.

The modification of the kerb return from Church Street into Well Street should reduce the speed of vehicles entring the precinct and provide sufficient vehicular gaps during off peak periods to allow pedestrians to cross. Sight distances are good and

clear for both motorists and pedestrians. To retain this aspect, any proposed landscaping along Well Street should be kept to very low vegetation such as grasses or the equivalent.

The proposed Loop Road pedestrian refuge must incorporate advance warning signposting to ensure the preparedness of motorists. The distance of the refuge from the roundabout is to be determined in consultation with Council. The horizontal alignment of the Loop Road approach to the crossing meets current sight line requirements but is heavily vegetated along the northern kerb. It is recommended that the vegetation within 2m of the kerb be removed and low plantings such as grasses be instated.

Current bus and pedestrian provisions on Church Street are satisfactory to afford significant opportunity for public transport usage for both JTW and recreational activities.

Bus stops in Belmore Street, north of Constitution Road provide further accessibility to locations within the precinct. Direct, sealed pathways provide accessibility between the bus stops and the Stage A site.

It was considered that train travel and pedestrian movement to the Meadowbank railway station might be adversely impacted by the distance of some 1.2km from the site.

A significant pedestrian demand from the site will invariably be genrated by retail and recreational activities. This created the need to facilitate direct connections between the adjoining residential catchments and planned pedestrian/shared paths to the site.

Pedestrian provisions were considered in Parsonage Street, between Well Street and the Loop Road, but given the distance of any pedestrian crossing and the volume of anticipated vehicle traffic it was considered that any such treatment may result in queueing back onto Church Street.

Pedestrian refuges in both Well Street and the Loop Road are recommended to faciliatate pedestrian access to the site while minimising the impact on vehicle movements.

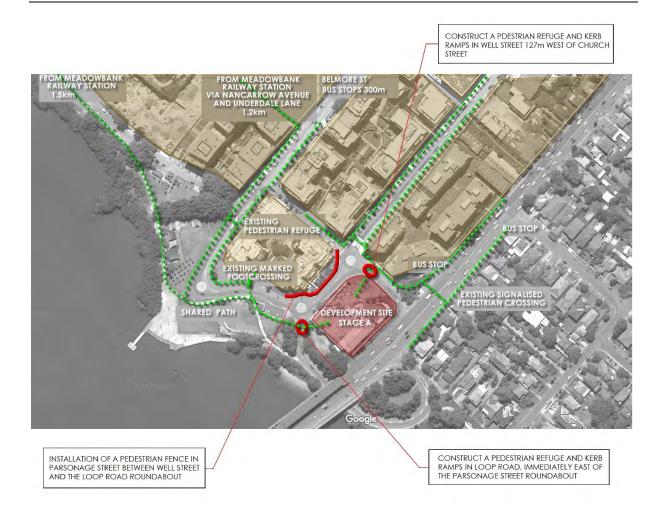


Figure 33 Pedestrian Cyclist Management Plan
Road Delay Solutions, 2018

Figure 34 Source Typical Pedestrian Refuge Treatment Road Delay Solutions, 2018

10 CONCLUSION

This report, commissioned by *Holdmark* and undertaken by *Road Delay Solutions*, supports the Section 75W Application for Stage A of the Shepherds Bay Development.

Formerly, comptuer based road network modelling, accompanying the original Concept Application for the full Shepherds Bay Development, including Stage A, was predicated upon...

- → 3,000 residential apartments,
- → 10,000m² of Commercial Floor Space,
- → A vehicle generation rate of 0.32vph per apartment,
- → The addition of 90 vehicle trips associated with supplimentary retail and recreational activities, and
- → A total vehicle generation of 1,250vph.

The input parameters for the former Stage A concept model comprised...

- → 10,000m² of commercial floor space,
- → A peak hour vehicle generation rate of 2 trips per 100m² of GLFA,
- > Passenger vehicle entry via Well Street, and
- → Passenger vehicle exit onto Parsonage Street.

No loading dock provision was modelled during the former preparation of the concept application.

This Section 75W Application applies specifically to Stage A Mod 3, proposing under a 10 storey envelope, the following likely changes (subject to DA)...

- → 8,176m² of floor space for serviced apartments or 42 serviced apartments, and
- → 4,008m² of floor space for residential apartments or 42 apartments, being...
 - o Twelve (12) 1 bedders,
 - o Twenty four (24) 2 bedders, and
 - o Six (6) 3 bedders.

Therefore, the traffic generating land uses proposed under the Stage A, 10 storey envelope, are...

- → 42 residential apartments,
- → 42 serviced apartments.
- → A Supermarket with a GFA of 2,928m² and a calculated (80% of GFA) GLFA of 2,342m² excluding common areas, walkways, garbage rooms and shared loading dock,
- → Specialty shops with a GFA of 1,128m² and a calculated GLFA of 903m², and
- → A Café with a GFA of 100m².

Stage A, under this Section 75W Application is to provide for...

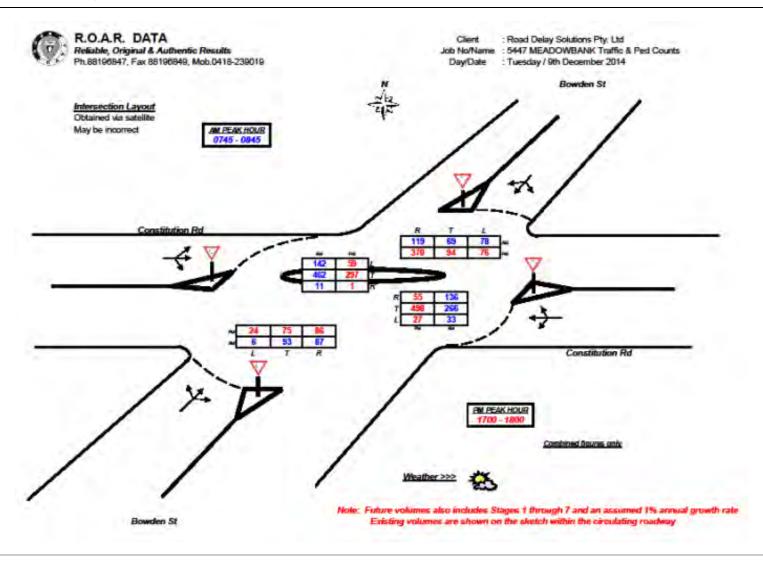
- → A total vehicle generation of 443vph during each commuter peak,
- → Loading dock access from a dedicated entry lane adjacent to the deceleration lane, northbound in Church Street,
- → Passenger vehicle access from a dedicated left turn lane, southbound in Parsonage Street,
- → Construction of pedestrian refuges in Well Street and Parsonage Street, and
- → Raising of the Stage A podium level, generally 1.5m above the surrounding surface level fronting Parsonage Street, and employing dense, low height plantings between the kerb line and the face of the podium to deter pedestrian movement and access.

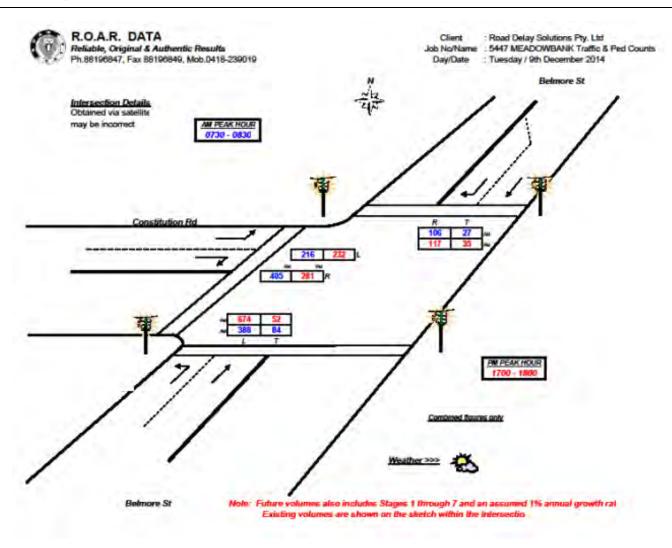
This report has assessed the committed infrastructure necessary to sustain the level of development, in accordance with the *Department of Planning & Infrastructure Concept Approval*, MP09_0216 and proposes the relavent timing for each.

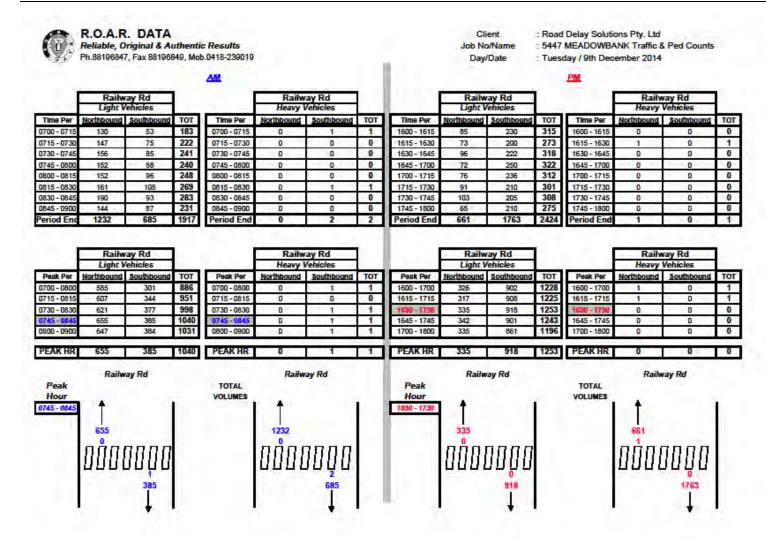
This assessment further provides a rationale for the recommended infrastructure and treatments associated with the development of Shepherds Bay Stage A.

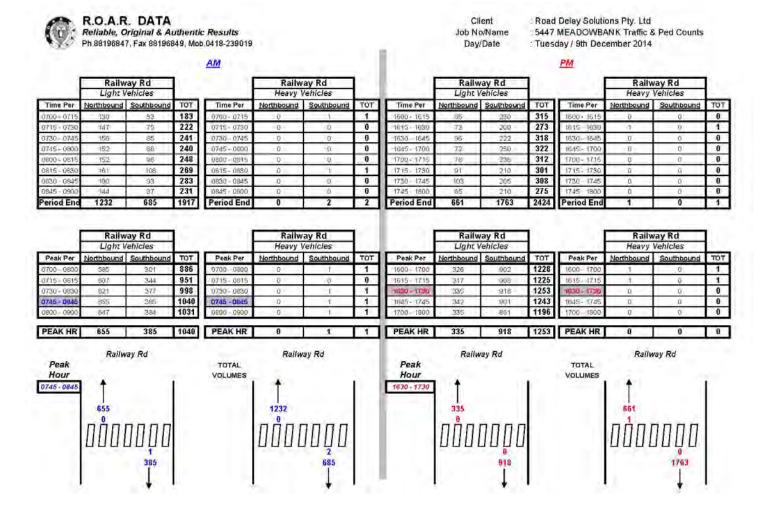
In support of the Section 75W Application and the Stage A Development, as proposed, the following is considered relevant...

- → This assessment has diligently considered all aspects of vehicle generation and the impacts on the road network.
- → The peak commuter travel periods within the MEA precinct are 7:30am till 8:30 am and 4:45pm till 5:45pm.


- → Mesoscopic Netanal modelling and operational Sidra modelling has been undertaken and confirm that the MEA road network is capable, with the implementation of the recommended and committed infrastructure upgrades, of sustaining the projected vehicle growth associated with an average 9.4% background growth to year 2026 and the the vehicle generations calculated for the Shepherds Bay Urban Renewal development.
- → No consideration has been given to promote increased traffic through the 'gateways' of Well Street, Loop Road or the rail overbridge on Railway Road to encourage further cross regional traffic flow through the precinct.
- → The site provides public transport opportunity with frequent and convenient bus services on Church Street and Belmore Street, some 50m and 250m from the site, respectively, to regional centres such as the Sydney CBD, Parramatta CBD, Macquarie Park and Strathfield.
- → The Pedestrian and Bicycle Plan provides the neccessary access to the site for residents, retail and recreational users, particularly during off peak periods.
- → The site is located immediately north of a shared pedestrian and bicycle path with links to Parramatta and the Sydney CBD.
- → No warrant exists for the signalisation of the marked foot crossing in Railway Road, at this time. Future monitoring of the site is recommended following the occupancy of Stage 9 and with the commercial activities associated with the development.

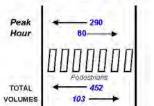

APPENDIX A – TRAFFIC COUNTS

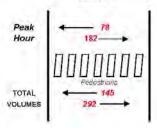

Road Delay Solutions has previously commissioned ROAR Data to annually count key intersections within the MEA, in particular the intersections of Constitution Road with both Bowden Sreet and Belmore Street and the pedestrian mid block crossing in Railway Road. These counts have been collected in or around November of each year from 2011 to 2014, inclusive.



R.O.A.R. DATA

Reliable, Original & Authentic Results
Ph.88196847, Fax 88196849, Mob.0418-239019

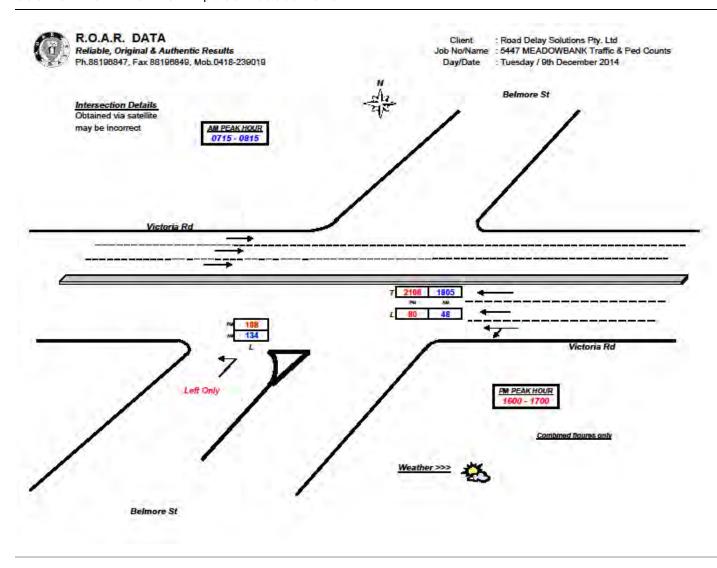

		ay Rd				ay Rd rossing	
Time Per	Eastbound	Westbound	TOT	Time Per	Eastbound	Westbound	TOT
0700 - 0715	18	35	53	1500 - 1515	.34	17.	51
0715 - 0730	10	48	58	1615 - 1630	26	-13	39
0730 - 0745	16	86	102	1630 - 1645	23	- 24	47
0745 0800	16	68	84	1645 1700	27	13	40
0800 - 0815	10	88	98	1700 - 1715	30	19	49
0815 - 0830	18	48	66	1715 - 1730	30	- 12	42
0830 - 0845	10	42	52	1730 - 1745	67	31	93
0845 - 0900	-5	37	42	1745 - 1800	60	18	76
Period End	103	452	555	Period End	292	145	437


AM PEAK HOUR 0730 - 0830 PM PEAK HOUR 1700 - 1800

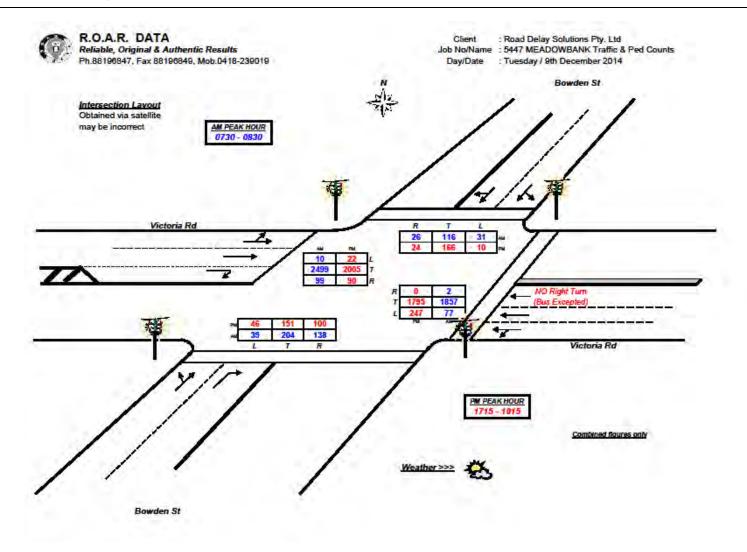
Railway Rd

		ray Rd rossing				ay Rd rossing	ΗĹ
Peak Per	Eastbound	Westbound	TOT	Peak Per	Eastbound	Westbound	TOT
0700 - 0800	80	237	297	1600 - 1700	110	67	177
0715 - 0815		290	342	1615 - 1715	106	69	175
0730 - 0830	60	290	350	1630 = 1730	110	56	178
0745 - 0845	.54	246	300	1645 - 1745	149	75	224
(1000 - 0900	43	215	258	1700 - 7600	182	78	260
PEAK HR	60	290	350	PEAK HR	182	78	260

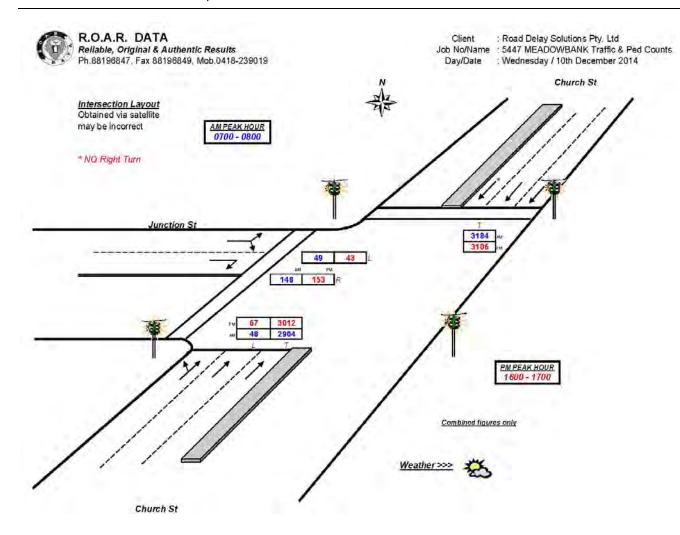
Railway Rd

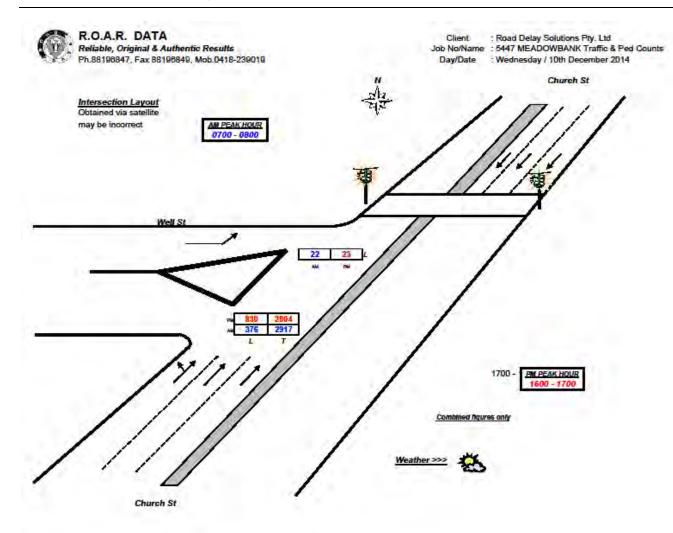


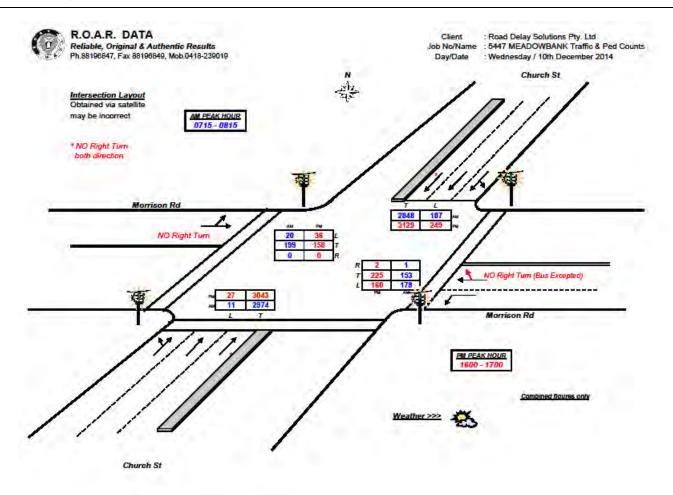
Client : Road Delay Solutions Pty. Ltd

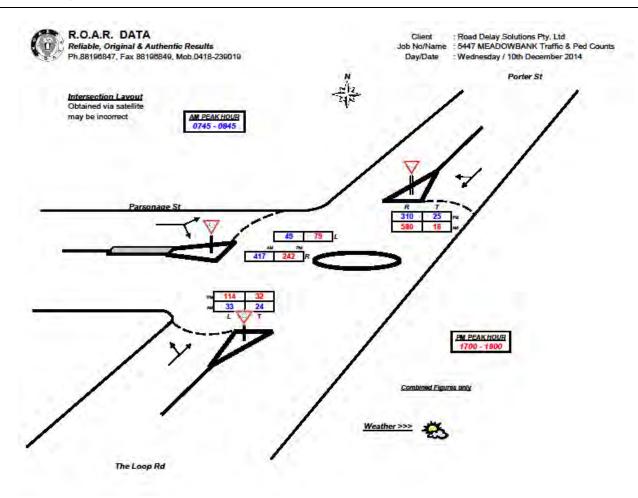

Job No/Name : 5447 MEADOWBANK Traffic & Ped Counts

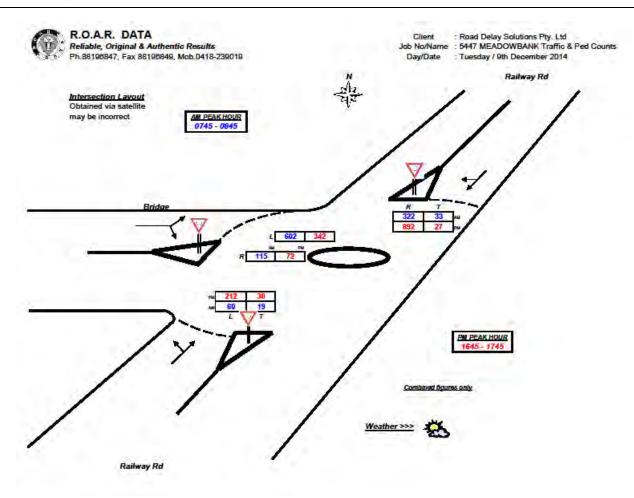
Day/Date Tuesday / 9th December 2014











APPENDIX B – PERFORMANCE INDICATORS

General

Intersection performance is best measured by the indicators of Level of Service (LoS), Average Vehicle Delay (AVD) and the Degree of Saturation (DS) during peak hours.

This is defined as the assessment of a qualitative effect of factors influencing vehicle movement through the intersection. Factors such as speed, traffic volume, geometric layout, delay and capacity are qualified and applied to the specific intersection control mode, as shown in Table 1.

The measure of average delay assessed for traffic signal operation is over all movements. For roundabouts and priority controlled intersections, the critical criterion for assessment is the movement with the highest delay per vehicle.

Table A1: Performance Indicators by Control Method

Intersection Control	Performance Measure [Unit]
	Delay of critical movement(s) [seconds/vehicle] Average Vehicle Paley [seconds/vehicle]
Sign or Priority Control	 Average Vehicle Delay [seconds/vehicle] Queue length of critical movement(s) [metres]
Traffic Signal Control	 → Delay of critical movement(s) [seconds/vehicle] → Degree of Saturation [ratio of vehicles to capacity] → Average Vehicle Delay [seconds/vehicle] → Cycle Length [seconds] → Queue length of critical movement(s) [metres]
Roundabout Control	 → Delay of critical movement(s) [seconds/vehicle] → Degree of Saturation[ratio of vehicles to capacity] → Average Vehicle Delay [seconds/vehicle] → Queue length of critical movement(s) [metres]

Average Vehicle Delay (AVD)

The AVD is a measure of the operational performance of a road network or an intersection.

AVD is determined globally over a road network or within a cordon during an assignment model run. The AVD exhibited on comparable network models, for analogous peak periods, forms the basis of comparing the operational performance of the road network.

AVD is used in the determination of intersection Level of Service. Generally, the total delay incurred by vehicles through an intersection is averaged to give an indicative delay on any specific approach. Longer delays do occur but only the average over the peak hour period is reported.

Degree of Saturation (DS)

The DS of an intersection is usually taken as the highest ratio of traffic volume on an approach to the intersection compared with its theoretical capacity, and is a measure of the utilisation of available green time. The DS reported is generally of a critical movement through the intersection rather than the DS of the intersection unless equal saturation occurs on all approaches.

For intersections controlled by traffic signals, generally both queue length and delay increase rapidly as DS approaches 1.0. An intersection operates satisfactorily when its DS is kept below 0.875. When the DS exceeds 0.9, extensive queues can be expected.

Table A2: Qualified Level of Service by Control Method

LOS	AVD secs	Traffic Signals and Roundabout	Give Way and Stop Sign Priority Control
А	1 to 14	Good operation.	Good operation
В	14 to 28	Good operation with acceptable delays and spare capacity.	Good operation with acceptable delays and spare capacity.
С	28 to 42	Satisfactory.	Satisfactory but accident study and operational analysis required.
D	42 to 56	Operating near capacity.	Near capacity. Accident study and operational analysis required.
E	56 to 70	Unsatisfactory. Traffic signals incidence will cause excessive delays. Requires additional capacity. Roundabouts require alternative control mode.	At capacity. Requires alternative control mode.
F	>70	Unsatisfactory. Over capacity and unstable operation.	Over capacity. Unstable and unsafe operation.

APPENDIX C - SIDRA MOVEMENT SUMMARIES

MOVEMENT SUMMARY

Site: 2026 AM Base Well St, Parsonage St and Porter St

Well Street and Porter Street Roundabout

Mov	.00	Demand	Flows	Deg.	Average	Level of	95% Back		Prop	Effective	Average
ID	Mov	Total	HV	Sain	Delay	Service	Vehiclas	Drslance	Queued	Slop Rate	Speed
Enet V	Nell Street	veh/h	- 1/6	V/C	Sac	_	ve)	ni		per veh	Ranz
SALE OF 1	Gant Carried								2.50		
4a	L1	437	1.0	0.326	4.6	LOSA	2.4	16.9	0.19	0.49	54.1
6b	R3	39	0.0	0.326	8.9	LOSA	2.4	16,9	0.19	0.49	54.3
Approa	ach	476	0.9	0.326	4.9	LOSA	2.4	16,9	0.19	0.49	54.1
NorthE	ast Porter	Street									
24b	L3	25	0.0	0.072	8.1	LOSA	0.4	2.6	0.59	0.66	51.4
25	T1	35	0.0	0.072	7.8	LOSA	0.4	2.6	0.59	0.66	52.5
Арргоа	ach	60	0.0	0.072	7.9	LOSA	0.4	2.6	0.59	0.66	52.1
South	Nest; Parsor	nage Street									
31	T1	2	0.0	0.367	5.0	LOSA	2.5	17.7	0.19	0.60	52.7
32a	R1	533	1.0	0.367	7,3	LOSA	2.5	17.7	0.19	0.60	52.0
Арргоа	ach	535	1,0	0.367	7.3	LOSA	2.5	17.7	0.19	0.60	52.0
All Veh	nides	1071	0.9	0.367	6.3	LOSA	2.5	17.7	0.21	0.55	52.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.
SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 8:30:21 AM Project; D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2026 PM Base Well St, Parsonage St and Porter St

Well Street and Porter Street Roundabout

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	oi Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV %	Satn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
East: V	Nell Street		- 1								
4a	L1	702	1.0	0.736	6.1	LOSA	9.2	64.6	0.75	0.62	52.0
6b	R3	195	0.0	0.736	10.4	LOSA	9.2	64.6	0.75	0.62	52.2
Approa	ach	897	0.8	0.736	7.1	LOSA	9.2	64.6	0,75	0.62	52.1
NorthE	East: Porter	Street									
24b	L3	95	0.0	0.348	9.5	LOSA	2.3	16.3	0.78	0.83	50.5
25	T1	153	0.0	0.348	9.2	LOSA	2.3	16.3	0.78	0.83	51.5
Approa	ach	247	0.0	0.348	9.3	LOSA	2.3	16.3	0.78	0.83	51.1
South	West: Parson	nage Street									
31	T1	12	0.0	0.557	6.4	LOSA	5.0	35.0	0.62	0.67	51.5
32a	R1	616	1.0	0.557	8.7	LOSA	5.0	35.0	0.62	0.67	50.9
Approa	ach	627	1.0	0,557	8.7	LOSA	5.0	35.0	0,62	0,67	50.9
All Veh	nicles	1772	0.7	0.736	8.0	LOSA	9.2	64.6	0.71	0.67	51.5

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 8:31:11 AM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: Existing AM 2014

Constitution Rd & Bowden St Roundabout

Mov	00	Demand		Deg.	Average	Level of	95% Back		Prop	Effective	Average
10	Mov	Total	/+W %	Saln v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Constit	ven/h lution Rd (SE		V/G	SBC		veh	m		per veh	km/t
21	L2	33	7.8	0.399	5.4	LOSA	2.9	20.7	0.53	0.60	45.0
22	T1	266	1.0	0.399	5,1	LOSA	2.9	20.7	0.53	0.60	45.8
23	R2	136	0.6	0.399	8,1	LOSA	2.9	20.7	0.53	0.60	45.6
Appro	ach	435	1.4	0.399	6.1	LOSA	2.9	20.7	0.53	0.60	45.7
NorthE	East: Bowder	n St (NE)									
24	L2	78	0.0	0.358	7.8	LOSA	2.4	17.0	0.76	0.82	43.9
25	T1	69	4.3	0.358	7.8	LOSA	2.4	17.0	0.76	0.82	44.5
26	R2	119	3,5	0.358	10.8	LOSB	2.4	17.0	0.76	0.82	44.3
Appro	ach	266	2.7	0.358	9.2	LOSA	2.4	17.0	0.76	0.82	44.
North	Vest: Consti	tution Rd (NV	V)								
27	L2	142	2.5	0.615	7.7	LOSA	5.8	41.0	0.74	0.76	44
28	T1	462	0.6	0.615	7.4	LOSA	5.8	41.0	0.74	0.76	45.4
29	R2	11	0.0	0.615	10,4	LOS B	5.8	41.0	0.74	0.76	45.
Appro	ach	615	1.0	0.615	7.5	LOSA	5.8	41.0	0.74	0.76	45.
South	West: Bowde	en St (SW)									
30	L2	6	0,0	0.234	7.2	LOSA	1.4	10.0	0.66	0.75	44.3
31	T1	93	3.7	0.234	7.2	LOSA	1.4	10.0	0.66	0.75	44.8
32	R2	87	3.6	0.234	10.2	LOS B	1.4	10.0	0.66	0.75	44.6
Appro	ach	186	3.5	0.234	8.6	LOSA	1.4	10.0	0.66	0.75	44.
All Veh	nides	1502	1.7	0.615	7.5	LOSA	5.8	41.0	0.67	0.72	45.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:58:21 AM Project: D:\Documents\Meadowbank\Sidra Models\2014 Constitution and Bowden Intersection.sip6

Site: Existing PM 2014

Constitution Rd & Bowden St Roundabout

Mov	OD	Demand	1 Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
(0)	Mov	Total veh/h	HV %	Saln v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/t
South	East Constit	ution Rd (SE			200		Veri	m		231 1/31	- 2010
21	L2	27	0.0	0.689	8.2	LOSA	8.0	56.4	0.91	0.99	42.8
22	T1	498	0.9	0.689	11.1	LOSB	8.0	56.4	0.91	0.99	43.4
23	R2	55	1.4	0.689	14,1	LOS B	8.0	56.4	0.91	0.99	43,3
Appro	ach	580	0.9	0.689	11.2	LOSB	8.0	56.4	0.91	0.99	43.4
NorthE	East: Bowder	st(NE)									
24	L2	76	0.0	0.583	8.1	LOSA	5.2	36.5	0.76	0.83	43.4
25	T1	94	1.2	0.583	8.0	LOSA	5.2	36.5	0.76	0.83	44.0
26	R2	370	0.4	0.583	11.0	LOSB	5.2	36.5	0.76	0.83	43.
Appro	ach	540	0.5	0.583	10.1	LOSB	5.2	36.5	0.76	0.83	43.
North	West: Constit	tution Rd (N	N)								
27	L2	59	2.7	0.336	5.4	LOSA	2.3	16.1	0.52	0.57	45.5
28	T1	297	0.4	0.336	5.1	LOSA	23	16.1	0.52	0.57	46.
29	R2	1	12.5	0.336	8.4	LOSA	2.3	16.1	0.52	0.57	45.8
Appro	ach	357	0,8	0.336	5.2	LOSA	2,3	16.1	0.52	0.57	46.
South	West: Bowde	en St (SW)									
30	L2	24	0.0	0.365	12.1	LOS B	2,6	17.9	0.91	0.96	41.8
31	T1	75	1.0	0.365	12.0	LOS B	2.6	17.9	0.91	0.96	42.
32	R2	86	0.0	0.365	14.9	LOS B	2.6	17.9	0.91	0.96	42.
Appro	ach	185	0.4	0.365	13.4	LOSB	2.6	17.9	0.91	0.96	42.
	nicles	1662	0.7	0.689	9.8	LOSA	8.0	56.4	0.78	0.84	43.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:58:23 AM Project: D:\Documents\Meadowbank\Sidra Models\2014 Constitution and Bowden Intersection.sip6

Site: 2026 AM Well St, Parsonage St and Porter St

Well Street and Porter Street Roundabout

Mev	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV Vo	Safn v/c	Delay sec	Service	Vehicles veh	Distance m	Oueued	Stop Rate per veh	Speed km/h
East: V	Nell Street		- 7				- 170				
4a	L1	631	1.0	0.641	7.8	LOSA	6.4	45.2	0.74	0.74	52.2
6b	R3	36	0.0	0.641	12.0	LOSA	6.4	45.2	0.74	0.74	52.4
Approa	ach	666	0.9	0.641	8.0	LOSA	6.4	45.2	0.74	0.74	52.2
NorthE	ast: Porter S	Street									
24b	L3	25	0.0	0.300	11.6	LOSA	1.9	13.3	0.81	0.86	49.1
25	T1	163	0.0	0.300	11.3	LOSA	1.9	13.3	0.81	0.86	50.1
Approa	ach	188	0.0	0.300	11.3	LOSA	1.9	13.3	0.81	0.86	50.0
South	Nest: Parsor	nage Street									
31	T1	13	0.0	0.556	5.1	LOSA	6.0	42.2	0.28	0.58	52.2
32a	R1	706	1.0	0.556	7.4	LOSA	6.0	42.2	0.28	0.58	51.6
32u	U	116	0.0	0.556	9.8	LOSA	6.0	42.2	0.28	0.58	52.4
Approa	ach	835	8.0	0.556	7.7	LOSA	6.0	42.2	0.28	0.58	51.7
All Veh	nicles	1689	0.8	0.641	8.2	LOSA	6.4	45.2	0.52	0.67	51.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 8:32:25 AM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2026 PM Well St, Parsonage St and Porter St

Well Street and Porter Street Roundabout

Mev	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV Vo	Safn v/c	Delay sec	Service	Vehicles vah	Distance m	Oueued	Stop Rate per yeh	Speed km/n
East: V	Nell Street							- 7			
4a	L1	623	0.0	0.807	12.6	LOSA	12.9	90.5	0.96	0.98	48.5
6b	R3	176	0.0	0.807	16.9	LOS B	12.9	90.5	0.96	0.98	48.6
Approa	ach	799	0.0	0.807	13.5	LOSA	12.9	90.5	0.96	0.98	48.5
NorthE	ast Porter	Street									
24b	L3	90	0.0	0.670	24.6	LOSB	6.9	48.3	1.00	1.17	41.8
25	T1	172	0.0	0.670	24.2	LOSB	6.9	48.3	1.00	1.17	42.5
Approa	ach	262	0.0	0.670	24.3	LOSB	6.9	48.3	1.00	1.17	42.3
South	West: Parson	nage Street									
31	T1	24	0.0	0.837	9.0	LOSA	15.3	106.8	0.96	0.71	49.9
32a	R1	800	0.0	0.837	11.3	LOSA	15.3	106.8	0.96	0.71	49.4
32u	U	165	0.0	0.837	13.7	LOSA	15.3	106.8	0.96	0.71	50.1
Approa	ach	989	0.0	0.837	11.7	LOSA	15.3	106.8	0.96	0.71	49.5
All Veh	nicles	2050	0.0	0.837	14.0	LOSA	15.3	106.8	0.97	0.87	48.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 8:35:23 AM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2026 Base AM Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID	Mov	Total veh/h	HV Va	Safn v/c	Delay sec	Service	Vehicles vah	Distance	Queued	Stop Rate per veh	Speed km/h
SouthE	East Loop F			10	300		1(2)	144		100	SUM
21a	L1.	17	1.0	0.094	6.7	LOSA	0.5	3,6	0.56	0.70	51.2
23	R2	65	1.0	0.094	10.2	LOS B	0.5	3.6	0.56	0.70	51.1
Approa	ach	82	1.0	0.094	9,5	LOSA	0.5	3,6	0,56	0.70	51.1
NorthE	ast: Parson	age Street									
24	L2	33	1.0	0.330	6.0	LOSA	2.2	15.6	0.50	0.66	51.0
26a	R1	415	1.0	0.330	8.4	LOSA	2.2	15.6	0.50	0.66	51.3
Approa	ach	448	1.0	0.330	8.2	LOSA	2.2	15.6	0.50	0.66	51.3
West: I	Parsonage :	Street									
10a	Lt	443	1.0	0.521	4.9	LOSA	4.8	34.1	0.35	0.53	53.1
12a	R1	284	1.0	0.521	7.6	LOSA	4.8	34.1	0.35	0.53	52.7
Approa	ach	727	1.0	0,521	5.9	LOSA	4.8	34.1	0,35	0,53	53.0
All Veh	nicles	1257	1.0	0.521	7.0	LOSA	4.8	34.1	0.42	0.59	52.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Tuesday, 26 April 2016 10:25:16 AM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2014 AM Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total yeh/h	HV Vo	Saln v/c	Delay sec	Service	Vehicles vah	Distance m	Queued	Stop Rate per veh	Speed km/h
SouthE	ast Loop F		- 10								
21a	L1	33	1.0	0.078	7.8	LOSA	0,5	3.2	0.67	0.72	51.3
23	R2	24	1.0	0.078	11.3	LOS B	0.5	3.2	0.67	0.72	51,2
Approa	ach	57	1.0	0.078	9.3	LOSA	0.5	3.2	0.67	0.72	51.3
NorthE	ast: Parson	age Street									
24	L2	18	1.0	0.473	7.0	LOSA	3.5	24.4	0.64	0.74	50.6
26a	R1	580	1.0	0.473	9.4	LOSA	3.5	24.4	0.64	0.74	50.9
Approa	ach	598	1.0	0.473	9.3	LOSA	3.5	24.4	0.64	0.74	50.9
West: 1	Parsonage :	Street									
10a	Lt	49	1.0	0.310	4.5	LOSA	2.3	16.4	0.16	0.59	52.7
12a	R1	417	1.0	0.310	7.2	LOSA	2.3	16.4	0.16	0.59	52.3
Approa	ach	466	1.0	0,310	6.9	LOSA	2.3	16.4	0.16	0,59	52.4
All Veh	ides	1121	1.0	0.473	8.3	LOSA	3.5	24.4	0.44	0.67	51.5

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 20 April 2016 2:40:21 PM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2026 Base PM Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV Va	Safn v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/h
SouthE	ast Loop F		- 7								
21a	L1	51	1.0	0.195	8.9	LOSA	1.1	8.0	0.70	0.80	50.0
23	R2	91	1.0	0.195	12.4	LOS B	1.1	8.0	0.70	0.80	49.9
Approa	ich	142	1.0	0.195	11.1	LOSB	1:1	8.0	0.70	0.80	50.0
NorthE	ast: Parson	age Street									
24	L2	145	1.0	0.478	5.0	LOSA	4.0	28.5	0.26	0.58	51.9
26a	R1	667	1.0	0.478	7.4	LOSA	4.0	28.5	0.26	0.58	52.1
Approa	ich	812	1.0	0.478	7.0	LOSA	4.0	28.5	0.26	0.58	52.1
West: 1	Parsonage :	Street									
10a	Lt	505	1.0	0.430	5.0	LOSA	3.5	24.9	0.38	0.51	53.5
12a	R1	55	1.0	0.430	7.7	LOSA	3.5	24.9	0.38	0.51	53.1
Approa	ich	560	1.0	0.430	5.3	LOSA	3,5	24.9	0.38	0,51	53.5
All Veh	icles	1514	1.0	0.478	6.7	LOSA	4.0	28.5	0.35	0.58	52.4

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Tuesday, 26 April 2016 10:26:52 AM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: 2014 PM Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mev	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV Vo	Safn v/c	Delay sec	Service	Vehicles vah	Distance m	Queued	Stop Rate per yeh	Speed km/h
SouthE	ast Loop F										-
21a	L1	114	1.0	0.151	6.2	LOSA	0.8	5.8	0.50	0.63	52.8
23	R2	32	1.0	0.151	9.7	LOSA	0,8	5.8	0.50	0.63	52.6
Approa	ach	146	1.0	0.151	6.9	LOSA	0.8	5.8	0.50	0.63	52.8
NorthE	ast: Parson	age Street									
24	L2	25	1.0	0.238	5.7	LOSA	1.4	9.8	0.41	0.64	51.3
26a	R1	310	1.0	0.238	8.1	LOSA	1.4	9.8	0.41	0.64	51.6
Approa	ach	335	1.0	0.238	7.9	LOSA	1.4	9.8	0.41	0.64	51.5
West: I	Parsonage :	Street									
10a	Lt	79	1.0	0.224	4.5	LOSA	1.4	10.1	0.16	0.58	53.0
12a	R1	242	1.0	0.224	7.2	LOSA	1.4	10.1	0.16	0.58	52.6
Approa	ach	321	1.0	0.224	6.6	LOSA	1.4	10.1	0.16	0,58	52.7
All Veh	ides	802	1.0	0.238	7.2	LOSA	1.4	10.1	0.33	0.61	52.2

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 20 April 2016 2:43;31 PM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

🗑 Site: 2026 Stage A PM Revised Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mev	OD	Demand		Deg.	Average	Level of	95% Back		Prop	Effective	Average
10	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate	Speed
SouthE	East: Loop F		70	V/C	350		Vell	m	_	per veh	km/
21a	L1	75	1.0	0.519	16.8	LOS B	4.4	31.1	0.92	1.08	45.0
23	R2	211	1.0	0.519	20.3	LOSC	4.4	31.1	0.92	1.08	44.9
23b	R3	1	0.0	0.519	21.0	LOSC	4.4	31.1	0.92	1.08	45.
Арргоа	ach	287	1.0	0.519	19.4	LOSB	4.4	31.1	0.92	1.08	45.6
East S	Stage A Egre	ess									
4b	L3	14	0.0	0.519	15.4	LOS B	4.4	30.5	0.89	1.06	45.3
5	T1	71	0.0	0.519	15.1	LOSB	4.4	30.5	0.89	1.06	46.0
6b	R3	235	0.0	0.519	19.0	LOSB	4.4	30.5	0.89	1.06	46.
Арргоа	ich	320	0.0	0.519	18.0	LOSB	4.4	30,5	0.89	1.06	45.
NorthE	ast: Parson	age Street									
24b	L3	255	0.0	0.151	4.3	LOSA	0.0	0.0	0.00	0.54	54.6
24	L2	160	1.0	0.427	4.4	LOSA	4.0	27.9	0.29	0,57	52.
26a	R1	623	1.0	0.427	7.3	LOSA	4.0	27.9	0.29	0,57	52.
Арргоа	ach	1038	0.8	0.427	6.1	LOSA	4.0	27.9	0.22	0.56	52.
West I	Parsonage :	Street									
10a	L1	543	1.0	0.699	11.9	LOSB	8.1	57.5	0.89	0.98	49.
11	T1	1	0.0	0.699	12.2	LOS B	8.1	57.5	0.89	0.98	49.6
12a	R1	59	1.0	0.699	14.6	LOS B	8.1	57.5	0.89	0.98	49.0
Approa	ach	603	1.0	0.699	12.1	LOSB	8.1	57.5	0.89	0.98	49.
All Veh	ides	2248	0.7	0.699	11.1	LOSB	8.1	57.5	0.58	0.81	49.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 8:25:13 AM Project: D;\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

🗑 Site: 2026 Stage A AM Revised Single Lane Parsonage St and Loop Rd

Loop Rd & Parsonage St Roundabout

Mev	OD	Demand		Deg.	Average	Level of	95% Back	and the boundaries	Prop	Effective	Average
ID	Mov	Total veh/h	HV %	Satn v/c	Delay	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/
SouthE	East: Loop F			-	300		1(2)	- 1,1		F-9/ (SII)	MILIA
21a	L1	27	1.0	0.191	8.6	LOSA	1.1	7.9	0.70	0.80	49.
23	R2	112	1.0	0.191	12.1	LOSB	1.1	7.9	0.70	0.80	49.
23b	R3	1	0.0	0.191	12.9	LOSB	1.1	7.9	0.70	0.80	50.0
Арргоа	ach	140	1.0	0.191	11.5	LOSB	1.1	7,9	0.70	0.80	49.
East S	Stage A Egre	ess									
4b	L3	16	0.0	0.407	12.2	LOS B	2.9	20.0	0.85	0.95	47.
5	T1	68	0.0	0.407	11.9	LOSB	2.9	20.0	0.85	0.95	48.
6b	R3	171	0.0	0.407	15.8	LOSB	2.9	20.0	0.85	0.95	48.
Арргоа	ich	255	0.0	0.407	14.6	LOSB	2.9	20.0	0.85	0,95	48.
NorthE	ast: Parson	age Street									
24b	L3	321	0.0	0.191	4.3	LOSA	0.0	0.0	0.00	0.54	54.
24	L2	151	1.0	0.346	5.0	LOSA	2.7	19.4	0,51	0.62	51.
26a	R1	403	1.0	0.346	8.0	LOSA	2,7	19.4	0,51	0.62	51.8
Арргоа	ach	875	0.6	0.346	6.1	LOSA	2.7	19.4	0.33	0.59	52.
West 1	Parsonage:	Street									
10a	L1	505	1.0	0.722	9.2	LOSA	9.0	63.6	0.83	0.81	50.
11	T1	1	0.0	0.722	9.5	LOSA	9.0	63.6	0.83	0.81	51.0
12a	R1	244	1.0	0.722	11.9	LOSB	9.0	63.6	0.83	0.81	50.
Approa	ich	750	1.0	0.722	10.1	LOSB	9.0	63.6	0.83	0.81	50.
All Veh	ides	2020	0.7	0.722	9.0	LOSA	9.0	63.6	0.60	0.73	51.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Tuesday, 26 April 2016 12:06:18 PM Project: D:\Documents\Meadowbank\Sidra Models\2026 Parsonage and Loop Road Stage A.sip6

Site: Existing AM 2014 Constitution and Belmore

Belmore St & Constitution Rd Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID.	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Oueued	Stop Rate	Speed
ModbE	ast: Belmor	veh/h	%	v/c	sec		vah	m		per yeh	km/h
2760700	0.00		2.2			V-00-0	1.0				
25	T1	27	0.0	0.042	28.6	LOS C	1.0	7.3	0.70	0.52	36.0
26	R2	106	1.6	0,385	55.1	LOSE	5.7	40,6	0.95	0.78	28.3
Approa	ach	133	1.3	0.385	49.8	LOS D	5.7	40.6	0.90	0.73	29.6
NorthV	Vest: Consti	tution Rd (NV	V).								
27	L2	216	1.5	0.154	8.5	LOSA	3.3	23.1	0.28	0.62	44.4
29	R2	405	0.7	0.387	19.8	LOSB	12.9	91.1	0.60	0.74	39.0
Appro	ach	621	1.0	0.387	15.9	LOSB	12.9	91.1	0.49	0.70	40.7
South	Nest: Belmo	re St (SW)									
30	L2	388	0.1	0.287	9.6	LOSA	7.1	49.5	0.34	0.65	43.8
31	T1	84	0.0	0.323	51.8	LOS D	4.5	31.8	0.95	0.74	29.3
Approx	ach	472	0.1	0,323	17.1	LOSB	7.1	49,5	0.45	0,67	40.3
All Veh	nicles	1226	0.7	0.387	20.0	LOSC	12.9	91.1	0.52	0.69	39.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mav ID		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
10	Description	Flow ped/h	Delay sec	Service	Pedesirian ped	Distance m	Queued	Stop Rate per ped
P6	NorthEast Full Crossing	3	16,0	LOS B	0.0	0.0	0.52	0.52
P7	NorthWest Full Crossing	2	54.2	LOS E	0.0	0,0	0.95	0.95
All Pe	destrians	5	31.3	LOS D			0.69	0.69

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed; Wednesday, 27 April 2016 10:06:14 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Belmore Stage 2 and 3:sip6

Site: Existing PM 2014 Constitution and Belmore

Belmore St & Constitution Rd Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back (of Queue	Prop	Effective	Average
ID.	Mov	Total	HV	Safn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
MorthE	ast: Belmor	veh/h	-1/6	v/c:	sec	_	vah	mi		per veh	km/h
	CONTRACTOR OF S			****					222		
25	T1	35	0.0	0.057	30.2	LOS C	1.4	9.8	0.73	0.54	35.4
26	R2	117	2.4	0.481	57.9	LOSE	6.5	46,6	0.97	0.79	27.7
Approa	ach	152	1.8	0.481	51,5	LOS D	6.5	46.6	0.92	0.73	29,2
NorthV	Vest: Consti	tution Rd (NV	N).								
27	L2	232	0.5	0.164	8.5	LOSA	3.5	24.8	0.29	0.62	44.4
29	R2	281	0.0	0.259	17.5	LOSB	7.9	55.4	0.52	0.70	40.0
Approa	ach	513	0.2	0.259	13.4	LOSB	7.9	55.4	0.42	0.67	41.9
South	Nest: Belmo	re St (SW)									
30	L2	674	0.2	0.489	10.1	LOSB	14.4	101.1	0.40	0.68	43.6
31	T1	52	0.0	0.200	50.7	LOS D	2.8	19.3	0.93	0.70	29.5
Approa	ach	726	0.2	0,489	13.0	LOSB	14.4	101.1	0.44	0,69	42.1
All Veh	nicles	1391	0.4	0.489	17.4	LOSB	14.4	101.1	0.48	0.68	40.1

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mav ID	A	Demano	Average	Level of	Average Back	of Queue	Prop.	Effective
(0)	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Rate perped
P6	NorthEast Full Crossing	3	15.0	LOS B	0.0	0.0	0.50	0.50
P7	NorthWest Full Crossing	2	54.2	LOS E	0.0	0,0	0.95	0.95
All Pe	destrians	5	30.7	LOS D			0.68	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed; Wednesday, 27 April 2016 10:06:44 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Belmore Stage 2 and 3:sip6

Site: 2026 AM Base Constitution and Belmore

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 120 seconds (Optimum Cycle Time - Minimum Delay)

Mey	08	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV %	Saln v/c	Delay sec	Service	Vehicles vah	Distance m	Queued	Stop Rate per veh	Speed km/h
NorthE	ast: Belmor				300		ve1)			Pig/ Neith	N. L.
25	T1	45	1.0	0.048	17.2	LOS B	1.4	9.6	0.55	0.43	40.5
26	R2	404	1.6	0.733	45.8	LOS D	21.5	152.4	0.96	0.86	30.6
Approa	ach	449	1,5	0.733	42.9	LOS D	21.5	152.4	0.92	0.82	31.3
NorthV	Vest: Consti	tution Rd (NV	N)								
27	L2	644	1.0	0.458	9.9	LOSA	13.3	93.6	0.39	0.68	43.7
29	R2	560	1.0	0.729	36.0	LOS D	27.3	192.8	0.90	0.86	33.3
Appro	ach	1204	1.0	0.729	22.0	LOSC	27.3	192.8	0.63	0.76	38.1
South	Nest: Belmo	ore St (SW)									
30	L2	308	1.0	0.287	16.8	LOSB	8.6	60.4	0.52	0.70	40.3
31	Ti	143	0.0	0.550	53.7	LOS D	8.0	56.3	0.98	0.79	28.8
Approa	ach	451	0.7	0,550	28.5	LOS C	8.6	60.4	0,67	0.73	35.8
All Veh	nicles	2104	1.0	0.733	27.9	LOSIC	27.3	192.8	0.70	0.77	36.0

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mav		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
10	Description	Flow ped/h	Delay sec	Service	Pedesirian ped	Distance m	Queued	Stop Rate perped
P6	NorthEast Full Crossing	3	26.7	LOSC	0.0	0.0	0.67	0.67
P7	NorthWest Full Crossing	2	54.2	LOS E	0.0	0,0	0.95	0.95
All Pe	destrians	5	37.7	LOS D			0.78	0.78

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 9:48:58 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Belmore Stage 2 and 3.sip6

Site: 2026 PM Base Constitution and Belmore

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total veh/h	HV %	Safn v/c	Delay sec	Service	Vehicles vah	Distance	Queued	Stop Rate per veh	Speed km/h
NorthE	ast: Belmor						1021)			332 030	***************************************
25	T1.	58	1.0	0.046	9.2	LOSA	1.4	9.9	0.37	0.29	44.4
26	R2	797	1.0	0.859	41.2	LOS D	50.9	359.3	0.95	0.92	31.8
Approa	ach	855	1.0	0.859	39.0	LOS D	50.9	359.3	0.91	0.87	32.4
NorthV	West: Consti	tution Rd (NV	V).								
27	L2	451	1.0	0.305	8.3	LOSA	7.9	56.0	0.28	0.63	44.5
29	R2	408	1.0	0.844	65.6	LOSE	29.5	208.5	1.00	0.93	26.2
Appro	ach	859	1.0	0.844	35.5	LOS D	29.5	208.5	0.62	0.77	33.4
South	West: Belmo	re St (SW)									
30	L2	498	1.0	0.673	41.3	LOS D	28.3	199.9	0.87	0.85	31.7
31	T1.	31	0.0	0.144	63.5	LOS E	2.0	14.1	0.94	0.69	26.8
Approx	ach	529	0.9	0,673	42.6	LOS D	28.3	199.9	0.88	0.84	31.4
All Ver	nicles	2243	1.0	0.859	38.5	LOS D	50.9	359.3	0.79	0.83	32.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mav		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
10	Description	Flow ped/h	Delay sec	Service	Pedesirian ped	Distance m	Queued	Stop Rate perped
P6	NorthEast Full Crossing	3	47.2	LOS E	0.0	0.0	0.81	0.81
P7	NorthWest Full Crossing	2	66,6	LOSF	0.0	0,0	0.96	0,96
All Pe	destrians	5	55.0	LOSE			0.87	0.87

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 9:49:52 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Belmore Stage 2 and 3.sip6

Site: 2026 PM Stage A Constitution and Belmore

Belmore St & Constitution Rd

Signals - Fixed Time Isolated Cycle Time = 145 seconds (Optimum Cycle Time - Minimum Delay)

Mey	00	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Total	HV Va	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
NorthE	ast: Belmor	e St (NE)	-70	V/C	sec		vah	m	_	per veh	km/h
25	T1	50	1.0	0.041	10.7	LOS B	1.3	9.2	0.40	0.31	43.6
26	R2	754	1.0	0.859	44.4	LOS D	49.4	348.5	0.96	0.92	30.9
Approa	ach	804	1.0	0.859	42.3	LOS D	49.4	348.5	0.93	0.88	31.5
NorthV	West: Consti	tution Rd (NV	V).								
27	L2	438	1.0	0.296	8.3	LOSA	7.6	53,9	0.27	0.63	44.5
29	R2	453	1.0	0.848	63.1	LOSE	32.6	229.9	1.00	0.93	26.7
Appro	ach	891	1.0	0.848	36.1	LOS D	32.6	229.9	0.64	0.78	33.2
South	West: Belmo	re St (SW)									
30	L2	515	1.0	0.652	38.3	LOS D	28.2	199.2	0.84	0.84	32.6
31	T1.	35	0.0	0.163	63.7	LOS E	2.3	15.9	0.94	0.69	26.7
Approx	ach	550	0.9	0,652	39.9	LOS D	28.2	199.2	0.85	0.83	32.1
All Ver	nicles	2245	1.0	0.859	39.3	LOS D	49.4	348.5	0.80	0.83	32.3

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Mov ID		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
10	Description	Flow ped/h	Delay sec	Service	Pedesirian ped	Distance m	Queued	Stop Rate per ped
96	NorthEast Full Crossing	3	44.0	LOS E	0.0	0.0	0.78	0.78
P7	NorthWest Full Crossing	2	66,6	LOSF	0.0	0,0	0.96	0.96
All Pe	destrians	5	53.1	LOSE			0.85	0.85

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed; Wednesday, 27 April 2016 9:53:46 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Belmore Stage 2 and 3.sip6

Site: Existing AM 2014

Constitution Rd & Bowden St Roundabout

Mov	00	Demand		Deg.	Average	Level of	95% Back		Prop	Effective	Average
10	Mov	Total	/+W %	Saln v/c	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South	East: Constit	ven/h lution Rd (SE		V/G	SBC		veh	m		per veh	km/t
21	L2	33	7.8	0.399	5.4	LOSA	2.9	20.7	0.53	0.60	45.0
22	T1	266	1.0	0.399	5,1	LOSA	2.9	20.7	0.53	0.60	45.8
23	R2	136	0.6	0.399	8,1	LOSA	2.9	20.7	0.53	0.60	45.6
Appro	ach	435	1.4	0.399	6.1	LOSA	2.9	20.7	0.53	0.60	45.7
NorthE	East: Bowder	n St (NE)									
24	L2	78	0.0	0.358	7.8	LOSA	2.4	17.0	0.76	0.82	43.9
25	T1	69	4.3	0.358	7.8	LOSA	2.4	17.0	0.76	0.82	44.5
26	R2	119	3,5	0.358	10.8	LOSB	2.4	17.0	0.76	0.82	44.3
Appro	ach	266	2.7	0.358	9.2	LOSA	2.4	17.0	0.76	0.82	44.
North	Vest: Consti	tution Rd (NV	V)								
27	L2	142	2.5	0.615	7.7	LOSA	5.8	41.0	0.74	0.76	44
28	T1	462	0.6	0.615	7.4	LOSA	5.8	41.0	0.74	0.76	45.4
29	R2	11	0.0	0.615	10,4	LOS B	5.8	41.0	0.74	0.76	45.
Appro	ach	615	1.0	0.615	7.5	LOSA	5.8	41.0	0.74	0.76	45.
South	West: Bowde	en St (SW)									
30	L2	6	0,0	0.234	7.2	LOSA	1.4	10.0	0.66	0.75	44.3
31	T1	93	3.7	0.234	7.2	LOSA	1.4	10.0	0.66	0.75	44.8
32	R2	87	3.6	0.234	10.2	LOS B	1.4	10.0	0.66	0.75	44.6
Appro	ach	186	3.5	0.234	8.6	LOSA	1.4	10.0	0.66	0.75	44.
All Veh	nides	1502	1.7	0.615	7.5	LOSA	5.8	41.0	0.67	0.72	45.

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:58:21 AM Project: D:\Documents\Meadowbank\Sidra Models\2014 Constitution and Bowden Intersection.sip6

Site: Existing PM 2014

Constitution Rd & Bowden St Roundabout

Mov	OD	Demand	1 Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
(0)	Mov	Total veh/h	HV %	Saln v/c	Delay sec	Service	Vehicles veh	Distance	Queued	Stop Rate per veh	Speed km/t
South	East Constit	ution Rd (SE			200		Veri	m		231 1/31	- 811//
21	L2	27	0.0	0.689	8.2	LOSA	8.0	56.4	0.91	0.99	42.8
22	T1	498	0.9	0.689	11.1	LOSB	8.0	56.4	0.91	0.99	43.4
23	R2	55	1.4	0.689	14,1	LOS B	8.0	56.4	0.91	0.99	43,3
Appro	ach	580	0.9	0.689	11.2	LOSB	8.0	56.4	0.91	0.99	43.4
NorthE	East: Bowder	st(NE)									
24	L2	76	0.0	0.583	8.1	LOSA	5.2	36.5	0.76	0.83	43.4
25	T1	94	1.2	0.583	8.0	LOSA	5.2	36.5	0.76	0.83	44.0
26	R2	370	0.4	0.583	11.0	LOSB	5.2	36.5	0.76	0.83	43.
Appro	ach	540	0.5	0.583	10.1	LOSB	5.2	36.5	0.76	0.83	43.
North	West: Constit	tution Rd (N	N)								
27	L2	59	2.7	0.336	5.4	LOSA	2.3	16.1	0.52	0.57	45.5
28	T1	297	0.4	0.336	5.1	LOSA	23	16.1	0.52	0.57	46.
29	R2	1	12.5	0.336	8.4	LOSA	2.3	16.1	0.52	0.57	45.8
Appro	ach	357	0,8	0.336	5.2	LOSA	2,3	16.1	0.52	0.57	46.
South	West: Bowde	en St (SW)									
30	L2	24	0.0	0.365	12.1	LOS B	2,6	17.9	0.91	0.96	41.8
31	T1	75	1.0	0.365	12.0	LOS B	2.6	17.9	0.91	0.96	42.
32	R2	86	0.0	0.365	14.9	LOS B	2.6	17.9	0.91	0.96	42.
Appro	ach	185	0.4	0.365	13.4	LOSB	2.6	17.9	0.91	0.96	42.
	nicles	1662	0.7	0.689	9.8	LOSA	8.0	56.4	0.78	0.84	43.9

Level of Service (LOS) Method: Delay (HCM 2000).

Roundabout LOS Method: Same as Signalised Intersections.

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:58;23 AM Project: D:\Documents\Meadowbank\Sidra Models\2014 Constitution and Bowden Intersection.sip6

Site: 2026 AM Base

Constitution Rd & Bowden St

Mov	OD	Demand		Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
10	Mov	Tolal veh/h	HV %	Saln v/c	Delay sec	Service	Vehicles veh	Distance m	Queued	Stop Rate per veh	Speed km/t
South	East: Constit	ution Rd (SE)		200		Veri			251 151	- 2010
21	L2	21	1.0	0.137	14.1	LOS B	4.7	33.4	0.39	0.37	43.6
22	T1	632	2.0	0.358	11.0	LOSB	14.7	104.5	0.45	0.41	43.4
23	R2	43	1.0	0.241	48.9	LOS D	2.3	16.2	0.96	0.73	29.9
Appro	ach	696	1.9	0.358	13.4	LOSB	14.7	104.5	0.48	0.43	42.3
North	East: Bowder	n St (NE)									
24	L2	265	1.0	0.884	74.1	LOSE	26.0	183.7	0.99	0.97	24.9
25	T1	72	1.0	0.884	69.5	LOSE	26.0	183.7	0.99	0.97	25.0
26	R2	107	1,0	1.072	174.1	LOSF	12.6	89.1	1.00	1.28	14.9
Appro	ach	444	1.0	1.072	97.5	LOSF	26.0	183.7	0.99	1.04	21.4
North	Vest: Consti	tution Rd (NV	V)								
27	L2	180	1.0	0.300	20.9	LOSC	12.2	86.4	0.54	0.60	39.5
28	T1	896	2.0	0.788	20.4	LOSC	34.4	245.1	0.68	0.64	38.9
29	R2	96	1.0	0.942	101.1	LOSF	8.3	58.6	1.00	1.05	21.0
Appro	ach	1172	1.8	0.942	27.1	LOS C	34.4	245.1	0.68	0.67	36.5
South	West: Bowde	en St (SW)									
30	L2	206	1.0	0.425	54.8	LOS D	12.6	88.7	0.89	0.80	28.4
31	T1	170	1.0	0.810	70.3	LOSE	15.9	112.5	1.00	0.94	25.4
32	R2	44	1.0	0.810	74.8	LOSE	15.9	112.5	1.00	0.94	25.4
Appro	ach	420	1.0	0.810	63.2	LOSE	15.9	112.5	0.94	0.87	26.8
	nicles	2732	1.6	1.072	40.6	LOS D	34.4	245.1	0.72	0.70	32.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestnan ped	Distance m	Queuad	Stop Rate per pec
P5	SouthEast Full Crossing	53	67.4	LOSF	0.2	0.2	0.95	0.95
P6	NorthEast Full Crossing	53	18.3	LOS B	0.1	0.1	0.49	0.49
P7	NorthWest Full Crossing	53	67.4	LOSF	0.2	0.2	0.95	0.95
P8	SouthWest Full Crossing	53	12.8	LOS B	0.1	0.1	0.41	0.41
All Pe	destrians	211	41.5	LOSE			0.70	0.70

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SQLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:48:23 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Bowden Signals Stage A.sip6

Site: 2026 PM Base

Constitution Rd & Bowden St

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID)	Mov	Total veh/h	HV %	Saln v/c	Delay	Service	Vehicles veh	Distance m	Queried	Stop Rate per veh	Speed km/t
South	East: Constit	tution Rd (SE)							-	
21	L2	34	1.0	0.340	22.7	LOSC	8.5	60.5	0.71	0.62	39.5
22	T1	903	2.0	0.893	31.9	LOSC	30.8	219.1	0.85	0.90	34.8
23	R2	143	1.0	0.421	23.5	LOS C	3.0	21.0	0.93	0.77	37.8
Appro	ach	1080	1.8	0.893	30.5	LOS C	30.8	219.1	0.85	0.87	35.3
North	East: Bowder	n St (NE)									
24	L2	333	1.0	0.864	41.7	LOS D	24.0	169.2	0.94	0.98	32
25	T1	182	1.0	0.864	37.1	LOS D	24.0	169.2	0.94	0.98	32.3
26	R2	158	1,0	0.484	37.0	LOS D	6.2	43.4	0.91	0.79	33.3
Appro	ach	673	1.0	0.864	39.3	LOS D	24.0	169.2	0.93	0.94	32.5
North	Vest: Constit	tution Rd (NV	V)								
27	L2	73	1.0	0.317	32.5	LOSC	6.1	42.9	0.84	0.72	35.3
28	T1	492	2.0	0.832	36.2	LOS D	17.7	125.8	0.93	0.92	33.4
29	R2	151	1.0	0.889	59.6	LOSE	7.8	55.1	1.00	1.09	27.5
Appro	ach	716	1.7	0.889	40.7	LOS D	17.7	125.8	0.94	0,94	32.
South	West: Bowde	en St (SW)									
30	L2	83	1.0	0.100	20,6	LOSC	2.1	15.1	0.62	0,69	38.7
31	T1	100	1.0	0.264	27.5	LOSC	4.6	32.5	0.82	0.69	36.0
32	R2	33	1.0	0.264	32.1	Los C	4.6	32.5	0.82	0.69	36.0
Appro	ach	216	1.0	0.264	25.6	LOS C	4.6	32.5	0.74	0.69	37.0
All Vel	rirles	2685	1.5	0.893	35.1	LOS D	30.8	219.1	0.89	0.89	33.8

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

Mov ID		Demand	Average	Level of	Average Back	of Cueue	Prop.	Effective
10	Description	Flow ped/h	Delay sec	Service	Pedestnan ped	Distance m	Queued	Stop Rate perped
P5	SouthEast Full Crossing	50	36.5	LOS D	0.1	0.1	0.90	0.90
P6	NorthEast Full Crossing	50	33.0	LOS D	0.1	0.1	0.86	0.86
P7	NorthWest Full Crossing	50	36.5	LOSD	0.1	0.1	0.90	0.90
P8	SouthWest Full Crossing	50	22.1	LOS C	0.1	0.1	0.70	0.70
All Pe	destrians	200	32.0	LOS D			0.84	0.84

Level of Service (LOS) Method; SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd. | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD. | Processed: Wednesday, 27 April 2016 10:49:05 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Bowden Signals Stage A.sip6

Site: 2026 AM Stage A

Constitution Rd & Bowden St

Signals - Fixed Time Isolated Cycle Time = 150 seconds (Practical Cycle Time)

Mov	OD	Demand	Flows	Deg.	Average	Level of	95% Back	of Queue	Prop	Effective	Average
ID)	Mov	Tolal veh/h	HV %	Saln v/c	Delay	Service	Vehicles veh	Distance m	Queried	Stop Rate per veh	Speed km/t
South	East: Constit	ution Rd (SE)							-	
21	L2	15	1.0	0.179	14.4	LOS B	6.4	45.4	0.40	0.37	43.5
22	T1	786	2.0	0.470	11.5	LOSB	18.6	132.7	0.47	0.43	43.2
23	R2	48	1.0	0.269	49,1	LOS D	2.6	18.2	0.97	0.73	29.9
Appro	ach	849	1.9	0.470	13.7	LOSB	18.6	132.7	0.50	0.44	42.1
North	East: Bowder	st(NE)									
24	L2	283	1.0	0.904	79.1	LOSE	28.8	203.6	0.99	1.01	24.1
25	T1	72	1.0	0.904	74.5	LOSE	28.8	203.6	0.99	1.01	24.2
26	R2	103	1,0	1.090	270.1	LOSF	16.2	114.4	1.00	1.59	10.7
Appro	ach	458	1.0	1.090	121.3	LOSF	28.8	203.6	1.00	1.14	18.8
North	Vest: Constit	tution Rd (NV	V)								
27	L2	183	1.0	0.296	20.8	LOS C	12.0	84.7	0.54	0.61	39.5
28	T1	873	2.0	0.776	20.3	LOSC	33.4	237.5	0.67	0.63	39.0
29	R2	89	1.0	0.873	92.1	LOSF	7.3	51.3	1.00	0.99	22.
Appro	ach	1145	1.8	0.873	25,9	LOS C	33.4	237.5	0.68	0.66	36.9
South	West: Bowde	en St (SW)									
30	L2	221	1.0	0.456	55.2	LOSE	13.6	96.0	0.90	0.81	28.3
31	T1	170	1.0	0.798	69.5	LOSE	15.7	110.6	1.00	0.93	25.6
32	R2	42	1.0	0.798	74.1	LOSE	15.7	110.6	1.00	0.93	25.6
Appro	ach	433	1.0	0.798	62.7	LOSE	15.7	110.6	0.95	0.87	26.9
All Vel	nirles	2885	1.6	1.090	43.0	LOS D	33.4	237.5	0.72	0.70	31.5

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

The results of iterative calculations indicate a somewhat unstable solution. See the Diagnostics section in the Detailed Output report.

Mov		Demand	Average	Level of	Average Back	of Queue	Prop	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestnan ped	Distance m	Queuad	Stop Rate per pec
P5	SouthEast Full Crossing	50	67.4	LOSF	0.2	0.2	0.95	0.95
P6	NorthEast Full Crossing	50	12.8	LOS B	0.1	0.1	0.41	0.41
P7	NorthWest Full Crossing	50	67.4	LOSF	0.2	0.2	0.95	0.95
P8	SouthWest Full Crossing	50	12.8	LOS B	0.1	0.1	0.41	0.41
All Pe	destrians	200	40.1	LOSE			0.68	0.68

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SQLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:53:38 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Bowden Signals Stage A.sip6

Site: 2026 PM Stage A

Constitution Rd & Bowden St

Signals - Fixed Time Isolated Cycle Time = 90 seconds (Practical Cycle Time)

Mov	OD	Demand Flows		Deg	Average	Level of	95% Back of Queue		Prop	Effective	Average
ID.	Mov	Total veh/h	HV	Saln	Delay	Service	Vehicles	Distance	Queried	Stop Rate	Speed
South	East Consti	tution Rd (SE	%	v/c	586	_	veh	m	_	per veh	km/t
21	L2	122	1.0	0.339	22.7	LOSC	8.4	59.3	0.71	0.67	38.9
22	T1	809	2.0	0.890	33.1	LOSC	30.4	216.8	0.86	0.94	34.
23	R2	141	1.0	0.511	25.3	LOSC	3.2	22.3	0.97	0.78	37.
Approach		1072	1.8	0.890	30.9	LOS C	30.4	216.8	0.86	0.88	35.
Northi	East: Bowde	n St (NE)									
24	L2	346	1.0	0.882	44.0	LOS D	25.9	182.8	0.94	1.01	31.
25	T1	189	1.0	0.882	39.4	LOS D	25.9	182.8	0.94	1.01	31.
26	R2	158	1,0	0.465	36.0	LOS D	6.1	42.7	0.89	0.79	33.
Approach		693	1.0	0.882	40.9	LOS D	25.9	182.8	0.93	0.96	32.
North	Nest: Consti	tution Rd (NV	N)								
27	L2	73	1.0	0.305	30.8	LOSC	6.1	43.3	0.81	0.71	35.
28	T1	512	2.0	0.800	32.6	LOSC	17.2	122.7	0.91	0.87	34.
29	R2	134	1.0	0.901	61.5	LOSE	7.0	49.6	1.00	1.11	27.
Approach		719	1.7	0.901	37.8	LOS D	17.2	122.7	0.92	0,90	32.5
South	West: Bowde	en St (SW)									
30	L2	83	1.0	0.100	20.6	LOSC	2.1	15.1	0.62	0,69	38.
31	T1	100	1.0	0.254	26.6	LOS C	4.5	31.9	0.81	0.68	36.
32	R2	33	1.0	0.254	31.2	LOSC	4.5	31.9	0.81	0.68	36.
Approach		216	1.0	0.254	25.0	LOS C	4.5	31.9	0.74	0.68	37.
All Vehicles		2700	1.5	0.901	34.8	LOSC	30.4	216.8	0.88	0.89	33.

Level of Service (LOS) Method: Delay (HCM 2000).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation

Mov	Decembles	Demand	Average	Level of	Average Back		Ргор.	Effective
ID	Description	Flow ped/h	Delay sec	Service	Pedestrian ped	Distance m	Queued	Stop Plate perped
P5	SouthEast Full Crossing	50	35.6	LOS D	0.1	0.1	0.89	0.89
P6	NorthEast Full Crossing	50	31.3	LOS D	0.1	0.1	0.84	0.84
P7	NorthWest Full Crossing	50	35.6	LOSD	0.1	0.1	0.89	0.89
P8	SouthWest Full Crossing	50	22.1	LOS C	0.1	0.1	0.70	0.70
All Pedestrians		200	31.2	LOS D			0.83	0.83

Level of Service (LOS) Method; SIDRA Pedestrian LOS Method (Based on Average Delay)
Pedestrian movement LOS values are based on average delay per pedestrian movement.
Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 6.1 | Copyright © 2000-2015 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: ROAD DELAY SOLUTIONS PTY LTD | Processed: Wednesday, 27 April 2016 10:54:17 AM Project: D:\Documents\Meadowbank\Sidra Models\Constitution and Bowden Signals Stage A.sip6