BOREHOLE LOG

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Development

LOCATION: 49 Lakeview Road, Morisset Park

SURFACE LEVEL: -5.35 AHD **EASTING:** 364077.3 **NORTHING:** 633437.6 **DIP/AZIMUTH:** 90°/--

BORE No: 203 PROJECT No: 39823B **DATE: 05 Oct 07** SHEET 1 OF 2

		Description	Degree of Weathering	. <u>o</u>	Rock Strength	Fracture	Discontinuities				In Situ Testing
R	Depth (m)	of		rap	₹	Spacing (m)	B - Bedding J - Joint	Туре	Core Rec. %	QD %	Test Results &
Ц		Strata	M M M M M M M M M M M M M M M M M M M	177	Ex Low Very Low High Very High Ex High	0.05	S - Shear D - Drill Break	Ę.	S &	α -	
	- - - -	SANDY SILTY CLAY: Very soft dark grey-brown sandy silty clay, with some shell fragments, M>>Wp						s			0.0.0 $N = 0$ (weight of rods)
9-	- - - 1										0,0,0 N = 0
-7	- - - -							S			(weight of rods)
	-2										
- 8-	- - - -3 3.0	CLAY: Stiff light brown and brown						s			0,0,0 N = 0 (weight of rods)
6-	-	clay, with some sand, and silt, M>Wp									
	- - -4 -							pp S			180 kPa 2,4,7
-10	-5					 		_ pp _/			N = 11 190-200 kPa
11	-							pp S pp			140 kPa 3,5,7 N = 12 160-180 kPa
	- 6 										
-12	- 6.5 	GRAVELLY CLAY: Very stiff light brown gravelly clay, with some sandy gravelly clay bands, M>Wp				 		pp S pp			200-220 kPa 7,9,11 N = 20
3	-7 - - - -										300-400 kPa
-13	7.9 - 7.9	CONGLOMERATE: Extremely low strength, extremely weathered light brown and red-brown conglomerate,						S			5,8,10 N = 18
-14	-	with soil like properties)°(IN - 10
	-9 - - -	From 9.5m, extremely low to very		000							
-15	-	low strength, extremely to highly weathered)00				S			13,27,25/90mm

DRILLER: Ground Test (Driver) CASING: HW to 4.0m RIG: Scout 2 on Modular Barge LOGGED: Reid

TYPE OF BORING: 100mm diameter rotary wash boring to 11.0m, then NMLC coring to 13.45m

WATER OBSERVATIONS: Depth of water 5.5m at start of bore

REMARKS: Coordinates are MGA

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

PID STING LEGEND
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials:

BOREHOLE LOG

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Development

LOCATION: 49 Lakeview Road, Morisset Park

SURFACE LEVEL: -5.35 AHD EASTING: 364077.3 **NORTHING:** 633437.6 **DIP/AZIMUTH:** 90°/--

BORE No: 203 PROJECT No: 39823B **DATE: 05 Oct 07** SHEET 2 OF 2

		Description	Degree of Weathering	jic	Rock Strength ็อ	Fracture	Discontinuities	Sa	ampli	ng &	In Situ Testing
귐	Depth (m)	of		rapt Log	Strength Algh Water Wate	Spacing (m)	B - Bedding J - Joint	Туре	ore c. %	RQD %	Test Results &
Ш	40.01	Strata	M M M M M M M M M M M M M M M M M M M	0	Very Very Very Very	0.05	S - Shear D - Drill Break	Ę.	O &	α -	Comments
-16	10.0	CONGLOMERATE: continued From 11.0m, extremely low to very									
-17	- 12	low strength, highly weathered red-brown and orange-brown					11.91m: J, 30°, sm, un				PL(A) = 0.03MPa PL(D) = 0.03MPa
-18	- - - - -13						12.36m: P, 10°, sm, pl 12.53m: J, 15°, ro, pl 12.76m: J, 15°, sm ,un 12.93m: J, 15°, sm, un	С	100	100	PL(A) = 0.01MPa
	13.45	Bore discontinued at 13.45m, limit of		کمر			13.24m: J, 10°, sm, pl				PL(D) = 0.02MPa
-19		investigation									
[-14										
	· ·										
-20	-15 -15										
-21	-16										
-22	-17										
-23	- - 18 - -										
	- - - - - - - -										
-25											

DRILLER: Ground Test (Driver) LOGGED: Reid CASING: HW to 4.0m RIG: Scout 2 on Modular Barge

TYPE OF BORING: 100mm diameter rotary wash boring to 11.0m, then NMLC coring to 13.45m

WATER OBSERVATIONS: Depth of water 5.5m at start of bore

REMARKS: Coordinates are MGA

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

PID STING LEGEND
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
V Shear Vane (kPa)
Water seep
Water level

CHECKED
Initials:
Date:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park SURFACE LEVEL: 0.96 m AHD **EASTING:** 363790.057 **NORTHING:** 6334179.819

DIP/AZIMUTH: 90°/--

PROJECT No: 39823A **DATE:** 03 Oct 07 SHEET 1 OF 1

PIT No: 301

			Description	၌		San		& In Situ Testing	L				- .
చ	De (n	pth n)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynar	mic Pene (blows p	etromete per mm)	eriest
			Strata	Ιω	Ļ.	۵	Sar	Comments		5	10	15	20
	-	0.0	SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid		D	0.1				-			
-		0.3	SAND: Light brown medium grained sand, moist										
-	- -		- wet below 0.6m		D	0.5				-			
	_		layer of shells at 0.85m										
-0	-1	0.9	CLAYEY SAND: Yellow brown and grey medium to	1.//	D	1.0				1			
-	- - -		coarse grained clayey sand with trace shells, wet			1.0				-			
-	-				_	4.5				-			
-	-				D	1.5							
-	-												
	- -2	2.1			D	2.0				-2			
-	- -	2.1	GRAVELLY SAND: Light grey medium to coarse grained gravelly sand with trace silt, wet	0.0						-			
-	-			0	D	2.5							
-	-	2.6	Pit discontinued at 2.6m. Pit collapse	177							:		:
-	-									-			
-5-	-												
-	-3									-3			
-	-									-	:		:
	-									}			
-	-											:	
-	-												
-	-									-			:
	_												
-ဗု													

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.5m

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

- CHECKED Initials:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 0.965 m AHD **EASTING:** 363815.964

NORTHING: 6334153.651 **DIP/AZIMUTH:** 90°/--

PROJECT No: 39823A **DATE:** 03 Oct 07

SHEET 1 OF 1

PIT No: 302

	Depth	Description	hic				& In Situ Testing		Dynai	mic Pene	etromete	ar Test
씸	(m)	of Strate	Graphic Log	Туре	Depth	Sample	Results & Comments	Water		(blows p	er mm)	
-	-	Strata SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid		D	0.1	SS		-	5	10	15	20
-	- 0.3 - -	SAND: Light brown to dark brown medium grained sand with some gravel, moist		D	0.5			-				
-0	- 0.8 - -1 -	- layer of shells at 0.75m CLAYEY SAND: Yellow brown and grey medium to coarse grained clayey sand with trace shells, wet		D	1.0			-	-1			
	• • •			D	1.5			-				
- - - -	- 2 	- trace of gravel from 2.1m		D	2.0			-	-2			
-	- 2.5	Pit discontinued at 2.5m. Pit collapse	V.//.	D_	-2.5-							
	- - -3 -	i it discontinued at 2.5m. Fit Collapse						-	-3			
	-							-				

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.3m

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

CHECKED Initials:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 1.205 m AHD

EASTING: 363841.3 **NORTHING:** 6334166.143

DATE: 03 Oct 07

PROJECT No: 39823A

PIT No: 303

DIP/AZIMUTH: 90°/--SHEET 1 OF 1

			Description	ji _		San		& In Situ Testing	_	Duran			T t
చ	Dep (m	oth 1)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Dynar	nic Pene (blows p	etromete per mm)	eriest
	·		Strata	Ö	Тy	De	San	Comments		5	10	15	20
	- -		SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid		D	0.1			-				
-	- -	0.35	SAND: Light brown medium grained sand, moist		D	0.5			-				
-	- - -1	0.85-	CLAYEY SAND: Yellow brown and grey medium to coarse grained clayey sand with trace shells, wet		D	1.0				1			
-0	-	1.2 1.35	- layer of shells at 1.15m SANDY GRAVEL: Light brown grey medium sandy gravel, wet										
-	-	1.7	CLAYEY SAND: Grey medium grained clayey sand, wet		D	1.5							
	-	1.7	GRAVELLY SAND: Light grey medium to coarse grained gravelly sand with trace silt, wet	0.0									
-7	-2			0 0 0	D	2.0			-	2			
-	- -			0.0	D	2.5			-				
ŀ	-	2.8	Pit discontinued at 2.8m. Pit collapse	<u>;.v. ;:</u>							- :		-
	-3 -								-	3			
-	-												
-	- -												
L													

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.4m

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

- Initials:

CHECKED

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park SURFACE LEVEL: 1.16 m AHD **EASTING:** 363872.673 **NORTHING:**

PROJECT No: 39823A **DATE:** 03 Oct 07

PIT No: 304

6334140.639 DIP/AZIMUTH: 90°/--SHEET 1 OF 1

		Description	ji		Sam		& In Situ Testing	ڀ	Dynamic Pene		
귐	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	(blows p	etrometer re per mm)	st
		Strata		Ė.	Ď	Sa	Comments		5 10	15 20)
- - -		SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid		D	0.1				-		
	0.3	SAND: Brown and grey medium grained sand, moist		D	0.5						
0	0.9	SANDY GRAVEL: Light orange brwon grey medium grained sandy gravel with trace silt, wet		D	1.0				-1 -1		
	1.4	GRAVELLY CLAYEY SAND: Grey medium grained gravelly clayey sand, wet		D	1.5						
	-2 2.0	gravel, wet			-2.0-						
-	-2 2.0	Pit discontinued at 2.0m. Pit collapse		נ	2.0						
-5	-3								-3		

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.0m

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

CHECKED Initials:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 1.145 m AHD

EASTING: 363892.75 **NORTHING:** 6334115.794 **DIP/AZIMUTH:** 90°/--

PROJECT No: 39823A **DATE:** 03 Oct 07 SHEET 1 OF 1

PIT No: 305

De (1	epth m)	Description of	dg -	Sampling & In Situ Testing Od 1/4 Od 2/4 Od							tromete	
	,	01 1	<u> </u>	be	Depth	 	Results & Comments	Water	(1	olows p	er mm)	r Test
-		Strata	Ō	Туре	De	Sample	Comments		5	10	15	20
	0.2	SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid	· [· [·] ·	D	0.1				-			
		GRAVELLY SAND: Brown fine to medium grained gravelly sand, moist	0.0						-			
			0.0	D	0.5			-	-			
-			0.0					-	-			
- -1			00	D	1.0				-1			
			0.0	,					-			
-			0.0	D	1.5				-			
	1.6	SAND: Grey medium grained sand with some clay and gravel, wet	0.						-			
-								-	-			
-2	2.0	Pit discontinued at 2.0m. Pit collapse	1.00	—D—	2.0-				2	-	-	÷
-									•	į		
									•	÷	:	
									· :	:	:	:
									-	:		:
									. :		i	
									•		į	:
									•			
									•	:	:	:
										:	:	:
- 3									-3		:	:
											:	
									•	÷	÷	:
									- :	:	÷	:
									. :	:	:	:
										:	:	:
										:	÷	:
									- :	:	:	:
									. :	:	i	÷
											:	
									•		:	÷
										:	:	:
_												:
									:		:	:

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.0m **REMARKS:** Coordinates are MGA. Some H₂S "Egg gas" odours

☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- PID STING LEGEND
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 Standard penetration test
 V Shear Vane (kPa)
 Water seep
 Water level
- Initials:

LOGGED: Kerry

CHECKED

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 1.115 m AHD **PIT No: 306 EASTING:** 363905.646

NORTHING: 6334088.408

DIP/AZIMUTH: 90°/--

PROJECT No: 39823A **DATE:** 03 Oct 07 SHEET 1 OF 1

		Description	. <u>o</u>		Sam	npling &	& In Situ Testing					
귒	Depth (m)	of	Graphic Log	Туре	oth	Sample	Results &	Water	Dynami (t	c Penet lows pe	romete er mm)	r Test
	()	Strata	Ō	Ϋ́	Depth	San	Results & Comments		5	10	15	20
		SILTY SAND: Brown fine to medium grained silty sand with rootlets and gravels, humid	· [· [·] ·] · [·] · [·] · [·] ·]	D	0.1				-			
	0.3	GRAVELLY SAND: Light brown grey medium grained gravelly sand, moist	0.	D	0.5							
	. 0.9		0.000						-			
-0	-1	GRAVELLY SAND: Orange grey medium grained gravelly sand with some clay, moist to wet	0 0 0	D	1.0				-1 -			
-		- grey at 1.5m	0.00	D	1.5				-			
	-2 2.0		.: 0 : .: 0 : .: 0 :	—D—	2.0				-			
		Pit discontinued at 2.0m. Pit collapse			2.0							
-									-			
	-3								-3			
-2									-			
									-			
									-			

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Groundwater Seepage at ~1.1m **REMARKS:** Coordinates are MGA. Some H₂S "Egg gas" odours

☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- PID STING LEGEND
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 Standard penetration test
 V Shear Vane (kPa)
 Water seep
 Water level

CHECKED Initials:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 1.775 m AHD **EASTING:**

363911.911 **NORTHING:** 4334061.065

DIP/AZIMUTH: 90°/--

PIT No: 307 PROJECT No: 39823A **DATE:** 03 Oct 07

SHEET 1 OF 1

		Description	. <u>o</u>		San	npling &	& In Situ Testing					
묍	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water		ws per	meter mm) ¹⁵	l est
-	-	FILLING: Brown sandy silt with rootlets mixed red brown grey silty clay, M <wp ,="" and="" bricks="" chitter="" clay="" coal="" gravels="" inclusions="" m<wp<="" of="" pipe="" td="" with=""><td></td><td>D</td><td>0.1</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></wp>		D	0.1				-			
-	- - - 0.7			D	0.5				-			
-	- 0.7 - -1 -	CLAYEY GRAVELLY SAND: Light grey and brown medium to coarse grained sand, wet		D	1.0				-1 -1			
-	- - - - 1.7	- grading to light grey mottled orange brown sandy gravelly clay, M <wp< td=""><td>16) 18)</td><td>D</td><td>1.5</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></wp<>	16) 18)	D	1.5				-			
-0	- - -2 -	CLAYEY SAND: Grey mottled red brown medium grained clayey sand with trace of small gravel, moist		D	2.0				-2 -			
	- 2.2 - - -	SILTY CLAY: Very stiff light grey medium plasticity silty clay, M>Wp		D, pp	2.5		350-400kPa		-			
-	- -3 3.0	- some sand at 3.0m	1/1/	D_	-3.0-				3			
	-	Pit discontinued at 3.0m. Limit of investigation							-			

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: Minor seepage at 1.5m

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

CHECKED Initials:

CLIENT: Johnson Property Group

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park

SURFACE LEVEL: 2.60 m AHD **EASTING:** 363917.353 **NORTHING:** 6334032.813

PROJECT No: 39823A **DATE:** 03 Oct 07 SHEET 1 OF 1

PIT No: 308

DIP/AZIMUTH: 90°/--

Г			Description	. <u>o</u>		San	npling &	& In Situ Testing	Ι.				
귙	De (r	epth m)	of	Graphic Log	e e	oth	ple	Results &	Water	Dynami (b	c Penetrolows pe	omete r mm)	Test
	,	,	Strata	<u>ق</u> _	Туре	Depth	Sample	Results & Comments	>	5	10	15	20
-	-		FILLING: Brown fine grained silty clayey sand with some gravels and trace of roots		D	0.1				-			
- 2	-	0.4	SILTY SAND: Dark brown fine to medium grained silty sand with trace of rootlets, moist		D	0.5							
-	-1 -1	0.95	SAND: Light grey medium grained sand with trace of silt and clay, moist		D	1.0				-1 -			
-	-	1.3	SANDY CLAY: Stiff to very stiff grey mottled orange brown low to medium plasticity sandy clay with some small gravel, M~Wp		D	1.5							
-	-2				D	2.0				-2			
-0	-				D, pp	2.5		220-250kPa		-			
	-3	3.0	SILTY CLAY: Very stiff light grey medium plasticity silty clay, M~Wp		-D, pp-	-3.0-		350-380kPa		-			
-	-	3.0	Pit discontinued at 3.0m. Limit of investigation		<i>υ</i> , ρρ-	3.0		330-300K-a					
	-												

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

CHECKED Initials:

Johnson Property Group **CLIENT:**

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park SURFACE LEVEL: 3.00 m AHD **EASTING:** 363930.136 **NORTHING:** 6333975.397

DIP/AZIMUTH: 90°/--

PIT No: 309 PROJECT No: 39823A

DATE: 03 Oct 07 SHEET 1 OF 1

Z Z	Depth (m)	Description	'= '		Sali		& In Situ Testing	_		.	- .
P	(111)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water		Penetrome ows per mm	er Test) 20
		SILTY SAND: Brown medium grained silty sand with rootlets and gravels, humid		D	0.1	8			-		
	0.65	SILTY SAND CLAY: Grey mottled red brown low to medium plasticity silty sandy clay, M <wp< td=""><td></td><td>D</td><td>0.5</td><td></td><td></td><td></td><td></td><td></td><td></td></wp<>		D	0.5						
-2-	1	- grading to clayey sand/extremely weathered sandstone at 1.0m		D	1.0				-1		
				D	1.5						
}	1.8	Pit discontinued at 1.8m. Refusal	WW.								
	2								-2		
	3								-3		

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

Johnson Property Group **CLIENT:**

PROJECT: Trinity Point Marina & Tourist Resort

LOCATION: Morisset Park SURFACE LEVEL: 4.00 m AHD **EASTING:** 363741.902 **NORTHING:** 6333901.569

DIP/AZIMUTH: 90°/--

PROJECT No: 39823A **DATE:** 03 Oct 07 SHEET 1 OF 1

PIT No: 310

	Donth	Description	Graphic Log		Sam		& In Situ Testing	- h	D,	mamic	Penetr	ometer	Test
, RL	Depth (m)	of Strata		Туре	Depth	Sample	Results & Comments	Water		(blo	ows per	mm)	20
-		FILLING: Light orange brown sandy clay filling mixed with bricks, tiles and concrete and trace of metal and plastic sheeting, humid		D	0.1				_				
				D	0.5				-				
-m	-1	SANDY CLAY: Stiff, light grey mottled orange brown medium plasticity sandy clay with trace gravels, M~Wp		D	1.0				-1 -				
				D, pp	1.5		170-220kPa		-				
	-2	- grading to clayey sand/sandy clay at 2.0m, moist		D	2.0				-2				
	2.5	Pit discontinued at 2.5m. Limit of investigation			2.5				-				
		i it discontinued at 2.3m. Limit of investigation							-				
	-3								-3				
									-				

RIG: 4 tonne Excavator with 450mm bucket

WATER OBSERVATIONS: No Free Groundwater Observed

REMARKS: Coordinates are MGA ☐ Sand Penetrometer AS1289.6.3.3

☐ Cone Penetrometer AS1289.6.3.2

SAMPLING & IN SITU TESTING LEGEND

- Auger sample
 Disturbed sample
 Bulk sample
 Tube sample (x mm dia.)
 Water sample
 Core drilling
- pp Pocket penetrometer (kPa)
 pp Pocket penetrometer (kPa)
 PID Photo ionisation detector
 S Standard penetration test
 PL Point load strength (s(50) MPa
 V Shear Vane (kPa)
 D Water seep
 Water level

CHECKED Initials:

23 October 2007

TEST REPORT

Douglas Partners Pty Ltd

Box 324 Hunter Region Mail Centre NSW 2310

Your Reference: 39823B, Trinity Point (pHF & pHFoxSoils)

Report Number: 55469C

Attention: Julie Wharton

Dear Julie

The following samples were received from you on the date indicated.

Samples: Qty. 15 Soils

Date of Receipt of Samples: 27/09/07 & 28/09/07 Date of Receipt of Instructions: 18/10/07@9.00am

Date Preliminary Report Emailed: Not Issued

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

The results and associated quality control are contained in the following pages of this report. Unless otherwise stated, solid samples are expressed on a dry weight basis (moisture has been supplied for your information only), air and liquid samples as received.

Should you have any queries regarding this report please contact the undersigned.

Yours faithfully SGS ENVIRONMENTAL SERVICES

Thravel Machine Edward Ibrahim Lab Manager

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 5

Inorganics						
Our Reference:	UNITS	55469C-1	55469C-2	55469C-3	55469C-4	55469C-5
Your Reference		SS1	SS2	SS3	SS4	SS5
Sample Type		Soil	Soil	Soil	Soil	Soil
Date Sampled		25/09/2007	25/09/2007	25/09/2007	25/09/2007	25/09/2007
pHr (1:2 soil:water)	pH Units	7.2	7.5	7.6	7.6	7.9
pHFox (1:2 soil:30%peroxide)	pH Units	4.9	5.0	5.1	6.3	6.3

Inorganics						
Our Reference:	UNITS	55469C-6	55469C-7	55469C-8	55469C-9	55469C-10
Your Reference		SS6	SS7	SS8	SS9	SS10
Sample Type		Soil	Soil	Soil	Soil	Soil
Date Sampled		25/09/2007	25/09/2007	25/09/2007	25/09/2007	25/09/2007
pHr (1:2 soil:water)	pH Units	8.0	7.8	7.7	7.7	7.7
pHFox (1:2 soil:30%peroxide)	pH Units	6.0	6.5	6.5	6.4	6.5

Inorganics						
Our Reference:	UNITS	55469C-11	55469C-12	55469C-13	55469C-14	55469C-15
Your Reference		SS11	SS12	SS13	SS14	SS15
Sample Type		Soil	Soil	Soil	Soil	Soil
Date Sampled		25/09/2007	25/09/2007	25/09/2007	25/09/2007	25/09/2007
pHF (1:2 soil:water)	pH Units	7.8	8.0	7.8	7.9	7.8
pHFox (1:2 soil:30%peroxide)	pH Units	6.3	6.5	6.8	6.9	6.5

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils) REPORT NO: 55469C

Method ID	Methodology Summary
ASSMAC 21BF	pH - Measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide. Based on ASSMAC August 1998 Method PH21BF.

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils)

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate
Inorganics						Base + Duplicate + %RPD
pHr (1:2 soil:water)	pH Units		ASSMAC 21BF	[NT]	55469C-1	7.2 7.1 RPD: 1
pHFox (1:2 soil:30%peroxide)	pH Units		ASSMAC 21BF	[NT]	55469C-1	4.9 4.9 RPD: 0

REPORT NO: 55469C

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils) REPORT NO: 55469C

Result Codes

[INS] : Insufficient Sample for this test [HBG] : Results not Reported due to High Background Interference

[NR] : Not Requested * : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

Result Comments

Date Organics extraction commenced: N/A NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans* and PAH in XAD and PUF).

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

Quality Control Protocol

Reagent Blank: Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. For larger projects, a reagent blank is prepared and analysed with every 20 samples.

Duplicate: A separate portion of a sample being analysed which is treated the same as the other samples in the batch. A duplicate is prepared at least every 10 samples.

Matrix Spike Duplicates: Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and prior to the extraction/digestion procedure. They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water (or Milli-Q water) may be used. A duplicate spiked sample is prepared at least every 20 samples. Surrogate Spike: Added to all samples requiring analysis for organics (where relevant) prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Internal Standard: Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Control Standards: Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity.

Additional QC Samples: A calibration standard and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.

23 October 2007

TEST REPORT

Douglas Partners Pty Ltd

Box 324 Hunter Region Mail Centre NSW 2310

Your Reference: 39823B, Trinity Point (pHF & pHFoxSoils)

Report Number: 55936

Attention: Julie Wharton

Dear Julie

The following samples were received from you on the date indicated.

Samples: Qty. 7 Soils
Date of Receipt of Samples: 18/10/07
Date of Receipt of Instructions: 18/10/07
Date Preliminary Report Emailed: Not Issued

These samples were analysed in accordance with your written instructions. A copy of the instructions is attached with the analytical report.

The results and associated quality control are contained in the following pages of this report. Unless otherwise stated, solid samples are expressed on a dry weight basis (moisture has been supplied for your information only), air and liquid samples as received.

Should you have any queries regarding this report please contact the undersigned.

Yours faithfully SGS ENVIRONMENTAL SERVICES

Thravel 1 brahim Edward Ibrahim Lab Manager

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 6

Inorganics						
Our Reference:	UNITS	55936-1	55936-2	55936-3	55936-4	55936-5
Your Reference		201/1.0	201/3.9	201/5.5	201/2.4	202/2.5
Sample Type		Soil	Soil	Soil	Soil	Soil
pHr (1:2 soil:water)	pH Units	7.7	5.0	5.2	7.0	7.4
pHFox (1:2 soil:30%peroxide)	pH Units	6.1	4.5	4.6	6.9	7.1

Inorganics			
Our Reference:	UNITS	55936-6	55936-7
Your Reference		203/4.0	203/6.5
Sample Type		Soil	Soil
pHr (1:2 soil:water)	pH Units	6.9	5.1
pHFox (1:2 soil:30%peroxide)	pH Units	7.3	4.5

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils)

Moisture						
Our Reference:	UNITS	55936-1	55936-2	55936-3	55936-4	55936-5
Your Reference		201/1.0	201/3.9	201/5.5	201/2.4	202/2.5
Sample Type		Soil	Soil	Soil	Soil	Soil
Moisture	%	37	16	16	17	19

REPORT NO: 55936

Moisture			
Our Reference:	UNITS	55936-6	55936-7
Your Reference		203/4.0	203/6.5
Sample Type		Soil	Soil
Moisture	%	19	12

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils) **REPORT NO: 55936**

Method ID	Methodology Summary
ASSMAC 21BF	pH - Measured using pH meter and electrode. Soil is oxidised with Hydrogen Peroxide. Based on ASSMAC August 1998 Method PH21BF.
AN002	Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 \pm 5°C.

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils)

REPORT NO: 55936

QUALITY CONTROL Inorganics	UNITS	PQL	METHOD	Blank
pHr (1:2 soil:water)	pH Units		ASSMAC 21BF	[NT]
pHFox (1:2 soil:30%peroxide)	pH Units		ASSMAC 21BF	[NT]
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Moisture	%	1	AN002	[NT]

PROJECT: 39823B, Trinity Point (pHF & pHFoxSoils) REPORT NO: 55936

Result Codes

[INS] : Insufficient Sample for this test [HBG] : Results not Reported due to High Background Interference

[NR] : Not Requested * : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

Result Comments

Date Organics extraction commenced: N/A NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans* and PAH in XAD and PUF).

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

Quality Control Protocol

Reagent Blank: Sample free reagents carried through the preparation/extraction/digestion procedure and analysed at the beginning of every sample batch analysis. For larger projects, a reagent blank is prepared and analysed with every 20 samples.

Duplicate: A separate portion of a sample being analysed which is treated the same as the other samples in the batch. A duplicate is prepared at least every 10 samples.

Matrix Spike Duplicates: Sample replicates spiked with identical concentrations of target analyte(s). The spiking occurs during the sample preparation and prior to the extraction/digestion procedure. They are used to document the precision and bias of a method in a given sample matrix. Where there is not enough sample available to prepare a spiked sample, another known soil/sand or water (or Milli-Q water) may be used. A duplicate spiked sample is prepared at least every 20 samples. Surrogate Spike: Added to all samples requiring analysis for organics (where relevant) prior to extraction. Used to determine the extraction efficiency. They are organic compounds which are similar to the target analyte(s) in chemical composition and behaviour in the analytical process, but which are not normally found in environmental samples. Internal Standard: Added to all samples requiring analysis for organics (where relevant) after the extraction process; the compounds serve to give a standard of retention time and response, which is invariant from run-to-run with the instruments. Control Standards: Prepared from a source independent of the calibration standards. At least one control standard is included in each run to confirm calibration validity.

Additional QC Samples: A calibration standard and blank are run after every 20 samples of an instrumental analysis run to assess analytical drift.

19 October 2007

TEST REPORT

Douglas Partners Pty Ltd

Box 324 **Hunter Region Mail Centre** NSW 2310

Your Reference: 39823A, Trinity Point-Acid Sulphate Soil

Report Number: 55754

Attention: Brent Kerry

Dear Brent

The following samples were analysed as received.

Samples: Qty. 8 Soils Date of Receipt of Samples: 11/10/07 Date of Receipt of Instructions: 11/10/07 Date Preliminary Report Faxed: Not Issued

Should you have any queries regarding this report please contact the undersigned.

For and behalf of SGS Environmental Services Terms and conditions are available from www.au.sgs.com

LABORATORY REPORT COVERSHEET

19 October 2007 Date:

To: **Douglas Partners Pty Ltd**

Unit D, 7 Donaldson St

WYONG NORTH NSW 2259

Attention: **Brent Kerry**

Your Reference: 55754 - 39823A Trinity Point

Laboratory Report No: 57325

Samples Received: 15/10/2007 Samples / Quantity: 8 Soils

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

ffoddorel Shey Goddard

Administration Manager

CAIRNS

Jon Dicker Manager **CAIRNS**

Page 1 of 7

Laboratory Report No: 57325

SPOCAS Our Reference Your Reference	Units	57325-1 55754-1	57325-2 55754-2	57325-3 55754-3
Moisture *	% w/w	16	25	20
рН ксі	pH Units	5.9	5.6	5.8
TAA pH 6.5	moles H ⁺ /tonne	<5	6	<5
s-TAA pH 6.5	% w/w S	<0.01	0.01	<0.01
рН ох	pH Units	5.6	2.0	2.5
TPA pH 6.5	moles H ⁺ /tonne	<5	410	160
s-TPA pH 6.5	% w/w S	<0.01	0.65	0.26
TSA pH 6.5	moles H ⁺ /tonne	<5	400	160
s-TSA pH 6.5	% w/w S	<0.01	0.64	0.26
ANCE	% CaCO ₃	<0.01	<0.01	<0.01
a-ANC _E	moles H ⁺ /tonne	<5	<5	<5
s-ANCE	% w/w S	<0.01	<0.01	<0.01
S KCI ^	% w/w	<0.005	<0.005	<0.005
S _P ^	% w/w	<0.005	0.71	0.19
S POS ^	% w/w	<0.005	0.71	0.19
a-S POS ^	moles H ⁺ /tonne	<5	440	120
Ca ксі ^	% w/w	<0.005	0.072	0.021
Ca P ^	% w/w	<0.005	0.077	0.020
Ca A ^	% w/w	<0.005	<0.005	<0.005
Mg ксі ^	% w/w	<0.005	0.019	<0.005
Mg P ^	% w/w	<0.005	0.027	<0.005
Mg A ^	% w/w	<0.005	0.008	<0.005
Shci ^	% w/w	NA	NA	NA
S NAS ^	% w/w	NA	NA	NA
a-S NAS ^	moles H ⁺ /tonne	NA	NA	NA
s-S NAS ^	% w/w S	NA	NA	NA
s-Net Acidity	% w/w S	<0.01	0.72	0.20
a-Net Acidity	moles H ⁺ /tonne	<5	450	120
Liming Rate	kg CaCO3/tonne	NA	34	9.3
Verification s-Net Acidity	% w/w S	NA	0.24	0.07
a-Net Acidity without ANCE	moles H ⁺ /tonne	<5	450	120
Liming Rate without ANCE	kg CaCO ₃ /tonne	NA	34	9.3

Laboratory Report No: 57325

SPOCAS Our Reference Your Reference	Units	57325-4 55754-4	57325-5 55754-5	57325-6 55754-6
Moisture *	% w/w	77	14	18
рН ксі	pH Units	8.2	4.9	4.5
TAA pH 6.5	moles H ⁺ /tonne	<5	30	47
s-TAA pH 6.5	% w/w S	<0.01	0.05	0.08
рН ох	pH Units	2.7	2.0	4.7
TPA pH 6.5	moles H ⁺ /tonne	91	460	59
s-TPA pH 6.5	% w/w S	0.15	0.74	0.09
TSA pH 6.5	moles H ⁺ /tonne	91	430	11
s-TSA pH 6.5	% w/w S	0.15	0.69	0.02
ANCE	% CaCO3	<0.01	<0.01	<0.01
a-ANCE	moles H ⁺ /tonne	<5	<5	<5
s-ANCE	% w/w S	<0.01	<0.01	<0.01
S KCI ^	% w/w	<0.005	<0.005	<0.005
Sp^	% w/w	0.45	0.68	<0.005
S pos ^	% w/w	0.45	0.68	<0.005
a-S pos ^	moles H ⁺ /tonne	280	420	<5
Са ксі ^	% w/w	0.18	<0.005	<0.005
Ca P ^	% w/w	0.39	<0.005	<0.005
Ca A ^	% w/w	0.20	<0.005	<0.005
Mg ксі ^	% w/w	<0.005	<0.005	0.019
Mg P ^	% w/w	0.008	<0.005	0.018
Mg A ^	% w/w	<0.005	<0.005	<0.005
Shci ^	% w/w	NA	NA	NA
S NAS ^	% w/w	NA	NA	NA
a-S nas ^	moles H ⁺ /tonne	NA	NA	NA
s-S NAS ^	% w/w S	NA	NA	NA
s-Net Acidity	% w/w S	0.45	0.72	0.08
a-Net Acidity	moles H ⁺ /tonne	280	450	47
Liming Rate	kg CaCO ₃ /tonne	21	34	3.6
Verification s-Net Acidity	% w/w S	0.15	0.23	NA
a-Net Acidity without ANCE	moles H ⁺ /tonne	280	450	47
Liming Rate without ANCE	kg CaCO3/tonne	21	34	3.6

Laboratory Report No: 57325

SPOCAS Our Reference Your Reference	Units	57325-7 55754-7	57325-8 55754-8
Moisture *	% w/w	10	14
рН ксі	pH Units	5.3	4.6
TAA pH 6.5	moles H ⁺ /tonne	14	45
s-TAA pH 6.5	% w/w S	0.02	0.07
рН ох	pH Units	5.3	5.1
TPA pH 6.5	moles H ⁺ /tonne	<5	44
s-TPA pH 6.5	% w/w S	<0.01	0.07
TSA pH 6.5	moles H ⁺ /tonne	<5	<5
s-TSA pH 6.5	% w/w S	<0.01	<0.01
ANCE	% CaCO ₃	<0.01	<0.01
a-ANCE	moles H ⁺ /tonne	<5	<5
s-ANCe	% w/w S	<0.01	<0.01
S KCI ^	% w/w	<0.005	<0.005
S _P ^	% w/w	<0.005	<0.005
S POS ^	% w/w	<0.005	<0.005
a-S POS ^	moles H ⁺ /tonne	<5	<5
Са ксі ^	% w/w	<0.005	<0.005
Ca P ^	% w/w	<0.005	<0.005
Ca A ^	% w/w	<0.005	<0.005
Мд ксі ^	% w/w	<0.005	<0.005
Mg P ^	% w/w	<0.005	<0.005
Mg A ^	% w/w	<0.005	<0.005
Shci ^	% w/w	NA	NA
S NAS ^	% w/w	NA	NA
a-S NAS ^	moles H ⁺ /tonne	NA	NA
s-S NAS ^	% w/w S	NA	NA
s-Net Acidity	% w/w S	0.02	0.07
a-Net Acidity	moles H ⁺ /tonne	14	45
Liming Rate	kg CaCO3/tonne	NA	3.4
Verification s-Net Acidity	% w/w S	NA	NA
a-Net Acidity without ANCE	moles H ⁺ /tonne	14	45
Liming Rate without ANCE	kg CaCO3/tonne	NA	3.4

Laboratory Report No: 57325

TEST PARAMETERS	UNITS	LOR	METHOD	
SPOCAS				
Moisture *	% w/w	0.1	AN002	
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401	
TAA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23F / CEI-401	
s-TAA pH 6.5	% w/w S	0.01	ASSMAC_S_23F/CEI-401	
рН ох	pH Units	0.1	ASSMAC_23B / CEI-406	
TPA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23G / CEI-406	
s-TPA pH 6.5	% w/w S	0.01	ASSMAC_S_23G/CEI-406	
TSA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23H	
s-TSA pH 6.5	% w/w S	0.01	ASSMAC_S_23H	
ANCE	% CaCO3	0.01	ASSMAC_23Q	
a-ANCE	moles H ⁺ /tonne	5	ASSMAC_A_23Q	
s-ANCE	% w/w S	0.01	ASSMAC_S_23Q	
S KCI ^	% w/w	0.005	ASSMAC_23Ce	
S _P ^	% w/w	0.005	ASSMAC_23De	
S POS ^	% w/w	0.005	ASSMAC_23Ee	
a-S POS ^	moles H ⁺ /tonne	5	ASSMAC_A_23Ee	
Са ксі ^	% w/w	0.005	ASSMAC_23Vh	
Ca P ^	% w/w	0.005	ASSMAC_23Wh	
Ca A ^	% w/w	0.005	ASSMAC_23Xh	
Мд ксі ^	% w/w	0.005	ASSMAC_23Sm	
Mg P ^	% w/w	0.005	ASSMAC_23Tm	
Mg A ^	% w/w	0.005	ASSMAC_23Um	
Shci ^	% w/w	0.005	ASSMAC_20B	
S NAS ^	% w/w	0.005	ASSMAC_20J	
a-S NAS ^	moles H ⁺ /tonne	5	ASSMAC_A_20J	
s-S NAS ^	% w/w S	0.01	ASSMAC_S_20J	
s-Net Acidity	% w/w S	0.01	Calculation	
a-Net Acidity	moles H ⁺ /tonne	5	Calculation	
Liming Rate	kg CaCO3/tonne	0.1	ASSMAC_23H	
Verification s-Net Acidity	% w/w S		Calculation	
a-Net Acidity without ANCE	moles H ⁺ /tonne	5	Calculation	
Liming Rate without ANCE	kg CaCO3/tonne	0.1	ASSMAC_23H	

CLIENT: Douglas Partners Pty Ltd Laboratory Report No: 57325

PROJECT: 55754 - 39823A Trinity Point

QUALITY CONTROL	UNITS	Blank	Replicate Sm#	Replicate Sample Replicate
Moisture *	% w/w	[NT]	57325-1	16 [N/T]
рН ксі	pH Units	[NT]	57325-1	5.9 6.0 RPD: 2
TAA pH 6.5	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
s-TAA pH 6.5	% w/w S	[NT]	57325-1	<0.01 <0.01
рН ох	pH Units	[NT]	57325-1	5.6 5.7 RPD: 2
TPA pH 6.5	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
s-TPA pH 6.5	% w/w S	[NT]	57325-1	<0.01 <0.01
TSA pH 6.5	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
s-TSA pH 6.5	% w/w S	[NT]	57325-1	<0.01 <0.01
ANCE	% CaCO ₃	[NT]	57325-1	<0.01 <0.01
a-ANCE	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
s-ANCE	% w/w S	[NT]	57325-1	<0.01 <0.01
S KCI ^	% w/w	[NT]	57325-1	<0.005 <0.005
S _P ^	% w/w	[NT]	57325-1	<0.005 <0.005
S POS ^	% w/w	[NT]	57325-1	<0.005 <0.005
a-S POS ^	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
Са ксі ^	% w/w	[NT]	57325-1	<0.005 <0.005
Ca P ^	% w/w	[NT]	57325-1	<0.005 <0.005
Ca A ^	% w/w	[NT]	57325-1	<0.005 <0.005
Mg ксі ^	% w/w	[NT]	57325-1	<0.005 <0.005
Mg P ^	% w/w	[NT]	57325-1	<0.005 <0.005
Mg A ^	% w/w	[NT]	57325-1	<0.005 <0.005
Shci ^	% w/w	[NT]	57325-1	NA NA
S NAS ^	% w/w	[NT]	57325-1	NA NA
a-S NAS ^	moles H ⁺ /tonne	[NT]	57325-1	NA NA
s-S NAS ^	% w/w S	[NT]	57325-1	NA NA
s-Net Acidity	% w/w S	[NT]	57325-1	<0.01 <0.01
a-Net Acidity	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
Liming Rate	kg CaCO₃/tonne	[NT]	57325-1	NA NA
Verification s-Net Acidity	% w/w S	[NT]	57325-1	NA NA
a-Net Acidity without ANCE	moles H ⁺ /tonne	[NT]	57325-1	<5 <5
Liming Rate without ANCE	kg CaCO3/tonne	[NT]	57325-1	NA NA

CLIENT: Douglas Partners Pty Ltd **Laboratory Report No:** 57325

PROJECT: 55754 - 39823A Trinity Point

LABORATORY REPORT

NOTES:

LOR - Limit of Reporting.

* This test is not covered by our current NATA accreditation.

^ Sulphur, Calcium and Magnesium results are determined at our Toowoomba Laboratory, (214 McDougal St, Toowoomba, QLD) who have NATA accreditation for these parameters.

Liming rate calculated using a Fineness factor of 1.5 (which is equivalent to finely divided Ag Lime <0.5mm) and Neutralising Value (NV) of 100%

If using Liming Material <100% NV, then Liming Rate can be adusted as follows:

Actual Liming Rate equals Calculated Liming Rate times 100 divided by NV of actual Liming Material

Bulk Density of Material of 1g/cm3 assumed.

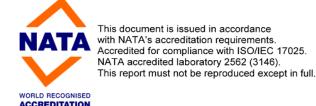
If Bulk Density differs from 1g/cm3 then Liming rate can be adjusted as follows:

Actual Liming Rate equals Calculated Liming Rate times Actual Bulk Density

Analysis Date: Between 15/10/07 and 19/10/07

Disclaimer:

SGS and the authors have prepared this document in good faith, consulting with Ahern CR, McElnea AE, Sullivan LA (2004) Acid Sulphate Soils Laboratory Methods Guidelines,


Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, Qld Aust.

While this is done exercising all due care and attention, no representation or warranty, expressed or implied is made as to the accuracy, completeness or fitness of the document in respect of any user's circumstances. Users of the results or data should seek appropriate expert advice where necessary in relation

to their particular situation or circumstances.

Any representation, statement, opinion or advice, expressed or implied on this publication is made in good faith and on the basis that SGS, its agents and employees are not liable to any person taking or not taking (as the case may be) action in respect of any representation, statement or advice referred to above.

SGS Terms and Conditions are available from www.au.sgs.com

30 October 2007

TEST REPORT

Douglas Partners Pty Ltd

Box 324 Hunter Region Mail Centre NSW 2310

Your Reference: 39823B, Trinity Point

Report Number: 55936A

Attention: Julie Wharton

Dear Julie

The following samples were analysed as received.

Samples: Qty. 2 Soils
Date of Receipt of Samples: 18/10/07
Date of Receipt of Instructions: 24/10/07
Date Preliminary Report Faxed: Not Issued

Should you have any queries regarding this report please contact the undersigned.

Analysis carried out by SGS Cairns, report No. 57446 (Results attached)

For and behalf of SGS Environmental Services Terms and conditions are available from www.au.sgs.com

LABORATORY REPORT COVERSHEET

30 October 2007 Date:

To: **Douglas Parnters Pty Ltd**

Box 324

Hunter Region NSW 2310

Attention: Julie Wharton

Your Reference: 39823B Trinity Point (Syd 55936)

Laboratory Report No: 57446

Samples Received: 25/10/2007

Samples / Quantity: 2 Soil

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

ffoddorel Shey Goddard

Administration Manager

CAIRNS

Jon Dicker Manager **CAIRNS**

CLIENT: Douglas Parnters Pty Ltd

PROJECT: 39823B Trinity Point (Syd 55936)

LABORATORY REPORT

Laboratory Report No: 57446

SPOCAS Our Reference Your Reference	Units	57446-1 55936A-2 201/3.9	57446-2 55936A-7 203/6.5	
Moisture *	% w/w	16	12	
рН ксі	pH Units	4.7	5.7	
TAA pH 6.5	moles H+/tonne	20	10	
s-TAA pH 6.5	% w/w S	0.03	0.02	
рН ох	pH Units	6.0	6.4	
TPA pH 6.5	moles H ⁺ /tonne	12	<5	
s-TPA pH 6.5	% w/w S	0.02	<0.01	
TSA pH 6.5	moles H+/tonne	<5	<5	
s-TSA pH 6.5	% w/w S	<0.01	<0.01	
ANCE	% CaCO3	<0.01	<0.01	
a-ANCE	moles H+/tonne	<5	<5	
s-ANCe	% w/w S	<0.01	<0.01	
S KCI ^	% w/w	0.033	0.014	
S _P ^	% w/w	0.032	0.020	
S POS ^	% w/w	<0.005	0.006	
a-S POS ^	moles H ⁺ /tonne	<5	<5	
Са ксі ^	% w/w	0.011	<0.005	
Ca P ^	% w/w	0.010	<0.005	
Ca A ^	% w/w	<0.005	<0.005	
Мд ксі ^	% w/w	0.052	0.027	
Mg P ^	% w/w	0.052	0.029	
Mg A ^	% w/w	<0.005	<0.005	
Shci ^	% w/w	NA	NA	
S NAS ^	% w/w	NA	NA	
a-S NAS ^	moles H ⁺ /tonne	NA	NA	
s-S NAS ^	% w/w S	NA	NA	
s-Net Acidity	% w/w S	0.03	0.02	
a-Net Acidity	moles H ⁺ /tonne	20	13	
Liming Rate	kg CaCO ₃ /tonne	1.5	NA	
Verification s-Net Acidity	% w/w S	NA	NA	
a-Net Acidity without ANCE	moles H ⁺ /tonne	20	13	
Liming Rate without ANCE	kg CaCO3/tonne	1.5	NA	

CLIENT: Douglas Parnters Pty Ltd

PROJECT: 39823B Trinity Point (Syd 55936)

Laboratory Report No: 57446

TEST PARAMETERS	UNITS	LOR	METHOD	
SPOCAS				
Moisture *	% w/w	0.1	AN002	
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401	
TAA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23F / CEI-401	
s-TAA pH 6.5	% w/w S	0.01	ASSMAC_S_23F/CEI-401	
рН ох	pH Units	0.1	ASSMAC_23B / CEI-406	
TPA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23G / CEI-406	
s-TPA pH 6.5	% w/w S	0.01	ASSMAC_S_23G/CEI-406	
TSA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23H	
s-TSA pH 6.5	% w/w S	0.01	ASSMAC_S_23H	
ANCE	% CaCO ₃	0.01	ASSMAC_23Q	
a-ANCE	moles H ⁺ /tonne	5	ASSMAC_A_23Q	
s-ANCE	% w/w S	0.01	ASSMAC_S_23Q	
S KCI ^	% w/w	0.005	ASSMAC_23Ce	
S _P ^	% w/w	0.005	ASSMAC_23De	
S POS ^	% w/w	0.005	ASSMAC_23Ee	
a-S pos ^	moles H ⁺ /tonne	5	ASSMAC_A_23Ee	
Ca ксі ^	% w/w	0.005	ASSMAC_23Vh	
Ca P ^	% w/w	0.005	ASSMAC_23Wh	
Ca A ^	% w/w	0.005	ASSMAC_23Xh	
Mg ксі ^	% w/w	0.005	ASSMAC_23Sm	
Mg P ^	% w/w	0.005	ASSMAC_23Tm	
Mg A ^	% w/w	0.005	ASSMAC_23Um	
SHCI ^	% w/w	0.005	ASSMAC_20B	
S NAS ^	% w/w	0.005	ASSMAC_20J	
a-S NAS ^	moles H ⁺ /tonne	5	ASSMAC_A_20J	
s-S NAS ^	% w/w S	0.01	ASSMAC_S_20J	
s-Net Acidity	% w/w S	0.01	Calculation	
a-Net Acidity	moles H ⁺ /tonne	5	Calculation	
Liming Rate	kg CaCO3/tonne	0.1	ASSMAC_23H	
Verification s-Net Acidity	% w/w S		Calculation	
a-Net Acidity without ANCE	moles H ⁺ /tonne	5	Calculation	
Liming Rate without ANCE	kg CaCO ₃ /tonne	0.1	ASSMAC_23H	

CLIENT: Douglas Parnters Pty Ltd Laboratory Report No: 57446

PROJECT: 39823B Trinity Point (Syd 55936)

LABORATORY REPORT

NOTES:

LOR - Limit of Reporting.

* This test is not covered by our current NATA accreditation.

^ Sulphur, Calcium and Magnesium results are determined at our Toowoomba Laboratory, (214 McDougal St, Toowoomba, QLD) who have NATA accreditation for these parameters.

Liming rate calculated using a Fineness factor of 1.5 (which is equivalent to finely divided Ag Lime <0.5mm) and Neutralising Value (NV) of 100%

If using Liming Material <100% NV, then Liming Rate can be adusted as follows:

Actual Liming Rate equals Calculated Liming Rate times 100 divided by NV of actual Liming Material

Bulk Density of Material of 1g/cm3 assumed.

If Bulk Density differs from 1g/cm3 then Liming rate can be adjusted as follows:

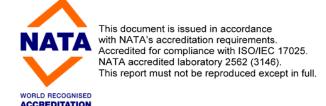
Actual Liming Rate equals Calculated Liming Rate times Actual Bulk Density

Analysis Date: Between 25/10/07 and 30/10/07

Disclaimer:

SGS and the authors have prepared this document in good faith, consulting with Ahern CR, McElnea AE, Sullivan LA (2004)

Acid Sulphate Soils Laboratory Methods Guidelines,


Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, Qld Aust.

While this is done exercising all due care and attention, no representation or warranty, expressed or implied is made as to the accuracy, completeness or fitness of the document in respect of any user's circumstances. Users of the results or data should seek appropriate expert advice where necessary in relation

to their particular situation or circumstances.

Any representation, statement, opinion or advice, expressed or implied on this publication is made in good faith and on the basis that SGS, its agents and employees are not liable to any person taking or not taking (as the case may be) action in respect of any representation, statement or advice referred to above.

SGS Terms and Conditions are available from www.au.sgs.com

29 October 2007

TEST REPORT

Douglas Partners Pty Ltd

Box 324 Hunter Region Mail Centre NSW 2310

Your Reference: 39823B, Trinity Point

Report Number: 55469D

Attention: Julie Wharton

Dear Julie

The following samples were analysed as received.

Samples: Qty. 2 Soils

Date of Receipt of Samples: 27-28/09/07
Date of Receipt of Instructions: 24/10/07
Date Preliminary Report Faxed: Not Issued

Should you have any queries regarding this report please contact the undersigned.

Analysis carried out by SGS Cairns, report No. 57448 (Report attached).

For and behalf of SGS Environmental Services Terms and conditions are available from www.au.sgs.com

LABORATORY REPORT COVERSHEET

29 October 2007 Date:

To: **Douglas Partners Pty Ltd**

PO Box 324

Hunter Region MC NSW 2310

Attention: Julie Wharton

Douglas Partners 39823B Trinity Point 55469D Your Reference:

Laboratory Report No: 57448

Samples Received: 25/10/2007

Samples / Quantity: 2 Soil

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

ffoddorel Shey Goddard

Administration Manager

CAIRNS

Jon Dicker Manager **CAIRNS**

Page 1 of 4

CLIENT: Douglas Partners Pty Ltd Laboratory Report No: 57448

PROJECT: Douglas Partners 39823B Trinity Point 55469D

Chromium Suite - Acid Base Accounting Our Reference Your Reference	Units	57448-1 SS2 55469D-2	57448-2 SS8 55469D-8
Moisture *	% w/w	33	65
рН ксі	pH Units	7.4	8.1
s-TAA pH 6.5	% w/w S	<0.01	<0.01
TAA pH 6.5	moles H ⁺ /tonne	<5	<5
Chromium Reducible Sulfur (ScR)	% w/w	0.23	0.64
a-Chromium Reducible Sulfur	moles H ⁺ / tonne	140	400
SHCI ^	% w/w	NA	NA
S KCI ^	% w/w	NA	NA
S NAS ^	% w/w	NA	NA
Acid Neutralisation Capacity	% CaCO ₃	1.0	6.0
s-ANC	% w/w S	0.32	1.9
a-ANC	moles H ⁺ / tonne	200	1,200
s-Net Acidity	% w/w S	0.01	<0.01
a-Net Acidity	moles H ⁺ /tonne	7.1	<5
Liming Rate	kg CaCO3/tonne	NA	NA
Verification s-Net Acidity	% w/w S	0.01	-0.65
a-Net Acidity without ANC	moles H ⁺ /tonne	140	400
Liming Rate without ANC	kg CaCO ₃ /tonne	10	30

CLIENT: Douglas Partners Pty Ltd Laboratory Report No: 57448

PROJECT: Douglas Partners 39823B Trinity Point 55469D

TEST PARAMETERS	UNITS	LOR	METHOD
Chromium Suite - Acid Base Accounting			
Moisture *	% w/w	0.1	AN002
рН ксі	pH Units	0.1	ASSMAC_23A / CEI-401
s-TAA pH 6.5	% w/w S	0.01	ASSMAC_S_23F/CEI-401
TAA pH 6.5	moles H ⁺ /tonne	5	ASSMAC_23F / CEI-401
Chromium Reducible Sulfur (Scr)	% w/w	0.005	ASSMAC_22B / CEI-405
a-Chromium Reducible Sulfur	moles H ⁺ / tonne	5	ASSMAC_22B / CEI-405
Shci ^	% w/w	0.005	ASSMAC_20B
S KCI ^	% w/w	0.005	ASSMAC_23Ce
S NAS ^	% w/w	0.005	ASSMAC_20J
Acid Neutralisation Capacity	% CaCO ₃	0.01	AN214 CEI-402
s-ANC	% w/w S	0.01	AN214 CEI-402
a-ANC	moles H ⁺ / tonne	5	AN214 CEI-402
s-Net Acidity	% w/w S	0.01	Calculation
a-Net Acidity	moles H ⁺ /tonne	5	Calculation
Liming Rate	kg CaCO ₃ /tonne	0.1	ASSMAC_23H
Verification s-Net Acidity	% w/w S		Calculation
a-Net Acidity without ANC	moles H ⁺ /tonne	5	Calculation
Liming Rate without ANC	kg CaCO3/tonne	0.1	ASSMAC_23H