

Cookson Plibrico

A Cookson Group Company

Cookson Plibrico Pty Limited A.C.N. 003 691 245

Lot 2 Sturdee Avenue, Bulli. N.S.W. 2516 P.O. Box 92, Bulli. N.S.W. 2516

Telephone: (042) 68 1188 Facsimile: (042) 68 1150

March 28 1996

Mr P.L. Butt
Chief Inspector of Dangerous Goods
Workcover Authority of NSW
Locked bag 10
Clarence Street
SYDNEY NSW 2000

35-017387

Dear Sir,

At our premises at Sturdee Ave Bulli we have a 27,780 litre diesel storage tank. It currently has a masonry bund which has a 1 metre separation distance to the adjacent shed.

It is our intention to discontinue to use this tank as diesel storage. To this end we have converted our plant that previously used diesel fuel to natural gas (mid 1995) and have gradually run down the quantities of diesel held in this tank. At today's date there is 3,500 litres in the tank and it is not being refilled.

We request exemption under Clause 28(i) of the Dangerous Goods Regulation 1978 from the full requirements of AS1940. In particular we require exemption from Clause 5.8.2 (table 5.4).

We ask for this exemption for a period of 6 months in which time we believe we will empty the contents of the tank. A diagram of the site and tank is attached.

Should you have any questions in relation to this please advise.

Yours faithfully,

Paul Kunkler

Financial Controller

RECEIVED

2 ARX 1006

SCIENTIFIC SERVICES
BRANCH

WorkCover

LICENCE TO KEEP DANGEROUS GOODS

(Dangerous Goods Act 1975)

Name of applicant				ACI	N		
Cookson	Persaico 1	by di	מיבר ינה		003	691	245
Site to be licensed No Street					4 8		
	STURDES A	VENUE					
Suburb/Town			Postcode				
BULLI	4			2516			
Previous licence number (77387					
Nature of site	JANU FACTUR	,~_		- g - 1 700			
Emergency contact on site Phone	Name						
042 681188	NICK	2100	SA5"				
-							
	per day 8	Gent	Days per we		\$ K12	Sav /	
Major supplier of dangero	us goods FL GAS			RIGHT !			
Major supplier of dangero	us goods <i>ELGAS</i> odification Accredited consultant		Days per we	RIGHT !	₩ Kriz		
Major supplier of dangero If new site or significant m Plan stamped by: Number of dangerous goo	us goods	s name:	Days per we	RICHT!	₩ Kriz	mped	
Major supplier of dangero If new site or significant m Plan stamped by: Number of dangerous good. Trading name or occupier	us goods	s name:	Days per we	RICHT!	₩ Kriz	mped	
Major supplier of dangero If new site or significant m Plan stamped by: Number of dangerous good. Trading name or occupier	odification Accredited consultant's ods depots at site	s name:	Days per we	RICHT!	₩ Kriz	mped	code
Major supplier of dangero If new site or significant me Plan stamped by: Number of dangerous good. Trading name or occupier to the plan stamped by:	us goods FLGAS, odification Accredited consultant's ods depots at site 's name R. A. C. R.	s name:	Days per wer	RICHT!	₩ Kriz	mped ~/A Post	code
Major supplier of dangero If new site or significant me Plan stamped by: Number of dangerous good. Trading name or occupier the properties of applications of applications. Box	us goods FLGAS, odification Accredited consultant's ods depots at site 's name R. A. C. R.	s name:	Days per wer	C1 6445)	₩ Kriz	mped ~/A Post	- 1
Major supplier of dangero If new site or significant m Plan stamped by: Number of dangerous good. Trading name or occupier Local Soc. I.Postal address of applications.	us goods FLGAS, odification Accredited consultant's ods depots at site 's name R. A.C. R.	s name:	Days per wer	CIGHT !	ate sta	mped ~/A Post	

Please carefully read the instructions in Part B of the guide before sketching the site. Site Sketch

ŲN

number

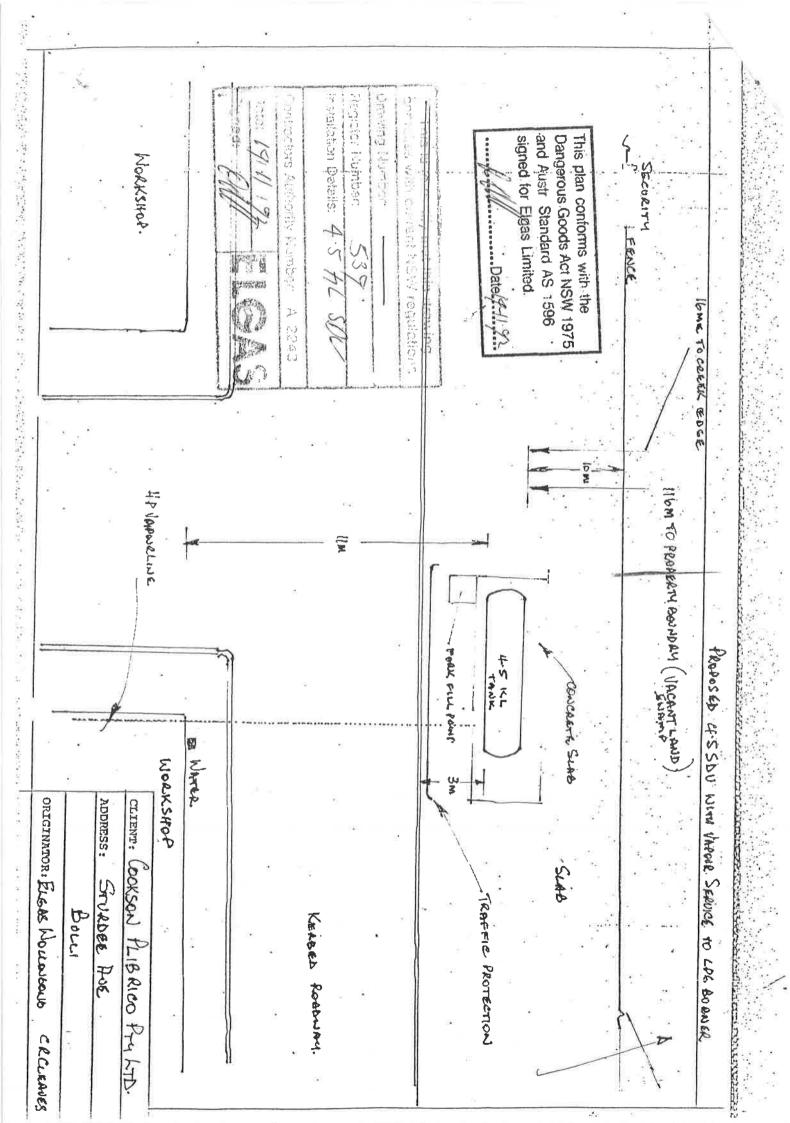
Shipping name

Typical quantity

Product or

common name

Uniteg. L, kg, m³


Depot umber	Type of depot		(Class	Licensed may storage cap		-VF 1
/	Tang			2.1	4.5 Kl	,	
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unite L, kg,
	L. P. G	2.1	NA	2A2	1. P. C	26.5	ke
Depot				Class	Licensed ma		MAL S
number 2	JRUM STOR AG &			S	storage cap		
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unite L, kg,
	has from a Aus	8	3	8A1 .	Two share Aus Aus Anno Porte	5000	L.
1760	bevarious cerm has her	s 8	3	8 A1	Levenner Drown Proses	10000	1
Depot number	Type of depot			Class	Licensed ma storage cap		1,169
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unit L, kg
Depot					Licensed ma	avimum	ESTATE OF THE PARTY OF THE PART

Pkg. Class Group EPG

If you have more depots than the space provided, photocopy sufficient sheets first.

Depot number	Type of depot			Class	Licensed maxir storage capac		OV. NO				
3	Resource Buck Frack	265	8	ق کو ا	~/A	2/1					
UN number	Shipping name	Class	Pkg. Group	EPG	Product or common name	Typical quantity	Unite				
1805	hastworn Aus	8	3	8 A I	Tuos harce ses	1000	1				
1760	Jumining arous Phas Pharo	8	3	8 A I	Sum way servo Produs	lago	l				
1866	freming arone Phas Phares PHENOL - FORMALDE 4425 RESIN	3	ઝ	3 <i>A</i> I	RESINOX IN 1438	1000	l				

Depot number	Type of depot	Class	Licensed manage ca	
UN number	Shipping name	Pkg. Class Group EPG	Product or common name	Typical Uniteg.

remises described	VERIFIED -	-2 Risc	rus not required) HIPT No. 19875 TH. 11. 9. 79 MEURT 10-00	9596 13	2/10/79	038
Name of Applica (see over)	nt in full	Surname #	HORA (Given Names John C	2755777	# . V
rading name or name (if any)	occupier's	South C	OPST REFRA	CTORIES. Afy LOD		PT. /
Postal address		STUDDEE A	PERUE BULL		Postcode .	2116
relephone numb	er of applicant	STD Code	642	Number 6720	5-5-	
	ot or depots are cluding street	Ser TH C	STOKE AL	CTOFIET PT 170	Postcode	
Nature of premi	ses (see over)					
		PLE	ASE ATTACH SITE	PLAN Syphico		
Particulars of ty	ne of depots an	d maximum qua	ntities of dangerous go	oods to be kept at any one	time.	
				Dangerou		
Depot number		of depot over)	Storage - capacity	Product being store	:d	C & C Office use only
1	About GAGIN	o TANK	7500 L	286.	da	1.100.33
2	/		4750 4	216		1.100.53
3						
4						
5						
6				1./	1	
7				\sim \vee		
8				1	1	
9						
10						
11						
12						
	l .	floromable liquid	(if any)	1. 6 r Borns		189
		flammable liquid				
Have premises	s previously bee	n licensed?	YES	* 1	NT-	17207
If known, stat	e name of previ	ous occupier	Amenoment O	NAY.	ence No.	1/30/
For external e	xplosives magaz	Signa ine(s), please fill		Thom Suky.	Dat	20.8.79
1975, do here	Dangerous Un	6	WILLIA I CHELLE LO		the Llane	rerous troous A

Application is nereby made for -* the transfer of the licence

premises described below.

Signature of Inspector

APPLICATION: FORK LIFT TK SIZE: ADDITIONAL 3.0 KL DWG: REP: ALE: NTS. RAL GAS (NSW) PTY LTD, BURROWS ROAD SOUTH, ST PETERS 2044 APPROVED DATE: DATE: TE SKETCH SUBMITTED TO MINES DEPT BY: 19:3:79 NOT APPROVED AVE. ROPOSED. ADDITIONAL STORAGE BULLI. STURDEE . ENTRANCE ...STREET/ROAD ... STREET/ROAD OPEN AREA. LANGEROA 151 15-DISPENSE POINT 50M BOUNDARY. .STREET/ROAD

PAOPOSED INSTRUCTION of TOWNE LINGS MISSEL Co. T. Co. 457 WATER **3**

T GOOD SOON

. . .

SAR S

A

DIRECTIONS

1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R.216, Royal Exchange Sydney, N.S.W. 2000 and must be accompanied by the prescribed fee, as set out hereunder:

Registration of Premises (Fee \$3.00 p.a.) — For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept sep arate depots; or 500 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, \$6.50 p.a.) — For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1, 2 and 9.

Store License, Div. B (Fee, See Regulation 7) — For quantities exceeding 4,000 gallons of mineral spirit, and/or dangerous goods of Classes 3 and/or 4. (\$15.00 p.a.).

Fees for the keeping of Dangerous Goods of Classes 3 and/or 4. (\$15.00 p.a.).

Fees for the keeping of inflammable liquid and dangerous goods in excess of the above stated quantities and also for Liquid Petroleum Gas storage are set out in Regulation 7. DIRECTIONS Men Store Tuense 1. Name of occupier including full christian names. 2. Trading Name (if any) 3. Locality of the premises in which the depat No. or Name or depots are situated 4. Postal address 5. Occupation 6. Nature of premises (dwelling, garage etc.) Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any PLEASE ATTACH PLAN OF PREMISES Construction of depots * Inflammable liquid Dangerous goods Depot No. Class Class Class Class Class Mineral Class Mineral Walls Roof Floor spirit gallons gallons 1ь cu ft gallons gallons vater gol gallons 2 3 4 5 6 8 9 Date 10 * If product is kept in tanks describe depots as underground or aboveground tanks. Signature of applicant Date of application 22 - /- 197/ CERTIFICATE OF INSPECTION being an Inspector under the Inflammable Liquid Act, 1915 (as amended), do hereby certify that the premises or store herein referred to and described is suitable with regard to its situation and construction for the safe keeping of inflammable liquid and/or dangerous goods in quantity and nature specified.

Signature of Inspector,

Place.

INSPECTION RECORD

Licensee:		Sou TH Const Refia closes Std	Licence No. A 173
Licensee:			
		STURDAR AV. Brusi	
Address:		STURDER AV. Bruki.	
			Specie-Cas.
Sketch of	Premises (Dimen	sions of depot and distance of same from adjoining "protected wo	rks** to be shown).
			4, 1, -5, 1
		FACTORY-	
			Vanor land
			1/4 mine
		OF FICES	OTHER " I.W.
		OFFI T	Cys. Fix My
200			30'7
1			-2 / 3
,	STURE	DEE AV.	6 13
			K
4		Source Const RAMINOS	- Y T
Inspected	Initials	Requisitions made or atate of depo	ot
10/8/71.	Will	Sursensiey.	
-/-			

Appendix B: Borehole Logs

ENVIRONMENTAL LOG

Borehole No.

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES PROPOSED RETIREMENT VILLAGE DEVELOPMENT **Project:** Location: GERAGHTY STREET, BULLI, NSW, **Job No.** E25232KH Method: SPIRAL AUGER R.L. Surface: N/A JK250 **Date:** 10-2-15 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Depth (m) DESCRIPTION Remarks DRY ON CONCRETE: 150mm.t. COMPL POSSIBLY NATURAL FILL: Silty clay, high plasticity, grey MC>PL -ETION СН and brown, trace of fine to medium MC>PL grained sand. SILTY CLAY: high plasticity, grey, N = 12trace of root fibres. 2,6,6 SILTY CLAY: high plasticity, light grey mottled red brown, trace fine to medium grained ironstone gravel. SANDSTONE: light grey and orange Monitoring Well Installed to 6m, Class brown. 18 50mm dia.Machine slotted PVC from 6m to 3m, Casing from 3m to surface, 2mm sand filter pack from 6m to 1m. Bentonite seal from 1m to 0.1m, Backfilled with sand (and/or cuttings) to surface and completed with a steel gatic cover END OF BOREHOLE AT 6.0m and lockable cap

ENVIRONMENTAL LOG

Borehole No.

2

1/1

Environmental logs are not to be used for geotechnical purposes

ANGLICAN RETIREMENT VILLAGES Client:

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Location: GERAGHTY STREET, BULLI, NSW,

	No. E2	25232KH -15			Meth	nod: SPIRAL AUGER JK250			.L. Surf	ace: N/A
					Logg	ged/Checked by: G.F./T.H.				
	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL -ETION		N = 6 4,3,3	0 - - - 1 –		СН	FILL: silty clay, medium plasticity, dark brown, trace root fibres and fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, brown, trace root fibres. SILTY CLAY: high plasticity, light grey and orange brown.	MC>PL			GRASS COVER
			2			END OF BOREHOLE AT 1.50m				

1/1

ENVIRONMENTAL LOG

Borehole No.

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

GERAGHTY STREET, BULLI, NSW. Location:

Location:	GERAGHTY S	STREET, E	BULLI, NSW,				
Job No. E252 Date: 10-2-15		Meth	od: SPIRAL AUGER JK250			.L. Surf	ace: N/A
		Logg	ged/Checked by: G.F./T.H.				
Groundwater Record ES ASS SAMPLES SAL	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL -ETION	2- 3- 3- 5- 6-	CL-CH	SILTY CLAY: medium plasticity, dark brown, trace root fibres. SILTY CLAY: medium to high plasticity, grey brown, trace root fibres, fine to medium grained ironstone gravel and ash. SANDY SILTY CLAY: medium plasticity, light grey mottled red brown. END OF BOREHOLE AT 1.5m	MC>PL			GRASS COVER POSSIBLY FILL

ENVIRONMENTAL LOG

Borehole No.

4

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES **Project:** PROPOSED RETIREMENT VILLAGE DEVELOPMENT Location: GERAGHTY STREET, BULLI, NSW, R.L. Surface: **Job No.** E25232KH Method: SPIRAL AUGER N/A JK250 **Date:** 10-2-15 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Depth (m) DESCRIPTION Remarks DRY ON FILL: Gravelly sandy clay, low MC<PL COMPL plasticity, fine to medium grained MC≈PL -ETION igneous and concrete gravel, brown. SILTY CLAY: high plasticity, brown, trace ash and root fibres. N = 126,6,6 SHALE: grey. END OF BOREHOLE AT 1.50m 2 3

ENVIRONMENTAL LOG

Borehole No. 1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Loca						BULLI, NSW,	•				
		25232KH 15 & 11-2				nod: SPIRAL AUGER JK250 AND HAND AUGER		R.L. Surface: N/A Datum:			
					Logo	ged/Checked by: G.F./T.H.					
	ASS ASB ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPL			0 -		-	CONCRETE: 100mm.t. FILL: Silty clay, low plasticity, brown,	MC <pl< td=""><td></td><td></td><td>=</td></pl<>			=	
-ETION			=	$\times\!\!\times\!\!\times$		trace root fibres, ash and fine to medium grained ironstone and					
		N =SPT 3/0mm REFUSAL	- - 1 –			sandstone gravel. SANDSTONE: fine to medium grained, orange brown. END OF BOREHOLE AT 0.5m				- - -	
			-							-	
			2 —							- - -	
			- - -							- - -	
			3 -							- - -	
			-							- -	
			4							- - -	
			- - -							- - -	
			5 — - -							_ - -	
			- - 6 —							- - -	
			- -							- -	
			7_							-	

ENVIRONMENTAL LOG

Borehole No. 6

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

GERAGHTY STREET, BULLI, NSW. Location:

Loca	tion:	GERA	AGHI	YSIR	EEI,I	BULLI, NSW,				
		25232KH 15 & 11-2			Meth	od: SPIRAL AUGER JK250 AND HAND AUGER			.L. Surf	ace: N/A
					Logg	ged/Checked by: G.F./T.H.				
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL -ETION			0 -	\bigotimes		FILL: Silty clay, low plasticity, brown, trace fine to medium grained ironstone and sandstone gravel and root fibres.	MC <pl< td=""><td></td><td></td><td>-</td></pl<>			-
		N = 7 2,3,4	- -		СН	SILTY CLAY: high plasticity, light brown and orange brown.	MC>PL			-
			1-	<u> </u>		END OF BOREHOLE AT 0.96m				_
			-							-
			-							-
			2-							_
			-							-
			_							-
			- 2_							-
			3-							-
			-							-
			_							-
			4 -							_
			_							-
			-							-
			5 –							_
			-							-
			_							-
			-							_
			6 -							-
			-							_
			_							-
			7_							

1/1

ENVIRONMENTAL LOG

Borehole No.

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Loca	tion:	GER	AGHT	Y STR	EET, I	BULLI, NSW,				
		25232KH 5 & 11-2			Meth	nod: HAND AUGER AND SPIRAL AUGER JK250	R.L. Surface: N/A Datum:			
					Log	ged/Checked by: G.F./T.H.				
Groundwater Record	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL -ETION			0			FILL: Silty clay, medium plasticity, dark brown, trace root fibres and fine to medium grained ironstone gravel.	MC≈PL			GRASS COVER -
		N = 7 3,3,4				FILL: Silty clay, high plasticity, brown, trace fine to medium grained sandstone gravel and root fibres.				POSSIBLY NATURAL
					СН	SILTY CLAY: high plasticity, grey mottled red brown.	MC>PL			-
			2 -			END OF BOREHOLE AT 1.50m				

1/1

ENVIRONMENTAL LOG

Borehole No.

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

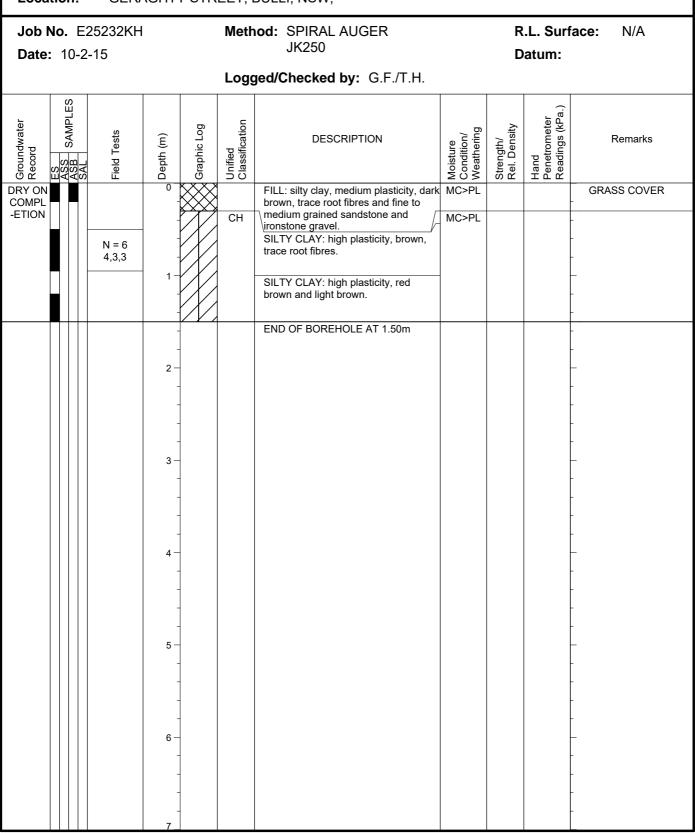
Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

GERAGHTY STREET, BULLI, NSW. Location:

Loca	ation:	GERA	AGHT	YSIR	EEI,	BULLI, NSW,				
		25232KH 15 & 11-2			Meth	nod: HAND AUGER AND SPIRAL AUGER JK250			.L. Surf	ace: N/A
					Log	ged/Checked by: G.F./T.H.				
Groundwater Record	ASS SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL-ETION		N = 6 2,2,4	0		CL-CH	FILL: Gravelly sity clay, low plasticity, brown, fine to medium grained igneous, brick, concrete and ironstone gravel, trace root fibres and slag. FILL: Sandy silty clay, low plasticity, dark brown, trace root fibres, ash and fine grained ironstone gravel. SILTY CLAY: medium plasticity, light brown, trace root fibres, ash and fine grained sand. SILTY CLAY: medium to high plasticity, red/brown and orange brown. END OF BOREHOLE AT 1.50m	MC>PL			GRASS COVER GRASS

1/1

ENVIRONMENTAL LOG


Borehole No.

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Location: GERAGHTY STREET, BULLI, NSW,

ENVIRONMENTAL LOG

Borehole No. 10

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES **Project:** PROPOSED RETIREMENT VILLAGE DEVELOPMENT Location: GERAGHTY STREET, BULLI, NSW, Job No. E25232KH R.L. Surface: Method: HAND AUGER N/A **Date:** 11-2-15 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Unified Classification Groundwater Record Strength/ Rel. Density Graphic Log Moisture Condition/ Weathering Field Tests Depth (m) DESCRIPTION Remarks CL-CH DRY ON MC<PL SILTY CLAY: medium to high COMPL plasticity, light grey mottled red brown \-ETION/ END OF BOREHOLE AT 0.3m HAND AUGER **REFUSAL** 2 3 5

ENVIRONMENTAL LOG

Borehole No.

1/1

Environmental logs are not to be used for geotechnical purposes

ANGLICAN RETIREMENT VILLAGES Client:

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Location: GERAGHTY STREET, BULLI, NSW,

		25232KH 15 & 11-2			Method: SPIRAL AUGER JK250 AND HAND AUGER			R.L. Surface: N/A Datum:			
Logged/Checked by: G.F./T.H.											
Groundwater Record	ASS ASB ASB SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
OM COMPL -ETION		N = 6 3,2,4	0 -		СН	FILL: Silty clay, medium plasticity, brown, trace roots and fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, light brown and red brown.	MC≈PL			GRASS COVER	
			2								

ENVIRONMENTAL LOG

Borehole No.

12

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

GERAGHTY STREET, BULLI, NSW. Location:

Location : Gl	ERAGHI	YSIRE	:EI, E	BULLI, NSW,					
Job No. E25232 Date: 3-2-15 AN			Method: SPIRAL AUGER JK250 AND HAND AUGER			R.L. Surface: N/A Datum:			
			Logg	ged/Checked by: G.F./T.H.					
Groundwater Record ES ASS ASS SAMPLES SAL Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPL -ETION N = 2,4,	7		CH	FILL: Silty clay, low to medium plasticity, dark brown, trace roots and fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, light brown and orange brown. SILTY CLAY: high plasticity, light grey mottled orange brown. END OF BOREHOLE AT 1.50m	MC≈PL MC>PL			GRASS COVER	

ENVIRONMENTAL LOG

Borehole No.

13

1/1

Environmental logs are not to be used for geotechnical purposes

ANGLICAN RETIREMENT VILLAGES Client:

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Location: GERAGHTY STREET, BULLI, NSW,

Job No. E25232KH Date: 3-2-15 & 10-2-15						od: SPIRAL AUGER JK250 AND HAND AUGER ged/Checked by: G.F./T.H.			L. Surf	ace: N/A
Groundwater Record	ES ASS SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
		N = 6 3,3,3 N = 8 4,4,4	1 - 0 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		CH	FILL: Sandy silty clay: low plasticity, dark brown, trace fine to coarse grained sandstone gravel and roots. SILTY CLAY: high plasticity, orange brown and light brown, trace of ash, root fibres and fine to medium grained sand. SANDY SILTY CLAY: medium plasticity, light grey mottled orange brown, trace fine to medium grained ironstone gravel. SILTY CLAY: high plasticity, light grey mottled red brown and light brown.	MC <pl mc="">PL</pl>	σ α	IOC	Monitoring Well Installed to 6m, Class 18 50mm dia. Machine slotted PVC from 6m to 3m, Casing from 3m to surface, 2mm sand filter pack from 6m to 1m, Bentonite seal from 1m to 0.1m, Backfilled with sand (and/or cuttings) to surface and completed with a steel gatic cover and lockable cap.

ENVIRONMENTAL LOG

Borehole No.

14

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES **Project:** PROPOSED RETIREMENT VILLAGE DEVELOPMENT Location: GERAGHTY STREET, BULLI, NSW, R.L. Surface: **Job No.** E25232KH Method: HAND AUGER N/A **Date:** 11-2-15 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Depth (m) DESCRIPTION Remarks DRY ON FILL: Silty clay, low plasticity, dark MC≈PL **GRASS COVER** COMPL brown, trace glass, root fibres and fine MC>PL -ETION to medium grained ironstone gravel. / SILTY CLAY: high plasticity, light brown and brown, trace fine to HAND AUGER \medium grained ironstone gravel **REFUSAL** END OF BOREHOLE AT 0.6M 1 2 3 5 6

ENVIRONMENTAL LOG

Borehole No.

15

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES PROPOSED RETIREMENT VILLAGE DEVELOPMENT **Project:** Location: GERAGHTY STREET, BULLI, NSW, **Job No.** E25232KH Method: SPIRAL AUGER JK250 R.L. Surface: N/A AND HAND AUGER Date: 4-2-15 AND 10-2-15 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Graphic Log Weathering Depth (m) Condition/ DESCRIPTION Remarks Moisture MC>PL DRY ON GRASS COVER FILL: silty clay, medium plasticity, COMPL brown, trace root fibres and fine to MC>PL -ETION medium grained ironstone and sandstone gravel. SILTY CLAY: high plasticity, light N = 6brown and ornage brown, trace root 2,3,3 SILTY CLAY: high plasticity, light grey mottled red brown, trace fine to medium grained ironstone gravel. Monitoring Well Installed to 5.5m, Class 18 50mm dia. Machine slotted PVC from 5.5m to 2.5m, Casing from 2.5m to surface, 2mm sand filter pack from 5.5m to 1m, Bentonite seal from 1m to 0.1m, Backfilled with sand (and/or cuttings) to surface and completed with a steel gatic cover and lockable cap. END OF BOREHOLE AT 5.5m 6

ENVIRONMENTAL LOG

Borehole No. 16

1/1

Environmental logs are not to be used for geotechnical purposes

ANGLICAN RETIREMENT VILLAGES Client:

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Locati	Location: GERAGHTY STREET, BULLI, NSW,									
	Job No. E25232KH Date: 3-2-15 & 11-2-15			Method: SPIRAL AUGER JK250 AND HAND AUGER			R.L. Surface: N/A Datum:			ace: N/A
Logged/Checked by: G.F./T.H.										
Groundwater Record ES	ASB SAMPLES SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL -ETION		N = 11 5,5,6	0		СН	FILL: Silty clay, low plasticity, dark brown, trace roots, ash and fine to medium grained sandstone and ironstone gravel. SILTY CLAY: high plasticity, brown, trace root fibres and fine to medium grained ironstone gravel. END OF BOREHOLE AT 1.50m	MC>PL			GRASS COVER GRASS

ENVIRONMENTAL LOG

Borehole No. 17

1/1

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

PROPOSED RETIREMENT VILLAGE DEVELOPMENT Project:

Loca	Location: GERAGHTY STREET, BULLI, NSW,									
	Job No. E25232KH Date: 3-2-15 AND 11-2-15			5	Method: SPIRAL AUGER JK250 AND HAND AUGER			R.L. Surface: N/A Datum:		
					Logg	ged/Checked by: G.F./T.H.				
	ES ASS ASB SAL SAL	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPL-ETION		N = 7 3,3,4	3- 3- 3- 3- 5- 6-	Gra	CH Cla	FILL: Sandy silty clay, low plasticity, dark brown, trace roots and fine to coarse grained sandstone gravel. SILTY CLAY: high plasticity, light brown and orange brown, trace of roots. END OF BOREHOLE AT 1.50m	MC≈PL	Stre Stre	Har Per Res	GRASS COVER GRASS
			- - - - 7	-						

1/1

ENVIRONMENTAL LOG

Borehole No. 18

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Datum: Logged/Checked by: G.F./T.H. Logged/Checked by: G.F./T.H. DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION Page No active of the properties of	A		
Logged/Checked by: G.F./T.H. Sample Steel Connection Steel Connection			
DESCRIPTION STRENGTH Coundwater Classification Classification Coundition Counditio			
DRY ON COMPLICATION O STATE OF BOREHOLE AT 0.2m DESTRUCTION FILL: Gravelly silty clay, low plasticity, brown and dark grey, fine to coarse grained igneous, trace of root fibres and ash. END OF BOREHOLE AT 0.2m END OF BOREHOLE AT 0.2m			
DRY ON COMPLICATION FILL: Gravelly silty clay, low plasticity, brown and dark grey, fine to coarse grained igneous, trace of root fibres and ash. END OF BOREHOLE AT 0.2m FILL: Gravelly silty clay, low plasticity, MC≈PL HAND AUC REFUSAL	ırks		
Grained igneous, trace of root fibres and ash. END OF BOREHOLE AT 0.2m HAND AUC REFUSAL			
	GER		

ENVIRONMENTAL LOG

Borehole No. 19

1/1

Environmental logs are not to be used for geotechnical purposes Client: ANGLICAN RETIREMENT VILLAGES **Project:** PROPOSED RETIREMENT VILLAGE DEVELOPMENT Location: GERAGHTY STREET, BULLI, NSW, R.L. Surface: **Job No.** E25232KH Method: SPIRAL AUGER JK250 N/A AND HAND AUGER **Date:** 4-2-12 Datum: Logged/Checked by: G.F./T.H. SAMPLES Hand Penetrometer Readings (kPa.) Groundwater Record Unified Classification Strength/ Rel. Density Moisture Condition/ Weathering Graphic Log Depth (m) DESCRIPTION Remarks DRY ON COMPL MC>PL GRASS COVER FILL: Silty clay, high plasticity, dark brown, trace root fibres, fine to -ETION medium grained ironstone and СН sandstone gravel and ash. MC>PL SILTY CLAY: high plasticity, brown. END OF BOREHOLE AT 1.0m 2 3

1/1

ENVIRONMENTAL LOG

Borehole No. 20

Environmental logs are not to be used for geotechnical purposes

Client: ANGLICAN RETIREMENT VILLAGES

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

Job No. E Date: 4-2-			Method: SPIRAL AUGER JK250 AND HAND AUGER				R.L. Surface: N/A Datum:			
				Logo	ged/Checked by: G.F./T.H.					
Groundwater Record ES ASS SAMPLES SAI	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON COMPL -ETION	N = 7 3,3,4	0 -		СН	FILL: Silty clay, medium plasticity, dark brown, with root fibres, trace fine to medium grained sandstone and ironstone gravel. SILTY CLAY: high plasticity, light brown and orange brown.	MC≈PL		-	GRASS COVER	
		2 — 2 — 3 — 3 — 4 — 5 — 5 — 6 — — — — — — — — — — — — — —			END OF BOREHOLE AT 1.50m					

ENVIRONMENTAL LOG

Borehole No. 21

1/1

Environmental logs are not to be used for geotechnical purposes

ANGLICAN RETIREMENT VILLAGES Client:

Project: PROPOSED RETIREMENT VILLAGE DEVELOPMENT

1	•							
Job No. E252 Date: 4-2-15	232KH		Method: HAND AUGER			R.L. Surface: N/A Datum:		
		Logged/C	hecked by: G.F./T.H.					
Groundwater Record ES ASS SAMPLES SAL	Field Tests Depth (m) Graphic Log	Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks	
DRY ON	0 💥	FILL:	Silty clay, medium to high	MC≈PL			GRASS COVER	
COMPL -ETION/	1 -	√plasti FILL: mediu slag g	city, orange brown. Clayey silty gravel, fine to um grained igneous, ash and gravel, dark grey, trace fine to um grained shale gravel. OF BOREHOLE AT 0.25m	D			HAND AUGER REFUSAL	

ENVIRONMENTAL LOGS EXPLANATORY NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 'Geotechnical Site Investigations'. In general, descriptions cover the following properties - soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

April 2018

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤ 25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	e – soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating interlaminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Page 1 of 3

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or

strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

$$N = 13$$
 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

April 2018 Page 2 of 3

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

April 2018 Page 3 of 3

SYMBOL LEGENDS

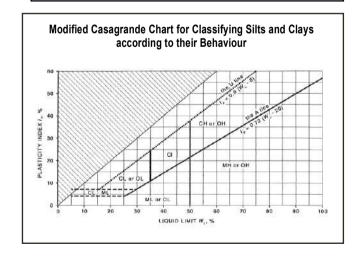
SOII	<u> </u>	ROC	<u>K</u>							
	FILL	00	CONGLOMERATE							
	TOPSOIL		SANDSTONE							
	CLAY (CL, CI, CH)	蓋	SHALE/MUDSTONE							
	SILT (ML, MH)		SILTSTONE							
	SAND (SP, SW)		CLAYSTONE							
0	GRAVEL (GP, GW)		COAL							
	SANDY CLAY (CL, CI, CH)		LAMINITE							
	SILTY CLAY (CL, CI, CH)		LIMESTONE							
	CLAYEY SAND (SC)		PHYLLITE, SCHIST							
	SILTY SAND (SM)		TUFF							
	GRAVELLY CLAY (CL, CI, CH)	冷	GRANITE, GABBRO							
	CLAYEY GRAVEL (GC)		DOLERITE, DIORITE							
	SANDY SILT (ML, MH)	~~	BASALT, ANDESITE							
\$72 \$72 \$72 \$72 \$72 \$72 \$72 \$7	PEAT AND HIGHLY ORGANIC SOILS (Pt)		QUARTZITE							
	OTHER MATERIALS									
	BRICKS OR PAVERS									
	CONCRETE									
	ASPHALTIC CONCR	RETE								

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Majo	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory C	Classification
ize	GRAVEL GW Gravel and gravel-sand mixtures, little or no fines			Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 4 1 < C _c < 3
soil excluding oversize 075mm)	than half of coarse fraction is larger than	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
			Gravel-silt mixtures and gravel-sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
65% r	CC .than		Gravel-clay mixtures and gravel-sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
			Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u > 6 1 < C _c < 3
ned soil (r fractior	in section (Indeed)	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
Coarse grair	is smaller	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	N/4
Ö	2.36mm) SC		Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group			Laboratory Classification		
Мајо	r Divisions	Symbol	Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm
ing (low	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line
	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line
35% c		OL	Organic silt	Low to medium	Slow	Low	Below A line
(more than	SILT and CLAY (high plasticity)	MH	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line
s (more action		CH	Inorganic clay of high plasticity	High to very high	None	High	Above A line
ine grained soils oversize fra		OH	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line
Highly organic Pt Peat, highly o soil		Peat, highly organic soil	-	-	-	-	

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu>4 and the coefficient of curvature $1< C_c<3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_u = \frac{D_{60}}{D_{10}}$$
 and $C_c = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Jeffery & Katauskas Pty Ltd, trading as JK Geotechnics

LOG SYMBOLS

Log Column	Symbol	Definition			
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.			
		Extent of borehole/test pit collapse shortly after drilling/excavation. Groundwater seepage into borehole or test pit noted during drilling or excavation.			
Samples	ES U50 DB DS ASB ASS SAL	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis. Soil sample taken over depth indicated, for salinity analysis.			
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.			
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.			
	VNS = 25 PID = 100	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).			
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.			
(Coarse Grained Soils)	D M W	DRY – runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface. WET – free water visible on soil surface.			
Strength (Consistency) Cohesive Soils	VS S F St VSt Hd Fr ()	$\label{eq:very_soft} VERY SOFT - \mbox{ unconfined compressive strength} \le 25 \mbox{kPa}. \\ SOFT - \mbox{ unconfined compressive strength} > 25 \mbox{kPa} \mbox{ and } \le 50 \mbox{kPa}. \\ FIRM - \mbox{ unconfined compressive strength} > 50 \mbox{kPa} \mbox{ and } \le 100 \mbox{kPa}. \\ STIFF - \mbox{ unconfined compressive strength} > 100 \mbox{kPa} \mbox{ and } \le 200 \mbox{kPa}. \\ VERY STIFF - \mbox{ unconfined compressive strength} > 200 \mbox{kPa} \mbox{ and } \le 400 \mbox{kPa}. \\ HARD - \mbox{ unconfined compressive strength} > 400 \mbox{kPa}. \\ FRIABLE - \mbox{ strength not attainable, soil crumbles.} \\ Bracketed \mbox{ symbol indicates estimated consistency based on tactile examination or other assessment.} \\$			
Density Index/ Relative Density (Cohesionless Soils)	VL L MD D VD ()	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.			

Log Symbols continued

Log Column	Symbol	Definition					
Remarks	'V' bit	Hardened steel 'V' shaped bit.					
	'TC' bit	Twin pronged tu	ngsten carbide bit.				
	T ₆₀		uger string in mm under static load of rig applied by drill head ut rotation of augers.				
	Soil Origin	The geological o	rigin of the soil can generally be described as:				
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 				
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 				
		ALLUVIAL	 soil deposited by creeks and rivers. 				
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 				
		MARINE	 soil deposited in a marine environment. 				
		AEOLIAN	 soil carried and deposited by wind. 				
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 				
		LITTORAL	 beach deposited soil. 				

Classification of Material Weathering

Term		Abbreviation		Definition		
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.		
Extremely Weathered		XW		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.		
Highly Weathered	Distinctly Weathered (Note 1)	HW	DW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.		
Moderately Weathered	,	MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.		
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.		
Fresh		F	R	Rock shows no sign of decomposition of individual minerals or colour changes.		

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	Н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

Appendix C: Laboratory Report/s & COC Documents

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 123151

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your Reference: E25232KH, Bulli

No. of samples: 19 soils

Date samples received / completed instructions received 06/02/15 / 06/02/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 13/02/15 / 12/02/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	96	91	60	60

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	105	63	117	108	105

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123151-12	123151-13	123151-14	123151-15	123151-16
Your Reference		BH18	BH19	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0.5-0.8	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX(F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	98	100	103	94

vTRH(C6-C10)/BTEXN in Soil			
Our Reference:	UNITS	123151-18	123151-19
Your Reference		DUPGFS1	DUPGFS2
Depth		-	-
Date Sampled		04/02/2015	04/02/2015
Type of sample		soil	soil
Date extracted	-	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015
TRHC6 - C9	mg/kg	<25	<25
TRHC6 - C10	mg/kg	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1
m+p-xylene	mg/kg	<2	<2
o-Xylene	mg/kg	<1	<1
naphthalene	mg/kg	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	100

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	89	86	89	86

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	86	88	88	84	87

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123151-12	123151-13	123151-14	123151-15	123151-16
Your Reference		BH18	BH19	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0.5-0.8	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	150	<100	<100	<100	<100
TRHC29 - C36	mg/kg	170	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	280	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	90	87	85	85	89

svTRH (C10-C40) in Soil			
Our Reference:	UNITS	123151-18	123151-19
Your Reference		DUPGFS1	DUPGFS2
Depth		-	-
Date Sampled		04/02/2015	04/02/2015
Type of sample		soil	soil
Date extracted	-	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015
TRHC10 - C14	mg/kg	<50	<50
TRHC 15 - C28	mg/kg	160	<100
TRHC29 - C36	mg/kg	190	<100
TRH>C10-C16	mg/kg	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH>C16-C34	mg/kg	300	<100
TRH>C34-C40	mg/kg	<100	<100
Surrogate o-Terphenyl	%	93	86

PAHs in Soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	9/02/2015	9/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	11/02/2015	11/02/2015	11/02/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	2.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Fluoranthene	mg/kg	<0.1	0.4	0.3	3.4	<0.1
Pyrene	mg/kg	<0.1	0.4	0.3	2.8	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.2	0.1	1.2	<0.1
Chrysene	mg/kg	<0.1	0.2	0.2	1.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	0.4	0.3	2.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	0.2	1.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	0.1	0.9	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	0.1	0.9	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	1.7	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	2.3	1.6	17	NIL(+)VE
Surrogate p-Terphenyl-d14	%	119	109	111	113	107

PAHs in Soil						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	0.1	0.1
Pyrene	mg/kg	<0.1	0.1	<0.1	0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	0.20	NIL(+)VE	0.79	0.20
Surrogate p-Terphenyl-d14	%	106	115	112	103	111

PAHs in Soil						
Our Reference:	UNITS	123151-12	123151-13	123151-14	123151-15	123151-16
Your Reference		BH18	BH19	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0.5-0.8	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
Naphthalene	mg/kg	0.6	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1	<0.1	<0.1	0.7
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Fluoranthene	mg/kg	0.7	<0.1	<0.1	0.3	2.3
Pyrene	mg/kg	0.7	<0.1	<0.1	0.3	2.7
Benzo(a)anthracene	mg/kg	0.6	<0.1	<0.1	0.2	1.8
Chrysene	mg/kg	0.7	<0.1	<0.1	0.2	2.5
Benzo(b,j+k)fluoranthene	mg/kg	2	<0.2	<0.2	0.4	2.9
Benzo(a)pyrene	mg/kg	0.81	<0.05	<0.05	0.2	1.3
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.1	<0.1	0.1	0.6
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	0.5	<0.1	<0.1	0.1	0.5
Benzo(a)pyreneTEQNEPMB1	mg/kg	1.1	<0.5	<0.5	<0.5	2.0
Total Positive PAHs	mg/kg	7.4	NIL(+)VE	NIL(+)VE	1.9	16
Surrogate p-Terphenyl-d14	%	97	91	110	109	111

PAHs in Soil			
Our Reference:	UNITS	123151-18	123151-19
Your Reference		DUPGFS1	DUPGFS2
Depth		-	-
Date Sampled		04/02/2015	04/02/2015
Type of sample		soil	soil
Date extracted	-	09/02/2015	09/02/2015
Date analysed	-	11/02/2015	11/02/2015
Naphthalene	mg/kg	0.6	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	0.6	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	0.9	0.1
Pyrene	mg/kg	0.9	0.2
Benzo(a)anthracene	mg/kg	0.8	0.1
Chrysene	mg/kg	0.9	0.1
Benzo(b,j+k)fluoranthene	mg/kg	2	0.2
Benzo(a)pyrene	mg/kg	1.0	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.6	0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	1.4	<0.5
Total Positive PAHs	mg/kg	8.9	0.94
Surrogate p-Terphenyl-d14	%	112	109

Organochlorine Pesticides in soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	95	88	98	90

Organochlorine Pesticides in soil						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	95	94	90	94

Organochlorine Pesticides in soil					
Our Reference:	UNITS	123151-12	123151-13	123151-15	123151-16
Your Reference		BH18	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	100	87	94

Organophosphorus Pesticides						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	95	88	98	90

Organophosphorus Pesticides						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	92	95	94	90	94

Organophosphorus Pesticides					
Our Reference:	UNITS	123151-12	123151-13	123151-15	123151-16
Your Reference		BH18	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	96	100	87	94

			•			
PCBs in Soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	вн6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	95	88	98	90
PCBs in Soil	_					
Our Reference: Your Reference	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Pour Reference Depth		BH12 0-0.15	BH13 0-0.2	BH15 0-0.1	BH16 0-0.2	BH17 0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	92	95	94	90	94
Garregate 10EMA	,,					<u> </u>
PCBs in Soil						
Our Reference:	UNITS	123151-12	123151-13	123151-15	123151-16	
Your Reference		BH18	BH19	BH20	BH21	
Depth Date Sampled		0-0.2 04/02/2015	0-0.2 04/02/2015	0-0.2 04/02/2015	0-0.1 04/02/2015	
Type of sample		soil	soil	soil	soil	
Date extracted	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	
Date analysed	_	10/02/2015	10/02/2015	10/02/2015	10/02/2015	
Arochlor 1016	ma/ka	<0.1	<0.1	<0.1	<0.1	
Arochlor 1221	mg/kg mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1232		<0.1	<0.1	<0.1	<0.1	
	mg/kg				-	
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	

Envirolab Reference: 123151 Revision No: R 00

Surrogate TCLMX

%

96

100

78

94

Acid Extractable metals in soil						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date digested	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Date analysed	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/2015
Arsenic	mg/kg	<4	7	9	7	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	10	14	18	18	15
Copper	mg/kg	4	22	21	47	6
Lead	mg/kg	18	26	31	26	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	4	5	10	2
Zinc	mg/kg	31	50	78	75	10
Acid Extractable metals in soil						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-1
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth Samulad		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled Type of sample		03/02/2015 soil	03/02/2015 soil	04/02/2015 soil	03/02/2015 soil	03/02/201 soil
Date digested	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/201
Date analysed	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/201
Arsenic	mg/kg	7	5	8	9	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	19	29	20	25	26
Copper	mg/kg	8	16	11	12	13
Lead	mg/kg	17	24	98	28	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	9	3	5	5
Zinc	mg/kg	9	30	67	19	26
	1			T	T	1
Acid Extractable metals in soil Our Reference:	LINUTO	100454 40	100454 40	100454 44	100454.45	100154.4
Our Reference: Your Reference	UNITS	123151-12 BH18	123151-13 BH19	123151-14 BH19	123151-15 BH20	123151-1 BH21
Depth		0-0.2	0-0.2	0.5-0.8	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015	04/02/201
Type of sample		soil	soil	soil	soil	soil
Date digested	-	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/201
Date analysed	_	09/02/2015	09/02/2015	09/02/2015	09/02/2015	09/02/201
Arsenic	mg/kg	63	4	<4	8	<4
Cadmium	mg/kg	0.8	<0.4	<0.4	<0.4	0.6
Chromium	mg/kg	53	23	34	30	70
Copper		120	12	7	16	38
	mg/kg		16		_	
Lead	mg/kg	160		13	26	11
Mercury	mg/kg	0.2	<0.1	<0.1	<0.1	0.2
	ma/ka	18	7	8	6	' ')/
Nickel	mg/kg	330	76		27	24

Envirolab Reference: 123151 Revision No: R 00 mg/kg

230

76

8

27

Zinc

82

Acid Extractable metals in soil			
Our Reference:	UNITS	123151-18	123151-19
Your Reference		DUPGFS1	DUPGFS2
Depth		-	-
Date Sampled		04/02/2015	04/02/2015
Type of sample		soil	soil
Date digested	-	09/02/2015	09/02/2015
Date analysed	-	09/02/2015	09/02/2015
Arsenic	mg/kg	46	5
Cadmium	mg/kg	0.7	<0.4
Chromium	mg/kg	53	26
Copper	mg/kg	110	13
Lead	mg/kg	140	19
Mercury	mg/kg	0.2	<0.1
Nickel	mg/kg	15	7
Zinc	mg/kg	190	51

	T		T			
Moisture						
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	9/02/2015	9/02/2015	9/02/2015	9/02/2015	9/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Moisture	%	12	16	38	14	21
Moisture						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	9/02/2015	9/02/2015	9/02/2015	9/02/2015	9/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Moisture	%	21	29	23	22	26
Moisture						
Our Reference:	UNITS	123151-12	123151-13	123151-14	123151-15	123151-16
Your Reference		BH18	BH19	BH19	BH20	BH21
Depth		0-0.2	0-0.2	0.5-0.8	0-0.2	0-0.1
Date Sampled		04/02/2015	04/02/2015	04/02/2015	04/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	9/02/2015	9/02/2015	9/02/2015	9/02/2015	9/02/2015
Date analysed	-	10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Moisture	%	27	26	25	29	29
Moisture				 		
Our Reference:	UNITS	123151-18	123151-19			
Your Reference		DUPGFS1	DUPGFS2			
Depth		-	-			
Date Sampled		04/02/2015	04/02/2015			
2 3.5 341115134	1					
Type of sample		soil	soil			
Type of sample Date prepared	-	9/02/2015	9/02/2015			
	-					

Asbestos ID - soils		1				
Our Reference:	UNITS	123151-1	123151-2	123151-3	123151-4	123151-6
Your Reference		BH5	BH6	BH7	BH8	BH11
Depth		0.1-0.3	0-0.1	0-0.1	0-0.1	0-0.2
Date Sampled		03/02/2015	03/02/2015	02/02/2015	02/02/2015	04/02/2015
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	12/02/2015	12/02/2015	12/02/2015	12/02/2015	12/02/2015
Sample mass tested	g	Approx 40g	Approx 40g	Approx 20g	Approx 50g	Approx 45g
Sample Description	-	Brown coarse grain soil	Brown coarse grain soil & rocks	Brown coarse grain soil	Brown coarse grain soil & rocks	Brown coarse grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				
Asbestos ID - soils						
Our Reference:	UNITS	123151-7	123151-8	123151-9	123151-10	123151-11
Your Reference		BH12	BH13	BH15	BH16	BH17
Depth		0-0.15	0-0.2	0-0.1	0-0.2	0-0.2
Date Sampled		03/02/2015	03/02/2015	04/02/2015	03/02/2015	03/02/2015
Type of sample		soil	soil	soil	soil	soil
Date analysed	-	12/02/2015	12/02/2015	12/02/2015	12/02/2015	12/02/2015
Sample mass tested	g	Approx 45g	Approx 25g	Approx 35g	Approx 40g	Approx 40g
Sample Description	-	Brown coarse grain soil & rocks	Brown coarse grain soil	Brown coarse grain soil & rocks	Brown coarse grain soil	Brown coarse grain soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	123151-12 BH18 0-0.2 04/02/2015 soil	123151-13 BH19 0-0.2 04/02/2015 soil	123151-15 BH20 0-0.2 04/02/2015 soil	123151-16 BH21 0-0.1 04/02/2015 soil
Date analysed		12/02/2015	12/02/2015	12/02/2015	12/02/2015
Sample mass tested	g	Approx 50g	Approx 30g	Approx 40g	Approx 35g
Sample Description	-	Dark brown coarse grain soil & rocks	Brown coarse grain soil & rocks	Brown coarse grain soil	Brown coarse grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Soil 09/02/2 123151-1 09/02/2015 | 09/02/2015 LCS-8 09/02/2015 Date extracted 015 Date analysed 11/02/2 123151-1 11/02/2015 || 11/02/2015 LCS-8 11/02/2015 015 TRHC6-C9 mg/kg 25 Org-016 <25 123151-1 <25||<25 LCS-8 97% 25 Org-016 <25 123151-1 <25||<25 LCS-8 97% TRHC6 - C10 mg/kg Org-016 LCS-8 102% Benzene 0.2 < 0.2 123151-1 <0.2||<0.2 mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 123151-1 <0.5||<0.5 LCS-8 104% Ethylbenzene 1 Org-016 <1 123151-1 <1||<1 LCS-8 104% mg/kg 2 LCS-8 88% m+p-xylene Org-016 <2 123151-1 <2||<2 mg/kg o-Xylene 1 Org-016 <1 123151-1 <1||<1 LCS-8 84% mg/kg naphthalene 1 Org-014 <1 123151-1 <1||<1 [NR] [NR] mg/kg % Org-016 107 123151-1 102 | 102 | RPD: 0 LCS-8 99% Surrogate aaa-Trifluorotoluene QUALITYCONTROL **UNITS** PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD 09/02/2 123151-1 09/02/2015 | 09/02/2015 LCS-8 Date extracted 09/02/2015 015 10/02/2 123151-1 10/02/2015 || 10/02/2015 LCS-8 10/02/2015 Date analysed 015 TRHC₁₀ - C₁₄ mg/kg 50 Org-003 <50 123151-1 <50 | | <50 LCS-8 101% TRHC 15 - C28 mg/kg 100 Org-003 <100 123151-1 <100 | | <100 LCS-8 110% Org-003 123151-1 LCS-8 99% TRHC29 - C36 mg/kg 100 <100 <100 | | <100 TRH>C10-C16 mg/kg 50 Org-003 <50 123151-1 <50 || <50 LCS-8 101% TRH>C16-C34 mg/kg 100 Org-003 <100 123151-1 <100 | | <100 LCS-8 110% <100 123151-1 LCS-8 99% TRH>C34-C40 mg/kg 100 Org-003 <100 | | <100 Surrogate o-Terphenyl % Org-003 87 123151-1 92 | 90 | RPD: 2 LCS-8 105% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD Date extracted 09/02/2 123151-1 9/02/2015 || 9/02/2015 LCS-8 09/02/2015 015 09/02/2 10/02/2015 || 10/02/2015 09/02/2015 Date analysed 123151-1 LCS-8 015 Org-012 Naphthalene 0.1 < 0.1 123151-1 <0.1||<0.1 LCS-8 97% mg/kg subset Org-012 123151-1 Acenaphthylene < 0.1 <0.1||<0.1 [NR] [NR] mg/kg 0.1 subset Acenaphthene 0.1 Org-012 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg subset Org-012 Fluorene mg/kg 0.1 < 0.1 123151-1 <0.1||<0.1 LCS-8 98% subset Org-012 LCS-8 Phenanthrene < 0.1 123151-1 <0.1||<0.1 91% mg/kg 0.1 subset Anthracene 0.1 Org-012 <0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg subset Fluoranthene 0.1 Org-012 <0.1 123151-1 <0.1||<0.1 LCS-8 95% mg/kg

Envirolab Reference: 123151 Revision No: R 00 subset

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD Org-012 123151-1 <0.1||<0.1 LCS-8 111% Pyrene mg/kg 0.1 < 0.1 subset Benzo(a)anthracene mg/kg 0.1 Org-012 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] subset Org-012 Chrysene mg/kg 0.1 < 0.1 123151-1 <0.1||<0.1 LCS-8 89% subset Org-012 Benzo(b,j+k) 0.2 < 0.2 123151-1 <0.2||<0.2 [NR] [NR] mg/kg fluoranthene subset 0.05 Org-012 <0.05 <0.05||<0.05 LCS-8 104% Benzo(a)pyrene 123151-1 mg/kg subset Org-012 Indeno(1,2,3-c,d)pyrene 0.1 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg subset Org-012 Dibenzo(a,h)anthracene mg/kg 0.1 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] subset Org-012 <0.1 Benzo(g,h,i)perylene 0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg subset % Org-012 110 123151-1 119 | 109 | RPD: 9 LCS-8 104% Surrogate p-Terphenylsubset QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Recovery Sm# Organochlorine Base II Duplicate II %RPD Pesticides in soil 09/02/2 Date extracted 123151-1 09/02/2015 || 09/02/2015 LCS-8 09/02/2015 015 10/02/2 10/02/2015 || 10/02/2015 Date analysed 123151-1 LCS-8 10/02/2015 015 **HCB** mg/kg 0.1 Org-005 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] 123151-1 LCS-8 84% alpha-BHC mg/kg 0.1 Org-005 < 0.1 <0.1||<0.1 gamma-BHC mg/kg 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 [NR] [NR] beta-BHC 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 LCS-8 82% mg/kg Heptachlor mg/kg 0.1 Org-005 < 0.1 123151-1 <0.1||<0.1 LCS-8 81% delta-BHC mg/kg 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 [NR] [NR] Aldrin 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 LCS-8 83% mg/kg <0.1||<0.1 Heptachlor Epoxide mg/kg 0.1 Org-005 < 0.1 123151-1 LCS-8 85% gamma-Chlordane mg/kg 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 [NR] [NR] 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 [NR] alpha-chlordane mg/kg [NR] Endosulfan I mg/kg 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 [NR] [NR] pp-DDE 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 LCS-8 80% mg/kg Dieldrin mg/kg Org-005 <0.1 LCS-8 87% 0.1 123151-1 <0.1||<0.1 Endrin mg/kg 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 LCS-8 85% pp-DDD 0.1 Org-005 <0.1 123151-1 <0.1||<0.1 LCS-8 92% mg/kg [NR] Endosulfan II mg/kg 0.1 Org-005 < 0.1 123151-1 <0.1||<0.1 [NR]

Envirolab Reference: 123151 Revision No: R 00

mg/kg

mg/kg

mg/kg

mg/kg

%

0.1

0.1

0.1

0.1

Org-005

Org-005

Org-005

Org-005

Org-005

<0.1

<0.1

< 0.1

<0.1

94

123151-1

123151-1

123151-1

123151-1

123151-1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

100||91||RPD:9

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

[NR]

[NR]

90%

[NR]

85%

[NR]

[NR]

LCS-8

[NR]

LCS-8

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Organophosphorus Base II Duplicate II %RPD Pesticides Date extracted 09/02/2 123151-1 09/02/2015 | 09/02/2015 LCS-8 09/02/2015 015 Date analysed 10/02/2 123151-1 10/02/2015 || 10/02/2015 LCS-8 10/02/2015 015 Org-008 Azinphos-methyl mg/kg 0.1 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] (Guthion) Org-008 123151-1 Bromophos-ethyl mg/kg 0.1 < 0.1 <0.1||<0.1 [NR] [NR] Org-008 <0.1 123151-1 LCS-8 113% Chlorpyriphos mg/kg 0.1 <0.1||<0.1 Org-008 Chlorpyriphos-methyl mg/kg 0.1 <0.1 123151-1 <0.1||<0.1 [NR] [NR] Org-008 Diazinon mg/kg 0.1 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] Org-008 <0.1 Dichlorvos 0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg Dimethoate mg/kg 0.1 Org-008 <0.1 123151-1 <0.1||<0.1 [NR] [NR] **Ethion** 0.1 Org-008 <0.1 123151-1 <0.1||<0.1 LCS-8 116% mg/kg Fenitrothion LCS-8 91% 0.1 Org-008 < 0.1 123151-1 <0.1||<0.1 mg/kg Malathion mg/kg 0.1 Org-008 <0.1 123151-1 <0.1||<0.1 [NR] [NR] Parathion 0.1 Org-008 <0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg Ronnel 0.1 Org-008 < 0.1 123151-1 <0.1||<0.1 [NR] [NR] mg/kg % Org-008 94 123151-1 100||91||RPD:9 LCS-8 93% Surrogate TCMX QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PCBs in Soil Base II Duplicate II %RPD

09/02/2

015 10/02/2

015

<0.1

< 0.1

<0.1

<0.1

<0.1

<0.1

<0.1

94

123151-1

123151-1

123151-1

123151-1

123151-1

123151-1

123151-1

123151-1

123151-1

123151-1

09/02/2015 || 09/02/2015

10/02/2015 || 10/02/2015

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

100 || 91 || RPD: 9

LCS-8

LCS-8

[NR]

[NR]

[NR]

[NR]

[NR]

LCS-8

[NR]

LCS-8

09/02/2015

10/02/2015

[NR]

[NR]

[NR]

[NR]

[NR]

112%

[NR]

115%

Envirolab Reference: 123151 Revision No: R 00

Date extracted

Date analysed

Arochlor 1016

Arochlor 1221

Arochlor 1232

Arochlor 1242

Arochlor 1248

Arochlor 1254

Arochlor 1260

Surrogate TCLMX

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg % 0.1

0.1

0.1

0.1

0.1

0.1

0.1

Org-006

Org-006

Org-006

Org-006

Org-006

Org-006

Org-006

Org-006

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II %RPD in soil Date digested 09/02/2 123151-1 09/02/2015 | 09/02/2015 LCS-1 09/02/2015 015 Date analysed 09/02/2 123151-1 09/02/2015 || 09/02/2015 LCS-1 09/02/2015 015 Arsenic mg/kg 4 Metals-020 <4 123151-1 <4||<4 LCS-1 116% **ICP-AES** Metals-020 123151-1 98% Cadmium mg/kg 0.4 < 0.4 <0.4 || <0.4 LCS-1 **ICP-AES** Chromium Metals-020 123151-1 10||9||RPD:11 LCS-1 109% <1 mg/kg 1 ICP-AES Copper mg/kg Metals-020 <1 123151-1 4 | 4 | RPD: 0 LCS-1 113% **ICP-AES** Lead Metals-020 123151-1 18||19||RPD:5 LCS-1 98% mg/kg 1 <1 **ICP-AES** Metals-021 LCS-1 103% Mercury < 0.1 123151-1 <0.1||<0.1 mg/kg 0.1 CV-AAS Nickel Metals-020 <1 123151-1 3||3||RPD:0 LCS-1 102% mg/kg **ICP-AES** Metals-020 Zinc 1 <1 123151-1 31||30||RPD:3 LCS-1 103% mg/kg **ICP-AES** QUALITYCONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery vTRH(C6-C10)/BTEXNin Base + Duplicate + %RPD Soil Date extracted 123151-11 09/02/2015 || 09/02/2015 123151-2 09/02/2015 Date analysed 123151-11 11/02/2015 || 11/02/2015 123151-2 11/02/2015 123151-11 <25||<25 123151-2 97% TRHC6 - C9 mg/kg

123151-11 <25||<25 123151-2 97% TRHC6 - C10 mg/kg 123151-11 <0.2||<0.2 123151-2 91% Benzene mg/kg Toluene 123151-11 <0.5||<0.5 123151-2 102% mg/kg Ethylbenzene mg/kg 123151-11 <1||<1 123151-2 94% 123151-11 <2||<2 123151-2 100% m+p-xylene mg/kg o-Xylene mg/kg 123151-11 <1||<1 123151-2 98% naphthalene mg/kg 123151-11 <1||<1 [NR] [NR] % 123151-11 105 | 91 | RPD: 14 123151-2 62% Surrogate aaa-Trifluorotoluene

E25232KH, Bulli **Client Reference:**

QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	123151-11	09/02/2015 09/02/2015	123151-2	09/02/2015
Date analysed	-	123151-11	10/02/2015 10/02/2015	123151-2	10/02/2015
TRHC10 - C14	mg/kg	123151-11	<50 <50	123151-2	96%
TRHC 15 - C28	mg/kg	123151-11	<100 <100	123151-2	108%
TRHC29 - C36	mg/kg	123151-11	<100 <100	123151-2	80%
TRH>C10-C16	mg/kg	123151-11	<50 <50	123151-2	96%
TRH>C16-C34	mg/kg	123151-11	<100 <100	123151-2	108%
TRH>C34-C40	mg/kg	123151-11	<100 <100	123151-2	80%
Surrogate o-Terphenyl	%	123151-11	87 85 RPD: 2	123151-2	106%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	123151-11	09/02/2015 09/02/2015	123151-2	9/02/2015
Date analysed	-	123151-11	11/02/2015 11/02/2015	123151-2	10/02/2015
Naphthalene	mg/kg	123151-11	<0.1 <0.1	123151-2	95%
Acenaphthylene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	123151-11	<0.1 <0.1	123151-2	99%
Phenanthrene	mg/kg	123151-11	<0.1 <0.1	123151-2	96%
Anthracene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	123151-11	0.1 0.1 RPD:0	123151-2	119%
Pyrene	mg/kg	123151-11	0.1 0.1 RPD:0	123151-2	131%
Benzo(a)anthracene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	123151-11	<0.1 <0.1	123151-2	95%
Benzo(b,j+k)fluoranthene	mg/kg	123151-11	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	123151-11	<0.05 <0.05	123151-2	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	123151-11	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	123151-11	111 115 RPD:4	123151-2	105%

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery Organochlorine Pesticides Base + Duplicate + %RPD in soil Date extracted 123151-11 09/02/2015 || 09/02/2015 123151-2 09/02/2015 Date analysed 123151-11 10/02/2015 || 10/02/2015 123151-2 10/02/2015 **HCB** mg/kg 123151-11 <0.1||<0.1 [NR] [NR] 103% alpha-BHC 123151-11 <0.1||<0.1 123151-2 mg/kg gamma-BHC mg/kg 123151-11 <0.1||<0.1 [NR] [NR] beta-BHC <0.1||<0.1 123151-2 98% mg/kg 123151-11 Heptachlor 98% mg/kg 123151-11 <0.1||<0.1 123151-2 delta-BHC mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Aldrin 100% mg/kg 123151-11 <0.1||<0.1 123151-2 Heptachlor Epoxide 123151-11 <0.1||<0.1 123151-2 100% mg/kg gamma-Chlordane mg/kg 123151-11 <0.1||<0.1 [NR] [NR] alpha-chlordane mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Endosulfan I mg/kg 123151-11 <0.1||<0.1 [NR] [NR] pp-DDE 123151-2 95% mg/kg 123151-11 <0.1||<0.1 Dieldrin 103% mg/kg 123151-11 <0.1||<0.1 123151-2 Endrin 123151-11 <0.1||<0.1 123151-2 101% mg/kg pp-DDD 123151-11 123151-2 102% mg/kg <0.1||<0.1 Endosulfan II mg/kg 123151-11 <0.1||<0.1 [NR] [NR]

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

94 | | 88 | | RPD: 7

[NR]

[NR]

123151-2

[NR]

123151-2

[NR]

[NR]

105%

[NR]

87%

Envirolab Reference: 123151 Revision No: R 00

pp-DDT

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

mg/kg

mg/kg

mg/kg

mg/kg

%

123151-11

123151-11

123151-11

123151-11

123151-11

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organophosphorus Base + Duplicate + %RPD Pesticides 123151-11 09/02/2015 || 09/02/2015 123151-2 09/02/2015 Date extracted Date analysed 123151-11 10/02/2015 || 10/02/2015 123151-2 10/02/2015 Azinphos-methyl (Guthion) 123151-11 <0.1||<0.1 [NR] [NR] mg/kg <0.1||<0.1 Bromophos-ethyl mg/kg 123151-11 [NR] [NR] Chlorpyriphos mg/kg 123151-11 <0.1||<0.1 123151-2 116% <0.1||<0.1 Chlorpyriphos-methyl 123151-11 [NR] [NR] mg/kg Diazinon 123151-11 <0.1||<0.1 [NR] [NR] mg/kg Dichlorvos mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Dimethoate mg/kg 123151-11 <0.1||<0.1 [NR] [NR] **Ethion** 123151-11 123151-2 120% mg/kg <0.1||<0.1 Fenitrothion mg/kg 123151-11 <0.1||<0.1 123151-2 90% Malathion mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Parathion mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Ronnel 123151-11 <0.1||<0.1 [NR] [NR] mg/kg 94 | | 88 | | RPD: 7 91% Surrogate TCMX % 123151-11 123151-2 QUALITYCONTROL UNITS Dup. Sm# Spike Sm# Spike % Recovery Duplicate PCBs in Soil Base + Duplicate + %RPD 123151-11 09/02/2015 || 09/02/2015 123151-2 09/02/2015 Date extracted 10/02/2015 Date analysed 123151-11 10/02/2015 || 10/02/2015 123151-2 Arochlor 1016 mg/kg 123151-11 <0.1||<0.1 [NR] [NR] Arochlor 1221 123151-11 <0.1||<0.1 [NR] [NR] mg/kg Arochlor 1232 mg/kg 123151-11 <0.1||<0.1 [NR] [NR] <0.1||<0.1 Arochlor 1242 mg/kg 123151-11 [NR] [NR] Arochlor 1248 123151-11 <0.1||<0.1 [NR] [NR] mg/kg Arochlor 1254 mg/kg 123151-11 <0.1||<0.1 123151-2 92% Arochlor 1260 <0.1||<0.1 [NR] mg/kg 123151-11 [NR] % 123151-11 94 | | 88 | | RPD: 7 123151-2 116% Surrogate TCLMX QUALITYCONTROL **UNITS** Dup. Sm# Duplicate Spike Sm# Spike % Recovery Acid Extractable metals in Base + Duplicate + %RPD 09/02/2015 Date digested 123151-11 09/02/2015 || 09/02/2015 123151-2 Date analysed 123151-11 09/02/2015 || 09/02/2015 123151-2 09/02/2015 Arsenic 123151-11 4 | 4 | RPD: 0 123151-2 102% mg/kg 92% Cadmium mg/kg 123151-11 <0.4 || <0.4 123151-2 Chromium mg/kg 123151-11 26 | 26 | RPD: 0 123151-2 101% 13||13||RPD:0 123151-2 122% Copper 123151-11 mg/kg 94% Lead 123151-11 21 || 20 || RPD: 5 123151-2 mg/kg Mercury mg/kg 123151-11 <0.1||<0.1 123151-2 110%

Envirolab Reference: 123151 Revision No: R 00

mg/kg

mg/kg

123151-11

123151-11

5||5||RPD:0

26 | 24 | RPD: 8

123151-2

123151-2

Nickel

Zinc

93%

87%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Paul Ching Asbestos ID was authorised by Approved Signatory: Paul Ching

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 123151 Page 30 of 30 Revision No: R 00

SAMPLE AND CHAIN OF CUSTODY FORM

IQ: ENVIROLAB S 12 ASHLEY S CHATSWOOD	TREET			EIS Job Number:		E25232KH	- 1				ENVI	EROM: ENVIRONMENTAL INVESTIGATION SERVICES				S		
P: (02) 9910				Date Res	ults	STANDARD	3 · · · ·						15 W	ricks	ROAL)		
F: (02) 9910	201		•	Required	.						l .	QUAR !-9888		RK, N			3 500°	
Attention: Ail	¢e n			Page:		1/or 1 % & &]									. 500	
Location: Bulli Sample Preserved in Esky on Ice																		
Sampler:	GF.			<u> </u>	**************************************							ests F	Require	ed				
Date Sampled	Lab Ref:	Sample Number	.Depth (m)	Sample Container	PID	Sample Description	#6A	#2		ļ					l			
3/2/15	_	BHS	0.10.3	4, A		Fill	X											
•	2	BH6	0-0.1	Ţ,		9415	X						19 19 P					
2/2/15	3	BH7	0-0.1				X											
	4		0-0-1		25. VIII.		\times						7	100				* *
	5		0.2-		,					ļ						ļ		
4/2/5	6	BH11	0 5.2)	\times	112	: - : ,			: .·		in Land				
3/2/15	7	BH12	0-0.15				$\stackrel{\leftarrow}{\times}$			<u> </u>								
Ь	8	BH 13	00.2		1.76 - 1.		$\stackrel{\leftarrow}{\nabla}$,		:			
4/2/5	9	RHIS	000				铽	ļ .	,	~				_				
3/2/5	10	BHIL	0-02				X	- ;	100			13.1	-		137	-	٠	
1	11	BH 17	06.7				X		-					Ė				
4/2/15	12.	BH 18	002			1. ^	ÍΧ		14 vil v				::.			٠.	. :	
7-1,5	13	BH19	0-0.2		<u></u>	195	∇				1		 					
4	14	1	0.5.8			day	[- \	$\overline{\mathbf{x}}$	7.57	79	. 7 %		1		1.47	4 .	+ s. 14 -	
	15	BH20	00.2			211	\forall					5.						
	16	BHZI	0-0-1	1 10		7	×	20	-)	-ri	- x'			For	irolat	F	114	
	17	1	0.1-	1							en	VIROU	115		12 /ood	Ashle	151	<u> </u>
4/2/15	18	Dogiss	0.25	4		Sal		\mathbf{x}		192	Jö	o No	12	315	(02)	310 6	200	
	19	206452		1	7. 4	1		ĺχ		2.7	<u> </u>	e Red	'''		2/	5	 	
*	127	- W/41.32	rjerse ik	7			†		3	AS, 475 3 Z	Tin	e Red	eive	_	`4	5		
			· ·		· ·	,	1		. # 5	50	Rec	civeo	by 1	P bient	- :		1.	
	. · · · · ·			1 1			1		0.11		Cod	ling:	ce <u>/l</u> ci	pack		. "	1	
	• .						\vdash	Ė		25, 54	·Sec	urity.		Brok	n/Ne	hc [:]	ļ.	
	:		<u> </u>	190 0 2			+-	 	1.0	Sy :		. :	-			. 5 -		
<u></u>	·'.	4.4	. :	1			<u>. · · · </u>	┈			· ·			;			- i.	
Remarks (con	. ,	 /detection lin	nits required)				G - 2 A - 2 P - P	 ple Co !50mg !iplock lastic	Glass Asbe	s Jar		<u> </u>	ļ.	<u> </u>	² ν· .			<u> </u>
Relinquished	Ву:	etta		Date:	6/2,	115	Time	T	.			ived E	Ву:		. –	G Date	1-1	5

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Environmental Investigation Services ph: 02 9888 5000 PO Box 976 Fax: 02 9888 5001

North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your reference: E25232KH, Bulli

Envirolab Reference: 123151

Date received: 06/02/15

Date results expected to be reported: 13/02/15

Samples received in appropriate condition for analysis:

No. of samples provided

Turnaround time requested:

Temperature on receipt (°C)

Cooling Method:

Sampling Date Provided:

YES

YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

 $email: a hie @envirolabservices.com. au \ or jhurst @envirolabservices.com. au \ or jhurst @envirolabservices. com. au \ or$

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 123480

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your Reference: E25232KH, Bulli

No. of samples: 33 soils

Date samples received / completed instructions received 12/02/15 / 12/02/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 19/02/15 / 18/02/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123480-1	123480-2	123480-4	123480-7	123480-10
Your Reference		BH1	BH1	BH2	ВН3	BH4
Depth		0.15-0.25	0.25-0.4	0-0.2	0-0.2	0-0.1
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	95	91	94	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123480-11	123480-14	123480-18	123480-19	123480-21
Your Reference		BH4	BH6	BH9	ВН9	BH10
Depth		0.5-0.8	0.5-0.95	0-0.2	0.5-0.95	0-0.25
Date Sampled		10/02/2015	11/02/2015	10/02/2015	10/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	96	93	97	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	123480-23	123480-26	123480-31	123480-32	123480-33
Your Reference		BH12	BH14	BH20	DUPGFS3	TB
Depth		0.5-0.95	0-0.2	0.5-0.95	-	-
Date Sampled		11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	94	92	95	103

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123480-1	123480-2	123480-4	123480-7	123480-10
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth		0.15-0.25	0.25-0.4	0-0.2	0-0.2	0-0.1
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	180
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	200
TRH>C34-C40	mg/kg	<100	<100	<100	<100	220
Surrogate o-Terphenyl	%	76	90	74	84	82

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123480-11	123480-14	123480-18	123480-19	123480-21
Your Reference		BH4	ВН6	ВН9	ВН9	BH10
Depth		0.5-0.8	0.5-0.95	0-0.2	0.5-0.95	0-0.25
Date Sampled Type of sample		10/02/2015 Soil	11/02/2015 Soil	10/02/2015 Soil	10/02/2015 Soil	11/02/2015 Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	77	85	82	81	83

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	123480-23	123480-26	123480-31	123480-32	123480-33
Your Reference		BH12	BH14	BH20	DUPGFS3	TB
Depth		0.5-0.95	0-0.2	0.5-0.95	-	-
Date Sampled		11/02/2015	11/02/2015	11/02/2015	11/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	91	83	85	85	87

PAHs in Soil						
Our Reference:	UNITS	123480-1	123480-2	123480-4	123480-7	123480-10
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth		0.15-0.25	0.25-0.4	0-0.2	0-0.2	0-0.1
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.7
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	5.8
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.2
Fluoranthene	mg/kg	<0.1	<0.1	0.2	<0.1	6.8
Pyrene	mg/kg	<0.1	<0.1	0.2	<0.1	5.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	2.2
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	1.9
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.2	<0.2	3.5
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.08	<0.05	1.8
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	2.7
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	1.8
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	2.9
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	1.1	NIL(+)VE	34
Surrogate p-Terphenyl-d14	%	108	111	106	116	107

PAHs in Soil						
Our Reference:	UNITS	123480-11	123480-14	123480-18	123480-19	123480-21
Your Reference		BH4	BH6	ВН9	ВН9	BH10
Depth		0.5-0.8	0.5-0.95	0-0.2	0.5-0.95	0-0.25
Date Sampled		10/02/2015	11/02/2015	10/02/2015	10/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	NIL(+)VE	1.4	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	108	111	107	113	110

PAHs in Soil					
Our Reference:	UNITS	123480-23	123480-26	123480-31	123480-32
Your Reference		BH12	BH14	BH20	DUPGFS3
Depth		0.5-0.95	0-0.2	0.5-0.95	-
Date Sampled		11/02/2015	11/02/2015	11/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.07	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyreneTEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5
Total Positive PAHs	mg/kg	NIL(+)VE	0.18	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	112	114	112	111

Organochlorine Pesticides in soil						
Our Reference:	UNITS	123480-1	123480-4	123480-7	123480-10	123480-18
Your Reference		BH1	BH2	BH3	BH4	ВН9
Depth		0.15-0.25	0-0.2	0-0.2	0-0.1	0-0.2
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	98	107	101	104

	Т		Г
Organochlorine Pesticides in soil		4004000	400 400 05
Our Reference:	UNITS	123480-21	123480-26
Your Reference		BH10	BH14
Depth Depth		0-0.25	0-0.2
Date Sampled Type of sample		11/02/2015 Soil	11/02/2015 Soil
Date extracted	-	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015
HCB	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCMX	%	99	102

Organophosphorus Pesticides						
Our Reference:	UNITS	123480-1	123480-4	123480-7	123480-10	123480-18
Your Reference		BH1	BH2	BH3	BH4	ВН9
Depth		0.15-0.25	0-0.2	0-0.2	0-0.1	0-0.2
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	100	98	107	101	104

Organophosphorus Pesticides			
Our Reference:	UNITS	123480-21	123480-26
Your Reference		BH10	BH14
Depth		0-0.25	0-0.2
Date Sampled		11/02/2015	11/02/2015
Type of sample		Soil	Soil
Date extracted	-	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	99	102

PCBs in Soil						
Our Reference:	UNITS	123480-1	123480-4	123480-7	123480-10	123480-18
Your Reference		BH1	BH2	BH3	BH4	BH9
Depth		0.15-0.25	0-0.2	0-0.2	0-0.1	0-0.2
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	100	98	107	101	104

	ı		
PCBs in Soil			
Our Reference:	UNITS	123480-21	123480-26
Your Reference		BH10	BH14
Depth		0-0.25	0-0.2
Date Sampled		11/02/2015	11/02/2015
Type of sample		Soil	Soil
Date extracted	-	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015
Arochlor 1016	mg/kg	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	99	102

Acid Extractable metals in soil						
Our Reference:	UNITS	123480-1	123480-2	123480-4	123480-7	123480-10
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth		0.15-0.25	0.25-0.4	0-0.2	0-0.2	0-0.1
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Arsenic	mg/kg	<4	<4	<4	<4	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	21	24	28	15	30
Copper	mg/kg	4	3	22	10	67
Lead	mg/kg	17	21	35	29	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	8	8	4	10
Zinc	mg/kg	5	4	54	17	57

Acid Extractable metals in soil						
Our Reference:	UNITS	123480-11	123480-14	123480-18	123480-19	123480-21
Your Reference		BH4	BH6	BH9	BH9	BH10
Depth		0.5-0.8	0.5-0.95	0-0.2	0.5-0.95	0-0.25
Date Sampled		10/02/2015	11/02/2015	10/02/2015	10/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Arsenic	mg/kg	7	15	4	<4	24
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	26	29	17	44	39
Copper	mg/kg	24	<1	28	5	7
Lead	mg/kg	21	21	43	16	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	<1	5	9	<1
Zinc	mg/kg	4	1	75	16	<1

Acid Extractable metals in soil					
Our Reference:	UNITS	123480-23	123480-26	123480-31	123480-32
Your Reference		BH12	BH14	BH20	DUPGFS3
Depth		0.5-0.95	0-0.2	0.5-0.95	-
Date Sampled Type of sample		11/02/2015 Soil	11/02/2015 Soil	11/02/2015 Soil	11/02/2015 Soil
Date digested	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Arsenic	mg/kg	9	5	5	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	27	16	43	15
Copper	mg/kg	7	16	14	14
Lead	mg/kg	16	25	15	25
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	4	8	7
Zinc	mg/kg	6	33	16	32

Moisture						
Our Reference:	UNITS	123480-1	123480-2	123480-4	123480-7	123480-10
Your Reference		BH1	BH1	BH2	BH3	BH4
Depth		0.15-0.25	0.25-0.4	0-0.2	0-0.2	0-0.1
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Moisture	%	23	26	30	22	7.0
			I			
Moisture						
Our Reference:	UNITS	123480-11	123480-14	123480-18	123480-19	123480-21
Your Reference		BH4	BH6	ВН9	ВН9	BH10
Depth		0.5-0.8	0.5-0.95	0-0.2	0.5-0.95	0-0.25
Date Sampled		10/02/2015	11/02/2015	10/02/2015	10/02/2015	11/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	16/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Moisture	%	18	23	23	26	14
Maiatana						7
Moisture	LINITO	400400.00	400400.00	400400 04	400400 00	
Our Reference: Your Reference	UNITS	123480-23 BH12	123480-26 BH14	123480-31 BH20	123480-32	
					DUPGFS3	
Depth Deta Sampled		0.5-0.95	0-0.2 11/02/2015	0.5-0.95 11/02/2015	- 11/02/2015	
Date Sampled Type of sample		11/02/2015 Soil	11/02/2015 Soil	11/02/2015 Soil	11/02/2015 Soil	
туре от заттрте		3011	GGII	5011	Goil	1
Date prepared	-	16/02/2015	16/02/2015	16/02/2015	16/02/2015	
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	
Moisture	%	23	24	23	24	

Asbestos ID - soils						
Our Reference:	UNITS	123480-1	123480-4	123480-7	123480-10	123480-18
Your Reference		BH1	BH2	BH3	BH4	ВН9
Depth		0.15-0.25	0-0.2	0-0.2	0-0.1	0-0.2
Date Sampled		10/02/2015	10/02/2015	10/02/2015	10/02/2015	10/02/2015
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Sample mass tested	g	Approx 40g	Approx 35g	Approx 45g	Approx 60g	Approx 35g
Sample Description	-	Brown coarse grain soil & rocks				
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected				
Trace Analysis	-	No asbestos detected				

Asbestos ID - soils			
Our Reference:	UNITS	123480-21	123480-26
Your Reference		BH10	BH14
Depth		0-0.25	0-0.2
Date Sampled		11/02/2015	11/02/2015
Type of sample		Soil	Soil
Date analysed	-	17/02/2015	17/02/2015
Sample mass tested	g	Approx 45g	Approx 30g
Sample Description	-	Pinkish fine grain soil & rocks	Brown coarse grain soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
	4904-2004.

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS PQL **METHOD** Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Soil 16/02/2 123480-1 16/02/2015 || 16/02/2015 LCS-2 16/02/2015 Date extracted 015 Date analysed 17/02/2 123480-1 17/02/2015 || 17/02/2015 LCS-2 17/02/2015 015 TRHC6-C9 25 Org-016 <25 123480-1 <25||<25 LCS-2 110% mg/kg 123480-1 25 Org-016 <25 <25||<25 LCS-2 110% TRHC6 - C10 mg/kg Org-016 123480-1 LCS-2 107% Benzene 0.2 < 0.2 <0.2||<0.2 mg/kg Toluene mg/kg 0.5 Org-016 < 0.5 123480-1 <0.5||<0.5 LCS-2 110% Ethylbenzene 1 Org-016 <1 123480-1 <1||<1 LCS-2 107% mg/kg 2 123480-1 LCS-2 m+p-xylene Org-016 <2 <2||<2 113% mg/kg o-Xylene 1 Org-016 <1 123480-1 <1||<1 LCS-2 111% mg/kg naphthalene 1 Org-014 <1 123480-1 <1||<1 [NR] [NR] mg/kg 123480-1 98% % Org-016 99 97 || 99 || RPD: 2 LCS-2 Surrogate aaa-Trifluorotoluene QUALITYCONTROL **UNITS** PQL Blank METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery svTRH (C10-C40) in Soil Base II Duplicate II %RPD 16/02/2 123480-1 16/02/2015 || 16/02/2015 LCS-2 Date extracted 16/02/2015 015 17/02/2 123480-1 17/02/2015 || 17/02/2015 LCS-2 17/02/2015 Date analysed 015 TRHC₁₀ - C₁₄ mg/kg 50 Org-003 <50 123480-1 <50 | | <50 LCS-2 90% TRHC 15 - C28 mg/kg 100 Org-003 <100 123480-1 <100 | | <100 LCS-2 92% Org-003 123480-1 LCS-2 94% TRHC29 - C36 mg/kg 100 <100 <100 | | <100 TRH>C10-C16 mg/kg 50 Org-003 <50 123480-1 <50 || <50 LCS-2 90% TRH>C16-C34 mg/kg 100 Org-003 <100 123480-1 <100 | | <100 LCS-2 92% <100 123480-1 LCS-2 94% TRH>C34-C40 mg/kg 100 Org-003 <100 | | <100 Surrogate o-Terphenyl % Org-003 74 123480-1 76 | 88 | RPD: 15 LCS-2 89% QUALITYCONTROL UNITS PQL METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Soil Base II Duplicate II %RPD 16/02/2 Date extracted 123480-1 16/02/2015 || 16/02/2015 LCS-2 16/02/2015 015 16/02/2 16/02/2015 || 16/02/2015 LCS-2 Date analysed 123480-1 16/02/2015 015 Org-012 Naphthalene 0.1 <0.1 123480-1 <0.1||<0.1 LCS-2 97% mg/kg subset Org-012 123480-1 Acenaphthylene < 0.1 <0.1||<0.1 [NR] [NR] mg/kg 0.1 subset Acenaphthene 0.1 Org-012 <0.1 123480-1 <0.1||<0.1 [NR] [NR] mg/kg subset Org-012 Fluorene mg/kg 0.1 <0.1 123480-1 <0.1||<0.1 LCS-2 105% subset Org-012 LCS-2 100% Phenanthrene <0.1 123480-1 <0.1||<0.1 mg/kg 0.1 subset Anthracene 0.1 Org-012 <0.1 123480-1 <0.1||<0.1 [NR] [NR] mg/kg subset Fluoranthene Org-012 <0.1 123480-1 <0.1||<0.1 LCS-2 100% mg/kg 0.1 subset

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS PQL METHOD Duplicate results Spike Sm# Spike % Blank Duplicate

PAHs in Soil	QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Benzo(a)anthracene mg/kg	PAHs in Soil					SII#	Base II Duplicate II %RPD		Recovery
Chrysene	Pyrene	mg/kg	0.1	_	<0.1	123480-1	<0.1 <0.1	LCS-2	120%
Benzo(b,j+k) mg/kg	Benzo(a)anthracene	mg/kg	0.1	_	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Benzo(a)pyrene mg/kg 0.05 Org-012 subset double doub	Chrysene	mg/kg	0.1	-	<0.1	123480-1	<0.1 <0.1	LCS-2	89%
Indeno(1,2,3-c,d)pyrene	1 - 1	mg/kg	0.2	-	<0.2	123480-1	<0.2 <0.2	[NR]	[NR]
Dibenzo(a,h)anthracene mg/kg 0.1 Org-012 subset Subset	Benzo(a)pyrene	mg/kg	0.05		<0.05	123480-1	<0.05 <0.05	LCS-2	102%
Benzo(g,h,i)perylene	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	_	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	Dibenzo(a,h)anthracene	mg/kg	0.1	_	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Compared to the content of the con	Benzo(g,h,i)perylene	mg/kg	0.1	_	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Organochlorine Pesticides in soil Sm# Base II Duplicate II %RPD Recovery Date extracted - 16/02/2 015 015 015 015 015 015 015 015 015 015		%		_	109	123480-1	108 113 RPD:5	LCS-2	113%
Date extracted Compute	QUALITYCONTROL	UNITS	PQL	METHOD	Blank	-	Duplicate results	Spike Sm#	
Date analysed	_					Sm#	Base II Duplicate II %RPD		Recovery
Date analysed -	Date extracted	-			16/02/2	123480-1	16/02/2015 16/02/2015	LCS-2	16/02/2015
HCB	Date analysed	-			17/02/2	123480-1	17/02/2015 17/02/2015	LCS-2	17/02/2015
gamma-BHC mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 [NR] [NR] beta-BHC mg/kg 0.1 Org-005 <0.1	НСВ	mg/kg	0.1	Org-005		123480-1	<0.1 <0.1	[NR]	[NR]
beta-BHC mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 LCS-2 106% Heptachlor mg/kg 0.1 Org-005 <0.1	alpha-BHC	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	118%
Heptachlor mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1	gamma-BHC	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
delta-BHC mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 [NR] [NR] Aldrin mg/kg 0.1 Org-005 <0.1	beta-BHC	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	106%
Aldrin mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 LCS-2 112%	Heptachlor	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	91%
Heptachlor Epoxide mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1	delta-BHC	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
gamma-Chlordane mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR] [NR] alpha-chlordane mg/kg 0.1 Org-005 <0.1	Aldrin	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	112%
alpha-chlordane mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR] [NR] Endosulfan I mg/kg 0.1 Org-005 <0.1	Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	96%
Endosulfan I mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR] [NR] pp-DDE mg/kg 0.1 Org-005 <0.1	gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
pp-DDE mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 LCS-2 101% Dieldrin mg/kg 0.1 Org-005 <0.1	alpha-chlordane	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Dieldrin mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 LCS-2 97% Endrin mg/kg 0.1 Org-005 <0.1	Endosulfan I	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Endrin mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 LCS-2 97% pp-DDD mg/kg 0.1 Org-005 <0.1	pp-DDE	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	101%
pp-DDD mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 LCS-2 98% Endosulfan II mg/kg 0.1 Org-005 <0.1	Dieldrin	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	97%
Endosulfan II mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR] [NR] pp-DDT mg/kg 0.1 Org-005 <0.1	Endrin	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	97%
pp-DDT mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR] [NR] Endrin Aldehyde mg/kg 0.1 Org-005 <0.1	pp-DDD	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	LCS-2	98%
Endrin Aldehyde mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 [NR]	Endosulfan II	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 [NR]	pp-DDT	mg/kg	0.1	Org-005	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
	Endrin Aldehyde	ŀ	0.1	Org-005	<0.1	123480-1	<0.1 <0.1		
Endosulfan Sulphate mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 LCS-2 104%	Endosulfan Sulphate		0.1	Org-005	<0.1	123480-1	<0.1 <0.1		
Methoxychlor mg/kg 0.1 Org-005 <0.1 123480-1 <0.1 <0.1 <0.1 [NR]	Methoxychlor			_	<0.1	123480-1		[NR]	[NR]
Surrogate TCMX % Org-005 95 123480-1 100 99 RPD: 1 LCS-2 96%	Surrogate TCMX			Org-005	95	123480-1	100 99 RPD:1		

		Clie	nt Reference	e: E	25232KH, Bu	illi		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organophosphorus Pesticides						Base II Duplicate II %RPD		
Date extracted	-			16/02/2 015	123480-1	16/02/2015 16/02/2015	LCS-2	16/02/2015
Date analysed	-			17/02/2 015	123480-1	17/02/2015 17/02/2015	LCS-2	17/02/2015
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	LCS-2	129%
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Diazinon	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Dichlorvos	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Dimethoate	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Ethion	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	LCS-2	123%
Fenitrothion	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	LCS-2	103%
Malathion	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Parathion	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Ronnel	mg/kg	0.1	Org-008	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCMX	%		Org-008	95	123480-1	100 99 RPD:1	LCS-2	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			16/02/2 015	123480-1	16/02/2015 16/02/2015	LCS-2	16/02/2015
Date analysed	-			17/02/2 015	123480-1	17/02/2015 17/02/2015	LCS-2	17/02/2015
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	LCS-2	100%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	123480-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	95	123480-1	100 99 RPD:1	LCS-2	121%

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery Acid Extractable metals Base II Duplicate II % RPD in soil Date digested 16/02/2 123480-1 16/02/2015 || 16/02/2015 LCS-7 16/02/2015 015 Date analysed 16/02/2 123480-1 16/02/2015 || 16/02/2015 LCS-7 16/02/2015 015 Metals-020 123480-1 <4||<4 LCS-7 112% Arsenic mg/kg 4 <4 **ICP-AES** Cadmium 0.4 Metals-020 123480-1 <0.4||<0.4 LCS-7 100% mg/kg < 0.4 **ICP-AES** Metals-020 LCS-7 106% Chromium 123480-1 21 || 21 || RPD: 0 mg/kg 1 <1 **ICP-AES** Metals-020 107% Copper mg/kg <1 123480-1 4||5||RPD:22 LCS-7 **ICP-AES** Lead mg/kg 1 Metals-020 <1 123480-1 17 || 17 || RPD: 0 LCS-7 103% **ICP-AES** 97% Metals-021 123480-1 LCS-7 Mercury 0.1 < 0.1 <0.1||<0.1 mg/kg CV-AAS Metals-020 Nickel mg/kg <1 123480-1 9||9||RPD:0 LCS-7 103% ICP-AES Metals-020 LCS-7 103% Zinc <1 123480-1 5||5||RPD:0 mg/kg 1 ICP-AES

		ICP-AES				
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recove	ry
Date extracted	-	123480-26	16/02/2015 16/02/2015	123480-4	16/02/2015	
Date analysed	-	123480-26	17/02/2015 17/02/2015	123480-4	17/02/2015	
TRHC6 - C9	mg/kg	123480-26	<25 <25	123480-4	101%	
TRHC6 - C10	mg/kg	123480-26	<25 <25	123480-4	101%	
Benzene	mg/kg	123480-26	<0.2 <0.2	123480-4	99%	
Toluene	mg/kg	123480-26	<0.5 <0.5	123480-4	101%	
Ethylbenzene	mg/kg	123480-26	<1 <1	123480-4	98%	
m+p-xylene	mg/kg	123480-26	<2 <2	123480-4	103%	
o-Xylene	mg/kg	123480-26	<1 <1	123480-4	114%	
naphthalene	mg/kg	123480-26	<1 <1	[NR]	[NR]	
Surrogate aaa- Trifluorotoluene	%	123480-26	94 94 RPD:0	123480-4	91%	

QUALITYCONTROL	UNITS	Dup.Sm#			
TD11/040 040): 0 "		Dup. SITI#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	123480-26	16/02/2015 16/02/2015	123480-4	16/02/2015
Date analysed	-	123480-26	17/02/2015 17/02/2015	123480-4	17/02/2015
TRHC 10 - C 14	mg/kg	123480-26	<50 <50	123480-4	89%
TRHC 15 - C28	mg/kg	123480-26	<100 <100	123480-4	93%
TRHC29 - C36	mg/kg	123480-26	<100 <100	123480-4	96%
TRH>C10-C16	mg/kg	123480-26	<50 <50	123480-4	89%
TRH>C16-C34	mg/kg	123480-26	100 120 RPD: 18	123480-4	93%
TRH>C34-C40	mg/kg	123480-26	<100 <100	123480-4	96%
Surrogate o-Terphenyl	%	123480-26	83 89 RPD: 7	123480-4	87%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	123480-26	16/02/2015 16/02/2015	123480-4	16/02/2015
Date analysed	-	123480-26	16/02/2015 16/02/2015	123480-4	16/02/2015
Naphthalene	mg/kg	123480-26	<0.1 <0.1	123480-4	95%
Acenaphthylene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	123480-26	<0.1 <0.1	123480-4	100%
Phenanthrene	mg/kg	123480-26	<0.1 <0.1	123480-4	97%
Anthracene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	123480-26	0.1 <0.1	123480-4	97%
Pyrene	mg/kg	123480-26	<0.1 <0.1	123480-4	113%
Benzo(a)anthracene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	123480-26	<0.1 <0.1	123480-4	84%
Benzo(b,j+k)fluoranthene	mg/kg	123480-26	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	123480-26	0.07 <0.05	123480-4	102%
Indeno(1,2,3-c,d)pyrene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	123480-26	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	123480-26	114 104 RPD:9	123480-4	106%

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery Organochlorine Pesticides Base + Duplicate + %RPD in soil Date extracted 123480-26 16/02/2015 || 16/02/2015 123480-4 16/02/2015 Date analysed 123480-26 17/02/2015 || 17/02/2015 123480-4 17/02/2015 **HCB** mg/kg 123480-26 <0.1||<0.1 [NR] [NR] alpha-BHC 123480-26 <0.1||<0.1 123480-4 119% mg/kg gamma-BHC mg/kg 123480-26 <0.1||<0.1 [NR] [NR] beta-BHC 123480-26 <0.1||<0.1 123480-4 105% mg/kg Heptachlor 123480-26 123480-4 94% mg/kg <0.1||<0.1 delta-BHC mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Aldrin 123480-26 123480-4 114% mg/kg <0.1||<0.1 Heptachlor Epoxide 123480-26 <0.1||<0.1 123480-4 98% mg/kg gamma-Chlordane mg/kg 123480-26 <0.1||<0.1 [NR] [NR] alpha-chlordane mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Endosulfan I mg/kg 123480-26 <0.1||<0.1 [NR] [NR] pp-DDE 123480-26 104% <0.1||<0.1 123480-4 mg/kg Dieldrin 123480-26 123480-4 100% mg/kg <0.1||<0.1 Endrin 123480-26 <0.1||<0.1 123480-4 100% mg/kg pp-DDD 123480-26 123480-4 100% mg/kg <0.1||<0.1 Endosulfan II mg/kg 123480-26 <0.1||<0.1 [NR] [NR] pp-DDT mg/kg 123480-26 <0.1||<0.1 [NR] [NR]

<0.1||<0.1

<0.1||<0.1

<0.1||<0.1

102||98||RPD:4

[NR]

123480-4

[NR]

123480-4

[NR]

109%

[NR]

96%

Envirolab Reference: 123480 Revision No: R 00

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCMX

mg/kg

mg/kg

mg/kg

%

123480-26

123480-26

123480-26

123480-26

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Organophosphorus Base + Duplicate + %RPD Pesticides 123480-26 16/02/2015 || 16/02/2015 16/02/2015 Date extracted 123480-4 Date analysed 123480-26 17/02/2015 || 17/02/2015 123480-4 17/02/2015 Azinphos-methyl (Guthion) 123480-26 <0.1||<0.1 [NR] [NR] mg/kg <0.1||<0.1 Bromophos-ethyl mg/kg 123480-26 [NR] [NR] Chlorpyriphos mg/kg 123480-26 <0.1||<0.1 123480-4 136% <0.1||<0.1 Chlorpyriphos-methyl 123480-26 [NR] [NR] mg/kg Diazinon 123480-26 <0.1||<0.1 [NR] [NR] mg/kg Dichlorvos mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Dimethoate 123480-26 <0.1||<0.1 [NR] [NR] mg/kg **Ethion** 123480-26 123480-4 136% mg/kg <0.1||<0.1 Fenitrothion mg/kg 123480-26 <0.1||<0.1 123480-4 94% Malathion mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Parathion mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Ronnel 123480-26 <0.1||<0.1 [NR] [NR] mg/kg Surrogate TCMX % 123480-26 102||98||RPD:4 123480-4 101% QUALITYCONTROL UNITS Dup. Sm# Spike Sm# Spike % Recovery **Duplicate** PCBs in Soil Base + Duplicate + %RPD 123480-26 16/02/2015 || 16/02/2015 123480-4 16/02/2015 Date extracted Date analysed 123480-26 17/02/2015 || 17/02/2015 123480-4 17/02/2015 Arochlor 1016 mg/kg 123480-26 <0.1||<0.1 [NR] [NR] Arochlor 1221 123480-26 <0.1||<0.1 [NR] [NR] mg/kg Arochlor 1232 mg/kg 123480-26 <0.1||<0.1 [NR] [NR] <0.1||<0.1 Arochlor 1242 mg/kg 123480-26 [NR] [NR] Arochlor 1248 123480-26 <0.1||<0.1 [NR] [NR] mg/kg Arochlor 1254 mg/kg 123480-26 <0.1||<0.1 123480-4 101% <0.1||<0.1 Arochlor 1260 123480-26 [NR] mg/kg [NR] % 123480-26 102||98||RPD:4 123480-4 130% Surrogate TCLMX QUALITYCONTROL **UNITS** Dup. Sm# **Duplicate** Spike Sm# Spike % Recovery Acid Extractable metals in Base + Duplicate + %RPD 16/02/2015 Date digested 123480-26 16/02/2015 | 16/02/2015 123480-4 Date analysed 123480-26 16/02/2015 || 16/02/2015 123480-4 16/02/2015 Arsenic 123480-26 5||5||RPD:0 123480-4 82% mg/kg 103% Cadmium mg/kg 123480-26 <0.4 || <0.4 123480-4 Chromium mg/kg 123480-26 16||15||RPD:6 123480-4 111% 123480-26 16||15||RPD:6 123480-4 109% Copper mg/kg 123480-4 100% Lead 123480-26 25||23||RPD:8 mg/kg

Envirolab Reference: 123480 Revision No: R 00

mg/kg

mg/kg

mg/kg

123480-26

123480-26

123480-26

<0.1||<0.1

4 | 4 | RPD: 0

33 | 30 | RPD: 10

123480-4

123480-4

123480-4

Mercury

Nickel

Zinc

93%

106%

105%

Report Comments:

Asbestos 123480-21: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Asbestos ID was analysed by Approved Identifier: Lulu Guo
Asbestos ID was authorised by Approved Signatory: Lulu Guo

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 123480 Page 25 of 25 Revision No: R 00

SAMPLE AND CHAIN OF CUSTODY FORM

F: (02) 99106201 Attention: Aileen Page: Location: Bulli Sampler: GF Date Sample Ref: Number Column Co	red:	STANDARD					MAC(P: 02-	UAR			ROAD			
Attention: Aileen Location: Bulli Sampler: GF Date Sampled Ref: Number Depth (m) (0) 2 1		allea Miss	¥				P: 02		IE PAI	RK, N	SW 2	113		1
Location: Bulli: Sampler: GF Date Sampled Ref: Number Depth (m) (0) 2 1	12 44 15 4	allea Miss	¥2]						FOA	•	c. 02	0000	EAA.	. 1
Sampler: GF Date Sample Ref: Number Depth (m) Ref: Number Co.25 G. G. Co.25 G. C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	118-0 123				ļ	Atten	P: 02-9888 5000 F: 02-9888 5001 Attention: Todd Hore					arrera	
Date Sampled Ref: Sample Number Depth (m) Ref: Number Depth (m) Ref: Sample Number Depth (m) Ref: Sampl		200. SEA 2016 SEA SEA SEA FE				Sam	de Pre	serve	d in E	sky o	n Ice			
10 2 15 1. BH 1 0 5.25 6, 25		2-XX					Te	sts R	equire	ed .				
10 2 13 1 3 1 3 2 5 4 1 3 2 5 4 1 3 2 5 4 1 3 2 5 4 1 4 1 3 2 5 5 8 6 1 1 3 2 5 6 1 1 3 2	PID	Sample Description	¥9#	# 7	TPH/OTEXN									
3 0.5-8 G 4 BH2 0.2 6.2 6.1 5 0.3-5 6 7 8H3 0-6.7 6.1 8 0.5-8 6 9 0.5-8 6 11 0.5-8 G	A o	Fil	X					,			1.7	į		,
3 0.50.45 4 BHZ 0.02 4,1 5 0.50.8 4 7,843 0.6.2 4,1 8 0.50.8 4 9 1.30.5 6 10 BH4 0.0.1 4,1	0	Clay	100 60	\times		1 . 4 . 4				ROUSE	-ş.	Envir	olab :	ende
4 BHZ 002 4,1 5 0578 4 7,8H3 058 4 9 13-5 6 9 13-5 6 10 BH4 00.1 4,1	0	₩,					8		7		Ci	atswo	12 A	hley W 20
5 05-8 G 7,8+3 0-6.7 G 8 05-8 G 9 13-5 6 10 8+4 0-6.1 G 11 0-5-8 G	4 0	Fol	X						<u>Job</u>	<u>'o:</u>		Ph: (12) 99	10 62
6 6 13-5 6 7,843 0-6.2 6,1 8 0 5-8 6 9 1 13-5 6 10 844 0-6.1 6,1 11 0-5-8 6	0	clay							Date	Rece.	ved:	234	- &	ρ.
7,8H3 06.2 6,1 8 05.8 6 9 1.3-5 6 10,8H4 06.1 6,1 11 05-8 6 12 1.3-5	0			, .					Time	Rece	vad.	18	ત્ર કુ	
8 05-8 4 9 1-3-5 6 10 BH4 0 0.1 4,1	4 0		X						emp:	Çool), ICC			
9 13-5 10 BH4 00.1 4,1	0		٠	. :					ecuri	n /ice	Mcen:	أما		10
10 BH4 00.1 G1	0	1							OCCIT			Oken,	None	
12	1 0	Fil	X		V., .					, '		14.5	y.	1
12 . 1.3.5	0	clay		$\overline{\times}$										
	0	Shele					4.			:	4			A. 1
11/2/15 13 13 15 10-5	0	Sousha		h.~	نلاه	٥٥	~ <i>?</i> /u					1		
14 BH6 05 as	Ø	Clan		\times					1,17					- 1 L
15, BH7 5-95 G1	4 0	511												
16 1 12- 9	0	clay	3		-			. :		a.	, 10 a s	an an		
17 848 050-45	0	Clay												•
10/2/15 18. 849 0-2 4,1	4 0	กแ	X						:				-	
19 1 0.50.95 6	0	clay	,	X										
20 1275	0													
11214 21 3410 0025	0		×								;			
22 BH 11 0.55.8	0				, .	. :			7	. :				
	0			X		-				1			·	
10/2/15 24 BH 13 05 045	0	The state of the s					14.	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	: '				At a	.e 5
1 25 1 15.8	0	4												
Remarks (comments/detection limits required):	٠	~	G - 2 A - Z	ile Co 50mg iplock astic	Glass Asbe						:			, .
Relinquished By: Date			Time		- -	-	Recei		y:		-4	Date	:	Žį.
that !	2/2/15		PA	A			18	3C	>		101	12	lo li	-

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROLAB : 12 ASHLEY !	TREET			EIS Job Number:		E25232KH (EROM: ENVIRONMENTAL INVESTIGATION SERVICES			EIS				
CHATSWOOI P: (02) 9910 F: (02) 9910	6200	2067	İ	Date Res Required		STANDARD					SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 211							
Attention: Aí			-	Page:		<u></u>	ν				P: 02-9888 5000 F: 02-9888 50 Attention: Todd Hore							
Location:	Bulli				(A-100)	26°23'22'23'3				Sarr	ple Pr				n Ice			
Sampler:	GF	Г	T T) 					_		T	ests F	Require	ed .	F			\dashv
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	494	#3	TAY/OYEKN	•								!
11/2/15 -	26.	BH 14 3	06.2	G, A	٥	Fill	\times											
	22	1	0.3-5	4	b	clay									'		1.5	
10/2/15	28	BHIS	0.5-8	l	0	1												
	۹۹	BH16	0.5-9		0		- (TH)	3.00 m							-, - -: -: -:			
	30	BH 17	90.95		0													
	3 1:	8420	0.50.85		0	•	J. 1	\times		$\lambda_{i,j}$,		1	·			
1	32	Royfs:				Soil		X										
V .	33	TS		¥		Soil		. ,	X	1.5	1 2 3			7.	 	\$. 	 	
4																		
	+ # + *		13.31 13.34 C +	\$. I					200 (240)		4 4			1 : -	-	74 A	<u>.</u>	
					<u></u>	gar stor og flora greg			. , .	,÷ +					1	s.	1.5	
			- :	1					ı.		1.10			<u> </u>			igwdap	
196					F M.	, Sedel ne	4,12		<u> </u>	a. 1	2 = 1 ×				1151			1.5
		. 17			* \$		ÇĞ.	5.7							:	150	1 .	
884 844 844		,	 								_				<u> </u>	ļ	1	
a 7		Nation 1	<u></u>		n vêşe.					-		. :						11 11
100		· · ·	:			9.64.7											WE I	
dir a	<u> </u>	<u>f 255a≥</u>				i Brandini i	_	-	ļ <u>.</u>	-	<u> </u>		:					9 .
	: :		Pa		- 1 - 1 - 1 - 1			•	:			. :					in ye	
,		enties)			1 1			_			35.0					fy N		
	<u> </u>		,		3.													
Remarks (coi	nments	detection lin	nits required	l:			G - 2 A - 2	250mg	ntaine Glas Asbe Bag	s Jar	Bag							
Relinquished				Date:	, , _		Time	::			Rece	ived £	By:			Date	:	
	-th	ga.		12/	2/15		18	.32	>		'	مع	<u>. </u>			124	2/1	5

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Environmental Investigation Services ph: 02 9888 5000 PO Box 976 Fax: 02 9888 5001

North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your reference: E25232KH, Bulli

Envirolab Reference: 123480

Date received: 12/02/15

Date results expected to be reported: 19/02/15

Samples received in appropriate condition for analysis:

No. of samples provided

Turnaround time requested:

Temperature on receipt (°C)

Cooling Method:

Sampling Date Provided:

YES

YES

Comments:

If there is sufficient sample after testing, samples will be held for the following time frames from date of receipt of samples: Water samples - 1 month

Soil and other solid samples - 2 months

Samples collected in canisters - 1 week. Canisters will then be cleaned.

All other samples are not retained after analysis

If you require samples to be retained for longer periods then retention fees will apply as per our pricelist.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 123653

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your Reference: E25232KH, Bulli

No. of samples: 4 waters

Date samples received / completed instructions received 17/02/15 / 17/02/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 24/02/15 / 24/02/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Laboratory Manager

vTRH(C6-C10)/BTEXN in Water					
Our Reference:	UNITS	123653-1	123653-2	123653-3	123653-4
Your Reference		MW1	MW13	MW15	DUPA
Date Sampled		16/02/2015	16/02/2015	16/02/2015	16/02/2015
Type of sample		Water	Water	Water	Water
Date extracted	-	17/02/2015	17/02/2015	17/02/2015	17/02/2015
Date analysed	-	18/02/2015	18/02/2015	18/02/2015	18/02/2015
TRHC6 - C9	μg/L	<10	<10	<10	<10
TRHC6 - C10	μg/L	<10	<10	<10	<10
TRHC6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	99	101	100
Surrogate toluene-d8	%	97	98	97	97
Surrogate 4-BFB	%	95	95	97	96

svTRH (C10-C40) in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	123653-1 MW1 16/02/2015 Water	123653-2 MW13 16/02/2015 Water	123653-3 MW15 16/02/2015 Water	123653-4 DUPA 16/02/2015 Water
Date extracted	-	18/02/2015	18/02/2015	18/02/2015	18/02/2015
Date analysed	-	19/02/2015	19/02/2015	19/02/2015	19/02/2015
TRHC10 - C14	μg/L	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100	<100
TRH>C10 - C16	μg/L	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	μg/L	<50	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	107	102	105	104

PAHs in Water - Low Level				
Our Reference:	UNITS	123653-1	123653-2	123653-3
Your Reference		MW1	MW13	MW15
Date Sampled		16/02/2015	16/02/2015	16/02/2015
Type of sample		Water	Water	Water
Date extracted	-	18/02/2015	18/02/2015	18/02/2015
Date analysed	-	18/02/2015	18/02/2015	18/02/2015
Naphthalene	μg/L	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	99	99

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	123653-1 MW1 16/02/2015 Water	123653-2 MW13 16/02/2015 Water	123653-3 MW15 16/02/2015 Water
Date prepared	-	18/02/2015	18/02/2015	18/02/2015
Date analysed	-	18/02/2015	18/02/2015	18/02/2015
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	1	7	2
Zinc-Dissolved	μg/L	43	31	31

Miscellaneous Inorganics				
Our Reference:	UNITS	123653-1	123653-2	123653-3
Your Reference		MW1	MW13	MW15
Date Sampled		16/02/2015	16/02/2015	16/02/2015
Type of sample		Water	Water	Water
Date prepared	-	17/02/2015	17/02/2015	17/02/2015
Date analysed	-	17/02/2015	17/02/2015	17/02/2015
рН	pH Units	6.3	5.9	6.3
Electrical Conductivity	μS/cm	310	320	900
Hardness	mgCaCO3 /L	56	26	54
Calcium - Dissolved	mg/L	16	4.3	12
Magnesium - Dissolved	mg/L	4.1	3.7	5.7

Method ID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA latest edition 2510 and Rayment & Lyons.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery vTRH(C6-C10)/BTEXNin Base II Duplicate II %RPD Water Date extracted 17/02/2 123653-1 17/02/2015 || 18/02/2015 LCS-W1 17/02/2015 015 Date analysed 18/02/2 123653-1 18/02/2015 || 18/02/2015 LCS-W1 18/02/2015 015 Org-016 <10||<10 LCS-W1 102% TRHC6-C9 µg/L 10 <10 123653-1 TRHC6 - C10 Org-016 123653-1 <10||<10 LCS-W1 102% 10 <10 µg/L Org-016 123653-1 LCS-W1 98% Benzene μg/L <1 <1||<1 1 Org-016 97% Toluene µg/L <1 123653-1 <1||<1 LCS-W1 LCS-W1 Ethylbenzene 1 Org-016 <1 123653-1 <1||<1 104% μg/L 2 Org-016 123653-1 LCS-W1 105% m+p-xylene µg/L <2 <2||<2 o-xylene µg/L 1 Org-016 <1 123653-1 <1||<1 LCS-W1 103% Naphthalene 1 Org-013 <1 123653-1 <1||<1 [NR] [NR] μg/L Org-016 123653-1 100 || 102 || RPD: 2 LCS-W1 103% % 101 Surrogate Dibromofluoromethane % Org-016 96 123653-1 97 || 97 || RPD: 0 LCS-W1 100% Surrogate toluene-d8 LCS-W1 97% % Org-016 97 123653-1 95 || 96 || RPD: 1 Surrogate 4-BFB UNITS PQL QUALITYCONTROL METHOD Blank Spike % Duplicate **Duplicate results** Spike Sm# Sm# Recovery svTRH(C10-C40)in Base II Duplicate II %RPD Water 18/02/2 LCS-W1 [NT] 18/02/2015 Date extracted [NT] 015 18/02/2 18/02/2015 Date analysed [NT] [NT] LCS-W1 015 Org-003 <50 LCS-W1 121% TRHC₁₀ - C₁₄ µg/L 50 [NT] [NT] Org-003 LCS-W1 TRHC 15 - C28 μg/L 100 <100 [NT] [NT] 114% 100 Org-003 <100 [NT] [NT] LCS-W1 108% TRHC29 - C36 μg/L Org-003 <50 LCS-W1 TRH>C10 - C16 µg/L 50 [NT] [NT] 121% TRH>C₁₆ - C₃₄ μg/L 100 Org-003 <100 [NT] [NT] LCS-W1 114% μg/L 100 Org-003 <100 [NT] [NT] LCS-W1 108% TRH>C34 - C40 LCS-W1 Org-003 85% Surrogate o-Terphenyl % 91 [NT] [NT] Blank QUALITYCONTROL **UNITS** PQL METHOD Duplicate **Duplicate results** Spike Sm# Spike % Sm# Recovery PAHs in Water - Low Base II Duplicate II % RPD Level Date extracted 18/02/2 [NT] LCS-W1 18/02/2015 [NT] 015 Date analysed 18/02/2 LCS-W1 18/02/2015 [NT] [NT] 015 Org-012 LCS-W1 Naphthalene 0.2 < 0.2 [NT] [NT] 97% μg/L subset Org-012 Acenaphthylene µg/L 0.1 < 0.1 [NT] [NT] [NR] [NR] subset Org-012 <0.1 Acenaphthene 0.1 [NT] [NT] [NR] [NR] µg/L subset Fluorene 0.1 Org-012 < 0.1 [NT] [NT] LCS-W1 101% µg/L subset Phenanthrene 0.1 Org-012 <0.1 [NT] [NT] LCS-W1 100% μg/L subset

Client Reference: E25232KH, Bulli QUALITYCONTROL UNITS PQL METHOD Blank Duplicate results Spike Sm# Duplicate Spike %

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level					Sitter	Base II Duplicate II %RPD		recovery
Anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	99%
Pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	116%
Benzo(a)anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	92%
Benzo(b,j+k) fluoranthene	μg/L	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	105%
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	96	[NT]	[NT]	LCS-W1	111%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
HM in water - dissolved					Sm#	Base II Duplicate II %RPD		Recovery
Date prepared	-			18/02/2 015	123653-1	18/02/2015 18/02/2015	LCS-W1	18/02/2015
Date analysed	-			18/02/2 015	123653-1	18/02/2015 18/02/2015	LCS-W1	18/02/2015
Arsenic-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	<1 <1	LCS-W1	99%
Cadmium-Dissolved	μg/L	0.1	Metals-022 ICP-MS	<0.1	123653-1	<0.1 <0.1	LCS-W1	101%
Chromium-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	<1 <1	LCS-W1	99%
Copper-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	<1 <1	LCS-W1	96%
Lead-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	<1 <1	LCS-W1	107%
Mercury-Dissolved	μg/L	0.05	Metals-021 CV-AAS	<0.05	123653-1	<0.05 <0.05	LCS-W1	96%
Nickel-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	1 1 RPD:0	LCS-W1	101%
Zinc-Dissolved	μg/L	1	Metals-022 ICP-MS	<1	123653-1	43 43 RPD:0	LCS-W1	99%

Client Reference: E25232KH, Bulli PQL QUALITYCONTROL UNITS METHOD Blank Spike % Duplicate Duplicate results Spike Sm# Sm# Recovery Miscellaneous Inorganics Base II Duplicate II % RPD 17/02/2 17/02/2015 || 17/02/2015 Date prepared 123653-1 LCS-W1 17/02/2015 015 17/02/2 17/02/2015 || 17/02/2015 Date analysed 123653-1 LCS-W1 17/02/2015 015 Inorg-001 6.3||6.2||RPD:2 LCS-W1 103% рΗ pH Units [NT] 123653-1 **Electrical Conductivity** μS/cm 1 Inorg-002 <1 123653-1 310||310||RPD:0 LCS-W1 105% Hardness mgCaCO 3 [NT] 123653-1 56 || 57 || RPD: 2 [NR] [NR] 3/L Metals-020 Calcium - Dissolved <0.5 123653-1 16||16||RPD:0 LCS-W1 100% mg/L 0.5 **ICP-AES** Magnesium - Dissolved mg/L 0.5 Metals-020 < 0.5 123653-1 4.1||4.2||RPD:2 LCS-W1 101% **ICP-AES**

QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	123653-2	18/02/2015
Date analysed	_	[NT]	[NT]	123653-2	18/02/2015
Arsenic-Dissolved	μg/L	[NT]	[NT]	123653-2	98%
Cadmium-Dissolved	μg/L	[NT]	[NT]	123653-2	104%
Chromium-Dissolved	μg/L	[NT]	[NT]	123653-2	85%
Copper-Dissolved	μg/L	[NT]	[NT]	123653-2	85%
Lead-Dissolved	μg/L	[NT]	[NT]	123653-2	98%
Mercury-Dissolved	μg/L	[NT]	[NT]	123653-2	96%
Nickel-Dissolved	Nickel-Dissolved µg/L [N		[NT]	123653-2	88%
Zinc-Dissolved	μg/L	[NT]	[NT]	123653-2	93%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	123653-2	18/02/2015
Date analysed	-	[NT]	[NT]	123653-2	18/02/2015
рН	pH Units	[NT]	[NT]	[NR]	[NR]
Electrical Conductivity	μS/cm	[NT]	[NT] [NR]		[NR]
Hardness	mgCaCO 3/L	[NT]	[NT]	[NR]	[NR]
Calcium - Dissolved	mg/L	[NT]	[NT]	123653-2	95%
Magnesium - Dissolved	mg/L	[NT]	[NT]	123653-2	102%

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 123653 Page 12 of 12

Revision No: R 00

SAMPLE AND CHAIN OF CUSTODY FORM

TO: ENVIROL 12 ASHLI CHATSV/ P: (02) 99 F: (02) 99	00 06 106	6TREE1 D NSW 1200 1201) 	EIS Job Number: Date Res Required	sults	FROM: E25232KH: ENVIRONMENTAL INVESTIGATION SERVICES REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2: P: 02-9888 5000 F: 02 16/2/15 Attention: Todd					2113 2-9888 5001							
Lacation	\perp	Sulli:		W-1400-1		eksete ti					Sam	ple Pr	eserv	ed in (Esky (on Ice	-		\dashv
Location: Sampler:							F 2/2/06							equir					
Date Sample	d	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	Combo 3L	EC/pH/Hardness	Сотро 6	Combo 6a	8 Metals	PAHs	TRHIBIEXN	втех	Asbestos			
16/02/201	5	,	MW1		B, A, H		Water	X	X										
16/02/20	5 5	9	MW13		В. А. Н	1 1 1 1 1	Water	X	X					197	-1				
16/02/201	ŧ	3	MW15	į	В, А, Н		Water	\times	\times										
16/02/20	s	4	Dup A		B, A, H		Water							X	1 :				
		ı`	٠																
		1 · ·				_			el y Fel		· ·					, e . i e			
	<u> </u>														!				
			.							: 1	in ja N		4						
	ŀ		je i je ij	İ															
	ŀ		A STATE OF THE STA	Afficial Pro Mark	·						;; ;;;								
	1		>																
	1			7.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5			eteri .		•			.: .	· ·	1	į				
	•				5					!									
1			\$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								40 146 i								
	ļ.												j						
- :	-					* : *		·	:		· ·						٠.	77 4 5.,	<u>. </u>
													\sim		#	rirola	ı tar	icos	
					1.18	: :						Er	vikol	ÀВ		12 WOO O	Ashl	y St	
	\parallel		1777 FK 1301	a									b Ne		Ph	: (02)	9910	200	
				W2	. :						- 27				23(-	
							-					_ Ti	ne Re	ceive ceive	d- 1	F12	ကိုင	'	
enger								- ·			11.57	Re	ceive	d by:	LS mbies	<u>B</u>	_	00	
	ļļ.						· ' ' ·	.#.	1			Ğ	ıoling	Ice/n	epag	2	1	8	
	1							i				. Se	curity		≱VBro		one		
							,	,	e _{nti}		ì					``.			
Remarks } Relinquis			s/detection li	míts requirec	i): Date:		\$	B · B A · 50	TEX V OmL NO3 E	Ambei		Rece	ivad 8	lu.		· 	Date		
. vemiquia	100		Ha			1/2/1	5			Dar	~ ;				8			H2/	15

SAMPLE RECIEPT ADVICE

Client Details	
Client	Environmental Investigation Services
Attention	Todd Hore

Sample Login Details	
Your Reference	E25232KH, Bulli
Envirolab Reference	123653
Date Sample Received	17/02/2015
Date Instructions Received	17/02/2015
Date Results Expected to be Reported	24/02/2015

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	4 waters
Turnaround Time Requested	Standard
Temperature on receipt (°C)	7.8
Cooling Method	Ice
Sampling Date Provided	YES

Comments
Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolabservices.com.au	Email: jhurst@envirolabservices.com.au						

Sample and Testing Details on following page

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

Sample Id	Calcium - Dissolved	Electrical Conductivity	Hardness	HM in water - dissolved	Magnesium - Dissolved	PAHs in Water - Low Level	рН	svTRH (C10- C40) in Water	vTRH(C6- C10)/BTEXN in Water
MW1	1	✓	✓	✓	1	✓	✓	✓	✓
MW13	1	✓	✓	1	1	✓	✓	✓	✓
MW15	1	✓	✓	1	1	✓	✓	1	✓
DUP A								1	1

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 123151-A

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your Reference: E25232KH, Bulli

No. of samples: Additional testing on 1 soil

Date samples received / completed instructions received 06/02/15 / 12/02/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 19/02/15 / 19/02/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Laboratory Manager

Misc Inorg - Soil		
Our Reference:	UNITS	123151-A-12
Your Reference		BH18
Depth		0-0.2
Date Sampled		04/02/2015
Type of sample		soil
Date prepared	-	17/02/2015
Date analysed	-	18/02/2015
pH 1:5 soil:water	pH Units	7.6
Clay in soils <2um	% (w/w)	13

Metals in TCLP USEPA1311		
Our Reference:	UNITS	123151-A-12
Your Reference		BH18
Depth		0-0.2
Date Sampled		04/02/2015
Type of sample		soil
Date extracted	-	17/02/2015
Date analysed	-	17/02/2015
pH of soil for fluid# determ.	pH units	7.0
pH of soil for fluid # determ. (acid)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	5.2
Lead in TCLP	mg/L	0.04

CEC		
Our Reference:	UNITS	123151-A-12
Your Reference		BH18
Depth		0-0.2
Date Sampled		04/02/2015
Type of sample		soil
Date extracted	-	17/02/2015
Date analysed	-	17/02/2015
Exchangeable Ca	meq/100g	8.7
Exchangeable K	meq/100g	0.2
Exchangeable Mg	meq/100g	3.0
Exchangeable Na	meq/100g	<0.1
Cation Exchange Capacity	meq/100g	12

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
AS1289.3.6.3	Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2um reported.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311 and in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.

Envirolab Reference: 123151-A

Page 5 of 8

Revision No: R 00

Client Reference: E25232KH, Bulli								
QUALITY CONTROL Misc Inorg - Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
				INIT!	[NIT]	·	LCS-1	17/02/2015
Date prepared	-			[NT]	[NT]	[NT]		
Date analysed	-			[NT]	[NT]	[NT]	LCS-1	18/02/2015
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	LCS-1	101%
Clay in soils <2um	% (w/w)		AS1289.3.6 .3	[NT]	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP USEPA1311						Base II Duplicate II %RPD		
Date extracted	-			17/02/2 015	[NT]	[NT]	LCS-2	17/02/2015
Date analysed	-			17/02/2 015	[NT]	[NT]	LCS-2	17/02/2015
Lead in TCLP	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[NT]	LCS-2	95%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
CEC						Base II Duplicate II %RPD		
Date extracted	-			17/02/2 015	[NT]	[NT]	LCS-1	17/02/2015
Date analysed	-			17/02/2 015	[NT]	[NT]	LCS-1	17/02/2015
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	106%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	103%
Exchangeable Mg	meq/100	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	106%
Exchangeable Na	meq/100	0.1	Metals-009	<0.1	[NT]	[NT]	LCS-1	116%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	[NT]	[NT]	[NR]	[NR]

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 123151-A Page 8 of 8

Revision No: R 00

Aileen Hie

From:

Todd Hore <thore@jkgroup.net.au>

Sent:

Thursday, 12 February 2015 4:45 PM

To:

Aileen Hie

Subject:

123151

Aileen,

could you please schedule the following additional analyses for the EIS project E25232KH, Bulli:

- 123151-12 TCLP lead:
- 123151-12 pH, CEC, Clay Content;

Please undertake the above on a standard turnaround.

123151 A std T/A one 19/2.

Regards,

Todd Hore Associate

Environmental Investigation Services

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS

Tel: 02 9888 5000

PO Box 976

115 Wicks Road

Fax: 02 9888 5001

North Ryde BC NSW 1670

Macquarie Park NSW 2113

thore@jkgroup.net.au www.jkgeotechnics.com.au

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au

www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 123480-A

Client:

Environmental Investigation Services

PO Box 976 North Ryde BC NSW 1670

Attention: Todd Hore

Sample log in details:

Your Reference: E25232KH, Bulli

No. of samples:

Additional Testing on 1 Soil

Date samples received / completed instructions received

12/02/15 / 18/02/15

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: / Issue Date: 25/02/15 / 20/02/15

Date of Preliminary Report: Not Issued

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Laboratory Manager

DAHeinTOLD/LISEDA 1211\		
PAHs in TCLP (USEPA 1311) Our Reference:	UNITS	123480-A-10
Your Reference		BH4
Depth		0-0.1
Date Sampled		10/02/2015
Type of sample		Soil
pH of soil for fluid# determ.	pH units	9.3
pH of soil for fluid # determ. (acid)	pH units	1.7
Extraction fluid used	-	1
pH of final Leachate	pH units	6.3
Date extracted	-	19/02/2015
Date analysed	-	19/02/2015
Naphthalene in TCLP	mg/L	<0.001
Acenaphthylene in TCLP	mg/L	<0.001
Acenaphthene in TCLP	mg/L	<0.001
FluoreneinTCLP	mg/L	<0.001
Phenanthrene in TCLP	mg/L	<0.001
Anthracene in TCLP	mg/L	<0.001
Fluoranthene in TCLP	mg/L	<0.001
Pyrene in TCLP	mg/L	<0.001
Benzo(a)anthracene in TCLP	mg/L	<0.001
Chrysene in TCLP	mg/L	<0.001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.002
Benzo(a)pyrene in TCLP	mg/L	<0.001
Indeno(1,2,3-c,d)pyrene-TCLP	mg/L	<0.001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.001
Total +ve PAH's	mg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	109

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439 and USEPA 1311 and in house method INORG-004.
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Org-012 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Envirolab Reference: 123480-A

Page 3 of 6

Revision No: R 00

Client Reference: E25232KH, Bulli								
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHsinTCLP (USEPA 1311)						Base II Duplicate II %RPD		
Date extracted	-			19/02/2 015	[NT]	[NT]	LCS-W1	19/02/2015
Date analysed	-			19/02/2 015	[NT]	[NT]	LCS-W1	19/02/2015
Naphthalene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	84%
Acenaphthylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	96%
Phenanthrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	96%
Anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	111%
Benzo(a)anthracene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	84%
Benzo(bjk)fluoranthene inTCLP	mg/L	0.002	Org-012 subset	<0.002	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	LCS-W1	95%
Indeno(1,2,3-c,d)pyrene -TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene inTCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene in TCLP	mg/L	0.001	Org-012 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012	99	[NT]	[NT]	LCS-W1	107%

Report Comments:

Asbestos ID was analysed by Approved Identifier:

Asbestos ID was authorised by Approved Signatory:

Not applicable for this job

Not applicable for this job

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested

NA: Test not required RPD: Relative Percent Difference NA: Test not required

<: Less than >: Greater than LCS: Laboratory Control Sample

Envirolab Reference: 123480-A Page 5 of 6

Revision No: R 00

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Envirolab Reference: 123480-A Page 6 of 6

Revision No: R 00

Appendix D: Report Explanatory Notes

STANDARD SAMPLING PROCEDURE

These protocols specify the basic procedures to be used when sampling soils or groundwater for environmental site assessments undertaken by EIS. The purpose of these protocols is to provide standard methods for: sampling, decontamination procedures for sampling equipment, sample preservation, sample storage and sample handling. Deviations from these procedures must be recorded.

Soil Sampling

- Prepare a borehole/test pit log or made a note of the sample description for stockpiles.
- Layout sampling equipment on clean plastic sheeting to prevent direct contact with ground surface. The
 work area should be at a distance from the drill rig/excavator such that the machine can operate in a
 safe manner.
- Ensure all sampling equipment has been decontaminated prior to use.
- Remove any surface debris from the immediate area of the sampling location.
- Collect samples and place in glass jar with a Teflon seal. This should be undertaken as quickly as possible to prevent the loss of any volatiles. If possible, fill the glass jars completely.
- Collect samples for asbestos analysis and place in a zip-lock plastic bag.
- Label the sampling containers with the EIS job number, sample location (eg. BH1), sampling depth interval and date. If more than one sample container is used, this should also be indicated (eg. 2 = Sample jar 1 of 2 jars).
- Photoionisation detector (PID) screening of volatile organic compounds (VOCs) should be undertaken on samples using the soil sample headspace method. Headspace measurements are taken following equilibration of the headspace gasses in partly filled zip-lock plastic bags. PID headspace data is recorded on the borehole/test pit log and the chain of custody forms.
- Record the lithology of the sample and sample depth on the borehole/test pit log generally in accordance with AS1726-1993²².
- Store the sample in a sample container cooled with ice or chill packs. On completion of the sampling the sample container should be delivered to the lab immediately or stored in the refrigerator prior to delivery to the lab. All samples are preserved in accordance with the standards outlined in the report.
- Check for the presence of groundwater after completion of each borehole using an electronic dip metre or water whistle. Boreholes should be left open until the end of fieldwork where it is safe to do so. All groundwater levels in the boreholes should be rechecked on the completion of the fieldwork.
- Backfill the boreholes/test pits with the excavation cuttings or clean sand prior to leaving the site.

Decontamination Procedures for Soil Sampling Equipment

- All sampling equipment should be decontaminated between every sampling location. This excludes single use PVC tubing used for push tubes etc. Equipment and materials required for the decontamination include:
 - Phosphate free detergent (Decon 90);
 - Potable water;
 - > Stiff brushes; and
 - Plastic sheets.
- Ensure the decontamination materials are clean prior to proceeding with the decontamination.
- Fill both buckets with clean potable water and add phosphate free detergent to one bucket.

²² Standards Australia, (1993), Geotechnical Site Investigations. (AS1726-1993)

- In the bucket containing the detergent, scrub the sampling equipment until all the material attached to the equipment has been removed.
- Rinse sampling equipment in the bucket containing potable water.
- Place cleaned equipment on clean plastic sheets.

If all materials are not removed by this procedure, high-pressure water cleaning is recommended. If any equipment is not completely decontaminated by both these processes, then the equipment should not be used until it has been thoroughly cleaned.

Groundwater Sampling

Groundwater samples are more sensitive to contamination than soil samples and therefore adhesion to this protocol is particularly important to obtain reliable, reproducible results. The recommendations detailed in AS/NZS 5667.1:1998 are considered to form a minimum standard.

The basis of this protocol is to maintain the security of the borehole and obtain accurate and representative groundwater samples. The following procedure should be used for collection of groundwater samples from previously installed groundwater monitoring wells.

- After monitoring well installation, at least three bore volumes should be pumped from the monitoring wells
 (well development) to remove any water introduced during the drilling process and/or the water that is
 disturbed during installation of the monitoring well. This should be completed prior to purging and sampling.
- Groundwater monitoring wells should then be left to recharge for at least three days before purging and sampling. Prior to purging or sampling, the condition of each well should observed and any anomalies recorded on the field data sheets. The following information should be noted: the condition of the well, noting any signs of damage, tampering or complete destruction; the condition and operation of the well lock; the condition of the protective casing and the cement footing (raised or cracked); and, the presence of water between protective casing and well.
- Measure the groundwater level from the collar of the piezometer/monitoring well using an electronic dip meter. The collar level should be taken (if required) during the site visit using a dumpy level and staff.
- Purging and sampling of piezometers/monitoring wells is done on the same site visit when using micropurge (or other low flow) techniques.
- Layout and organize all equipment associated with groundwater sampling in a location where they will
 not interfere with the sampling procedure and will not pose a risk of contaminating samples. Equipment
 generally required includes:
 - Stericup single-use filters (for heavy metals samples);
 - Bucket with volume increments;
 - Sample containers: teflon bottles with 1 ml nitric acid, 75mL glass vials with 1 mL hydrochloric acid, 1 L amber glass bottles;
 - Bucket with volume increments;
 - Flow cell;
 - pH/EC/Eh/Temperature meters;
 - Plastic drums used for transportation of purged water;
 - Esky and ice;
 - Nitrile gloves;
 - Distilled water (for cleaning);
 - Electronic dip meter;
 - Low flow peristaltic pump and associated tubing; and
 - Groundwater sampling forms.

- Ensure all non-disposable sampling equipment is decontaminated or that new disposable equipment is available prior to any work commencing at a new location. The procedure for decontamination of groundwater equipment is outlined at the end of this section.
- Disposable gloves should be used whenever samples are taken to protect the sampler and to assist in avoidance of contamination.
- Groundwater samples are obtained from the monitoring wells using low flow sampling equipment to reduce the disturbance of the water column and loss of volatiles.
- During pumping to purge the well, the pH, temperature, conductivity, dissolved oxygen, redox potential
 and groundwater levels are monitored (where possible) using calibrated field instruments to assess the
 development of steady state conditions. Steady state conditions are generally considered to have been
 achieved when the difference in the pH measurements was less than 0.2 units and the difference in
 conductivity was less than 10%.
- All measurements are recorded on specific data sheets.
- Once steady state conditions are considered to have been achieved, groundwater samples are obtained directly from the pump tubing and placed in appropriate glass bottles, BTEX vials or plastic bottles.
- All samples are preserved in accordance with water sampling requirements specified by the laboratory
 and placed in an insulated container with ice. Groundwater samples are preserved by immediate storage
 in an insulated sample container with ice.
- At the end of each water sampling complete a chain of custody form for samples being sent to the laboratory.

Decontamination Procedures for Groundwater Sampling Equipment

- All equipment associated with the groundwater sampling procedure (other than single-use items) should be decontaminated between every sampling location.
- The following equipment and materials are required for the decontamination procedure:
 - Phosphate free detergent;
 - Potable water;
 - Distilled water; and
 - Plastic Sheets or bulk bags (plastic bags).
- Fill one bucket with clean potable water and phosphate free detergent, and one bucket with distilled water.
- Flush potable water and detergent through pump head. Wash sampling equipment and pump head using brushes in the bucket containing detergent until all materials attached to the equipment are removed.
- Flush pump head with distilled water.
- Change water and detergent solution after each sampling location.
- Rinse sampling equipment in the bucket containing distilled water.
- Place cleaned equipment on clean plastic sheets.
- If all materials are not removed by this procedure that equipment should not be used until it has been thoroughly cleaned

QA/QC DEFINITIONS

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²³ methods and those described in *Environmental Sampling and Analysis, A Practical Guide*, (1991)²⁴.

Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The puncertainty postule pressurement produce produce produced in the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

Precision

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

Accuracy

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

Completeness

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;

²³ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)

²⁴ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide.

- All blank data reported;
- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

Comparability

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

Blanks

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

Duplicates

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

SCREENING CRITERIA DEFINITIONS

The following definitions have been adopted based on Schedule B(1) of NEPM (2013) and are relevant to Tier 1 screening criteria adopted for contamination assessments.

Health investigation levels (HILs) have been developed for a broad range of metals and organic substances. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for residential use. Site-specific conditions should determine the depth to which HILs apply for other land uses.

Health screening levels (HSLs) have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, and depths below surface to >4 m. HSLs have also been developed for asbestos and apply to the top 3m of soil.

Ecological investigation levels (EILs) have been developed for selected metals and organic substances and are applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2 m of soil.

Ecological screening levels (ESLs) have been developed for selected petroleum hydrocarbon compounds and total petroleum/recoverable hydrocarbon (TPH/TRH) fractions and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and various land uses. They are generally applicable to the top 2 m of soil.

Groundwater investigation levels (GILs) are the concentrations of a contaminant in groundwater above which further investigation (point of extraction) or a response (point of use) is required. GILs are based on Australian water quality guidelines and drinking water guidelines and are applicable for assessing human health risk and ecological risk from direct contact (including consumption) with groundwater.

Management Limits for Petroleum hydrocarbons are applicable to petroleum hydrocarbon compounds only. They are applicable as screening levels following evaluation of human health and ecological risks and risks to groundwater resources. They are relevant for operating sites where significant sub-surface leakage of petroleum compounds has occurred and when decommissioning industrial and commercial sites.

Interim soil vapour health investigation levels (interim HILs) have been developed for selected volatile organic chlorinated compounds (VOCCs) and are applicable to assessing human health risk by the inhalational pathway. They have interim status pending further scientific work on volatile gas modelling from the sub-surface to building interiors for chlorinated compounds.

Appendix E: Data (QA/QC) Evaluation

DATA (QA/QC) EVALUATION

INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in Section 6.1 of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness,2comparability2and2completeness.2These2'PARCC'2parameters2are2referred2to2 collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

Field QA/QC Samples and Analysis

A summary of the field QA/QC samples collected and analysed for this assessment is provided in the following table:

Sample Type	Sample Identification	Frequency (of Sample Type)	Analysis Performed
Intra-laboratory duplicate (soil)	Dup GFS1 (primary sample BH18 (0-0.2m))	Approximately 10% of primary samples	Heavy metals, TRH/BTEX, PAHs
Intra-laboratory duplicate (soil)	Dup GFS2 (primary sample BH19 (0-0.2m))	As above	Heavy metals, TRH/BTEX, PAHs
Intra-laboratory duplicate (soil)	Dup GFS3 (primary sample BH14 (0-0.2m))	As above	Heavy metals, TRH/BTEX, PAHs
Intra-laboratory duplicate (water	Dup A (primary sample MW13)	Approximately 30% of primary samples	TRH/BTEX
Trip blank (soil)	TB1 (11/2/2015)	One for the assessment to demonstrate adequacy of storage and transport methods	TRH/BTEX

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table L to Table M inclusive) attached to the assessment report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report.

Data Assessment Criteria

EIS adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be less than 50% RPD for concentrations greater than 10 times the PQL, less than 75% RPD for concentrations between five and 10 times the PQL and less than 100% RPD for concentrations that are less than five times the PQL. RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field Blanks

Acceptable targets for field blank samples in this report will be less than the PQL for organic analytes..

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with2he2aboratory's2NATA2accreditation2and2align2with2he2acceptable2imits2for2QA/QC2amples2as2 outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

All results less than PQL.

DATA EVALUATION

Sample Collection, Storage, Transport and Analysis

Samples were collected by trained field staff in accordance with the EIS SSP. The SSP was developed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC with the exception of the anthracene PQL for groundwater analysis which was 10 times greater than the ecological and human contact SAC. In light of the PAH concentrations reported for soil and groundwater, EIS are of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the assessment.

Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. An elevated RPDs was reported for pyrene in Dup GSF2/BH19 (0-0.2m). This is the result of the very low concentrations of pyrene in both samples. As both the primary and duplicate sample results were less than the SAC, the exceedances are not considered to have had an adverse impact on the data set as a whole.

Field Blanks

During the investigation, one soil trip blank was placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Laboratory QA/QC

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this assessment.

DATA QUALITY SUMMARY

EIS are of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

There was only one groundwater monitoring event undertaken for the assessment. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods.

Appendix F: Field Work Documents

Groundwater Monitoring Well Development Report

Client:					Job No	D.:			
Project:					Well N		1		
Location:					Depth				
WELL FINISH DETA	ILS						-		
Gatic Cover		Stand	pipe		PVC	Pipe			
WELL DEVELOPME	NT DETAILS								
Method:			SWL -	- Before: (m	1)	4.5	S TOC		
Date:	11/2/15	***	Time	- Before:			· ·		
Undertaken By:			SWL -	- After: (m)					
Total Vol. Removed	: 4		Time	- After:					
PID Reading (ppm):									
Comments:									
DEVELOPMENT ME	ASUREMENTS								
Volume Removed	Temp (°C	'	00 g/L)	ΕC (μS/m)	t c	Н	Eh (mV)		
	22.8	6.	9	386.5	6.	5 <i>7</i>	76.7		
2	21.8	7.	2	348.0	4.4	33	722		
3	21.7		7-3	327 4	6.	16	71-1		
					_				
					_				
					4				
Comments: Ryus	reflexible of	,							
Tested By:	Rema	arks:							
Date Tested:	- All n	neasuremei		orrected to gro	ound level				
Checked By:		tated Volum			ater level				
Date:	- Stea	 SWL is an abbreviation for standing water level Steady state conditions - difference in the pH less than 0.2 units and difference in conductivity less than 10% Minimum 3 monitoring well volumes are purged 							

Groundwater Monitoring Well Development Report

Client:						Job N	0.:			
Project:						Well N	lo.;	13		
Location:				Depth	(m):					
WELL FINISH DE	TAILS							hi		
Gatic Cover		X :	Stand	pipe		PVC	Pipe			
WELL DEVELOP								×		
Method:	Per	istellic Pu 2/15 GF	wo.	SWL -	- Before: (m)	1-15	5 TOPVL		
Date:	u/	2/15		Time ·	- Before:	W				
Undertaken By:		GF.		SWL -	- After: (m)					
Total Vol. Remov		20		Time	- After:					
PID Reading (ppr	n):			75	Ĺ		2			
Comments:										
DEVELOPMENT	MEASURE	MENTS								
Volume Remo (L)	ved T	emp (°C)		00 g/L)	ΕC (μ\$/m)	'	рH	Eh (mV)		
Floriell		190	5	.0	57.7.1	6 .	25	194.3		
1	*	(4.0	Δ	.8	328.1	5.	47	194.3		
4	e.			8		5.	46	98.8		
7		179		6	3169 5209 5175	5.	46	963		
20-		18.0	2	ч	5124		.42	1.76)		
	- G	(c)	14							
								· · · · · · · · · · · · · · · · · · ·		
	1									
						_				
				X	***************************************					
								_		
Comments:										
Tested By:		Remarks	3:							
Date Tested:	.00	- All measurements are corrected to ground level								
Checked By:		- All state			n Litres for standing w	ater level				
Date:		- Steady s	tate co e in co	nditions nductivit	 difference in y less than 10 yell volumes a 	the pH le %	ss than	0.2 units and		

Groundwater Monitoring Well Development Report

Client:				Job No	o.;			
Project:			Well N	15				
Location:			Depth (m):					
WELL FINISH DETAILS								
Gatic Cover	X	Standpipe		PVC	Pipe			
WELL DEVELOPMENT	DETAILS							
Method:		SWL	- Before: (m	າ)	35	5 TOPVC		
Date:		Time	- Before:					
Undertaken By:		SWL	- After: (m)					
Total Vol. Removed:		Time	- After:					
PID Reading (ppm):								
Comments:								
DEVELOPMENT MEAS	UREMENTS					79		
Volume Removed (L)	Temp (°C)	DO (mg/L)	ΕC (μS/m)	ı	Н	Eh (mV)		
1	203	2.9	733	5	84	99.8		
4	18.7	3-1	762	5.	76	98.2		
	18.5	3.1	767	5.4	6	74.0		
lO	185	3.4	823	5.5	6	93.4		
14.	18.5	3-6	848	5.	9/	94.0		
			-	-				
			-					
	ļ							
	-							
Comments:								
Tested By:	Remarks	3:						
Date Tested:			corrected to gro	ound level				
Checked By:		d Volumes are an abbreviation		ater level				
Date:	- Steady s	 SWL is an abbreviation for standing water level Steady state conditions - difference in the pH less than 0.2 units and difference in conductivity less than 10% Minimum 3 monitoring well volumes are purged 						

Groundwater Sampling Report

Client:	ARV				Job No.:	E25232KH		
Project:		Retirement Vi	Well No.: Depth (m):	MW1				
Location:	2 Sturdee A	6						
WELL FINI								
Gatic C			Sta	ndpipe			PVC Pipe	
1001200	GE DETAIL	S:						
Method:		Peristaltic F	² ump		SWL - Be		4.67	
Date:		16/2/15			Time – Be		4.15pm	101111111
Undertake		TH			Total Vol I			
Pump Prog					PID (ppm)	:		
	SAMPLING	MEASURE	MENTS					
Time	CMP	Vol (L)	SWL (m)	Temp	DO	EC	pН	Eh
(min)				(°C)	(mg/L)	(µS/cm)		(mV)
	10,28	0.3	4.87	25.6	4.7	408,9	6.46	62.7
3	//	0.9	5.00	23.7	4.5	3258	6.71	56.7
5	17	1.6	5.2	23.2	4.8	308.6	5.98	60.1
	4	2,	5.34	23.1	5.1		5.97	670
9	77	2.3	5,41	232	5.0	305.5		64.8
18	7.	2.5	5.44	23.4	5.3	303.7	5.97	67.8
			l					
·								
	L							
Containers	S Used/Com	ments	2 x 131 EX	, 1 A-	ber, till	23		
Testado	75. 4		1 B					
Tested By:	71	17.2	Remarks:					
Date Teste		1/5			corrected to gr			
Checked B	у:				for standing v	vater level I the pH less tha	an 0.2 units an	nd
Date:					y less than 10		ATT CITE CITE CIT	
					-			

Groundwater Sampling Report

Client:	ARV			JOD NO.:						
Project:		Retirement V	illage	Well No.:	MW13					
Location:	2 Sturdee /	Ave, Bulli	Depth (m):	6						
WELL FINE	SH					·				
Gatic C	cover		Sta	ndpipe	0.16-		PVC Pipe			
WELL PUR	GE DETAIL	.S:								
Method:		Peristaltic I	Pump		SWL - Bet	ore:	1.15m			
Date:		16/2/15			Time - Bet	fore:	2.32An			
Undertaker	n By:	TH			Total Vol F	Removed:	2.32pm			
Pump Prog	ıram No:	10		/	PID (ppm)					
PURGING /	SAMPLING	MEASURE	MENTS	/	<u>''</u>					
Time	CHED	1/-(4)	C)4(I, (m)	Temp	DO	EC		Eh		
(min)	CMP	Vol (L)	SWL (m)	(°C)	(mg/L)	(μS/cm)	pН	(mV)		
'n	7.11	0.3	1.36	24.4	3.0	325	5.82	82.3		
2	10.51	1	1.71	21.6		3/01	57.63	81.4		
35	1,	1.5	7.98	21.5	7.4	307	5.57	78.9		
8	23	2.8	228	20.4	1.4	3/14	5.59	77.4		
10	į,	3.5	2.48	20.3	1.2	3177	5.58	77.5		
12	4.	4.6	2.64	20,2	1-1	312.3	5.54	77.7		
14	19	5.5	2.80	200	1.0	7044	5.49	79.0		
15	.ti	6.1	2-85	19.9	1.0	3097	5.48	79.7		
		- H								
			1							
		1	1							
		1	i							

Containers	Used/Com		Pup	A	-01.		· · · · · · · · · · · · · · · · · · ·			
	r	2x BPE	X Z X A	who to	11003					
			-		-					
Tested By:	TA	:	Remarks:							
Date Tested	d: 16/2	115	- All measur	ements are o	corrected to gr	ound level				
Checked By	y: //	<i>(</i>	- SWL is an	abbreviation	for standing w	ater level				
Date:				- Steady state conditions - difference in the pH less than 0.2 units and						
:15			difference	<u>in conductivit</u>	y less than 10	%				

Groundwater Sampling Report

Client:	ARV				Job No.:	E25232KH		
Project:	Proposed F	Retirement Vi	llage	Well No.: MW15				
Location:	2 Sturdee A	ve, Bulli		Depth (m):	5.5			
WELL FINE	SH							
Gatic C	over		Sta	ndpipe	0.350		PVC Pipe	
	GE DETAIL	S:						
Method:		Peristaltic F	^o ump		SWL - Bet		3.43 3.20pm	
Date:		16/2/15			Time - Be		3.20 pm	۸
Undertaker		TH			Total Vol F			
Pump Prog					PID (ppm)			
	SAMPLING	MEASURE	MENTS		N.	A		
Time (min)	CMP	Vol (L)	SWL (m)	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
2	12,5	0.2	3.45	25.6	6.1	912	6.55	88.7
6	13.46	1.3		Z1.4	5.8	957	602	86.8
9	ч	2.5	4:15	19.4	3.4	877	5.89	86.7
12	11:	3.8	4.38	19.0	4, 6	845	5.88	85.7
15	75	4.6	4.52	19:0	57	850	5.92	84.1
15	26	5.0	4.53	19.1	5.7	854	5-45	84.2
Containers	: Used/Com	ments	2 x 35	KX / Mark	ber, HA			
Tested By: 16/2/15 Date Tested: 16/2/15 Checked By: Date:			- SWL is an - Steady star	abbreviation te conditions	corrected to gr for standing w - difference in ty less than 10	ater level the pH less th	an 0.2 units an	d

	Conductanc	Oxygen	ORP_1	pH_1	Temperatur			
Time and Date	e (uS/cm)	(mg/L)	(mV)	(Units)	e (C)	Site	Folder	Unit ID
Development								
11/02/2015 11:57	445.4	5.1	183.8	6.43	10	E25232KH	MW13	EIS YSI2
11/02/2015 11:58		4.8	168.4		_	E25232KH	_	EIS YSI2
11/02/2015 11:59			139.8			E25232KH		EIS YSI2
11/02/2015 11:00		4.6	124.8			E25232KH		EIS YSI2
11/02/2015 12:00	318.4	4.3	113.9	_	_	E25232KH	_	EIS YSI2
11/02/2015 12:01		4.1	106.3		_	E25232KH	_	EIS YSI2
11/02/2015 12:02		4.1	100.5			E25232KH		EIS YSI2
11/02/2015 12:04		3.7	98.8		_	E25232KH		EIS YSI2
11/02/2015 12:05		3.4	96.6			E25232KH		EIS YSI2
11/02/2015 12:06		3.1	95.6		_	E25232KH		EIS YSI2
11/02/2015 12:07		2.9	95.5		_	E25232KH		EIS YSI2
11/02/2015 12:07		2.9	95.5	5.44	_	E25232KH		EIS YSI2
11/02/2015 12:08			95.1		_	E25232KH		EIS YSI2
11/02/2015 12:09		_						EIS YSI2
		2.6	96.9		_	E25232KH		
11/02/2015 12:11 11/02/2015 12:12		2.5	98.5 99	5.45 5.45	_	E25232KH	_	EIS YSI2
11/02/2015 12:12		2.5			_	E25232KH		EIS YSI2
		2.4	101.6			E25232KH		EIS YSI2
11/02/2015 12:14		2.4	103.7		_	E25232KH		EIS YSI2
11/02/2015 12:23		3.1	103.5	5.93		E25232KH		EIS YSI2
11/02/2015 12:24		2.9	99.3	5.82	_	E25232KH		EIS YSI2
11/02/2015 12:25	758	3	98.3			E25232KH		EIS YSI2
11/02/2015 12:26		3.1	97.6			E25232KH	_	EIS YSI2
11/02/2015 12:27		_	93.7			E25232KH		EIS YSI2
11/02/2015 12:28		3.4	93.4			E25232KH		EIS YSI2
11/02/2015 12:51	390.2	7	78.6		_	E25232KH		EIS YSI2
11/02/2015 12:52		7.1	73.1			E25232KH		EIS YSI2
11/02/2015 12:53	347.6	7.2	72.2		_	E25232KH		EIS YSI2
11/02/2015 12:53	341.4	7.3	71.6	6.22	21.7	E25232KH	MW1	EIS YSI2
Sampling								
16/02/2015 14:32	17.9	5.4	80.7	6.71	32.4	E25232KH	MW13	EIS YSI2
16/02/2015 14:33			84.7			E25232KH		EIS YSI2
16/02/2015 14:34			82.9			E25232KH		EIS YSI2
16/02/2015 14:35			81.5			E25232KH		EIS YSI2
16/02/2015 14:36			81.2			E25232KH		EIS YSI2
16/02/2015 14:37		1.9	79.4			E25232KH		EIS YSI2
16/02/2015 14:38		1.7	78.1			E25232KH		EIS YSI2
16/02/2015 14:39			77.6			E25232KH		EIS YSI2
16/02/2015 14:40		1.4	77.5			E25232KH		EIS YSI2
16/02/2015 14:41			77.4			E25232KH		EIS YSI2
16/02/2015 14:42			77.5			E25232KH		EIS YSI2
16/02/2015 14:42		1.1	77.5			E25232KH		EIS YSI2
16/02/2015 14:44		1.1	77.5			E25232KH		EIS YSI2
16/02/2015 14:45		1.1	78.2			E25232KH		EIS YSI2
16/02/2015 14:46			78.4			E25232KH		EIS YSI2
16/02/2015 14:47		1.1	78.4 78.9			E25232KH		EIS YSI2
16/02/2015 14:48		1	76.9 79.6			E25232KH		EIS YSI2
16/02/2015 14:49			79.6 79.3			E25232KH		EIS YSI2
16/02/2015 14:49		0.9	79.5 78.8			E25232KH		EIS YSI2
16/02/2015 14:50								
		0.8	77.4			E25232KH		EIS YSI2
16/02/2015 15:19	33.3	7.5	109.6	6.23	27.3	E25232KH	IVI VV 15	EIS YSI2

16/02/2015 15:20	496	6.9	109.2	6.66	26 E25232KH MW15	EIS YSI2
16/02/2015 15:21	846	6.1	89.8	6.53	25.5 E25232KH MW15	EIS YSI2
16/02/2015 15:22	912	6.1	88.4	6.55	25.6 E25232KH MW15	EIS YSI2
16/02/2015 15:23	913	6.3	88.3	6.52	25.2 E25232KH MW15	EIS YSI2
16/02/2015 15:24	913	6.3	86.2	6.51	24.9 E25232KH MW15	EIS YSI2
16/02/2015 15:25	910	6.4	86.1	6.19	22.7 E25232KH MW15	EIS YSI2
16/02/2015 15:26	902	5.4	87	5.97	20.6 E25232KH MW15	EIS YSI2
16/02/2015 15:27	885	4.3	86.9	5.9	20.3 E25232KH MW15	EIS YSI2
16/02/2015 15:28	882	3.9	86.9	5.89	19.6 E25232KH MW15	EIS YSI2
16/02/2015 15:29	863	4.1	86.4	5.88	19.2 E25232KH MW15	EIS YSI2
16/02/2015 15:30	848	4.3	86.2	5.87	19 E25232KH MW15	EIS YSI2
16/02/2015 15:31	845	4.6	85.8	5.88	19 E25232KH MW15	EIS YSI2
16/02/2015 15:32	847	4.9	85.3	5.9	19 E25232KH MW15	EIS YSI2
16/02/2015 15:33	850	5.2	84.9	5.91	19 E25232KH MW15	EIS YSI2
16/02/2015 15:34	854	5.6	84.4	5.94	19.1 E25232KH MW15	EIS YSI2
16/02/2015 15:35	854	5.8	83.5	5.97	19.3 E25232KH MW15	EIS YSI2
16/02/2015 15:36	853	5.6	82.5	5.98	19.5 E25232KH MW15	EIS YSI2
16/02/2015 15:37	853	5.5	81.7	6	19.6 E25232KH MW15	EIS YSI2
16/02/2015 16:16	415.4	4.3	71.3	6.56	25.6 E25232KH MW1	EIS YSI2
16/02/2015 16:17	354	4.1	57	6.27	24.4 E25232KH MW1	EIS YSI2
16/02/2015 16:18	325.9	4.5	56.6	6.12	23.7 E25232KH MW1	EIS YSI2
16/02/2015 16:19	314.6	4.5	57.4	6.04	23.3 E25232KH MW1	EIS YSI2
16/02/2015 16:20	309.5	4.7	59.3	5.99	23.2 E25232KH MW1	EIS YSI2
16/02/2015 16:21	308.6	4.8	60.9	5.97	23.1 E25232KH MW1	EIS YSI2
16/02/2015 16:22	308.9	4.9	62.6	5.93	23.1 E25232KH MW1	EIS YSI2
16/02/2015 16:23	308.6	4.9	63.5	5.96	23.1 E25232KH MW1	EIS YSI2
16/02/2015 16:24	306.3	4.9	64.2	5.93	23.2 E25232KH MW1	EIS YSI2
16/02/2015 16:25	303.1	5.4	64.8	5.97	23.4 E25232KH MW1	EIS YSI2
16/02/2015 16:26	302	4.6	64.5	5.99	23.6 E25232KH MW1	EIS YSI2
16/02/2015 16:27	301.7	4.2	64.2	6.02	23.7 E25232KH MW1	EIS YSI2
16/02/2015 16:28	301.9	4.1	64.5	6.03	23.7 E25232KH MW1	EIS YSI2
16/02/2015 16:29	302.4	3.9	65.2	6.03	23.7 E25232KH MW1	EIS YSI2
16/02/2015 16:30	302.5	3.9	66	6.03	23.8 E25232KH MW1	EIS YSI2
16/02/2015 16:31	302.5	3.9	66.6	6.03	23.9 E25232KH MW1	EIS YSI2
9/03/2015 13:48	9352	5.3	240	7.06	27.3 E25232KH MW1	EIS YSI2
9/03/2015 13:49	28.6	8.4	132.5	7.27	24.4 E25232KH MW1	EIS YSI2
9/03/2015 13:50	1306	7	181.2	7.09	27 E25232KH MW1	EIS YSI2

***** Calibrate: ORP Slope 99.533662 % of Ideal pH Value

Calibrate Status Calibrated

Date 11/02/15 DD/MM/YY

Time 11:45:53 24-hour ------

User ID: ***** Calibrate: Conductivity

Cal Solution Value: 229.139999 ORP mV Date 11/02/15 DD/MM/YY

Sensor Value: 233.600006 ORP mV Time 11:43:13 24-hour

Temperature 27.200001 °C User ID: GF

Offset 36.560010

Calibrate Status Calibrated Method Conductance

Cal Value: 2002.000000 C-uS/cm

------ Sensor Value: 2014.000000 C-uS/cm

***** Calibrate: pH Temperature Ref. 20.000000 °C

Temperature Comp. 1.910000 %/C

Date 11/02/15 DD/MM/YY TDS Constant 0.650000

Time 11:45:16 24-hour Temperature 26.900000 °C

User ID: GF Cal Cell Constant: 4.971699

Buffer Value 6.995401 pH Calibrate Status Calibrated

Sensor Value: -27.600000 pH mV

Temperature 27.749994 °C ------

***** Calibrate: DO

Buffer Value 4.008523 pH

Sensor Value: 149.899994 pH mV Date 11/02/15 DD/MM/YY

Temperature 27.950006 °C Time 11:42:12 24-hour

User ID: GF

Slope 58.844301 mV/pH

Method DO Air Calibrate Date 16/02/15 DD/MM/YY

Cal Value: 100.000000 % Time 09:57:06 24-hour

Sensor Value: 7.613542 uA User ID: BP

Sensor Type Polarographic

Membrane Type 1.25 PE Yellow Cal Solution Value: 231.869995 ORP mV

Salinity Mode 7.613542 Auto Sensor Value: 245.199997 ORP mV

Temperature 27.400000 °C Temperature 25.100000 °C

Barometer 767.500000 mmHg Offset 30.030011

Calibrate Status Calibrated Calibrate Status Calibrated

Date 16/02/15 DD/MM/YY

Time 10:15:48 24-hour ------

User ID: BP ***** Calibrate: pH

Date 16/02/15 DD/MM/YY

Method DO Air Calibrate Time 09:55:44 24-hour

Cal Value: 100.000000 % User ID: BP

Sensor Value: 5.509523 uA

Sensor Type Polarographic Buffer Value 4.005164 pH

Membrane Type 1.25 PE Yellow Sensor Value: 147.800003 pH mV

Salinity Mode 5.509523 Auto Temperature 24.850000 °C

Temperature 21.299999 °C

Barometer 759.400024 mmHg Slope 58.291875 mV/pH

Calibrate Status Calibrated Slope 98.599247 % of Ideal pH Value

Calibrate Status Calibrated

***** Calibrate: ORP ------

***** Calibrate: Conductivity

Date 16/02/15 DD/MM/YY

Time 09:44:12 24-hour

User ID: BP

Method Conductance

Cal Value: 1404.000000 C-uS/cm

Sensor Value: 1404.000000 C-uS/cm

Temperature Ref. 20.000000 °C

Temperature Comp. 1.910000 %/C

TDS Constant 0.650000

Temperature 24.799999 °C

Cal Cell Constant: 4.968185

Calibrate Status Calibrated

Appendix G: Site Photographs

Selected Site Photos Taken on 26 June 2018

Photograph 1: Dense forest area.

Photograph 2: The burnt out dairy factory and car.

Photograph 3: South Section of site - Brick office building.

Photograph 4: South section of site - Northern view of the factory.

Photograph 5: Metal building at the southeast corner.

Photograph 6: South section of the site - Inside view of warehouse.

Photograph 7: South section of the site - Inside view of a metal building.

Photograph 8: P South section of the site – possible asbestos insulation at kiln / Furnace.

Photograph 9: South section of the site - Possible UST close to the two storey brick building.

Photograph 10: Scattered building rubble at the northeast of the site.

Photograph 11: South section of the site- Disused concrete tank / bund and former water treatment station at the background.

Photograph 12: South section of the site - Possible UST at the tank/bund.

Appendix H: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

CRC Care, (2017). Technical Report No. 39 – Risk-based management and guidance for benzo(a)pyrene

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

Managing Land Contamination, Planning Guidelines SEPP55 - Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2011). National Water Quality Management Strategy, Australian Drinking Water Guidelines

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (1995). Contaminated Sites Sampling Design Guidelines

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy No.55 – Remediation of Land 1998 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2009). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia