# Flood Impact Assessment

Proposed Aged Care Facility at Bulli

8201813802



13 November 2019







**Contact Information** 

**Document Information** 

Cardno (NSW/ACT) Pty Ltd

ABN 95 001 145 035

**Project Name** 

Prepared for

**Proposed Aged Care Facility** 

at Bulli

6

Anglicare

16 Burelli Street

Wollongong 2500

Australia

File Reference

Report 001

Job Reference

8201813802

Phone +612 4228 4133

Fax +612 4228 6811 Date

13 November 2019

Version Number

Author(s):

Ali Djozan

**Effective Date** 

13/11/2019

Senior Water Engineer

Approved By:

Rory Hentschel

Manager Water

**Date Approved** 

13/11/2019

**Document History** 

| Version | Effective Date      | Description of Revision | Prepared by | Reviewed by    |
|---------|---------------------|-------------------------|-------------|----------------|
| 1       | 08 August<br>2018   | Issued for S75W         | Ali Djozan  | Rory Hentschel |
| 2       | 17 August<br>2018   | Issued for S75W         | Ali Djozan  | Rory Hentschel |
| 3       | 27 May 2019         | Issued for S75W         | Ali Djozan  | Shaza Raini    |
| 4       | 30 May 2019         | Issued for S75W         | Ali Djozan  | Shaza Raini    |
| 5       | 31 May 2019         | Issued for S75W         | Ali Djozan  | Shaza Raini    |
| 6       | 13 November<br>2019 | Issued for S75W         | Shaza Raini | Rory Hentschel |

<sup>©</sup> Cardno. Copyright in the whole and every part of this document belongs to Cardno and may not be used, sold, transferred, copied or reproduced in whole or in part in any manner or form or in or on any media to any person other than by agreement with Cardno.

This document is produced by Cardno solely for the benefit and use by the client in accordance with the terms of the engagement. Cardno does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.



# **Table of Contents**

| 1 | Introdu | uction                                            | 1  |
|---|---------|---------------------------------------------------|----|
|   | 1.1     | Background                                        | 1  |
|   | 1.2     | Study Area                                        | 1  |
|   | 1.3     | Purpose of this Report                            | 1  |
| 2 | Respo   | onse to Wollongong City Council RFIs              | 4  |
| 3 | Availa  | ble Data                                          | 10 |
|   | 3.1     | Topographic data                                  | 10 |
|   | 3.2     | Previous Studies                                  | 10 |
| 4 | Hydro   | logy                                              | 11 |
|   | 4.1     | Catchment Description                             | 11 |
|   | 4.2     | Hydrological Model Selection                      | 14 |
|   | 4.3     | Model Input                                       | 14 |
|   | 4.4     | Design Storm Results                              | 15 |
| 5 | Hydra   | ulics                                             | 16 |
|   | 5.1     | Selection of Hydraulic Model                      | 16 |
|   | 5.2     | Model Geometry, Boundary Conditions and Roughness | 16 |
|   | 5.3     | Existing Hydraulic Structures Modelled            | 17 |
|   | 5.4     | Culverts Blockage                                 | 17 |
|   | 5.5     | Pre-Development Scenario                          | 20 |
|   | 5.6     | Post-Development Scenario                         | 20 |
|   | 5.7     | Impacts                                           | 20 |
|   | 5.8     | Climate Change Impacts                            | 21 |
|   | 5.9     | Hewitts Creek Management Schemes                  | 21 |
|   | 5.10    | Potential Impacts on Rail Corridor                | 22 |
|   | 5.11    | Minimum Development levels                        | 23 |
| 6 | Storm   | water Drainage Concept                            | 24 |
|   | 6.1     | Stormwater Quality Objectives                     | 24 |
| 7 | Concl   | usion                                             | 26 |
|   |         |                                                   |    |

# **Appendices**

| Appendix A | WBNM Input parameters                   |
|------------|-----------------------------------------|
| Appendix B | WBNM results                            |
| Appendix C | Flood Result Maps                       |
| Appendix D | Site Survey                             |
| Appendix E | Council Floodplain Risk Management Plan |
| Appendix F | Bulk Earthworks plan                    |



# **Tables**

| Table 2-1  | NSW Department of Planning, Industry and Environment                                                | 4  |  |  |
|------------|-----------------------------------------------------------------------------------------------------|----|--|--|
| Table 2-2  | able 2-2 Wollongong City Council Comments                                                           |    |  |  |
| Table 2-3  | Office of Environment & Heritage (OEH) & NSW Department of Planning, Industry and Environment (DPE) | 8  |  |  |
| Table 4-1  | Rainfall data                                                                                       | 14 |  |  |
| Table 4-2  | WBNM Parameters                                                                                     | 15 |  |  |
| Table 5-1  | Manning's n Values                                                                                  | 16 |  |  |
| Table 5-2  | Existing Culverts Configurations                                                                    | 17 |  |  |
| Table 6-1  | WSUD Stormwater Quality Performance Targets                                                         | 24 |  |  |
| Figure     | S                                                                                                   |    |  |  |
|            |                                                                                                     |    |  |  |
| Figure 1-1 | Site Locality Plan                                                                                  | 2  |  |  |
| Figure 1-2 | Proposed Development Plan                                                                           | 3  |  |  |
| Figure 4-1 | Catchment Plan                                                                                      | 12 |  |  |
| Figure 4-2 | Catchment Plan-Zoomed at Development Site                                                           | 13 |  |  |
| Figure 5-1 | Hydraulic Model Schematization                                                                      | 18 |  |  |
| Figure 5-2 | Spatial Distribution of manning's n                                                                 | 19 |  |  |
| Figure 6-1 | Drainage Concept Plan                                                                               | 25 |  |  |



# 1 Introduction

## 1.1 Background

Anglicare are proposing to develop an aged care facility at lot 2 & 3 DP 1176767 at Bulli, NSW. Cardno has been commissioned to carry out a flood impacts assessment to support the concept plan modification application for the subject development. Refer to **Figure 1-2** for a copy of the proposed development layout.

## 1.2 Study Area

The site proposed for the development is located in Geragthy Street in Bulli. The subject site is bounded with Geragthy Street and railway line to the west (railway line runs immediately upstream and parallel to Geragthy Street), Wilkies Street to the north and Sandon Drive to the south. Refer to **Figure 1-1** for locality of the subject site.

Tramway Creek runs along the southern side of the subject site and joins Woodland Creek further downstream before discharging into the ocean. Cookson Creek (a tributary of Tramway Creek) runs through the middle of the site.

The subject site generally falls in an easterly direction (towards the ocean). However, the northern part of the site is located on a hill side and has a steep southerly fall towards Cookson Creek running through the middle of the site. The site levels vary between RL26.8m AHD in north-western corner of the site and RL5.2m AHD in the eastern side of the site and within the Cookson Creek.

Based on the topography, Cookson Creek collects a local catchment mostly comprising the subject site with some area to the western side of the railway line.


## 1.3 Purpose of this Report

The main objective for this report is to undertake a flood study for Tramway Creek and an impacts assessment for the proposed aged care facility development. Specifically, this flood study aims to:

- > Determine the flood behaviour on the development site (flood extent, flood levels, flood depth and flood velocities) for a range of design events up to and including 100 year ARI design event and PMF.
- > Ensure that the majority of land within the development site will be located on land above the PMF and as such is not subject to flood related planning controls or located on flood prone land.
- > Ensure that no detrimental offsite impacts are created in the 1% AEP and PMF events as a result of the proposed development.
- > Review the previous drainage concept from the concept approval and update it to reflect the currently proposed layout.
- Address the request for further information



Figure 1-1 Site Locality Plan





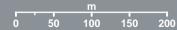
# Site Locality Plan

PROPOSED AGED CARE FACILITY AT BULLI, NSW

#### Legend

Site Boundary

----- Railway (LPI)


Watercourse (LPI)

2m Contours (LPI LiDAR, 2013)

Cadastre (DFSI-SS, 2018)

FIGURE 1-1

1:5,000 Scale at A3





Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-05-23 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-001\_SitePlan.mxd 02
Aerial imagency surpliked by nearman (March 2019)



Figure 1-2 Proposed Development Plan



0 7500 15000 Scales 1 : 1500 @ A3 JSA Project No. Checked JH 171101 Approved KJ 6460 Drawing No. SK1.08

Scale 1: 1500

J S A S T U D I O phone: 02 9555 7464 mail @ jsastudio.com.au

Subdivision Plan

© KIM JONES ARCHITECTS TRADING AS JSA STUDIO, ALL RIGHTS RESERVED. THIS WORK IS COPPRIGHT AND CANNOT BE REPRODUCED OR COPIED IN ANY FORM OR BY ANY MEANS WITHOUT THE WRITTEN PERMISSION OF JSA STUDIO, ANY LICENSE TO USE THIS DOCUMENT, WHETHER EXPRESSED OR INPULEO, IS RESTRICTED TO THE TERMS OF THE AGREEMENT OR IMPLIED AGREEMENT BETWEEN JSA STUDIO AND THE INSTRUCTING PARTY.

Date 10.10.18 10.05.19 June 2019 24.05.19 24.05.19 Village Bulli Sandon Point Rev. | Fig. 1 | S75W Re-Submission | A | Issued for Information 2 s75W Re-Submission-draft B Issued for Information For ANGLICARE



# 2 Response to Wollongong City Council RFIs

Cardno Wollongong has been instructed by EPM Projects Pty Ltd to address the issues raised by Wollongong City Council, Office of Environment and Heritage (OEH) and NSW Department of Planning, Industry and Environment (DPE) upon submission of the previous report dated 31 May 2019. **Table 2-2** and **Table 2-3** provides a summary of the issues raised in regards to Stormwater and Flooding, and our response to address them. Updates from the previous submission are highlighted in blue.

Table 2-1 NSW Department of Planning, Industry and Environment

| Key Issue                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| St                                                                                                                                                                                                                                                                              | ormwater                                                                                                                                                                                              |  |
| The flood modelling is required to be amended, as outlined by Council and OEH, to assess the impacts associated with the modification on adjoining properties and the rail corridor.                                                                                            | Flood modelling has been updated to ensure the impacts to the adjoining property and rail corridor is mitigated.                                                                                      |  |
| The area adjacent to Geraghty Street (where four lots were removed) must be redesigned to maintain the watercourse channel through this part of the site.                                                                                                                       | The design has been updated to remove fill in this area in order to maintain the watercourse alignment.                                                                                               |  |
| The concept stormwater plan must demonstrate that a culvert would be provided beneath the proposed road to maintain flows                                                                                                                                                       | A 3x 3000 x 1500 RCBC has been proposed underneath the internal road to maintain the watercourse alignment and provides 100 year ARI immunity on the road.                                            |  |
| The proposed road off Wilkies Street (between Wakefield Street and Craven Street) is in conflict with an existing stormwater pit. The concept stormwater plan is required to be modified to show a new replacement pit that would be constructed as part of future development. | The updated concept stormwater plan shows proposed pit locations to replace all existing pits in conflict with the proposed road (i.e. between Wakefield St and Craven St, and south of Panmills Dr). |  |

#### **Water Quality**

Confirmation that the future development (noting the potential change of use and location of building envelopes) would not result in unacceptable water quality impacts, given the presence of coastal wetlands within the site is required. This should include the establishment of water quality objectives (in consultation with Council), details of how water quality objectives and targets are consistent with the Risk-based Framework for Considering Waterway Health Outcomes in Strategic Land-use Planning Decisions, and details of how the proposed stormwater measures would achieve these objectives.

Cardno have established the water quality objectives for the proposed development in the previous submission (refer Section 6.1 of the Flood Impact Assessment report). The proposed water quality treatment targets were established for the long-term operational treatment of stormwater runoff from the development site. These objectives should not be used for other environmental management strategies such as soil contamination and the protection of groundwater and coastal wetland environments.

We note that the stormwater runoff from the proposed development will not worsen the quality of runoff discharging from the former brick refractory site as the pollutant loading from a residential land use type is overall cleaner than an industrial land use type. Based on this information, the water quality objectives we have established in **Section 6.1** is the most suitable management strategy for the proposed site compared to other available performance criteria such as the Neutral or Beneficial Effect on Water Quality (NorBE), and it aligns with the stormwater quality performance



targets specified in Chapter E15 of the Wollongong City Council DCP (2009).

Table 2-2 Wollongong City Council Comments

Previous RFI Comments (18 December 2018)

#### WCC Current Comments

Response

#### **Stormwater**

The following matters have not been addressed:

- The proposed concept layout requires filling and realigning of an existing watercourse channel and culvert (i.e. upper portion of Cookson's Creek) to facilitate the southern-most four units of the Hilltop Precinct.
- This proposal is contrary to Section 10.3.7 of Chapter E14.
- Also, the proposal to realign a
   watercourse/culvert/overflow
   path with a near 90 degree
   bend is considered contrary
   to good floodplain
   management practice.
- These four units need to be removed from the proposal in order to maintain the existing watercourse and negate the need for any watercourse filling/realignment

#### WCC Comment:

The 4 dwellings previously proposed over the alignment of this watercourse have been removed from the proposal. However, the cut/fill plan by Cardno still indicates filling over the alignment of this existing watercourse, and the landscape concept plan indicates an 'ornamental lawn' over the location of the existing watercourse channel. The design needs to be amended to maintain the watercourse channel through this location.

A culvert will need to be provided beneath the proposed road to maintain flows in the watercourse.





The design has been updated to remove fill in this area in order to maintain the watercourse alignment (refer updated concept bulk earthworks plan 82018138-001-SK010 in **Appendix F**).

A 3x 3000 x 1500 RCBC is proposed underneath the road to maintain the watercourse alignment and provides 100 year ARI immunity on the road (refer updated concept stormwater plan 82018138-001-SK009 in **Figure 6-1**).

- The proposal includes filling and a sound/flood barrier along the western boundary of the property, which will obstruct overland flows and floodwater flows entering the site.
- This outcome is also evidenced by the submitted flood modelling, which shows significant flood level increases on the adjoining land as a result of the

#### WCC Comment:

This matter has not been addressed. The response by Cardno in relation to this matter has been reviewed and is noted. However, the response does not resolve the matter. The above requirements need to be addressed.

The proposed flood barrier has been removed and replaced with a swale to capture overland flows entering the western site boundary (refer updated concept stormwater plan 82018138-001-SK009 in **Figure 6-1**). Flows within the swale are conveyed to the respective creek outfall via a series of large box culverts placed underneath the swale.



| design. This proposal is contrary to Performance Criteria 6.4.2(d) of Chapter E13 and Section 11.3.17 of Chapter E14.  The concept plan and flood modelling needs to be amended to demonstrate acceptance of overland flows and floodwater flows onto the site in a way that replicates existing conditions, and management of these flows in a way that ensures no diversion of floodwater and no increase in flooding elsewhere.  It appears that engineered measures will be required within the site to accept and convey the contributing flows, and adequate space will need to be set aside in the concept plan to facilitate these measures. |                                                                                                                                          | The proposed scenario flood model was updated to account for these changes. Details of the proposed design is provided in Section 5.6.                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The concept stormwater plan includes works outside the site within the adjoining land (Lot 500 DP 1161858).</li> <li>Owners consent and an easement to drain water over the adjoining land (in accordance Section 11.3.17 of Chapter E14) would be required to facilitate this work.</li> </ul>                                                                                                                                                                                                                                                                                                                                             | WCC Comment: Not addressed. The plans still show works and a stormwater outlet onto the adjoining land. This matter remains outstanding. | Refer to the Land Owners Designation prepared by the Department dated 24 October 2017. Lot 500 DP 1161858 is within the broader Sandon Point Concept Plan site, as such the Land Owners Designation is sufficient for the purposes of this Concept Plan Modification. Additional land owners consent will be sought to facilitate the detailed stormwater works on this site. |
| The proposed road off<br>Wilkies St (between<br>Wakefield St and Craven St)<br>is in conflict with an existing<br>stormwater pit. The existing<br>system will need to be<br>modified and a new pit will<br>need to be constructed by<br>the developer as part of the<br>works, to ensure design<br>function of the system is<br>maintained.                                                                                                                                                                                                                                                                                                          | WCC Comment:  Not addressed. The proposed road is still in conflict with an existing pit                                                 | The updated concept stormwater plan (82018138-001-SK009 in <b>Figure 6-1</b> ) shows proposed pit locations to replace all existing pits in conflict with the proposed road (i.e. between Wakefield St and Craven St, and south of Panmills Dr).                                                                                                                              |
| <ul> <li>It is unclear why On-site         Stormwater Detention         (OSD) is proposed. As the         site is located within an         OSD concession zone and         runoff from the site         discharges directly to         receiving waters without</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          | WCC Comment: This matter has been addressed. OSD has been removed from the proposal                                                      | No response required.                                                                                                                                                                                                                                                                                                                                                         |



| passing through intervening property, OSD is not required for this development.                                                                                                                                                                                                                                                                                                             |                                |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|
| <ul> <li>It is unclear why On-site         Stormwater Detention         (OSD) is proposed. As the         site is located within an         OSD concession zone and         runoff from the site         discharges directly to         receiving waters without         passing through intervening         property, OSD is not         required for this         development.</li> </ul> | WCC Comment: Matter addressed. | No response required. |



Table 2-3 Office of Environment & Heritage (OEH) & NSW Department of Planning, Industry and Environment (DPE)

| Item                       | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Floodplain Risk Management | The revised Flood Impact Assessment provided by Cardno (2019) as part of the Response to Submission(RtS) includes a modified layout, which removes the diversion of Cooksons Creek and reduces flood impacts. However, some key concerns previously raised have not been addressed.  Although reduced, significant flood impacts remain on the adjacent rail corridor as a result of the proposed development. This includes flood level increases of up to 1.5m in the PMF. Flood mapping provided in Appendix C identifies off-site flood impacts in the 1% Annual Exceedance Probability (AEP) event in the rail corridor, which is contrary to the report (section 5.7) which states that no impacts are predicted within the rail corridor for this event. The report should clearly establish all off-site impacts and strategies to manage them, including whether impacted land owners are agreeable to unmitigated flood impacts.  Additional modelling undertaken indicates that benefits of the flood mitigation measures recommended in Hewitts Creek Floodplain Management Plan (FRMP, 2002) are maintained in the proposed development scenario. However, it is unclear which flood event has been modelled, noting that the range of all possible floods including the 1% AEP and PMF events should be assessed. Clarification should be obtained from council with regard to consistency and implications of the proposal to their Floodplain Risk Management Plan. | Impacts on the rail corridor have been mitigated by proposed swale and box culverts detailed in <b>Section 5.6</b> of this report.  The proposed upgrade to the existing 675mm diameter culvert underneath Geraghty Street has been increased to mitigate impacts to the rail corridor (refer updated concept stormwater plan 82018138-001-SK009 in <b>Figure 6-1</b> ).  The modelled scheme was simulated with the 1% AEP event and shows consistent outcomes to the PMF event. A flood map showing the modelled events are included in <b>Appendix C</b> of this report. |
| Waterway health            | Confirmation that the future development (noting the potential change of use and location of building envelopes) would not result in unacceptable water quality impacts, given the presence of coastal wetlands within the site is required. This should include the establishment of water quality objectives (in consultation with Council), details of how water quality objectives and targets are consistent with the Risk-based Framework for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The existing Concept Plan approval contains a commitment to conduct further environmental assessment of soil contamination and Remediation Action Plan, if required. In accordance with Condition 43, this will be prepared as part of any future detailed design development application (if applicable) when actual works and detailed designs are proposed. Once the extend of contamination and any remedial works are known, they can inform                                                                                                                           |



| Considering Waterway Health Outcomes in Strategic Land-use Planning Decisions, and details of how the proposed stormwater measures would achieve these objectives | the detailed stormwater management plans, as set out within Commitment 4. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|



# 3 Available Data

### 3.1 Topographic data

#### 3.1.1 Aerial Laser Scanning (ALS) Survey

ALS (taken in 2013) data was sourced from Land and Property Information (LPI) and used for undertaking the catchment delineation, hydrology modelling and hydraulic modelling for this study.

#### 3.1.2 Ground Survey

Detailed survey data within the site was captured by Dennis Smith Surveyors on the 19<sup>th</sup> January 2006 and has been incorporated into the hydraulic model to better represent the topography of the study area. A pdf copy of the survey is included in **Appendix D**.

#### 3.2 Previous Studies

#### 3.2.1 Review of Hewitt Creek Flood Study (WBNM, August 2015)

Review of Hewitt Creek Flood Study (RHCFS) was prepared for Wollongong City Council (WCC) to determine the flood behaviour in the Hewitt Creek study area and consider influence of potential climate change on future flood behaviour.

The RHCFS developed a WBNM model for hydrological assessment of the study catchment. The WBNM model was calibrated and validated to April 1988, August 1998 and February 2013 events. A TUFLOW two-dimensional hydraulic model was developed as part of this study. The TUFLOW model was also calibrated and validated similarly.

RHCFS is relevant to this current study as it covers the site, the Tramway Creek catchment and Slacky Creek catchment which are relevant to this current study.

The catchment plan provided in RHCFS have been used as a basis in undertaking the catchment delineation for this current study. The hydrological parameters (such as rainfall loss values and routing lagging factors) have been adopted consistent with RHCFS for this current study.

This report has been also used a basis for comparison of our modelling results in terms of general parity in the flooding extent.

#### 3.2.2 Addendum to Flood Study Report for Anglican Retirement Village (GHD, May 2006)

This report was also reviewed as one of the earliest hydraulic studies prepared for the proposed development.

This study adopted the boundary conditions from the Hewitt Creek Flood Study (an earlier version) and then developed a HEC-RAS model for Tramway Creek reach extending up to just downstream of the railway and the culvert underneath of it.

This study was not identified suitable for comparison of our model results because of the followings:

- > The GHD report does not cover the Cookson's Creek
- > It does not account for the hydraulic constraints imposed by the railway culvert on Tramway Creek



# 4 Hydrology

### 4.1 Catchment Description

The proposed development site is located within the downstream reaches of Tramway Creek. Tramway Creek runs parallel to the southern boundary of the site. Cookson Creek, a tributary of Tramway Creek, runs through the site and joins the Tramway Creek just downstream of the site. Tramway Creek then joins the Woodland Creeks Creek just before discharging to the ocean.

Cookson Creek mostly drains the site with some external catchment to the west of Geragthy Street and the Illawarra Railway totalling a catchment area of approximately 12ha. Levels in Cookson Creek catchment varies between approximately RL 4m AHD in the confluence point with Tramway Creek to RL 35m AHD to adjacent to the Illawarra Railway.

Tramway Creek drains a larger catchment extending from Tramway Creek and Woodlands Creek confluence just east of the site to areas to the west of the Princes Highway, north of Bulli Showground and Racing Complex and north of Hobart Street. Tramway Creek totals a catchment area of approximately 30ha. The elevations in Tramway Creek catchment vary between RL4 m AHD at the confluence with Cookson Creek to RL42 m AHD at the north-western end of the catchment.

Slacky Creek covers an area of approximately 248ha. There are a number of drainage structures along Slacky Creek including the Hobart Street culverts crossing, old coal haulage railway culverts crossing, Princes Highway Culverts Crossing and Illawarra Railway Culvert crossing. The Hobart Street Culverts crossing and old coal haulage railway culverts crossing provide significant obstruction against Slacky Creek conveyance and divert significant flows into the Tramway Creek catchment. Further break outs from Slacky Creek are predicted to occur just to the north east of the Bulli Showground and Racing Complex.

The Slacky Creek catchment has been included in this study to allow quantification of this cross catchment from between Slacky Creek and the Tramway Creek catchment. Slacky Creek catchment has been modelled down to the Illawarra Railway crossing.

**Figure 4-1** shows the catchment delineation for the study area including Cookson Creek, Tramway Creek and Slacky Creek. **Figure 4-2** shows a magnified extents of the proposed development site for catchment delineation.



Figure 4-1 Catchment Plan

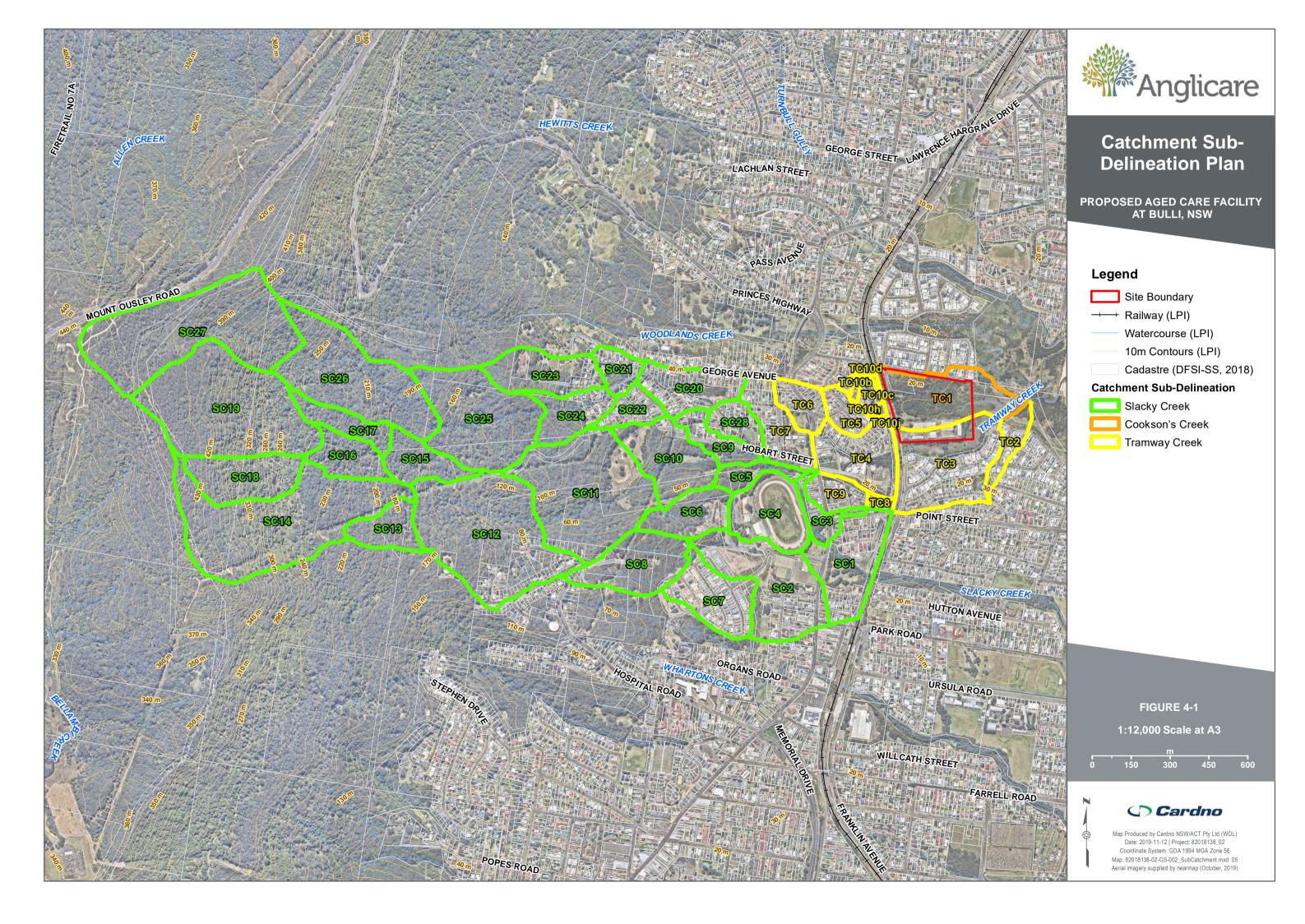
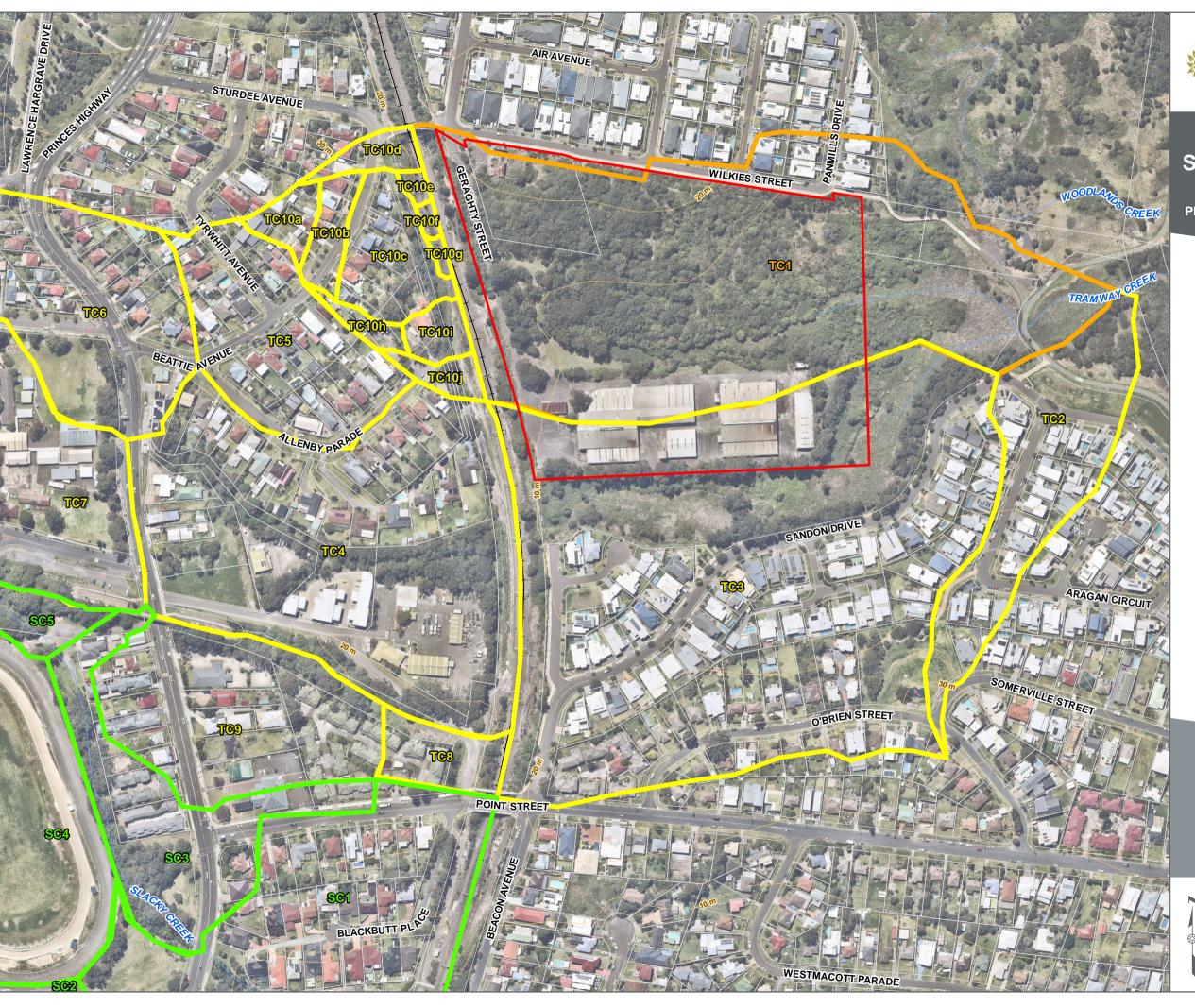






Figure 4-2 Catchment Plan-Zoomed at Development Site





# Catchment **Sub-Delineation Plan**

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

#### Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

10m Contours (LPI)

Cadastre (DFSI-SS, 2018)

#### **Catchment Sub-Delineation**


Slacky Creek

Cookson's Creek

Tramway Creek

FIGURE 4-2

1:3,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-015\_SubCatchment\_Zoom.mxd 01
Aerial imagery supplied by nearmap (October, 2019)



## 4.2 Hydrological Model Selection

The computer model 'Watershed Bounded Network Model' WBNM2007 v104 (Boyd et al, 2007) was used for hydrological modelling of the study area. WBNM is an advanced storage-routing model that allows simulation of complex catchment behaviour. This particular model was considered most appropriate to the task of modelling the study area, given its ability to model a wide range of catchment characteristics and its local development, the model allowed peak flows to be established at various locations throughout the subject site.

## 4.3 Model Input

#### 4.3.1 Sub-Catchment Topology

Sub-catchment topology for the constructed model reflected input from:

- > ALS data purchased from LPI to represent the existing surface.
- > Aerial photography from NearMap for the establishment of impervious/pervious areas across the floodplain

Sub-catchments were delineated from the total catchment (290 ha) in order to accurately model the peak flows and flood extents over the site.

The sub-catchment delineation developed and used in the hydrologic model is presented in **Figure 4-1**. There is a generally parity between the catchment delineation undertaken by Cardno and the catchment delineation presented in WBNM report.

#### 4.3.2 Impervious Fraction

The impervious area for each sub-catchment was estimated using the most recently available aerial photography from nearmap. The surface area of impervious features was determined as a percentage of the individual sub-catchment areas and an impervious factor was assigned to each, which represented the type and density of impervious features present. It was assumed that the impervious fraction of residential areas was approximately 70%.

The WBNM data presented in **Appendix A** shows the final estimated impervious fractions for each subcatchment.

#### 4.3.3 Rainfall data

Rainfall data for the site was sourced from the Bureau of Meteorology (BOM). The data used to generate the design storm bursts in the WBNM model is presented in **Table 4-1**.

Table 4-1 Rainfall data

| Parameter                 | Value      |
|---------------------------|------------|
| 2 Year 1 Hour Intensity   | 46 mm/hr   |
| 2 Year 12 Hour Intensity  | 11.1 mm/hr |
| 2 Year 72 Hour Intensity  | 4.15 mm/hr |
| 50 Year 1 Hour Intensity  | 102 mm/hr  |
| 50 Year 12 Hour Intensity | 26.3 mm/hr |
| 50 Year 72 Hour Intensity | 9 mm/hr    |
| F2 Geographic Factor      | 4.28       |
| F50 Geographic Factor     | 15.8       |
| Location Skew Coefficient | 0.0        |



#### 4.3.4 Hydrological parameters

The hydrological parameters used for input to the WBNM model are listed in **Table 4-2**.

Table 4-2 WBNM Parameters

| Parameter                          | Values    | Comment                                               |
|------------------------------------|-----------|-------------------------------------------------------|
| Initial loss (pervious surface)    | 0 mm      | Conservatively taken as zero.                         |
| Initial loss (impervious surface)  | 0 mm      | Conservatively taken as zero.                         |
| Continuing loss (pervious surface) | 2.5 mm/hr | AR&R recommends 2.5 mm/hr for ungauged NSW catchments |
| C (Catchment Lag parameter)        | 1.29      | Regional calibration value                            |
| Impervious Lag                     | 0.1       | WBNM default <u>value</u>                             |
| Stream Lag                         | 1.0       | Model default                                         |

# 4.4 Design Storm Results

The WBNM hydrological model was simulated against a range of design storm events to determine the critical design storm duration. The ARI storm events analysed in this study included the 100 year ARI design events and the probable maximum flood (PMF). The identified critical durations to assess the proposed development were 2 hours for 100 year ARI storm events and 60 minutes for the PMF.

Results from the WBNM model is provided in **Appendix B**.



# 5 Hydraulics

### 5.1 Selection of Hydraulic Model

The TUFLOW 2D model was used in the hydraulic assessment of the study area. A 2D model was selected to model the floodplain in order to better represent the complex hydraulics associated with floodplain areas. The model extent was determined based on review of the topography of the study area and review of the previous flood studies to ensure that significant hydraulic controls and flow break out points are incorporated. The downstream boundary was set up at a location downstream of the site to ensure that an accurate tailwater condition is established.

# 5.2 Model Geometry, Boundary Conditions and Roughness

The TUFLOW model was established over a 2.5 meter grid, with elevations extracted from the topographic data discussed in **Section 3.1**.

The flood behaviour on the proposed development site is generally controlled by Tramway Creek running parallel to the southern boundary of the site and Cookson Creek (a tributary of Tramway Creek) running through the site. The Tramway Creek system is expected to be of higher importance as it conveys a significantly greater catchment compared to Cookson Creek.

The Slacky creek system was also incorporated to the TUFLOW model to an extent downstream enough (just downstream of Princes Highway) to ensure that any diversion and break out from Slacky Creek to Tramway Creek is simulated.

The outflow boundary condition has been set up at the location of the confluence of Cookson Creek and Tramway Creek which is upstream from the ocean discharge. A H-Q outflow boundary condition has been defined in TUFLOW model for this boundary. The outflow boundary was set at a location far enough downstream of the site to ensure that the model establishes an accurate tailwater condition. A number of sensitivity scenarios were set up and run to investigate the potential impacts of tidal changes on the flood behaviour around the study area. The results of the sensitivity scenarios show that the flood levels at the proposed development site are not anticipated to be impacted by the tide significantly. Therefore, no tidal downstream boundary condition was set for this model.

Inflow hydrographs from the WBNM model were applied to the upstream catchments, ensuring enough routing time/distance, to allow the model to stabilise and accurately predict flooding behaviour at the site. The hydraulic model schematisation for the TUFLOW model is shown in **Figure 5-1**.

Roughness areas across the TUFLOW modelling domain were digitised based on aerial imagery and site inspection. The Manning's roughness values adopted in the hydraulic model are presented in **Table 5-1**. The spatial distribution of Manning's n adopted in the TUFLOW model are shown in **Figure 5-2**.

Table 5-1 Manning's n Values

| Land Use Type            | Manning's n Value |
|--------------------------|-------------------|
| Forests/Dense vegetation | 0.09              |
| Open Space/Parkland      | 0.04              |
| Lumped Urban Residential | 1.0               |
| Creek-Lightly Vegetated  | 0.05              |
| Creek-Heavily Vegetated  | 0.09              |
| Rail Corridor            | 0.08              |
| Roads/Pavement           | 0.02              |
| Buildings                | 1.0               |



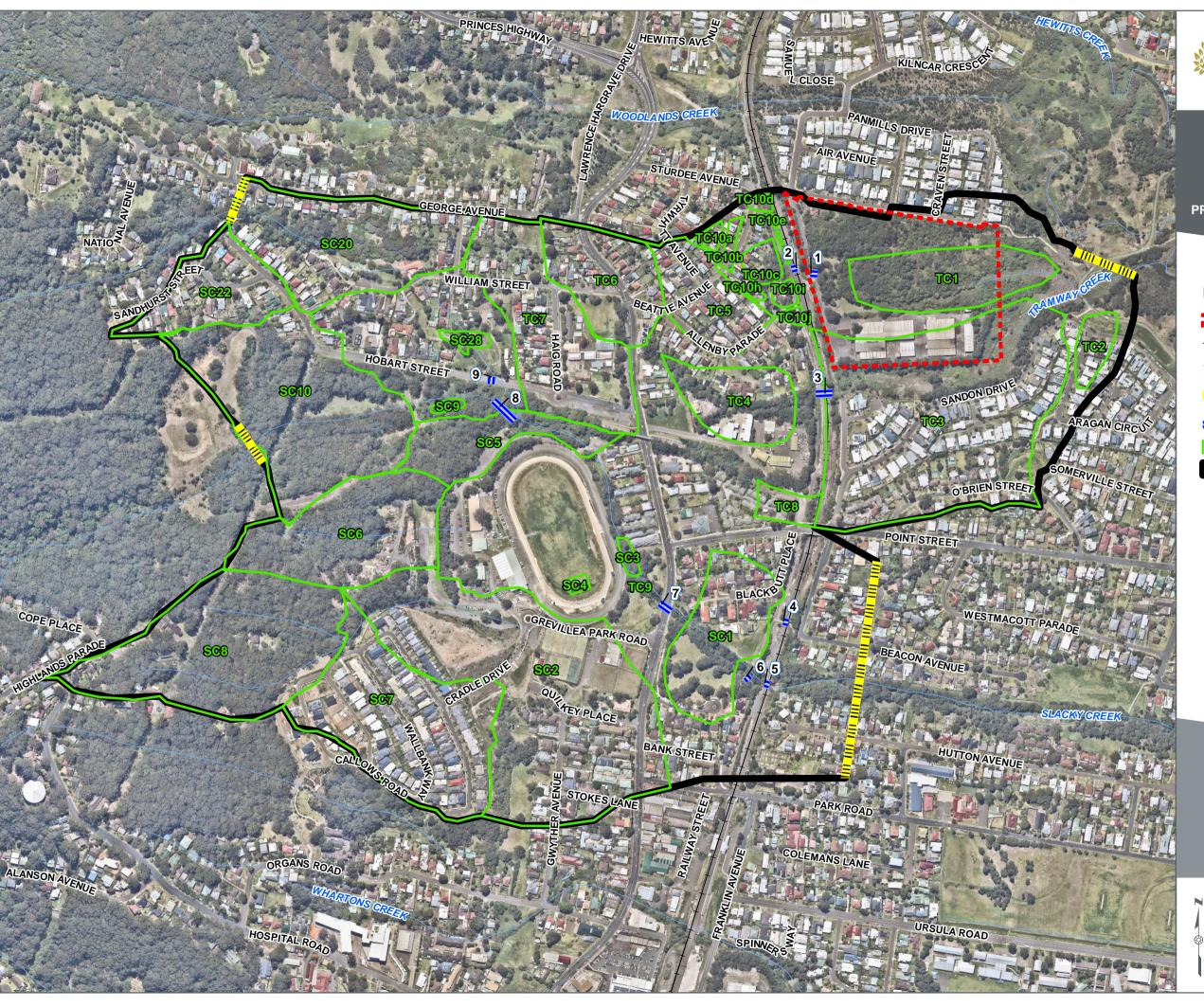
# 5.3 Existing Hydraulic Structures Modelled

The major existing hydraulic structures within the study areas were identified and incorporated to the predevelopment scenario. The location and description of the structures is shown on **Figure 5-1**. The configuration of the proposed culvert structures is provided in **Table 5-2**. The information regarding the hydraulic structures was sourced from RHCFS and was verified by a site visit undertaken to observe all of these structures.

Table 5-2 Existing Culverts Configurations

| Structure ID | Watercourse   | Street or<br>Landmark             | Structure Type | Culvert<br>Configurations |
|--------------|---------------|-----------------------------------|----------------|---------------------------|
| 1            | Cookson Creek | Geragthy Street                   | Culvert        | (1x) 675 RCP              |
| 2            | Cookson Creek | Illawarra<br>Railway              | Culvert        | (1×) 600 RCP              |
| 3            | Tramway Creek | Illawarra<br>Railway              | Culvert        | (1x) 2100 RCP             |
| 4            | Slacky Creek  | Illawarra<br>Railway<br>Underpass | Culvert        | (1x) 4800x4050<br>RCBC    |
| 5            | Slacky Creek  | Illawarra<br>Railway              | Culvert        | (1x) 4800x5900<br>RCBC    |
| 6            | Slacky Creek  | Footbridge                        | Culvert        | (2x) 2850x3000<br>RCBC    |
| 7            | Slacky Creek  | Princes Highway                   | Culvert        | (4x) 2440x1680<br>RCBC    |
| 8            | Slacky Creek  | Old Coal<br>Haulage<br>Railway    | Culvert        | (3x) 2750x1700<br>RCBC    |
| 9            | Slacky Creek  | Hobart Street                     | Culvert        | (3x) 1200 RCP             |

# 5.4 Culverts Blockage


The hydraulic assessment in our study included a blockage scenario applied to the culverts for both predevelopment and post development scenarios.

The blockage factors applied to the culverts are in accordance with Wollongong City Council's Review of Conduits Blockage Policy Summary Report-Final dated June 2016.

Two scenarios of blocked and un-blocked were run for the pre-development and post-development scenarios with the worst case scenario extracted and presented in the results and maps.



Figure 5-1 Hydraulic Model Schematization





# Hydraulic Model Schematization

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

#### Legend

Site Boundary

----- Railway (LPI)

Watercourse (LPI)

Inflow / Outflow Boundary Condition

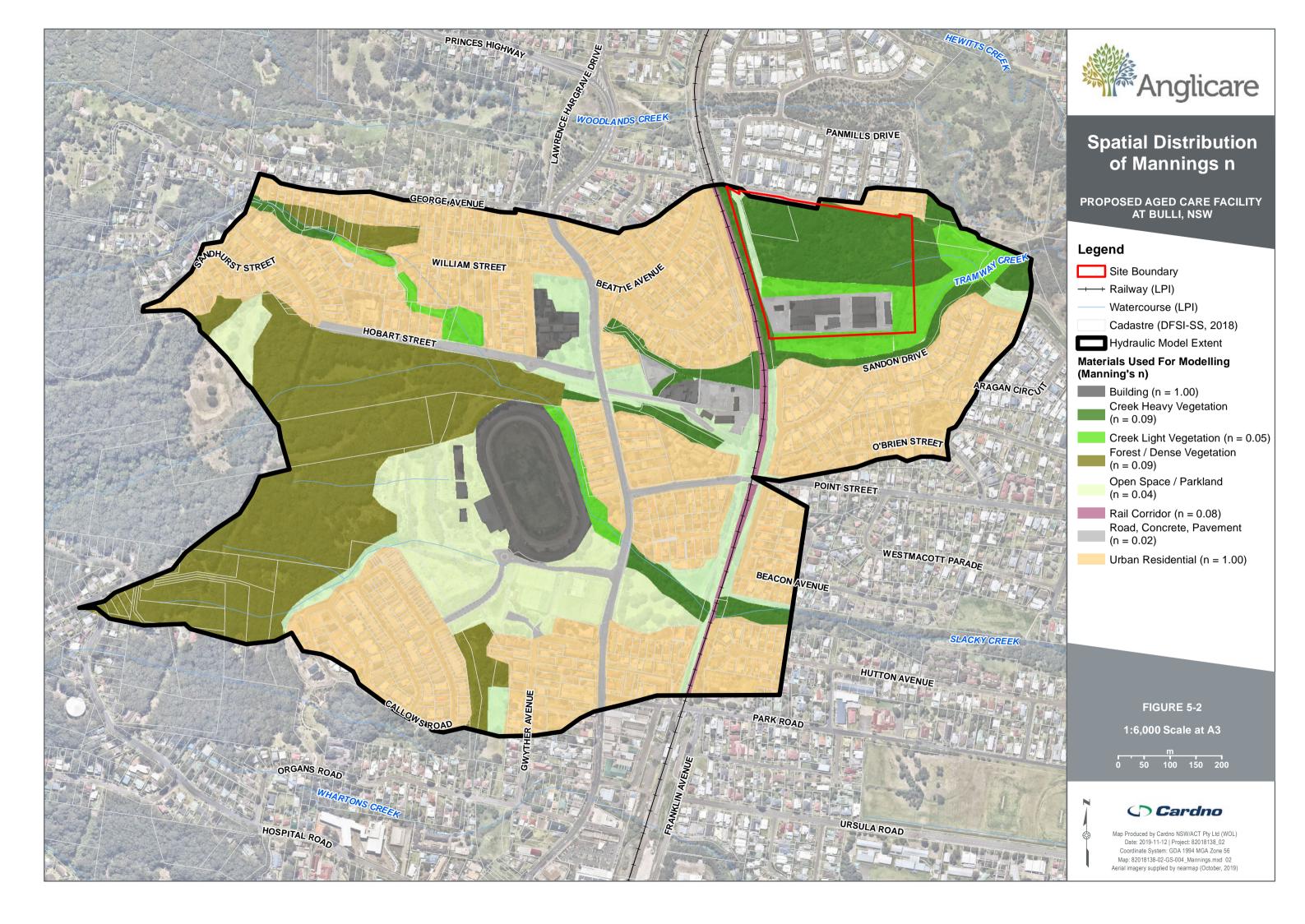
Existing Culvert Structure

Source Area Boundary

Hydraulic Model Extent

FIGURE 5-1 1:6,000 Scale at A3

m 0 50 100 150 200






Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-003\_HydraulicModel.mxd 04
Aerial imagery supplied by nearmap (October, 2019)



Figure 5-2 Spatial Distribution of manning's n





## 5.5 Pre-Development Scenario

The model set up for the pre-development scenario was run for the 100 year ARI design event and the PMF. The pre-development simulation results are presented in **Appendix C**.

The existing culverts under the Illawarra Railway and Geraghty Street do not have sufficient capacity to convey the 100 year ARI design event. Therefore, it is predicted that the Illawarra Railway and Geragthy Street will be overtopped by the 100 year ARI design event from Cookson's Creek catchment. The flow conveyed by the culverts is predicted to discharge into Cookson's Creek. The flows overtopping the railway embankment are predicted to flow south along Geragthy Street and then flood the site in a 100 year ARI design event. A more severe flooding of the site from Cookson's creek catchment is anticipated in PMF.

The flood behaviour in Tramway Creek represents a more complex situation. Significant flows from Slacky Creek are predicted to be diverted into the Tramway catchment in a 100 year ARI design event and greater events up to and including PMF. This is a result of the controls imposed by the culverts under Hobart Street and the disused Bulli Colliery railway. The flows diverted from Slacky Creek and the flows from the Tramway Creek are directed into a single 2.1m RCP pipe culvert under the Illawarra Railway just upstream of the proposed development site. Significant headwater is predicted upstream of this culvert in a 100 year ARI design event. However, no overtopping of the rail at the location of this culvert is predicted in the flows up to and including 100 year ARI design event. Significant overtopping of the Illawarra Railway is expected at this location in PMF. Tramway Creek is predicted to overtop the rail embankment in PMF and then flood the proposed development site.

### 5.6 Post-Development Scenario

A post-development scenario was set up based on the pre-development scenario and incorporating the following updates:

- > The design surface levels for the proposed development. The proposed level was determined based on the PMF flood level as the development falls under an Essential Community Facility land use category.
- > Updating the existing pipe under the Geragthy Street to suit the road development and incorporate a new culvert to discharge into Cookson Creek within the site in a location to the south of the existing discharge point. Refer to **Figure 6-1** for more details on the culverts modifications arrangement).
- > Proposed swale to the west of Geraghty Street to capture incoming flows from the railway corridor. The proposed swale will be designed to have grated inlets along the base of the swale for flows to enter a series of large box culverts underneath the swale and convey these flows toward the respective creek outfalls.
- > A number of proposed culverts to suit development proposal:
  - A series of box culverts underneath Geraghty Street to convey flows from the railway corridor across the development.
  - A series of box culverts underneath internal road to convey flows from upstream culverts underneath Geraghty Street to the Cookson Creek outfall.
  - A series of box culverts parallel to Geraghty Street underneath the proposed swale. The culverts have been designed to convey external flows entering the western site boundary to the respective outfalls on Cookson Creek and Tramway Creek.

The post-development scenario was run for the 100 year ARI design event and the PMF. The flood result maps for the post development scenario as well as the impact maps are in **Appendix C**.

The proposed swale combined with a series of box culverts underneath the base of the swale is predicted to provide some flood mitigation benefits for the proposed development in 100 year ARI design event and PMF. Flows overtopping the railway from the Tramway Creek will be diverted from the proposed site by the large culverts underneath the swale and ultimately into the Tramway Creek. A portion of the flows overtopping the rail from Cookson's Creek catchment enters the proposed longitudinal box culverts underneath the swale and is diverted to the north. Flows contributing to this catchment continue downstream into Cookson Creek in a similar way to the pre-development case via proposed cross culverts underneath Geraghty Street and the internal road.

## 5.7 Impacts

An impacts assessment was undertaken by comparing the post-development results to the pre-development results for 100 year ARI design event and PMF.



The proposed development is expected to result in increases in Maximum Water Surface Elevation (MWSE) of generally less than 100mm and up to 1m is limited spots along the Cookson Creek (within the site) in a 100 year ARI design events. Marginal impacts in a 100 year ARI design event are predicted within Tramway Creek at the outlet of the proposed culvert outfall. These impacts are localised due to the change in elevation profile modelled in this area to represent tail out drains from the culvert headwall to the creek invert.

Increases in MWSE of generally up to 100mm and up to 1 m (in some areas) are predicted within Cookson's Creek within the site as a result of the proposed development in PMF. Increase in MWSE of generally less than 100mm (and up to 350mm in localised areas) is anticipated within Tramway Creek as a result of the proposed development (to the south of the proposed site) in PMF. Increases in MWSE of up to 0.5m are predicted on the southern extent of Geraghty Street due to overtopping flows from the proposed swale. It should be noted that the depths across this area is shallow (below 300mm) and the increase in PMF level is mainly attributed by the increase in elevation as a result of the development fill.

## 5.8 Climate Change Impacts

Climate Change can potentially result in sea level rise and increased rainfall intensity in the future. The rise in sea level and increased rainfall intensity may impact on the flooding behaviour of Tramway Creek and Cookson Creek. We have studied the Review of Hewitts Creek Flood Study, Final Report (BMT WBM, August 2016) and set up a worse case climate change scenario based on this report. The climate change scenario for 100 year ARI design event comprises the following:

- Sea Level Rise of 0.9m
- Increased rainfall intensity of 30%

We note that our TUFLOW model incorporates a downstream outflow boundary immediately upstream of the ocean. Therefore, we have increased the initial water condition at the outlet boundary by 0.9m as a conservative approach for the purpose of this study. Sea level rise has been applied to 100 year ARI storm tide of 2.6m AHD in accordance with Review of Hewitts Creek Flood Study, Final Report (BMT WBM, August 2016).

The modelled climate change scenario is predicted to increase the peak flood levels in Tramway Creek (south of the site) by up to 350mm for the proposed development case in a 100 year ARI design event. Increases in maximum flood levels of up to 70mm are expected in Cookson Creek within the site in a 100 year ARI design event.

The maximum flood levels as a result of the modelled climate change is predicted to be less than proposed development PMF flood levels.

Refer to **Appendix C** for a map showing the predicted impacts of the climate change in the development case scenario in a 100 year ARI design event.

#### 5.9 Hewitts Creek Management Schemes

We have reviewed the mitigation schemes as proposed and discussed in Hewitts Creek Floodplain Risk Management Study and Plan (December 2002). Only a few of the schemes were identified to be potentially relevant as they involve works around the diversion from Slacky Creek to Tramway Creek or updating the culverts over Tramway Creek.

We have only considered the elements of these schemes which could potentially have implication to our study area. These elements are as follows:

- Incorporation of larger culverts to the rail embankment on Tramway Creek this may result in increasing the flood levels downstream of the railway (Scheme T5). Therefore, this option was further investigated within the TUFLOW model. It should be noted that the proposed development has been previously approved. Therefore, we anticipated that this mitigation scheme should not have any impacts on the proposed development.
- Removal of the diversion from Slacky Creek to Tramway Creek this is anticipated to reduce the flows into Tramway Creek and potentially reduce the flood levels in Tramway Creek around the site. Therefore, we have not modelled this option.
- Formalization of diversion from Slacky Creek to Tramway Creek this option is not anticipated to increase the rate of the flows diverted from Slacky Creek to Tramway Creek. Therefore, this option was not modelled as it is not anticipated to have impacts on the development.



#### 5.9.1 Modelled Scheme

Scheme T5 comprises of the construction of a new high level culvert through the railway embankment, 6m wide by 4m high; to the south of the low level culvert (culvert just south west of the proposed development site over Tramway Creek). The pre-development and post-development TUFLOW models were updated by incorporating the proposed culvert and simulated for the 100 year ARI and PMF events.

Based on the results, the proposed culvert is predicted to convey peak flows of greater than 90m³/s in PMF and approximately 20m³/s 100 year ARI peak flow. The proposed scheme is predicted to reduce the maximum flood levels upstream of the proposed pipe by up to 1.5m in PMF and 4.7m in the 100 year ARI event. The proposed scheme is anticipated to significantly reduce flooding at railway location. The maximum flood levels in Tramway Creek downstream of the proposed pipe is predicted to increase by up to approximately 60mm in PMF and 220mm in the 100 year ARI event. No overbank flooding is predicted from the 220mm increase in the 100 year ARI event downstream of the proposed culvert and is considered negligible compared to the predicted benefits across the residential area upstream of the railway corridor. Additionally, the increase in level is not anticipated to impact the proposed development level or existing development along the south of Tramway Creek as a 500mm freeboard has been considered in determining the minimum development levels. The proposed scheme is predicted to reduce flooding of the buildings upstream of the rail and rail overtopping in the southern side of the proposed development. Therefore, the proposed scheme is predicted to improve the flood immunity upstream while not significantly worsening the flooding on the proposed development site.

Difference maps have been prepared showing the impacts on the pre-development scenario and post development scenario as a result of construction of Scheme T5 (refer to **Appendix C**).

We note that the proposed development has already been approved and that the current study is to address changes to the proposed development layout. Therefore, we believe that the proposed schemes shall not be taken into consideration in the impacts assessment for the proposed development. Assessment of potential impacts of Scheme T5 was undertaken for information of WCC as requested.

A copy of the Floodplain Risk Management Plan extracted from Council's Hewitts Creek FRMP showing the proposed mitigation schemes including Scheme T5 is included in Appendix E of this report.

# 5.10 Potential Impacts on Rail Corridor

A Sydney Train railway track runs just along the western boundary of the proposed development site. The rail embankment is predicted to be overtopped in a 100 year ARI design event. The overtopping is significant in PMF event.

The overtopping of the rail occurs in two different systems:

- Northern system Cookson Creek catchment
- Southern system Greater Tramway Creek catchment (catchment immediately upstream of the Tramway Creek culvert).

DPE requires that the overland flows and flooding of the rail be assessed in more detail in order to determine the impacts on the rail corridor.

We note that the northern system is controlled by a local catchment. Therefore, this catchment was further delineated to allow for a more detailed assessment of the overland flows. The catchment delineation and WBNM hydrological model were updated accordingly and updated inflow hydrographs were extracted to be incorporated to the TUFLOW model. The inflow boundaries within the TUFLOW model were also updated to suit accordingly.

The southern system is controlled by a larger regional catchment. Further delineation of the catchment immediately upstream of the rail at this location will not provide any added benefits in terms of a more detailed impacts assessment.

The development layout has been modified to eliminate obstruction on Cookson Creek to maintain consistency with pre-development flood behaviour.

Flows contributing to the Tramway Creek catchment in the southern extents would be conveyed within a series of box culverts underneath the swale and ultimately drains to Tramway Creek up to the PMF event. No change in flooding regime is predicted in 100 year ARI design event.

A closer assessment of the impacts within the rail corridor was undertaken. The outcome of the assessment can be summarized as follows:

No impacts in 100 year ARI design event



- No increase in peak water level at rail formation or rail track in PMF event
- Increase in peak flows through the rail corridor drainage by up to 3m³/s in PMF event
- No increase in peak flow velocities in PMF event and therefore no risk of additional scouring

# **5.11 Minimum Development levels**

The proposed development is for an aged care facility, which falls within the critical category of Chapter E13: Floodplain Management of Wollongong City Council Development Control Plan and requires the following:

- Minimum development level of PMF plus 500mm. The design levels will need to be revised to suit this requirement in the next phases of the development.
- Reliable access is required for pedestrian and vehicles during PMF. The current road design levels meet this requirement.



# **6** Stormwater Drainage Concept

A stormwater drainage concept has been prepared based the proposed architectural layout, road design and existing survey/contour information available. It consists of the following components:

- > Pit and piped drainage for Geraghty Street
- > Internal road pit and pipework for the retirement village area
- Vegetated swale drainage for the southern end of the retirement village
- > Vegetated swale drainage for the western properties adjacent to the turpentine forest
- > Water quality treatment using raingardens/bio-retention for individual properties and isolated parking areas
- Water quality basins at the eastern end of the property adjacent to Cookson's Creek outside the 100 year flood extents
- Internal road pit and pipework for the RACF /independent living area (as referred to in the layout plans provided by architects) including raingardens for water quality treatment
- > Gross pollutant traps at the south east and south west corners of the development

The internal site drainage discharges mainly to the two basins which outlet to Cookson's Creek. Geraghty Street, Western residences, and the lower southern portion of for the RACF independent living area discharges to Tramway Creek. A small portion of the proposed residences along the northwest corner of the property discharge to Wilkies Street and outlet to the kerb and gutter. **Figure 6-1** illustrates the stormwater drainage arrangement.

The concept shown by GHD Anglican Retirement Villages - Surface Water Management Report – May 2006 stormwater management plan differs to the proposal submitted by Cardo. Main differences are:

- > Only one water quality basin nominated centrally near Cookson's Creek (in the flood plain).
- > The previous proposal does not take into account the natural contours of the site or adjacent roads.
- > The architectural and road layout has changed
- > A bridge no longer connects the two sides of the development
- > Overland flow directions have been confirmed by ground survey
- Water quality requirements are still the same as per the GHD report but rainwater tanks overflow to a raingarden where possible before connecting into the piped system

In general, the drainage concept is consistent with the concept proposed by GHD and has been updated to reflect the latest updates to the proposed development layout.

# 6.1 Stormwater Quality Objectives

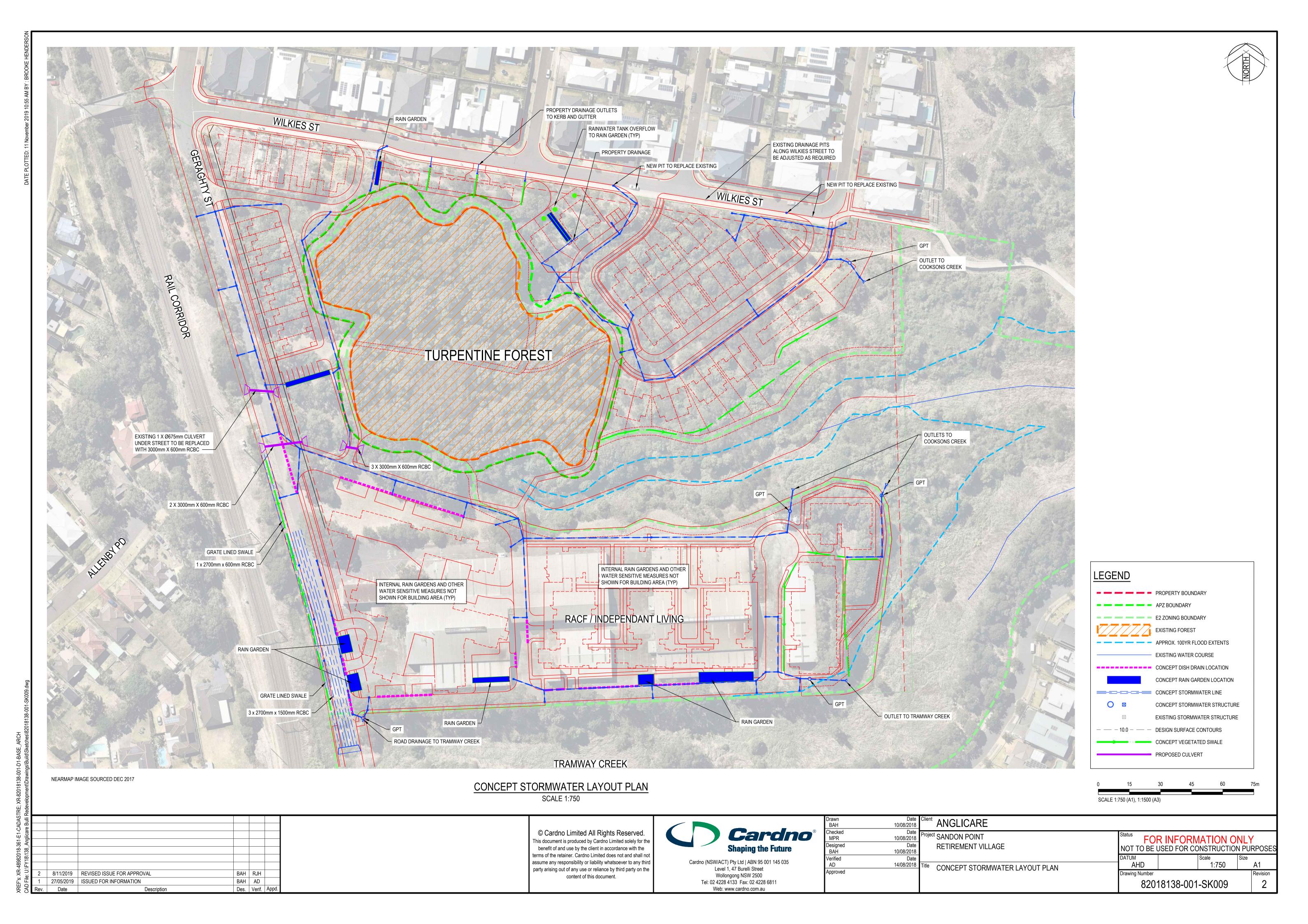

We understand that the proposed the development falls within definition of multi-dwelling housing development. Wollongong City Council DCP-Chapter E15: Water Sensitive Urban Design sets the stormwater quality performance target for multi-dwelling housing development as shown in Table 6-1 below.

Table 6-1 WSUD Stormwater Quality Performance Targets

| Performance Target Reduction Loads | Multi-Dwelling Housing<br>Development |  |
|------------------------------------|---------------------------------------|--|
| Gross Pollutants                   | 90%                                   |  |
| Total Suspended Solids             | 80%                                   |  |
| Total Phosphorus                   | 55%                                   |  |
| Total Nitrogen                     | 40%                                   |  |



Figure 6-1 Drainage Concept Plan





## 7 Conclusion

The current study can be concluded as follows:

- The current study has been undertaken for Anglicare to support their concept plan modification application for an aged care facility in Bulli, NSW.
- > A WBNM model was developed to determine the flow hydrographs for the study catchment.
- > A two-dimensional TUFLOW model was developed to predict the flood behaviour on the site.
- The runoff from the Cookson's Creek catchment is predicted to overtop the railway and then flood the Geragthy Street and the site in pre-development scenario in a 100 year ARI design event and PMF. Tramway Creek is anticipated to overtop the rail in pre-development scenario in 100 year ARI design event and flood the site.
- The proposed development scenario raises the site levels to PMF plus freeboard, incorporates a swale, inlet pits and series of box culverts to the western boundary of the site and proposes replacement of the culvert under the Geragthy Street due to constraints imposed by the proposed development layout. The proposed development is predicted to result in a development which is above the PMF flood levels.
- > Impacts in both 100 year ARI and PMF events are entirely contained within the riparian corridor.
- Impacts of climate change was assessed by setting up and running a climate change scenario which comprised of raising the sea level by 0.9m and increasing the rainfall intensity by 30%. Based on the results, increases in maximum water levels of up to 350mm are predicted in Tramway Creek as a result of the modelled climate change in a 100 year ARI design event. However, the 100 year ARI flood levels increase as a result of climate change are predicted to be less than PMF flood levels.
- > The proposed mitigation schemes investigated in this study are not anticipated to result in significant impacts downstream of the railway. It was demonstrated that the proposed scheme improved the upstream flooding considerably.
- A concept drainage has been prepared based on the updated layout (refer to Figure 6-1 for a copy of the concept drainage plan). In general, the drainage concept has been prepared consistent with the approved concept previously proposed by GHD with updates to reflect the changes to the development layout and taking into the account the site constraints.

**APPENDIX** 



WBNM INPUT PARAMETERS





Steps 2.1 to 2.4: Enter Data for each Subarea in the Model, including Topology, Surface and Flowpath Blocks and Loss Details

|                          |             |       |             |     |   |            |              |           |         | Catchment  | Statistics      |          |            |        |          |
|--------------------------|-------------|-------|-------------|-----|---|------------|--------------|-----------|---------|------------|-----------------|----------|------------|--------|----------|
|                          |             |       |             |     |   |            |              |           |         | Total Area | a [ha]          |          |            |        | 289.5    |
|                          |             |       |             |     |   |            |              |           |         | Total Imp  | ervious Percent | [%]      |            |        | 18.3     |
|                          |             |       |             |     |   |            |              |           |         | No. of Su  | bareas          |          |            |        | 50       |
|                          |             |       |             |     |   |            |              |           |         | No. of Su  | bareas with WC  | Factor   |            |        | 50       |
| 2.1                      |             |       |             |     |   |            |              | 2.2       |         | 2.3        |                 | 2.4      |            |        |          |
| <b>Catchment Details</b> |             |       |             |     |   |            |              | Lag Paran | neters  | Flowpath   | ns              | Rainfall | Losses     |        |          |
| Routing Options          | Sort Subare | as    | Import Mid/ | Mif |   | •          |              | Popi      | ulate   | Po         | pulate          | Contin   | uing Loss  | Rate - | Populate |
| <u> </u>                 |             |       | •           |     |   |            |              | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      | 0        |
|                          |             |       |             |     |   |            | _            |           |         |            |                 |          |            |        |          |
| Subarea Name             | D/S Subarea | Area  | CG Coord    |     |   | ords (MGA) | Imp Fraction | С         | Imp Lag | Type       | Value           | IL       | CLR        | Imp IL |          |
| laa                      |             | ha    | E           | N   | E | N          | %            | 1         |         |            |                 | mm       | mm/hr      | mm     |          |
| SC27                     | SC26        | 21.72 | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC26                     | SC25        | 15.35 | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC25                     | SC24        | 13.82 | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC24                     | SC21        | 4.58  | 0           | 0   | 0 | 0          | 24           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC23                     | SC21        | 6.23  | 0           | 0   | 0 | 0          | 19           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC21                     | SC20        | 2.37  | 0           | 0   | 0 | 0          | 37           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC22                     | SC20        | 2.66  | 0           | 0   | 0 | 0          | 70           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC20                     | SC28        | 5.59  | 0           | 0   | 0 | 0          | 60           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC28                     | SC5         | 2.89  | 0           | 0   | 0 | 0          | 46           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC19                     | SC16        | 20.96 | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC18                     | SC16        | 6.91  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC16                     | SC15        | 4.13  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC17                     | SC15        | 3.38  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC15                     | SC12        | 4.24  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC14                     | SC13        | 22.31 | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC13                     | SC12        | 3.79  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC12                     | SC11        | 20.8  | 0           | 0   | 0 | 0          | 17           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC11                     | SC10        | 18.73 | 0           | 0   | 0 | 0          | 3            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC10                     | SC9         | 7.79  | 0           | 0   | 0 | 0          | 5            | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC9                      | SC5         | 3.02  | 0           | 0   | 0 | 0          | 38           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |
| SC5                      | SC3         | 2.25  | 0           | 0   | 0 | 0          | 1            | 1.29      | 0.1     | R          | 1               |          | 2.5        | 0      |          |
| SC6                      | SC4         | 4.77  | 0           | 0   | 0 | 0          | 2            | 1.29      | 0.1     | R          | 1               |          | 2.5        | 0      |          |
| SC4                      | SC3         | 6.96  | 0           | 0   | 0 | 0          | 7            | 1.29      | 0.1     | R          | 1               |          | 2.5        | 0      |          |
| SC3                      | SC1         | 2.25  | 0           | 0   | 0 | 0          | 45           | 1.29      | 0.1     | R          | 1               |          | 2.5        | 0      |          |
| SC8                      | SC7         | 7.51  | 0           | 0   | 0 | 0          | 13           | 1.29      | 0.1     | R          | 1               |          | 2.5        | 0      |          |
| SC7                      | SC2         | 6.68  | 0           | 0   | 0 | 0          | 70           | 1.29      | 0.1     | R R        | 1               |          | 2.5<br>2.5 | 0      |          |
|                          |             |       |             | _   | - | -          | - 1          |           |         |            | 1               | 1 1 -    |            |        |          |
| SC2                      | SC1         | 12.24 | 0           | 0   | 0 | 0          | 40           | 1.29      | 0.1     | R          | •               | 0        | 2.5        | 0      |          |
| SC1                      | dummy1      | 8.58  | 0           | 0   | 0 | 0          | 41           | 1.29      | 0.1     | R          | 1               | 0        | 2.5        | 0      |          |

**Catchment Statistics** 

| TC7    | TC4    | 5.27  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
|--------|--------|-------|---|---|---|---|----|------|-----|---|---|---|-----|---|
| TC6    | TC4    | 2.91  | 0 | 0 | 0 | 0 | 58 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС5    | TC4    | 2.18  | 0 | 0 | 0 | 0 | 70 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС8    | TC4    | 0.54  | 0 | 0 | 0 | 0 | 31 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС9    | TC4    | 2.7   | 0 | 0 | 0 | 0 | 70 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС4    | TC3    | 6.96  | 0 | 0 | 0 | 0 | 60 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС3    | TC1    | 12.15 | 0 | 0 | 0 | 0 | 51 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС10а  | TC10b  | 0.24  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10b  | TC10c  | 0.3   | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС10с  | TC1    | 0.81  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10h  | TC10i  | 0.14  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10i  | TC1    | 0.23  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10j  | TC1    | 0.19  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ΓC10d  | TC10e  | 0.24  | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| ГС10е  | TC10f  | 0.056 | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10f  | TC10g  | 0.043 | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC10g  | TC1    | 0.039 | 0 | 0 | 0 | 0 | 50 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC2    | TC1    | 2.31  | 0 | 0 | 0 | 0 | 5  | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| TC1    | dummy2 | 9.68  | 0 | 0 | 0 | 0 | 13 | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| dummy1 | dummy3 | 0     | 0 | 0 | 0 | 0 | 0  | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| dummy2 | dummy3 | 0     | 0 | 0 | 0 | 0 | 0  | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |
| dummy3 | SINK   | 0     | 0 | 0 | 0 | 0 | 0  | 1.29 | 0.1 | R | 1 | 0 | 2.5 | 0 |

**APPENDIX** 

3

WBNM RESULTS



#### 6 Results-Tables



View Results in Tabular Format

Results for Runfile: N:\Oran Park\Projects\FY18\138\_Anglicare Bulli Redevelopment\Des-An\Hydrology\WBNM\series2 RFIS 20190508\temp\_series3\_Meta.out

| View F                   | Results at L | ocation: | Stream Top | )      | - | Flowra | ates |   | Volumes |    | Time to | Peaks |    | Structures |  |
|--------------------------|--------------|----------|------------|--------|---|--------|------|---|---------|----|---------|-------|----|------------|--|
| Storm No.                | 1            | 2        | 3          | 4      | 5 | 6      | 7    | 8 | 9       | 10 | 11      | 12    | 13 | 14         |  |
| ARI                      | 100          | 100      | PMF        | PMF    |   |        |      |   |         |    |         |       |    |            |  |
| Duration                 | 90           | 120      | 30         | 60     |   |        |      |   |         |    |         |       |    |            |  |
| Catchment Area           | 289.5        | 289.5    | 289.5      | 289.5  |   |        |      |   |         |    |         |       |    |            |  |
| Impervious percent (%)   | 18.3         | 18.3     | 18.3       | 18.3   |   |        |      |   |         |    |         |       |    |            |  |
| Rainfall Depth (mm)      | 139.51       | 159.33   | 221.41     | 325.22 |   |        |      |   |         |    |         |       |    |            |  |
| Excess Rainfall (mm)     | 136.45       | 155.24   | 220.39     | 323.18 |   |        |      |   |         |    |         |       |    |            |  |
| Runoff Depth (mm)        | 133.06       | 149.21   | 218.71     | 320.42 |   |        |      |   |         |    |         |       |    |            |  |
| Time to Rain Peak (mins) | 30           | 35       | 10         | 10     |   |        |      |   |         |    |         |       |    |            |  |

| VOLUMES at Outlet [m3] |        |        |        |        |
|------------------------|--------|--------|--------|--------|
| SC27                   | 29225  | 33044  | 47676  | 69857  |
| SC26                   | 49710  | 56083  | 81305  | 119115 |
| SC25                   | 67987  | 76546  | 111497 | 163336 |
| SC24                   | 73977  | 83204  | 121475 | 177928 |
| SC23                   | 8495   | 9648   | 13726  | 20138  |
|                        | 85522  | 96205  | 140334 | 205562 |
| SC21                   |        |        |        |        |
| SC22                   | 3680   | 4197   | 5879   | 8631   |
| SC20                   | 96531  | 108531 | 158377 | 231992 |
| SC28                   | 100206 | 112550 | 164604 | 241089 |
| SC19                   | 28214  | 31905  | 46016  | 67427  |
| SC18                   | 9366   | 10619  | 15196  | 22295  |
| SC16                   | 43101  | 48726  | 70262  | 102987 |
| SC17                   | 4587   | 5206   | 7444   | 10912  |
| SC15                   | 53335  | 60254  | 86986  | 127506 |
| SC14                   | 30010  | 33928  | 48972  | 71749  |
| SC13                   | 35072  | 39620  | 57277  | 83919  |
| SC12                   | 115938 | 130628 | 189708 | 277988 |
| SC11                   | 140208 | 157497 | 230414 | 337493 |
| SC10                   | 150009 | 168168 | 247186 | 361994 |
| SC9                    | 153652 | 172035 | 253593 | 371344 |
|                        | 256279 | 286985 | 422822 |        |
| SC5                    |        |        |        | 619143 |
| SC6                    | 6473   | 7344   | 10500  | 15401  |

| SC4                   | 15909  | 18028  | 25807  | 37860  |
|-----------------------|--------|--------|--------|--------|
| SC3                   | 274595 | 307388 | 453236 | 663689 |
| SC8                   | 10216  | 11596  | 16531  | 24256  |
| SC7                   | 19440  | 22081  | 31287  | 45919  |
| SC2                   | 36153  | 41006  | 58238  | 85480  |
| SC1                   | 320807 | 358929 | 529530 | 775481 |
| TC7                   | 7253   | 8257   | 11637  | 17077  |
| TC6                   | 4013   | 4574   | 6427   | 9434   |
| TC5                   | 3016   | 3440   | 4818   | 7073   |
| TC8                   | 739    | 841    | 1190   | 1746   |
| TC9                   | 3735   | 4260   | 5967   | 8761   |
| TC4                   | 28360  | 32288  | 45419  | 66680  |
| TC3                   | 45038  | 51192  | 72221  | 106040 |
| TC10a                 | 330    | 376    | 529    | 777    |
| TC10b                 | 742    | 845    | 1191   | 1748   |
| TC10c                 | 1855   | 2114   | 2978   | 4372   |
| TC10h                 | 192    | 219    | 309    | 453    |
| TC10i                 | 508    | 579    | 816    | 1198   |
| TC10j                 | 261    | 298    | 419    | 615    |
| TC10d                 | 330    | 376    | 529    | 777    |
| TC10e                 | 407    | 463    | 653    | 958    |
| TC10f                 | 466    | 531    | 748    | 1098   |
| TC10g                 | 519    | 592    | 833    | 1224   |
| TC2                   | 3141   | 3565   | 5087   | 7461   |
| TC1                   | 64411  | 73045  | 103621 | 152117 |
| dummy1                | 320807 | 358929 | 529530 | 775481 |
| dummy2                | 64411  | 73045  | 103621 | 152117 |
| dummy3                | 385217 | 431974 | 633150 | 927598 |
|                       |        |        |        |        |
| PEAK FLOWRATES [m3/s] |        |        |        |        |
| PEAK Stream Top       |        |        |        |        |
| SC27                  | 0      | 0      | 0      | 0      |
| SC26                  | 10.083 | 10.005 | 23.68  | 21.675 |
| SC25                  | 13.857 | 14.52  | 36.839 | 36.25  |
| SC24                  | 17.431 | 18.122 | 46.955 | 48.704 |
| SC23                  | 0      | 0      | 0      | 0      |
| SC21                  | 20.498 | 21.277 | 55.512 | 58.581 |
| SC22                  | 0      | 0      | 0      | 0      |
| SC20                  | 21.661 | 22.508 | 58.741 | 62.932 |
| SC28                  | 22.75  | 23.443 | 61.182 | 67.311 |
| SC19                  | 0      | 0      | 0      | 0      |
| SC18                  | 0      | 0      | 0      | 0      |
| SC16                  | 13.816 | 13.536 | 31.738 | 28.39  |
| SC17                  | 0      | 0      | 0      | 0      |
|                       |        |        |        |        |

| SC15               | 16.009 | 16.468 | 39.988  | 36.285  |
|--------------------|--------|--------|---------|---------|
| SC14               | 0      | 0      | 0       | 0       |
| SC13               | 10.295 | 10.224 | 24.21   | 22.218  |
| SC12               | 27.765 | 28.795 | 71.546  | 66.632  |
| SC11               | 30.97  | 31.92  | 83.157  | 84.581  |
| SC10               | 34.327 | 35.215 | 91.456  | 99.594  |
| SC9                | 35.609 | 36.717 | 93.484  | 105.674 |
| SC5                | 58.818 | 60.685 | 154.596 | 177.052 |
| SC6                | 0      | 0      | 0       | 0       |
| SC4                | 2.947  | 2.753  | 6.271   | 5.429   |
| SC3                | 62.314 | 64.313 | 163.272 | 188.938 |
| SC8                | 0      | 0      | 0       | 0       |
| SC7                | 4.628  | 4.262  | 9.641   | 8.415   |
| SC2                | 8.268  | 7.814  | 17.865  | 15.696  |
| SC1                | 69.736 | 72.088 | 183.002 | 214.224 |
| TC7                | 0      | 0      | 0       | 0       |
| TC6                | 0      | 0      | 0       | 0       |
| TC5                | 0      | 0      | 0       | 0       |
| TC8                | 0      | 0      | 0       | 0       |
| TC9                | 0      | 0      | 0       | 0       |
| TC4                | 10.574 | 9.85   | 20.866  | 16.903  |
| TC3                | 12.931 | 12.589 | 28.831  | 24.453  |
| TC10a              | 0      | 0      | 0       | 0       |
| TC10b              | 0.21   | 0.202  | 0.408   | 0.312   |
| TC10c              | 0.448  | 0.423  | 0.902   | 0.682   |
| TC10h              | 0      | 0      | 0       | 0       |
| TC10i              | 0.124  | 0.12   | 0.239   | 0.184   |
| TC10j              | 0      | 0      | 0       | 0       |
| TC10d              | 0      | 0      | 0       | 0       |
| TC10e              | 0.21   | 0.202  | 0.408   | 0.312   |
| TC10f              | 0.255  | 0.245  | 0.502   | 0.382   |
| TC10g              | 0.288  | 0.275  | 0.573   | 0.437   |
| TC2                | 0      | 0      | 0       | 0       |
| TC1                | 20.57  | 20.095 | 47.611  | 41.791  |
| dummy1             | 71.144 | 73.694 | 182.698 | 218.689 |
| dummy2             | 21.437 | 22.098 | 55.256  | 50.869  |
| dummy3             | 85     | 87.727 | 225.142 | 263.038 |
| PEAK Stream Bottom |        |        |         |         |
| SC27               | 0      | 0      | 0       | 0       |
| SC26               | 7.762  | 8.104  | 20.773  | 20.943  |
| SC25               | 12.621 | 13.076 | 33.784  | 35.327  |
| SC24               | 17.127 | 17.726 | 45.856  | 48.378  |
| SC23               | 0      | 0      | 0       | 0       |
| SC21               | 20.354 | 21.089 | 54.771  | 58.361  |
|                    |        |        |         |         |

| SC              | 22 0      | 0      | 0       | 0       |  |
|-----------------|-----------|--------|---------|---------|--|
| SC              | 20 21.38  | 22.07  | 57.385  | 62.446  |  |
| SC              | 28 22.63  | 23.314 | 60.722  | 67.133  |  |
| SC              | 19 0      | 0      | 0       | 0       |  |
| SC              | 18 0      | 0      | 0       | 0       |  |
| SC              | 16 12.075 | 12.469 | 30.58   | 28.234  |  |
| SC              | 17 0      | 0      | 0       | 0       |  |
| SC              | 15 15.06  | 15.611 | 38.903  | 36.11   |  |
| SC              | 14 0      | 0      | 0       | 0       |  |
| SC              | 13 9.09   | 9.432  | 23.299  | 22.112  |  |
| SC              | 12 24.078 | 24.966 | 64.249  | 64.514  |  |
| SC              | 11 28.815 | 29.658 | 76.594  | 82.419  |  |
| SC              | 10 33.65  | 34.66  | 88.683  | 98.809  |  |
| S               | C9 35.45  | 36.566 | 92.648  | 105.239 |  |
| S               | C5 58.719 | 60.581 | 153.849 | 176.608 |  |
| S               | C6 0      | 0      | 0       | 0       |  |
| S               | C4 2.2    | 2.269  | 5.655   | 5.143   |  |
| S               | C3 62.212 | 64.223 | 162.569 | 188.488 |  |
| S               | C8 0      | 0      | 0       | 0       |  |
| S               | c7 3.526  | 3.625  | 8.941   | 8.068   |  |
| S               | C2 6.108  | 6.337  | 15.864  | 14.873  |  |
| S               | C1 69.277 | 71.671 | 179.457 | 212.208 |  |
| T               | C7 0      | 0      | 0       | 0       |  |
| T               | C6 0      | 0      | 0       | 0       |  |
| T               | C5 0      | 0      | 0       | 0       |  |
| T               | C8 0      | 0      | 0       | 0       |  |
| T               | C9 0      | 0      | 0       | 0       |  |
| T               | C4 8.116  | 8.151  | 18.973  | 16.145  |  |
| T               | C3 10.216 | 10.487 | 25.948  | 23.057  |  |
| TC1             |           | 0      | 0       | 0       |  |
| TC1             |           | 0.18   | 0.395   | 0.303   |  |
| TC1             |           | 0.366  | 0.838   | 0.678   |  |
| TC1             |           | 0      | 0       | 0       |  |
| TC              | _         | 0.108  | 0.233   | 0.178   |  |
| TC              | •         |        | 0       | 0       |  |
| TC1             |           | 0      | 0       | 0       |  |
| TC1             |           | 0.196  | 0.406   | 0.31    |  |
| TC <sup>-</sup> |           | 0.238  | 0.5     | 0.382   |  |
| TC1             | _         | 0.271  | 0.57    | 0.436   |  |
|                 | C2 0      | 0      | 0       | 0       |  |
|                 | C1 17.147 | 17.68  | 44.306  | 40.64   |  |
| dumm            |           | 73.694 | 182.698 | 218.689 |  |
| dumm            |           | 22.098 | 55.256  | 50.869  |  |
| dumm            | ıy3 85    | 87.727 | 225.142 | 263.038 |  |
|                 |           |        |         |         |  |

| PEAK Local Perv |        |       |        |        |
|-----------------|--------|-------|--------|--------|
| SC27            | 9.891  | 9.865 | 23.395 | 21.455 |
| SC26            | 7.543  | 7.431 | 17.492 | 15.636 |
| SC25            | 6.941  | 6.811 | 15.983 | 14.197 |
| SC24            | 2.221  | 2.063 | 4.732  | 4.033  |
| SC23            | 3.054  | 2.884 | 6.546  | 5.717  |
| SC21            | 1.053  | 0.949 | 2.178  | 1.822  |
| SC22            | 0.597  | 0.547 | 1.206  | 0.992  |
| SC20            | 1.508  | 1.373 | 3.173  | 2.675  |
| SC28            | 1.096  | 0.986 | 2.271  | 1.901  |
| SC19            | 9.623  | 9.586 | 22.717 | 20.759 |
| SC18            | 3.945  | 3.771 | 8.655  | 7.588  |
| SC16            | 2.552  | 2.387 | 5.453  | 4.684  |
| SC17            | 2.146  | 1.99  | 4.569  | 3.89   |
| SC15            | 2.61   | 2.444 | 5.58   | 4.803  |
| SC14            | 10.097 | 10.08 | 23.917 | 21.992 |
| SC13            | 2.37   | 2.208 | 5.057  | 4.319  |
| SC12            | 8.34   | 8.255 | 19.487 | 17.559 |
| SC11            | 8.68   | 8.607 | 20.34  | 18.389 |
| SC10            | 4.212  | 4.038 | 9.295  | 8.158  |
| SC9             | 1.289  | 1.163 | 2.693  | 2.262  |
| SC5             | 1.503  | 1.368 | 3.162  | 2.665  |
| SC6             | 2.862  | 2.693 | 6.128  | 5.319  |
| SC4             | 3.767  | 3.593 | 8.23   | 7.21   |
| SC3             | 0.889  | 0.805 | 1.823  | 1.521  |
| SC8             | 3.797  | 3.623 | 8.301  | 7.273  |
| SC7             | 1.369  | 1.239 | 2.867  | 2.412  |
| SC2             | 4.185  | 4.012 | 9.229  | 8.101  |
| SC1             | 3.062  | 2.892 | 6.564  | 5.733  |
| TC7             | 1.743  | 1.598 | 3.687  | 3.12   |
| TC6             | 0.88   | 0.796 | 1.802  | 1.503  |
| TC5             | 0.498  | 0.458 | 1.008  | 0.816  |
| TC8             | 0.296  | 0.276 | 0.601  | 0.468  |
| TC9             | 0.605  | 0.554 | 1.222  | 1.007  |
| TC4             | 1.829  | 1.681 | 3.875  | 3.284  |
| TC3             | 3.512  | 3.339 | 7.624  | 6.672  |
| TC10a           | 0.102  | 0.097 | 0.203  | 0.153  |
| TC10b           | 0.126  | 0.12  | 0.252  | 0.19   |
| TC10c           | 0.32   | 0.298 | 0.65   | 0.508  |
| TC10h           | 0.061  | 0.059 | 0.119  | 0.091  |
| TC10i           | 0.098  | 0.094 | 0.194  | 0.147  |
| TC10j           | 0.082  | 0.078 | 0.161  | 0.123  |
| TC10d           | 0.102  | 0.097 | 0.203  | 0.153  |
| TC10e           | 0.025  | 0.024 | 0.048  | 0.037  |

| TC10f          | 0.019 | 0.019 | 0.037  | 0.029 |  |
|----------------|-------|-------|--------|-------|--|
| TC10g          | 0.017 | 0.017 | 0.033  | 0.026 |  |
| TC2            | 1.484 | 1.349 | 3.119  | 2.628 |  |
| TC1            | 4.687 | 4.516 | 10.437 | 9.179 |  |
| dummy1         | 0     | 0     | 0      | 0     |  |
| dummy2         | 0     | 0     | 0      | 0     |  |
| dummy3         | 0     | 0     | 0      | 0     |  |
| PEAK Local Imp |       |       |        |       |  |
| SC27           | 0.193 | 0.187 | 0.371  | 0.285 |  |
| SC26           | 0.137 | 0.133 | 0.263  | 0.203 |  |
| SC25           | 0.123 | 0.12  | 0.237  | 0.183 |  |
| SC24           | 0.931 | 0.889 | 1.832  | 1.39  |  |
| SC23           | 1     | 0.954 | 1.969  | 1.497 |  |
| SC21           | 0.749 | 0.717 | 1.469  | 1.114 |  |
| SC22           | 1.545 | 1.466 | 3.055  | 2.353 |  |
| SC20           | 2.709 | 2.552 | 5.373  | 4.231 |  |
| SC28           | 1.118 | 1.066 | 2.204  | 1.681 |  |
| SC19           | 0.186 | 0.18  | 0.358  | 0.276 |  |
| SC18           | 0.062 | 0.061 | 0.119  | 0.092 |  |
| SC16           | 0.037 | 0.036 | 0.071  | 0.055 |  |
| SC17           | 0.031 | 0.03  | 0.058  | 0.045 |  |
| SC15           | 0.038 | 0.037 | 0.073  | 0.057 |  |
| SC14           | 0.198 | 0.192 | 0.381  | 0.293 |  |
| SC13           | 0.034 | 0.033 | 0.065  | 0.051 |  |
| SC12           | 2.849 | 2.682 | 5.651  | 4.459 |  |
| SC11           | 0.487 | 0.468 | 0.95   | 0.723 |  |
| SC10           | 0.341 | 0.329 | 0.662  | 0.506 |  |
| SC9            | 0.971 | 0.927 | 1.91   | 1.451 |  |
| SC5            | 0.02  | 0.02  | 0.039  | 0.03  |  |
| SC6            | 0.086 | 0.083 | 0.164  | 0.127 |  |
| SC4            | 0.424 | 0.408 | 0.825  | 0.63  |  |
| SC3            | 0.86  | 0.823 | 1.691  | 1.281 |  |
| SC8            | 0.831 | 0.794 | 1.632  | 1.235 |  |
| SC7            | 3.716 | 3.484 | 7.368  | 5.886 |  |
| SC2            | 3.881 | 3.637 | 7.696  | 6.161 |  |
| SC1            | 2.835 | 2.669 | 5.623  | 4.436 |  |
| TC7            | 2.153 | 2.034 | 4.266  | 3.327 |  |
| TC6            | 1.406 | 1.336 | 2.778  | 2.133 |  |
| TC5            | 1.277 | 1.215 | 2.52   | 1.929 |  |
| TC8            | 0.149 | 0.145 | 0.287  | 0.221 |  |
| TC9            | 1.567 | 1.487 | 3.099  | 2.388 |  |
| TC4            | 3.337 | 3.134 | 6.62   | 5.261 |  |
| TC3            | 4.852 | 4.531 | 9.61   | 7.782 |  |
| TC10a          | 0.107 | 0.104 | 0.206  | 0.159 |  |
|                |       |       |        |       |  |

| TC10b                | 0.134 | 0.13  | 0.257 | 0.198 |  |
|----------------------|-------|-------|-------|-------|--|
| TC10c                | 0.354 | 0.342 | 0.688 | 0.526 |  |
| TC10h                | 0.063 | 0.061 | 0.12  | 0.093 |  |
| TC10i                | 0.103 | 0.1   | 0.197 | 0.152 |  |
| TC10j                | 0.085 | 0.083 | 0.163 | 0.126 |  |
| TC10d                | 0.107 | 0.104 | 0.206 | 0.159 |  |
| TC10e                | 0.025 | 0.025 | 0.048 | 0.037 |  |
| TC10f                | 0.019 | 0.019 | 0.037 | 0.029 |  |
| TC10g                | 0.018 | 0.017 | 0.034 | 0.026 |  |
| TC2                  | 0.103 | 0.101 | 0.198 | 0.153 |  |
| TC1                  | 1.061 | 1.012 | 2.09  | 1.591 |  |
| dummy1               | 0     | 0     | 0     | 0     |  |
| dummy2               | 0     | 0     | 0     | 0     |  |
| dummy3               | 0     | 0     | 0     | 0     |  |
| PEAK Directed to Btm |       |       |       |       |  |
| SC27                 | 0     | 0     | 0     | 0     |  |
| SC26                 | 0     | 0     | 0     | 0     |  |
| SC25                 | 0     | 0     | 0     | 0     |  |
| SC24                 | 0     | 0     | 0     | 0     |  |
| SC23                 | 0     | 0     | 0     | 0     |  |
| SC21                 | 0     | 0     | 0     | 0     |  |
| SC22                 | 0     | 0     | 0     | 0     |  |
| SC20                 | 0     | 0     | 0     | 0     |  |
| SC28                 | 0     | 0     | 0     | 0     |  |
| SC19                 | 0     | 0     | 0     | 0     |  |
| SC18                 | 0     | 0     | 0     | 0     |  |
| SC16                 | 0     | 0     | 0     | 0     |  |
| SC17                 | 0     | 0     | 0     | 0     |  |
| SC15                 | 0     | 0     | 0     | 0     |  |
| SC14                 | 0     | 0     | 0     | 0     |  |
| SC13                 | 0     | 0     | 0     | 0     |  |
| SC12                 | 0     | 0     | 0     | 0     |  |
| SC11                 | 0     | 0     | 0     | 0     |  |
| SC10                 | 0     | 0     | 0     | 0     |  |
| SC9                  | 0     | 0     | 0     | 0     |  |
| SC5                  | 0     | 0     | 0     | 0     |  |
| SC6                  | 0     | 0     | 0     | 0     |  |
| SC4                  | 0     | 0     | 0     | 0     |  |
| SC3                  | 0     | 0     | 0     | 0     |  |
| SC8                  | 0     | 0     | 0     | 0     |  |
| SC7                  | 0     | 0     | 0     | 0     |  |
| SC2                  | 0     | 0     | 0     | 0     |  |
| SC1                  | 0     | 0     | 0     | 0     |  |
| TC7                  | 0     | 0     | 0     | 0     |  |
|                      |       |       |       |       |  |
|                      |       |       |       |       |  |
|                      |       |       |       |       |  |

|                    | _      | _      | _       | _       |
|--------------------|--------|--------|---------|---------|
| TC6                | 0      | 0      | 0       | 0       |
| TC5                | 0      | 0      | 0       | 0       |
| TC8                | 0      | 0      | 0       | 0       |
| TC9                | 0      | 0      | 0       | 0       |
| TC4                | 0      | 0      | 0       | 0       |
| TC3                | 0      | 0      | 0       | 0       |
| TC10a              | 0      | 0      | 0       | 0       |
| TC10b              | 0      | 0      | 0       | 0       |
| TC10c              | 0      | 0      | 0       | 0       |
| TC10h              | 0      | 0      | 0       | 0       |
| TC10i              | 0      | 0      | 0       | 0       |
| TC10j              | 0      | 0      | 0       | 0       |
| TC10d              | 0      | 0      | 0       | 0       |
| TC10e              | 0      | 0      | 0       | 0       |
| TC10f              | 0      | 0      | 0       | 0       |
| TC10g              | 0      | 0      | 0       | 0       |
| TC2                | 0      | 0      | 0       | 0       |
| TC1                | 0      | 0      | 0       | 0       |
| dummy1             | 0      | 0      | 0       | 0       |
| dummy2             | 0      | 0      | 0       | 0       |
| dummy3             | 0      | 0      | 0       | 0       |
| PEAK OUTLET Inflow |        |        |         |         |
| SC27               | 10.083 | 10.005 | 23.68   | 21.675  |
| SC26               | 13.857 | 14.52  | 36.839  | 36.25   |
| SC25               | 17.431 | 18.122 | 46.955  | 48.704  |
| SC24               | 18.453 | 19.07  | 49.452  | 52.579  |
| SC23               | 4.054  | 3.661  | 8.349   | 7.136   |
| SC21               | 20.987 | 21.751 | 56.597  | 60.501  |
| SC22               | 2.142  | 2.013  | 4.26    | 3.346   |
| SC20               | 22.75  | 23.443 | 61.182  | 67.311  |
| SC28               | 23.293 | 23.967 | 62.47   | 69.571  |
| SC19               | 9.809  | 9.721  | 22.992  | 20.972  |
| SC18               | 4.008  | 3.815  | 8.745   | 7.668   |
| SC16               | 14.164 | 14.6   | 35.674  | 32.632  |
| SC17               | 2.177  | 2.011  | 4.62    | 3.933   |
| SC15               | 16.928 | 17.552 | 43.805  | 40.576  |
| SC14               | 10.295 | 10.224 | 24.21   | 22.218  |
| SC13               | 10.963 | 11.345 | 27.824  | 26.076  |
| SC12               | 30.97  | 31.92  | 83.157  | 84.581  |
| SC11               | 34.327 | 35.215 | 91.456  | 99.594  |
| SC10               | 35.609 | 36.717 | 93.484  | 105.674 |
| SC9                | 36.067 | 37.249 | 93.624  | 107.571 |
| SC5                | 59.204 | 61.102 | 154.845 | 178.425 |
| SC6                | 2.947  | 2.753  | 6.271   | 5.429   |
|                    |        |        |         |         |

| SC4                 | 6.123  | 6.049  | 14.397  | 12.707  |
|---------------------|--------|--------|---------|---------|
| SC3                 | 62.664 | 64.725 | 163.186 | 190.148 |
| SC8                 | 4.628  | 4.262  | 9.641   | 8.415   |
| SC7                 | 8.268  | 7.814  | 17.865  | 15.696  |
| SC2                 | 13.299 | 13.1   | 30.876  | 27.85   |
| SC1                 | 71.144 | 73.694 | 182.698 | 218.689 |
| TC7                 | 3.896  | 3.582  | 7.703   | 6.447   |
| TC6                 | 2.286  | 2.133  | 4.531   | 3.636   |
| TC5                 | 1.774  | 1.673  | 3.528   | 2.745   |
| TC8                 | 0.445  | 0.421  | 0.888   | 0.679   |
| TC9                 | 2.172  | 2.041  | 4.321   | 3.396   |
| TC4                 | 12.931 | 12.589 | 28.831  | 24.453  |
| TC3                 | 17.149 | 17.17  | 41.441  | 36.458  |
| TC10a               | 0.21   | 0.202  | 0.408   | 0.312   |
| TC10b               | 0.448  | 0.423  | 0.902   | 0.682   |
| TC10c               | 1.038  | 0.957  | 2.118   | 1.698   |
| TC10h               | 0.124  | 0.12   | 0.239   | 0.184   |
| TC10i               | 0.314  | 0.298  | 0.624   | 0.472   |
| TC10j               | 0.167  | 0.161  | 0.324   | 0.249   |
| TC10d               | 0.21   | 0.202  | 0.408   | 0.312   |
| TC10e               | 0.255  | 0.245  | 0.502   | 0.382   |
| TC10f               | 0.288  | 0.275  | 0.573   | 0.437   |
| TC10g               | 0.316  | 0.299  | 0.637   | 0.486   |
| TC2                 | 1.587  | 1.424  | 3.293   | 2.774   |
| TC1                 | 21.437 | 22.098 | 55.256  | 50.869  |
| dummy1              | 71.144 | 73.694 | 182.698 | 218.689 |
| dummy2              | 21.437 | 22.098 | 55.256  | 50.869  |
| dummy3              | 85     | 87.727 | 225.142 | 263.038 |
| PEAK OUTLET Outflow |        |        |         |         |
| SC27                | 10.083 | 10.005 | 23.68   | 21.675  |
| SC26                | 13.857 | 14.52  | 36.839  | 36.25   |
| SC25                | 17.431 | 18.122 | 46.955  | 48.704  |
| SC24                | 18.453 | 19.07  | 49.452  | 52.579  |
| SC23                | 4.054  | 3.661  | 8.349   | 7.136   |
| SC21                | 20.987 | 21.751 | 56.597  | 60.501  |
| SC22                | 2.142  | 2.013  | 4.26    | 3.346   |
| SC20                | 22.75  | 23.443 | 61.182  | 67.311  |
| SC28                | 23.293 | 23.967 | 62.47   | 69.571  |
| SC19                | 9.809  | 9.721  | 22.992  | 20.972  |
| SC18                | 4.008  | 3.815  | 8.745   | 7.668   |
| SC16                | 14.164 | 14.6   | 35.674  | 32.632  |
| SC17                | 2.177  | 2.011  | 4.62    | 3.933   |
| SC15                | 16.928 | 17.552 | 43.805  | 40.576  |
| SC14                | 10.295 | 10.224 | 24.21   | 22.218  |
|                     |        |        |         |         |

| SC13                 | 10.963 | 11.345   | 27.824   | 26.076  |
|----------------------|--------|----------|----------|---------|
| SC12                 | 30.97  | 31.92    | 83.157   | 84.581  |
| SC11                 | 34.327 | 35.215   | 91.456   | 99.594  |
| SC10                 | 35.609 | 36.717   | 93.484   | 105.674 |
| SC9                  | 36.067 | 37.249   | 93.624   | 107.571 |
| SC5                  | 59.204 | 61.102   | 154.845  | 178.425 |
| SC6                  | 2.947  | 2.753    | 6.271    | 5.429   |
| SC4                  | 6.123  | 6.049    | 14.397   | 12.707  |
| SC3                  | 62.664 | 64.725   | 163.186  | 190.148 |
| SC8                  | 4.628  | 4.262    | 9.641    | 8.415   |
| SC7                  | 8.268  | 7.814    | 17.865   | 15.696  |
| SC2                  | 13.299 | 13.1     | 30.876   | 27.85   |
| SC1                  | 71.144 | 73.694   | 182.698  | 218.689 |
| TC7                  | 3.896  | 3.582    | 7.703    | 6.447   |
| TC6                  | 2.286  | 2.133    | 4.531    | 3.636   |
| TC5                  | 1.774  | 1.673    | 3.528    | 2.745   |
| TC8                  | 0.445  | 0.421    | 0.888    | 0.679   |
| TC9                  | 2.172  | 2.041    | 4.321    | 3.396   |
| TC4                  | 12.931 | 12.589   | 28.831   | 24.453  |
| TC3                  | 17.149 | 17.17    | 41.441   | 36.458  |
| TC10a                | 0.21   | 0.202    | 0.408    | 0.312   |
| TC10b                | 0.448  | 0.423    | 0.902    | 0.682   |
| TC10c                | 1.038  | 0.957    | 2.118    | 1.698   |
| TC10h                | 0.124  | 0.12     | 0.239    | 0.184   |
| TC10i                | 0.314  | 0.298    | 0.624    | 0.472   |
| TC10j                | 0.167  | 0.161    | 0.324    | 0.249   |
| TC10d                | 0.21   | 0.202    | 0.408    | 0.312   |
| TC10e                | 0.255  | 0.245    | 0.502    | 0.382   |
| TC10f                | 0.288  | 0.275    | 0.573    | 0.437   |
| TC10g                | 0.316  | 0.299    | 0.637    | 0.486   |
| TC2                  | 1.587  | 1.424    | 3.293    | 2.774   |
| TC1                  | 21.437 | 22.098   | 55.256   | 50.869  |
| dummy1               | 71.144 | 73.694   | 182.698  | 218.689 |
| dummy2               | 21.437 | 22.098   | 55.256   | 50.869  |
| dummy3               | 85     | 87.727   | 225.142  | 263.038 |
| TIME to Peaks [mins] |        |          |          |         |
| TIME Stream Top      |        |          |          |         |
| SC27                 | 0      | 0        | 0        | 0       |
|                      | 30     | 40       | 20       | 35      |
| SC26<br>SC25         | 34     | 43       | 20<br>25 | 35      |
| SC25<br>SC24         | 40     | 43<br>46 | 25<br>25 | 40      |
| SC24<br>SC23         | 0      | 0        | 0        | 0       |
|                      | 40     | 45       | 25       | 40      |
| SC21                 | 40     | 40       | 23       | 40      |

| SC22   | 0  | 0  | 0  | 0  |  |
|--------|----|----|----|----|--|
| SC20   | 41 | 46 | 26 | 40 |  |
| SC28   | 44 | 49 | 28 | 42 |  |
| SC19   | 0  | 0  | 0  | 0  |  |
| SC18   | 0  | 0  | 0  | 0  |  |
| SC16   | 30 | 40 | 20 | 30 |  |
| SC17   | 0  | 0  | 0  | 0  |  |
| SC15   | 32 | 41 | 20 | 30 |  |
| SC14   | 0  | 0  | 0  | 0  |  |
| SC13   | 30 | 40 | 20 | 35 |  |
| SC12   | 34 | 43 | 22 | 34 |  |
| SC11   | 40 | 48 | 25 | 39 |  |
| SC10   | 46 | 53 | 30 | 43 |  |
| SC9    | 49 | 58 | 31 | 45 |  |
| SC5    | 50 | 59 | 31 | 45 |  |
| SC6    | 0  | 0  | 0  | 0  |  |
| SC4    | 30 | 40 | 15 | 25 |  |
| SC3    | 51 | 60 | 32 | 45 |  |
| SC8    | 0  | 0  | 0  | 0  |  |
| SC7    | 30 | 40 | 15 | 25 |  |
| SC2    | 30 | 40 | 20 | 25 |  |
| SC1    | 51 | 60 | 31 | 45 |  |
| TC7    | 0  | 0  | 0  | 0  |  |
| TC6    | 0  | 0  | 0  | 0  |  |
| TC5    | 0  | 0  | 0  | 0  |  |
| TC8    | 0  | 0  | 0  | 0  |  |
| TC9    | 0  | 0  | 0  | 0  |  |
| TC4    | 30 | 35 | 10 | 20 |  |
| TC3    | 30 | 40 | 16 | 21 |  |
| TC10a  | 0  | 0  | 0  | 0  |  |
| TC10b  | 30 | 35 | 10 | 10 |  |
| TC10c  | 30 | 35 | 10 | 13 |  |
| TC10h  | 0  | 0  | 0  | 0  |  |
| TC10i  | 30 | 35 | 10 | 10 |  |
| TC10j  | 0  | 0  | 0  | 0  |  |
| TC10d  | 0  | 0  | 0  | 0  |  |
| TC10e  | 30 | 35 | 10 | 10 |  |
| TC10f  | 30 | 35 | 10 | 10 |  |
| TC10g  | 30 | 35 | 10 | 11 |  |
| TC2    | 0  | 0  | 0  | 0  |  |
| TC1    | 30 | 40 | 20 | 25 |  |
| dummy1 | 55 | 63 | 33 | 47 |  |
| dummy2 | 33 | 42 | 22 | 31 |  |
| dummy3 | 48 | 57 | 30 | 45 |  |
|        |    |    |    |    |  |

| TIME Stream Bottom |    |    |    |    |  |  |  |
|--------------------|----|----|----|----|--|--|--|
| SC27               | 0  | 0  | 0  | 0  |  |  |  |
| SC26               | 40 | 47 | 27 | 40 |  |  |  |
| SC25               | 44 | 51 | 29 | 42 |  |  |  |
| SC24               | 44 | 51 | 29 | 42 |  |  |  |
| SC23               | 0  | 0  | 0  | 0  |  |  |  |
| SC21               | 43 | 49 | 28 | 41 |  |  |  |
| SC22               | 0  | 0  | 0  | 0  |  |  |  |
| SC20               | 45 | 51 | 30 | 43 |  |  |  |
| SC28               | 46 | 52 | 30 | 44 |  |  |  |
| SC19               | 0  | 0  | 0  | 0  |  |  |  |
| SC18               | 0  | 0  | 0  | 0  |  |  |  |
| SC16               | 33 | 42 | 22 | 34 |  |  |  |
| SC17               | 0  | 0  | 0  | 0  |  |  |  |
| SC15               | 36 | 45 | 24 | 35 |  |  |  |
| SC14               | 0  | 0  | 0  | 0  |  |  |  |
| SC13               | 34 | 43 | 23 | 36 |  |  |  |
| SC12               | 43 | 50 | 29 | 41 |  |  |  |
| SC11               | 48 | 55 | 32 | 45 |  |  |  |
| SC10               | 50 | 58 | 33 | 46 |  |  |  |
| SC9                | 52 | 60 | 33 | 46 |  |  |  |
| SC5                | 52 | 60 | 33 | 46 |  |  |  |
| SC6                | 0  | 0  | 0  | 0  |  |  |  |
| SC4                | 34 | 43 | 22 | 31 |  |  |  |
| SC3                | 53 | 61 | 33 | 47 |  |  |  |
| SC8                | 0  | 0  | 0  | 0  |  |  |  |
| SC7                | 33 | 42 | 22 | 30 |  |  |  |
| SC2                | 35 | 44 | 24 | 35 |  |  |  |
| SC1                | 55 | 63 | 34 | 48 |  |  |  |
| TC7                | 0  | 0  | 0  | 0  |  |  |  |
| TC6                | 0  | 0  | 0  | 0  |  |  |  |
| TC5                | 0  | 0  | 0  | 0  |  |  |  |
| TC8                | 0  | 0  | 0  | 0  |  |  |  |
| TC9                | 0  | 0  | 0  | 0  |  |  |  |
| TC4                | 31 | 41 | 17 | 23 |  |  |  |
| TC3                | 35 | 44 | 22 | 29 |  |  |  |
| TC10a              | 0  | 0  | 0  | 0  |  |  |  |
| TC10b              | 30 | 36 | 11 | 15 |  |  |  |
| TC10c              | 31 | 39 | 13 | 20 |  |  |  |
| TC10h              | 0  | 0  | 0  | 0  |  |  |  |
| TC10i              | 30 | 36 | 10 | 13 |  |  |  |
| TC10j              | 0  | 0  | 0  | 0  |  |  |  |
| TC10d              | 0  | 0  | 0  | 0  |  |  |  |
| TC10e              | 30 | 35 | 10 | 11 |  |  |  |
|                    |    |    |    |    |  |  |  |

| TC406           | 30       | 36 | 10 | 11       |
|-----------------|----------|----|----|----------|
| TC10f           | 30       | 36 | 10 | 12       |
| TC10g           | 0        | 0  | 0  | 0        |
| TC2             |          | 44 | 24 |          |
| TC1             | 35<br>55 | 63 | 33 | 32<br>47 |
| dummy1          |          | 42 |    | 31       |
| dummy2          | 33       |    | 22 |          |
| dummy3          | 48       | 57 | 30 | 45       |
| TIME Local Perv | 00       | 40 | 00 | 0.5      |
| SC27            | 30       | 40 | 20 | 35       |
| SC26            | 30       | 40 | 20 | 30       |
| SC25            | 30       | 40 | 20 | 30       |
| SC24            | 30       | 40 | 15 | 20       |
| SC23            | 30       | 40 | 15 | 25       |
| SC21            | 30       | 35 | 15 | 20       |
| SC22            | 30       | 35 | 10 | 20       |
| SC20            | 30       | 40 | 15 | 20       |
| SC28            | 30       | 35 | 15 | 20       |
| SC19            | 30       | 40 | 20 | 35       |
| SC18            | 30       | 40 | 20 | 25       |
| SC16            | 30       | 40 | 15 | 25       |
| SC17            | 30       | 40 | 15 | 20       |
| SC15            | 30       | 40 | 15 | 25       |
| SC14            | 30       | 40 | 20 | 35       |
| SC13            | 30       | 40 | 15 | 20       |
| SC12            | 30       | 40 | 20 | 30       |
| SC11            | 30       | 40 | 20 | 30       |
| SC10            | 30       | 40 | 20 | 25       |
| SC9             | 30       | 40 | 15 | 20       |
| SC5             | 30       | 40 | 15 | 20       |
| SC6             | 30       | 40 | 15 | 25       |
| SC4             | 30       | 40 | 20 | 25       |
| SC3             | 30       | 35 | 15 | 20       |
| SC8             | 30       | 40 | 20 | 25       |
| SC7             | 30       | 40 | 15 | 20       |
| SC2             | 30       | 40 | 20 | 25       |
| SC1             | 30       | 40 | 20 | 25       |
| TC7             | 30       | 40 | 15 | 20       |
| TC6             | 30       | 35 | 15 | 20       |
| TC5             | 30       | 35 | 10 | 20       |
| TC8             | 30       | 35 | 10 | 20       |
| TC9             | 30       | 35 | 10 | 20       |
| TC4             | 30       | 40 | 15 | 20       |
| TC3             | 30       | 40 | 20 | 25       |
| TC10a           | 30       | 35 | 10 | 10       |
|                 |          |    | -  | -        |

| TC10b          | 30 | 35       | 10 | 10 |
|----------------|----|----------|----|----|
| TC10b          | 30 | 35       | 10 | 20 |
| TC10h          | 30 | 35       | 10 | 10 |
| TC10i          | 30 | 35       | 10 | 10 |
| TC10j          | 30 | 35<br>35 | 10 | 10 |
|                | 30 | 35<br>35 | 10 | 10 |
| TC10d          |    |          |    |    |
| TC10e          | 30 | 35<br>35 | 10 | 10 |
| TC10f          | 30 | 35       | 10 | 10 |
| TC10g          | 30 | 35       | 10 | 10 |
| TC2            | 30 | 40       | 15 | 20 |
| TC1            | 30 | 40       | 20 | 25 |
| dummy1         | 0  | 0        | 0  | 0  |
| dummy2         | 0  | 0        | 0  | 0  |
| dummy3         | 0  | 0        | 0  | 0  |
| TIME Local Imp |    |          |    |    |
| SC27           | 30 | 35       | 10 | 10 |
| SC26           | 30 | 35       | 10 | 10 |
| SC25           | 30 | 35       | 10 | 10 |
| SC24           | 30 | 35       | 10 | 20 |
| SC23           | 30 | 35       | 10 | 20 |
| SC21           | 30 | 35       | 10 | 10 |
| SC22           | 30 | 35       | 10 | 20 |
| SC20           | 30 | 35       | 10 | 20 |
| SC28           | 30 | 35       | 10 | 20 |
| SC19           | 30 | 35       | 10 | 10 |
| SC18           | 30 | 35       | 10 | 10 |
| SC16           | 30 | 35       | 10 | 10 |
| SC17           | 30 | 35       | 10 | 10 |
| SC15           | 30 | 35       | 10 | 10 |
| SC14           | 30 | 35       | 10 | 10 |
| SC13           | 30 | 35       | 10 | 10 |
| SC12           | 30 | 35       | 10 | 20 |
| SC11           | 30 | 35       | 10 | 10 |
| SC10           | 30 | 35       | 10 | 10 |
| SC9            | 30 | 35       | 10 | 20 |
| SC5            | 30 | 35       | 10 | 10 |
| SC6            | 30 | 35       | 10 | 10 |
| SC4            | 30 | 35       | 10 | 10 |
| SC3            | 30 | 35       | 10 | 20 |
| SC8            | 30 | 35       | 10 | 10 |
| SC7            | 30 | 35       | 10 | 20 |
| SC2            | 30 | 35       | 10 | 20 |
| SC2<br>SC1     | 30 | 35       | 10 | 20 |
| TC7            | 30 | 35<br>35 | 10 | 20 |
| 107            | 30 | 33       | 10 | 20 |
|                |    |          |    |    |

| TC6                  | 30     | 35     | 10 | 20 |
|----------------------|--------|--------|----|----|
| TC5                  | 30     | 35     | 10 | 20 |
| TC8                  | 30     | 35     | 10 | 10 |
| TC9                  | 30     | 35     | 10 | 20 |
| TC4                  | 30     | 35     | 10 | 20 |
| TC3                  | 30     | 35     | 10 | 20 |
| TC10a                | 30     | 35     | 10 | 10 |
| TC10b                | 30     | 35     | 10 | 10 |
| TC10b                | 30     | 35     | 10 | 10 |
| TC10h                | 30     | 35     | 10 | 10 |
| TC10i                | 30     | 35     | 10 | 10 |
| TC10j                | 30     | 35     | 10 | 10 |
| TC10d                | 30     | 35     | 10 | 10 |
| TC10d                | 30     | 35     | 10 | 10 |
| TC10f                | 30     | 35     | 10 | 10 |
| TC10g                | 30     | 35     | 10 | 10 |
| TC10g                | 30     | 35     | 10 | 10 |
| TC1                  | 30     | 35     | 10 | 20 |
|                      | 0      | 0      | 0  | 0  |
| dummy1               | 0      | 0      | 0  | 0  |
| dummy2               | 0      | 0      | 0  | 0  |
| dummy3               | U      | U      | U  | U  |
| TIME Directed to Btm | 0      | 0      | 0  | 0  |
| SC27                 | 0<br>0 | 0<br>0 | 0  | 0  |
| SC26                 | 0      | 0      | 0  | 0  |
| SC25                 |        | 0      |    |    |
| SC24                 | 0      | 0      | 0  | 0  |
| SC23                 | 0      | 0      | 0  | 0  |
| SC21                 | 0      |        |    | 0  |
| SC22                 | 0      | 0      | 0  | 0  |
| SC20                 | 0      | 0<br>0 | 0  | 0  |
| SC28                 | 0      |        | 0  | 0  |
| SC19                 | 0      | 0      | 0  | 0  |
| SC18                 | 0<br>0 | 0<br>0 | 0  | 0  |
| SC16                 |        | 0      |    | 0  |
| SC17                 | 0<br>0 | 0      | 0  | 0  |
| SC15                 | 0      | 0      | 0  |    |
| SC14                 |        |        | 0  | 0  |
| SC13                 | 0      | 0<br>0 | 0  | 0  |
| SC12                 | 0      |        | 0  |    |
| SC11                 | 0      | 0      | 0  | 0  |
| SC10                 | 0      | 0      | 0  | 0  |
| SC9                  | 0      | 0      | 0  | 0  |
| SC5                  | 0      | 0      | 0  | 0  |
| SC6                  | 0      | 0      | 0  | 0  |

| SC4                | 0  | 0  | 0  | 0  |
|--------------------|----|----|----|----|
| SC3                | 0  | 0  | 0  | 0  |
| SC8                | 0  | 0  | 0  | 0  |
| SC7                | 0  | 0  | 0  | 0  |
| SC2                | 0  | 0  | 0  | 0  |
| SC1                | 0  | 0  | 0  | 0  |
| TC7                | 0  | 0  | 0  | 0  |
| TC6                | 0  | 0  | 0  | 0  |
| TC5                | 0  | 0  | 0  | 0  |
| TC8                | 0  | 0  | 0  | 0  |
| TC9                | 0  | 0  | 0  | 0  |
| TC4                | 0  | 0  | 0  | 0  |
| TC3                | 0  | 0  | 0  | 0  |
| TC10a              | 0  | 0  | 0  | 0  |
| TC10b              | 0  | 0  | 0  | 0  |
| TC10c              | 0  | 0  | 0  | 0  |
| TC10h              | 0  | 0  | 0  | 0  |
| TC10i              | 0  | 0  | 0  | 0  |
| TC10j              | 0  | 0  | 0  | 0  |
| TC10d              | 0  | 0  | 0  | 0  |
| TC10e              | 0  | 0  | 0  | 0  |
| TC10f              | 0  | 0  | 0  | 0  |
| TC10g              | 0  | 0  | 0  | 0  |
| TC2                | 0  | 0  | 0  | 0  |
| TC1                | 0  | 0  | 0  | 0  |
| dummy1             | 0  | 0  | 0  | 0  |
| dummy2             | 0  | 0  | 0  | 0  |
| dummy3             | 0  | 0  | 0  | 0  |
| TIME OUTLET Inflow |    |    |    |    |
| SC27               | 30 | 40 | 20 | 35 |
| SC26               | 34 | 43 | 25 | 35 |
| SC25               | 40 | 46 | 25 | 40 |
| SC24               | 42 | 49 | 27 | 41 |
| SC23               | 30 | 40 | 15 | 20 |
| SC21               | 42 | 48 | 27 | 41 |
| SC22               | 30 | 35 | 10 | 20 |
| SC20               | 44 | 49 | 28 | 42 |
| SC28               | 45 | 52 | 30 | 44 |
| SC19               | 30 | 40 | 20 | 35 |
| SC18               | 30 | 40 | 20 | 25 |
| SC16               | 32 | 41 | 21 | 32 |
| SC17               | 30 | 40 | 15 | 20 |
| SC15               | 35 | 44 | 23 | 34 |
| SC14               | 30 | 40 | 20 | 35 |
|                    |    |    |    |    |

| SC13                       | 33       | 42       | 22       | 35       |
|----------------------------|----------|----------|----------|----------|
| SC12                       | 40       | 48       | 25       | 39       |
| SC11                       | 46       | 53       | 30       | 43       |
| SC10                       | 49       | 58       | 31       | 45       |
| SC9                        | 52       | 60       | 33       | 46       |
| SC5                        | 52       | 60       | 33       | 46       |
| SC6                        | 30       | 40       | 15       | 25       |
| SC4                        | 30       | 40       | 20       | 26       |
| SC3                        | 53       | 61       | 33       | 46       |
| SC8                        | 30       | 40       | 15       | 25       |
| SC7                        | 30       | 40       | 20       | 25       |
| SC2                        | 30       | 40       | 20       | 30       |
| SC1                        | 55       | 63       | 33       | 47       |
| TC7                        | 30       | 35       | 15       | 20       |
| TC6                        | 30       | 35       | 10       | 20       |
| TC5                        | 30       | 35       | 10       | 20       |
| TC8                        | 30       | 35       | 10       | 20       |
| TC9                        | 30       | 35       | 10       | 20       |
| TC4                        | 30       | 40       | 16       | 21       |
| TC3                        | 30       | 40       | 20       | 26       |
| TC10a                      | 30       | 35       | 10       | 10       |
| TC10b                      | 30       | 35       | 10       | 13       |
| TC10c                      | 30       | 35       | 10       | 20       |
| TC10h                      | 30       | 35       | 10       | 10       |
| TC10i                      | 30       | 35       | 10       | 11       |
| TC10j                      | 30       | 35       | 10       | 10       |
| TC10d                      | 30       | 35       | 10       | 10       |
| TC10e                      | 30       | 35       | 10       | 10       |
| TC10f                      | 30       | 35       | 10       | 11       |
| TC10g                      | 30       | 36       | 10       | 11       |
| TC2                        | 30       | 35       | 15       | 20       |
| TC1                        | 33<br>55 | 42<br>63 | 22<br>33 | 31<br>47 |
| dummy1                     | 33       | 42       | 22       | 31       |
| dummy2                     | 48       | 57       | 30       | 45       |
| dummy3 TIME OUTLET Outflow | 40       | 37       | 30       | 45       |
|                            | 30       | 40       | 20       | 35       |
| SC27<br>SC26               | 34       | 43       | 25       | 35       |
| SC25                       | 40       | 46       | 25<br>25 | 40       |
| SC24                       | 40       | 49       | 27       | 40       |
| SC23                       | 30       | 49       | 15       | 20       |
| SC23                       | 42       | 48       | 27       | 41       |
| SC22                       | 30       | 35       | 10       | 20       |
| SC22                       | 44       | 49       | 28       | 42       |
| SC20                       | 44       | 49       | 20       | 42       |

|  | SC28   | 45 | 52 | 30 | 44 |
|--|--------|----|----|----|----|
|  | SC19   | 30 | 40 | 20 | 35 |
|  | SC18   | 30 | 40 | 20 | 25 |
|  | SC16   | 32 | 41 | 21 | 32 |
|  | SC17   | 30 | 40 | 15 | 20 |
|  | SC15   | 35 | 44 | 23 | 34 |
|  | SC14   | 30 | 40 | 20 | 35 |
|  | SC13   | 33 | 42 | 22 | 35 |
|  | SC12   | 40 | 48 | 25 | 39 |
|  | SC11   | 46 | 53 | 30 | 43 |
|  | SC10   | 49 | 58 | 31 | 45 |
|  | SC9    | 52 | 60 | 33 | 46 |
|  | SC5    | 52 | 60 | 33 | 46 |
|  | SC6    | 30 | 40 | 15 | 25 |
|  | SC4    | 30 | 40 | 20 | 26 |
|  | SC3    | 53 | 61 | 33 | 46 |
|  | SC8    | 30 | 40 | 15 | 25 |
|  | SC7    | 30 | 40 | 20 | 25 |
|  | SC2    | 30 | 40 | 20 | 30 |
|  | SC1    | 55 | 63 | 33 | 47 |
|  | TC7    | 30 | 35 | 15 | 20 |
|  | TC6    | 30 | 35 | 10 | 20 |
|  | TC5    | 30 | 35 | 10 | 20 |
|  | TC8    | 30 | 35 | 10 | 20 |
|  | TC9    | 30 | 35 | 10 | 20 |
|  | TC4    | 30 | 40 | 16 | 21 |
|  | TC3    | 30 | 40 | 20 | 26 |
|  | TC10a  | 30 | 35 | 10 | 10 |
|  | TC10b  | 30 | 35 | 10 | 13 |
|  | TC10c  | 30 | 35 | 10 | 20 |
|  | TC10h  | 30 | 35 | 10 | 10 |
|  | TC10i  | 30 | 35 | 10 | 11 |
|  | TC10j  | 30 | 35 | 10 | 10 |
|  | TC10d  | 30 | 35 | 10 | 10 |
|  | TC10e  | 30 | 35 | 10 | 10 |
|  | TC10f  | 30 | 35 | 10 | 11 |
|  | TC10g  | 30 | 36 | 10 | 11 |
|  | TC2    | 30 | 35 | 15 | 20 |
|  | TC1    | 33 | 42 | 22 | 31 |
|  | dummy1 | 55 | 63 | 33 | 47 |
|  | dummy2 | 33 | 42 | 22 | 31 |
|  | dummy3 | 48 | 57 | 30 | 45 |
|  |        |    |    |    |    |
|  |        |    |    |    |    |
|  |        |    |    |    |    |
|  |        |    |    |    |    |

**APPENDIX** 

FLOOD RESULT MAPS







## Pre-Development Flood Extent 1% AEP

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

## Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

\_\_\_\_ 1m Flood Height Contour (mAHD)

Cadastre (DFSI-SS, 2018)

#### Flood Depth (m)

0 - 0.25

0.25 - 0.50

0.50 - 0.75

0.75 - 1.00

1.00 - 1.25

1.25 - 1.50

> 1.50

1:2,000 Scale at A3

m 0 20 40 60 80





Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-005\_Pre\_FloodExtentAEP.mxd 03
Aerial imagery supplied by nearmap (October, 2019)





## **Pre-Development** Flood Extent PMF

PROPOSED AGED CARE FACILITY AT BULLI, NSW

## Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

1m Flood Height Contour (mAHD)

Cadastre (DFSI-SS, 2018)

### Flood Depth (m)

0 - 0.25

0.25 - 0.50

0.50 - 0.75

0.75 - 1.00

1.00 - 1.25

1.25 - 1.50

> 1.50

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56 Map: 82018138-02-GS-006\_Pre\_FloodExtentPMF.mxd 03 Aerial imagery supplied by nearmap (October, 2019)





## Pre-Development Flood Velocity 1% AEP

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

## Legend

Site Boundary

↑ Velocity Vector

----+ Railway (LPI)

Watercourse (LPI)

Cadastre (DFSI-SS, 2018)

### Flood Velocity (m/s)

0 - 1

1 - :

2 - 3

> 3

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-007\_Pre\_FloodVelocityAEP.mxd 03
Aerial imagery supplied by nearmap (October, 2019)





# Pre-Development Flood Velocity PMF

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

## Legend

Site Boundary

↑ Velocity Vector

----+ Railway (LPI)

---- Watercourse (LPI)

Cadastre (DFSI-SS, 2018)

#### Flood Velocity (m/s)

0 - 1

1 - 2

2 - 3

> 3

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-008\_Pre\_FloodVelocityPMF.mxd 03
Aerial imagery supplied by nearmap (October, 2019)





## **Post-Development** Flood Extent 1% AEP

PROPOSED AGED CARE FACILITY AT BULLI, NSW



Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

1m Flood Height Contour (mAHD)

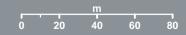
Cadastre (DFSI-SS, 2018)

## Flood Depth (m)

0 - 0.25

0.25 - 0.50

0.50 - 0.75


0.75 - 1.00

1.00 - 1.25

1.25 - 1.50

> 1.50

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-009\_Post\_FloodExtentAEP.mxd 04





## Post-Development Flood Extent PMF

PROPOSED AGED CARE FACILITY
AT BULLI, NSW



Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

\_\_\_\_ 1m Flood Height Contour (mAHD)

Cadastre (DFSI-SS, 2018)

#### Flood Depth (m)

0 - 0.25

0.25 - 0.50

0.50 - 0.75

0.75 - 1.00

1.00 - 1.25

1.25 - 1.50

> 1.50

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-010\_Post\_|boodExtentPMF.mxd 04
Aerial imagery supplied by pearman (October 2019)





## **Post-Development** Flood Velocity 1% AEP

PROPOSED AGED CARE FACILITY AT BULLI, NSW

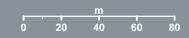
## Legend

Site Boundary

Velocity Vector

----+ Railway (LPI)

Watercourse (LPI)


Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

## Flood Velocity (m/s)

0 - 1

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-011\_Post\_FloodVelocityAEP.mxd 04





## Post-Development Flood Velocity PMF

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

## Legend

Site Boundary

↑ Velocity Vector

----+ Railway (LPI)

---- Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

## Flood Velocity (m/s)

0 - 1

1 -

2 - 3

> 3

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-012\_Post\_FloodVelocityPMF.mxd 05
Aerial Imagency supplied by nearman (Ortober, 2019)





## Flood Impacts 1% AEP

PROPOSED AGED CARE FACILITY AT BULLI, NSW



Site Boundary

→ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

#### Change In Flood Levels (m)

Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

-0.02 to 0.02

0.02 to 0.05

0.05 to 0.1

> 0.1

Was Dry Now Wet

1:2,000 Scale at A3





Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-013\_Post\_FloodImpactsAEP.mxd 04





## **Flood Impacts** PMF.

PROPOSED AGED CARE FACILITY AT BULLI, NSW

## Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

## Change In Flood Levels (m)

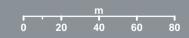
Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

-0.02 to 0.02


0.02 to 0.05

0.05 to 0.1

> 0.1

Was Dry Now Wet

1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project: 82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-014\_Post\_FloodImpactsPMF.mxd 04





## Post-Development Flood Hazard 1% AEP

PROPOSED AGED CARE FACILITY AT BULLI, NSW

## Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

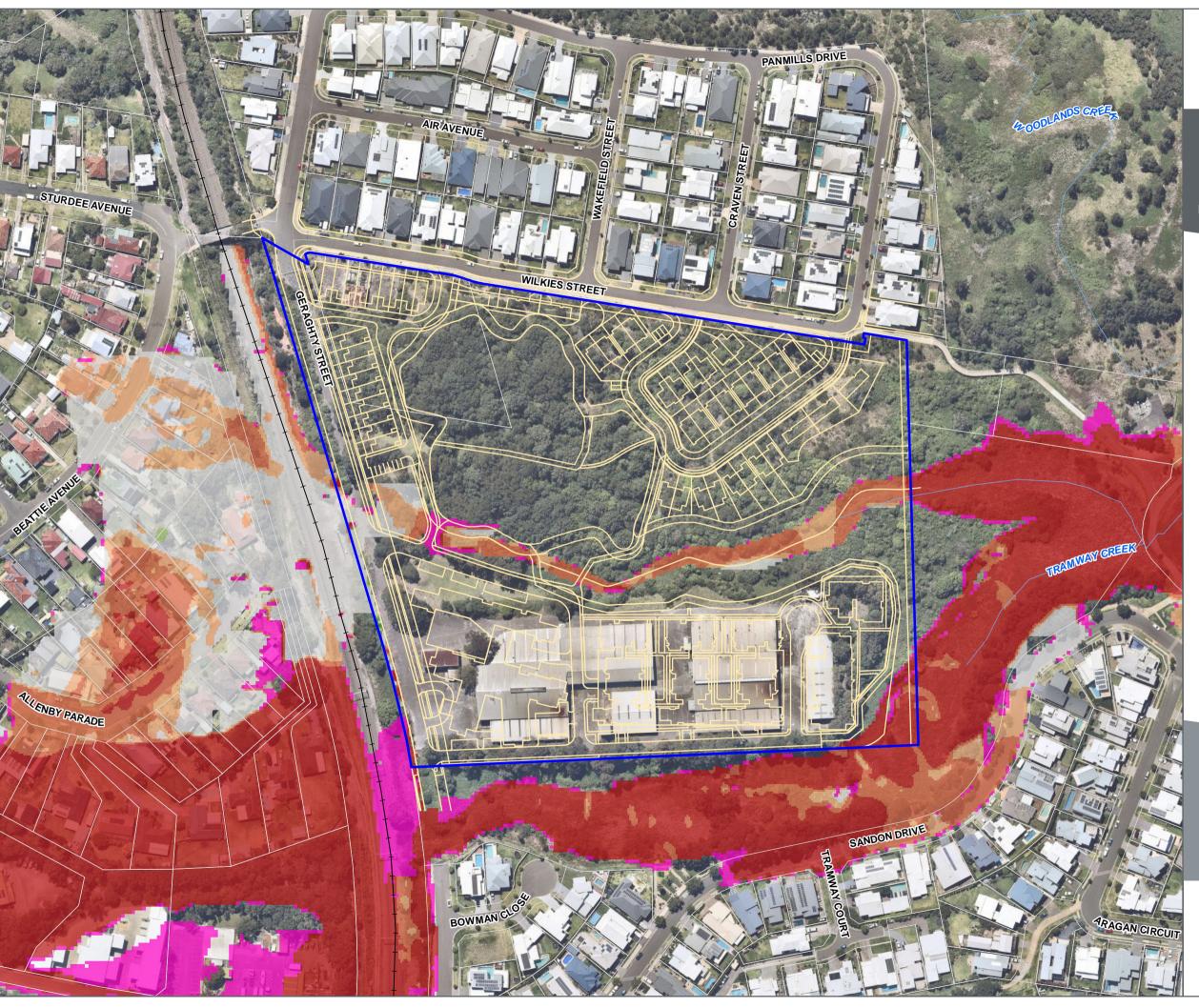
Cadastre (DFSI-SS, 2018)

### Flood Hazard

Low

Medium

High


1:2,000 Scale at A3

m 0 20 40 60 80





Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-019\_FloodHazardAEP.mxd 02
Aarial imagery sunplied by pearman (October 2019)





## **Climate Change** Impacts

PROPOSED AGED CARE FACILITY AT BULLI, NSW



Site Boundary

----- Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

#### Change In Flood Levels (m)

Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

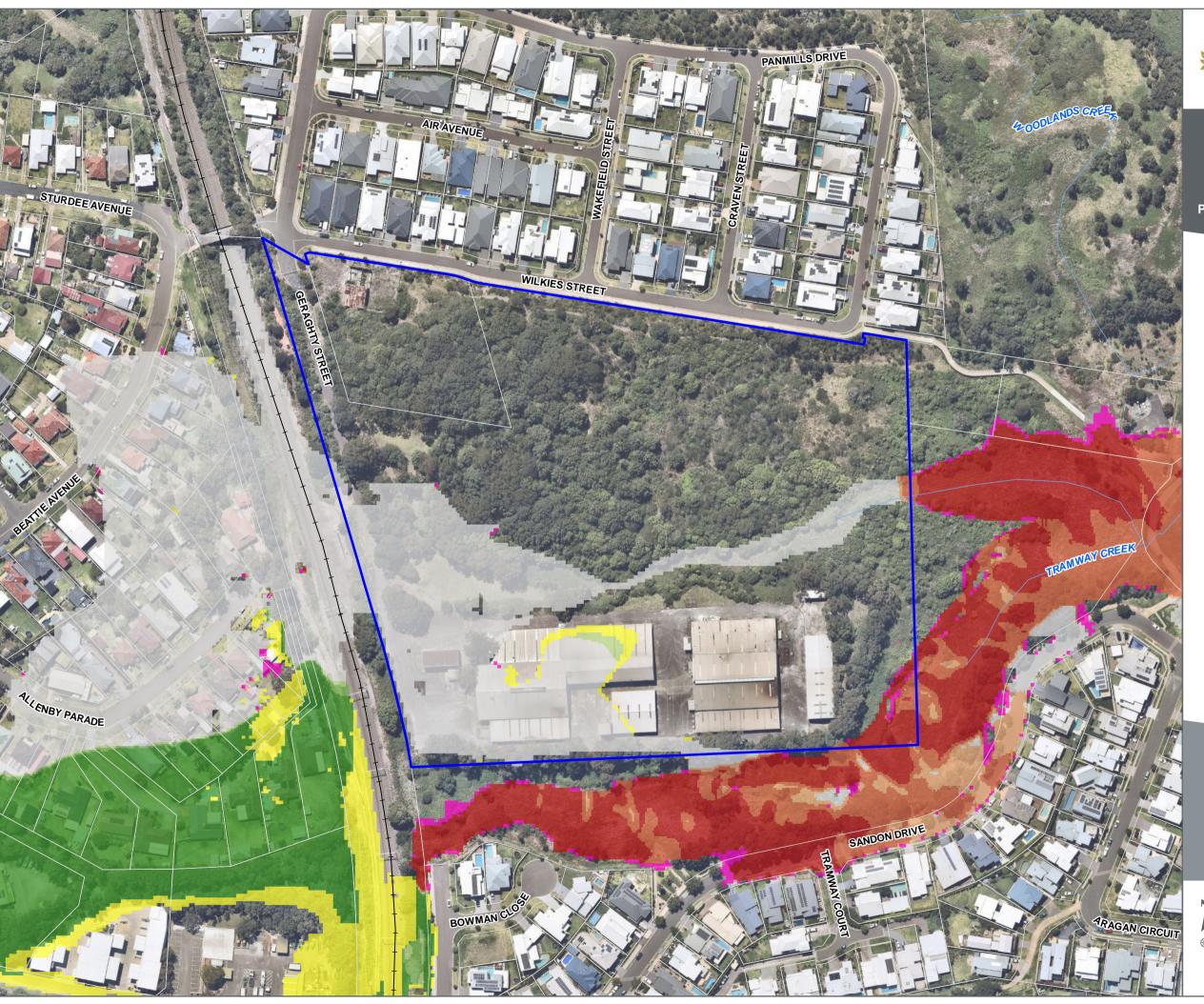
-0.02 to 0.02

0.02 to 0.05

0.05 to 0.1

> 0.1

Was Dry Now Wet


1:2,000 Scale at A3







Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-016\_ClimateChangeImpacts.mxd 02
Aerial imagery supplied by nearmap (October, 2019)





# Pre-Development Mitigation Scheme Impacts 1% AEP

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

# Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Cadastre (DFSI-SS, 2018)

# Change In Flood Levels (m)

Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

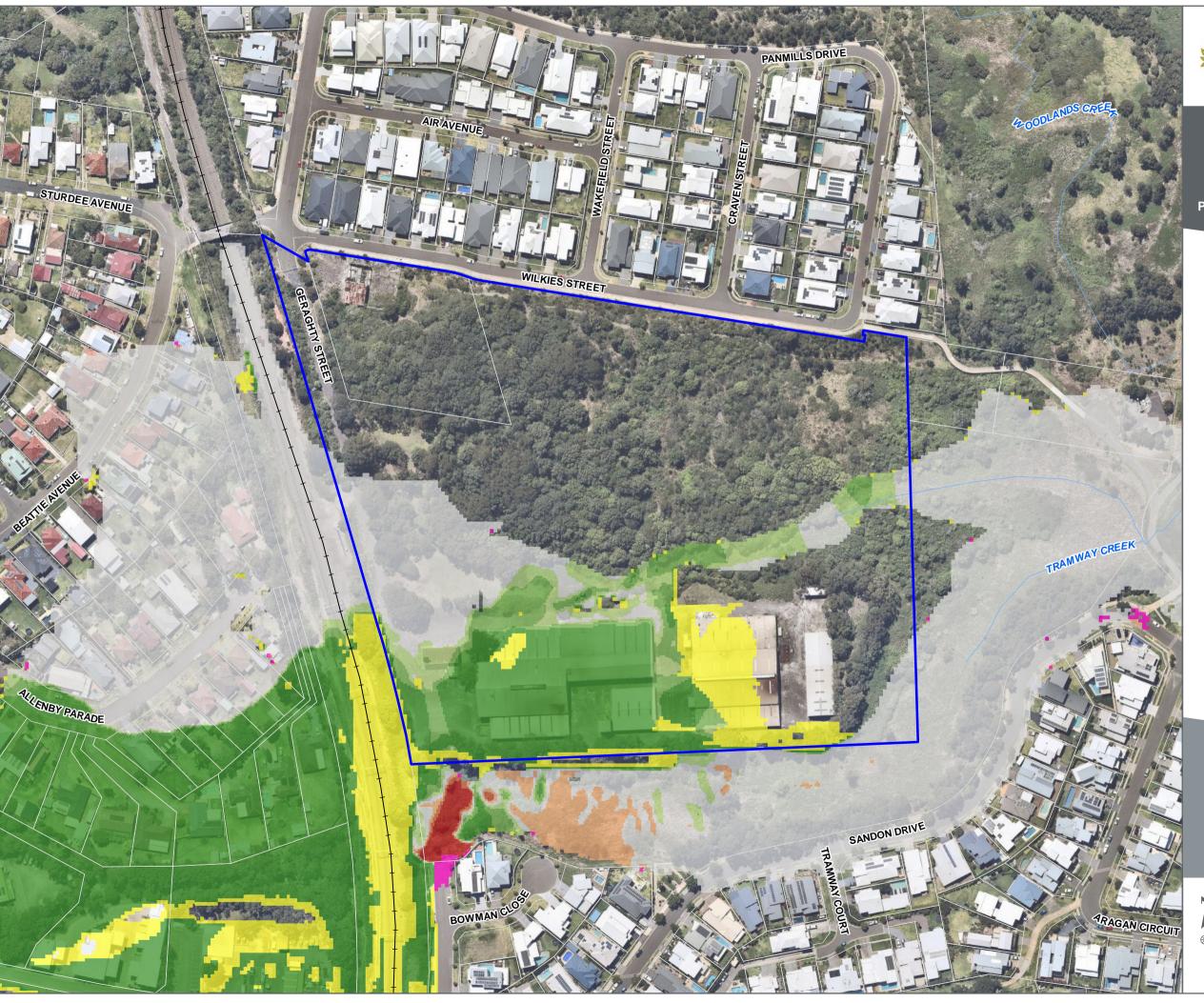
-0.02 to 0.02

0.02 to 0.05

0.05 to 0.1

0.03 10

> 0.1


Was Dry Now Wet

1:2,000 Scale at A3

m 0 20 40 60 80



Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-021\_Pre\_MitigationImpactsAEP.mxd 01
Aerial imagery supplied by nearmap (October, 2019)





# **Pre-Development** Mitigation Scheme Impacts PMF

PROPOSED AGED CARE FACILITY
AT BULLI, NSW



Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Cadastre (DFSI-SS, 2018)

# Change In Flood Levels (m)

Was Wet Now Dry

< -0.1

-0.1 to -0.05

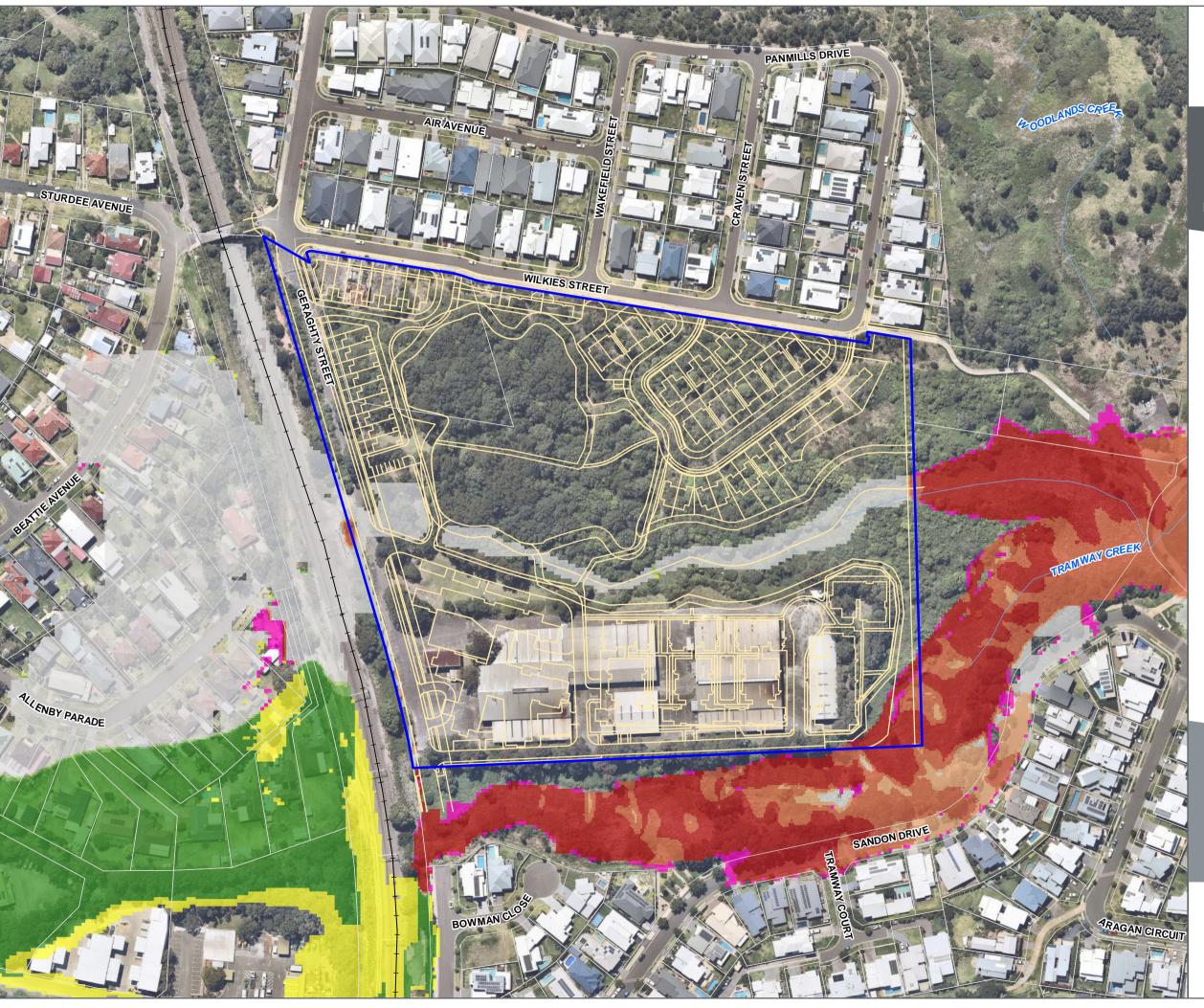
-0.05 to -0.02

-0.02 to 0.02

0.02 to 0.05

0.05 to 0.1

> 0.1


Was Dry Now Wet

1:2,000 Scale at A3





Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-12 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-017\_Pre\_MitigationImpactsPMF.mxd 02
Aerial imagery supplied by nearmap (October, 2019)





# Post-Development Mitigation Scheme Impacts 1% AEP

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

# Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

# Change In Flood Levels (m)

Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

-0.02 to 0.02

0.02 to 0.05

0.05 to 0.1

> 0.1

Was Dry Now Wet

1:2,000 Scale at A3

m 0 20 40 60 80



Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-022\_Post\_MitigationImpactsAEP.mxd 01





# Post-Development Mitigation Scheme Impacts PMF

PROPOSED AGED CARE FACILITY
AT BULLI, NSW

# Legend

Site Boundary

----+ Railway (LPI)

Watercourse (LPI)

Proposed Lot Layout

Cadastre (DFSI-SS, 2018)

# Change In Flood Levels (m)

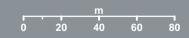
Was Wet Now Dry

< -0.1

-0.1 to -0.05

-0.05 to -0.02

-0.02 to 0.02


0.02 to 0.05

0.05 to 0.1

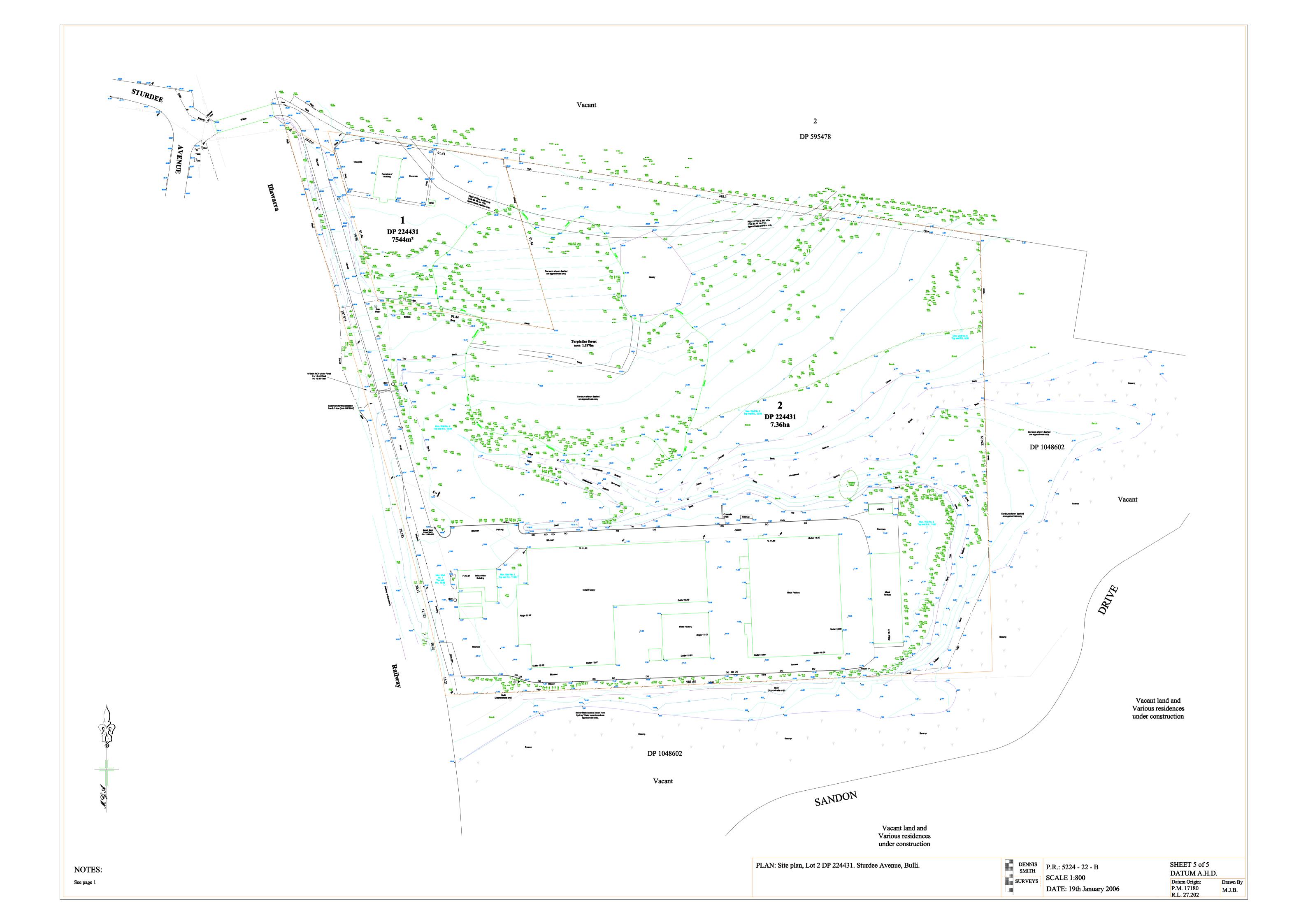
> 0.1

Was Dry Now Wet

1:2,000 Scale at A3








Map Produced by Cardno NSW/ACT Pty Ltd (WOL)
Date: 2019-11-13 | Project:82018138\_02
Coordinate System: GDA 1994 MGA Zone 56
Map: 82018138-02-GS-018\_Post\_MitigationImpactsPMF.mxd 02
Aerial imagery supplied by nearmap (October, 2019)

APPENDIX

SITE SURVEY





**APPENDIX** 

Е

COUNCIL FLOODPLAIN RISK



#### SLACKY CREEK

- Construct a coarse debris trap comprising large steel or timber 'bollards' set into the bed of the creek, bollards to be set at 0.5-lim spanning and span fill creek width.

  Provision to be made for majority access.
- 52 Remove access backlers and seatment deposited in the August 1998 (Bool immediately downstream of Rev. Ave. From waterway of similar capacity to that existing Pre 1998) strom
  - TRAMWAY CREEK

# neinut arace lined ewale alme Hahart St. Cenith eld

- Swale to extend between culvert proposed at Highway (refer 12) & Slacky Creek elversion (refer 57)
- 2 the Highway (adjacent Hobart St. Intersection) to connect the overland flow path at 14 to swalle at 11. Provision to be made for debris control on the upstream side.
- Purchase properties at eastern and of Hobart St. (No.'s 177 & 171-175), demolish & Yor remove all structures to facilitate construction of overland flow path between Princes Highway & Tramway Creek Crefir 14.)
- Construct an overland flow path between the Hiphway
  (apposite Hobart 5t) & Tramway Creek (to the rear of
  19 Allenby Pelo). Construction to reliable enlargement of
  entities dramed & excavation of a new dramed
  (where executed)
- TS Construct a new high level cahert through the railwa embankement. Om wide by 4m highto the south of t existing low level cahert.
- Implement an opening policy requiring Council to clear sand from the creek outlet once a critical level (R. 2.8m) of countil level (will be considered).

#### ALL CATCHMENTS (refer study for more details)

- Implementation of Pevelopment Control Flan (DCP) to ensure all future development is compatible with illoading calls.
- Minimum width overflow paths & riparian setbacks for all development adjoining creeks & natural low ports.
- Minimum requirements for floor levels & safe access
- All new development to incorporate flood compatible structures including flood proof materials & fencing.
- Cancil to undertake an education 8 illood awareness program to raise general awareness of illooding behavious in the local area. This may include flood signage, information leaflets 8 newspaper articles.
- All data collected and processed in this study be provided to the State Emergency Service (SSS) by Willbropma (Dis Council in a format suitable for interpretation by the SSS as soon as it is available, for incorporation into the "Wollamping City Local Plad Plan"
- A Ripartin Management Study be undertaken within the study area to Identify possible sources of sediment, areas of special demed and lank tested this and opportunities for improving the overall ripartin comidor with the associated benefit of reducing wherever possible the potential for future debris mobilisation.

# MARY OF PROPERTIES PROTECTED - RECOMMENDED SCHEME No. of Properties Protected

| ١ |                  | 20% AEP |             | 9% AEP |             | 2%AEP |             | 1% 162 |             | PWF  |            |
|---|------------------|---------|-------------|--------|-------------|-------|-------------|--------|-------------|------|------------|
|   | Creek            | Yard    | Above Floar | Yard   | Above Floor | Yand  | Above Floar | Yard   | Above Floar | Yard | About Flor |
| F | 101A             | 8       | 6           | 91     | 67          | 91    | 59          | 71     | 48          | 42   | 12         |
| ı | 10171            | _       | · ·         | -      | -           | -     | -           | i i    | 100         | 12.  | ۳          |
| ı | Slacku           | 0       | 0           | 27     | Т           | 27    | T           | 27     | Т           | 25   | П          |
| ı | framuu           | 0       | 0           | 10     | 10          | T     | 10          | Ti.    |             | 8    | 3          |
| Γ | Wood ando        | 0       | 0           | 5      | 4           | 5     | 5           | 5      | 5           |      | 0          |
| Ι | Newtite          | 6       | 4           | 48     | 35          | 47    | 39          | 27     | 29          | 8    | 5          |
| ſ | Howtto (Stream4) | 0       | 0           | 0      |             | 0     | Т           | 0      | 0           | 0    | C          |
| ı | Thomas Obson     | 2       | 2           |        | 6           | 2     | 5           | 1      | 2           | 0    | 3          |

|                        |                | Total<br>Damages<br>(\$AAD) | Tot<br>Bene |                   | Scheme<br>Cost<br>(\$) | Ben<br>Co<br>Ra |  |
|------------------------|----------------|-----------------------------|-------------|-------------------|------------------------|-----------------|--|
| Creek                  | Scheme         |                             | \$AAD       | 5NPV              |                        |                 |  |
| TOTAL                  |                | \$968,790                   | \$429,000   | <b>90,00,9</b> 07 | \$8,900,000            | ٦.              |  |
| Sticky/<br>Transau     | 98/18 <b>I</b> | 8.750                       | 80.000      | 2.072.458         | 5 990 000              | 0               |  |
| Woodlands/<br>Howelits | WAZ BA         | 162,790                     | 241,000     | 6,290,010         | 2,800,000              | 2               |  |
| Hewitts<br>(Stream 4)  | H54A           | 94,290                      | 59,000      | 994,578           | 260,000                | 5               |  |
| Thomas<br>Gibson       | 108            | 545,000                     | 69.000      | 1749.00L          | 1850,000               | 0               |  |

#### 55 Madify downstream handrall & headwal structure de driveway entrance to No's 21 to 25, & lower kerb. Remove sandstane blockwork obstructing antrance to

- 54 Excavate creek banks to reduce batter, widen where possible. Provide rock armour bank protection as required.
- Excavate sediment basin of minimum 2000 m3 volume, offline to creek, include provision for maintenance access.
- Modify the access road embankment including provision of a PMF safe spillinay & duy Integ of upstream faces. Optimisation of basin outlet by reducing outlet size. Provide a delate control structure upstream of basin out
- 57 Remove twin 1800 dia, culvert & access road immediately downstream of Hobert St. Construct debris control structure: & regrade Hobert St. between the Shaku Creek Julyert & Haus Rd.
- Partially fill the northern bash outst to devake overtopping level. Construct flow training walls upstream of main outvert to improve hydraulic characteristics.
- Gonstruct a flow training wall at RL 4.00m (approx) along the rear boundary of properties on the south bank to reduce breakat of flow. Levee to extend downstream from No I.G. Hutton Ave. (final extent to be determined at detail design stage).
- SIO Implement an opening policy requiring Council to clear sand from the creek, outlet once a critical level (R. 2.3m) of sand "halld up" is reached.
- Owner of Old Buli. Mine site to expedite rehabilitation works including stabilization of mine platform.

## HEWITTS CREEK

- Construct a coarse debt is trap comprising large steel or timber "bollards" set into the bed of the creek, bolards to be set at 0.5-lm spacings and span full creek width
- H2 Construct a coarse debris trap comprising large steel or timber 'bollards' set into the bed of the creek bolards to be set at 0.5-im spacings and span full creek width.

**WOODLANDS** 

**CREEK** 

#### Construct expanded inlet & debris control structure at culvert entrance & modific local defanage to prevent surcharge of pits (in front of No 25 Vingina Terrace) Rehabilitate croek deanned westream of culvert.

- Modify driveway entrance to No's 25 & 25 Vrahit
  Terrace. Provide flood compatible fancing & relocate
  structures within overflow path flow training wells as
- H5

  Remove excess boulders and sediment deposited in the August 1998 flood upstream of Kelton Lanc. Stabilise creek banks.
- Excavate & enlarge creek channel & construct law levee at rear oil properties. In Laddin St. to contain tilevs. Construct rock revelement at toe of unstable bank at rear of No 19 George St. Landscape all areas upon completion.
- H7 Lower kerb & raise driveways on downstream edge Lachlan St. (between No 6 & No 14). Construct projecting central pillar & flow training w
- H8 Make voluntary purchase offer for No 4

Wollongong

City of Innovation

- H9 Lawrence Haropave Dr. & the rail. Rehistate natural rock path & rightest construction of an offline water quality control pand & sedament trap on south bank. Landscape on completion.
- Construct a lovee at KL 4.5°Cm (approx) along the real bundary of properties on the north bank. Lowe to extend downstream from No 17 Carbett Ave. Lovee to comprise combination of earth 8 majorny will. Final extent to be differentiated at detail destine stage.
- HIII Implement an opening policy requiring Council to clear sand from the creek outlet once a critical level (RL 2.8m) of sand "build up" is reached.
- H12 Council to further investigate illood/stormwater iss within the vicinity of Pass Avenue and High Street.

#### WOODLANDS CREEK

- WI Excavate basin of minimum 5000m5 volume, offline to creek including provision for water quality controls & landscaping with native species, incorporate debris control
- W2 Lower safety ramp by approx. On for a distance of 50m from the entry to the ramp Excess spot to be used for construction of levels (refer W3)
- W3 Construct all levee at RLTB.50m (approx) along the rear boundary of properties on the north bank. Levee to extend between Lawrence Hargrave Price & the ratival
- W4 Construct a new high level whent through the rativey embankement. On wide by 4m high to the north of the existing law level whent
- W5 Close off diversion of Woodlands into Hewitits by filling existing glabion lined channel using appropriate fill material additional confidence on comment
- W6 Upprade outsting flow path to Tramway Creek excavating an enlarged channel (where require providing rock armour bank protection.

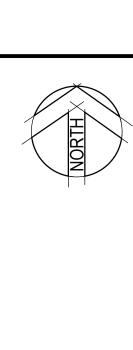
## THOMAS GIBSON CREEK

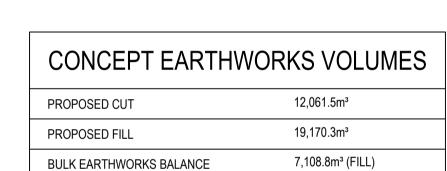
- Construct a new pipe system with multiple inlets along east side of Phillip St. Construct new "natural" watercourse along Sea Froam Ave. Raise kerb & drivew of properties in Sea Froam Ave. (No.) 5 27-355)
- Raise kerb & driveway entrances along south side of Bath St by 150mm approx. to contain minor flooding within roading.
- Lower the south bank of Planagans Creek by up to lin nea bend in The Esplanade. Rehabilitate steep eroding banks Enlarge table drain along east side of The Esplanade
- Modify the entrance to public car park to provide for overflow. Raise kerb & driveways to protect low lung properties. (No's 101 to 105)
- Modify Station St to provide one-way cross fall to south.
  Erlange southern table drain to convey major flows towards
  playing field 8. Into proposed detention basin, Investigate
  Improvements to rail culvert near War Mamotel.
- Enlarge & stronghon custing embankment at east end of themse Gibson Park, Provider new cultile structure & reinforced spillway to formalise as detention been. Kerove existing observan into Thomas Gibson Park at Laddan St
- 167

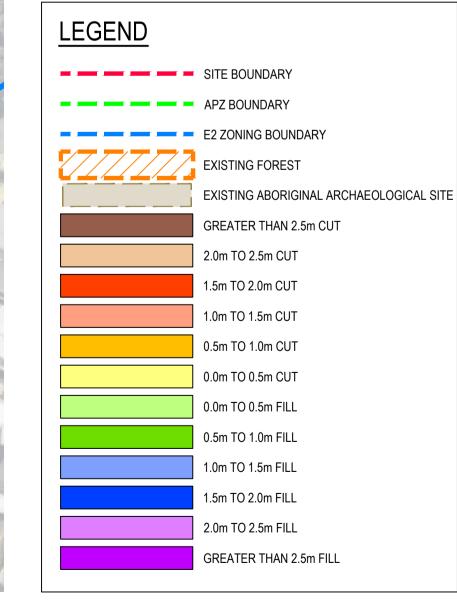
  Constructing tapered lelet to enhance hydraulic capacity, Modify watercourse downstream of culvert to enhance capacity. Relocate structures as recessary.
- Improve culvert capacity by constructing an additional culvert or orbancing capacity of existing system.

  Modify roadway & existing floodgate to reduce diversion
- Implement an opening policy requiring Council to clear sand from the creek outlet once a critical level (RL 2.8m) of sand "build up" is reached.
- Implement an opening policy requiring Council to clear sand from the creek outlet once a critical level (RL 2.8m) of sand "build up" is reached.
- Carry out Investigation to determine the capacity & condition of existing dramage infrastructure in the general area. Carry out any improvements determined

# HEWITTS CREEK


# Incorporating Slacky, Tramway, Woodlands & Thomas Gibson Creeks FLOODPLAIN RISK MANAGEMENT PLAN


**APPENDIX** 


Н

BULK EARTHWORKS PLAN









NOT TO BE USED FOR CONSTRUCTION PURPOSES

82018138-001-SK010

1:750

SCALE 1:750 (A1), 1:1500 (A3)

AHD

# CONCEPT BULK EARTHWORKS LAYOUT SCALE 1:750

TURPENTINE FOREST

| © Cardno Limited All Rights Reserved.                          |
|----------------------------------------------------------------|
| This document is produced by Cardno Limited solely for the     |
| benefit of and use by the client in accordance with the        |
| terms of the retainer. Cardno Limited does not and shall not   |
| assume any responsibility or liability whatsoever to any third |
| party arising out of any use or reliance by third party on the |
| content of this document.                                      |

TRAMWAY CREEK

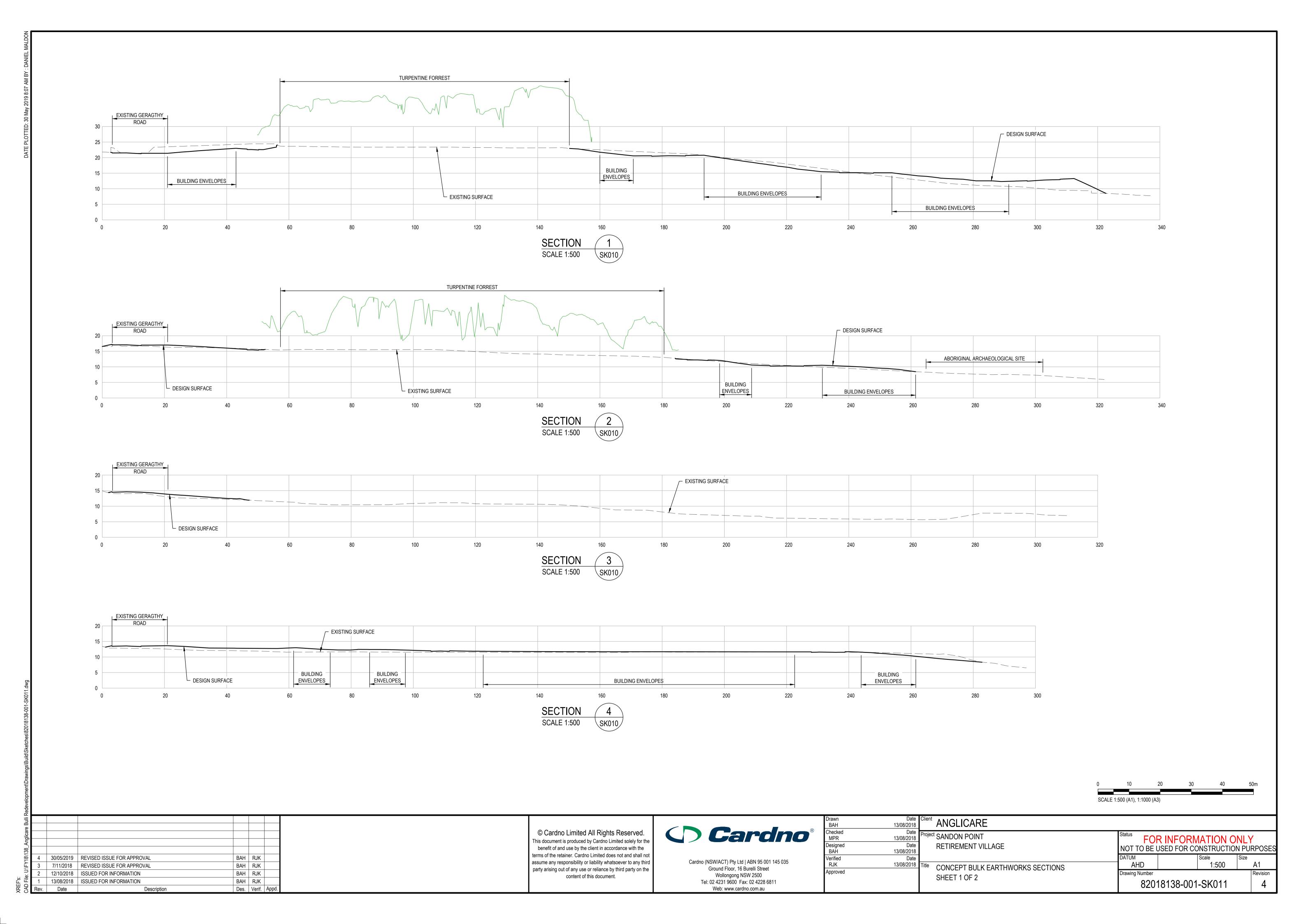
RACF / INDEPENDANT LIVING

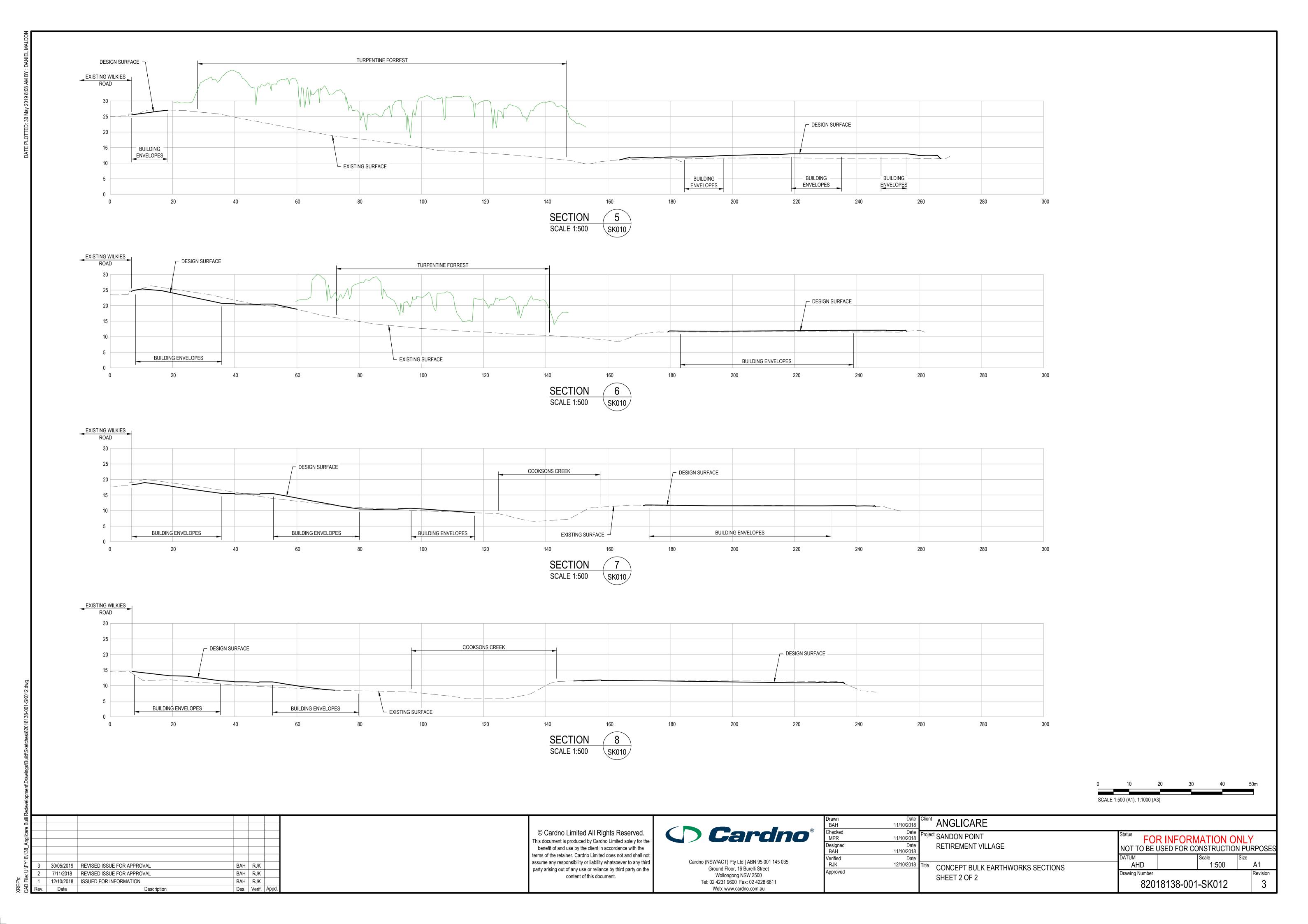
Wollongong NSW 2500 Tel: 02 4231 9600 Fax: 02 4228 6811 Web: www.cardno.com.au

WILKIES ST

| ) Cardno                                                                         |
|----------------------------------------------------------------------------------|
| Cardno (NSW/ACT) Pty Ltd   ABN 95 001 145 035<br>Ground Floor, 16 Burelli Street |

Date 0 10/08/2018 Project SANDON POINT 10/08/2018 Date 10/08/2018 Verified RJK 10/08/2018 Title CONCEPT BULK EARTHWORKS LAYOUT PLAN


**ANGLICARE** 


RETIREMENT VILLAGE

8/11/2019 REVISED ISSUE FOR APPROVAL BAH RJH BAH RJK 30/05/2019 REVISED ISSUE FOR APPROVAL BAH RJK 12/10/2018 REVISED ISSUE FOR APPROVAL BAH RJK 29/08/2018 REVISED ISSUE FOR APPROVAL 13/08/2018 ISSUED FOR INFORMATION BAH RJK Date Description Des. Verif. Appd.

NEARMAP IMAGE SOURCED DEC 2017

WILKIES ST



