APPENDIX D
Test Bore Report Results
and Notes Relating to this Report

NOTES RELATING TO THIS REPORT

Introduction

These notes have been provided to amplify the geotechnical report in regard to classification methods, specialist field procedures and certain matters relating to the Discussion and Comments section. Not all, of course, are necessarily relevant to all reports.

Geotechnical reports are based on information gained from limited subsurface test boring and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, Geotechnical Site Investigations Code. In general, descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions.

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. sandy clay) on the following bases:

Soil Classification	Particle Size
Clay	less than 0.002 mm
Silt	0.002 to 0.06 mm
Sand	0.06 to 2.00 mm
Gravel	2.00 to 60.00 mm

Cohesive soils are classified on the basis of strength either by laboratory testing or engineering examination. The strength terms are defined as follows.

	Undrained
Classification	Shear Strength kPa
Very soft	less than 12
Soft	12—25
Firm	25—50
Stiff	50—100
Very stiff	100—200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT) as below:

	SPI	CPI
Relative Density	"N" Value	Cone Value
	(blows/300 mm)	(q _c — MPa)
Very loose	less than 5	less than 2
Loose	5—10	2—5
Medium dense	10—30	5—15
Dense	30—50	15—25
Very dense	greater than 50	greater than 25

Rock types are classified by their geological names. Where relevant, further information regarding rock classification is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin-walled sample tube into the soil and withdrawing with a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling are given in the report.

Drilling Methods.

The following is a brief summary of drilling methods currently adopted by the Company and some comments on their use and application.

Test Pits — these are excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descent into the pit. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) — the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling — the hole is advanced by pushing a 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength, etc. is only marginally affected.

Continuous Spiral Flight Augers — the hole is advanced using 90—115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water

Issued: October 1998 Page 1 of 4

table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Non-core Rotary Drilling — the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

Rotary Mud Drilling — similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

Continuous Core Drilling — a continuous core sample is obtained using a diamond-tipped core barrel, usually 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

Standard Penetration Tests

Standard penetration tests (abbreviated as SPT) are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" — Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7

as
$$4, 6, 7$$

 $N = 13$

 In the case where the test is discontinued short of full penetration, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm

The results of the tests can be related empirically to the engineering properties of the soil.

Occasionally, the test method is used to obtain samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borelogs in brackets.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch cone — abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in Australian Standard 1289, Test 6.4.1.

In the tests, a 35 mm diameter rod with a cone-tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20 mm per second) the information is plotted on a computer screen and at the end of the test is stored on the computer for later plotting of the results.

The information provided on the plotted results comprises: —

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone — expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower scale (0—5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main scale (0—50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve friction to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1%—2% are commonly encountered in sands and very soft clays rising to 4%—10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:—

$$q_c$$
 (MPa) = (0.4 to 0.6) N (blows per 300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:—

$$q_c = (12 \text{ to } 18) c_u$$

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes, etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on soil classification is required, direct drilling and sampling may be preferable.

Issued: October 1998 Page 2 of 4

Hand Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150 mm increments of penetration. Normally, there is a depth limitation of 1.2 m but this may be extended in certain conditions by the use of extension rods.

Two relatively similar tests are used.

- Perth sand penetrometer a 16 mm diameter flatended rod is driven with a 9 kg hammer, dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.
- Cone penetrometer (sometimes known as the Scala Penetrometer) — a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). The test was developed initially for pavement subgrade investigations, and published correlations of the test results with California bearing ratio have been published by various Road Authorities.

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedure used are given on the individual report forms.

Bore Logs

The bore logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

Ground Water

Where ground water levels are measured in boreholes, there are several potential problems;

- In low permeability soils, ground water although present, may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be

- the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface condition, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- unexpected variations in ground conditions the potential for this will depend partly on bore spacing and sampling frequency
- changes in policy or interpretation of policy by statutory authorities
- the actions of contractors responding to commercial pressures.

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes

Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institution of Engineers, Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section

Issued: October 1998 Page 3 of 4

is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Copyright © 1998 Douglas Partners Pty Ltd

Issued: October 1998 Page 4 of 4

AN ENGINEERING CLASSIFICATION OF SEDIMENTARY ROCKS IN THE SYDNEY AREA

This classification system provides a standardized terminology for the engineering description of the sandstone and shales in the Sydney area, but the terms and definitions may be used elsewhere when applicable.

Under this system rocks are classified by Rock Type, Degree of Weathering, Strength, Stratification Spacing, and Degree of Fracturing. These terms do not cover the full range of engineering properties. Descriptions of rock may also need to refer to other properties (e.g. durability, abrasiveness, etc.) where these are relevant.

ROCK TYPE DEFINITIONS

Rock Type	Definition
Conglomerate:	More than 50% of the rock consists of gravel sized (greater than 2mm) fragments
Sandstone:	More than 50% of the rock consists of sand sized (.06 to 2mm) fragments
Siltstone:	More than 50% of the rock consists of silt-sized (less than 0.06mm) granular particles and the rock is not laminated
Claystone:	More than 50% of the rock consists of clay or sericitic material and the rock is not laminated
Shale:	More than 50% of the rock consists of silt or clay sized particles and the rock is laminated

Rocks possessing characteristics of two groups are described by their predominant particle size with reference also to the minor constituents, e.g. clayey sandstone, sandy shale.

DEGREE OF WEATHERING

Term	Symbol	Definition
Extremely Weathered	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties - i.e. it can be remoulded and can be classified according to the Unified Classification System, but the texture of the original rock is still evident.
Highly Weathered	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original fresh rock substance is no longer recognisable.
Moderately Weathered	MW	Rock substance affected by weathering to the extent that staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is no longer recognisable.
Slightly Weathered	SW	Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.
Fresh	Fs	Rock substance unaffected by weathering, limonite staining along joints.
Fresh	Fr	Rock substance unaffected by weathering.

STRATIFICATION SPACING

Term	Separation of Stratification Planes
Thinly laminated	<6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	>2 m

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index (Is 50) and refers to the strength of the rock substance in the direction normal to the bedding. The test procedure is described by the International Society of Rock Mechanics (Reference).

Strength Term	ls(50) MPa	Field Guide	Approx. qu MPa*
Extremely Low:	0.03	Easily remoulded by hand to a material with soil properties	0.7
Very Low:	0.03	May be crumbled in the hand. Sandstone is "sugary" and friable.	0.7
Low.	0.1		2.4
Low:	0.3	A piece of core 150 mm long x 50 mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.	7
Medium:	1	A piece of core 150 mm long x 50 mm dia. can be broken by hand with considerable difficulty. Readily scored with knife.	24
High:	3	A piece of core 150 mm long x 50 mm dia. cannot be broken by unaided hands, can be slightly scratched or scored with knife.	70
Very High:	10	A piece of core 150 mm long x 50 mm dia. may be broken readily with hand held hammer. Cannot be scratched with pen knife.	240
Extremely High:		A piece of core 150 mm long x 50 mm dia. is difficult to break with hand held hammer. Rings when struck with a hammer.	

^{*} The approximate unconfined compressive strength (qu) shownin the table is based on an assumed ratio to the point load index of 24:1. This ratio may vary widely.

DEGREE OF FRACTURING

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude known artificial fractures such as drilling breaks

Term	Description
Fragmented:	The core is comprised primarily of fragments of length less than 20 mm, and mostly of width less than the core diameter.
Highly Fractured:	Core lengths are generally less than 20 mm - 40 mm with occasional fragments.
Fractured:	Core lengths are mainly 30 mm - 100 mm with occasional shorter and longer sections.
Slightly Fractured:	Core lengths are generally 300 mm - 1000 mm with occasional longer sections and occasional sections of 100 mm - 300 mm.
Unbroken:	The core does not contain any fracture.

REFERENCE

International Society of Rock Mechanics, Commission on Standardisation of Laboratory and Field Tests, Suggested Methods for Determining the Uniaxial Compressive Strength of Rock Materials and the Point Load Strength Index, Committee on Laboratory Tests Document No. 1 Final Draft October 1972

GRAPHIC SYMBOLS FOR SOIL & ROCK

SOIL

BITUMINOUS CONCRETE CONCRETE **TOPSOIL FILLING** PEAT CLAY SILTY CLAY SANDY CLAY **GRAVELLY CLAY** SHALY CLAY SILT **CLAYEY SILT** SANDY SILT SAND **CLAYEY SAND** SILTY SAND **GRAVEL** SANDY GRAVEL **CLAYEY GRAVEL** COBBLES/BOULDERS **TALUS**

SEDIMENTARY ROCK

BOULDER CONGLOMERATE

CONGLOMERATE

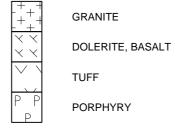
CONGLOMERATIC SANDSTONE

SANDSTONE FINE GRAINED

SANDSTONE COARSE GRAINED

SILTSTONE

LAMINITE


MUDSTONE, CLAYSTONE, SHALE

COAL

LIMESTONE

METAMORPHIC ROCK

IGNEOUS ROCK

CLIENT:

Energy Australia

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

BORE No: 101

PROJECT No: 36569.03

DATE: 01 Jul 08

NORTHING: DIP/AZIMUTH: 90°/--SHEET 1 OF 2

_		Description	Degree of Weathering	ji ji	Rock Strength	Fracture Spacing	Discontinuities	Sa	<u> </u>		In Situ Testin
De; (n	n)	of Strata	>>>>		National Income	(m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Sore ec.%	Rob %	Test Result
	0.06	BITUMINOUS CONCRETE /	W F W S S E	, , , , ,		1 11 11 2 85 88		!	2 02		Comments
		CONCRETE /	-	₽4		1 11 11		Α			
- - -	0.8	FILLING - light brown, fine to medium grained, sand filling with crushed sandstone						A			PID=1.9ppn
-1 -1	0,8	FILLING - light grey and red brown, silty clay and crushed sandstone filling		\boxtimes				E A			PID=1.2ppr 3,4,12
	1.7							S			N ≃ 16 PID=1.3ppi
-2		FILLING - light brown to brown, fine to medium grained, sand filling with some angular concrete gravel, humid						E	-		PID<1ppm
								E			PID<1ppm 7,25/10mm
				\bowtie				E	ĺ		refusal PID<1ppm
-3	3.0	SANDY CLAY - very stiff to hard, mottled orange red grey, sandy clay with ironstone bands									, 13 s 1991
4								s			9,13,17 N = 30
										[
-5											
								s			11,11,16 N = 27
-6							Note: Unless otherwise stated, rock is fractured along rough planar				N-21
	6.7	SANDSTONE - extremely low					bedding planes or joints dipping 0°- 10°				
.7	7.0	strength, light grey brown, fine to medium grained sandstone with		\exists			7m: CORE LOSS:				
		ironstone bands SANDSTONE - very low strength, highly weathered, light grey and brown, fine grained sandstone with ironstone bands					120mm 7.3m: J85°- 90°, curved				
-8	8.1	SILTSTONE/SANDSTONE - extremely low to very low strength, extremely to highly weathered, grey and brown, fine grained sandstone/siltstone						С	96	36	
- g	8.85	SANDSTONE - high strength, slightly weathered then fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone with very low strength bands					8.9m: B5°, carbonaceous clay \ 9.2m: J90° 9.24m: B0°, 10mm clay				PL(A) = 1.3M

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 3.0m

TYPE OF BORING: Diatube to 0.22m; Solid flight auger to 3.0m; Rotary to 7.0m; NMLC-Coring to 15.90m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: E = Environmental sample

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling ADBU\$C

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

Photo ionisation detector

S Standard penetration test

pp Point load strength is(50) MPa

V Shear Vane (kPa)

Water seep

Water level

CHECKED Initials;

Energy Australia CLIENT:

Belmore Park Substation PROJECT:

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING: NORTHING:

BORE No: 101 **PROJECT No: 36569.03**

DIP/AZIMUTH: 90°/--

DATE: 01 Jul 08 SHEET 2 OF 2

		Description	Degree of Weathering	ပ္က	Rock Strength চু	Fracture	Discontinuities				n Situ Testing
귐	Depth (m)	of Strata	Degree of Weathering	Graph Log	Strength Light Medium M	Spacing (m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Sec. %	RQD %	Test Results & Comments
	-11	SANDSTONE - high strength, slightly weathered then fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone with very low strength bands (continued)	WH		0 5 9 5 ± 5 0		10.38m: B15°, clay veneer 11.07m: B0°, 10mm	С	100	99	PL(A) = 2.6MPa
	-12						sandy clay	С	100	99	PL(A) = 2.5MPa
	- - - 13						12.37m: B0°, 10mm sandy clay				PL(A) = 2MPa
	-14						13.83m: B0°, clay veneer	С	100	100	PL(A) = 1.5MPa
	- 15						14.51m: B5°, clay smear				PL(A) = 1.5MPa PL(A) = 1.3MPa
	15.9 -16	Bore discontinued at 15.9m									
	17										
	-18										
	-19										

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 3.0m

TYPE OF BORING: Diatube to 0.22m; Solid flight auger to 3.0m; Rotary to 7.0m; NMLC-Coring to 15.90m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample

SAMPLING & IN SITU		
	pр	Pocket penetrometer
le	ΡÌΦ	Photo ionisation dete

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

STING LEGEND
Pocket penetrometer (kPa)
Photo ionisation detector
Standard penetration test
Point toad strength Is(50) MPa
Shear Vane (kPa)
Water seep
Water seep
Water level

CLIENT:

Energy Australia

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- **BORE No: 102**

PROJECT No: 36569.03

DATE: 27 Jun 08 SHEET 1 OF 2

	Description	Degree of	Rock Strength	Fracture	Discontinuities	Sai	mplin	g&lı	n Situ Testing
Depth (m)	of	Weathering Craphic Log		Spacing (m)	B - Bedding J - Joint	Type	Rec. %	8.8	Test Results &
(11)	Strata	WW WW SW SW SW	Very High		S - Shear D - Drill Break	٦	S &	ř	Comments
0.05 0.15	BITUMINOUS CONCRETE ROADBASE GRAVEL FILLING - light brown, fine to medium grained sand filling, with			1		A			PID<1ppm
0.7	some gravel and brick fragments, humid FILLING - moderately compacted, dark grey brown, silty clay filling					E A E*			PID<1ppm pp = 8kPa 6,6 N = 12
1.4	with fine sand and gravel, moist SANDY CLAY - stiff to very stiff, grev brown sandy clay with					S.			PID<1ppm
2 2.0	ironstone bands, moist SANDY CLAY - very stiff, mottled red brown and light grey sandy clay								· ·
	with ironstone bands					S			PID<1ppm pp = 12kPa 5,11
3									N = 16
-4					Note: Unless otherwise stated, rock is fractured	s			pp = 16kPa 10,10 N = 20
-5 -5 - 5.5					along rough planar bedding planes or joints dipping 0°- 10°				-
-6	extremely to moderately weathered then fresh stained, fractured to slightly fractured, light grey and brown, fine to medium grained				5.5m: CORE LOSS: 100mm 5.5-7.8m: B0°- 5°, clayey & ironstained				PL(A) = 0.7MPa
<u>.</u>	sandstone with some extremely low strength bands								PL(A) = 0.7MPa
-7						С	97	72	PL(A) = 0.4MPa
-8					8.1m: J60°- 90°, curved, ironstained				PL(A) = 0.4MPa
8.6 [8.6 -9		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			8.5m: CORE LOSS: 100mm	С	95	87	PL(A) = 2.3MPa
	9.82-9.93m: extremely low strength band				9.82m: B0°, clayey				

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.5m; NMLC-Coring to 16.25m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

100% water loss at 8.5m. E = Environmental sample *Denotes field replicate sample BD3/270608 collected

SAMPLING	&	1N	SIT	U	TES	STING	LEGE	ND
.,,					nn	Pocket	penetro	mete

A Auger sample
D Disturbed sample
B Bulk sample
U, Tube sample (x mm dia.)
W Water sample
C Core drilling

pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
photo ionisation detector
S Standard penetration test
Pc Point load strength ts(50) MPa
V Shear Vane (kPa)
D Water seep Water level

CLIENT:

Energy Australia

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket SURFACE LEVEL: --

EASTING: NORTHING:

PROJECT No: 36569.03

DIP/AZIMUTH: 90°/--

DATE: 27 Jun 08 SHEET 2 OF 2

BORE No: 102

Γ		Description	Degree of Weathering	ဋ	Rock Strength	Fracture	Discontinuities	Sa	mplii	ng &	In Situ Testing
ͳ	Depth (m)	of Strata	EW HW MW SW FS	Graph	Strength Str	Spacing (m) 등 등을 등을	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Rec. %	gg%	Test Results & Comments
		SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone (continued)						С	95	87	PL(A) = 1.9MPa
	-11						11.06m: B10°, clayey				PL(A) = 2.5MPa
	11.52 -12	SANDSTONE - high to very high then high strength, fresh, slightly fractured and unbroken, light grey medium to coarse grained sandstone					11.5m: B5°, 15 mm sandy clay	С	100	85	
	-13				\$		12.95m: B5°, 10mm				PL(A) = 3.3MPa
							sandy clay				PL(A) = 2.7MPa
	-14						»>				PL(A) = 1.7MPa
	-15							С	100	100	PL(A) = 1.6MPa
	-16										
	16.25	Bore discontinued at 16.25m									
	-17										
	- 18										
	-19										

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CHECKED

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.5m; NMLC-Coring to 16.25m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

100% water loss at 8.5m. E = Environmental sample *Denotes field replicate sample BD3/270608 collected

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
lee PID Photo ionisation detector
S Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
D Water seep \$ Water level

Initials: Date:

CLIENT:

Energy Australia

Belmore Park Substation PROJECT:

Cnr Pitt, Hay & Campbell St, Haymarket LOCATION:

SURFACE LEVEL: --

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- **BORE No: 103**

PROJECT No: 36569.03

DATE: 13/6-1/7/08 SHEET 1 OF 2

Τ		Description	Degree of	ပ္	Rock Strength	Fracture	Discontinuities	Sa	mplir	ng & I	n Situ Testing
ا إي	Depth	of	Weathering	L ap	Strength Str	Spacing (m)	B - Bedding J - Joint	96	e %	۾ ڇ	Test Results &
1	(m)	Strata	EW MW SW FS SW	irn	Ex Low Very Low Low Medium High Very High Ex High	0.00	S - Shear D - Drill Break	Туре	ပ္သည္ဆို	80° 0%	α Comments
· · · · ·	0.05 0.15	BITUMINOUS CONCRETE ROADBASE GRAVEL FILLING - light grey brown, fine to medium grained, sand filling with		X		1 11 11 1 11 11 1 11 11 1 11 11		A E E A		•	PID<1ppm PID<1ppm
	1	crushed sandstone and gravel, humid						A S E	 		PID<1ppm 25/100mm refusal PID<1ppm
1	1.7	SANDY CLAY - very stiff, mottled orange grey sandy clay with ironstone bands, damp						E			PID<1ppm
	2.3	SANDY CLAY - very stiff to hard, mottled red, light grey sandy clay						Е			PID<1ppm
-		with ironstone band (possible extremely weathered sandstone)						s			4,7,12 N = 19
	4									:	0.45.05/00
-				1//				S			6,15,25/30mm refusal
	5						Note: Unless otherwise stated, rock is fractured along rough planar bedding planes or joints dipping 0°- 10°	.			
	5.4 5.45	SANDSTONE - extremely low strength, light grey, fine grained sandstone	<u> </u>	<u> </u>	┩ ┩╿╿		5.54m: B0°, 15mm clay	:			PL(A) = 0.4MPa
	6	SANDSTONE - medium then low strength, highly to moderately weathered, slightly fractured, light grey brown fine grained sandstone					5.98m: B0°, 20mm sandy clay	С	100	69	PL(A) = 0.2MPa
	7	with extremely and very low strength bands					6.49m: B0°, 15mm sandy clay 6.67m: J85°, ironstained				PL(A) = 0.2MPa
	7.15			\times			7.15m: CORE LOSS: 180mm 7.5m: J60°- 90°, curved				
111111	7.85 · 8	SANDSTONE - medium strength, fresh stained, slightly fractured, grey brown, fine to medium grained sandstone					7.58m: J45°, clayey 8.11m: J35°, ironstained 8.18m: J30°, 85°, steeped				PL(A) = 0.5MPa
	8.6 ·9	SANDSTONE - medium then high strength, fresh stained, slightly fractured, light grey, medium to coarse grained sandstone	1 1 1 1 1				8.53m: B0°, clayey 9.12m: J80°	С	94	80	PL(A) = 0.9MPa
-							9.51m: B0°, clayey				PL(A) = 1.5MPa

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.45m; NMLC-Coring to 16.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

Standpipe installed. E = Environmental sample REMARKS:

Auger sample
Disturbed sample
Sulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
point load strength (kPa

CLIENT: Energy Australia

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

NORTHING:

DATE: 13/6-1/7/08 SHEET 2 OF 2

BORE No: 103

PROJECT No: 36569.03

DIP/AZIMUTH: 90°/--

	Description	Degree of Weathering	ပ္ပ	Rock Strength	Fracture	Discontinuities				In Situ Testing
군 Depth (m)	of Strata	Degree of Weathering	Graph Log	Strength Nater KHigh India Nat	Spacing (m)	B - Bedding J - Joint S - Shear D - Drill Break	Туре	Core Rec. %	Rab %	Test Results & Comments
10.0	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone					10.49m: B10°, 5mm sandy clay				PL(A) = 1.7MPa
-12						11.19m: B0°, 15mm sandy clay	С	100	99	PL(A) = 2.4MPa
13 13.1	SANDS I ONE - nigh to very high					12.8m: B5°, clay veneer				PL(A) = 2.4MPa
-14	strength, fresh, unbroken, light grey, medium to coarse grained sandstone									PL(A) = 3MPa
14.2	SANDSTONE - high strength, fresh, slightly fractured, light grey, medium to coarse grained sandstone					14.51m: B20°, clay veneer 14.66m: B5°, clay veneer	С	100	100	PL(A) = 1.9MPa
-16 -16.1	Bore discontinued at 16.1m					15.51m: B0°, 10mm sandy clay	•			PL(A) = 1.7MPa
- 17	Bore discontinued at 10.1111									
					11 11					
- - - - -										
-19										

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.45m; NMLC-Coring to 16.1m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Standpipe installed. E = Environmental sample

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Standard penetration test
point load strength 1s(50) MPa
pp Water seep
water seep
water lavel

CHECKED Initials:

CLIENT: Energy Australia

Belmore Park Substation PROJECT:

Cnr Pitt, Hay & Campbell St, Haymarket LOCATION:

SURFACE LEVEL: ---

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 104

PROJECT No: 36569.03

DATE: 25-26/6/08 SHEET 1 OF 4

		Description	\V	Deg Vea	gre ath	e o	f ng l	ဋ	,	Stre	ock eng	th	ř		ractu		Discontinuities	Sa	mpli	ng &	In Situ Testing
	Depth (m)	of	1			erin erin	<u> </u>	퉏립	 } .	5 T	Ęį		Water		pacin (m)	ıy	B - Bedding J - Joint	Туре	Core Rec. %	<u>۾</u>	Test Results &
	`	Strata	Š	≩ :	≩ 2	S. S.	اع	ָט	의	ا اؤاؤ	틝	֓֞֟֞֟֓֓֟֓֓֟֝֟֓֟֝֟֟֝֟֟֝֟֟֝֟֟֝֟֟֝֟֝֟֟֝֟֝֟	>	0.01	0.00	8	S - Shear D - Drill Break	Ţ	ပည	K _	Comments
-	0.03 0.15	\BITUMINOUS CONCRETE /	7	П	Ţ			V.	Ţ		1	11		Т	П			Α			
-	3.13	ROADBASE GRAVEL	/ ¦	1		1	ik	X	1	1 1	i	11		i				E	-		PID<1ppm
E		FILLING - light grey brown, fine to medium grained, sand filling with	!	!	[1 !	! [XX	1	!!	!	!!		ļ				A	1		L1D<1bbin
ŀ	0.65	crushed sandstone and gravel,	/ ¦	 	 	1 [l k I k	X	1	1 1	1] 		 				E			PID<1ppm
Ļ ₁		humid FILLING - grey and red brown, silty	' !	1	ļ	!!	! k	XX	1		İ	į į		ļ				A	-		i ib - ippili
-	1.1	clay filling with trace of fine sand, moist	/ ¦	 	 	1			1			1		 	H			E			9,10,12 N = 22 PID<1ppm
-	1.7	SANDY CLAY - very stiff, orange red brown sandy clay with \ironstone band, damp	/	 	 							 		1	ii :			E*	1		PID<1ppm
-2	2.1	SANDY CLAY - very stiff, red brown sandy clay with fine	/			ij			į		i			i 	i i ! !	 					,
Ē		ironstone band, damp SANDY CLAY - very stiff mottled	' ¦				! !		!	1		1		İ	ij						
-		orange, light grey sandy clay, damp				1 [1	1 1		1		 	ÌΪ			S			7,10,12 N = 22
-3				j 1	į				İ	ij	į	İÌ		į į	Ìί						
			İ	į	į	ij	į		į	ij	į	ij		į	ÌΪ						
			i			ii	ij	/./	i	1 1	i			ļ	İΪ		Note: Unless otherwise				
-4]			! [//	-			11					stated, rock is fractured along rough, planar		}		26
["				1			¦	//	ï	1 1	1			j		i i	bedding planes or joints dipping 0°- 10°	Ş	1		refusal
-				1			!	//			I				: :		aipping a - 10				
	4.5 4.65	SANDSTONE - very low strength,	\perp	L	4	-11	Ц	$\stackrel{\leftarrow}{\Box}$	¦_	11		╁╁		<u> </u>	ii.	ш					
	4.71	light grey brown, fine to medium grained sandstone with ironstone		Z	H			X	下	\supset	4	77		<u> </u>	<u>-</u>	\mathbb{K}	4.71m: B0°, clayey CORE LOSS: 200mm				
- 5		band	/	1	li	11	ŀ		j		i	H		i '	`		5.03m; J35°				
		SANDSTONE - medium strength, moderately weathered, fractured to	1!		l!		!		1	1	ļ!				1 1						PL(A) = 0.9MF
-		slightly fractured, brown, fine to			lli	1 1			1	11	ľ	11		:							, 20.9
		medium grained sandstone	!		l!	11	! [10	-	ī!	1			!	[] [5.63m; B0°, 5mm clay	_			
-6			H		H	1 1			1	1 1	li				 		5.87-7.4m: B0°- 5°,	C	92	80	
	6.1	SANDSTONE - medium strength,	┦!		7	וָרָ:	! [1	!!	Į!	!!		ļ	!!"	l!	ironstained				D! (4) 0 0145
		fresh stained to fresh, slightly fractured, light grey with brown		l L				$ \cdot $	1	1 1	ľ	11		i I	1 1						PL(A) = 0.9MF
		stained, fine to medium grained	Ţ	Ì	į		! :	$ \cdot $	ļ	ij	ļ	İİ		į –	4	Ħ	6.65m: B5° ironstained				
		sandstone] 1	 		<u> </u>		i i		ľ	11		l I	¦ ! —		with rock fragments				
-7			li	i	i	ijį	i		i	ij	li	ii		i	ij						
					 		<u> </u>	$ \cdot $	1		ľ			 	1 1 						PL(A) = 0.9MP
			i	i	i		ı] [:::	i	ìί	ľ	ii		į '	П	ii					
	7.75			1	<u> </u>		Щ]	1		Ļ	11		 	<u> </u>	띩	7.75m: CORE LOSS:				
-8			17			17	7	\ /	1	1	H	W		1		/	7.75m; CORE LOSS: 1150mm	_	00	00	
		•	Ţį	X	Ų	χi	!	$\backslash / $	Ĺ	Νį	Ĺ	11		ļ \	N /	(С	92	92	
				 - -	Ж	/		χl	1	 	X,	1		1	¦X						
<u> </u>			i	X	ľ	V	į	/\	ij,	χİ	i	χİ		1/	{i \	Ņ					
-			Z	[() 	V	\	Ž	 -	 -	\square		1							
-9		•	П	i			i][i		i		li	ii	1								
	9.25	SANDSTONE - high strength,	Ųį́	1					!		Щ	11		1	!	ا ۱	9.25m: B0°, clayey				
ŀ		fresh, unbroken, light grey medium		 	 	i 	¦][::::]	1			1			1		J. Zom. Do , Gayey	С	100	100	PL(A) = 2.5MP
1		to coarse grained sandstone	Ţi	i	į	įį	! E	::::]	į	įį	į	Ħ		į	ij						``
ļ.			F -																		

DRILLER: Eric

LOGGED: Si

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 30.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample

*Denotes field replicate sample BD2/250608 collected

SAMPLING &	IN SITU	TESTING	LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
Pocket penetrometer (kPa)
PiD Photo tonisation detector
Standard penetration test
Point load strength Is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CLIENT:

Energy Australia

Belmore Park Substation PROJECT:

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 104

PROJECT No: 36569.03

DATE: 25-26/6/08 SHEET 2 OF 4

_		Dom of		Dools 1			· -			
_D _	Description	Degree of Weathering	ë -	Rock Strength	Fracture Spacing	Discontinuities		,		In Situ Testing
되 (u	m) or		g 3	Strength Strength Wednin 1846	(m) Nat	B - Bedding J - Joint	Type	5 c	RQD %	Test Results &
	Strata	要表數級表表		<u></u> 모(종(종)종(조)	0.05 0.10 0.10	S - Shear D - Drill Break	É	ပည္	R,	Comments
	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone with some carbonaceous laminations						С	100	100	PL(A) = 1.5MPa
-11						11.05m: B0°, clay veneer 11.6m: B5°, clay veneer				PL(A) = 2MPa
-12						12.13m: J25°, ironstained	С	100	100	PL(A) = 2.5MPa
-13										PL(A) = 1.8MPa
-14							С	100	100	PL(A) = 1.7MPa
-15 -						14.93m: B10°, clayey				PL(A) = 2.2MPa
-17						>>	С	100	100	PL(A) = 1.9MPa
- 18										PL(A) = 1.4MPa
-19						18.4m: B0°, clay veneer	С	100	100	PL(A) = 1.9MPa PL(A) = 1.8MPa
						19.25m: J70°				

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 30.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample *Denotes field replicate sample BD2/250608 collected

Auger sample
Disturbed sample
Buik sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

PD Pocket penetrometer (kPa)

Photo ionisation detector

S Standard penetration test

PL Point load strength 1s(50) MPa

Powder seep

Water seep

Water seep

Water seep

CLIENT:

Energy Australia

Belmore Park Substation PROJECT:

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

BORE No: 104

PROJECT No: 36569.03

NORTHING: DIP/AZIMUTH: 90°/-- DATE: 25-26/6/08 SHEET 3 OF 4

Ι	Description	Degree of Weathering	ဋ	Rock Strength	Fracture	Discontinuities	Sa	mpliı	ng & l	n Situ Testing
교 Depti (m)	of Strata	Degree of Weathering	Log	Neglian Low Low Low Low Low Low Low Low High Low Light Low Light Low Let High Let High Let High Let High Let High Let High Let High Let High Let High Let High Let High Let High Let High Let Let Let Let Let Let Let Let Let Let	Spacing (m)	B - Bedding J - Joint S - Shear D - Drill Break	Type	Core Rec. %	Rab %	Test Results & Comments
20						℃19.9m: B0°, clayey	С		100	PL(A) = 2.4MPa
-21						21.38m: J75° 21.65m: J75°, clayey 21.77m: J60°	С	100	100	PL(A) = 2.5MPa
-22						22.47m: B10°, clay veneer				PL(A) = 1.6MPa PL(A) = 1.6MPa
-23						22.85m: J25°, clayey 22.87m: J75°- 85°, curved 23.17m: J75°	С	100	99	PL(A) = 1.7MPa
-24						24.16-24.75m: B0°- 10°, clay veneer				PL(A) = 1.9MPa
-25 -										
-26										DI (A) = 4 035Da
-27	26.55-26.70m: medium strength band						С	100	100	PL(A) = 1.8MPa PL(A) = 0.5MPa
- 28										PL(A) = 1.8MPa
29						28.35m: J75°	С	100	100	PL(A) = 2.2MPa
	Bore discontinued at 30.0m									PL(A) = 3.2MPa

RIG: Bobcat

DRILLER: Eric

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 30.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample *Denotes field replicate sample BD2/250608 collected

SAMPLING & IN SITU TESTING LEGEND
Pocket penetrometer (kPa)
Photo ionisation detector
Saddard penetration test
Saddard penetration test
PL
Point load strength its[50] MPa
V
Water seep
Water level SAMPI
Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Energy Australia CLIENT:

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket SURFACE LEVEL: --

EASTING:

BORE No: 104 PROJECT No: 36569.03

DATE: 25-26/6/08 SHEET 4 OF 4

NORTHING: DIP/AZIMUTH: 90°/--

Γ		Description	Degree of Weathering	ပ္	S	Rock trengt	h	_	Fracture	Discor	ıtinuities	Sa	mpli	ng & l	In Situ Testing
屋	Depth (m)	of	Degree of Weathering	le a	\$ 5 - -	trengt	티티	Wate	Spacing (m)	B - Bedding	J - Joint	Туре	o o o o	Rob %	Test Results &
L	30.0	Strata	3 ¥ ¥ % & E		및 [출]	활물년			1.00	S - Shear	D - Drill Break	<u> </u>	ပည္	ac .	& Comments
					<u> </u>	ij									
					i i	i i									
						ij									
	-31 -				<u> </u>	ij									
						ij									
						ij									
	32				i i	ii									
					i i	i i									
	[.				i i i i										
	-33					i i L l									
						11	 		[[
						11	 		 						
	-34				1 1	 	1 [1 						
	ļ.				[1		 						
					 	 	 		 						
	-35														
	[]					1	 								
							! ! ! !								
	-36 -					11	1		1						
							 [
	-37														
					[]		1.1		11 11 1						
				İ					1 11 11						
Ì	-38						Ü		i ii ii E II II						
	<u> </u>						1								
	<u> -</u>				1		1		i ii ii I II II						
	-39					1 []	1.1		1 11 11						
						11	1 1								
	-								i (i i) I (i I)						
	-				111				i ii ii L						

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 4.65m; NMLC-Coring to 30.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample *Denotes field replicate sample BD2/250608 collected

SAMPLING 8	IN SITU			
		[Dooket	nanotromal

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia,)
Water sample

Core drilling

PD Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
PL Point load strength (s50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CLIENT:

Energy Australia

PROJECT:

Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- **BORE No: 105**

PROJECT No: 36569.03

DATE: 27-30/6/08 SHEET 1 OF 2

П		Description	Degree of Weathering	<u>.</u>	Rock	Fracture	Discontinuities	Sa	mplin	ıg & 1	n Situ Testing
교	Depth	th of	vveatnering	흥합	Strength ja text	Spacing (m)	B - Bedding J - Joint		. 		
"	(m)	Strata	HWW WW FR SW	jg _			S - Shear D - Drill Break	Туре	Core Rec. %	Z %	& Comments
Н	0.0	05 BITUMINOUS CONCRETE		à CU-I	א ושילי±יפיביליש ו ווווו						Oominents
	0.1	ROADBASE GRAVEL				[]					DID .d
		FILLING - light grey brown, fine to	11111	XX	-i i i i i i i	ii ii		E			PID<1ppm
	0,6	medium grained, sand filling with crushed sandstone and gravel,		X				E			DiDetana
	-1	\humid \		\bigotimes		ii ii		A			PID<1ppm
	•	FILLING - grey to grey brown, silty clay filling with brick fragments and		\bowtie		11 11					9,9,8 N = 17
	[charcoal, damp	1111	\bowtie				E,	[PID<1ppm
	1.	SANDY CLAY - very stiff then hard,									
	-2	light grey and brown, fine grained sandy clay (weathered sandstone,)	! ! ! ! !					E			PID<1ppm
		with ironstone bands									
								E			PID<1ppm
				$\langle \cdot \rangle$		11 11		s			10,13,13
	-							Ľ			N = 26
	-3 r			\mathbb{Z}		ii ii					
	-	ļ				11 11					
	-	1									
	-		 								
	-4			//			Note: Unless otherwise				0.47.04
	-						stated, rock is fractured along rough planar	s			8,17,24 N = 41
	Ė				1 1 1 1 1		bedding planes or joints dipping 0°- 10°	<u> </u>			
	[li li	dipping 0 - 10				
	-5 5 r	.05			<u> </u>	[] []					
	[strength, moderately weathered,		. :: :		- ii ii					
	}	slightly fractured, brown, fine to medium grained sandstone					5.41m: B5°, 2mm sandy	c	100	90	PL(A) = 0.3MPa
	}	medium grained sandstone				_ [] \ []	clay 5,66m: B0°, clayey,	ľ	100		
	-6 e.					╼╤╤═┼┪	ironstained				
	L 6.0	SANDSTONE - medium strength, fresh stained then fresh, slightly		:::							
	-	fractured, light grey, fine grained									PL(A) = 0.9MPa
	[sandstone with low to medium strength band									
	ļ	Subject States				ii ili					
	⁷			:::	1 1 1 1 1 1	11 1					
					i i i i i i i	ii ili					
	ŀ			: ::		╎╎┎┷┦		_			PL(A) = 0.9MPa
	-					_∏ ii		C	100	96	FE(M) = 0.8141FB
	-8					<u></u>					
	;							-			PL(A) = 0.9MPa
	Ē							L_	<u>_</u>		
	F 8	8.8 GANDOTONIC bish changib				i i					 PL(A) = 2.9MPa
	-9 -9	fresh, slightly fractured, light grey,]						, 5,14 - 2.01111 0
	ŀ	medium to coarse grained sandstone with medium strength						c	97	94	
	[band at 9.62m			}			١	"	"	
	9.5	0.57				41 1	9.57m; CORE LOSS: 50mm	-			PL(A) = 0.9MPa
1	F	i			լ է է ենակալ (111	5311111	1	1	1	ı

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.05m; NMLC-Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: E = Environmental sample

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

PID Photo ionisation detector

S Standard penetration test

PL Point load strength is(50) MPa

V Sheer Vane (kPa)

V Water seep

Water seep

Water seep

CLIENT:

Energy Australia

PROJECT:

Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 105 PROJECT No: 36569.03

DATE: 27-30/6/08 SHEET 2 OF 2

П		Description	Degree of		Rock Strength	.	Fracture	Discontinuities	Sai	mplin	g & lı	n Situ Testing
문	Depth	of	Degree of Weathering	log phi		Water	Spacing (m)	B - Bedding J - Joint	Type	9 % 0 %	8g%	Test Results &
ľ	(m)	Strata	HW HW SW FS	_ დ_	Ex Low Very Low Medium High Very High Ex High	> 5		S - Shear D - Drill Break	ŕ	Q §	~	Comments
	10.00 -11	SANDSTONE - high strength, fresh, slightly fractured and unbroken, light grey, medium to coarse grained sandstone						10.72m: B10°, clayey 10.8m: B10°, clayey	С	97	94	
	-12											PL(A) = 2.2MPa
	-13							>>	С	100	100	PL(A) = 2.5MPa
	-14							:				PL(A) = 1.9MPa
	15							15,89m: 80°- 10°, clayey	С	93	93	PL(A) = 1.7MPa
	- 15.89 -16 16.0		1111	<u> </u>			 - - - - - - - - - - - - - 	CORE LOSS: 110mm		1		
	-17			l ! ! !								
	-18 -18 -1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
				1							V to 2	

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: HW to 2.5m

TYPE OF BORING: Solid flight auger to 2.5m; Rotary to 5.05m; NMLC-Coring to 16.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample

SAMPLING & IN SITU TESTING LEGEND pp Pocket penetrometer (kPa) pp Photo ionisation detector S Standard penetration test pp Point load strength its[55] MPa Shear Vane (kPa) p Water seep Water seep

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

CHECKED Initials:

CLIENT:

Energy Australia

PROJECT:

Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 106

PROJECT No: 36569.03

DATE: 25 Jun 08 SHEET 1 OF 1

П	1	Description	Degree of Weathering	[_o]	Rock Strength	Fracture	Discontinu	iities	Sa	mpling	g & Ir	Situ Testing
湿	Depth (m)	of	vveathering	Log	Ex Low Very Low Medium Medium Medium Medium Krigh	Spacing (m)		Joint	Туре	Core Rec. %	3%	Test Results &
				9	Ţ 등 등 등 등 등 기	0.0	S-Shear D-	Drill Break	Ĺ	0 % 0	r	Comments
П	0.1	BITUMINOUS CONCRETE	:	5 V-1					Α			
		ROADBASE GRAVEL										
						1 11 11			E			PID=1.1ppm
	0.45	FILLING - boulder and brick		X]]		
		fragments filling		\bowtie		1 11 11			Α		1	
										1		
				\bowtie					E			PID<1ppm
'				\bowtie								İ
	-1			\bowtie							1	
				\bowtie					s			1,1,1 N = 2
	-			\bigotimes								
				\bigotimes					-			
	-			\bowtie								
	-			\bowtie								
	=			\bigotimes								İ
	- -2 2.0		1 1 1 1 1 1 1 1 1 1	\bowtie]					<u> </u>	_	
	. 2.0	Bore discontinued at 2.0m										
	-						1					
						11 11						
	-											
	-									1		
	-3											
	. "											
	<u> </u>											
	-											
					1 1 1 1 1 1							
	}										ŀ	
ł	,			1							- {	
	-4					i i i i i						
		t 										
	_				111111							
	ļ											
					1 1 1 1							
	-		11111		liiiii	1 1 1						
	-											
	<u> </u>		4 [[]] [
	<u> </u>		1 1 1 <u> 1 1 1 1 1 1 1 </u>							لــــــــــــــــــــــــــــــــــــــ		
-						OCCED: SI				Unca		

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: Uncased

TYPE OF BORING: Solid flight auger to 2.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS:

E = Environmental sample

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

pp Pocket penetrometer (kPa)

PID Photo ionisation detector

S standard penetration lest

S PL Point load strength 1s(50) MPa

V Shear Vane (kPa)

D Water seep Water level

CLIENT: **Energy Australia**

PROJECT: Belmore Park Substation

LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket

SURFACE LEVEL: --

EASTING:

BORE No: 107 PROJECT No: 36569.03

DATE: 25 Jun 08 NORTHING: DIP/AZIMUTH: 90°/--SHEET 1 OF 1

П		Description	Degree of Weathering	ij	Rock Strength	Fracture	Discontinuities	Sa	mpli	ng &	In Situ Testing
귙	Depth (m)	of Others		Srapt Log	Very Low Low Low Low Low Low Low Low Low Low	Spacing (m)	8 - Bedding J - Joint S - Shear D - Drill Break	Type	0 0 0 0 % Ge	Rob %	Test Results &
Ц	0.00		罗麦曼祭祀乐	J		10 00	3-Silear D-Dhii Bleak	<u> </u>	0 %	Œ	Comments
$ \cdot $	0.03	BITUMINOUS CONCRETE / CONCRETE		۷. ۲ ۲		11 11					
1	0,23	FILLING - light brown to red brown,		. 4.							
		sandy clay with crushed sandstone,		\bowtie							
		moist to wet		\bowtie		ii ii		E			PID<1ppm
$ \cdot $	-			\boxtimes		11 11 1		A	-		
	.			XX							
	.			\boxtimes				┢	1		DID 41 nnm
	.			$\langle \chi \rangle$		11 11		E			PID<1ppm
	.			\bowtie		11 11		Α			
				\bowtie				├	1		4,6,5 N = 11
				\bowtie		11 11		E*			PID<1ppm
	•			\bowtie				<u>s</u>	}		
	.			\bowtie							
	.			\bowtie		11 11		<u> </u>	┨		
	.			X				E			PID<1ppm
	.			\boxtimes							
	-2 - 2.1			X				А			
	. •	SANDY CLAY - stiff to very stiff, red brown sandy clay with							-		
	- 2,3	_ironstone gravel		} / /				E			PID<1ppm
		SANDY CLAY - very stiff, grey sandy clay with ironstone band,		//						١	
	2.5	\damp / Bore discontinued at 2.5m									
	-	Bore discontinued at 2.5m						s			6,10,12
						 					N = 22
	. !					ii ii		<u> </u>	-		
П	-3										
	-										
	-										
			1111								
	-4										
			1111			I II II					
	[
	-					[
	-		11111								
	-					1 [] 1]]]]]					
			11111								
			11111			i il II					
							<u> </u>	<u> </u>	1	1	<u> </u>

LOGGED: SI **CASING:** Uncased **DRILLER:** Eric RIG: Bobcat

TYPE OF BORING: Solid flight auger to 2.5m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: E = Environmental sample

*Denotes field replicate sample BD1/240608 collected

SAMPLING	& IN	SITU			
			200	Dacket	nonatromet

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling ADBU\$C

pp Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
PL Point load strength is50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CLIENT:

Energy Australia

Belmore Park Substation

PROJECT: LOCATION: Cnr Pitt, Hay & Campbell St, Haymarket SURFACE LEVEL: --

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- **BORE No: 108**

PROJECT No: 36569.03

DATE: 25 Jun 08 SHEET 1 OF 1

Degree of Weathering Rock Sampling & In Situ Testing Discontinuities Fracture Description Strength Spacing Test Results Depth Core Rec. % of (m) B - Bedding J - Joint (m) D - Drill Break S - Shear Strata Comments WH¥885E **BITUMINOUS CONCRETE** 0.1 FILLING - crushed sandstone filling, with roadbase gravel E PID=1.7ppm FILLING - light brown to red brown, fine to medium grained, sand filling with crushed sandstone E PID=2.2ppm E PID=2.7ppm A S 20.25/30mm refusal 1.15 FILLING - red brown, fine to medium grained, sand filling with crushed sandstone, metal fragment PID=1.8ppm E E PID=2.0ppm 3,4,10 N = 14 S/E PID=2.2ppm Bore discontinued at 3.0m

RIG: Bobcat

DRILLER: Eric

LOGGED: SI

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

E = Environmental sample REMARKS:

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
pp Point load strength is(50) MPa
pp Water seep Water seep Water level Auger sample Disturbed sample

Bulk sample Tube sample (x mm dia.)

Core drilling

CHECKED Initials:

Energy Australia CLIENT:

Belmore Park Substation PROJECT:

Cnr Pitt, Hay & Campbell St, Haymarket LOCATION:

SURFACE LEVEL: --

EASTING:

NORTHING: DIP/AZIMUTH: 90°/-- **BORE No: 109**

PROJECT No: 36569.03

DATE: 24 Jun 08 SHEET 1 OF 1

Γ	<u> </u>		Description	Degr Weat	ee of	ပ္	F Sti	Rock rength		Fracture	Discor	itinuities	Sa	mplin	ıg & 1	n Situ Testing
문		pth	of	vveat	nemg	ap B	181	I I	Water	Spacing (m)	B - Bedding	J - Joint	g	ω %	۵ .	Test Results
	(1	n)	Strata	M E W	% is 8.	5			KH N	0.00 0.00 0.10 0.10 0.10 0.10	S - Shear	D - Drill Break	Type	Core Rec. %	8%	& Comments
-		0.05	BITUMINOUS CONCRETE			XX) 			A			
			FILLING - crushed sandstone filling, with some roadbase gravel, humid			\bigotimes							_E_			PID=2.1ppm
						$\overset{\times}{\times}$	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1					E E E			PID=2.3ppm
		0.9	FILLING - grey to grey brown,	 		\bigotimes		 		1 			E			PID=1.4ppm
	-1		sandy clay filling with brick fragments and charcoal, damp			\bigotimes							А	-		
	}					\bowtie										6,6,7 N = 13
		1		1	[] []	\bowtie							E			PID<1ppm
	-	1			\$ \$	\bowtie			1 1				E			
	-					\bigotimes	[] []	111		[
						\bigotimes							E			PID=1.1ppm
	-2					\bigotimes	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			E			
	-			i i		\bigotimes							Ε			PID=1.5ppm
	}												Ē			()=
					i i i i i i	\bigotimes							s	=		6,7,9 N = 16
		2.8	SANDY CLAY - very stiff, light grey sandy clay with ironstone bands,		;				1 1				E			PID<1ppm
	-3	3.0	damp Bore discontinued at 3.0m	-11	! 	1./.	 	- - 	\dagger	 	 		E			
	-4				E											
				1 1] [] [] [[]]							

DRILLER: Eric RIG: Bobcat TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

E = Environmental sample REMARKS:

Auger sample
Disturbed sample
Bulk sample
Sulk sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
te PID Photo ionisation detector
S standard penetration test
pp Point load strength is(50) MPa
V Shear Vane (kPa)
V Water seep Water level

CHECKED Initials; Date:

LOGGED: SI

CASING: Uncased

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20848

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference: 36569.03, Environmental Investigation

No. of samples: 3 Waters
Date samples received: 09/07/08
Date completed instructions received: 09/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 16/07/08
Date of Preliminary Report: Not Issued Issue Date: 15/07/08

NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

Envirolab Reference:

20848

Revision No:

R 00

Page 1 of 15

36569.03, Environmental Investigation Client Reference:

vTPH & BTEX in Water				
Our Reference:	UNITS	20848-1	20848-2	20848-3
Your Reference		GW101/0907	GW103/0907	GWBD1/0907
	ļ.	08	08	08
Date Sampled		9/07/2008	9/07/2008	9/07/2008
Type of sample		Water	Water	Water
Date extracted	-	10/07/2008	10/07/2008	10/07/2008
Date analysed	-	11/07/2008	11/07/2008	11/07/2008
TPH C6 - C9	μg/L	14	470	<10
Benzene	μg/L	<1,0	97	<1.0
Toluene	μg/L	1.6	68	<1.0
Ethylbenzene	μg/L	<1.0	67	<1.0
m+p-xylene	µg/L	5.0	140	<2.0
o-xylene	µg/L	2.6	73	<1.0
Surrogate Dibromofluoromethane	%	125	130	122
Surrogate toluene-d8	%	100	95	100
Surrogate 4-BFB	%	98	100	94

Envirolab Reference: 20848 Revision No:

Client Reference:

36569.03, Environmental Investigation

sTPH in Water (C10-C36)			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907 08	GW103/0907 08
Date Sampled		9/07/2008	9/07/2008
Type of sample		Water	Water
Date extracted	-	11/07/2008	11/07/2008
Date analysed	-	11/07/2008	11/07/2008
TPH C10 - C14	μg/L	110	<50
TPH C15 - C28	μg/L	<100	<100
TPH C29 - C36	μg/L	<100	<100
Surrogate o-Terphenyl	%	122	130

Envirolab Reference: 20848

Revision No:

PAHs in Water			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907	GW103/0907
		80	08
Date Sampled		9/07/2008	9/07/2008
Type of sample	.,	Water	Water
Date extracted	-	11/07/2008	11/07/2008
Date analysed	-	11/07/2008	11/07/2008
Naphthalene	μg/L	<1	<1
Acenaphthylene	μg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	μg/L	<1	<1
Phenanthrene	µg/L	<1	<1
Anthracene	μg/L	<1	<1
Fluoranthene	μg/L	<1	<1
Pyrene	μg/L	<1	<1
Benzo(a)anthracene	μg/L	<1	<1
Chrysene	μg/L	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2
Benzo(a)pyrene	μg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1
Surrogate p-Terphenyl-d14	%	97	98

Envirolab Reference: 20848

Revision No:

OCP in water			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907	GW103/0907
Data Canadad		08 9/07/2008	08 9/07/2008
Date Sampled Type of sample		Water	Water
Date extracted	-	11/07/2008	11/07/2008
Date analysed	-	11/07/2008	11/07/2008
HCB	µg/L	<0.2	<0.2
alpha-BHC	μg/L	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2
beta-BHC	μg/L	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2
pp-DDE	µg/∟	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2
pp-DDD	μg/L	<0.2	<0.2
Endosulfan II	µg/L	<0.2	<0.2
DDT	μg/L	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2
Endosulfan Sulphate	µg/∟	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2
Surrogate TCLMX	%	68	73

Envirolab Reference: 20848

Revision No:

36569.03, Environmental Investigation Client Reference:

PCBs in Water			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907 08	GW103/0907 08
Date Sampled		9/07/2008	9/07/2008
Type of sample		Water	Water
Date extracted	-	11/07/2008	11/07/2008
Date analysed	-	11/07/2008	11/07/2008
Arochlor 1016	µg/∟	<2	<2
Arochlor 1232	µg/L	<2	<2
Arochlor 1242	µg/L	<2	<2
Arochlor 1248	µg/L	<2	<2
Arochlor 1254	μg/L	<2	<2
Arochlor 1260	μg/L	<2	<2
Surrogate TCLMX	%	68	73

Envirolab Reference: 20848 Revision No:

36569.03, Environmental Investigation Client Reference:

Total Phenolics in Water			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907 08	GW103/0907 08
Date Sampled Type of sample		9/07/2008 Water	9/07/2008 Water
Date extracted	_	10/07/2008	10/07/2008
Date analysed	-	11/07/2008	11/07/2008
Total Phenolics (as Phenol)	mg/L	<0.050	<0.050

Envirolab Reference: 20848 Revision No:

Client Reference:

36569.03, Environmental Investigation

HM in water - dissolved				
Our Reference:	UNITS	20848-1	20848-2	20848-3
Your Reference		GW101/0907	GW103/0907	GWBD1/0907
		08	08	08
Date Sampled		9/07/2008	9/07/2008	9/07/2008
Type of sample		Water	Water	Water
Date prepared	-	11/07/2008	11/07/2008	11/07/2008
Date analysed	-	14/07/2008	14/07/2008	14/07/2008
Arsenic-Dissolved	μg/L	<1.0	<1.0	1.2
Cadmium-Dissolved	μg/L	0.10	<0.10	<0.10
Chromium-Dissolved	μg/L	<1.0	<1.0	<1.0
Copper-Dissolved	μg/L	1.8	<1.0	<1.0
Lead-Dissolved	μg/L	5.2	<1.0	<1.0
Mercury-Dissolved	μg/L	<0.50	<0.50	<0.50
Nickel-Dissolved	μg/L	5.6	3.3	6.5
Zinc-Dissolved	μg/L	42	15	19

Envirolab Reference: 20848 Revision No:

36569.03, Environmental Investigation Client Reference:

Miscellaneous Inorganics			
Our Reference:	UNITS	20848-1	20848-2
Your Reference		GW101/0907	GW103/0907
		08	08
Date Sampled		9/07/2008	9/07/2008
Type of sample		Water	Water
Date prepared	-	11/07/2008	11/07/2008
Date analysed	-	11/07/2008	11/07/2008
Calcium - Dissolved	mg/L	13	4.5
Magnesium - Dissolved	mg/L	7.4	6.8
Hardness by calculation	mgCaCO3	63	39
	/L		

Envirolab Reference: 20848 Revision No:

Client Reference: 36569.03, Environmental Investigation

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.

Envirolab Reference: 20848 Revision No:

Client Reference: 36569.03, Environmental Investigation

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		
Date extracted	_			10/07/2 008	[NT]	[NT]	LCS-W1	10/07/2008 %
Date analysed	-			11/07/2 008	[TN]	[NT]	LCS-W1	11/07/2008 %
TPH C6 - C9	µg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	96%
Benzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	99%
Toluene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	91%
Ethylbenzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	94%
m+p-xylene	μg/L	2	GC.16	<2.0	[NT]	[NT]	LCS-W1	97%
o-xylene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	96%
Surrogate Dibromofluoromethane	%		GC.16	106	[NT]	[NT]	LCS-W1	110%
Surrogate toluene-d8	%		GC.16	93	[NT]	[NT]	LCS-W1	93%
Surrogate 4-BFB	%		GC.16	82	[ПП]	[NT]	LCS-W1	96%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
TPH C10 - C14	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W1	66%
TPH C15 - C28	μg/L	100	GC.3	<100	[NT]	[NT]	LCS-W1	110%
TPH C29 - C36	μ g/ L	100	GC.3	<100	[NT]	[NT]	LCS-W1	101%
Surrogate o-Terphenyl	%		GC.3	117	[NI]	[NT]	LCS-W1	124%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		Recovery
Date extracted	-			11/07/2 008	[NT]	[NT]	LCS-W1	11/07/2008 %
Date analysed	-			11/07/2 008	[NT]	[NT]	LCS-W1	11/07/2008 %
Naphthalene	μg/L	1	GC.12 subset	<1	[NT]	[UI]	LCS-W1	93%
Acenaphthylene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[17]	[17]	[NR]	[NR]
Fluorene	μg/L	1	GC.12 subset	<1	[NT]	[ЛТ]	LCS-W1	90%
Phenanthrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	90%
Anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[17]	[NT]	LCS-W1	88%

Envirolab Reference:

Revision No:

20848

R 00

Page 11 of 15

36569.03, Environmental Investigation

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		,
Pyrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	91%
Benzo(a)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	106%
Benzo(b+k)fluoranthene	μg/L	2	GC.12 subset	<2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W1	87%
Indeno(1,2,3-c,d)pyrene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	μg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	GC.12 subset	<1	[NT]	[ТИ]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	87	[NT]	[NT]	LCS-W1	98%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
OCP in water						Base II Duplicate II %RPD		,,,,,
Date extracted	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
HCB	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	72%
gamma-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
beta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	105%
Heptachlor	μg/L	0.2	GC-5	<0.2	[NT]	[תא]	LCS-W1	72%
delta-BHC	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	78%
Heptachlor Epoxide	μg/L	0.2	GC-5	<0.2	[NT]	[NΠ]	LCS-W1	80%
gamma-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
alpha-Chlordane	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	[NR]	[NR]
pp-DDE	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	91%
Dieldrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	92%
Endrin	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	95%
pp-DDD	μg/L	0.2	GC-5	<0.2	[NI]	[NT]	LCS-W1	95%
Endosulfan II	μg/L	0.2	GC-5	<0.2	[IM]	[NT]	[NR]	[NR]
DDT	μg/L	0.2	GC-5	<0.2	[NII]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	0.2	GC-5	<0.2	[IN]	[NT]	[NR]	[NR]
Endosulfan Sulphate	μg/L	0.2	GC-5	<0.2	[NT]	[NT]	LCS-W1	92%
Methoxychlor	μg/L	0.2	GC-5	<0.2	[IN]	[NT]	[NR]	[NR]
Surrogate TCLMX	μg/L %	•••	GC-5	66	[NT]	[NT]	LCS-W1	73%

Envirolab Reference: 20848

Revision No:

R 00

Page 12 of 15

36569.03, Environmental Investigation Client Reference:

QUALITY CONTROL PCBs in Water	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date extracted	_			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	_			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Arochlor 1016	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	μg/L	2	GC-6	<2	[NI]	[NT]	[NR]	[NR]
Arochlor 1242	μg/L	2	GC-6	<2	[NI]	[NT]	[NR]	[NR]
Arochlor 1248	μg/Ľ	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Arochlor 1254	μg/L	2	GC-6	<2	[NT]	[NT]	LCS-W1	80%
Arochlor 1260	μg/L	2	GC-6	<2	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-6	66	[TM]	[NT]	LCS-W1	92%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base Il Duplicate II %RPD		
Date extracted	-			10/7/08	20848-1	10/07/2008 10/07/2008	LCS-1	10/7/08%
Date analysed	-		1	11/7/08	20848-1	11/07/2008 11/07/2008	LCS-1	11/7/08%
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	20848-1	<0.050 <0.050	LCS-1	106%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II %RPD		
Date prepared	-			11/07/2 008	[NT]	[NT]	LCS-W1	11/07/2008 %
Date analysed	-			14/07/2 008	[NT]	[NT]	LCS-W1	14/07/2008 %
Arsenic-Dissolved	µg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[TN]	LCS-W1	109%
Cadmium-Dissolved	µg/L	0.1	Metals.22 ICP-MS	<0.10	[NT]	[NT]	LCS-W1	102%
Chromium-Dissolved	µg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	104%
Copper-Dissolved	µg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	105%
Lead-Dissolved	µg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	106%
Mercury-Dissolved	μg/L	0.5	Metals.21 CV-AAS	<0.50	[TN]	[NT]	LCS-W1	87%
Nickel-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	106%
Zinc-Dissolved	μg/L	1	Metals.22 ICP-MS	<1.0	[NT]	[NT]	LCS-W1	108%

Envirolab Reference: 20848 Revision No:

36569.03, Environmental Investigation

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	•	Spike Sm#	Spike % Recovery		
Miscellaneous Inorganics					5111#	Base II Duplicate II %I	RPD	:	Recovery		
Date prepared	-			11/07/0 8	20848-1	11/07/2008 11/07/20	800	LCS-W1	11/07/08%		
Date analysed	-			11/07/0 8	20848-1	11/07/2008 11/07/2008		LCS-W1	11/07/08%		
Calcium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	20848-1	13 14 RPD: 7		LCS-W1	99%		
Magnesium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	20848-1	7.4 7.7 RPD: 4		LCS-W1	95%		
Hardness by calculation	mgCaCO 3/L	1	Metals.20 ICP-AES	<1	20848-1	63 67 RPD: 6		[NR]	[NR]		
QUALITY CONTROL Total Phenolics in Water	UNITS		Dup. Sm#		Duplicate Duplicate + %RPD	Spike Sm# Spi		e % Recovery			
Date extracted	-		[NT]		[NT]	20848-2		10/7/08%			
Date analysed	-		[NT]	[NT]		20848-2		11/7/08%			
Total Phenolics (as Phenol)	mg/L		[NT]	[NT]		20848-2		20848-2 105%		105%	
QUALITY CONTROL HM in water - dissolved	UNITS		Dup. Sm#	Duplicate Spike Sm# Spike % Rec Base + Duplicate + %RPD		Spike Sm# Sp		e % Recovery			
Date prepared			[NT]		[NT]	20848-2	1	1/07/2008%			
Date analysed	_		[NT]		[NT] 20848-2 14/07/2008%		4/07/2008%				
Arsenic-Dissolved	μg/L		[NT]		[NT]	20848-2 111%		111%			
Cadmium-Dissolved	μg/L		[NT]		[NT] 20848-2 109%		109%				
Chromium-Dissolved	µg/L		[NT]		[NT]	20848-2		104%			
Copper-Dissolved	μg/L		[NT]		[NT]	20848-2		100%			
Lead-Dissolved	μg/L		[NT]		[NT]	20848-2		100%			
Mercury-Dissolved	μg/L	μg/L [NT]			[NT]	20848-2		95%			
Nickel-Dissolved			[NT]		[NT]	20848-2		107%			
Zinc-Dissolved	μg/L		[NT]		[NT]	20848-2		100%			
QUALITY CONTROL Miscellaneous Inorganics	UNITS		Dup. Sm#		Duplicate Duplicate + %RPD	Spike Sm#	Spik	e % Recovery			
Date prepared	-		[NT]		[NT]	20848-2		11/07/08%			
Date analysed	_		[NT]		[NT]	20848-2		11/07/08%			
Calcium - Dissolved	mg/L		[NT]		[NT]	20848-2		101%			
Magnesium - Dissolved	mg/L		[NT]		[NT]	20848-2		100%			
Hardness by calculation	mgCaC 3/L	0	[NT]		[TM]	[NR]		[NR]			

Envirolab Reference: 20848 Revision No: R 00

Client Reference: 36569.03, Environmental Investigation

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test

NT: Not tested

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 20848 Revision No: R 00

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20627

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference: 36569.03, Contamination Assessment

No. of samples:

Date samples received:

Date completed instructions received:

01/07/08

01/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by:

Date of Preliminary Report:

Issue Date:

8/07/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst
Operations Manager

Joshua Lim Chemist

Envirolab Reference:

Revision No:

20627 R 00

Page 1 of 17

vTPH & BTEX in Soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	- '	3/07/2008	3/07/2008	3/07/2008
vTPH C6 - C9	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	111	101	108

Envirolab Reference: 20627

Revision No:

sTPH in Soil (C10-C36)				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008
TPH C10 - C14	mg/kg	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100
Surrogate o-Terphenyl	%	94	91	91

Envirolab Reference: 20627

Revision No:

PAHs in Soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	<0.1	0.5
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.8	0.1	0.7
Pyrene	mg/kg	1.0	0.2	0.7
Benzo(a)anthracene	mg/kg	0.6	<0.1	0.4
Chrysene	mg/kg	0.8	0.1	0.5
Benzo(b+k)fluoranthene	mg/kg	1.3	<0.2	0.9
Benzo(a)pyrene	mg/kg	0.9	0.1	0.7
Indeno(1,2,3-c,d)pyrene	mg/kg	0.6	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.6	<0.1	0.4
Surrogate p-Terphenyl-d14	%	93	93	93

Envirolab Reference: 20627

Revision No:

Organochlorine Pesticides in soil	-			1
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	-	3/07/2008	3/07/2008	3/07/2008
HCB	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	87	84	84

Envirolab Reference: 20627

Revision No:

Client Reference: 36569.03, Contamination Assessment

PCBs in Soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	-	3/07/2008	3/07/2008	3/07/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	87	84	84

Envirolab Reference: 20627 Revision No:

Total Phenolics in Soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date extracted	-	2/07/2008	2/07/2008	2/07/2008
Date analysed		2/07/2008	2/07/2008	2/07/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0

Envirolab Reference: 20627 Revision No:

Client Reference: 36569.03, Contamination Assessment

Acid Extractable metals in soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date digested	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	_	3/07/2008	3/07/2008	3/07/2008
Arsenic	mg/kg	4.7	<4.0	6.5
Cadmium	mg/kg	1.2	<1.0	<1.0
Chromium	mg/kg	21	9.2	19
Copper	mg/kg	100	8.3	17
Lead	mg/kg	150	29	640
Mercury	mg/kg	<0.10	<0.10	<0.10
Nickel	mg/kg	11	1.3	5.7
Zinc	mg/kg	120	17	290

Envirolab Reference: 20627 Revision No:

Client Reference:

36569.03, Contamination Assessment

Miscellaneous Inorg - soil				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Data proposed		0/07/0000	3/07/2008	2/07/2009
Date prepared	-	3/07/2008	3/0//2006	3/07/2008
Date prepared Date analysed		3/07/2008	3/07/2008	3/07/2008
, ,	- - mg/kg			

Envirolab Reference: 20627

R 00 Revision No:

Client Reference: 36569.03, Contamination Assessment

Moisture				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date prepared	-	2/07/2008	2/07/2008	2/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008
Moisture	%	5.3	11	9.6

Envirolab Reference: 20627 Revision No:

Client Reference: 36569.03, Contamination Assessment

Asbestos ID - soils				
Our Reference:	UNITS	20627-1	20627-2	20627-3
Your Reference		101/2.7-3.0	103/0.2-0.4	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008	30/06/2008
Type of sample		Soil	Soil	Soil
Date analysed	-	7/07/2008	7/07/2008	7/07/2008
Sample Description	-	30g sand	30g sand	30g sand
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 20627 Revision No: R 00

Client Reference: 36569.03, Contamination Assessment

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.13	Cyanide - determined colourimetrically, following distillation. Based on APHA 20th ED, 4500-CN_C,E.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Envirolab Reference: 20627 Revision No:

Client Reference: 36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			2/7/08	[NT]	[NT]	LCS-2	2/7/08%
Date analysed	-			3/7/08	[NT]	[NT]	LCS-2	3/7/08%
vTPH C6 - C9	mg/kg	25	GC.16	<25	[NT]	[NT]	LCS-2	127%
Benzene	mg/kg	0.5	GC.16	<0.5	[NT]	[NT]	LCS-2	88%
Toluene	mg/kg	0.5	GC.16	<0.5	[NT]	[NT]	LCS-2	140%
Ethylbenzene	mg/kg	1	GC.16	<1.0	[NT]	[NT]	LCS-2	126%
m+p-xylene	mg/kg	2	GC.16	<2.0	[NT]	[NT]	LCS-2	140%
o-Xylene	mg/kg	1	GC.16	<1.0	[NT]	[NT]	LCS-2	140%
Surrogate aaa-Trifluorotoluene	%		GC.16	97	[NT]	[ΓΓΛ]	LCS-2	117%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		Recovery
Date extracted	-			2/7/08	[NT]	[NT]	LCS-2	2/7/08%
Date analysed	-			3/7/08	[NT]	[NT]	LCS-2	2/7/08%
TPH C10 - C14	mg/kg	50	GC.3	<50	[NT]	[NT]	LCS-2	96%
TPH C15 - C28	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-2	104%
TPH C29 - C36	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-2	114%
Surrogate o-Terphenyl	%		GC.3	90	[NT]	[NT]	LCS-2	91%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PAHs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted				2/7/08	[NT]	[NT]	LCS-2	2/7/08%
Date analysed	_			2/7/08	[NI]	[NT]	LCS-2	2/7/08%
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	106%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	100%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	106%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	[17]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	104%
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	108%
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 20627 Revision No: R 00

Page 13 of 17

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	[NT]	[NT]	LCS-2	125%
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-2	103%
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	93	[NT]	[NT]	LCS-2	92%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil		ł				Base II Duplicate II %RPD		recovery
Date extracted	-			2/7/08	[NII]	[NT]	LCS-2	2/7/08%
Date analysed	_			3/7/08	[NII]	[NT]	LCS-2	3/7/08%
HCB	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	[NII]	[NT]	LCS-2	62%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	98%
Heptachlor	mg/kg	0.1	GC-5	<0.1	[NT]	[תא]	LCS-2	65%
delta-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	[NI]	[NT]	LCS-2	75%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	74%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	[NT]	[NIT]	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	85%
Dieldrin	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	86%
Endrin	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	88%
pp-DDD	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	90%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-2	85%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-5	77	[NT]	[NT]	LCS-2	76%

Envirolab Reference: 20627 Revision No:

Client Reference:

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			2/7/08	[NT]	[NT]	LCS-2	2/7/08%
Date analysed	-			3/7/08	[NT]	[NT]	LCS-2	3/7/08%
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	[NT]	[NT]	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	[NT]	[אד]	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	[NT]	[NT]	LCS-2	104%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%		GC-6	77	[דא]	[NT]	LCS-2	83%
QUALITY CONTROL Total Phenolics in Soil	UNITS	PQL	METHOD	Blank				
Date extracted	_			2/7/08				
Date analysed	_			2/7/08				
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0				
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			02/07/0 8	[TN]	[NT]	LCS-1	02/07/08%
Date analysed	-			03/07/0 8	[NT]	[TN]	LCS-1	03/07/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	[NT]	[NT]	LCS-1	102%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[NT]	LCS-1	104%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[ТИ]	LCS-1	105%
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[ТИ]	LCS-1	106%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[TM]	LCS-1	103%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.10	[NT]	[TN]	LCS-1	113%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[TN]	LCS-1	104%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1.0	[NT]	[NT]	LCS-1	105%

Envirolab Reference: 20627

Revision No:

Client Reference:

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		
Date prepared	-	,		03/07/2 008	20627-1	3/07/2008 3/07/2008	LCS-1	03/07/2008 %
Date analysed	-			03/07/2 008	20627-1	3/07/2008 3/07/2008	LCS-1	03/07/2008 %
Total Cyanide	mg/kg	0,5	LAB.13	<0.5	20627-1	<0.5 <0.5	LCS-1	113%
pH 1:5 soil:water	pH Units		LAB.1	[NT]	20627-1	11.9 11.9 RPD: 0	LCS-1	101%
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			2/07/08				
Date analysed	-			2/07/08				
Moisture	%	0.1	LAB.8	<0.10				
QUALITY CONTROL Asbestos ID - soils	UNITS	PQL	METHOD	Blank				
Date analysed	-			[NT]				

Envirolab Reference: 20627

Revision No:

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier:

Joshua Lim

INS: Insufficient sample for this test

NT: Not tested

NA: Test not required

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference

LCS: Laboratory Control Sample

NR: Not requested

<: Less than

>: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 20627 Revision No: R 00

Page 17 of 17

CHAIN OF CUSTODY

	Date & Time:	ľ		3.67	,	Received By:	Rec		પ	е: .	Date & Time:	Dat			ج ق ج	Signed:	8	ψ.) ψ.	Relinquished by:	Relinquished by:
/しこが	Date & Time: 1	<i>I</i> . '	~		By: <	eived B	Rec	വ ∩്റ്റ് Received	د	ne:	Date & Time: \	Da		1	۱÷	Sign))	~	ched hy	Bolingui
	(02) 9809 4095	Fax:						14	yde 21	Vest R	₹oad, √	nitage l	96 Hermitage Road, West Ryde 2114	Address: 9		Douglas Partners	ıdlas F		esults t	Send Results to:
66	e: (02) 9809 0666	Phone:	•																ort No	Lab Report No.
Security: Imacubrokenin																	_			
Temp: Cool/Ambient Cooling: Ice/Icepak				,												Ì		<u>. </u>		
Received by:5																				
Date received:			<u> </u>						-											
100 No. 20627													i			!				
(TIVI 1014) Chatswood MSW 206																		·		
		ļ <u> </u>	ļ										1							
																_		-		~
 -)-)-	}-	-	4	<u>۲</u>	-	1	1-	1	-	 	7	S	30/6	3	01	12-	(5.0)
				_	-				<u> </u>	_	_			0	5	16	7 2		4.0-2.0(5.0)	0,3/6
	1			-1	-4	-		-)	-1		-1		₽	S	7/0%	1 1	Ö	101/2.7-3.0	01/2
Notes	Cyclicke	VOCs	Phenois	PAH	OPs/ PCBs	BTEX/ TPH	Zn	Hg	공	Cu	ਹੁ	Ω	As	Container type	S - soil W – water	Sampling Date	D Lab		Sample Depth	Sample ID
Party						Analytes	Ana								Sample Type			_		
В	Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 tnotaras@envirolabservices.com.au	hatsw 0 Fax bserv	rices et, C 0 620 virola	Servy Strey Strasstaras	Envirolab Services 12 Ashley Street, (Tania Notaras Phone: 02 9910 62 : tnotaras@envirol		Attr Em			en	CCT a Dem nau	Jessica 19 19 19	7555 274.12 274.12 partne partne uote N	npler: Jess e:0418 274 129 douglaspartners.cc Lab Quote No	CONT MIN AT ION ASSESSMENT 30501.03. Sampler: Jessica Derrien QSMMob. Phone:0418 274.129	CONI KMIN A BOSOLOS SE SEN Mob. Pho Jessica derrien(SENTION)	25 Se CO	9. 6.	Project Name: Project No: Project Mgr: Email: Date Required:	Project Nar Project No: Project Mgr Email: Date Requi
																1				

Relinquished by:

Signed:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20571

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

36569.03, Contamination Assessment Your Reference:

8 Soils No. of samples: 30/06/08 Date samples received:

30/06/08 Date completed instructions received:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. Please refer to the last page of this report for any comments relating to the results.

Report Details:

7/07/08 Date results requested by: Not Issued Date of Preliminary Report: 7/07/08 Issue Date:

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Operations Manager

Joshua Lim Chemist

Envirolab Reference:

20571

Revision No:

R 00

Page 1 of 23

Client Reference:

36569.03, Contamination Assessment

vTPH & BTEX in Soil						
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	86	89	105	102	119

vTPH & BTEX in Soil		-	
Our Reference:	UNITS	20571-6	20571-7
Your Reference		108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date extracted	-	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008
vTPH Ce - C9	mg/kg	<25	<25
Benzene	mg/kg	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	134	116

Envirolab Reference: 20571 Revision No:

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	60	76	78	75	77

sTPH in Soil (C10-C36)			
Our Reference:	UNITS	20571-6	20571-7
Your Reference	========	108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date extracted	-	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008
TPH C10 - C14	mg/kg	<50	<50
TPH C15 - C28	mg/kg	<100	<100
TPH C29 - C36	mg/kg	<100	<100
Surrogate o-Terphenyl	%	78	77

Envirolab Reference: 20571 Revision No:

PAHs in Soil						
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Naphthalene	mg/kg	1.0	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	0.4	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.6	0.1	0.3
Pyrene	mg/kg	<0.1	<0.1	0.6	0.2	0.3
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.3	0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	0.4	0.1	0.2
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	0.6	0.2	0.3
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.5	0.1	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.3	0.1	<0.1
Surrogate p-Terphenyl-d14	%	63	90	93	91	92

Envirolab Reference: 20571 Revision No:

PAHs in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-6 108/0.8-1.0 24/06/2008 Soil	20571-7 109/0.05-0.2 24/06/2008 Soil	20571-8 BD1/240608 24/06/2008 Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.5	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.8	0.1	0.2
Pyrene	mg/kg	1.0	0.1	0.2
Benzo(a)anthraceпе	mg/kg	0.8	0.1	0.1
Chrysene	mg/kg	0.9	0.2	0.1
Benzo(b+k)fluoranthene	mg/kg	1.6	0.2	0.2
Benzo(a)pyrene	mg/kg	1.4	0.1	0.1
Indeno(1,2,3-c,d)pyrene	mg/kg	0.8	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.8	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	95	95	91

Envirolab Reference: 20571 Revision No: R 00

Client Reference: 36569.03, Contamination Assessment

Organochlorine Pesticides in soil		Ì				
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	114	118	113	112	117

Envirolab Reference: 20571 Revision No: R 00

Organochlorine Pesticides in soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-6 108/0.8-1.0 24/06/2008 Soil	20571-7 109/0.05-0.2 24/06/2008 Soil
Date extracted	-	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008
HCB	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	126	115

Envirolab Reference: 20571

R 00 Revision No:

PCBs in Soil						
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	114	118	113	112	117

PCBs in Soil	40.070	00574.0	20574 7
Our Reference:	UNITS	20571-6	20571-7
Your Reference		108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date extracted	-	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008
Arochlor 1016	mg/kg	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	126	115

Envirolab Reference: 20571 Revision No:

Total Phenolics in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-1 102/0.7-1.0 27/06/2008 Soil	20571-2 104/0.7-1.0 25/06/2008 Soil	20571-3 105/0.3-0.5 27/06/2008 Soil	20571-4 106/0.2-0.5 24/06/2008 Soil	20571-5 107/1.2-1.5 24/06/2008 Soil
Date extracted	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008	2/07/2008	2/07/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Total Phenolics in Soil			
Our Reference:	UNITS	20571-6	20571-7
Your Reference		108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date extracted	-	1/07/2008	1/07/2008
Date analysed	-	2/07/2008	2/07/2008
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0

Envirolab Reference: 20571 Revision No:

Acid Extractable metals in soil				İ		
Our Reference:	UNITS	20571-1	20571-2	20571-3	20571-4	20571-5
Your Reference		102/0.7-1.0	104/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5
Date Sampled		27/06/2008	25/06/2008	27/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008	2/07/2008	2/07/2008
Arsenic	mg/kg	7.5	7.3	4.4	<4.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	mg/kg	15	16	12	8.7	11
Copper	mg/kg	9.9	12	24	23	15
Lead	mg/kg	47	92	290	140	160
Mercury	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Nickel	mg/kg	3.9	6.9	9.9	23	4.1
Zinc	mg/kg	20	57	290	200	41

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-6 108/0.8-1.0 24/06/2008 Soil	20571-7 109/0.05-0.2 24/06/2008 Soil	20571-8 BD1/240608 24/06/2008 Soil
Date digested	-	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008
Arsenic	mg/kg	5.7	5.0	<4.0
Cadmium	mg/kg	<1.0	<1.0	<1.0
Chromium	mg/kg	9.5	7.7	8.5
Copper	mg/kg	13	21	10
Lead	mg/kg	540	58	80
Mercury	mg/kg	<0.10	<0.10	<0.10
Nickel	mg/kg	3.5	6.3	3.0
Zinc	mg/kg	400	70	31

Envirolab Reference: 20571 Revision No:

Miscellaneous Inorg - soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-1 102/0.7-1.0 27/06/2008 Soil	20571-2 104/0.7-1.0 25/06/2008 Soil	20571-3 105/0.3-0.5 27/06/2008 Soil	20571-4 106/0.2-0.5 24/06/2008 Soil	20571-5 107/1.2-1.5 24/06/2008 Soil
Date prepared	-	1/07/2008	1/07/2008	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	2/07/2008	2/07/2008	2/07/2008	2/07/2008	2/07/2008
Total Cyanide	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
pH 1:5 soil:water	pH Units	7.4	6.3	9.4	9.2	8.9

Miscellaneous Inorg - soil	•		
Our Reference:	UNITS	20571-6	20571-7
Your Reference		108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date prepared	-	1/07/2008	1/07/2008
Date analysed	_	2/07/2008	2/07/2008
Total Cyanide	mg/kg	<0.5	<0.5
pH 1:5 soil:water	pH Units	8.8	9.1

Envirolab Reference: 20571 Revision No:

Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-1 102/0.7-1.0 27/06/2008 Soil	20571-2 104/0.7-1.0 25/06/2008 Soil	20571-3 105/0.3-0.5 27/06/2008 Soil	20571-4 106/0.2-0.5 24/06/2008 Soil	20571-5 107/1.2-1.5 24/06/2008 Soil
Date prepared Date analysed	-	1/07/2008 1/07/2008	1/07/2008 1/07/2008	1/07/2008 1/07/2008	1/07/2008 1/07/2008	1/07/2008 1/07/2008
Moisture	%	15	15	11	6.6	13

Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-6 108/0.8-1.0 24/06/2008 Soil	20571-7 109/0.05-0.2 24/06/2008 Soil	20571-8 BD1/240608 24/06/2008 Soil
Date prepared	-	1/07/2008	1/07/2008	1/07/2008
Date analysed	-	1/07/2008	1/07/2008	1/07/2008
Moisture	%	7.6	5.0	13

Envirolab Reference: 20571 Revision No:

Asbestos ID - soils Our Reference: Your Reference Date Sampled	UNITS	20571-1 102/0.7-1.0 27/06/2008	20571-2 104/0.7-1.0 25/06/2008	20571-3 105/0.3-0.5 27/06/2008	20571-4 106/0.2-0.5 24/06/2008	20571-5 107/1.2-1.5 24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	7/07/2008	7/07/2008	7/07/2008	7/07/2008	7/07/2008
Sample Description	-	40g clay	40g clay	40g clay	40g clay	40g clay
Asbestos ID in soil	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Asbestos ID - soils	,,,,,		
Our Reference:	UNITS	20571-6	20571-7
Your Reference		108/0.8-1.0	109/0.05-0.2
Date Sampled		24/06/2008	24/06/2008
Type of sample		Soil	Soil
Date analysed	•	7/07/2008	7/07/2008
Sample Description	-	40g clay	40g clay
Asbestos ID in soil	-	No asbestos detected	No asbestos detected
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 20571 Revision No:

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with hexane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.13	Cyanide - determined colourimetrically, following distillation. Based on APHA 20th ED, 4500-CN_C,E.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Envirolab Reference: 20571

Revision No:

Client Reference: 36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	•			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Date analysed	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
vTPH C6 - C9	mg/kg	25	GC.16	<25	20571-1	<25 <25	LCS-2	119%
Benzene	mg/kg	0.5	GC.16	<0.5	20571-1	<0.5 <0.5	LCS-2	97%
Toluene	mg/kg	0.5	GC.16	<0.5	20571-1	<0.5 <0.5	LCS-2	122%
Ethylbenzene	mg/kg	1	GC.16	<1.0	20571-1	<1.0 <1.0	LCS-2	134%
m+p-xylene	mg/kg	2	GC.16	<2.0	20571-1	<2.0 <2.0	LCS-2	122%
o-Xylene	mg/kg	1	GC.16	<1.0	20571-1	<1.0 <1.0	LCS-2	100%
Surrogate aaa-Trifluorotoluene	%		GC.16	133	20571-1	86 85 RPD: 1	LCS-2	134%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		Recovery
Date extracted	±***:			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Date analysed	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
TPH C10 - C14	mg/kg	50	GC.3	<50	20571-1	<50 [] <50	LCS-2	92%
TPH C15 - C28	mg/kg	100	GC.3	<100	20571-1	<100 <100	LCS-2	97%
TPH C29 - C36	mg/kg	100	GC.3	<100	20571-1	<100 <100	LCS-2	107%
Surrogate o-Terphenyl	%		GC.3	76	20571-1	60 79 RPD: 27	LCS-2	76%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Date extracted	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Date analysed	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	1.0 0.2 RPD: 133	LCS-2	106%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 [<0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	LCS-2	98%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	LCS-2	101%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	LCS-2	98%
	mg/kg	0.1	GC.12	<0.1	20571-1	<0.1 <0.1	LCS-2	101%

Envirolab Reference: Revision No:

20571

R 00

Page 15 of 23

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil					Om#	Base II Duplicate II %RPD		Recovery
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1] <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	LCS-2	113%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	20571-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene			<0.05 <0.05	LCS-2	98%			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	95	20571-1	63 92 RPD: 37	LCS-2	95%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil	:					Base II Duplicate II %RPD		Recovery
Date extracted	-			01/07/2	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008
Date analysed	-			008 01/07/2	20571-1	1/07/2008 1/07/2008	LCS-2	% 01/07/2008
				008			FA 1537	%
HCB	mg/kg -	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	70%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	109%
Heptachlor	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	83%
delta-BHC	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 [<0.1	LCS-2	116%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	91%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 [<0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 [<0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 [<0.1	LCS-2	134%
Dieldrin	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	126%
Endrin	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	133%
pp-DDD	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	105%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	LCS-2	106%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Surrogate TCLMX	Mg/kg %		GC-5	115	20571-1	 114 116 RPD: 2	LCS-2	114%

Envirolab Reference:

20571

Revision No: R 00

Page 16 of 23

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II %RPD		
Date extracted	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Date analysed	-			01/07/2 008	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/2008 %
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 <0.1	LCS-2	113%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	20571-1	<0.1 } <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	115	20571-1	114 116 RPD: 2	LCS-2	78%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Soil						Base II Duplicate II %RPD		
Date extracted	-			01/07/0 8	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/08%
Date analysed	-			02/07/0 8	20571-1	2/07/2008 2/07/2008	LCS-2	02/07/08%
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	20571-1	<5.0] <5.0	LCS-2	96%%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-		<u> </u>	01/07/0	20571-1	1/07/2008 1/07/2008	LCS-2	01/07/08%
Date analysed	-			02/07/0	20571-1	2/07/2008 2/07/2008	LCS-2	02/07/08%
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4.0	20571-1	7.5 8.4 RPD: 11	LCS-2	101%
Cadmium	mg/kg	1	Metals.20 ICP-AES	<1.0	20571-1	<1.0 <1.0	LCS-2	108%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1.0	20571-1	15 15 RPD: 0	LCS-2	106%
Copper	mg/kg	1	Metals.20 ICP-AES	<1.0	20571-1	9.9 13 RPD: 27	LCS-2	107%
Lead	mg/kg	1	Metals.20 ICP-AES	<1.0	20571-1	47 42 RPD: 11	LCS-2	103%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.10	20571-1	<0.10 <0.10	LCS-2	109%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1.0	20571-1	3.9 3.1 RPD: 23	LCS-2	104%
Zinc	mg/kg	1	Metals.20	<1.0	20571-1	20 19 RPD: 5	LCS-2	104%

Envirolab Reference: 20571

Revision No:

205/1 R 00

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %F	RPD		
Date prepared	-	==::		01/07/2 008	20571-1	1/07/2008 1/07/200	8	LCS-1	01/07/08%
Date analysed	-			02/07/2 008	20571-1	2/07/2008 2/07/200	8	LCS-1	02/07/08%
Total Cyanide	mg/kg	0.5	LAB.13	<0.5	20571-1	<0.5 <0.5		LCS-1	100%
pH 1:5 soil:water	pH Units		LAB.1	[NT]	20571-1	7.4 7.4 RPD: 0		[NR]	[NR]
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results			
Moisture						Base II Duplicate II %R	PD		
Date prepared	-			1/7/08	20571-1	1/07/2008 1/07/200	8		
Date analysed	-			1/7/08	20571-1	1/07/2008 1/07/200	18		
Moisture	%	0.1	LAB.8	<0.10	20571-1	15 15 RPD: 0			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank					
Asbestos ID - soils									
Date analysed	-			[NT]					_
QUALITY CONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
vTPH & BTEX in Soil				Base + I	Duplicate + %RPD				=
Date extracted	-		[NI]		[NT]	20571-2	0.	1/07/2008%	
Date analysed	-		[NI]		[NT]	20571-2	01/07/2008%		
vTPH C6 - C9	mg/kg	,	[NT]		[NT]	20571-2		115%	
Benzene	mg/kg	,	[NT]	[NT]		20571-2		88%	
Toluene	mg/kg	,	[NT]		[NT]	20571-2		116%	
Ethylbenzene	mg/kg	,	[NT]	[NT]		20571-2		118%	
m+p-xylene	mg/kg		[NT]	[NT]		20571-2		126%	
o-Xylene	mg/kg		[NT]	[NT]		20571-2		128%	
Surrogate	%		[NT]	[NT]		20571-2		111%	
aaa-Trifluorotoluene	"								
QUALITY CONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spik	ke % Recovery	
sTPH in Soil (C10-C36)				Base +	Duplicate + %RPD				
Date extracted	-		[NT]		[NT]	20571-2	0	1/07/2008%	
Date analysed	_		[NT]		[NT]	20571-2	0	1/07/2008%	
TPH C10 - C14	mg/kg	g	[NT]		[NT]	20571-2		94%	
TPH C15 - C28	mg/kg	·	[NT]	[TN]		20571-2		94%	
TPH C29 - C36	mg/kg	ļ	[NT]		[NT]	20571-2		109%	
Surrogate o-Terphenyl	%		[NT]		[NT]	20571-2		77%	

Envirolab Reference: Revision No:

20571 R 00

36569.03, Contamination Assessment

QUALITY CONTROL PAHs in Soil	UNITS Dup. Sm#		Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted	-	[NT]	[NT]	20571-2	01/07/2008%	
Date analysed	_	[NT]	[NT]	20571-2	01/07/2008%	
Naphthalene	mg/kg	[NT]	[NT]	20571-2	102%	
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Fluorene	mg/kg	[NT]	[NT]	20571-2	95%	
Phenanthrene	mg/kg	[NT]	[NT]	20571-2	95%	
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Fluoranthene	mg/kg	[זא]	[NT]	20571-2	91%	
Pyrene	mg/kg	[NT]	[NT]	20571-2	95%	
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Chrysene	mg/kg	[NT]	[NT]	20571-2	109%	
Benzo(b+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Benzo(a)pyrene	mg/kg	[NT]	[NT]	20571-2	85%	
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]	
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	20571-2	94%	

Envirolab Reference: 20571 Revision No:

36569.03, Contamination Assessment

QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	20571-2	01/07/2008%
Date analysed	-	[NT]	[NI]	20571-2	01/07/2008%
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NT]	[NT]	20571-2	66%
gamma-BHC	mg/kg	[NT]	[IN]	[NR]	[NR]
beta-BHC	mg/kg	[NT]	[NT]	20571-2	100%
Heptachlor	mg/kg	[NT]	[NT]	20571-2	80%
delta-BHC	mg/kg	[NΠ]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[NT]	20571-2	108%
Heptachlor Epoxide	mg/kg	[N T]	[NT]	20571-2	83%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	20571-2	120%
Dieldrin	mg/kg	[NT]	[NT]	20571-2	113%
Endrin	mg/kg	[NT]	[NT]	20571-2	116%
pp-DDD	mg/kg	[NT]	[NII]	20571-2	90%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	20571-2	86%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	20571-2	114%

Envirolab Reference: 20571

Revision No:

ence: 20571 R 00

36569.03, Contamination Assessment

QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover	
Date extracted	_	[NT]	[NT]	20571-2	01/07/2008%	
Date analysed	-	[NT]	[NT]	20571-2	01/07/2008%	
-		[NI]	[NT]	[NR]	[NR]	
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]	
Arochior 1242	mg/kg	[NT]	[NT]	[NR]	[NR]	
Arochior 1248	rochlor 1248 mg/kg [NT] [NT]		[NR]	[NR]		
Arochlor 1254	mg/kg	[NT]	[NT]	20571-2	112%	
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]	
Surrogate TCLMX	%	[NT]	[NT]	20571-2	142%	
QUALITY CONTROL Total Phenolics in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date extracted		[NT]	[NT]	20571-2	01/07/08%	
Date analysed		[NT]	[NT]	20571-2	02/07/08%	
Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	20571-2	102%%	
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery	
Acid Extractable metals in soil	5,4110		Base + Duplicate + %RPD			
Date digested	-	[NT]	[NT]	20571-2	01/07/08%	
Date analysed	-	[NT]	[NT]	20571-2	02/07/08%	
Arsenic	mg/kg	[NT]	[NT]	20571-2	90%	
.Cadmium	mg/kg	[NT]	[NT]	20571-2	95%	
Chromium	mg/kg	[NT]	[NT]	20571-2	96%	
Copper	mg/kg	[NT]	[NT]	20571-2	100%	
Lead	mg/kg	[NT]	[NT]	20571-2	90%	
Mercury	mg/kg	[NT]	[NT]	20571-2	111%	
Nickel	mg/kg	[NT]	[NT]	20571-2	88%	
Zinc	mg/kg	[NT]	[NT]	20571-2	81%	

Envirolab Reference: 20571 Revision No: R 00

36569.03, Contamination Assessment

QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery	
Date prepared	-	[NT]	[NT]	20571-2	01/07/08%	
Date analysed	_	[NT]	[NT]	20571-2	02/07/08%	
Total Cyanide	mg/kg	[NT]	[NT]	20571-2	89%	
pH 1:5 soil:water	pH Units	[NT]	[NT]	[NR]	[NR]	

Envirolab Reference: 20571 Revision No:

Client Reference: 36569.03, Contamination Assessment

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier:

Joshua Lim

INS: Insufficient sample for this test

NT: Not tested

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

<: Less than

>: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

iviatily opines and 200. Cenerally 70 10070.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 20571 Revision No: R 00

Email: tnotaras@envirolabsen	Standard Lab Quote No.	Date Required:
Phone: 02 9910 6200 Fax	Jessica.derrien@douglaspartners.com.au	Email:
Attn: Tania Notaras	CS1Mob. Phone:0418 274 129	Project Mgr:
12 Ashley Street, Chatsv	.365.61.03 Sampler Jessica Derrien	Project No:
To: Envirolab Services	CONTAMINATION ASSESSMENT	Project Name:

swood NSW 2068

Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au

Relinquished by:	Relinquis	Lab Report No. Send Results to:			:		KC / 24	DQ	108°	107/	106/	105/0	(04) 0	10:2/0	Sample ID	
ned by:	Relinquished by: Jij Devvie						20608	005-0.27	0.8-1.0	シーで	0.2 OF	0.3-0.5	0.74.0	10,7-1.0	Sample Depth	
	ANTO	ougla:					02	7	0	1	4	W	لى		Lab ID	
Signed:		Douglas Partners	-				9 12	9/12	246	24/6	246	27/6	25/6	27/6	Sampling Date	
ned:	Signed: 1 Signed:						S	ا		5	8	5	8	>	S - soil W – water	Sample Type
		Address: {		_			8	2	0.	c	v	s	∽2.	}	Container type	
		96 Hermitage Road, West Ryde 2114					+-	+						-1	As	
Da	D	nitage					+-	+-						1	Cd	
Date & Time:	ate & T	Road,					 -							-/	Cr	
me:	ime: 32	West I					-					-		-1	Cu	
	16/0	Ryde 2					+							1	Рb	
	8 10:	114		<u> </u>			<i> </i>	_			-			-1	Нg	
Rec	O Q						 				_				Zn	An
Received By:	Date & Time: 3/6/08 10:00 Received By: 100 Mile 2010	Cooling	Receiv	Date 7	dot	1		<u> -</u>						-1	BTEX/ TPH	Analytes
	1	oling: los/los/SACK surity: Integreroken/None	W. A. P.	te received: 2	ob No: 205	5. 200	1	-	-	-				-+	OPs/ PCBs	
	Q M L	EK roken/Kon	2	0/6/	7	Charawood NSW 2067	Invirolati						· 		PAH	
	8	•	8	1 - 1	7	SW 206	o ervice:	F				-	_		Phenols	İ
l		Phone: Fax:					<u>"</u>	7	W	7	A	M	18/	Pe	ANGOR	
Date & Time:	Date & Time: 20/6/08	(02) 9809 0666 (02) 9809 4095						 							Other Cyanide	
	3/6/08)66						-						-1	P H	. Analytes
	2007)-							Notes Asbestos	ites
	辽															

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20627-A

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference:

No. of samples:

Date samples received:

Date completed instructions received:

36569.03, Contamination Assessment

Additional Testing on 2 Soils

01/07/08

09/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by:

16/07/08

Date of Preliminary Report:

Not Issued

Issue Date:

15/07/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Operations Manager

Envirolab Reference:

Revision No:

20627-A

R 00

Page 1 of 6

36569.03, Contamination Assessment

Metals in TCLP			
Our Reference:	UNITS	20627-A-1	20627-A-3
Your Reference		101/2.7-3.0	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008
Type of sample		Soil	Soil
Date extracted	-	11/07/2008	11/07/2008
Date analysed	-	15/07/2008	15/07/2008
pH of soil for fluid# determ.	pH units	10.10	9.60
pH of soil for fluid # determ. (acid)	pH units	1.30	1.40
Extraction fluid used	-	1	1
pH of final Leachate	pH units	6.80	6.20
Lead in TCLP	mg/L	0.05	1.3

Envirolab Reference: 20627-A Revision No:

PAHs in TCLP (USEPA 1311)			[
Our Reference:	UNITS	20627-A-1	20627-A-3
Your Reference		101/2.7-3.0	103/2.2-2.5
Date Sampled		1/07/2008	30/06/2008
Type of sample		Soil	Soil
Date extracted		14/07/2008	14/07/2008
Date analysed	-	14/07/2008	14/07/2008
Naphthalene	mg/L	<0.001	<0.001
Acenaphthylene	mg/L	<0.001	<0.001
Acenaphthene	mg/L	<0.001	<0.001
Fluorene	mg/L	<0.001	<0.001
Phenanthrene	mg/L	<0.001	<0.001
Anthracene	mg/L	<0.001	<0.001
Fluoranthene	mg/L	<0.001	<0.001
Pyrene	mg/L	<0.001	<0.001
Benzo(a)anthracene	mg/L	<0.001	<0.001
Chrysene	mg/L	<0.001	<0.001
Benzo(b+k)fluoranthene	mg/L	<0.002	<0.002
Benzo(a)pyrene	mg/L	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene	mg/L	<0.001	<0.001
Dibenzo(a,h)anthracene	mg/L	<0.001	<0.001
Benzo(g,h,i)perylene	mg/L	<0.001	<0.001
Surrogate p-Terphenyl-d14	%	99	97

Envirolab Reference: 20627-A

Revision No:

Client Reference: 36569.03, Contamination Assessment

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	·

Envirolab Reference: 20627-A Revision No:

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP						Base II Duplicate II %RPD		
Date extracted	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	-			15/7/08	[NT]	[NT]	LCS-W1	15/7/08%
Lead in TCLP	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[TN]	LCS-W1	97%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		Recovery
Date extracted	-			14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Date analysed	-			14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Naphthaleπe	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	104%
Acenaphthylene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	90%
Phenanthrene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[NT]	LCS-W1	94%
Anthracene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[\tau_]	[NR]	[NR]
Fluoranthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[ТИ]	LCS-W1	91%
Pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TM]	LCS-W1	96%
Benzo(a)anthracene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	105%
Benzo(b+k)fluoranthene	mg/L	0.002	GC.12 subset	<0.002	[TN]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	84%
Indeno(1,2,3-c,d)pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[174]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12	97	[INI]	[NT]	LCS-W1	88%

Envirolab Reference: 20627-A Revision No: R 00

Page 5 of 6

Client Reference: 36569.03, Contamination Assessment

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 20627-A Revision No: R 00

Aileen Hie

From: Jessica Derrien [Jessica.Derrien@douglaspartners.com.au]

Sent: Wednesday, 9 July 2008 8:49 AM

To: Aileen Hie

Subject: TCLP ANALYSIS 36569.03/ 20627 & 20571

Your references: 20627 / 20571

DP reference: 36569.03

Can you please organize TCLP analysis on the following samples:

¹\ 101/2.7-3.0 - lead and PAH *

102/0.7-1.0 - PAH

- 3 103/2.2-2.5 - lead and PAH

105/0.3-0.5 - lead and PAH

106/0.2-0.5 - lead and PAH

107/1.2-1.5 - lead and PAH

108/0.8-1.0 - lead and PAH

Thank you.

Jessica Derrien | Environmental Scientist

Douglas Partners Pty Ltd ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685

P: 02 8878 0620 | F: 02 9809 4095 | M: 0418 274 129 | E: Jessica. Derrien@douglaspartners.com.au

This email is confidential. If you are not the Intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

& Envirolab Ref: 20627A

Due : 16/7/08

edd TIA.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20571-A

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference: 36569.03, Contamination Assessment

No. of samples: Additional Testing on 5 Soils

Date samples received: 30/06/08
Date completed instructions received: 09/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 16/07/08
Date of Preliminary Report: Not Issued
Issue Date: 15/07/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

Envirolab Reference:

Revision No:

20571-A

R 00

Page 1 of 6

Client Reference: 36569.0

36569.03, Contamination Assessment

Metals in TCLP						
Our Reference:	UNITS	20571-A-1	20571-A-3	20571-A-4	20571-A-5	20571-A-6
Your Reference		102/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5	108/0.8-1.0
Date Sampled		27/06/2008	27/06/2008	24/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	11/07/2008	11/07/2008	11/07/2008	11/07/2008	11/07/2008
Date analysed	-	[NA]	15/07/2008	15/07/2008	15/07/2008	15/07/2008
pH of soil for fluid# determ.	pH units	8.90	9.40	9.50	9.10	9.30
pH of soil for fluid # determ. (acid)	pH units	1.30	1.30	1.30	1.40	1.30
Extraction fluid used	-	1	1	1	1	1
pH of final Leachate	pH units	4.80	5.10	5.10	4.80	5.20
Lead in TCLP	mg/L	[NA]	1.8	1.0	0.13	6.8

Envirolab Reference: Revision No:

20571-A R 00

36569.03, Contamination Assessment

PAHs in TCLP (USEPA 1311)						
Our Reference:	UNITS	20571-A-1	20571-A-3	20571-A-4	20571-A-5	20571-A-6
Your Reference		102/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5	108/0.8-1.
Date Sampled		27/06/2008	27/06/2008	24/06/2008	24/06/2008	24/06/2008
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/07/2008	14/07/2008	14/07/2008	14/07/2008	14/07/2008
Date analysed	-	14/07/2008	14/07/2008	14/07/2008	14/07/2008	14/07/2008
Naphthalene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoranthene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(b+k)fluoranthene	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d14	%	88	105	95	103	100

Envirolab Reference: 20571-A

Revision No:

36569.03, Contamination Assessment

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Envirolab Reference: 20571-A Revision No:

36569.03, Contamination Assessment

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP						Base II Duplicate II %RPD		ricoovary
Date extracted	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	-			15/7/08	[NT]	[TM]	LCS-W1	15/7/08%
Lead in TCLP	mg/L	0.03	Metals.20 ICP-AES	<0.03	[NT]	[NT]	LCS-W1	97%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		Recovery
Date extracted	-			14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Date analysed	_			14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Naphthalene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	104%
Acenaphthylene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	90%
Phenanthrene	mg/L	, 0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Anthracene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[17]	LCS-W1	91%
Pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	96%
Benzo(a)anthracene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	105%
Benzo(b+k)fluoranthene	mg/L	0.002	GC.12 subset	<0.002	[TN]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	84%
Indeno(1,2,3-c,d)pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/L	0.001	GC,12 subset	<0.001	[NT]	[TM]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12	97	[NT]	[NT]	LCS-W1	88%

Envirolab Reference: 20571-A

Revision No:

R 00

Page 5 of 6

Client Reference: 36569.03, Contamination Assessment

Report Comments:

Asbestos was analysed by Approved Identifier:

Not applicable for this job

INS: Insufficient sample for this test

NT: Not tested

PQL: Practical Quantitation Limit

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

<: Less than

>: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference:

20571-A

Revision No:

R 00

Page 6 of 6

Aileen Hie

From: Jessica Derrien [Jessica.Derrien@douglaspartners.com.au]

Wednesday, 9 July 2008 8:49 AM Sent:

To: Alleen Hie

Subject: TCLP ANALYSIS 36569.03/20627 & 20571

Your references: 20627 / 20571

DP reference: 36569.03

Can you please organize TCLP analysis on the following samples:

101/2.7-3.0 - lead and PAH

(102/0.7-1.0 - PAH

103/2.2-2.5 - lead and PAH

105/0.3-0.5 - lead and PAH

석 106/0.2-0.5 - lead and PAH 5 107/1.2-1.5 - lead and PAH

5 107/1.2-1.5 - lead and PAH 6 108/0.8-1.0 - lead and PAH

Thank you.

Jessica Derrien | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0620 | F: 02 9809 4095 | M: 0418 274 129 | E: Jessica.Derrien@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

Envirolab Ref. 205711 De: 1617108 Std 71A.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 20571-A

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference: 36569.03, Contamination Assessment

No. of samples: Additional Testing on 5 Soils

Date samples received: 30/06/08
Date completed instructions received: 09/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 16/07/08

Date of Preliminary Report: Not Issued Issue Date: 15/07/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst
Operations Manager

Envirolab Reference:

Revision No:

R 00

20571-A

Page 1 of 6

Client Reference: 36569.03, Contamination Assessment

Metals in TCLP Our Reference: Your Reference Date Sampled Type of sample	UNITS	20571-A-1 102/0.7-1.0 27/06/2008 Soil	20571-A-3 105/0.3-0.5 27/06/2008 Soil	20571-A-4 106/0.2-0.5 24/06/2008 Soil	20571-A-5 107/1.2-1.5 24/06/2008 Soil	20571-A-6 108/0.8-1.0 24/06/2008 Soil
Date extracted Date analysed pH of soil for fluid# determ.	-	11/07/2008	11/07/2008	11/07/2008	11/07/2008	11/07/2008
	-	[NA]	15/07/2008	15/07/2008	15/07/2008	15/07/2008
	pH units	8.90	9.40	9.50	9.10	9.30
pH of soil for fluid # determ. (acid) Extraction fluid used pH of final Leachate Lead in TCLP	pH units	1.30	1.30	1.30	1.40	1.30
	-	1	1	1	1	1
	pH units	4.80	5.10	5.10	4.80	5.20
	mg/L	[NA]	1.8	1.0	0.13	6.8

Envirolab Reference:

20571-A R 00

Revision No: R

36569.03, Contamination Assessment

PAHs in TCLP (USEPA 1311)						
Our Reference:	UNITS	20571-A-1	20571-A-3	20571-A-4	20571-A-5	20571-A-6
Your Reference		102/0.7-1.0	105/0.3-0.5	106/0.2-0.5	107/1.2-1.5	108/0.8-1.
Date Sampled		27/06/2008	27/06/2008	24/06/2008	24/06/2008	24/06/200
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	14/07/2008	14/07/2008	14/07/2008	14/07/2008	14/07/200
Date analysed	-	14/07/2008	14/07/2008	14/07/2008	14/07/2008	14/07/200
Naphthalene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthylene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Acenaphthene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluorene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Phenanthrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoranthene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(a)anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Chrysene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(b+k)fluoranthene	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Benzo(a)pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Indeno(1,2,3-c,d)pyrene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Dibenzo(a,h)anthracene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Benzo(g,h,i)perylene	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Surrogate p-Terphenyl-d14	%	88	105	95	103	100

Envirolab Reference: 20571-A Revision No:

Client Reference: 36569.03, Contamination Assessment

Method ID	Methodology Summary
EXTRACT.7	Toxicity Characteristic Leaching Procedure (TCLP).
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
GC.12 subset	Leachates are extracted with Dichloromethane and analysed by GC-MS.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC.12	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.

Envirolab Reference: 20571-A Revision No: R 00

36569.03, Contamination Assessment Client Reference:

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Metals in TCLP						Base II Duplicate II %RPD		
Date extracted	-			11/7/08	[NT]	[NT]	LCS-W1	11/7/08%
Date analysed	-			15/7/08	[NT]	[NT]	LCS-W1	15/7/08%
Lead in TCLP	mg/L	0.03	Metals.20 ICP-AES	<0.03	[TN]	[NT]	LCS-W1	97%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in TCLP (USEPA 1311)						Base II Duplicate II %RPD		
Date extracted	•			14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Date analysed	-		-	14/7/08	[NT]	[NT]	LCS-W1	14/7/08%
Naphthalene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	104%
Acenaphthylene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	90%
Phenanthrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	94%
Anthracene	mg/L	0.001	GC.12 subset	<0.001	[TN]	[NT]	[NR]	[NR]
Fluoranthene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	LCS-W1	91%
Pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	LCS-W1	96%
Benzo(a)anthracene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[ТИ]	LCS-W1	105%
Benzo(b+k)fluoranthene	mg/L	0.002	GC.12 subset	<0.002	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/L	0.001	GC,12 subset	<0.001	[NT]	[TN]	LCS-W1	84%
Indeno(1,2,3-c,d)pyrene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[TN]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/L	0.001	GC.12 subset	<0.001	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12	97	[TM]	[NT]	LCS-W1	88%

Envirolab Reference: 20571-A

Revision No:

R 00

Page 5 of 6

Client Reference: 36569.03, Contamination Assessment

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 20571-A Revision No: R 00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 21309

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Jessica Derrien

Sample log in details:

Your Reference:

36569.03, Phase 2 Contamination Assess.

No. of samples:

1 Water

Date samples received:

28/07/08

Date completed instructions received:

28/07/08

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by:

4/08/08

Date of Preliminary Report:

Not Issued

Issue Date:

4/08/08

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Operations Manager

Envirolab Reference:

21309

Revision No:

R 00

Page 1 of 5

36569.03, Phase 2 Contamination Assess.

vTPH & BTEX in Water		
Our Reference:	UNITS	21309-1
Your Reference		GW103/2807
		08
Date Sampled		28/07/2008
Type of sample		Water
Date extracted	-	1/08/2008
Date analysed	-	1/08/2000
TPH C6 - C9	μg/L	<10
Benzene	μg/L	<1.0
Toluene	μg/L	<1.0
Ethylbenzene	μg/L	<1.0
m+p-xylene	μg/L	<2.0
o-xylene	μg/L	<1.0
Surrogate Dibromofluoromethane	%	99
Surrogate toluene-d8	%	104
Surrogate 4-BFB	%	91

Envirolab Reference: 21309

Revision No:

Client Reference: 36569.03, Phase 2 Contamination Assess.

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.

Envirolab Reference: 21309 Revision No:

36569.03, Phase 2 Contamination Assess.

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		
Date extracted	-			1/8/08	[NT]	[NT]	LCS-W1	1/8/08%
Date analysed	-			1/8/08	[TN]	[NT]	LCS-W1	1/8/08%
TPH Cs - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	101%
Benzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	96%
Toluene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	101%
Ethylbenzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	101%
m+p-xylene	μg/L	2	GC.16	<2.0	[TN]	[NT]	LCS-W1	104%
o-xylene	μg/L	1	GC.16	<1.0	[ИТ]	[NT]	LCS-W1	103%
Surrogate Dibromofluoromethane	%		GC.16	99	[NT]	[NT]	LCS-W1	98%
Surrogate toluene-d8	%		GC.16	104	[NT]	[NT]	LCS-W1	98%
Surrogate 4-BFB	%		GC.16	96	[NT]	[NT]	LCS-W1	99%

Envirolab Reference: 21309 Revision No:

Client Reference: 36569.03, Phase 2 Contamination Assess.

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample

NR: Not requested <: Less than >: Greater than

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 21309 Revision No: R 00

.		Date & Time:	_[× × × × ×	7.	Received By:	Re		1	Time:	Date & T				Signed:	,		by:	Relinquished by:
200	3/6/08	Date & Time: 20 /6/08		5	D 10 4	N.	no Received By:	3	3	2/2/2	Date & Time: 20/6/07)ate &				2	'	2017/C		Relinguished by: Tipy//e>
•	95		Fax:		okenfilone	Security: IntackBrokenfilone	Securit		2114	Ryde 2	96 Hermitage Road, West Ryde 2114	Road	mitage	96 Her	Address:		Douglas Partners	Judias		Send Results to:
	n n	9990 0080 (CO)	200	, l	X	Cooling: ica/icatack	Cooling											ľ		
				Ş	700	Received by:	Receiv												٠	
				N	IV.	Date reselved; 2	Dater								_					
				0.00	1 1	Job No: 205	100													
		,		ON NSW 206	N DOOMS	Sep Cha	Por Mills													
				ervice:	Anvirolab Services			1	t	1	1	-	+	+	٤	\ \	9 1/2	Q	20008	12 2 2 1 2 1 P
				·		'		\pm	+	+	-	+	+	+		3	1/2	٥		1
}-	 	<u> </u>	1	F				_					† :	+	2	^	<u>ع</u>			_]
			4			_									0	>	246	σ	0.8-1.0	<u>'</u> ''
			D		_	-	-					-	-		c	5	31/6	Л	かての	107/
			H			-		-				-	-		2	5	246	4	0.2 Or	106/0
			20	_	_	_			_				_	_	a	5	27/6	W	0.3-0.5	105/10
	<u></u>		10		<u> </u>										20	S	25/6	ړه	7-1.0	04/0
	-1		SO.	1		-/			H	-1	1	1	1	 	~~	>	27/6	_	0.7-1.0	102/0
Ashestos	P H	Other Cyanide	10000	Phenols	PAH	OPs/ PCBs	BTEX/ TPH	Zn	Hg	Pb	ST.	Ω.	Cd	As	Container type	S - soil W – water	Sampling Date	5 Lab	Sample Depth	Sample
10	malytes	,					Analytes	An								Sample Type				
)68 8	Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 It tnotaras@envirolabservices.com.au	atswc Fax:	ces ≱t, Ch 6200 irolab	Servi y Strek taras 2 9910 @envi	Envirolab Services 12 Ashley Street, C Tania Notaras Phone: 02 9910 620 : tnotaras@envirola	To: En 12 Attn: Ta Ph Email: tn	: п . > →			SESSIMEN I	M.€.7. ica De im.au.	Jess Jess 129 ers.cc	JOH ASSESSING oler: Jessica :0418 274 129 ouglaspartners.com. Lab Quote No	SCNTAMINATION ASSESSMENT 36567.93 Sampler: Jessica Derrien SSY Mob. Phone:0418 274 129 Jessica.derrien@douglaspartners.com.au Standwol Lab Quote No.	SONTRMINATION 3656903 Sampler: SSYMob. Phone:041 Jessica.derrien@dougle	OSE9	L = N W A	lame: lo: fgr: tuired:	Project Name: Project No: Project Mgr: Email: Date Required:

-	Date & Time:				3y:	Received By:	אָג			Time:	Date & Time:	۵ .			ed:	Signed:		d by:	Relinquished by:
118 3/2	Date & Time:	V.		non	\ \ \ \	2:000 Received By: >	37.72	80.0	1	Date & Time: 1/1)ate &		"		Signed: 3	Sig	5000	Relinquished by:) () o/ nen	Relinquishe
'.	(02) 9809 4095	Fax			\ \			2114	Ryde	96 Hermitage Road, West Ryde 2114	Road	mitage	96 He	Address:		Douglas Partners	ouglas		Send Results to:
66		Phone:	٠															t No	Lab Report No.
Gecurity: Intacuts roken/None	-																		
Cooling: tealtepak			<u> </u>																
Received by:5																			·
Date received: 1/7/8			,					-	·										
Job No. 2.0 627		-			·														
(III) rold) Chatswood NSW 206				-															
Envirolab Service				 															
		 		-				_			<u></u>								
			-	-												-		ì	,
+)-	<u> </u>)-	1-	1-	+	7		1	-	+	-	 	λ	5	30/6	Ŋ	2-25	[0;2] <u> </u>
				<u> </u>	-	 	-	_	_			-		0	5	a de la company	7	4.0	P-0-2.0/5.0
	1		-	 	-1	1	-1	-	,	-		4		Ω	5 5	117/08		7-3.0	101 2.
rit lowering	agride	VOCs	Phenois	PAH	OPs/ PCBs	BTEX/ TPH	Zn	Нg	Pb	ပ္	Ω	Cd	As	Container type	S - soil W – water	Sampling Date	ם ב	Sample Depth	Sample ID
Practices	Other		- .			alytes	Ana								Sample Type			-	
ī 6 8	To: Envirolab Services 12 Ashley Street, Chatswood NSW 2068 Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au	hatsw 0 Fax: bservi	/ices ∍et, C ∍ 0 620 virola	b Sen y Stre otaras D2 991 s@en	Envirolab Services 12 Ashley Street, (Tania Notaras Phone: 02 9910 62	To: Er 12 Attn: Ta Pl Email: t	т · ъ -4			ON KSSESSIMENTI oler: Jessica Derrien :0418 274 129 ouglaspartners.com.au Lab Quote No	Λεχ. ica De im.au.	Jessi 129 ers.cc	ASS 274: spartn Quote	CONF 作MIN //TION //SS&SM&-/TION //SS&SMAN //SS&SM	O.3. Sa ob. Pho errien@	CONT MMN/		lame: lo: //gr: yuired:	Project Name: Project No: Project Mgr. Emaíl: Date Required:

Notes

	Date & Time:	0				Received By:	\ R€			Time:	Date & Time:	. 10			ed:	Signed:		by:	Relinquished by:	D
1218	Date & Time: 9	Sorre	7	Smon	r	Or Sin Received By:	SWAR.	20	9/7/	Time:	Date & Time:				ed:	Signed:	10/0	_	Relinquished by:), DQ/VQ/	R
95	(02) 9809 4095	Fax	_					2114	Ryde	West	96 Hermitage Road, West Ryde 2114	mitage	96 Her	Address:		Douglas Partners	uglas l		Send Results to:	S
8	(02) 9809 0666	Phone:	71															No	Lab.Report No.	<u></u>
								,												ĺ
, ,								_												
Cooling																				
Receive				-			-					<u></u>								
Date rec			-												•					
<u>। प्रका</u>																				
									-	İ										
1												-								
														•		1.7.	. /		-	
			-	-	Ţ	\	1	,	1	7	,	7	1	9/12		112/08	3	090701	WORN T	2
,	<		1	1	1	\	(1	\\	1	\	ζ.	\	SIP	3	9/7/00 W	7	7 90708	300000 ms	\bigcirc
	(\	7	\	١	1	7	1	7		,	1	0113	N	11torh	1 9	ROPOR	O KAMD	2
_	hodness	VOCs	Phenols	PAH	OPs/ PCBs	BTEX/ TPH	Zn	Нg	. PB	δ	Cr	S	As	Container type	S - soil W - water	Sampling Date	D jab	Sample Depth	Imple	Sa ID
] .				Analytes] -				.				Sample Type					
)68	Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Emall: tnotaras@envirolabservices.com.au	natswo	et, Ch et, Ch 0 6200 virolab	Tania Notaras Tania Notaras Phone: 02 9910 620 Contaras@envirola	Envirolati Serv 12 Ashley Stre Tania Notaras Phone: 02 991 : tnotaras@en	Attn: Ta Pr Email: tr	m			rrien.	ica De	Jessi 129 lers.cc No	274 · spartn	npler: . ne:0418 douglas douglas	29.55円で3 Sampler: Jessica Derrien	Seq. Market Mark	4 6 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ame: o: gr: uired:	Project Name: Project No: Project Mgr: Project Mgr: Email: Date Required:	
)	500	: : :		_1			ر	みたっ	举. 5	5	<u>1</u>	SWITCHWOOTH INDAFFOLIO	; - - -	λ.) ::::::::::::::::::::::::::::::::::::	_

Date received: 9/7/8
Time received: 5
Received by:5
Temp: Specification
Geoling: Ineligibles:

84802 :0N 401

Envirolab Services
12 Ashlay st
11 Ashlay st
12 Ashlay st
12 Ashlay st
11 Ashlay st
11 Ashlay st
11 Ashlay st
12 Ashlay st

Aileen Hie

From:

Jessica Derrien [Jessica.Derrien@douglaspartners.com.au]

Sent:

Wednesday, 9 July 2008 8:49 AM

To:

Aileen Hie

Subject: TCLP ANALYSIS 36569.03/20627 & 20571

Your references: 20627 / 20571

DP reference: 36569.03

Can you please organize TCLP analysis on the following samples:

- 101/2.7-3.0 lead and PAH
 - 102/0.7-1.0 PAH
- -3 103/2.2-2.5 lead and PAH
 - 105/0.3-0.5 lead and PAH
 - 106/0.2-0.5 lead and PAH
 - 107/1.2-1.5 lead and PAH
 - 108/0.8-1.0 lead and PAH

Thank you.

Jessica Derrien | Environmental Scientist

Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au

96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685

P: 02 8878 0620 | F: 02 9809 4095 | M: 0418 274 129 | E: Jessica.Derrien@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

* Envirolab Ref: 20627A

Due : 16/7/08

std TIA.

Aileen Hie

From:

Jessica Derrien [Jessica.Derrien@douglaspartners.com.au]

Sent:

Wednesday, 9 July 2008 8:49 AM

To:

Aileen Hie

Subject: TCLP ANALYSIS 36569.03/ 20627 & 20571

Your references: 20627 / 20571

DP reference: 36569.03

Can you please organize TCLP analysis on the following samples:

101/2.7-3.0 - lead and PAH

102/0.7-1.0 - PAH

103/2.2-2.5 - lead and PAH

3 105/0.3-0.5 - lead and PAH

4 106/0.2-0.5 - lead and PAH

성 107/1.2-1.5 - lead and PAH

Thank you.

Jessica Derrien | Environmental Scientist Douglas Partners Pty Ltd | ABN 75 053 980 117 | www.douglaspartners.com.au 96 Hermitage Road West Ryde NSW 2114 | PO Box 472 West Ryde NSW 1685 P: 02 8878 0620 | F: 02 9809 4095 | M: 0418 274 129 | E: Jessica.Derrien@douglaspartners.com.au

This email is confidential. If you are not the intended recipient, please notify us immediately and be aware that any disclosure, copying, distribution or use of the contents of this information is prohibited. Please note that the company does not make any commitment through emails not confirmed by fax or letter.

Envirolab Ref. 20571A Due: 1617108 Std 71A.

	Date & Time:				By:	Received By:	TI	,	-	Time:	Date & Time:				Signed:	- 1	ļ		Relinguished by:
281-23/12	1	1/2	Hallib	ST.	By:	Received By: KYLA HUIIILUK!		3/8/	285	Date & Time: 28/7/08:	Jate &	_		V	Signed:		11701116	hed by:	Relinquished by:
7 7 7		rax	# #					2114	Ryde	d, Wes	e Roa	rmitag	96 Hermitage Road, West Ryde 2114	Address:		Douglas Partners	Doug	Send Results to:	Send Re
70H		1							1									ort No.	Lab Report No.
566	e: (02) 9809 0666	Phone:									Ì	ŀ	ŀ				-	: =	
			-										-					-	
urity: MycuBroken/None	. 581	-			 														
	700	<u> </u>		<u> </u>]
	Tim																		
10E12:0N 90F	<u>o</u>																		
Ph: 9910 6200	<u></u>	-																<u>- </u>	
Envirolab Services		 											_						
														"			<u> </u>		
			-																
	,		-	-		-		_							į				
								-			_					•			
	<			 										G.	3	28/1/bs	8	SD 030 E01 (M)	(J)
	TPHE-509X	VOCs	Phenois	PAH	OPs/ PCBs	BTEX/ TPH	Z'n	H _Q	Pb	င်	Çŗ	Ω	As	Container type	S - soil W - water	Sampling Date	Lab 10	Sample Depth	sample D
NO TO TO TO TO TO TO TO TO TO TO TO TO TO	O. P. C.		-	1		Analytes	 _≥								Sample Type				
	Attn: Tania Notaras Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au) Fax:)servic	s 10 6200 Ivirolat	nia Notaras one: 02 991 otaras@en	ania N hone: Inotara	Attn: Ta Ph Email: tn				<u> </u>	m.au	29 9rs.co	20418 274 129 buglaspartners.com.au	mpier ne:0418)dougla: Lab (ob. Pho errien@	ファダンできる Sampler Jessica Dellier Jessica Dellier Jessica derrien@douglaspartners.com.au	: n:	Project No: Project Mgr: Email: Date Required:	Project No: Project Mgr. Email: Date Requir
ති ස	virolab Services Ashlev Street, Chatswood - NSW, 2068)Wster	vices	b Ser	Envirolab Services	To: En		5#	SUK.		; } }	at o	3	Conto		Thate 2 Contamination Assessment	. :	Name:	Project Name:

QA/QC PROCEDURES AND RESULTS

Quality assurance and control formed an integral part of this assessment. The results of the QA/QC assessments are detailed below.

The Data Quality Indicators (DQI's) have been addressed within the report as follows in Table F1.

Table F1 - DQIs and Evaluation Procedures

DQI	Evaluation Procedure
Documentation	Completion of field and laboratory documentation
completeness	including chain of custody, test bore reports.
Data completeness	Sampling density appropriate for preliminary
	assessment, analysis of appropriate contaminants,
	analysis of appropriate soil horizons, analysis of
	appropriate QA samples etc
Data comparability	Use of NATA accredited analytical methods, use of
	consistent sampling technique, commitment to
	equipment decontamination, field sample storage
	techniques etc.
Data representativeness	Sampling from targeted areas and a broad grid
	pattern across the site in order to obtain samples
	representative of contamination present.
Precision and accuracy for	Use of NATA accredited analytical methods,
sampling and analysis	achievement of 30-50% RPD for replicate analysis
	(as appropriate) and achievement of laboratory QC
	criteria.

As indicated above, the DQIs for sampling and analysis were achieved and the quality of the data satisfactorily meets the objectives of the current assessment.

FIELD QUALITY ASSURANCE AND QUALITY CONTROL

The field QC procedures for sampling as prescribed in Douglas Partners *Field Procedures Manual* were followed at all times during the validation assessment. Field sampling comprised replicate sampling, at a rate of approximately one replicate sample for every ten original samples.

Rinsate Sample

Rinsate (Field Blank) samples are used to provide an indication of any cross contamination which may occur between samples. Disposable sampling equipment was used during this assessment, eliminating the chance of cross contamination, and therefore there was no need for rinsate samples.

Relative Percentage Difference

Ten samples were selected for analytical analysis, including one replicate sample. A measure of the consistency of results is derived by the calculation of relative percentage differences (RPDs) for replicate samples. A RPD of \pm 30% is generally considered acceptable by the EPA, although some exceptions apply. The comparative results of analysis were included in Table F2.

Table F2 – Comparative Results of Replicate Sample Analysis for Heavy Metals

Sample ID	As	Cd	Cr	Cu	Pb	Hg	Zn	Total PAH	B(a)P
107/1.2-1.5	<4	<1	11	15	140	<0.1	4.1	1.5	0.2
BD1/240608 ¹	<4	<1	8.5	10	160	<0.1	3.0	0.9	0.1
RPD (%)	0	0	25.6	40	13.3	0	30.9	50	66.7

Notes:

1 field replicate of sample above RPD greater than \pm 30%

All the RPD results fall within the typical acceptable range (\pm 30%) with the exception of copper, zinc, and PAH. Although, the exceedances are not considered significant as they are the result of small differences in small numbers and are still within the SAC.

It is therefore considered that the results indicate an acceptable consistency between the sample and its replicate and indicate suitable field sampling methodology was adopted and laboratory precision was achieved.

Laboratory QA/QC Procedures

The analytical laboratory is accredited by the National Association of Testing Authorities (NATA) and is required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include the following:-

Reagent Blank

A reagent blank sample is prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. The laboratory results for reagent blanks for soil analysis indicated that concentrations of all analytes were below respective laboratory practical quantitation (detection) limits. These results are included in the laboratory report in Appendix E.

Spike Recovery

This is a sample replicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. These results are included in the laboratory report in Appendix E.

The spike recovery rates are compared with limits as specified in Envirolab Services Quality Control System, and any exceedances are highlighted in the report.

As no exceedances and no comments were noted on the report, it is considered that the results indicate that the analytical results are not significantly affected by matrix interference.

Surrogate Recovery

This sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis to each sample. The recovery result indicates the proportion of the known concentration of the surrogate that is detected during analysis.

As no exceedances and no comments were noted on the report, it is considered that the results indicate that the analytical results are not significantly affected by matrix interference.

Duplicates

These are additional portions of a sample which are analysed in exactly the same manner as all other samples. The duplicate sample results are included in the laboratory results in Appendix E.

In overall terms, therefore, the data quality objectives have been attained and the quality of the investigation data is considered acceptable.