APPENDIX C Test Bore Logs Notes Relating to this Report

GRAPHIC SYMBOLS FOR SOIL & ROCK

SOIL SEDIMENTARY ROCK **BITUMINOUS CONCRETE BOULDER CONGLOMERATE** CONCRETE CONGLOMERATE TOPSOIL CONGLOMERATIC SANDSTONE **FILLING** SANDSTONE FINE GRAINED **PEAT** SANDSTONE COARSE GRAINED **CLAY** SILTSTONE SILTY CLAY LAMINITE SILT MUDSTONE, CLAYSTONE, SHALE SANDY CLAY COAL **GRAVELLY CLAY** LIMESTONE SHALY CLAY SEAMS SEAM SEAM **CLAYEY SILT** >10mm <10mm **METAMORPHIC ROCK** SANDY SILT SLATE, PHYLLITE, SCHIST SAND **GNEISS CLAYEY SAND** QUARTZITE SILTY SAND **IGNEOUS ROCK GRAVEL GRANITE** SANDY GRAVEL DOLERITE, BASALT COBBLES/BOULDER TUFF TALUS **PORPHYRY**

CLIENT:

Mirvac Investment Pty Ltd

PROJECT:

Hoxton Park Airport

LOCATI

SURFACE LEVEL: 42.5 *

EASTING: 301291 BORE No: B1

PROJECT No: 71500 **DATE: 04 Dec 09** SHEET 1 OF 1

TION:	Cowpasture Road, Hoxton	Park	NORTHING: DIP/AZIMUTH		
		1		- Bit. Tastian	1

		[Description	jE _		Sam		In Situ Testing	<u>ام</u>	Well	
ā	De (n	pth n)	of	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction	1
			Strata	3. 3.	اجر	ă	Sa	Comments		Details	
F	-	0.15	CONCRETE - coarse aggregate, 10mm reo FILLING - brown, sandy silty clay filling, damp, trace								
-2	-		rootlets	\otimes	EA	0.4 0.5		PID<1ppm			
-	<u>-</u> 1	0.7	CLAY - red brown, silty clay, medium to high plasticity, damp		ΕA	0.9 1.0		PID<1ppm		1	
[[EA	1.4 1.5		PID<1ppm			
[
-	-2 [EA	1.9 2.0		PID<1ppm		-2	
\ \ \ \											
	-3	3.0	Bore discontinued at 3.0m		_EA_	2.9 3.0		PID<1ppm		3	
- -	}		- target depth reached								
Ē		İ									
ļ	-4									-4	
ļ. -	•										
-	- 5									-5	
ļ.	; ;										į
Ì											
F	-6									-6	
~{;	ş[-										
	7									7	
- -	\$ \									-	•
Ī											
-	-8									-8	
 - -	8										į
ļ.	-9									9	
<u> </u>	8										
}	`` <u></u>										
Ĺ			DRILL EDIS Cross		1	<u> </u>	:D. A	<u></u>	Т.	SING: Uncased	

RIG: Bobcat

DRILLER:S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

pp Pocket penetrometer (kPa)
PiD Photo ionisation detector
S Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
D Water seep Water level

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.5 *

EASTING: 301254 **NORTHING:** 6245596

DATE: 04 Dec 09

PROJECT No: 71500

BORE No: B2

DIP/AZIMUTH:90°/--SHEET 1 OF 1

Γ		Donáh	Description	je r				In Situ Testing	ja Ja	Well
ā	뷤	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
ŀ	ŧ	0,15	CONCRETE - coarse aggregate, 10mm reo	44			0)			
- - -	²⁴ [0.6	FILLING - brown, silty clay filling		ΕA	0.4 0.5		PID<1ppm		
-		-1	CLAY - red brown, silty clay		EA	0.9 1.0		PiD<1ppm		-1
ļ	-					i				
	4				EA	1.4 1.5		PID<1ppm		
ŀ	-	-2			EA	1.9 2.0		PID<1ppm		2
_[ş									
4		-3 3,0			_EA_	2.9 3.0		PID<1ppm		3
ŀ			Bore discontinued at 3.0m - target depth reached			5,5				
ļ	33									
ŀ		-4 -								-4
}	88								ļ	
-		-5								-5
ŀ		•								
-	3.	• •								
		-6					ļ			-6
$\overline{}$	8									
<u> </u>		-7								-7
	35	<u>.</u>								<u>}</u>
ļ.		•								
ļ		-8 - -								1-8 - -
ļ	34									
ļ ļ		- -9								† -9 -
ļ	33									
ļ	- ´	<u>.</u>								
Ł	<u> </u>	O- D-6	DDIII ED.C Conner		1	·	'D. AI			SINC, Linescod

RIG: Bobcat

DRILLER:S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. Phoenix Aero Club. *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.0 *

EASTING: 301533 **NORTHING:** 6244976 DIP/AZIMUTH90°/-- **BORE No: BH1** PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Г	Γ	П	Description	ပ္		Sam	oling &	In Situ Testing		Weil
₹		epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
1	-		SILTY CLAY - grey brown, silty clay with organic matter,	7/	A*	0.1	<u> </u>	PID<1ppm		
ŧ	-	0.3	SILTY CLAY - medium plasticity, orange brown, silty clay with trace ironstone gravel, humid		Α	0.3		PID<1ppm		
-	-		clay with trace fronstone graver, numic			ļ				- - - -
- - -	5-1 -					1.3				-1
Ę	[Α	1.5		PID<1ppm		-
	} }-2	2.0	- moist to wet at 2.0m		A	1.8		PID<1ppm	▼	
["	`[~	2.0	Bore discontinued at 2.0m - target depth reached			2.0			-	-
-	-			ļ		ļ				
{ [,	} 3⊢3									3
Ī	-									[- -
:	-									[
- [-;	\$-4									-4
ţ	ŀ									
-	-									
- 5	3-5	i				;				5
Ė	ŀ									
Ė	-									
-; -;	%}-6	i								-6 [
-{	-									
1	7									-7
ļ.	5 - 7 -									
Ę	ļ				ļ	ļ				
-	몽-8	3								-8
Ę	Ę									
-										
-	8 - 9	9								9
ţ	ţ									
Ę	F									
Ŀ	<u> </u>					1	l	<u>L.</u>	l	<u> </u>

RIG: Bobcat

DRILLER: \$ Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 2.0m

WATER OBSERVATIONS: Free groundwater observed at 2.0m

*Denotes field replicate sample BD3/271109 collected. *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

PD Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.5 * **EASTING:** 301464 **NORTHING:** 6245018 DIP/AZIMUTH90°/--

BORE No: BH2 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

			Description	<u>.</u> 0		Sam		In Situ Testing		Well	
R	De (r	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	n
		0.3	SILTY CLAY - grey brown, silty clay with some organic matter, rootlets and trace gravel	1/2	Α	0.1 0.3	0,	PID<1ppm			
38	•	0.0	SILTY CLAY - medium plasticity, brown silty clay with trace gravel		Α	0.5		PID<1ppm			
-	- 1									[-1	
-		1.2	- moist to wet at 1.0m SILTY CLAY - medium plasticity, orange mottled red, silty clay with trace ironstone gravel		A	1.3		PID<1ppm		[]	
37		1.5	Bore discontinued at 1.5m		,	-1.5-		, , <u>, , , , , , , , , , , , , , , , , </u>		-	
-	-2		- target depth reached							-2	
- 8										[
	-										
	-3			:						-3 [
35	-										
	- -4		,							-4	
	- - -			;							
34	- - -										
-	-5									-5	
33	-										
ļ	- - -				;					<u>-</u>	
ŧ	-6 -									-6	
7 28	-										
1	-7									-7	
Ė											
3,	-										
-	-8									-8	
- 08											
ŀ	-9									-9	
29-	[
										-	

RIG: Bobcat

DRILLER: \$ Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pictoring LegenD
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 39.1 * EASTING: 301436 **NORTHING:** 6245196

DIP/AZIMUTH90°/--

BORE No: BH3 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Γ	T		\neg	Description	o		Sam	pling &	In Situ Testing		Well	٦
Īα	4	Dep (m)	th)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction	
- 8	<u> </u>		\dashv	Strata FILLING - grev brown, silty clay filling with some gravel			0.1	S			Details	\dashv
ŀ	}			FILLING - grey brown, silty clay filling with some gravel and trace brick fragments, dry		A	0.3		PID<1ppm PID<1ppm		;	
ŀ	•		0.6	SILTY CLAY - medium plasticity, orange brown mottled			0.5					
- [<u>.</u>	1		grey, silty clay		1					ː -	
,	1					A	1.3		PID<1ppm		· [
ļ	ŀ						1.5				· [
Ę,	ŀ	2	2.1							Ţ	; -2	
- ("[2.1	SANDY CLAY - yellow brown, fine grained, sandy clay with silt, wet						-		
1	ŀ											
1.	ŀ	.3	3.0	Day discontinued at 0.00	1//	Α	2.8 -3.0-		PID<1ppm		3	_
	<u>چ</u> ا			Bore discontinued at 3.0m - target depth reached							[
ŧ	ŀ											
ļ.	<u> </u>	-4									-4	ļ
Ę,	라 -											
Ē	L Amb											
ţ	ŀ	-5									-5	İ
ļ;	동 -											
ŀ	Ė											
Ē		-6				İ					-6	
[-; [:	۶ إ	-0										
1	ŧ											
才	ŀ											
F	182	-7									- 7	
-	-										[
-	E					<u> </u>					_	
-	5	-8									8	
ŀ	Ì											
r F	ļ	· ·				ļ						
F	8	- 9 -									9	
F	Ì										[
[
[_	•						<u>L</u>			<u> </u>	

RIG: Bobcat **DRILLER:**S Gregor TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: Free groundwater observed at 2.1m

REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

PION CALEGEND

pp Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
P Point load strength Is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED initials; Date:

LOGGED: KP

CLIENT: Mirvac Investment Pty Ltd **PROJECT:** Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 37.8 * EASTING: 301588

NORTHING: 6244939 DIP/AZIMUTH90°/--

BORE No: BH4 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Г			Description	. <u>©</u>		Sam		In Situ Testing		Well
굺		Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
	-		FILLING - brown, silty filling with trace fine grained sand, organic matter, rootlets		A .	0.1 0.3 0.5	ůž.	PID<1ppm PID<1ppm		
33	- -1	0.6	SILTY CLAY - orange brown mottled grey, silty clay, humid to moist				ļ			-1 -1
ļ		1.5	- damp to wet at 1.5m Bore discontinued at 1.5m	1//	Α	1.3 -1.5		PID<1ppm	Ţ	
1 36	-2	2	- target depth reached							2
	-									
	-3	3			,					3
-5	<u>-</u>	4				·				
- - - - -	ļ. 7	•				j				
- - - -	3 - 5	5					i			-5
<u>}</u> } -									:	; ; ; -
-8 - - -	۶ ا	6								[-6 -6
	- - - - -									
-	- 7 - -	7								-7
1	S-	8						:		8
} } }										
- - - -	ξ.	9								-9
} - - -										
Ė	28						_			

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: Free groundwater observed at 1.5m

REMARKS: *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
pp Point load strength ls(50) MPa
y Shear Vane (kPa)
b Water seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.1 * EASTING: 301601 NORTHING: 6245003 DIP/AZIMUTH90°/--

BORE No: BH5 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Г			Description	<u>.</u> 0	_	Sam	pling 8	In Situ Testing		Well
귙	D∈ (ı	epth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-88	<u> </u>	0.3	SILTY CLAY - grey brown, silty clay with organic matter, rootlets and trace gravel and sand	1//	Α	0.1 0.3		PlD<1ppm		
ŀ	-	0.3	CLAYEY SAND - orange brown, fine grained, clayey sand		A	0.5		PID<1ppm		
-	- -1									-1
37					A	1.3		PID<1ppm		
ŧ	<u>.</u>	1.5	Bore discontinued at 1.5m - target depth reached	1,7 7.		-1.5-				
- - - - -	-2									2
ŀ	<u> </u>									
1										
<u> </u>	-3									<u>-</u> 3
-										
i i	-4					:				-4
-										
Ė	Ė									
-:	-5									-5
	<u> </u> - -				ļ					
ŀ	-									
-8	-6									-6
1	Ė									
生	7									-7
[? -									
-	-									
<u>}</u>	-8									8
-	E									
ŀ	ŧ									
- - - - -	9									-9
	-									
Ė	F									

RIG: Bobcat

DRILLER:S Gregor

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 **REMARKS:**

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
Photo ionisation detector
S Standard penetration test
pp Point load strength 1s(50) MPa
V Shear Vane (kPa)
D Water seep Water Water Seep

CHECKED Initials;

Date:

LOGGED: KP

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.4 * **EASTING:** 301496

NORTHING: 6245104 DIP/AZIMUTH90°/--

BORE No: BH6 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Γ	T		Τ	Description	įį		Sam		In Situ Testing	<u></u>	Well
ă	1	Depth (m)	۱ ا	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
1	-	0.	.3 -	SILTY CLAY - grey brown, silty clay with organic matter, rootlets and gravel SILTY CLAY - grey and orange brown, silty clay, humid	i i	A* A	0.1 0.3	S	PID<1ppm PID<1ppm		
	1	1		SILTY SEAT - grey and statige brown, sitty day, number			0.5			į	-1
ļ.	, -	1	.5	- moist to damp at 1.2m		Α	1.3 1.5		PID<1ppm		
	4.	2		Bore discontinued at 1.5m - target depth reached							-2
	8				;					•	
- - - -	- - - 	3									-3
		4	ŀ					i		;	-4
	8										
	33	5								ļ	-5
-		•6						<u> </u>			-6
	32									ļ	
- - - - -	31	•7									7
		-8							·		-8
- - - - - -	30	•									
	29	-9 -9 -									-9 - - - -
										:	

RIG: Bobcat

DRILLER: S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

*Denotes field replicate sample BD4/271109 collected. *Level relative to AHD, SSM167133 REMARKS:

SAMPI
Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
PL Point load strength ls(50) MPa
V Shear Vane (kPa)
p Water seep

Water seep

CHECKED Date:

CLIENT: Mirvac Investment Pty Ltd **PROJECT:** Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 39.1 * EASTING: 301493 **NORTHING:** 6245149

DIP/AZIMUTH90°/--

BORE No: BH7 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

			Description	ပ		Sam	pling &	In Situ Testing		Well	
Ē	D	epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
-2	-	0.1			E	0.0	S	PID<1ppm	+		
-			CLAY - light brown, silty clay, humid		E	0.4 0.5		PID<1ppm			
ŧ	-1	0.7	CLAY - red brown, silty clay, moist							-1	į
-	} -					1.4		PID<1ppm		- - - -	
ţ	ţ	1.5	Bore discontinued at 1.5m - target depth reached		_E_	1.4 -1.5		F15<19p11			
-:	-2		·							-2	
_ [Ė				. 1						
1	-3									-3	}
} } }	} ~										
-	[
- F	-4							<u> </u>		-4	
-											
Ē	-									-5	
<u>-</u> ;	-5 -						ļ Į				
Ę	}				ļ						
Ę	3-6									6	Ì
ļ	-		,		ļ						
1	-										
<u></u>	7 ا									-7	l
-	-										
	-8	}								-8	
[-										
f	E										1
-	g - 9)								9	
ļ	-										
Ė	-									[-	

RIG: Bobcat

DRILLER:S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)
PlD Photo ionisation detector
S Standard penetration test
mm dia.)
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CHECKED Initials;

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.3 * EASTING: 301593 NORTHING: 6245096

DIP/AZIMUTH90°/--

BORE No: BH8
PROJECT No: 71500
DATE: 27 Nov 09
SHEET 1 OF 1

			Description	l _o T		Sam	pling 8	In Situ Testing		Well
씸	De; (n	pth	of	Graphic Log	<u>o</u>	—т			Water	Construction
	(11	"	Strata	5	Type	Depth	Sample	Results & Comments	5	Details
38 ' '	-	0.3	SILTY CLAY - orange brown, medium plasticity, silty clay, dry		A	0.1		PID<1ppm		
-	• • •	0.6	CLAYEY SAND - orange brown, fine grained clayey sand, dry		Α.	0.5		PID<1ppm		
	1		SANDY CLAY - orange brown, fine grained, sandy clay, moist				ļ			1
37		1.6			Α	1.3 1.5		PID<1ppm		
	-2	1.0	SILTY CLAY - brown, medium to high plasticity, silty clay, moist							-2
36	: - -									
\f	-				A	2.8		PID<1ppm		
35	-3 -	3.0	Bore discontinued at 3.0m - target depth reached	.121.21.2		 3.0				1
-	-4 -					į				-4
18									1	
	- -5									-5
-8										
[[-6									-6
32	- -									
3.	-7 -									-7 - -
ţ	-									
-	-8									-8 1
-8	<u> </u> - -									
ŀ	-9									-9
29	<u>-</u>									
-	<u> </u>									

RIG: Bobcat DRILLER:S Gregor TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

A Auger sample
D Disturbed sample
B Bulk sample
U, Tube sample (x mm dia.)
W Water sample
C Core drilling

dia.)

pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
S Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CHECKED
Initials:
Date:

LOGGED: KP

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.8 * **EASTING:** 301582 **NORTHING:** 6245245 DIP/AZIMUTH90°/--

BORE No: BH9 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

			Description	.e _		Sam		In Situ Testing] <u>"</u>	Well
뭅	ן ן	epth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
F	<u> </u>	0.2	TOPSOIL - light brown, silty clay topsoil, trace rootlets		Ē	 0.0 0.1	<u>_</u>	PID<1ppm	1	
Ė	}		CLAY - light red brown, silty clay, humid		E	0.4 0.5		PID<1ppm		[
[#	Ę	0.9				:				
ŀ	F1		CLAY - very stiff, red brown, silty clay, humid							[1
ŀ	Ę				_E_	1.4 1.5		PID<1ppm		
ļ.	-2									-2
-	F									
1	-	2.4	CLAY - brown with some clay mottling, silty clay, moist							
<u>ት</u>	} -3	3.0	D. office of the state of the s		_=	2.9 -3.0		PID<1ppm		3
	È		Bore discontinued at 3.0m - target depth reached							
ţ,	<u> </u>				!					
-	-4									-4
ŧ	1									
-2	[]									ļ ,
ŀ	-5									-5 [
}	<u> -</u>									
į,	3									
ļ	-6	i								-6
	-									
) ;	٠ •							<u>.</u>		
-	Ęʻ									[
Ė	<u> </u>									
7	5 -8	3								-8
ŀ	Ę									- -
 	‡									
 - -	-6	9								-9 -
-	+									
1	83									
Ę,	<u>`</u> }					1		<u> </u>		<u> </u>

RIG: Bobcat TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 REMARKS:

DRILLER: S Gregor

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

plo Photo ionisation detector

S Standard penetration test

smm dia.)

PL Point load strength 1s(50) MPa

V Shear Vane (kPa)

D Water seep

Water level

CHECKED Initials;

LOGGED: KP

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 39.4 * **EASTING:** 301481

NORTHING: 6245408 DIP/AZIMUTH90°/--

BORE No: BH10 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

_				1. 1						
	Β-	_41_	Description	Graphic Log	,	Sam		In Situ Testing	- To	Well
齓	De (r	pth n)	of	Log	Туре	Depth	Sample	Results & Comments	Water	Construction
			Strata	ြ		_ _	San	Comments		Details
			\ASPHALT- runway aπd roadbase	KXX	E	0.1 0.2		PID<1ppm		
8	-	0.3	FILLING - red brown, silty gravelly filling, crushed					PID<1ppm		 -
		0.5	ironstone, damp		E	0.4 0.5		гистррии		
. [\FILLING - grey brown, silty clay, trace sand, damp CLAY - red brown, silty clay							
	1		CEAT - Ted blown, Silly clay							-1 r
	-									
7		1.5	Bore discontinued at 1.5m	\mathbb{Z}	_E_	1.4 -1.5		PID<1ppm	-	
		Ì	- target depth reached							<u> </u>
:	- -2		,							-2
:	-									<u> </u>
7										
:										
:		ļ								-3
	-3 -	1								
- g										
• }	-				!		!			
	Ē									E
	-4	-								-4
:	-	1								
-8	Ė									[
										ţ
	-5									-5
-	F	- 1								[
8	[
-	ļ									<u> </u>
	ļ.,									-6
	-6	ļ								
33	-	1						1		
-	ŀ									[
[[!				
-	-7									-7
. ~	Ė									<u>[</u>
ຼິ	ŧ									
-	ŀ									
ŀ	-8							ļ		-8
Ŀ	<u> </u>									-
.8	<u>}</u>									
Ė	-									
Į.	-9							Ì		ļ_9
Ė	ļ .									į l
Ę	3									[
-	-									<u> </u>
	1				1	1	1		1	}

RIG: Bobcat

DRILLER:S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
pp Photo ionisation detector
S Standard penetration test
PI. Point load strength Is(50) MPa
V Shear Vane (kPa)
V Water seep
Water seep
Water seep

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park SURFACE LEVEL: 40.1 * EASTING: 301420 **NORTHING:** 6245256 DIP/AZIMUTH90°/--

BORE No: BH11 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

			Description	, <u>ü</u>		Sam		In Situ Testing	<u>ــ</u>	Well	
씸	De (r	pth m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
₽	 [0.3	SILTY CLAY - grey brown, silty clay with organic matter, rootlets and gravel, dry	1/1	Α	0.1		PID<1ppm			
ŀ	-	0.0	SILTY CLAY - high plasticity, orange brown, silty clay, humid		Α	0.5		PID<1ppm		- - -	
Ė	-1				ļ					-1	
18					Α	1.3		PID<1ppm			
-		1.5	Bore discontinued at 1.5m		^	-1.5-		t in a labin	\dagger	-	
- 89	-2		- target depth reached							-2	
ļ''	-	į					1			[
Į.	-										
<u> </u>	3									-3 -	
ŀ	-									-	
-	[
Į-g	-4									-4	
-	-										
-	-5									-5	
-8	}										
· •	-										
-3	-6									6	
ļ."	-										
1	[
生,	7									7	
ŀ	<u> </u> -										
F	-										
-;	-8 -8									-8	
-	-							•			
	-9									9	
-:											
F	Ē										
Ė	-										

RIG: Bobcat

DRILLER:S Gregor

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

PlD Photo ionisation detector

S Standard penetration test

pp Potot load strength Is(50) MPa

V Shear Vane (kPa)

V Water seep
Water seep

CHECKED Initials:

LOGGED:

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.4 * 301260

EASTING: NORTHING: 6245489 DIP/AZIMUTH90°/--

BORE No: BH12 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

П		Description	. <u>2</u> _		Sam		In Situ Testing] <u>"</u>	Well
Ζ	Depth (m)	of Our te	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
H		Strata FILLING - grey brown, silty clay filling with gravel,	XX		0.1	ιχ		<u> </u>	- Details
43		FILLING - grey brown, silty clay filling with gravel, organic matter and rootlets		A* A	0.3 0.5		PID<1ppm PID<1ppm		
-	0.6	SILTY CLAY - medium plasticity, red brown, silty clay with trace ironstone gravel, humid							
	1	Man date notice of great of manife				Ì			-1 -
42	-			Α	1.3 1.5				-
:			1/1/						
-	-2		1/1/	i					-2
41	2.4	GRAVELLY CLAY - orange and brown, gravelly silty							
<u> </u>	<u>. </u>	clay		A	2.8		PID<1ppm		
	-3 3.0	Bore discontinued at 3.0m - target depth reached	٧ . /		-3.0-				
-8	<u>-</u>	•							
1	-4					Ş			-4
,	<u> </u>			\ 					
[e	- - -								
ŧ	-5			:					5
-88	- }-					ļ			
-	-6								-6
3.									
1	<u>-</u>								
1	-7								-7
- 92	}				i				
ŀ	[:		
ļ	- B								-8 [
- 8	}								
Ė	- - -9								-9
-	-								
- 2	<u>የ</u>								
E	[

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

*Denotes field replicate sample BD2/271109 collected. *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PID Photo ionisation detector
Sandard penetration test
PL Point load strength (s/50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.5 *

EASTING: 301259 **NORTHING:** 6245502 DIP/AZIMUTH90°/--

BORE No: BH13 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Ì		Description	. <u>5</u>	•	Sam		k In Situ Testing	Ţ,	Well
뢰	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
+		Strata SILTY CLAY - grey brown, silty clay with some sand, organic matter, rootlets and gravel, dry			0.1 0.2	ο̈́	P(D<1ppm		Details
\$3	0.3	organic matter, rootlets and gravel, dry SILTY CLAY - high plasticity, red brown, silty clay with	1/1/	A	0.2 0.3 0.5		PID<1ppm		[_ _
Ť		SILTY CLAY - high plasticity, red brown, silty clay with trace ironstone gravel, humid	1/1/		0.5				
	-1			-	ļ				- -1 -
				A	1.3		PID<1ppm		
۲			11		1.5				[
-	-2								-2
			1//						
ə			1//			1			<u> </u>
}	-3 3.0		XX	Α	2.8 -3.0		PID<1ppm	_	3
		Bore discontinued at 3.0m - target depth reached			•				[
.≜								ļ	
	-4								-4
									<u> </u>
g	•								
	-5					1			5
8	•			•					
	•								<u> </u>
	-6				ļ				-6
12	•								
	-7 - -								-7
- 8	, - -								
:						ļ			
	-8				ļ				-8
35	<u>.</u>								
· "'	<u>.</u>								
	-9 -								-9
	-								
_ਲ _									
_	<u>-</u>			<u> </u>					-

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PiD Photo ionisation detector
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
Vater seep
Water seep
Water level

Mirvac Investment Pty Ltd **CLIENT:** PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.2 * EASTING: 301279

NORTHING: 6245477 DIP/AZIMUTH90°/--

BORE No: BH14 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Γ	T	T	Description	<u>.</u> 2	· · · ·	Sam	pling 8	In Situ Testing	<u>_</u>	Well
ē	뷥	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
-	-		Strata SILTY CLAY - grey brown, silty clay with trace fine	7//		0.1	-8	···	-	Details
ļ:	3	0.3	SILTY CLAY - grey brown, silty clay with trace fine grained sand, organic matter, rootlets and gravel SILTY CLAY - orange brown, high plasticity, silty clay,	1/1	A	0.3		PID<1ppm PID<1ppm		
ŀ	ŀ		damp			0.5				
Ę	-	-1								-1
ŀ	\$ }				A	1.3		PID<1ppm		- - -
ŀ	-					1.5				• •
ŀ		-2	doc #4.0.0m	1//						-2
Ę	Ŧ		- dry at 2.0m	1/1/						
	ŀ			1/1/		'				 - -
1	ŀ	3 3.0			Α	2.8 3.0		PID<1ppm		3
ŧ	4		Bore discontinued at 3.0m - target depth reached							
-		- -								
ļ		-4								-4
ļ F	8	· ·								
-	ļ									-
ŀ		-5								-5
-	8									
Ę										
-		-6								6
-	25									
ļ										
) [-								-7
-	98									
-										
ļ										
ŀ	35	-8								8
		[
ļ		<u>.</u>								
	8	-9 -								9
ļ	. !	[[
		[
1		<u> </u>					т	1	. !	

RIG: Bobcat

LOGGED: KP **DRILLER:S Gregor**

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
Photo ionisation detector
S standard penetration test
pp Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water seep
Water level

CHECKED Initials: Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.4 * EASTING: 301269 **NORTHING:** 6245522 DIP/AZIMUTH90°/--

BORE No: BH15 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

			Description	<u>0</u> ,		Sam	pling 8	k In Situ Testing		Well
ā	4 1	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
	-		SILTY CLAY - grey brown, silty clay with trace gravel, organic matter and rootlets (topsoil), humid	1/1/	Α*	0.1	Ö	PID<1ppm	 	Dotails
-	?	0.4	SILTY CLAY - orange brown, silty clay with trace gravel,		Α	0.3 0.5		PID<1ppm		
-		0.8	humid SILTY CLAY - medium plasticity, orange brown mottled grey, silty clay, humid							
	-	1	grey, silty clay, humid - highly plastic from 1.2m			1.3				-1
}-{ -	*		ingili, padad tolit i Zili		Α	1.5		PID<1ppm		
-		2								-2
<u>.</u>										
_[`	-			1/1/						
1	Ę	3			,	2.8		DiDetnom		-3
<u>-</u> ;	- -		dama at 2 Am (amous zona)		A	3,5		PID<1ppm		
-	-	3.6	- damp at 3.4m (smear zone) Bore discontinued at 3.6m	17.7	_^_	3.6		PID<1ppm		
ļ	ŀ	4	- target depth reached							-4
ţ	<u></u>									
Ė										Ţ
-	-	5								5
[-; -	8									
ļ	ŧ	s								-6
ļ,	<u> </u>									
_ [P.							i i		
	ŀ	7								7
- - -;	<u></u>									
ŧ	ŀ									
ļ. -	-	8								-8
<u>.</u> ;	36									
ţ	ļ									
<u> </u>	-	9								-9
Ę	\$									
ŀ	-									

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.6m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: *Denotes field replicate sample BD1/271109 collected. *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials:

Mirvac Investment Pty Ltd CLIENT: PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.8 * 301238 **EASTING: NORTHING:** 6245545

DIP/AZIMUTH90°/--

BORE No: BH16 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Γ			Description	ဋ		Sam		In Situ Testing		Well
ā	1	Depth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
- - - -	-	. 0.4	SILTY CLAY - grey brown, silty clay with some organic matter (topsoil) and trace rootlets and fine grained sand		A	0.1 0.3 0.4		PID<1ppm PID<1ppm		
-5	+		SILTY CLAY - medium to high plasticity, red brown, silty clay with trace ironstone gravel			0.5				
-	-	1	- increasing to some ironstone gravel at 0.9m		Α	1.3 1.5	ļ	PID<1ppm		
ļ.	-	_				1.5				-2
-	-	2								
) !	- - - -	2.8	SILTY CLAY - medium plasticity, red brown mottled grey, silty clay with trace ironstone gravel		A	2.8 -3.0	í	PID<1ppm		
-	-	3 3.0	Grey, silty clay with trace ironstone gravel Bore discontinued at 3.0m target depth reached			5.0				
-; -;	S-	4								-4
<u>-</u>	-	•								
	3	5					1	1		-5
<u>.</u>	-	•								
- - - -	25	6			į					-6
}							;			
)	98	7								-7
-	-									
-	35	в					,			-8
<u> </u>	-									
<u>.</u>	8	-9					•			-9
- - - -	-					1			!	
	33									

LOGGED: KP **CASING:** Uncased DRILLER: S Gregor RIG: Bobcat

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)
Photo ionisation detector
S Standard penetration test
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
V Water seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.8 * **EASTING:** 301234 **NORTHING:** 6245572

DIP/AZIMUTH90°/--

BORE No: BH17 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

Γ	T		Description	ျှင		Sam		k In Situ Testing	<u>ا</u> ا	Well
뮵	4	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction
L			Strata	٥	È	 1	San	Comments		Details
ŀ	ŀ	0.3	SILTY CLAY - medium plasticity, red brown, silty clay with trace gravel and organic matter, humid		Α	0.1 0.3		PID<1ppm		
F	F	0.3	SILTY CLAY - high plasticity, red brown, silty clay with trace ironstone gravel		Α	0.5		PID<1ppm		-
	1		trace ironstone gravel							
ļ`	Ĭŧ.	1								-1
F	Ē]				1.3				
Ė	ŧ				Α	1.5		PID<1ppm		
	+	1.8	CHTV OLAY	///						
ŀ	ŀ	2	SILTY CLAY - medium plasticity, orange brown mottled grey, silty clay							-2
ŧ	ŧ									
}	ŀ									
\[\frac{1}{5}	₹			1//	A	2.8		PlD<1ppm		
-	-	3 3,0	Bore discontinued at 3.0m			-3.0-				3
ŧ	ŀ		- target depth reached							} -
Ē	F	:								
- F	ĨŁ									-4
ļ	ţ									
F	F									
Ė,	; ;;;									
ļ,	ŀ	·5								-5
Ę	ľ									
ţ	Ė									
-	탉					Ì				
-	F	∙6								-6
Ė	ţ									
F	ŀ									
<u> </u>	<u>چ</u> ا									
	ţ	-7								
ŀ	ŀ								Î	
- [F									-
֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓	쫜	-8								-8
}	ŀ									
ļ	-	•								
Ė	<u>,</u>	•								
ŀ	"	-9								-9
ļ	ļ	· ·								
ŧ	ŧ									
<u>[</u> .	8	•								[]
Ľ		•			Ц		<u> </u>			_1

RIG: Bobcat

DRILLER: S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
V Water seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park SURFACE LEVEL: 40.8 * EASTING: 301393 **NORTHING:** 6245390 DIP/AZIMUTH90°/--

BORE No: BH18 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

		Description	iĘ _		Sam		In Situ Testing	<u></u>	Well
곱	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
-	0.1			E	0.0 0.1	σ_	PID<1ppm	-	-
ŧ	<u>-</u>	FILLING - dark brown, silty clay filling, damp		_E_	0,4 0.5		PID<1ppm		
å									 - -
}	-1 1.0 -	CLAY - brown mottled dark grey, silty clay, moist							-1
Ē	[[E	1.4 1.5		PID<1ppm		
-g	<u>.</u>								2
ŀ	-2 - -				,				
ļ	2.4	CLAY - red brown mottled grey, silty clay with trace fine gravel, moist							
};;	[-3 3.0			_E_	2.9 -3.0		PID<1ppm		3
ŀ		Bore discontinued at 3.0m - target depth reached			0.0				[
	[
37	-4								-4
F	-								-
- 9									[
-)[-5								5
ŀ									
- 5	-			-					
Ė	- 6								6
[[
)[;	; ;-					1			
	-7 -								-7
ŀ	E								
- 6	1								
Ì	-8 -								- B
-	ţ								
- 5	9								-9
[-								-
ŀ	<u>.</u>								[]
- 7	<u> </u>								:

CASING: Uncased LOGGED: AHP RIG: Bobcat DRILLER: S Gregor

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
V Water seep
Water very

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 41.8 * **EASTING:** 301372

NORTHING: 6245574 DIP/AZIMUTH90°/--

BORE No: BH19 PROJECT No: 71500 **DATE: 01 Dec 09** SHEET 1 OF 1

Γ	Τ		Description	ပ		Sam	pling 8	In Situ Testing		Well	
æ		epth (m)	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	
	1	0.1	FILLING - light brown, silty clay filling (topsoil), trace rootlets, humid	/ //	E	0.0 0.1		PID<1ppm			
} }	-	•	CLAY - red brown, silty clay, humid		E	0.4 0.5		PID<1ppm			
-	- 1									[-1	
Ė	-					1.4		DIDetano			
<u>.</u>	Į.	1.5	Bore discontinued at 1.5m - target depth reached		_E_	1,4 -1.5		PID<1ppm			
-	-2		talgot dopartodolog							_2	
ŀ	Ē										
<u>_</u> ;	;										
	-3									-3	
ŀ	Ė										
- -	%[- -4	.								-4	
	Ė										
ļ.	<u>}</u>										
,	Έ.	i								5	
[Ę										
ن	\$ }									[
ţ	-6	;								-6 -	
Ė	ŧ	i									
)[3	,								-7	
-	-										
-	<u> </u>										
[Ę,	3								8	
-	-										
<u>-</u> ;	33										
ļ	1	9								-9 -	
	ŧ									<u> </u>	
E	8					<u> </u>					

RIG: Bobcat

DRILLER: S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Bulk sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
Point load strength 1s(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials:

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.7 * EASTING: 301270

EASTING: 301270 NORTHING: 6245732 DIP/AZIMUTH 90°/--- BORE No: 20 PROJECT No: 71500

DATE: 01 Dec 09 SHEET 1 OF 2

			Description	:을 _	Sampling & In Situ Testing		<u>_</u>	Well		
ļ	뢷	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
E	-	0.05		1/1/	A/E	0.1	<i>w</i>	PID<1ppm		
-		0.4	SILTY CLAY - stiff, brown, silty clay, damp to moist		A/E	0.4 0.5		PID<1ppm		
	4	-1 1.0	CLAY - stiff, orange brown and light grey, clay with trace of silt, moist		A/E	0.9 1,0		PID<1ppm		-1
			SILTY CLAY - stiff to very stiff, mottled orange light grey, silty clay, moist	1/1	s		:	4,6,8 N = 14		
-	24					1.45				
		2 2.0	CLAY - very stiff, mottled orange light grey clay, moist	1/1						-2
			,			2.5				
\neg	-4	-			s			6,11,13 N ≃ 24		
		-3				2.95				-3
		-								
	4	-4 4.0		//	1	4.0				-4
		-	SILTY CLAY - very stiff, light grey and orange brown, silty clay with trace of fine grained sand and ironstone gravel		s	4.45	 	7,9,12 N = 21		
	39	<u> </u>				4.40				
		-5			1					-5
	- - -	5.5	GRAVELLY SILTY CLAY - stiff to very stiff, brown,		_	5.5				
	38	-	gravelly (ironstone) silty clay, wet	90°	s	5.95		5,8,12 N = 20		- - -6
		├6 [-			4					
~	37									
)		-7	- becoming stiff at 7.0m		S	7.0				[-7
	-				\$s	7.45		6,6,9 N = 15		
	98	- - -			S S					
	-	-8								-8 [
	-	8.3	SILTSTONE - very low and low strength, grey brown siltstone	 = 7	-	8.5 8.55		PL(A) = 0.8MPa		
	- 35	8.7 -9	fragmented to fractured, grey siltstone							-9
	4 1 1 1 1 1	9.5	CARBONACEOUS SHALE - extremely low and low to medium strength, highly and slightly weathered, fragmented to fractured, dark grey to black, carbonaceous shale, some very low strength bands		0	9.3	-	PL(A) = 0.3MPa		
	- 2				-]	9.8		PL(A) = 0.4MPa		

RIG: Hydropower

DRILLER: Macquarie Drilling

LOGGED: SI

Contracts 40.6m

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 8.5m; NMLC-Coring to 10.6m WATER OBSERVATIONS:

REMARKS:

E = Environmental sample. *Level relative to AHD, SSM167133

	SAMPLING	& IN SITU	TES	STING	LEGEND
le			ББ_	Pocket	penetromete

A Auger sample
D Disturbed sample
B Bulk sample
U Tube sample (x mm dia.)
W Water sample
C Core drilling

Plo LEGENU
Procket penetrometer (kPa)
Prot toinisation detector
Standard penetration test
V Shear Vane (kPa)
Water seep
Water seep
Water level

Mirvac Investment Pty Ltd **CLIENT:** PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.7 * **EASTING:** 301270

NORTHING: 6245732 DIP/AZIMUTH90°/--

BORE No: 20 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 2 OF 2

Г	Т		Description			Sam	oling &	In Situ Testing		Well
ā	2	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
			SILTSTONE - medium then medium to high strength, slightly weathered, fractured to slightly fractured, light grey to grey siltstone (continued)		С	10.4	0)	PL(A) = 1.1MPa		
	3	10.6	Bore discontinued at 10.6m			-10.6-				
	-	-11								-11
[;	25	-12								-12
}	-									
		-13	•							13
[8									
	ļ	-14								-14 -14
; ;	28						ļ			
ŀ		-15 -								-15 [
-; -;	8	-16								- - - 16
	27	- 17								-17
	26									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	-18								-18
-	55									
ļ		-19								[-19
<u>.</u>	24					ļ				

RIG: Hydropower

DRILLER: Macquarie Drilling

LOGGED: SI

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 8.5m; NMLC-Coring to 10.6m

WATER OBSERVATIONS:

REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

DIESTING LEGEND
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
S Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CHECKED Initials: Date;

CASING: HW to 4.0m

CLIENT:

Mirvac Investment Pty Ltd

Hoxton Park Airport PROJECT:

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 40.8*

EASTING: 301435 **NORTHING:** 6245495 DIP/AZIMUTH90°/--

BORE No: 21

PROJECT No: 71500 **DATE: 25 Nov 09** SHEET 1 OF 1

	Dept	h	Description	D Pic				& In Situ Testing	je.	Well
씸	(m)	"	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
		0.2	FILLING - red brown, crushed sandstone filling	XX	E/A	0,1		PID<1ppm		
	·	J.2	FILLING - grey brown, sandy clay filling with some silt and concrete gravel, moist		E/A	0.5		PID<1ppm		
4	1	0.8	CLAY - stiff, brown clay with some silt and trace of ironstone gravel, moist to wet		E/A E/A	0.8 1.0		PID<1ppm PID<1ppm 4,5,7 N = 12		1
39	-2					2.5				-2
38	-3				S	2.95		3,6,6 N = 12	\	-3
37	-4	4.7	GRAVELLY CLAY - very stiff, brown, gravelly (ironstone) clay, wet		s	4.45	;	3,8,8 N = 16	-	-4
35 36	-5	4-7	SHALY CLAY - hard, orange/yellow brown, shaly clay with ironstone bands		s	5.95		8,15,21 N = 36		-5
34	-7	6.8	SHALE/SILTSTONE - very low strength, grey brown shale/siltstone		S	7.0		22,25/50mm refusal		-7
33	-8		SHALE/SILTSTONE - extremely low to very low strength, extremely to highly weathered, light grey brown, shale/siltstone. Some low to medium strength bands		c	7.55	;	PL(A) = 0.3MPa		-8
32	9	9.4	Bore discontinued at 9.4m			9.4-				.9
31	- - -		2010 GIOGENIAGO di OlTIII							

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 7.2m; NMLC-Coring to 9.4m WATER OBSERVATIONS: Free groundwater observed at 3.8m whilst augering REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
pp Pocket p

CLIENT: Mirvac Investment Pty Ltd **PROJECT:** Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.2 * 301355 EASTING:

NORTHING: 6245748 DIP/AZIMUTH90°/--

BORE No: 22 PROJECT No: 71500

DATE: 26 Nov 09 SHEET 1 OF 2

	Т		Description	<u>.</u>		San	npling &	& In Situ Testing	_	Well
i	퓝	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
ļ	2	•	FILLING - brown, fine grained, sand filling with some roadbase gravel, humid		Α	0.1		PID<1ppm		
-	E	· • •		\bowtie	Α	0.5		PID<1ppm		
ţ	ŧ	· 0.7	SILTY CLAY - stiff, orange brown, silty clay with trace of fine grained sand, moist							
ŀ	=	-1 -	Time granted data, motor		_ s	1.0		3,4,8 N = 12		-1
Ē					_A_	1.45		PID<1ppm		
ŀ		- -								
Ī	9	-2 -								-2
		2.4	SANDY CLAY - very stiff, brown, fine grained, sandy		_A_	2.5		270		
$\overline{}$		_	clay, moist		s	2.95		3,7,9 N = 16		
7	න	-3 - -								-3
		3.	SANDY SILTY CLAY - very stiff then hard, mottled	///						
			orange brown and light grey, fine grained, sandy silty clay, moist						¥	
į	-8	-4 [s	4.0		4,10,16 N = 26		-
						4.45				} - -
		-			}			4		
	- [5	-5				:				-5
			5.5m: becoming hard		 	5.5		0.14.00		
			Sidenii Sassinii g mat		s	5.95		6,14,23 N = 37		
	-g	-6 [0.00				-6
	-									
$\overline{}$: -, <u>,</u>				7.0				-7
	35	[GRAVELLY CLAY - hard, brown, gravelly (ironstone) clay, moist		s	7.0		11,20,28 N = 48		
	-	<u> </u>			_	7.45				
	-	<u> </u>			\$					
	34	-8 [, i		-8 - -
	-	- 8.	SHALE - very low strength, light grey brown shale		* s	8.5		24,25/90mm		} - -
:	•	8.	SHALE/SILTSTONE - low then very low to low strength, highly to moderately weathered, light grey brown			8.74 8.8		refusal		-9
	33	-9	highly to moderately weathered, light grey brown shale/siltstone		c					
	ŀ	- 9	6							
	-	<u> </u>	SHALE - medium strength, fresh, slightly fractured, grey shale		- 0	9,85	<u> </u>	PL(A) = 0.4MPa		

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 8.8m; NMLC-Coring to 11.45m WATER OBSERVATIONS: Free groundwater observed at 4.0m whilst augering

*Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
Pocket penetrometer (kPa)
PID Photo ionisation detector
S Standard penetration test
Point load strength is/50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.2 *

EASTING: 301355 **NORTHING:** 6245748 PROJECT No: 71500 **DATE: 26 Nov 09**

BORE No: 22

DIP/AZIMUTH90°/--SHEET 2 OF 2

Depth Open		Double	Description	je "				In Situ Testing	-ia	Well	
SHALE - medium strength, fresh, slightly fractured, grey shale (continued) 11.45 Bore discontinued at 11.45m 11.45 Bore discontinued at 11.45m 11.45 1	뫁	(m)		Grap	Type	Depth	Sample	Results & Comments	Wat		
11.45 Bore discontinued at 11.45m 11.45 Bore discontinued at 11.45m 12 13 8 14 8 15 16 17 17 18 18 19 19 10 11.0 PL(A) = 0.4MPa 11 12 13 14 15 15 16 16 17 17 18 18 18	32					9.9		PL(A) = 0.4MPa			
Bore discontinued at 11.4-bm 12 13 14 15 16 17 18 18 18 19 19	- 55	-						PL(A) = 0.4MPa		-11	
-14 -14 -14 -15 -15 -15 -16 -16 -17 -17 -17 -17 -18 -18 -18 -18 -19 -19	30	12	Bore discontinued at 11.45m							-12	
15		-13								-13	
-16 -17 -17 -18 -18		1. 1. 1. 1. 1. 1. 1. 1.			1					-14	
-16 -17 -17 -18 -18 -19		F								-15	
-18 -78 -78 -78 -79	*									16	
-18 -18 -78										17	
-19										-18	
		47.									
		ŀ								F-19	

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 8.8m; NMLC-Coring to 11.45m

WATER OBSERVATIONS: Free groundwater observed at 4.0m whilst augering

REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

CHECKED Initials:

CASING: HW to 4.0m

CLIENT: Mirvac Investment Pty Ltd **PROJECT:** Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 39.5 * **EASTING:** 301497

NORTHING: 6245679 DIP/AZIMUTH90°/--

BORE No: BH23 PROJECT No: 71500

DATE:

SHEET 1 OF 1

								n 90 /		JILLI I OI I
	Dos	nth	Description	pic G	<u>~~</u>			In Situ Testing		Well
Ζ	De _i (n	וויי	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	 -		TOPSOIL - brown, silty clay topsoil filling, trace rootlets, humid	W	E	0.0 0.1	0,			
33		0.3	CLAY - red brown clay, humid							
38	- -1 -1		- moist at 1.0m		Α	0.8 1.0				-1
	-2	1.9	CLAY - grey brown clay, damp		Α	2.0 2.2				-2
3,1	-	2.7	CLAY - red brown mottled grey clay, damp		Α	2.7				
8	-3	3.0	Bore discontinued at 3.0m - target depth reached	1/_/_		-3.0-				3
	-4									-4
35	-5				!	} -		·		-5
34					į.	·				
	-6									-6
33	- - - - -7				•				į	7
32					<u></u>					
	- 8 - 1									-8
-	- - - - -									
1	-9									-9
-	<u>-</u>									

RIG: Bobcat

DRILLER:S Gregor

LOGGED: AHP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

E = Environmental sample. *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

pp Photo ionisation detector

S Standard penetration test

PL Point load strength 1s(50) MPa

V Shear Vane (kPa)

Water seep

Water seep

Water seep

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 45.0 * 301260 **EASTING: NORTHING:** 6245977

DIP/AZIMUTH90°/--

PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

BORE No: BH24

Γ			Description	ي		Sam	pling &	In Situ Testing		Well
뭅	Dept (m)	th	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
4		0.1	FILLING - light brown, silty clay filling (topsoil), trace rootlets, humid FILLING - light brown, silty clay topsoil filling, humid CLAY - red brown, silty clay, humid		E	0.0 0.1 0.4 0.5		PID<1ppm		-1
	-1	1.5	Bore discontinued at 1.5m - target depth reached		E	1.4 1.5		PID<1ppm		-2
42	-3						and the second s			-3
41	-4	}								-4
	5									-5
,	6				- 1.1.g.;					-6
	8-7	:			į					-7
	8						<u> </u>			-8
	9	•				1				-9

LOGGED: AHP RIG: Bobcat **DRILLER:** S Gregor

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Siandard penetration test
pp Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water seep
Water level Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample

Core drilling

CHECKED Initials: Date:

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.5 *

EASTING: 301285 **NORTHING:** 6245437 DIP/AZIMUTH90°/--

BORE No: BH25 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

of Strata G - grey brown, silty clay fi rootlets and gravel CLAY - yellow brown, med mid to moist scontinued at 1.5m t depth reached		Graphic	A A Type	0.1 0.3 0.5	Sample	Results & Comments PID<1ppm PID<1ppm	Water	Construction Details	
S - grey brown, silty clay fi rootlets and gravel CLAY - yellow brown, med imid to moist scontinued at 1.5m			A	0.1 0.3 0.5		PID<1ppm	-1		
scontinued at 1.5m	lium plasticity, silty		A			PID<1ppm	-1		
scontinued at 1.5m	ium piasticity, stity	PVV	^	-1.5		PID (Ippill			
							-2		
							-3	į	
							-4 -4		
				 			-5		
								į	
			-	<u> </u>			-6	ţ	
							7	,	
							-8	}	
								,	
				į				·	
								-6	

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 1.5m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: Next to helicopter bay/shed. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Photo ionisation detector
S Standard penetration test
pp Point load strength is(50) MPa
V Shear Vane (kPa)
D Water seep Water level

CHECKED Initials:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 45.2 * 301192 EASTING: **NORTHING:** 6246124 DIP/AZIMUTH90°/--

BORE No: BH26 PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

_		Description	. <u>o</u>	_	Sam	pling &	In Situ Testing	_ ا	Well
占	Depth (m)	of	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
F		Strata FILLING - brown, gravelly silty clay filling (topsoil), fine	\times	E	0.0 0.1	တိ	PID<1ppm	_	Details
- 4	0.3	\material, numid		E	0.4 0.5		PID<1ppm		
ļ	0.6	FILLING - brown, silty clay filling, fine gravel, trace rootlets, humid							
ţ.	<u>-</u> 1	CLAY - brown to red brown, silty clay, trace fine gravel, damp		E	0.9 1.D		PID<1ppm		-1
4	[
ŧ	<u> </u> 				10				
-84 [-	2			E	1.9 2.0		PID<1ppm		-2
,	-								
_[2.7	CLAY - grey brown, silty clay, moist		E	2.9		PID<1ppm		
~{- ⁶	-3 3.0	Bore discontinued at 3.0m - target depth reached			3.0				
Ė	} } }								
	-4								-4
-2									
Ē									
ļ	5								-5
-	;[-								
ţ									[
-	-6								-6
- e -	}} 								-
F	[1		
	7								-7
["	} }								
ŀ	Ė						<u> </u>		<u> </u>
- -	-8 5-								-8
ŀ	<u> </u>								[
} } }									
<u> </u>	-9 %							Î	-9 - - -
ŀ	<u>}</u>								[
	-								
	IA. D.	DDILL ED C Crogov		1.0				٠.	SING: Uncased

LOGGED: AHP **CASING:** Uncased RIG: Bobcat DRILLER:S Gregor

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

pp Photo ionisation detector

S Standard penetration test

PL Point load strength Is(50) MPa

V Shear Vane (kPa)

P Water seep

Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park SURFACE LEVEL: 44.0 * EASTING: 301284 **NORTHING:** 6246139 DIP/AZIMUTH90°/--

BORE No: BH27 PROJECT No: 71500 **DATE: 01 Dec 09** SHEET 1 OF 1

_				1 1						
		,	Description	Graphic Log				& In Situ Testing	1 75	Well
물	De (n	pth i	of		Туре	Depth	eld	Results &	Water	Construction
Ι.	, ,	1	Strata	୍ର	\ <u>\</u>	e	Sample	Results & Comments	_	Details
4	-	0.1	RUNWAY ASPHALT & ROADBASE		E	0.1 0.2		PID<1ppm		-
ļ	-		FILLING - red brown, silty gravelly clay filling	\bowtie	-				l	ļ
ŧ	ļ.	0,4	FILLING - very stiff, light brown, sandy silty clay, some		E	0.4 0.5		PID<1ppm		<u> </u>
Ì	ŀ		fine gravel	$\times\!\!\times\!\!\times$						F 1
Ì.,	ŧ.			\otimes		ļ				[,
- 4	F1	1.1	TH LINC many to light because althy grouply along filling	\bigotimes						['
F	Ī	Ì	FILLING - grey to light brown, silty gravelly clay filling							E i
F	F	4.0		$\langle \rangle \rangle$	E	1.4 1.5		PID<1ppm		[
F	ŀ	1.6	CLAY - red brown, silty clay, ironstone gravel							[
Ė	<u>.</u>									-2
F.4	!-2 -									
F	F			1//						[
F	F									Ł !
F	}	l							}	[
√{_	-3	20			E	2.9 3.0		PID<1ppm		-
-[↑	[]	3.0	Bore discontinued at 3.0m			3,0				<u> </u>
ŀ	ŀ		- target depth reached					ļ		ţ Į
Ŀ							i]
ŀ	-									
Ę	2-4									-4
- [Ţ.,							ļ		
ŀ	ŀ	İ						İ		ţ
ŀ										
ŀ	-									
Ļ,	3-5									<u>-</u> 5
ŀ"	1									ļ -
ŀ	-					ļ				į l
-	ļ									į
ŀ	<u> </u>						ţ			
- 2	9-6									F-6
ŀ"	1									<u> </u>
ŀ	ŀ								-	
ţ	ŀ									ţ
ţ	ţ									1
)¦:	, 7									-7
作`										1
ţ	ļ									ţ
ļ	ļ									[
ļ	ļ									ţ
-8	8-8									-в
Į.	ţ					1	ļ			1
ļ	-						Ì			F
ţ	ļ				1		1			F
ļ.	ŀ									<u> </u>
Ļ	g-9					1	ļ			-9
-	ļ						1		1	F
ļ	-									[
ļ	ŀ									
ļ	-				I					-
Ł	<u> </u>				1	<u> </u>	1			1

CASING: Uncased RIG: Bobcat DRILLER: S Gregor LOGGED: AHP

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed

REMARKS: E = Environmental sample. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)

le PID Photo ionisation detector

S Standard penetration test

mm dia.) PL Point load strength 1s(50) MPa

V Shear Vane (kPa)

D Water seep Water level

CLIENT: Mirvac Investment Pty Ltd
PROJECT: Hoxton Park Airport
LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.1 *
EASTING: 301321
NORTHING: 6245443
DIP/AZIMUTH90°/--

BORE No: BH28 PROJECT No: 71500 DATE: 27 Nov 09 SHEET 1 OF 1

Г			Description	. <u>ç</u>		Sam	pling &	In Situ Testing	_	Well
교	De (t	epth m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
÷		0.3	FILLING - grey brown, silty clay filling with organic matter, gravel and rootlets, humid	\boxtimes	Α	0.1 0.3		PID<1ppm		
ŀ			FILLING - grey brown, silty clay filling with trace gravel, humid	\bowtie	_A_	0.5		PID<1ppm		
ŀ	<u> </u>		SILTY CLAY - orange brown, silty clay, medium to high plasticity, moist							[] -1
-			,,			1.3				
ŀ		1.5	SILTY CLAY - red brown, high plasticity, silty clay, moist	11	Α	1.5		PID<1ppm		
	-2									-2
-										
<u> </u>	-	2.6	SILTY CLAY - high plasticity, orange mottled grey, silty	1/1		0.0				
\ 	-3	3.0	clay, moist Bore discontinued at 3.0m	1//	Α	2.8 -3.0		PID<1ppm	-	-3
			- target depth reached							
-	[
Ę	4									4
ŧ	E				İ					
Ė	ŀ									
.;	-5									-5 -
ļ	Ė									
ŀ	<u>. </u>									
- 1	-6									-6
ļ	-									
1	Ę,									-7
<u>ال</u>	₽ -									
	-									
ļ.	-8					•	ŀ		ļ	-8
-	* [
-	-									
<u> </u>	9									9
,	ŧ									
-										
Ł	-				<u> </u>		l	<u> </u>		<u> </u>

RIG: Bobcat

DRILLER:S Gregor

LOGGED: KP

CASING: Uncased

TYPE OF BORING: Solid flight auger to 3.0m

WATER OBSERVATIONS: No free groundwater observed REMARKS: *Level relative to AHD, SSM167133

SAMPLING	& IN SITU	TESTING	LEGEND

A Auger sample
D Disturbed sample
B Bulk sample
U, Tube sample (x mm dia.)
W Water sample
C Core drilling

PING LEGEND
pp Pocket penetrometer (kPa)
PID Photo ionisation detector
S Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.4 * **EASTING:** 301237

NORTHING: 6245533

BORE No: GW1 PROJECT No: 71500 **DATE: 26 Nov 09**

SHEET 1 OF 1 DIP/AZIMUTH90°/--

	_		Description	:E_		Sam		In Situ Testing	_ F	Well	
킫	Dep (m	oth i)	of Strata	Graphic	Туре	Depth	Sample	Results & Comments	Water	Construction Details	
-			SILTY CLAY - red brown, silty clay, humid	1//	A	0.1	8	PID<1ppm		Gatic cover Bentonite	
2		0.3	SILTY CLAY - red brown, silty clay, humid	1/1/	A	0.3	ļ	PID<1ppm			1=11
-		0.5	SILTY CLAY - yellow orange, silty clay, damp	1/1/		0.8					
	•1	1.0	SILTY CLAY - brown, silty clay with ironstone traces	1/1/	<u> </u>	1.0		PID<1ppm		- -1 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12			<u></u> , ,,,,,,	1/1			İ				0=0 0=0
1	•									Backfilled with	
ŀ	-2	2.0		1//	Α	1.8 2.0		PID<1ppm		[-2	
			SILTY CLAY - brown, silty clay with some ironstone gravel, damp							Machine slotted PVC screen	
₹						,				[
	<u>:</u>			1//	A	2,8		PID<1ppm		F	000
	-3					3.0				-3 -	
ş		ļ			<u> </u>				Ã		0=0 0=0
	- - -						i				
	-4	4.1	D. E. C. Adda	1//	A	3.9 4.0		PID<1ppm	_	End cap	jğ <u>=</u> ¦ö
8	-		Bore discontinued at 4.1m - refusal on ironstone band								
	-									[
	-5									-5 ,	
_										[
36						ļ					
										-6	
	-6										
37											
	-7									-7	
36	[<u> </u>	
	[
	-8									-8	
	E										
- - -	[
	-9									-9	
	- *										
-25	:									<u> </u>	
-	E					Ì				-	

RIG: Bobcat

DRILLER: \$ Gregor

TYPE OF BORING: Solid flight auger

WATER OBSERVATIONS: Free groundwater observed at 3.5m

REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling OSCOO

PESTING LEGEND
pp Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water level

CHECKED Initials: Date:

LOGGED: KP

CLIENT: PROJECT: Hoxton Park Airport

Mirvac Investment Pty Ltd

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 40.1 * 301387 EASTING:

NORTHING: 6245327 DIP/AZIMUTH90°/--

BORE No: GW2 PROJECT No: 71500 **DATE: 26 Nov 09** SHEET 1 OF 1

П	_	epth n)	Description					In Situ Testing	- B	Well
R	Dep (m		of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
4	· - - -		FILLING - brown, silty clay filling with some gravel, organic matter and trace sand, dry		A A	0.1 0.3 0.5	S	PID<1ppm PID<1ppm		Gatic cover
39	-1	0.6	SILTY CLAY - red brown, silty clay with some ironstone gravel, humid		A	1.3 1.5		PID<1ppm	ļ	-1 Bentonite
7	-2	1.8 2 3	SILTY CLAY - yellow brown, silty clay with trace sand and ironstone gravel, moist		A	2.8		PID<1ppm		Backfilled with gravel
) 36 m	4		- damp to wet at 4.0m						Ť	Machine slotted PVC screen PVC screen
35	-5	5.0	Bore discontinued at 5.0m - refusal		A	4.8 -5.0-		PID<1ppm		5 End cap - 5 End cap
34	6									-6
	-7					ŧ	i.			-7
- S	-8						į į			-8
1	9									-9
Ŀ	<u> </u>									

RIG: Bobcat

DRILLER: S Gregor

TYPE OF BORING: Solid flight auger

WATER OBSERVATIONS: Free groundwater observed at 4.0m

*Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

PP Pocket penetrometer (kPa)
Photo ionisation detector
S Standard penetration test
S Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water level

CHECKED Initials: Date:

LOGGED: KP

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 40.1 * **EASTING:** 301398

NORTHING: 6245325 DIP/AZIMUTH90°/--

BORE No: GW2A PROJECT No: 71500 **DATE: 02 Dec 09** SHEET 1 OF 2

Depth of Strata Depth (m) Strata Depth of Strata Strata Details Depth (m) Strata Depth of Strata Dept	_										
FILLING - grey brown, sity clay topsoil with trace of find grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay tilling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the gravel with some ironstone gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, well one of the gravely one of the gravel, well one of the gravely one of the gravely one of the gravely one of the gravel one of the gravely one of the gravely one of the gravely one		_		Description	ے اور _		Sam		k In Situ Testing	74	Well
FILLING - grey brown, sity clay topsoil with trace of find grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay tilling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the grained sand and grass rooteles (possible topsoil) FILLING - grey brown, sity clay filling with some gravel, and one of the gravel with some ironstone gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, damp to moist one of the gravel, well one of the gravely one of the gravel, well one of the gravely one of the gravely one of the gravely one of the gravel one of the gravely one of the gravely one of the gravely one	뮵	De	epth m)		Srapt Log	ype	epth	mple	Results &	Wate	
yarained sand and grass rotellas (possible topsoil) FILLING - gray brown, silly clay filling with some gravel, hund SLTY CLAY - stiff, light brown to red brown, silly clay with some frostone gravel, damp to moist 1.0-1.5m; gravelly (fronstone) silly clay, moist SLTY CLAY - stiff, light grey, silly clay, moist SLTY CLAY - stiff, light grey, silly clay, moist SLTY CLAY - stiff, light grey, silly clay, moist SLTY CLAY - very stiff, brown, gravelly (fronstone) silly clay, moist to wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand and ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand ironstone gravol, wet SLTY CLAY - very stiff, brown, ellty clay with trace of fine grained sand sand ironstone gravol, wet sand sand ironstone gravol, wet sand sand ironstone gravol, wet sand sand sand ironstone gravol, wet sand sand sand ironstone gravol, wet sand sand sand ironstone gravol, wet sand sand sand sand sand ironstone gravol, wet sand sand sand sand sand sand ironstone gravol, wet sand sand sand sand sand sand sand sand	-	_	0.05		2 2 2			လိ		Ì	Details
SILTY CLAY - stiff, light brown to red brown, silty clay SILTY CLAY - stiff, light grey, silty clay 1.0-1.5m; gravelly (tronstone) silty clay 1.0-1.5m; gravelly (tronstone) silty clay 1.0-1.5m; gravelly (tronstone) silty clay 1.45 SILTY CLAY - stiff, light grey, silty clay, moist 2.15 SILTY CLAY - stiff, light grey, silty clay, moist 2.25 3.7.7 N=14 PID-1ppm 3.5 GRAVELLY SILTY CLAY - very stiff, brown, gravelly (tronstone) silty clay, moist to wet 3.5 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravol, wot 3.6 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravol, wot 3.7 S. 5.5 S. 7.0 7.0 7.0 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 8.1 8.1 8.1 8.1 8.1 8.1 8.1	F.	[grained sand and grass rootlets (possible topsoil)	XX	· ^					
SILTY CLAY - stiff, light prown to red brown, sitty clay with some ironatone gravel, damp to moist 1.0-1.5m; gravelly (tronstone) sity clay sity clay, moist 5 s 1.45 SILTY CLAY - stiff, light grey, silty clay, moist 5 s 1.45 SILTY CLAY - stiff, light grey, silty clay, moist 5 s 1.45 SILTY CLAY - stiff, light grey, silty clay, moist 5 s 1.45 SILTY CLAY - stiff, light grey, silty clay, moist 6 s 1.45 SILTY CLAY - stiff,	È		0.6	FILLING - grey brown, silty clay filling with some gravel,	\bowtie	_ A			PID<1ppm		
with some ironstone gravel, damp to moist 1.0-1.5m; gravelly (ironstone) silly clay 1.0-1.5m; gravelly (ironstone) silly clay 1.45	ŧ	ŀ	0.0	SILTY CLAY - stiff, light brown to red brown, silty clay		_	0.0				
SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - very stiff, brown, gravely (fronstone) silty clay, moist to wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely with trace of fine grained sand and ironstone gravely wi	-g	-1	 	with some ironstone gravel, damp to moist					6,6,7		-1
SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - stiff, light grey, silty clay, moist SILTY CLAY - very stiff, brown, gravelly (fronstone) silty clay, moist to wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and fronstone gravel, wet	Ė	-		1.5 From graves, (nonecone) ency oney		S	4 45		N = 13 PID<1ppm		
SILTY CLAY - stiff, light grey, silty clay, moist 2.5 3.7.7 N = 14 PID-1ppm 3.5 GRAVELLY SILTY CLAY - very stiff, brown, gravelly (ironstone) silty clay, moist to wet 4.0 5.8, 11 N = 19 PID-1ppm FID-1ppm 7 8.1 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - rective strength, moderately weathered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	ŀ	-					1.45				<u> </u>
SILTY CLAY - stiff, light grey, silty clay, moist 2.5 3.7.7 N = 14 PID-1ppm 3.5 GRAVELLY SILTY CLAY - very stiff, brown, gravelly (ironstone) silty clay, moist to wet 5.4 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.4 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 6.9.9 N = 18 PID<1ppm 7 R = 7 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately westbered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately westbered, fractured, brown, fine grained sandstone	F	-			1//		i				
3.5 GRAVELLY SILTY CLAY - very stiff, brown, gravelly (fronstone) silty clay, moist to wet 4.0 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.4 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 7.0 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 8.1 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 8.2 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 8.3 Silty Clay - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 8.4 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.4 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.4 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.5 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.5 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.6 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.7 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.7 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.7 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.7 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.8 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.8 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.8 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.8 Silty Clay - very stiff, brown, silty clay with trace of fine grained sandstone 8.9 Silty Clay - very	-8	-2	2.1	SILTY CLAY - stiff, light grey, silty clay, moist						ļ	
S 2.95 GRAVELLY SILTY CLAY - very stiff, brown, gravely (fronstone) silty clay, moist to wet 4.0 5.8.11 N = 19 PID<1ppm PID<1ppm Fig. 19 S 3.5 GRAVELLY SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S 5.5 S 7.0 7.0 7.0 7.10 8.1 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone Grained sandstone Fig. 3 SANDSTONE - very low to low strength, brown, fine grained sandstone S SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	Ė	ŧ		out, car, again g.o.y, only oney, more			25				[
GRAVELLY SILTY CLAY - very stiff, brown, gravelly (fronstone) slity clay, moist to wet 4.0 5.8,11 N = 19 PID<1ppm 5.4 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 5.7 7.0 8.7 8.1 8.1 8.1 9-10 7-10 8.1 8.1 9-10 8.1 9-10	ŀ	-			1//	s	2.0		N = 14		<u> </u>
GRAVELLY SILTY CLAY - very stiff, brown, gravelly (fronstone) silty clay, moist to wet 4.0 5.4 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 7.0 7.8,10 8.1 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone 8.1 SANDSTONE - very low to low strength, moderately weathered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	\neg	-3				<u> </u>	2.95		PID<1ppm		-3
GRAVELLY SILTY CLAY - very stiff, brown, gravelly (fronstone) silty clay, moist to wet 4.0 5.4 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet 5.5 7.0 7.8,10 8.1 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone 8.1 SANDSTONE - very low to low strength, moderately weathered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	才	Ė									[
(ironstone) silty clay, moist to wet 4.0 5,8,11 N = 19 PID<1ppm SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S 5,5 S,5 S,95 7,0 7,8,10 N = 18 PID<1ppm 7 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - were low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	}	-	3.5	CDAVELLY CHAY compatiff brown grouply							<u>[</u>
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S 5.5 6,9,9 N = 18 PID<1ppm 7 7 7 8 8.1 8.1 8.1 8.2 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone 8 8 8 8 8 8 8 8 9 PL(A) = 0.8MPa	F	-		(ironstone) silty clay, moist to wet							
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine gravely stiff, brown, silty clay with trace of	į,	-4			188		4.0		5.8.11		-4
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet Solve the state of the state of the state of fine grained sand and ironstone gravel, wet Solve the state of the	ļ.	<u></u>			52	S			N = 19	_	
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S 5.95 7.0 7.8,10 N = 18 PID<1ppm 7 8.1 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	-	Ę.					4.45			Ä.	
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S S.5.5 S.9.5 S.9.9 N = 18 PID<1ppm 7 N = 18 PID<1ppm 7 N = 18 PID<1ppm 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	ŧ	ţ				1					[
SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet SILTY CLAY - very stiff, brown, silty clay with trace of fine grained sand and ironstone gravel, wet S. 5.5 6.9,9 N = 18 PID<1ppm 7.45 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	- 4	-5									-5 [
fine grained sand and ironstone gravel, wet 7 8 7.0 8 7.45 8.1 SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	F	-	5.4	OUT OF ANY		4					<u> </u>
The state of the s	-	-		fine grained sand and ironstone gravel, wet		s	5.5	ļ			[
To the second strength of the second strength	Ė	-				<u> </u>	5.95				F-6
SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone 8.1 SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	-7	1				1					-
SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone 8.1 SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	F	-				1					
SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone 8.1 SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	ŧ	Ė			1//	1					<u> </u>
SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	寸 .	-7			1//		7.0		7.8.10		-7
SANDSTONE - very low to low strength, brown, fine grained sandstone SANDSTONE - wery low to low strength, brown, fine grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone	了;	ار				s			N = 18		
8.1 SANDSTONE - very low to low strength, brown, fine 8.1 grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone PL(A) = 0.8MPa	ţ	Ė				_	7.45		1 to (ppin		
8.1 SANDSTONE - very low to low strength, brown, fine 8.1 grained sandstone SANDSTONE - medium strength, moderately weathered, fractured, brown, fine grained sandstone PL(A) = 0.8MPa	- }	ŀ			1//	1					
8.3 Sandstone Sa	- -:		8.0 8.1	¬ SANDSTONE - very low to low strength, brown, fine	[//	_			5 (4) 5		-8
\weathered, fractured, brown, fine grained sandstone	ţ	-		\grained sandstone	 	4	8.2		PL(A) = 0.8MPa		
	ł	ŧ		SANDSTONE - medium strength, moderately	<u>:</u>	1		1			
SILTSTONE - extremely low to very low strength, C C9	[-		SILTSTONE - extremely low to very low strength,		1					
extremely to highly then slightly weathered, grey siltstone. Some low to medium strength bands PL(A) = 0.3MPa	<u> </u>	2 - 9		siltstone. Some low to medium strength bands		-	9.15		PL(A) = 0.3MPa		-
	ţ	Ė				}					
9.5-9.8m: carbonaceous shale band 9.75 PL(A) = 0.1MPa	ŀ	-		9.5-9.8m: carbonaceous shale band		-	9.75		PL(A) = 0.1MPa		}
	Ē	}				С	9.85		-6.4 -2		<u> </u>

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: to 8.0m

TYPE OF BORING: Solid flight auger to 8.1m; NMLC-Coring to 10.15m WATER OBSERVATIONS: Free groundwater observed at 4.5m whilst augering

*Level relative to AHD, SSM167133 **REMARKS:**

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
Photo ionisation detector
S Standard penetration test
pp Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water seep
Water seep

CHECKED Initials: Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 40.1 * EASTING: 301398

NORTHING: 6245325 DIP/AZIMUTH90°/-- BORE No: GW2A PROJECT No: 71500 DATE: 02 Dec 09 SHEET 2 OF 2

			Description	. <u>2</u> _		Sam		k In Situ Testing	5.	Well
	┨	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
	<u></u>	10.15	Bore discontinued at 10.15m		С	10.15	· ·			
}	ŀ									
	Ē	11								-11
ļ	R) -									
ļ	, ₈₈	12								12
	ŀ									
	}	42								- - - -13
~	27	13								
	-									-
	28	14								[-14
	8	15								-15
	24	16								-16
						•				[
\bigcirc	R	· 17								-17
	22	-18								-18
,										
	21	-19								- 19
		· ·								

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: to 8.0m

TYPE OF BORING: Solid flight auger to 8.1m; NMLC-Coring to 10.15m WATER OBSERVATIONS: Free groundwater observed at 4.5m whilst augering

REMARKS: *Level relative to AHD, SSM167133

SAMPLING		

A Auger sample
D Disturbed sample
B Bulk sample
U, Tube sample (x mm dia.)
W Water sample
C Core drilling

pp Pocket penetrometer (kPa)
Photo ionisation detector
Standard penetration test
PL Point load strength is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED
Initials;
Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.0 * **EASTING:** 301290

NORTHING: 6245511

DATE:

SHEET 1 OF 1

BORE No: GW3

PROJECT No: 71500

DIP/AZIMUTH90°/--Graphic Log Sampling & In Situ Testing Well Description Depth 굺 Construction of Depth Type Results & Comments (m) Details Strata Gatic cove BITUMINOUS CONCRETE PID<1ppm Bentonite 0.3 0.4 0.5 0.3 ROADBASE PID<1ppm SILTY CLAY - red brown, silty clay SILTY CLAY - yellow to orange brown, silty clay, 8.0 medium plasticity, humid PID<1ppm 1.0 Backfilled with - ironstone band at 1.5m 1.8 PID<1ppm 2 2.0 - trace ironstone gravel from 2.5m Α PID<1ppm Machine slotted PVC screen ္ကြ-ဒ 3.0 3.5 PID<1ppm - damp to wet at 3.5m

4.8

PID<1ppm

CASING: Uncased LOGGED: KP DRILLER: S Gregor RIG: Bobcat

TYPE OF BORING: Solid flight auger to 5.0m

Bore discontinued at 4.9m

- refusal on ironstone bands

∙⊱⊦5

-ജ⊦6

-9

WATER OBSERVATIONS: No free groundwater observed REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Augar sample Disturbed sample

Bulk sample
Tube sample (x mm dia.)
Water sample

Plo LEGENU
po Pocket penetrometer (kPa)
Plo Photo ionisation detector
Standard penetration test
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials: Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 42.0 * **EASTING:** 301290 **NORTHING: 6245510**

BORE No: GW3A PROJECT No: 71500 **DATE:** 01 Dec 09 SHEET 1 OF 1

DIP/AZIMUTH90°/--Sampling & In Situ Testing Well Description Graphic Log Water Depth Construction $\vec{\alpha}$ of Type Sampl Results & Comments Details Strata BITUMINOUS CONCRETE 0.1 PID<1ppm 0.1 ROADBASE GRAVEL SILTY CLAY - stiff, brown silty clay, moist 0.8 5,6,9 5 N = 15 PID<1ppm 1.45 GRAVELLY SILTY CLAY - stiff to very stiff, brown, gravelly (ironstone) silty clay with some fine grained 위-2 2.5 SILTY CLAY - very stiff, light grey and orange brown, 6,7,10 s silty clay with some fine grained sand and ironstone N = 17PID<1ppm gravel, moist 2.95 -3 - 3 7,9,11 s N = 20PID<1ppm 5.5 6,9,11 N = 20 s PID<1ppm 5.95 -6 60/30mm 7.0 7.03 7.24 refusal PID<1ppm PL(A) = 0.4MPa S SILTSTONE - very low to low strength, grey siltstone SILTSTONE - low to medium strength, highly and highly to moderately weathered, fractured to slightly fractured, grey brown siltstone. Some extremely low strength hands С PL(A) = 0.3MPa8.5 8.95 SILTSTONE - extremely low strength, highly weathered, light grey siltstone C PL(A) = 0.4MPa9.4 SILTSTONE - medium strength, slightly weathered, slightly fractured, grey siltstone 10 10.0 10.0

Bore discontinued at 10.0m

RIG: Hydropower **DRILLER:** Macquarie Drilling

TYPE OF BORING: Solid flight auger to 7.24m; NMLC-Coring to 10.0m

WATER OBSERVATIONS: Free groundwater observed at 6.0m

REMARKS: *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample

Core drilling

*Level relative

SAMPLING & IN SITU TESTING LEGEND

pp Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
mm dia.)

PL Point load strength is(50) MPa
V Shear Vane (kPa)
D Water seep Water level

CHECKED Initials Date:

LOGGED: SI

CASING:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.8 * EASTING: 301279 **NORTHING:** 6245782 DIP/AZIMUTH90°/--

BORE No: GW4 PROJECT No: 71500 **DATE: 26 Nov 09** SHEET 1 OF 1

		Description	일_		Sam		In Situ Testing		Well
꿉	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
	-	FILLING - brown, silty clay filling with trace gravel, humid		A A	0.1 0.3 0.5		PID<1ppm PID<1ppm		Gatic cover
43	-1			A	0.8 1.0		PID<1ppm		Bentonite
42	ŀ I	SILTY CLAY - red brown, medium plasticity, silty clay with trace ironstone gravel, humid		A	1.5 1.8 2.0		PID<1ppm PID<1ppm		Backfilled with Garage
	-2 - 2,5	SILTY CLAY - orange brown mottled grey, medium plasticity, silty clay with trace ironstone gravel, damp			2.0			ļ	
)[=	-3 3.2	plasticity, silty clay with trace ironstone gravel, damp SILTY CLAY - orange brown, silty clay with some sand,		Α_	2.8 3.0		PID<1ppm		-3 Machine slotted
40	-4	damp to wet							2002000 1111111111111111111111111111111
	4.5	Bore discontinued at 4.5m - target depth reached, refusal on ironstone banding	<u> </u>	A	4.4 4.5		PID<1ppm		End cap
. 85	6						3		6
	7			:					7
	-8						:		-8
,	-9								9
						}			

CASING: Uncased RIG: Bobcat **DRILLER:** S Gregor LOGGED: KP

TYPE OF BORING: Solid flight auger to 4.5m

WATER OBSERVATIONS: No free groundwater observed *Level relative to AHD, SSM167133 REMARKS:

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND

PP Pocket penetrometer (kPa)
Photo ionisation detector
S Siandard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
P Water seep
Water seep
Water level

Mirvac Investment Pty Ltd CLIENT: PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.8 * EASTING: 301279 **NORTHING:** 6245780

DIP/AZIMUTH90°/--

BORE No: GW4A PROJECT No: 71500 **DATE: 30 Nov 09** SHEET 1 OF 2

			Description	ᇐ		Sam		& In Situ Testing	- -	Well	
룂	Dept (m)	n	of Strata	Graphic Log	Type	Depth	Sample	Results & Comments	Water	Construction Details	on
	. (0,1	FILLING - grey brown, silty clay topsoil with trace of gravel and grass rootlets, humid (possible topsoil)	XX	Α	0.1	ေ	PID<1ppm		Gatic cover	
	-	ļ	FILLING - grey brown, silty clay and shale fragments filling, humid		_A_	0.4 0.5		PID<1ppm		† † 	
43	├ ([-1 -	0.7	SILTY CLAY - very stiff, mottled orange, grey and brown, silty clay with trace of ironstone gravel, moist		A	0.9 1.0		PID<1ppm 8,8,10		[- - - -	
					\$ 	1.45		N = 18 PID<1ppm		- - - Backfilled with - - sand	
42	-2 2								İ	-2 -2	
4.1					S	2.5 2.95		5,8,10 N = 18 PID<1ppm	į	[- -3	
	[3 [3.5	CANDY CLAY affilia you affiliate and analysis			-		,		Bentonite	
4	-4		SANDY CLAY - stiff to very stiff, light grey and orange brown, fine grained sandy clay, moist to wet			4.0		5,7,8		-4	
					S	4.45		N = 15 PID<1ppm			
-£	-5									-5 -5	
	[[]				s	5.5		5,8,11 N = 19 PID<1ppm		Machine slotted PVC screen	
	-в	6.3	SHALE/SILTSTONE - extremely low to very low			5.95				-6 -	
37			strength, grey shale/siltstone							- - - - -	
	-7	7.3	SHALE/SILTSTONE - extremely low to very low		s	7.0		12,20/80mm refusal PID<1ppm	i	-7 - - -	
	S- -8		strength, extremely to highly weathered, light grey brown, shale/siltstone		С					} - - - - - 8	
	<u>}</u>	3.53	SHALE - low to medium and medium strength, slightly		- - -	8.5					
ű	9		weathered, slightly fractured, grey shale with extremely low strength bands		С	8.75		PL(A) = 0.3MPa		- - 9	
			9.55-9.60m: very high strength siltstone band			9.5 9.55		PL(A) = 0.4MPa			
76	X	9.8		==	C					End cap	- [].

RIG: Hydropower

DRILLER: Macquarie Drilling

LOGGED: SI TYPE OF BORING: Solid flight auger to 7.3m; NMLC-Coring to 10.2m

CASING:

WATER OBSERVATIONS:

*Level relative to AHD, SSM167133 REMARKS:

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
le PID Photo ionisation detector
S Siandard penetration test
pp Point load strength Is(50) MPa
V Shear Vane (kPa)
D Water seep \$ Water level Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

CLIENT:

Mirvac Investment Pty Ltd

PROJECT: Hoxton Park Airport LOCATION: Cowpasture Road, Hoxton Park SURFACE LEVEL: 43.8 * EASTING: 301279

NORTHING: 6245780 DIP/AZIMUTH90°/--

BORE No: GW4A PROJECT No: 71500 **DATE: 30 Nov 09** SHEET 2 OF 2

		D 41-	Description	. <u>j</u>		Sam		In Situ Testing		Well
i	뢰	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
	33	10.2	SHALE - very low strength, slightly weathered, light grey shale (continued) Bore discontinued at 10.2m		С	-10.2-	65			-11
	32	12								- 12
	33	13								-13
-	30	· 14			ļ					-14
	53	- 15			:					-15 -15
	28	- 16							į	-16
\bigcirc	27	- 17								- 17
	26	- 18 -								-18
	25	-19								- 19
	24					:				

RIG: Hydropower

DRILLER: Macquarie Drilling

LOGGED: SI

CASING:

WATER OBSERVATIONS:

REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

TYPE OF BORING: Solid flight auger to 7.3m; NMLC-Coring to 10.2m

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PlD Phote ionisation detector
Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
Water seep
Water level

CHECKED Initials:

CLIENT: Mirvac Investment Pty Ltd **PROJECT:** Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 45.0 * **EASTING:** 301241 NORTHING: 6245982 DIP/AZIMUTH90°/--

BORE No: GW5 PROJECT No: 71500 **DATE: 26 Nov 09** SHEET 1 OF 1

Ì		Description	.ë _		Sam		& In Situ Testing	_ <u>_</u> _	Well
룂	Depth (m)	of Strata	Graphic	Туре	Depth	Sample	Results & Comments	Water	Construction Details
*		SILT - brown silt, dry	1111	A	0.1	- 0,	PID<1ppm		Gatic cover
	0.3 0.5	SILT - brown black silt, dry		A	0.3 0.5		PID<1ppm		
*	-1	SILTY CLAY - brown, silty clay, humid			0.5				-1 Bentonite
43	1.5· -2	SILTY CLAY - brown grey, slightly clay, moist		A	1.8 2.0		PID<1ppm		-2 Backfilled with
42	2.4	SILTY CLAY - brown, silty clay, moist		A	2.8		PID<1ppm		1 0 0 0 0 0 0 0 0 0
4	3.2	SILTY CLAY - brown, silty clay with trace gravel, damp to wet			0.0				-3 Machine slotted ー しょうしょう PVC screen ・ ここっこう こうしょう こうしょう こうしょう こうしょう こうしょう こうしょう マース・マース・マース・マース・マース・マース・マース・マース・マース・マース・
41	-4 4.5	Bore discontinued at 4.5m		A	4.3 -4.5		PID<1ppm		-4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40	-5	- refusal							5
39	-6				:				
38	-7								7
	•								
37	-8					į			-8
36	- - -9								-9 -

CASING: Uncased **DRILLER:**S Gregor LOGGED: SI RIG: Bobcat

TYPE OF BORING: Solid flight auger to 4.5m

WATER OBSERVATIONS: No free groundwater observed REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
D Water seep
Water level

CHECKED Date:

CLIENT:

Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 45.0 *

EASTING: 301218 **NORTHING:** 6246075 DIP/AZIMUTH90°/--

BORE No: GW5A PROJECT No: 71500 **DATE: 30 Nov 09** SHEET 1 OF 1

Donth	Description	iệ m				k In Situ Testing	e.	Well
Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
<u> \ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	FILLING - grey brown, silty clay and shale fragments filling, with some grass rootlets	XX	· A	0.1	- o	PID<1ppm		I
0,3	SILTY CLAY - stiff, brown to red brown, silty clay with		A	0.4 0.5		PID<1ppm		
	trace of fine grained sand, moist		Α	0.9		PID<1ppm		
- १ -1			s	1.0		4,5,7 N = 12 PID<1ppm		
				1.45		PiU <ippm< td=""><td></td><td></td></ippm<>		
- 왕-2 2.0	OH TV OLAV							-2
	SILTY CLAY - stiff, grey silty clay, moist to wet							[]
			s	2.5		5,6,6 N = 12		
2 3			-	2.95		PID<1ppm		-3
								-
3.7	CLAYEY SAND - loose, brown, fine grained, clayey							<u> </u>
- 5 - 4	sand, wet		s	4.0		2,3,4 N = 7		-4
		12/2		4.45		PID<1ppm	Ī	
- -	OU TOTOLIS	12/2						-5
	SILTSTONE - extremely low to very low strength, grey brown siltstone	. — .						[
			S	5.5		12,17,26 N = 43 PID<1ppm		
-g-6				5.95		PIO (IPPIII)		-6
						30/100mm		-7
7.1	SANDSTONE - high then high to very high strength, fresh, slightly fractured and unbroken, light grey, fine grained sandstone with some siltstone laminations and		S	7.0 7.1 7.2		refusal PID<1ppm PL(A) = 2.5MPa		
;	grained sandstone with some siltstone laminations and bands			}				
-‰-8 -%-8				8.05		PL(A) = 3.2MPa		-8
<u> </u>			_					
			С					
9 9				9.05		PL(A) = 5.5MPa		-9
- - - - - - - - - - - - - - - - - - -				10.0				10
-ස-10 10.0	Bore discontinued at 10.0m			10.0				10

RIG: Hydropower

DRILLER: Macquarie Drilling

LOGGED: SI

CASING:

TYPE OF BORING: Solid flight auger to 7.1m; NMLC-Coring to 10.0m WATER OBSERVATIONS: Free groundwater observed at 4.5m whilst augering

REMARKS: *Level relative to AHD, SSM167133

SAMPLING & IN SITU TESTING LEGEND

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

Plo Stands Legenus
pp. Pocket penetrometer (kPa)
PID Photo ionisation detector
Standard penetration test
PL Point load strength Is(50) MPa
V Shear Vane (kPa)
Vater seep
Water level

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.4 * EASTING: 301469

NORTHING: 6245350 DIP/AZIMUTH90°/-- BORE No: GW6 PROJECT No: 71500 DATE: 25 Nov 09 SHEET 1 OF 2

П		Τ	Description	년 -		Sam		& In Situ Testing	75	Well
龀	Depti (m)	h	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
H	0.0	02	ROADBASE GRAVEL - with some sand and clay		E/A	0.1	-0,	PID<1ppm		-
88			FILLING - brown and red brown, silty clay filling, humid to damp		E/A	0.4 0.5		PID<1ppm		
37	-1	1.9	SILTY CLAY - stiff, grey brown and brown, silty clay, damp to moist		E/A S	0.9 1.0 1.45		PID<1ppm 3,4,6 N = 10 PID<1ppm		-1
36	-2 -2 -	2.1	CLAY - firm, brown clay, wet		E S	2.4 2.5		PID<1ppm 2,2,2 N = 4 PID<1ppm		-2
38	-3 :	3.1	CLAY - very stiff, light brown clay with some ironstone gravel, wet			2.95		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	₹	-3
34	-4 :				S	3.9 4.0 4.45		2,9,16 N = 25		4
32 33	-5	1.7	GRAVELLY CLAY - very stiff to hard, red brown, gravelly (ironstone) clay, moist		S	5.5	1987-17	9,13,17 N = 30		5
31	7	7.5	SILTSTONE - extremely low to very low strength, extremely to highly weathered, light grey, orange brown siltstone with a low to medium strength band at 7.85 to 8.0m			7.5		PL(A) = 0.3MPa		-7
29 30	9	8.7	SHALE - very low strength, highly weathered, grey to dark grey, shale with a carbonaceous shale band from 9.02m to 9.3m		C	9.05 9.2		PL(A) = 0.1MPa		- - - - - - - - - - - - - - - - - - -
:	-	9.7	SHALE - medium strength, slightly weathered, slightly fractured, grey shale							

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 7.5m; NMLC-Coring to 11.1m

WATER OBSERVATIONS: Free groundwater observed at 3.1m whilst augering

REMARKS: *Level relative to AHD, SSM167133

SAMPLING	8	IN SITU	TESTING	LEGEND

A Auger sample
D Disturbed sample
B Bulk sample
U, Tube sample (x mm dia.)
W Water sample
C Core drilling

pp Pocket penetrometer (kPa)
PlD Photo ionisation detector
Standard penetration test
Pl Point load strength Is(50) MPa
V Shear Vame (kPa)
V Water seep
Water level

CHECKED
Initials;
Date;

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.4 * EASTING: 301469

NORTHING: 6245350 DIP/AZIMUTH90°/--

BORE No: GW6 PROJECT No: 71500 **DATE: 25 Nov 09** SHEET 2 OF 2

	Denth	Description					& In Situ Testing		Well	
R	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details	
		SHALE - medium strength, slightly weathered, slightly fractured, grey shale (continued)		С	10.15		PL(A) = 0.5MPa PL(A) = 0.6MPa		-11	
	11.1	Bore discontinued at 11.1m			-11.1				-12	
26	-13		:						_13	
25	- - - - 14								-14	
24	15								15	
23	-16								16	
22	- - - - - - -								17	
21	- 18							3	- 18	
20	- 19								- 19	
13	-									

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 7.5m; NMLC-Coring to 11.1m WATER OBSERVATIONS: Free groundwater observed at 3.1m whilst augering

REMARKS: *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

SAMPLING & IN SITU TESTING LEGEND
pp Pocket penetrometer (kPa)
pp Pocket penetrometer (kPa)
Photo ionisation detector
Standard penetration test
S Standard penetration test
PL Point load strength 1s(50) MPa
V Shear Vane (kPa)
V Water seep
Water level

CHECKED Initials: Date:

CLIENT: PROJECT:

Mirvac Investment Pty Ltd Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 41.6 * 301380 **EASTING:**

NORTHING: 6245681 DIP/AZIMUTH90°/--

BORE No: GW7 PROJECT No: 71500 **DATE: 24 Nov 09** SHEET 1 OF 1

	Description Depth		Graphic Log		Sam	Sampling & In Situ Testing			Well	
킴	(m)	of Strata		Type	Depth	Sample	Results & Comments	Water	Construction Details	
+		FILLING - light brown, gravelly clay filling with trace of	\bowtie	A/E	0.0 0.1	<i>o</i> s	PID<1ppm			
	0.3	CLAY - firm to stiff, light grey clay, humid		A/E	0.4 0,5	ŀ	PID<1ppm			
1	• • •			A/E	0.9		PID<1ppm			
ŀ	-1			S	1.0		3,5,4 N = 9			
2	- 1.	CLAY - very stiff, red brown then light grey brown, clay with some fine ironstone gravel, wet			1.45					
	-2	with some fine ironstone gravel, wet						Ţ	-2	
	- - -									
8	- -			S	2.5		PID<1ppm 4,8,11 N = 19			
	3				2.95		14 – 13		-3	
] !						
8	3,				, i					
	-4 -	GRAVELLY CLAY - hard, red brown and brown, gravelly (ironstone) clay, wet		s	4.0		8,12,20		F-4	
					4.45		N = 32			
6			60							
	-5 -		308			1			-5	
36				s	5.5		15,17,20			
	-6			•	5.95		N = 37		- -6	
35	6	0	900						[
	7	SILTSTONE - extremely low strength, light grey brown siltstone							-7	
	7.	SILTSTONE - extremely low to very low strength, highly	:	-	7.3				ļ l	
8	. 7	to moderately weathered, light grey, yellow brown, siltstone with a low strength band from 7.6m to 7.9m	:		7.7		PL(A) = 0.2MPa			
	-8 -		**						-8	
·8	} 8	SHALE - low to medium then medium strength, slightly weathered, slightly fractured, light grey to dark grey		C	8.6		PL(A) = 0,3MPa			
	-9	shale		<u>:</u>					-9	
	 -			: - -	9.2		PL(A) = 0.3MPa			
33		7		-	9.5 -9.7		PL(A) = 0.7MPa			
	;	Bore discontinued at 9.7m			"				<u> </u>	

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 4.0m

TYPE OF BORING: Solid flight auger to 4.0m; Rotary to 7.3m; NMLC-Coring to 9.7m WATER OBSERVATIONS: Free groundwater observed at 2.0m whilst augering

REMARKS: *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample

Core drilling

CHECKED
Initials;
Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 43.7 * **EASTING:** 301305 **NORTHING:** 6245998 DIP/AZIMUTH90°/--

BORE No: GW8 PROJECT No: 71500 **DATE: 27 Nov 09** SHEET 1 OF 1

	Danit	Description	ي _ة [Sam		In Situ Testing	ا ان	Well
	Depth (m)	of Strata	Graphic Log	Туре	Depth	Sample	Results & Comments	Water	Construction Details
Ŧ		SILTY CLAY - grey brown, silty clay with some gravel and trace of grass rootlets, humid (possible topsoil)		Α	0.1		PID<1ppm		-
ŧ		and trace of grass routiers, framila (possible topson)		A*	0.5		PID<1ppm		
;	0.8	CH TV CLAV - ME to 100 - ME to 100 - ME							
	1	SILTY CLAY - stiff to very stiff, mottled orange, light grey, silty clay with some ironstone gravel, moist			1.0				-1
-				S	1.45				
ŧ									
ŧ	2								2
Ė	}								
ļ	2.5	SANDY CLAY - firm to stiff, orange brown and light grey, fine grained sandy clay with trace of silt and		s	2.5				
	3	grey, fine grained sandy clay with trace of silt and ironstone gravel, wet			2.95	:			[-3
									[
									ţ
	-4				4.0			Ī	-4
ļ				s					
	4,5	GRAVELLY SILTY CLAY - sliff, brown, gravelly	912 Y		4.45				
3	_	(ironstone) silty clay, wet							-5
ŀ	-5			А	5.0		PID<1ppm		
ŀ					5.5				
\$ \				S	5.95				
ļ	-6				5.95				-6 -
7									
	-7 7.0 7.1		<u> </u>	s	7.0 7.1				F7
		SHALE - low strength, moderately to slightly weathered, slightly fractured, grey brown shale			7.2 7.4		PL(A) = 0.2MPa		
3	7.85								
ļ	-8 -	SILTSTONE - medium strength, slightly weathered and fresh, fractured to slightly fractured, grey siltstone		•	7.96		PL(A) = 0.5MPa		-8
				С	8.2		PL(A) = 0.6MPa		
ņ			· - ·	_					
	-9	8.75-9.0m: low strength band]					-9
	•			†	9.15		PL(A) = 0.4MPa		
4]	ļ				
4	9.75	Bore discontinued at 9.75m	1		9.75				

RIG: Bobcat

DRILLER: Steve S

LOGGED: SI

CASING: HW to 7.1m

TYPE OF BORING: Solid flight auger to 7.1m; NMLC-Coring to 9.75m

WATER OBSERVATIONS: Free groundwater observed at 4.0m whilst augering

*Denotes field replicate sample BD2/261109 collected. *Level relative to AHD, SSM167133 **REMARKS:**

SAMPLING & IN SITU TESTING LEGEND	

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

pp Pocket penetrometer (kPa)
Plo Photo ionisation detector
S Standard penetration test
PL Point load strength is/50) MPa
V Shear Vane (kPa)
b Water seep Water level

CHECKED Initials: Date:

CLIENT: Mirvac Investment Pty Ltd PROJECT: Hoxton Park Airport

LOCATION: Cowpasture Road, Hoxton Park

SURFACE LEVEL: 38.5 * **EASTING:** 301636 **NORTHING:** 6245196 DIP/AZIMUTH90°/--

BORE No: GW9 PROJECT No: 71500 **DATE: 26 Nov 09** SHEET 1 OF 1

ſ	Τ		Description	Graphic Log		Sam	pling 8	In Situ Testing	Water	Well
Ī	뢷	Depth (m)	Depth (m) of		Type Depth		Sample	Results & Comments		Construction
-	+		Strata SILTY CLAY - grey brown, silty clay with trace rootlets.	1/1/		0.1	- S			Details
Ì	_	0.3	SILTY CLAY - grey brown, silty clay with trace rootlets, gravel and organic matter, dry SILTY CLAY - grey brown, silty clay with trace gravel	4/	A	0.3		PID<1ppm PID<1ppm		
ľ	*					0.5				
ŀ	-	0,8	SILTY CLAY - red brown, silty clay, damp	1/						1
ŀ	F					1.3		DID of a sec		
	FF.				Α	1.5		PID<1ppm		
[[2								-2
ŀ	ŀ	4		1//						
-	, ,	2.5	SANDY CLAY - grange brown fine grained sandy clay	1.7.					Ā	
7			SANDY CLAY - orange brown, fine grained, sandy clay with some silt, saturated		Α*	2.7		PID<1ppm		
	-	3				3,0				-3 [
ļ.,	ج ا									- - -
ţ	ŧ									
ŀ	ŀ	4		1//						-4
Ē						4.4				<u> </u>
ŗ	촭	4.5	Bore discontinued at 4.5m - target depth reached	- 1. //		-4.5				
Ē	E	5	- target depti reaction							-5
-										-
-	왕[
	Ė	6								6
ŀ	ŀ	•								
Ė	윩				ļ					
\uparrow	ŀ									
	F	7								-7 -
į Į	탏									
<u>.</u>	}									
Ė	<u>}</u>	8							-	-8
ļ	1									
F	<u>ج</u>									
F	E	-g								-9
F	[
E	8									
[

RIG: Bobcat **DRILLER:** S Gregor LOGGED: KP **CASING:** Uncased

TYPE OF BORING: Solid flight auger to 4.5m

WATER OBSERVATIONS: Free groundwater observed at 2.5m

REMARKS: *Denotes field replicate sample BD3/261109 collected. *Level relative to AHD, SSM167133

Auger sample
Disturbed sample
Bulk sample
Tube sample (x mm dia.)
Water sample
Core drilling

e Plots in dia.)

SAMPLING & IN SITU TESTING LEGEND

Pocket penetrometer (kPa)

Photo ionisation detector

Samadard penetration test

Samadard penetration test

PL Point load strength Is(50) MPa

V Shear Vane (kPa)

V Water seep

Water seep

DESCRIPTION AND CLASSIFICATION OF ROCKS FOR ENGINEERING PURPOSES

DEGREE OF WEATHERING

Term	Symbol	Definition
Extremely Weathered	EW	Rock substance affected by weathering to the extent that the rock exhibits soil properties - i.e. it can be remoulded and can be classified according to the Unified Classification System, but the texture of the original rock is still evident.
Highly Weathered	HW	Rock substance affected by weathering to the extent that limonite staining or bleaching affects the whole of the rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength may be increased or decreased compared to the fresh rock usually as a result of iron leaching or deposition. The colour and strength of the original fresh rock substance is no longer recognisable.
Moderately Weathered	MW	Rock substance affected by weathering to the extent that staining or discolouration of the rock substance usually by limonite has taken place. The colour of the fresh rock is no longer recognisable.
Slightly Weathered	sw	Rock substance affected by weathering to the extent that partial staining or discolouration of the rock substance usually by limonite has taken place. The colour and texture of the fresh rock is recognisable.
Fresh Stained	Fs	Rock substance unaffected by weathering, but showing limonite staining along joints.
Fresh	Fr	Rock substance unaffected by weathering.

ROCK STRENGTH

Rock strength is defined by the Point Load Strength Index ($I_{S(50)}$) and refers to the strength of the rock substance in the direction normal to the bedding. The test procedure is described by Australian Standard 4133.4.1 - 1993.

Term	Symbol	Field Guide*	Point Load Index I _{S(50)} MPa	Approx Unconfined Compressive Strength q _u ** MPa
Extremely low	EL	Easily remoulded by hand to a material with soil properties	<0.03	< 0.6
Very low	VL	Material crumbles under firm blows with sharp end of pick; can be peeled with a knife; too hard to cut a triaxial sample by hand. SPT will refuse. Pieces up to 3 cm thick can be broken by finger pressure.	0.03-0.1	0.6-2
Low	L	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long 40 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	0.1-0.3	2-6
Medium	М	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.	0.3-1.0	6-20
High	Н	Can be slightly scratched with a knife. A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow, rock rings under hammer.	1 - 3	20-60
Very high	VH	Cannot be scratched with a knife. Hand specimen breaks with pick after more than one blow, rock rings under hammer.	3 - 10	60-200
Extremely high	EH	Specimen requires many blows with geological pick to break through intact material, rock rings under hammer.	>10	> 200

Note that these terms refer to strength of rock material and not to the strength of the rock mass, which may be considerably weaker due to rock defects.

Issued: April 2000 Page 1 of 2

^{*} The field guide assessment of rock strength may be used for preliminary assessment or when point load testing is not able to be done.

^{**} The approximate unconfined compressive strength (q_u) shown in the table is based on an assumed ratio to the point load index of 20:1. This ratio may vary widely.

STRATIFICATION SPACING

Term	Separation of Stratification Planes
Thinly laminated	<6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	>2 m

DEGREE OF FRACTURING

This classification applies to diamond drill cores and refers to the spacing of all types of natural fractures along which the core is discontinuous. These include bedding plane partings, joints and other rock defects, but exclude known artificial fractures such as drilling breaks. The orientation of rock defects is measured as an angle relative to a plane perpendicular to the core axis. Note that where possible, recordings of the actual defect spacing or range of spacings is preferred to the general terms given below.

Term	Description
Fragmented	The core consists mainly of fragments with dimensions less than 20 mm.
Highly Fractured	Core lengths are generally less than 20 mm - 40 mm with occasional fragments.
Fractured	Core lengths are mainly 40 mm - 200 mm with occasional shorter and longer sections.
Slightly Fractured	Core lengths are generally 200 mm - 1000 mm with occasional shorter and longer sections.
Unbroken	The core does not contain any fracture.

ROCK QUALITY DESIGNATION (RQD)

This is defined as the ratio of sound (i.e. low strength or better) core in lengths of greater than 100 mm to the total length of the core, expressed in percent. If the core is broken by handling or by the drilling process (i.e. the fracture surfaces are fresh, irregular breaks rather than joint surfaces) the fresh broken pieces are fitted together and counted as one piece.

SEDIMENTARY ROCK TYPES

This classification system provides a standardised terminology for the engineering description of sandstone and shales, particularly in the Sydney area, but the terms and definitions may be used elsewhere when applicable.

Rock Type	Definition
Conglomerate	More than 50% of the rock consists of gravel-sized (greater than 2 mm) fragments
Sandstone:	More than 50% of the rock consists of sand-sized (0.06 to 2 mm) grains
Siltstone:	More than 50% of the rock consists of silt-sized (less than 0.06 mm) granular particles and the rock is not laminated.
Claystone:	More than 50% of the rock consists of clay or sericitic material and the rock is not laminated.
Shale:	More than 50% of the rock consists of silt or clay-sized particles and the rock is laminated.

Rocks possessing characteristics of two groups are described by their predominant particle size with reference also to the minor constituents, eg. clayey sandstone, sandy shale.

Copyright © 2000 Douglas Partners Pty Ltd

NOTES RELATING TO THIS REPORT

Introduction

These notes have been provided to amplify the geotechnical report in regard to classification methods, specialist field procedures and certain matters relating to the Discussion and Comments section. Not all, of course, are necessarily relevant to all reports.

Geotechnical reports are based on information gained from limited subsurface test boring and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, Geotechnical Site Investigations Code. In general, descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions.

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. sandy clay) on the following bases:

Soil Classification	Particle Size
Clay	less than 0.002 mm
Silt	0.002 to 0.06 mm
Sand	0.06 to 2.00 mm
Gravel	2.00 to 60.00 mm

Cohesive soils are classified on the basis of strength either by laboratory testing or engineering examination. The strength terms are defined as follows.

	Undrained
Classification	Shear Strength kPa
Very soft	less than 12
Soft	12—25
Firm	25—50
Stiff	50—100
Very stiff	100—200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT) as below:

Relative Density	SPT "N" Value (blows/300 mm)	CPT Cone Value (q _c — MPa)
Very loose	less than 5	less than 2
Loose	5—10	2—5
Medium dense	10—30	5—15
Dense	30—50	15—25

Very dense greater than 50 greater than 25 Rock types are classified by their geological names. Where relevant, further information regarding rock classification is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing with a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling are given in the report.

Drilling Methods.

The following is a brief summary of drilling methods currently adopted by the Company and some comments on their use and application.

Test Pits — these are excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descent into the pit. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) — the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

Continuous Sample Drilling — the hole is advanced by pushing a 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength, etc. is only marginally affected.

Continuous Spiral Flight Augers — the hole is advanced using 90—115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow

Issued: October 1998 Page 1 of 4

sampling or in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

Non-core Rotary Drilling — the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

Rotary Mud Drilling — similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

Continuous Core Drilling — a continuous core sample is obtained using a diamond-tipped core barrel, usually 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

Standard Penetration Tests

Standard penetration tests (abbreviated as SPT) are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" — Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7

 In the case where the test is discontinued short of full penetration, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm

The results of the tests can be related empirically to the engineering properties of the soil.

Occasionally, the test method is used to obtain

samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borelogs in brackets.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch cone — abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in Australian Standard 1289, Test 6.4.1.

In the tests, a 35 mm diameter rod with a cone-tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20 mm per second) the information is plotted on a computer screen and at the end of the test is stored on the computer for later plotting of the results.

The information provided on the plotted results comprises: —

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area — expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower scale (0—5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main scale (0—50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve friction to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1%—2% are commonly encountered in sands and very soft clays rising to 4%—10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:—

$$q_c$$
 (MPa) = (0.4 to 0.6) N (blows per 300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:—

$$q_c = (12 \text{ to } 18) c_u$$

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes, etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on

Issued: October 1998 Page 2 of 4

soil classification is required, direct drilling and sampling may be preferable.

Hand Penetrometers

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150 mm increments of penetration. Normally, there is a depth limitation of 1.2 m but this may be extended in certain conditions by the use of extension rods.

Two relatively similar tests are used.

- Perth sand penetrometer a 16 mm diameter flatended rod is driven with a 9 kg hammer, dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.
- Cone penetrometer (sometimes known as the Scala Penetrometer) — a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). The test was developed initially for pavement subgrade investigations, and published correlations of the test results with California bearing ratio have been published by various Road Authorities.

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedure used are given on the individual report forms.

Bore Logs

The bore logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

Ground Water

Where ground water levels are measured in boreholes, there are several potential problems;

- In low permeability soils, ground water although present, may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.

- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work

Every care is taken with the report as it relates to interpretation of subsurface condition, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- unexpected variations in ground conditions the potential for this will depend partly on bore spacing and sampling frequency
- changes in policy or interpretation of policy by statutory authorities
- the actions of contractors responding to commercial pressures.

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes

Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institution of Engineers,

Issued: October 1998 Page 3 of 4

Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Copyright © 1998 Douglas Partners Pty Ltd

Issued: October 1998 Page 4 of 4

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 35858

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: 71500, West Hoxton

No. of samples: 40 Soils
Date samples received: 1/12/09
Date completed instructions received: 2/12/09

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 7/12/09

Date of Preliminary Report: Not issued Issue Date: 7/12/09

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

Envirolab Reference: 35858 Revision No: R 00

NATA

Chemist

Page 1 of 34

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-1	35858-2	35858-3	35858-4	35858-5
Your Reference		GW1/0.1-0.3	GW1/3.8-4.0	GW2/0.1-0.3	GW2/2.8-3.0	GW4/0.3-0.5
Date Sampled		25/11/2009	25/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	95	94	85	95	94

vTPH & BTEX in Soil	1.1.176	05050.0	95959.7	05050.0	05050.0	05050.40
Our Reference:	UNITS	35858-6	35858-7	35858-8	35858-9	35858-10
Your Reference		GW4/2.8-3.0	GW3/3.5	GW3/0.4-0.5	GW5/0.1-0.3	GW6/0-0.1
Date Sampled		26/11/2009	25/11/2009	25/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH Cs - Cs	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	95	97	87	96	95

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-11	35858-12	35858-13	35858-14	35858-15
Your Reference		GW7/0.4-0.5	GW7/0.9-1.0	GW8/0.3-0.5	GW9/0.1-0.3	GW9/2.8-3.0
Date Sampled	******	24/11/2009	24/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	93	88	94	88	87

Envirolab Reference: Revision No:

35858

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-16	35858-17	35858-18	35858-19	35858-20
Your Reference		BH1/0.1-0.3	BH2/0.3-0.5	BH3/0.1-0.3	BH3/0.3-0.5	BH4/0.3-0.5
Date Sampled		27/11/2009	27/11/200 9	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	97	83	93	84	86

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-21	35858-22	35858-23	35858-24	35858-25
Your Reference		BH5/0.3-0.5	BH6/0.1-0.3	BH8/1.3-1.5	BH11/0.1-0.3	BH12/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	89	88	87	92	91

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-26	35858-27	35858-28	35858-29	35858-30
Your Reference		BH13/0.1-0.2	BH14/0.3-0.5	BH15/0.1-0.3	BH15/3.5-3.6	BH16/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	105	95	95	91	96

Envirolab Reference: Revision No:

35858

vTPH & BTEX in Soil						
Our Reference:	UNITS	35858-31	35858-32	35858-33	35858-34	35858-35
Your Reference		BH17/0.1-0.3	BH14/2.8-3.0	BH21/0.4-0.5	BH21/2.4-2.5	BH25/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	94	92	94	93	92

vTPH & BTEX in Soil			
Our Reference:	UNITS	35858-36	35858-37
Your Reference	****	BH28/0.3-0.5	BH28/2.8-3.0
Date Sampled		27/11/2009	27/11/2009
Type of sample		Soil	Soil
Date extracted	-	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009
VTPH C6 - C9	mg/kg	<25	<25
Benzene	mg/kg	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	85	95

Envirolab Reference: 35858 Revision No: R 00

sTPH in Soil (C10-C36)				"		
Our Reference:	UNITS	35858-1	35858-2	35858-3	35858-4	35858-5
Your Reference		GW1/0.1-0.3	GW1/3.8-4.0	GW2/0.1-0.3	GW2/2.8-3.0	GW4/0.3-0.5
Date Sampled	*********	25/11/2009	25/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	96	91	109	75	97

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35858-6	35858-7	35858-8	35858-9	35858-10
Your Reference		GW4/2.8-3.0	GW3/3.5	GW3/0.4-0.5	GW5/0.1-0.3	GW6/0-0.1
Date Sampled		26/11/2009	25/11/2009	25/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	79	80	83	87	115

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35858-11	35858-12	35858-13	35858-14	35858-15
Your Reference		GW7/0.4-0.5	GW7/0.9-1.0	GW8/0.3-0.5	GW9/0.1-0.3	GW9/2.8-3.0
Date Sampled		24/11/2009	24/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	74	98	74	91	91

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35858-16	35858-17	35858-18	35858-19	35858-20
Your Reference		BH1/0.1-0.3	BH2/0.3-0.5	BH3/0.1-0.3	BH3/0.3-0.5	BH4/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	114	98	98	96

Envirolab Reference: 35858

Revision No:

sTPH in Soil (C10-C36)						_
Our Reference:	UNITS	35858-21	35858-22	35858-23	35858-24	35858-25
Your Reference		BH5/0.3-0.5	BH6/0.1-0.3	BH8/1.3-1.5	BH11/0.1-0.3	BH12/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C35	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	99	90	96	96

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35858-26	35858-27	35858-28	35858-29	35858-30
Your Reference		BH13/0.1-0.2	BH14/0.3-0.5	BH15/0.1-0.3	BH15/3.5-3.6	BH16/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C38	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	96	87	88	82	85

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35858-31	35858-32	35858-33	35858-34	35858-35
Your Reference		BH17/0.1-0.3	BH14/2.8-3.0	BH21/0.4-0.5	BH21/2.4-2.5	BH25/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	85	85	85	85

sTPH in Soil (C10-C36)			
Our Reference:	UNITS	35858-36	35858-37
Your Reference		BH28/0.3-0.5	BH28/2.8-3.0
Date Sampled		27/11/2009	27/11/2009
Type of sample		Soil	Soil
Date extracted	-	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009
TPH C10 - C14	mg/kg	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100
TPH C29 - C36	mg/kg	<100	<100
Surrogate o-Terphenyl	%	87	86

Envirolab Reference:

Revision No:

PAHs in Soil						
Our Reference:	UNITS	35858-1	35858-2	35858-3	35858-4	35858-5
Your Reference		GW1/0.1-0.3	GW1/3.8-4.0	GW2/0.1-0.3	GW2/2.8-3.0	GW4/0.3-0.5
Date Sampled		25/11/2009	25/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	107	101	105	102	102

PAHs in Soil						
Our Reference:	UNITS	35858-6	35858-7	35858-8	35858-9	35858-10
Your Reference		GW4/2.8-3.0	GW3/3.5	GW3/0.4-0.5	GW5/0.1-0.3	GW6/0-0.1
Date Sampled		26/11/2009	25/11/2009	25/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soif	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	_	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	3.7
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	7.9
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	7.6
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	2.4
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	2.9
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	5.1
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	3.4
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	2.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	2.2
Surrogate p-Terphenyl-d14	%	107	104	103	101	100

Envirolab Reference: Revision No:

35858

PAHs in Soil						
Our Reference:	UNITS	35858-11	35858-12	35858-13	35858-14	35858-15
Your Reference		GW7/0.4-0.5	GW7/0.9-1.0	GW8/0.3-0.5	GW9/0.1-0.3	GW9/2.8-3.0
Date Sampled		24/11/2009	24/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	0.4	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.2	<0.1	0.8	<0.1
Pyrene	mg/kg	0.2	0.2	<0.1	8.0	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	0.1	0.2	<0.1	0.4	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.5	<0.2
Benzo(a)pyrene	mg/kg	0.08	0.07	<0.05	0.3	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Surrogate p-Terphenyl-d14	%	107	101	105	105	104

PAHs in Soil						
Our Reference:	UNITS	35858-16	35858-18	35858-19	35858-20	35858-21
Your Reference		BH1/0.1-0.3	BH3/0.1-0.3	BH3/0.3-0.5	BH4/0.3-0.5	BH5/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	_	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	105	104	117	105	105

Envirolab Reference:

Revision No:

nce: 35858

PAHs in Soil						 _
Our Reference:	UNITS	35858-22	35858-23	35858-24	35858-25	35858-26
Your Reference		BH6/0.1-0.3	BH8/1.3-1.5	BH11/0.1-0.3	BH12/0.1-0.3	BH13/0.1-0.2
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	_	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.4
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.3
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.7
Phenanthrene	mg/kg	<0.1	0.2	0.3	0.5	8.4
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Fluoranthene	mg/kg	<0.1	0.2	0.3	1	9.2
Pyrene	mg/kg	<0.1	0.2	0.3	1,1	8.0
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.4	2.3
Chrysene	mg/kg	<0.1	0.1	0.2	0.6	2.4
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.9	3.6
Benzo(a)pyrene	mg/kg	<0.05	0.07	0.1	0.7	2.8
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.4	1.6
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.5	1.5
Surrogate p-Terphenyl-d14	%	107	104	107	108	103

PAHs in Soil						
Our Reference:	UNITS	35858-27	35858-28	35858-29	35858-30	35858-32
Your Reference		BH14/0.3-0.5	BH15/0.1-0.3	BH15/3.5-3.6	BH16/0.1-0.3	BH14/2.8-3.0
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.08	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	104	110	109	109	107

Envirolab Reference:

Revision No:

35858

Client Reference: 7

71500, West Hoxton

PAHs in Soil					<u>,, ,=</u>	
Our Reference:	UNITS	35858-33	35858-34	35858-35	35858-36	35858-37
Your Reference		BH21/0.4-0.5	BH21/2.4-2.5	BH25/0.3-0.5	BH28/0.3-0.5	BH28/2.8-3.0
Date Sampled		27/11/2009	25/11/2009	25/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	<0.1	0.3	<0.1
Anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	1.4	<0.1	0.3	<0.1
Pyrene	mg/kg	<0.1	1.5	<0.1	0.3	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.7	<0.1	0.2	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	1.1	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.6	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.4	<0.1	0.1	<0.1
Surrogate p-Terphenyl-d14	%	131	110	107	109	108

PAHs in Soil				
Our Reference:	UNITS	35858-38	35858-39	35858-40
Your Reference		BD1/261109	BD2/261109	BD1/271109
Date Sampled		27/11/2009	27/11/2009	27/11/2009
Type of sample		Şoil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1
Pyrene	mg/kg	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	108	111	105

Envirolab Reference:

Revision No:

Organochlorine Pesticides in soil						
Our Reference:	UNITS	35858-1	35858-3	35858-9	35858-10	35858-11
Your Reference		GW1/0.1-0.3	GW2/0.1-0.3	GW5/0.1-0.3	GW6/0-0.1	GW7/0.4-0.5
Date Sampled		25/11/2009	26/11/2009	25/11/2009	25/11/2009	24/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan i	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	105	101	102	102	100

Envirolab Reference: 35858 Revision No:

Organochlorine Pesticides in soil						
Our Reference:	UNITS	35858-13	35858-14	35858-16	35858-17	35858-18
Your Reference		GW8/0.3-0.5	GW9/0.1-0.3	BH1/0.1-0.3	BH2/0.3-0.5	BH3/0.1-0.3
Date Sampled		26/11/2009	26/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	100	102	102	103

Envirolab Reference: 35858

Revision No: R 00

Organochlorine Pesticides in soil						
Our Reference:	UNITS	35858-20	35858-21	35858-22	35858-25	35858-26
Your Reference		BH4/0.3-0.5	BH5/0.3-0.5	BH6/0.1-0.3	BH12/0.1-0.3	BH13/0,1-0,2
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	96	101	103	105

Envirolab Reference: 35858 Revision No:

Organochlorine Pesticides in soil						
Our Reference:	UNITS	35858-30	35858-31	35858-33	35858-35	35858-36
Your Reference		BH16/0.1-0.3	BH17/0.1-0.3	BH21/0.4-0.5	BH25/0.3-0.5	BH28/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	25/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	102	98	100	98	101

Envirolab Reference: 35858 Revision No:

PCBs in Soil						
Our Reference:	UNITS	35858-1	35858-3	35858-9	35858-10	35858-11
Your Reference		GW1/0.1-0.3	GW2/0.1-0.3	GW5/0.1-0.3	GW6/0-0.1	GW7/0.4-0.5
Date Sampled		25/11/2009	26/11/2009	25/11/2009	25/11/2009	24/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	< 0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	105	.101	102	102	100

PCBs in Soil						
Our Reference:	UNITS	35858-13	35858-14	35858-16	35858-17	35858-18
Your Reference		GW8/0.3-0.5	GW9/0.1-0.3	BH1/0.1-0.3	BH2/0.3-0.5	BH3/0,1-0.3
Date Sampled		26/11/2009	26/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	100	102	102	103

PCBs in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	35858-20 BH4/0.3-0.5 27/11/2009 Soil	35858-21 BH5/0.3-0.5 27/11/2009 Soil	35858-22 BH6/0.1-0.3 27/11/2009 Soil	35858-25 BH12/0.1-0.3 27/11/2009 Soil	35858-26 BH13/0.1-0.2 27/11/2009 Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	99	96	101	103	105

Envirolab Reference: Revision No:

PCBs in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	35858-30 BH16/0.1-0.3 27/11/2009 Soil	35858-31 BH17/0.1-0.3 27/11/2009 Soil	35858-33 BH21/0.4-0.5 27/11/2009 Soil	35858-35 BH25/0.3-0.5 25/11/2009 Soil	35858-36 BH28/0.3-0.5 27/11/2009 Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochior 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	102	98	100	98	101

Envirolab Reference: 35858 Revision No:

Total Phenolics in Soil						
Our Reference:	UNITS	35858-8	35858-9	35858-13	35858-15	35858-16
Your Reference		GW3/0.4-0.5	GW5/0.1-0.3	GW8/0.3-0.5	GW9/2.8-3.0	BH1/0.1-0.3
Date Sampled		25/11/2009	25/11/2009	26/11/2009	26/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted		3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Total Phenolics in Soil						
Our Reference:	UNITS	35858-17	35858-27	35858-28	35858-29	35858-30
Your Reference		BH2/0.3-0.5	BH14/0.3-0.5	BH15/0.1-0.3	BH15/3.5-3.6	BH16/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	_	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Total Phenolics in Soil			
Our Reference:	UNITS	35858-36	35858-37
Your Reference		BH28/0.3-0.5	BH28/2.8-3.0
Date Sampled		27/11/2009	27/11/2009
Type of sample		Soil	Soil
Date extracted	-	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0

Envirolab Reference: 35858 Revision No:

Acid Extractable metals in soil						
Our Reference:	UNITS	35858-1	35858-3	35858-5	35858-8	35858-9
Your Reference		GW1/0.1-0.3	GW2/0.1-0.3	GW4/0.3-0.5	GW3/0.4-0.5	GW5/0.1-0.3
Date Sampled		25/11/2009	26/11/2009	26/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	7	9	6	6	7
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	20	22	18	20	23
Copper	mg/kg	12	8	9	14	23
Lead	mg/kg	19	30	17	17	28
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	10	7	6	20
Zinc	mg/kg	12	16	10	10	56

Acid Extractable metals in soil						
Our Reference:	UNITS	35858-10	35858-11	35858-12	35858-13	35858-14
Your Reference		GW6/0-0.1	GW7/0.4-0.5	GW7/0.9-1.0	GW8/0.3-0.5	GW9/0.1-0.3
Date Sampled		25/11/2009	24/11/2009	24/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	8	6	6	7	4
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	25	16	16	16	12
Copper	mg/kg	5	10	20	11	13
Lead	mg/kg	22	17	15	22	21
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	4	9	8	9
Zìnc	mg/kg	10	11	24	15	26

Acid Extractable metals in soil						
Our Reference:	UNITS	35858-16	35858-17	35858-18	35858-20	35858-21
Your Reference		BH1/0.1-0.3	BH2/0.3-0.5	BH3/0.1-0.3	BH4/0.3-0.5	BH5/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	7	4	6	6	5
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	16	10	32	13	14
Copper	mg/kg	19	16	21	13	12
Lead	mg/kg	18	12	19	19	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	4	22	9	6
Zinc	mg/kg	28	15	29	17	14

Envirolab Reference: 35858

Revision No:

Acid Extractable metals in soil						
Our Reference:	UNITS	35858-22	35858-23	35858-25	35858-26	35858-28
Your Reference		BH6/0.1-0.3	BH8/1.3-1.5	BH12/0.1-0.3	BH13/0.1-0.2	BH15/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	5	5	7	11	8
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	18	13	20	29	27
Copper	mg/kg	21	20	13	8	8
Lead	mg/kg	15	15	21	24	37
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	11	9	11	6	6
Zinc	mg/kg	20	27	12	11	32

Acid Extractable metals in soil					_	
Our Reference:	UNITS	35858-29	35858-30	35858-31	35858-33	35858-35
Your Reference		BH15/3.5-3.6	BH16/0.1-0.3	BH17/0.1-0.3	BH21/0.4-0.5	BH25/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	4	10	12	6	5
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	12	23	27	19	15
Copper	mg/kg	19	6	9	12	12
Lead	mg/kg	11	26	33	15	12
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	14	4	7	7	6
Zinc	mg/kg	46	8	22	16	11

Acid Extractable metals in soil						
Our Reference:	UNITS	35858-36	35858-37	35858-38	35858-39	35858-40
Your Reference		BH28/0.3-0.5	BH28/2.8-3.0	BD1/261109	BD2/261109	BD1/271109
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	6	6	6	6	8
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	20	15	18	14	24
Copper	mg/kg	8	13	12	9	7
Lead	mg/kg	21	14	13	19	34
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	5	5	6	6	5
Zinc	mg/kg	9	18	10	12	24

Envirolab Reference: 35858

Revision No:

•	Client Reference	e: 71500, \	West Hoxton			
Moisture						
Our Reference:	UNITS	35858-1	35858-2	35858-3	35858-4	35858-5
Your Reference		GW1/0.1-0.3	GW1/3.8-4.0	GW2/0.1-0.3	GW2/2.8-3.0	GW4/0.3-0.5
Date Sampled		25/11/2009	25/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	15	14	28	17	12
Moisture						
Our Reference:	UNITS	35858-6	35858-7	35858-8	35858-9	35858-10
Your Reference		GW4/2.8-3.0	GW3/3.5	GW3/0.4-0.5	GW5/0.1-0.3	GW6/0-0.1
Date Sampled		26/11/2009	25/11/2009	25/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	•	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	14	14	18	19	9.5
Moisture						
Our Reference:	UNITS	35858-11	35858-12	35858-13	35858-14	35858-15
Your Reference		GW7/0.4-0.5	GW7/0.9-1.0	GW8/0.3-0.5	GW9/0.1-0.3	GW9/2.8-3.0
Date Sampled		24/11/2009	24/11/2009	26/11/2009	26/11/2009	26/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	11	14	11	6.0	18
Moisture						
Our Reference:	UNITS	35858-16	35858-17	35858-18	35858-19	35858-20
Your Reference		BH1/0.1-0.3	BH2/0.3-0.5	BH3/0.1-0.3	BH3/0.3-0.5	BH4/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared		3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	_	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	14	19	11	9.1	8.6
			····		1	
Moisture					1	
Our Reference:	UNITS	35858-21	35858-22	35858-23	35858-24	35858-25
Your Reference		BH5/0.3-0.5	BH6/0.1-0.3	BH8/1.3-1.5	BH11/0.1-0.3	BH12/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	6.9	16	16	9.7	6.2

Envirolab Reference:

35858 Revision No: R 00

Moisture						
Our Reference:	UNITS	35858-26	35858-27	35858-28	35858-29	35858-30
Your Reference		BH13/0.1-0.2	BH14/0.3-0.5	BH15/0.1-0.3	BH15/3.5-3.6	BH16/0.1-0.3
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	6.2	15	8.5	13	6.0

Moisture						
Our Reference:	UNITS	35858-31	35858-32	35858-33	35858-34	35858-35
Your Reference		BH17/0.1-0.3	BH14/2.8-3.0	BH21/0.4-0.5	BH21/2.4-2.5	BH25/0.3-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	25/11/2009	25/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	10	10	12	16	18

Moisture						-
Our Reference:	UNITS	35858-36	35858-37	35858-38	35858-39	35858-40
Your Reference		BH28/0.3-0.5	BH28/2.8-3.0	BD1/261109	BD2/261109	BD1/271109
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	7.7	14	21	14	6.7

Envirolab Reference: Revision No:

•	•	Client Reference	e: 71500, V	Vest Hoxton			
	Asbestos ID - soils		***				
	Our Reference:	UNITS	35858-1	35858-3	35858-5	35858-8	35858-9
	Your Reference		GW1/0.1-0.3	GW2/0.1-0.3	GW4/0.3-0.5	GW3/0.4-0.5	GW5/0.1-0.3
	Date Sampled		25/11/2009	26/11/2009	26/11/2009	25/11/2009	25/11/2009
	Type of sample		Soil	Soil	Soil	Soil	Soil
	Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
	Sample Description			approx 40g	approx 40g	approx 40g	approx 40g
	Sample Description	-	approx 40g soil	soil	soil	soil	soil
	Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
			found at	found at	found at	found at	found at
			reporting limit	reporting limit	reporting limit	reporting limit	reporting limit
			of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg
	Trace Analysis	-	Respirable	Respirable	Respirable	Respirable	Respirable
			fibres not	fibres not	fibres not	fibres not	fibres not
			detected	detected	detected	detected	detected
Γ	Asbestos ID - soils			<u> </u>			
	Our Reference:	UNITS	35858-10	35858-11	35858-13	35858-14	35858-16
		UNITS				GW9/0.1-0.3	BH1/0.1-0.3
	Your Reference		GW6/0-0.1	GW7/0.4-0.5	GW8/0.3-0.5		
	Date Sampled		25/11/2009	24/11/2009	26/11/2009	26/11/2009	27/11/2009
	Type of sample		Soit	Soil	Soil	Soil	Soil
	Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
	Sample Description	-	approx 40g	approx 40g	approx 40g	approx 40g	approx 40g
			soil	soil	soil	soil	soil
	Asbestos ID in soil	_	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
			found at	found at	found at	found at	found at
			reporting limit	reporting limit	reporting limit	reporting limit	reporting limit
			of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg
	Trace Analysis	-	Respirable	Respirable	Respirable	Respirable	Respirable
	•		fibres not	fibres not	fibres not	fibres not	fibres not
			detected	detected	detected	detected	detected
_			1			1	<u> </u>
	Asbestos ID - soils						
	Our Reference:	UNITS	35858-17	35858-18	35858-19	35858-20	35858-22
	Your Reference		BH2/0.3-0.5	BH3/0.1-0.3	BH3/0.3-0.5	BH4/0.3-0.5	BH6/0.1-0.3
	Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
	Type of sample		Soil	Soil	Soil	Soil	Soil
	Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
	Sample Description	-	approx 40g	approx 40g	арртох 40д	approx 40g	approx 40g
			soil	soil	soil	soil	soil
	Asbestos ID in soil	-	No asbestos	No asbestos	No asbestos	No asbestos	No asbestos
ļ			found at	found at	found at	found at	found at
			reporting limit	reporting limit	reporting limit	reporting limit	reporting limit
			of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg	of 0.1g/kg
	Trace Analysis	-	Respirable	Respirable	Respirable	Respirable	Respirable
	•		fibres not	fibres not	fibres not	fibres not	fibres not
-			detected	detected	detected	detected	detected

Envirolab Reference:

Revision No:

35858 R 00

detected

detected

detected

detected

detected

Asbestos ID - soils						
Our Reference:	UNITS	35858-25	35858-26	35858-30	35858-31	35858-33
Your Reference		BH12/0.1-0.3	BH13/0.1-0.2	BH16/0.1-0.3	BH17/0.1-0.3	BH21/0.4-0.5
Date Sampled		27/11/2009	27/11/2009	27/11/2009	27/11/2009	27/11/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Sample Description	-	approx 40g soil	approx 40g soil	approx 40g soil	арргох 40g soil	approx 40g soil
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Asbestos ID - soils			
Our Reference:	UNITS	35858-35	35858-36
Your Reference		BH25/0.3-0.5	BH28/0.3-0.5
Date Sampled		25/11/2009	27/11/2009
Type of sample		Soil	Soil
Date analysed	-	4/12/2009	4/12/2009
Sample Description	-	approx 40g soil	approx 40g soil
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 35858 Revision No:

71500, West Hoxton Client Reference:

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
Metals,21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Envirolab Reference: 35858 Revision No:

71500, West Hoxton

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil						Base II Duplicate II %RPD		
Date extracted	-			03/12/2 009	35858-1	3/12/2009 3/12/2009	LCS-2	03/12/2009
Date analysed	-			04/12/2 009	35858-1	4/12/2009 [4/12/2009	LCS-2	04/12/2009
vTPH C6 - C9	mg/kg	25	GC.16	<25	35858-1	<25 <25	LCS-2	89%
Benzene	mg/kg	0.5	GC.16	<0.5	35858-1	<0.5 <0.5	LCS-2	81%
Toluene	mg/kg	0.5	GC.16	<0.5	35858-1	<0.5 <0.5	LCS-2	89%
Ethylbenzene	mg/kg	1	GC.16	<1.0	35858-1	<1.0 <1.0	LCS-2	90%
m+p-xylene	mg/kg	2	GC.16	<2.0	35858-1	<2.0 <2.0	LCS-2	92%
o-Xylene	mg/kg	1	GC.16	<1.0	35858-1	<1.0 <1.0	LCS-2	97%
Surrogate aaa-Trifluorotoluene	%		GC.16	103	35858-1	95 92 RPD: 3	LCS-2	100%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		,,,,,,
Date extracted	-			3/12/09	35858-1	3/12/2009 3/12/2009	LCS-2	3/12/09
Date analysed	-			4/12/09	35858-1	4/12/2009 4/12/2009	LCS-2	4/12/09
TPH C10 - C14	mg/kg	50	GC.3	<50	35858-1	<50 <50	LCS-2	88%
TPH C15 - C28	mg/kg	100	GC.3	<100	35858-1	<100 <100	LCS-2	106%
TPH C29 - C36	mg/kg	100	GC.3	<100	35858-1	<100 [<100	LCS-2	103%
Surrogate o-Terphenyl	%		GC.3	96	35858-1	96 82 RPD: 16	LCS-2	90%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			03/12/2 009	35858-1	3/12/2009 3/12/2009	LCS-2	03/12/200
Date analysed	<u>-</u>			04/12/2 009	35858-1	4/12/2009 4/12/2009	LCS-2	04/12/200
Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	95%
Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 [] <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	95%
Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	100%
Anthracene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	87%
Pyrene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	101%

Envirolab Reference:

Revision No:

71500, West Hoxton

-1		Clie	nt Referen	ce: 71	500, West Ho	xton		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	LCS-2	106%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	35858-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	35858-1	<0.05 <0.05	LCS-2	112%
indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%		GC.12 subset	108	35858-1	107 106 RPD: 1	LCS-2	103%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil			;			Base II Duplicate II %RPD		
Date extracted	-			3/12/20 09	35858-1	3/12/2009 3/12/2009	LCS-2	3/12/200
Date analysed	-			3/12/20 09	35858-1	3/12/2009 3/12/2009	LCS-2	3/12/200
HCB	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	103%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1] <0.1	LCS-2	107%
Heptachlor	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	95%
delta-BHC	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	98%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 [] <0.1	LCS-2	91%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	106%
Dieldrin	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	101%
Endrin	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	100%
pp-DDD	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	LCS-2	103%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	1	1		1			P. 153	D. IDI

Envirolab Reference: Revision No:

Endrin Aldehyde

Endosulfan Sulphate

Methoxychlor

Surrogate TCLMX

35858 R 00

0.1

0.1

0.1

GC-5

GC-5

GC-5

GC-5

<0.1

< 0.1

<0.1

103

mg/kg

mg/kg

mg/kg

%

35858-1

35858-1

35858-1

35858-1

<0.1 || <0.1

<0.1|| <0.1

<0.1 || <0.1

105 || 102 || RPD: 3

[NR] LCS-2

[NR]

LCS-2

[NR]

104%

[NR]

103%

71500, West Hoxton

	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike % Recovery
	PCBs in Soil						Base II Duplicate II %RPD		
	Date extracted	•			3/12/20 09	35858-1	3/12/2009 3/12/2009	LC-2	3/12/2009
	Date analysed	-			3/12/20 09	35858-1	3/12/2009 3/12/2009	LC-2	3/12/2009
	Arochlor 1016	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Arochlor 1221*	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Arochlor 1232	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Arochlor 1242	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Arochior 1248	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Arochlor 1254	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 [] <0.1	LC-2	94%
	Arochior 1260	mg/kg	0.1	GC-6	<0.1	35858-1	<0.1 <0.1	[NR]	[NR]
	Surrogate TCLMX	%		GC-6	103	35858-1	105 102 RPD: 3	LC-2	89%
	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
$\overline{}$	Total Phenolics in Soil						Base II Duplicate II %RPD		Recovery
					0110100	05050.0	,	1004	2/42/2000
	Date extracted	-	:		3/12/20 09	35858-8	3/12/2009 3/12/2009	LCS-1	3/12/2009
	Date analysed	-			4/12/20 09	35858-8	4/12/2009 4/12/2009	LCS-1	4/12/2009
	Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	35858-8	<5.0 <5.0	LCS-1	92%
	OUT ON THE	LINUTA	1001	1.4571100	D) 1	5	D II t It-	Cuita Cuall	Omitee 0/
	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
	Acid Extractable metals in soil						Base II Duplicate II %RPD		,
	Date digested	-			03/12/0 9	35858-1	3/12/2009 3/12/2009	LCS-1	03/12/09
	Date analysed	-			04/12/0 9	35858-1	4/12/2009 4/12/2009	LCS-1	04/12/09
_	Arsenic	mg/kg	4	Metals.20 ICP-AES	<4	35858-1	7 7 RPD: 0	LCS-1	101%
	Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	35858-1	<0.5 <0.5	LCS-1	102%
	Chromium	mg/kg	1	Metals.20 ICP-AES	<1	35858-1	20 22 RPD: 10	LCS-1	104%
	Copper	mg/kg	1	Metals.20 ICP-AES	<1	35858-1	12 11 RPD: 9	LCS-1	107%
	Lead	mg/kg	1	Metals.20 ICP-AES	<1	35858-1	19 22 RPD: 15	LCS-1	102%
	Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	35858-1	<0.1 <0.1	LCS-1	99%
	 Nickel	mg/kg	1	Metals.20 ICP-AES	<1	35858-1	8] 8 RPD: 0	LCS-1	106%
	Zinc	mg/kg	1	Metals.20 ICP-AES	<1	35858-1	12 14 RPD: 15	LCS-1	102%

Envirolab Reference:

Revision No:

71500, West Hoxton Client Reference:

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			3/12/09
Date analysed	-			3/12/09
Moisture	%	0.1	LAB.8	<0.10

QUALITY CONTROL	U	STIV	PQ	L	METHOD	Blank
Asbestos ID - soils						
Date analysed		-				[NT]
QUALITY CONTROL		UNITS	3		Dup. Sm#	
vTPH & BTEX in Soil						Base + D

Date analyses			1,,,1		
QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	35858-11	3/12/2009 3/12/2009	LCS-3	03/12/2009
Date analysed	.	35858-11	4/12/2009 4/12/2009	LCS-3	04/12/2009
vTPH C6 - C9	mg/kg	35858-11		LCS-3	92%
Benzene	mg/kg	35858-11	<0.5 <0.5	LCS-3	96%
Toluene	mg/kg	35858-11	<0.5 <0.5	LCS-3	90%
Ethylbenzene	mg/kg	35858-11	<1.0 <1.0	LCS-3	88%
m+p-xylene	mg/kg	35858-11	<2.0 <2.0	LCS-3	92%
o-Xylene	mg/kg	35858-11	<1.0 j <1.0	LCS-3	107%
Surrogate aaa-Trifluorotoluene	%	35858-11	93 94 RPD: 1	LCS-3	88%
QUALITY CONTROL sTPH in Soil (C10-C36)	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	35858-11	3/12/2009 3/12/2009	LCS-3	3/12/09
Date analysed	-	35858-11	4/12/2009 4/12/2009	LCS-3	4/12/09
TPH C10 - C14	mg/kg	35858-11	<50 <50	LCS-3	100%
TPH C15 - C28	mg/kg	35858-11	<100 <100	LCS-3	111%
TPH C29 - C36	mg/kg	35858-11	<100 <100	LCS-3	106%
Surrogate o-Terphenyl	%	35858-11	74 93 RPD: 23	LCS-3	94%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recover
Date extracted	-	35858-11	3/12/2009 3/12/2009	LCS-3	03/12/2009
Date analysed	_	35858-11	4/12/2009 4/12/2009	LCS-3	05/12/2009
Naphthalene	mg/kg	35858-11	<0.1 <0.1	LCS-3	94%
Acenaphthylene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	35858-11	<0.1 <0.1	LCS-3	96%
Phenanthrene	mg/kg	35858-11	0.1 0.1 RPD: 0	LCS-3	100%
Anthracene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	35858-11	0.2 0.2 RPD: 0	LCS-3	88%
Pyrene	mg/kg	35858-11	0.2 0.2 RPD: 0	LCS-3	103%
Benzo(a)anthracene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	35858-11	0.1 0.1 RPD: 0	LCS-3	104%

Envirolab Reference: 35858 Revision No:

			Client Reference	e: 71500, West Hoxto	n	
	QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
-	Benzo(b+k)fluoranthene	mg/kg	35858-11	<0.2 <0.2	[NR]	[NR]
	Benzo(a)pyrene	mg/kg	35858-11	0.08 0.05 RPD: 46	LCS-3	108%
	Indeno(1,2,3-c,d)pyrene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
	Dibenzo(a,h)anthracene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
	Benzo(g,h,i)perylene	mg/kg	35858-11	<0.1 <0.1	[NR]	[NR]
	<i>Surrogate</i> p-Terphenyl-d ₁₄	%	35858-11	107 109 RPD: 2	LCS-3	106%
	QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
-	Date extracted	-	35858-21	3/12/2009 3/12/2009	35858-3	3/12/2009
	Date analysed		35858-21	3/12/2009 3/12/2009	35858-3	3/12/2009
	HCB	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	alpha-BHC	mg/kg	35858-21	<0.1 <0.1	35858-3	100%
\downarrow	gamma-BHC	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
1	beta-BHC	mg/kg	35858-21	<0.1 <0.1	35858-3	105%
1	Heptachlor	mg/kg	35858-21	<0.1] <0.1	35858-3	89%
	delta-BHC	mg/kg	35858-21	<0.1 [<0.1	[NR]	[NR]
	Aldrin	mg/kg	35858-21	<0.1 <0.1	35858-3	96%
	Heptachlor Epoxide	mg/kg	35858-21	<0.1 <0.1	35858-3	89%
	gamma-Chlordane	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	alpha-chlordane	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Endosulfan I	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	pp-DDE	mg/kg	35858-21	<0.1] <0.1	35858-3	105%
	Dieldrin	mg/kg	35858-21	<0.1 <0.1	35858-3	100%
	Endrin	mg/kg	35858-21	<0.1 <0.1	35858-3	99%
	pp-DDD	mg/kg	35858-21	<0.1 <0.1	35858-3	102%
	Endosulfan II	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	pp-DDT	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
)	Endrin Aldehyde	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Endosulfan Sulphate	mg/kg	35858-21	<0.1 <0.1	35858-3	103%
	Methoxychlor	mg/kg	35858-21	<0.1 } <0.1	[NR]	[NR]
	Surrogate TCLMX	%	35858-21	96 101 RPD: 5	35858-3	102%

Envirolab Reference: 35858 Revision No:

0		Client Reference	e: 71500, West Hox	ton
OLIALITY CONTROL	LINITS	Dun Sm#	Dunlicate	

			Client Referen	ce: 71500, West Hoxto	n	
	QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
	Date extracted	-	35858-21	3/12/2009 3/12/2009	35858-3	3/12/2009
	Date analysed	_	35858-21	3/12/2009 3/12/2009	35858-3	3/12/2009
	Arochlor 1016	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Arochlor 1221*	mg/kg	35858-21	<0.1 [<0.1	[NR]	[NR]
	Arochlor 1232	mg/kg	35858-21	<0.1] <0.1	[NR]	[NR]
	Arochlor 1242	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Arochlor 1248	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Arochlor 1254	mg/kg	35858-21	<0.1] <0.1	35858-3	91%
	Arochlor 1260	mg/kg	35858-21	<0.1 <0.1	[NR]	[NR]
	Surrogate TCLMX	%	35858-21	96 101 RPD: 5	35858-3	90%
	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
_	Total Phenolics in Soil			Base + Duplicate + %RPD		
	Date extracted	-	[NT]	[TN]	35858-9	3/12/2009
	Date analysed	-	[NT]	[NT]	35858-9	4/12/2009
•	Total Phenolics (as Phenol)	mg/kg	[NT]	[NT]	35858-9	#
	QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
=	Date digested	-	35858-16	3/12/2009 3/12/2009	LCS-2	03/12/09
	Date analysed	-	35858-16	4/12/2009 4/12/2009	LCS-2	04/12/09
	Arsenic	mg/kg	35858-16	7 7 RPD: 0	LCS-2	101%
	Cadmium	mg/kg	35858-16	<0.5 <0.5	LCS-2	103%
	Chromium	mg/kg	35858-16	16 17 RPD: 6	LCS-2	105%
	Copper	mg/kg	35858-16	19 16 RPD: 17	LCS-2	109%
	Lead	mg/kg	35858-16	18 21 RPD: 15	LCS-2	101%
	Mercury	mg/kg	35858-16	<0.1 <0.1	LCS-2	98%
	Nickel	mg/kg	35858-16	9 9 RPD: 0	LCS-2	105%
	Zinc	mg/kg	35858-16	28 26 RPD: 7	LCS-2	102%
	QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
=	Date extracted	-	35858-21	3/12/2009 3/12/2009	35858-3	03/12/2009
	Date analysed	_	35858-21	4/12/2009 4/12/2009	35858-3	04/12/2009
	vTPH C6 - C9	mg/kg	35858-21	<25 <25	35858-3	76%
	Benzene	mg/kg	35858-21	<0.5 <0.5	35858-3	76%
	Toluene	mg/kg	35858-21	<0.5 <0.5	35858-3	74%
	Ethylbenzene	mg/kg	35858-21	<1.0 <1.0	35858-3	75%
	m+p-xylene	mg/kg	35858-21	<2.0] <2.0	35858-3	77%
	o-Xylene	mg/kg	35858-21	<1.0 <1.0	35858-3	80%
	Surrogate aaa-Trifluorotoluene	%	35858-21	89 103 RPD: 15	35858-3	79%

Envirolab Reference: 35858 Revision No:

Client Reference: 71500, West Hoxton QUALITY CONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recovery sTPH in Soil (C10-C36) Base + Duplicate + %RPD 35858-21 3/12/2009 | 3/12/2009 35858-2 3/12/09 Date extracted Date analysed 35858-21 4/12/2009 | 4/12/2009 35858-2 4/12/09 82% TPH C10 - C14 35858-21 <50 || <50 35858-2 mg/kg 35858-2 98% TPH C15 - C28 35858-21 <100 | | <100 mg/kg TPH C29 - C36 mg/kg 35858-21 <100 || <100 35858-2 95% Surrogate o-Terphenyl % 35858-21 94 || 97 || RPD: 3 35858-2 83% QUALITY CONTROL **UNITS** Dup. Sm# Duplicate Spike Sm# Spike % Recovery Base + Duplicate + %RPD PAHs in Soil 35858-3 03/12/2009 35858-21 3/12/2009 | 3/12/2009 Date extracted 35858-21 5/12/2009 || 5/12/2009 35858-3 04/12/2009 Date analysed 92% 35858-21 35858-3 Naphthalene mg/kg <0.1 || <0.1 [NR] Acenaphthylene 35858-21 <0.1]| <0.1 [NR] mg/kg [NR] Acenaphthene 35858-21 <0.1 || <0.1 [NR] mg/kg 90% 35858-3 Fluorene mg/kg 35858-21 <0.1 || <0.1 Phenanthrene 35858-21 <0.1 || <0.1 35858-3 94% mg/kg 35858-21 [NR] Anthracene mg/kg <0.1 || <0.1 [NR] Fluoranthene 35858-21 35858-3 84% <0.1 || <0.1 mg/kg 97% Pyrene 35858-21 <0.1 || <0.1 35858-3 mg/kg Benzo(a)anthracene [NR] [NR] mg/kg 35858-21 <0.1 || <0.1 35858-3 101% Chrysene mg/kg 35858-21 <0.1 || <0.1 [NR] Benzo(b+k)fluoranthene mg/kg 35858-21 <0.2 |] <0.2 [NR] 35858-21 <0.05 || <0.05 35858-3 102% Benzo(a)pyrene mg/kg Indeno(1,2,3-c,d)pyrene 35858-21 <0.1 || <0.1 [NR] [NR] mg/kg [NR] [NR]

35858-21

35858-21

35858-21

mg/kg

mg/kg

%

Envirolab Reference: Revision No:

Dibenzo(a,h)anthracene

Benzo(g,h,i)perylene

Surrogate

p-Terphenyl-d14

35858 R 00

<0.1 || <0.1

<0.1 || <0.1

105 || 108 || RPD: 3

[NR]

35858-3

[NR]

101%

Client	Reference:	71500	West	Hoxton
CHEIR	Reference.	1 1500,	WWESL	HUXIUI

_			Olient Keletene	e. 71000, West Hoxto		
	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
	Acid Extractable metals in soil			Base + Duplicate + %RPD		
=	Date digested		35858-29	3/12/2009 3/12/2009	35858-3	03/12/09
	Date analysed		35858-29	4/12/2009 4/12/2009	35858-3	04/12/09
	Arsenic	malka	35858-29	4 <4	35858-3	93%
	Cadmium	mg/kg	35858-29	<0.5 <0.5	35858-3	91%
	Chromium	mg/kg			35858-3	97%
		mg/kg	35858-29	12 10 RPD: 18	į	
	Copper	mg/kg	35858-29	19 14 RPD: 30	35858-3	99%
	Lead	mg/kg	35858-29	11 8 RPD: 32	35858-3	89%
	Mercury	mg/kg	35858-29	<0.1 [] <0.1	35858-3	105%
	Nickel	mg/kg	35858-29	14 12 RPD: 15	35858-3	93%
-	Zinc	mg/kg	35858-29	46 39 RPD: 16	35858-3	89%
	QUALITY CONTROL vTPH & BTEX in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
-						
	Date extracted	-	[NT]	[NT]	35858-22	03/12/2009
7	Date analysed	-	[NT]	[NT]	35858-22	04/12/2009
	vTPH C6 - C9	mg/kg	[NT]	[NT]	35858-22	94%
	Benzene	mg/kg	[NT]	[TN]	35858-22	99%
	Toluene	mg/kg	[NT]	[NT]	35858-22	101%
	Ethylbenzene	mg/kg	[NT]	[NT]	35858-22	87%
	m+p-xylene	mg/kg	[NT]	[NT]	35858-22	92%
	o-Xylene	mg/kg	[NT]	[NT]	35858-22	96%
	Surrogate aaa-Trifluorotoluene	%	[ПЛ]	[NI]	35858-22	96%
ľ	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
	sTPH in Soil (C10-C36)			Base + Duplicate + %RPD		
-	Date extracted	-	35858-32	3/12/2009 3/12/2009	35858-22	3/12/09
	Date analysed	-	35858-32	4/12/2009 4/12/2009	35858-22	4/12/09
	TPH C10 - C14	mg/kg	35858-32	<50 <50	35858-22	98%
	TPH C15 - C28	mg/kg	35858-32	<100 <100	35858-22	111%
\rightarrow	TPH C29 - C36	mg/kg	35858-32	<100 <100	35858-22	103%
1	Surrogate o-Terphenyl	%	35858-32	85 86 RPD: 1	35858-22	95%
ŀ	QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
	PAHs in Soil		·	Base + Duplicate + %RPD		
-	Date extracted	-	35858-32	3/12/2009 3/12/2009	35858-22	03/12/2009
	Date analysed	-	35858-32	5/12/2009 5/12/2009	35858-22	05/12/2009
	Naphthalene	mg/kg	35858-32	<0.1 <0.1	35858-22	90%
	Acenaphthylene	mg/kg	35858-32	<0.1 <0.1	[NR]	[NR]
	Acenaphthene	mg/kg	35858-32	<0.1 <0.1	[NR]	[NR]
	Fluorene	mg/kg	35858-32	<0.1 <0.1	35858-22	93%
	Phenanthrene	mg/kg	35858-32	<0.1 <0.1	35858-22	96%
- 1		mg/kg	35858-32	<0.1] <0.1	[NR]	[NR]

Envirolab Reference:

35858 Revision No: R 00

		Client Reference	e: 71500, West Hoxto	n	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Fluoranthene	mg/kg	35858-32	<0.1 <0.1	35858-22	84%
Pyrene	mg/kg	35858-32	<0.1 <0.1	35858-22	98%
Benzo(a)anthracene	mg/kg	35858-32	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	35858-32	<0.1 <0.1	35858-22	101%
Benzo(b+k)fluoranthene	mg/kg	35858-32	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	35858-32	<0.05 <0.05	35858-22	111%
indeno(1,2,3-c,d)pyrene	mg/kg	35858-32	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	35858-32	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	35858-32	<0.1 [<0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	35858-32	107 107 RPD: 0	35858-22	104%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	[NT]	[NT]	35858-30	03/12/09
Date analysed	-	[NI]	[NT]	35858-30	04/12/09
Arsenic	mg/kg	[NT]	[NT]	35858-30	90%
Cadmium	mg/kg	[NII]	[NT]	35858-30	88%
Chromium	mg/kg	[NII]	[NT]	35858-30	95%
Copper	mg/kg	[17]	[NT]	35858-30	100%
Lead	mg/kg	[NT]	[NT]	35858-30	87%
Mercury	mg/kg	[NI]	[NT]	35858-30	99%
Nickel	mg/kg	[NT]	[NT]	35858-30	93%
Zinc	mg/kg	[MT]	[NT]	35858-30	89%

Envirolab Reference: 35858

Revision No:

Report Comments:

Phenolics in soil:#spike recovery failed due to matrix interferences.

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab

procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier:

Joshua Lim

INS: Insufficient sample for this test

NT: Not tested

PQL: Practical Quantitation Limit

<: Less than

>: Greater than

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 35858 Revision No: R 00

Page 34 of 34

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 35840

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your Reference: 71500, West Hoxton

No. of samples: 15 Soils
Date samples received: 02/12/09
Date completed instructions received: 02/12/09

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

TECHNICAL

Report Details:

Date results requested by: 7/12/09

Date of Preliminary Report: Not issued Issue Date: 7/12/09

NATA accreditation number 2901. This document shall not be reproduced except in full.

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta Hurst Operations Manager

Revision No:

Envirolab Reference:

35840

R 00

Page 1 of 20

vTPH & BTEX in Soil					!	
Our Reference:	UNITS	35840-1	35840-2	35840-3	35840-4	35840-5
Your Reference		BH7/0-0.1	BH9/0.4-0.5	BH10/0.4-0.5	BH18/0.4-0.5	BH19/0-0.1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	95	94	109	105	104

vTPH & BTEX in Soil					 I	
Our Reference:	UNITS	35840-6	35840-7	35840-8	35840-9	35840-10
Your Reference		BH20/0.4-0.5	BH22/0-0.1	BH23/0-0.1	BH24/0-0.1	BH24/0.4-0.5
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample	1	Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	<u>-</u>	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
vTPH C₀ - Cゅ	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	97	108	109	108	93

vTPH & BTEX in Soil						
Our Reference:	UNITS	35840-11	35840-12	35840-13	35840-14	35840-15
Your Reference		BH26/0.4-0.5	BH27/0.1-0.2	BH27/1.4-1.5	Fuel	Fuel
					Tank/0-0.1	Tank/0.9-1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	- .	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
VTPH C6 - C9	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	107	90	90	92	112

Envirolab Reference:

35840

Revision No: R 00

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35840-1	35840-2	35840-3	35840-4	35840-5
Your Reference		BH7/0-0.1	BH9/0.4-0.5	BH10/0.4-0.5	BH18/0.4-0.5	BH19/0-0.1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	82	84	82	81	81

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35840-6	35840-7	35840-8	35840-9	35840-10
Your Reference		BH20/0.4-0.5	BH22/0-0.1	BH23/0-0.1	BH24/0-0.1	BH24/0.4-0.5
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	82	82	81	85	82

sTPH in Soil (C10-C36)						
Our Reference:	UNITS	35840-11	35840-12	35840-13	35840-14	35840-15
Your Reference		BH26/0.4-0.5	BH27/0.1-0.2	BH27/1.4-1.5	Fuel Tank/0-0.1	Fuel Tank/0.9-1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
TPH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TPH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TPH C29 - C36	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	80	85	83	90	86

Envirolab Reference:

Revision No:

PAHs in Soil						
Our Reference:	UNITS	35840-1	35840-2	35840-3	35840-4	35840-5
Your Reference		BH7/0-0.1	BH9/0.4-0.5	BH10/0.4-0.5	BH18/0.4-0.5	BH19/0-0.1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	3.2	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Fluoranthene	mg/kg	<0.1	0.1	0.1	4.5	0.2
Pyrene	mg/kg	<0.1	0.1	0.1	4.0	0.2
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	1.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	1.4	0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	2.1	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	1.6	0.08
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	1.0	<0.1
Surrogate p-Terphenyl-d14	%	106	107	107	102	107

UNITS	35840-6	35840-7	35840-8	35840-9	35840-10
	BH20/0.4-0.5	BH22/0-0.1	BH23/0-0.1	BH24/0-0.1	BH24/0.4-0.5
	1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
	Soil	Soil	Soil	Soil	Soil
-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	0.1	0.2	<0.1	<0.1
mg/kg	<0.1	0.1	0.2	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	0.1	0.1	<0.1	<0.1
mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
mg/kg	<0.05	<0.05	0.07	<0.05	<0.05
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
%	108	111	105	112	108
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH20/0.4-0.5 1/12/2009 Soil - 3/12/2009 - 5/12/2009 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1 mg/kg <0.1	BH20/0.4-0.5 BH22/0-0.1 1/12/2009 Soil Soil - 3/12/2009 3/12/2009 - 5/12/2009 5/12/2009 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 <0.1 mg/kg <0.2 <0.2 mg/kg <0.05 <0.05 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	BH20/0.4-0.5 1/12/2009 Soil Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil - 3/12/2009 Soil Soil Soil - 3/12/2009 Soil Soil Soil Soil Soil Soil Soil Soil	BH20/0.4-0.5 BH22/0-0.1 BH23/0-0.1 BH24/0-0.1

Envirolab Reference:

Revision No:

35840

71500, West Hoxton Client Reference:

PAHs in Soil						
Our Reference:	UNITS	35840-11	35840-12	35840-13	35840-14	35840-15
Your Reference		BH26/0.4-0.5	BH27/0.1-0.2	BH27/1.4-1.5	Fuel	Fuel
					Tank/0-0.1	Tank/0.9-1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	5/12/2009	5/12/2009	5/12/2009	5/12/2009	5/12/2009
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.3	0.3	<0.1	<0.1
Pyrene	mg/kg	0.1	0.3	0.3	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	0.2	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.3	0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.2	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.2	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.2	0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	109	105	105	109	111

Envirolab Reference: 35840 Revision No:

Organochlorine Pesticides in soil						
Our Reference:	UNITS	35840-1	35840-5	35840-6	35840-8	35840-9
Your Reference		BH7/0-0.1	BH19/0-0.1	BH20/0.4-0.5	BH23/0-0.1	BH24/0-0.1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	104	109	100	101	101

Envirolab Reference: Revision No:

Organochlorine Pesticides in soil		
Our Reference:	UNITS	35840-12
Your Reference		BH27/0.1-0.2
Date Sampled		1/12/2009
Type of sample		Soil
Date extracted	-	3/12/2009
Date analysed	- 1	3/12/2009
HCB	mg/kg	<0.1
alpha-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan l	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Surrogate TCLMX	%	100

Envirolab Reference: 35840 Revision No:

PCBs in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	35840-1 BH7/0-0.1 1/12/2009 Soil	35840-5 BH19/0-0.1 1/12/2009 Soil	35840-6 BH20/0.4-0.5 1/12/2009 Soil	35840-8 BH23/0-0.1 1/12/2009 Soil	35840-9 BH24/0-0.1 1/12/2009 Soil
Date extracted	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221*	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochior 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	104	109	100	101	101

PCBs in Soil		
Our Reference:	UNITS	35840-12
Your Reference		BH27/0.1-0.2
Date Sampled		1/12/2009
Type of sample		Soil
Date extracted	•	3/12/2009
Date analysed		3/12/2009
Arochlor 1016	mg/kg	<0.1
Arochlor 1221*	mg/kg	<0.1
Arochior 1232	mg/kg	<0.1
Arochlor 1242	mg/kg	<0.1
Arochlor 1248	mg/kg	<0.1
Arochlor 1254	mg/kg	<0.1
Arochlor 1260	mg/kg	<0.1
Surrogate TCLMX	%	100

Envirolab Reference: Revision No:

Total Phenolics in Soil						
Our Reference:	UNITS	35840-1	35840-5	35840-6	35840-8	35840-12
Your Reference		BH7/0-0.1	BH19/0-0.1	BH20/0.4-0.5	BH23/0-0.1	BH27/0.1-0.2
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Date analysed	_	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Total Phenolics (as Phenol)	mg/kg	<5.0	<5.0	<5.0	<5.0	<5.0

Envirolab Reference: Revision No:

71500, West Hoxton

Acid Extractable metals in soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	35840-1 BH7/0-0.1 1/12/2009 Soil	35840-2 BH9/0.4-0.5 1/12/2009 Soil	35840-3 BH10/0.4-0.5 1/12/2009 Soil	35840-4 BH18/0.4-0.5 1/12/2009 Soil	35840-5 BH19/0-0.1 1/12/2009 Soil
Date digested	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	5	5	6	6	8
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	14	17	24	16	19
Copper	mg/kg	11	28	17	19	7
Lead	mg/kg	17	20	15	17	25
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	14	8	12	6
Zinc	mg/kg	15	31	19	28	10

Acid Extractable metals in soil						
Our Reference:	UNITS	35840-6	35840-7	35840-8	35840-9	35840-10
Your Reference		BH20/0.4-0.5	BH22/0-0.1	BH23/0-0,1	BH24/0-0.1	BH24/0.4-0.5
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	6	6	5	7	13
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	17	16	13	19	26
Copper	mg/kg	11	18	14	16	30
Lead	mg/kg	12	15	20	20	30
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	7	9	8	13
Zinc	mg/kg	10	23	26	25	47

Acid Extractable metals in soil						
Our Reference:	UNITS	35840-11	35840-12	35840-13	35840-14	35840-15
Your Reference		BH26/0.4-0.5	BH27/0.1-0.2	BH27/1.4-1.5	Fuel	Fuel
					Tank/0-0.1	Tank/0.9-1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Date analysed	-	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Arsenic	mg/kg	5	5	5	5	7
Cadmium	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	mg/kg	25	19	25	12	14
Copper	mg/kg	29	3	4	9	24
Lead	mg/kg	20	13	16	17	18
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	30	3	5	4	10
Zinc	mg/kg	48	6	10	13	37

Envirolab Reference: 35840

Na. D.

Revision No:

Moisture						
Our Reference:	UNITS	35840-1	35840-2	35840-3	35840-4	35840-5
Your Reference		BH7/0-0.1	BH9/0.4-0.5	BH10/0.4-0.5	BH18/0.4-0.5	BH19/0-0.1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	7.2	13	21	17	6.5

Moisture						
Our Reference:	UNITS	35840-6	35840-7	35840-8	35840-9	35840-10
Your Reference		BH20/0.4-0.5	BH22/0-0.1	BH23/0-0.1	BH24/0-0.1	BH24/0.4-0.5
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	19	10	8.4	4.2	7.7

Moisture		!				
Our Reference:	UNITS	35840-11	35840-12	35840-13	35840-14	35840-15
Your Reference		BH26/0.4-0.5	BH27/0.1-0.2	BH27/1.4-1.5	Fuel Tank/0-0.1	Fuel Tank/0.9-1
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Date analysed	-	3/12/2009	3/12/2009	3/12/2009	3/12/2009	3/12/2009
Moisture	%	11	7.2	12	6.8	10

Envirolab Reference: Revision No:

Asbestos ID - soils		<u> </u>				
Our Reference:	UNITS	35840-1	35840-3	35840-4	35840-8	35840-12
Your Reference		BH7/0-0.1	BH10/0.4-0.5	BH18/0.4-0.5	BH23/0-0.1	BH27/0.1-0.2
Date Sampled		1/12/2009	1/12/2009	1/12/2009	1/12/2009	1/12/2009
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	_	4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Sample Description	-	approx 40g soil	approx 40g clay	approx 40g soil	approx 40g soil	approx 40g soil
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 35840 Revision No:

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
GC-6	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.20 CP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Envirolab Reference: Revision No:

35840 R 00

NAT

71500, West Hoxton

	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
	vTPH & BTEX in Soil					ļ	Base II Duplicate II %RPD		,
	Date extracted	-			3/12/09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/09
	Date analysed	-			4/12/20 09	35840-1	4/12/2009 4/12/2009	LCS-4	4/12/2009
	vTPH C6 - C9	mg/kg	25	GC.16	<25	35840-1	<25 <25	LCS-4	83%
	Benzene	mg/kg	0.5	GC.16	<0.5	35840-1	<0.5 <0.5	LCS-4	74%
	Toluene	mg/kg	0.5	GC.16	<0.5	35840-1	<0.5 <0.5	LCS-4	78%
	Ethylbenzene	mg/kg	1	GC.16	<1.0	35840-1	<1.0 <1.0	LCS-4	82%
	m+p-xylene	mg/kg	2	GC.16	<2.0	35840-1	<2.0 <2.0	LCS-4	90%
	o-Xylene	mg/kg	1	GC.16	<1.0	35840-1	<1.0 <1.0	LCS-4	93%
	Surrogate aaa-Trifluorotoluene	%		GC.16	75	35840-1	95 111 RPD: 16	LCS-4	91%
	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
						'		,	Recovery
	sTPH in Soil (C10-C36)						Base II Duplicate II %RPD		<u> </u>
)	Date extracted	-			3/12/20 09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/2009
	Date analysed	-			3/12/20 09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/2009
	TPH C10 - C14	mg/kg	50	GC.3	<50	35840-1	<50 <50	LCS-4	83%
	TPH C15 - C28	mg/kg	100	GC.3	<100	35840-1	<100 <100	LCS-4	99%
	TPH C29 - C36	mg/kg	100	GC.3	<100	35840-1	<100 [<100	LCS-4	96%
	Surrogate o-Terphenyl	%		GC.3	84	35840-1	82 84 RPD: 2	LCS-4	84%
	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
	Q3/12/11 33/11/102	0.1			Dienie.	Bophodio Civin	Dopilozio / Boulie	Spinio Simi	Recovery
	PAHs in Soil	!					Base II Duplicate II %RPD		
	Date extracted	-			3/12/20 09	35840-1	3/12/2009 3/12/2009	LCS-5	3/12/2009
	Date analysed	-			5/12/20 09	35840-1	5/12/2009 5/12/2009	LCS-5	5/12/2009
)	Naphthalene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	LCS-5	87%
,	Acenaphthylene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
	Acenaphthene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
	Fluorene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	LCS-5	95%
	Phenanthrene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	LCS-5	100%
	Anthracene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
	Fluoranthene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	LCS-5	89%
	Pyrene	mg/kg	0.1	GC.12	<0.1	35840-1	<0.1] <0.1	LCS-5	103%

Envirolab Reference:

Revision No:

35840 R 00 subset

71500, West Hoxton

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II %RPD		
Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1] <0.1	LCS-5	104%
Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	35840-1	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	35840-1	<0.05 <0.05	LCS-5	116%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d ₁₄	%		GC.12 subset	111	35840-1	106 106 RPD: 0	LCS-5	104%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
Date extracted	-			3/12/09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/09
Date analysed	-			3/12/09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/09
HCB	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	101%
gamma-BHC	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1] <0.1	LCS-4	117%
Heptachlor	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	84%
delta-BHC	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	96%
Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	89%
gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
) pp-DDE	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	115%
Dieldrin	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	98%
Endrin	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 [<0.1	LCS-4	94%
pp-DDD	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	109%
Endosulfan II	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 <0.1	LCS-4	103%
Methoxychlor	mg/kg	0.1	GC-5	<0.1	35840-1	<0.1 [<0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-5	100	35840-1	104 104 RPD: 0	LCS-4	97%

Envirolab Reference:

Revision No:

71500, West Hoxton

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base Il Duplicate II %RPD		,,,,
Date extracted	-			3/12/09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/09
Date analysed	-			3/12/09	35840-1	3/12/2009 3/12/2009	LCS-4	3/12/09
Arochlor 1016	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1 [] <0.1	[NR]	[NR]
Arochior 1221*	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1] <0.1	LCS-4	96%
Arochlor 1260	mg/kg	0.1	GC-6	<0.1	35840-1	<0.1] <0.1	[NR]	[NR]
Surrogate TCLMX	%		GC-6	100	35840-1	104 104 RPD: 0	LCS-4	96%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Total Phenolics in Soil						Base II Duplicate II %RPD		Recovery
Date extracted	-			4/12/09	[NT]	[NT]	LCS-4	4/12/09
Date analysed	_			4/12/09	[NT]	[NT]	LCS-4	4/12/09
Total Phenolics (as Phenol)	mg/kg	5	LAB.30	<5.0	[NT]	[NT]	LCS-4	88%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
					,			Recovery
Acid Extractable metals in soil						Base Il Duplicate Il %RPD		
Date digested	-			04/12/0	35840-1	4/12/2009 4/12/2009	LCS-6	04/12/09
Date analysed	•			04/12/0	35840-1	4/12/2009 4/12/2009	LCS-6	04/12/09
Arsenic	mg/kg	4	Metals,20 ICP-AES	<4	35840-1	5 6 RPD: 18	LCS-6	99%
Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	35840-1	<0.5 <0.5	LCS-6	102%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1	35840-1	14 16 RPD: 13	LCS-6	103%
Copper	mg/kg	1	Metals.20 ICP-AES	<1	35840-1	11 8 RPD: 32	LCS-6	108%
Lead	mg/kg	1	Metals.20 ICP-AES	<1	35840-1	17 19 RPD: 11	LCS-6	98%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	35840-1	<0.1 <0.1	LCS-6	97%
Nickel	mg/kg	1	Metals.20 ICP-AES	<1	35840-1	7 6 RPD: 15	LCS-6	103%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1	35840-1	15 12 RPD: 22	LCS-6	99%

Envirolab Reference: Revision No:

35840

71500, West Hoxton

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			3/12/09
Date analysed	-			3/12/09
Moisture	%	0.1	LAB.8	<0.10

QUALITY CONTROL	UNITS	PQL	METHOD	Blank
Asbestos ID - soils				
Date analysed	-			[NT]

1					
Date analysed	-		[NT]		
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTPH & BTEX in Soil		-	Base + Duplicate + %RPD		
Date extracted	-	35840-12	3/12/2009 3/12/2009	35840-5	3/12/09
Date analysed	-	35840-12	4/12/2009 4/12/2009	35840-5	4/12/2009
vTPH C6 - C9	mg/kg	35840-12	<25 <25	35840-5	86%
Benzene	mg/kg	35840-12	<0.5 <0.5	35840-5	65%
Toluene	mg/kg	35840-12	<0.5 <0.5	35840-5	85%
Ethylbenzene	mg/kg	35840-12	<1.0 <1.0	35840-5	88%
m+p-xylene	mg/kg	35840-12	<2.0 <2.0	35840-5	97%
o-Xylene	mg/kg	35840-12	<1.0 <1.0	35840-5	98%
Surrogate aaa-Trifluorotoluene	%	35840-12	90 115 RPD: 24	35840-5	112%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
sTPH in Soil (C10-C36)			Base + Duplicate + %RPD		
Date extracted	-	35840-12	3/12/2009] 3/12/2009	35840-5	3/12/2009
Date analysed	-	35840-12	3/12/2009 3/12/2009	35840-5	3/12/2009
TPH C10 - C14	mg/kg	35840-12	<50 [] <50	35840-5	82%
TPH C15 - C28	mg/kg	35840-12	<100] <100	35840-5	98%
TPH C29 - C36	mg/kg	35840-12	<100 <100	35840-5	93%
Surrogate o-Terphenyl	%	35840-12	85 85 RPD; 0	35840-5	84%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	35840-12	3/12/2009 3/12/2009	35840-5	3/12/2009
Date analysed	-	35840-12	5/12/2009 5/12/2009	35840-5	5/12/2009
Naphthalene	mg/kg	35840-12	<0.1 <0.1	35840-5	93%
Acenaphthylene	mg/kg	35840-12	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	35840-12	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	35840-12	<0.1 <0.1	35840-5	94%
Phenanthrene	mg/kg	35840-12	0.1 0.1 RPD: 0	35840-5	96%
Anthracene	mg/kg	35840-12	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	35840-12	0.3 0.3 RPD: 0	35840-5	86%
Pyrene	mg/kg	35840-12	0.3 0.3 RPD: 0	35840-5	99%
Benzo(a)anthracene	mg/kg	35840-12	0.1 0.1 RPD: 0	[NR]	[NR]
Chrysene	mg/kg	35840-12	0.2 0.2 RPD: 0	35840-5	99%

Envirolab Reference:

35840

Revision No:

71500 West Hoyton

		Client Reference	ce: 71500, West Hoxt	on	
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Benzo(b+k)fluoranthene	mg/kg	35840-12	0.3 0.3 RPD: 0	[NR]	[NR]
Benzo(a)pyrene	mg/kg	35840-12	0.2 [0.2 [RPD: 0	35840-5	101%
Indeno(1,2,3-c,d)pyrene	mg/kg	35840-12	0.2 0.2 RPD: 0	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	35840-12	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	35840-12	0.2 0.2 RPD: 0	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	35840-12	105 105 RPD: 0	35840-5	104%
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	[NT]	[NT]	35840-5	3/12/09
Date analysed	-	[NT]	[ПЛ]	35840-5	3/12/09
HCB	mg/kg	[NI]	[NT]	[NR]	[NR]
alpha-BHC	mg/kg	[NI]	[NT]	35840-5	102%
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
beta-BHC	mg/kg	[IN]	[NT]	35840-5	97%
Heptachlor	mg/kg	[NT]	[NT]	35840-5	92%
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]
Aldrin	mg/kg	[NT]	[אד]	35840-5	99%
Heptachlor Epoxide	mg/kg	[NII]	[NT]	35840-5	91%
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDE	mg/kg	[NT]	[NT]	35840-5	118%
Dieldrin	mg/kg	[NT]	[NT]	35840-5	98%
Endrin	mg/kg	[NT]	[NT]	35840-5	118%
pp-DDD	mg/kg	[NT]	[NT]	35840-5	110%
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]
Endosulfan Sulphate	mg/kg	[NT]	[NT]	35840-5	110%
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]
Surrogate TCLMX	%	[NT]	[NT]	35840-5	100%

Envirolab Reference:

35840

Revision No: R 00

-			Client Reference	ce: 71500, West Hoxto	on	
_	QUALITY CONTROL PCBs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
	Date extracted	-	[NT]	[NT]	35840-5	3/12/09
	Date analysed	-	[TN]	[NT]	35840-5	3/12/09
	Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]
	Arochlor 1221*	mg/kg	[NT]	[NT]	[NR]	[NR]
	Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]
	Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]
	Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]
	Arochlor 1254	mg/kg	[NT]	[NT]	35840-5	94%
	Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]
	Surrogate TCLMX	%	[NT]	[NT]	35840-5	94%
	QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
	Date digested	-	35840-12	4/12/2009 4/12/2009	LCS-7	04/12/09
	Date analysed	_	35840-12	4/12/2009 4/12/2009	LCS-7	04/12/09
)	Arsenic	mg/kg	35840-12	5 5 RPD: 0	LCS-7	97%
	Cadmium	mg/kg	35840-12	<0.5 <0.5	LCS-7	99%
	Chromium	mg/kg	35840-12	19 23 RPD: 19	LCS-7	101%
	Copper	mg/kg	35840-12	3 2 RPD: 40	LCS-7	105%
	Lead	mg/kg	35840-12	13 15 RPD: 14	LCS-7	97%
	Mercury	mg/kg	35840-12	<0.1 <0.1	LCS-7	100%
	Nickel	mg/kg	35840-12	3 [[2]] RPD: 40	LCS-7	101%
	Zinc	mg/kg	35840-12	6 5 RPD: 18	LCS-7	97%
	QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
	Date digested	-	[NT]	[NT]	35840-5	04/12/09
	Date analysed	-	[NT]	[NT]	35840-5	04/12/09
	Arsenic	mg/kg	[NT]	[NT]	35840-5	96%
1	Cadmium	mg/kg	[NT]	[NT]	35840-5	92%
1	Chromium	mg/kg	[TN]	[NT]	35840-5	99%
	Copper	mg/kg	[NT]	[NT]	35840-5	104%
	Lead	mg/kg	[NT]	[NT]	35840-5	91%
	Mercury	mg/kg	[NT]	[NT]	35840-5	102%
	Nickel	mg/kg	[NT]	[NT]	35840-5	96%
	Zinc	mg/kg	[NT]	[NT]	35840-5	92%

Envirolab Reference: 35840

Revision No: R 00

Client Reference: 71500, West Hoxton

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab

procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier:

Joshua Lim

INS: Insufficient sample for this test

NT: Not tested PQL: Practical Quantitation Limit <: Less than

>: Greater than

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable:

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference:

35840

Revision No: R 00

ENVIRONMENTAL LABORATORIES

Accredited for compliance with ISO/IEC 17025. The

results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

SYDNEY License No. N0356.

Quarantine Approved Premises criteria 5.1 for guarantine Quarantine Approved recruises eriteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

Laboratory Report No:

E045950

Client Name:

Douglas Partners

Client Reference:

West Hoxton

Contact Name:

Kurt Plambeck

Chain of Custody No: Sample Matrix:

SOIL

Date Received: 03/12/2009 Date Reported: 09/12/2009

Cover Page 1 of 3

plus Sample Results

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY ASSURANCE CRITERIA

Accuracy:

matrix spike:

1 in first 5-20, then 1 every 20 samples

lcs, crm, method:

I per analytical batch

surrogate spike:

addition per target organic method

Precision:

laboratory duplicate:

1 in first 5-10, then I every 10 samples

laboratory triplicate:

re-extracted & reported when duplicate RPD values exceed acceptance criteria

Holding Times: soils, waters:

Refer to LabMark Preservation & THT

table

VOC's 14 days water / soil

VAC's 7 days water or 14 days acidified

VAC's 14 days soil

SVOC's 7 days water, 14 days soil Pesticides 7 days water, 14 days soil Metals 6 months general elements

Mercury 28 days

Confirmation: target organic analysis: GC/MS, or confirmatory column

Sensitivity:

EOL:

Typically 2-5 x Method Detection Limit

(MDL)

QUALITY CONTROL GLOBAL ACCEPTANCE CRITERIA (GAC)

Accuracy: spike, lcs, crm

surrogate:

general analytes 70% - 130% recovery

phenol analytes 50% - 130% recovery

organophosphorous pesticide analytes

60% - 130% recovery phenoxy acid herbicides, organotin

50% - 130% recovery

anion/cation bal: +/- 10% (0-3 meq/l),

+/- 5% (>3 meq/l)

Precision: method blank: not detected >95% of the reported EQL

0-30% (>10xEQL), 0-75% (5-10xEQL) duplicate lab

RPD (metals): 0-100% (<5xEQL)

duplicate lab

0-50% (>10xEQL), 0-75% (5-10xEQL) RPD. 0-100% (<5xEQL)

QUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)

Accuracy:

spike, lcs, crm surrogate:

analyte specific recovery data

<3xsd of historical mean

Uncertainty: spike, lcs:

measurement calculated from

historical analyte specific control

RESULT ANNOTATION

Data Quality Objective Data Quality Indicator

s: matrix spike recovery ď: laboratory duplicate

pending p;

Estimated Quantitation Limit

t:

laboratory triolicate

lcs: laboratory control sample bes: batch specific les bmb: batch specific mb

RPD relative % difference

certified reference material crm:

not applicable

mb:

method blank

Simon Mills

Quality Control (Report signatory) simon.mills@labmark.com.au

Geoff Weir

Authorising Chemist (NATA signatory)

geoff.weir@labmark.com.au

Jeremy Truong

Authorising Chemist (NATA signatory) jeremy.truong@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

@ copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Industry Group

Laboratory Report: E045950

Cover Page 2 of 3

NEPC GUIDELINE COMPLIANCE

1. **GENERAL**

- A. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or surrogate recovery data.
- B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference.
- C. Laboratory QA/QC samples are specific to this project.
- D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au.
- E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to
- F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable.
- G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations.
- H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date.
- Ĭ. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DOO comments.

This document is issued in accordance with NATA's accreditation requirements.

@ copyright 2000

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Environmental Laboratory Industry Group

Laboratory Report: E045950

Cover Page 3 of 3

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	Polyaromatic Hydrocarbons (PAH)	3	0	0%	0	0	0%
2	Acid extractable metals (M7)	3	0	0%	0	0	0%
3	Acid extractable metals - mercury	3	0	0%	0	0	0%
4	Moisture	3					

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.
#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

© copyright 2000

Laboratory Rep	Client Name:	Contact Name:
		ENVIRONMENTAL LABORALORIES

E045950 ory Report No:

Douglas Partners

Kurt Plambeck

West Hoxton 71500

Client Reference:

plus cover page Page: 1 of 4

Certificate of Analysis

Final

Laboratory Identification		239635	239636	239637	lcs	qm	
Sample Identification		BD3/27110 BD4/2	BD4/27110	BD3/26110	o c	oo	
Depth (m)			-	1	ı	ŀ	
Sampling Date recorded on COC		27/11/09	27/11/09	26/11/09	1	ì	
Laboratory Extraction (Preparation) Date		4/12/09	4/12/09	4/12/09	4/12/09	4/12/09	
Laboratory Analysis Date		5/12/09	5/12/09	5/12/09	4/12/09	4/12/09	
Method: E007.2							
ic Hydrocarbons (PAH)	EQL					*	
Naphthalene	0.5	<0.5	<0.5	<0.5	119%	<0.5	
Acenaphthylene	0.5	<0.5	<0.5	<0.5	120%	<0.5	
Acenaphthene	0.5	<0.5	<0.5	<0.5	117%	<0.5	
Fluorene	0.5	<0.5	<0.5	<0.5	118%	<0.5	
Phenanthrene	0.5	<0.5	<0.5	<0.5	118%	<0.5	
Anthracene	0.5	<0.5	<0.5	<0.5	118%	<0.5	
Fluoranthene	0.5	<0.5	<0.5	<0.5	119%	<0.5	
Pyrene	0.5	<0.5	<0.5	<0.5	118%	<0.5	
Benz(a)anthracene	0.5	<0.5	<0.5	<0.5	119%	<0.5	
Chrysene	0.5	<0.5	<0.5	<0.5	%68	<0.5	
Benzo(b)&(k)fluoranthene	_		⊽	7	126%	⊽	
Benzo(a) pyrene	0.5	<0.5	<0.5	<0.5	125%	<0.5	
Indeno(1,2,3-c,d)pyrene	0.5	<0.5	<0.5	<0.5	127%	<0.5	
Dibenz(a,h)anthracene	0.5	<0.5	<0.5	<0.5	123%	<0.5	
Benzo(g,h,i)perylene	0.5	<0.5	<0.5	<0.5	126%	<0.5	
Sum of reported PAHs	ţ	1	ł	1	1	1	
2-FBP (Surr @ 5mg/kg)	;	83%	%00I	%68	%96	%88	
TP-d14 (Surr @ 5mg/kg)	1	84%	%0II	%26	105%	%88	
	1						1

Results expressed in mg/kg dry weight unless otherwise specified

E007.2: 8-10g soil extracted with 20ml DCM/Acetone/Hexane (10:45:45). Analysis by GC/MS.

E045950 Laboratory Report No:

Douglas Partners

Kurt Plambeck

West Hoxton 71500

Client Reference:

Page: 2 of 4

Certificate of Analysis

Final

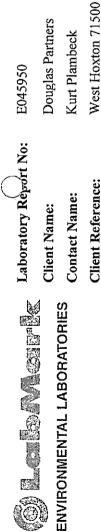
	٠
60/2	
: 09/12/09	
Date:	

N/A
on:
issued
reports
supercedes
report :
This

	200	737050	759657	crm	S	qm			
Sample Identification	BD3/27110 BD4	BD4/27110	/27110 BD3/26110	ЭÒ	S S	οc			
Depth (m)	<u>5</u>	<u>6</u>	۱	ļ	1	;			
Sampling Date recorded on COC	27/11/09	27/11/09	26/11/09	}	1	1	•		
Laboratory Extraction (Preparation) Date	4/12/09	4/12/09	4/12/09	4/12/09	4/12/09	4/12/09			
Laboratory Analysis Date	5/12/09	5/12/09	5/12/09	4/12/09	4/12/09	4/12/09			
Method: E022.2									
Acid extractable metals (M7)	.1								
Arsenic	7	S	9	103%	%66	⊽			
Cadmium 0.1	0.1	0.1	<0.1	%26	%96	<0.1			
Chromium	16	15	12	110%	105%	▽			
Copper	15	81	18	101%	103%	4		 	
Nickel	∞	6	11	107%	%26	7			
Lead 2	20	14	14	%96	%26	4			
Zinc 5	25	19	35	100%	94%	ζ.			

Results expressed in mg/kg dry weight unless otherwise specified

E022.2: 0.5g digested in nitric/hydrochloric acid. Analysis by ICP-MS.


E045950	Douglas Partners	Kurt Plambeck	West Hoyton 71500
Laboratory Report No:	Client Name:	Contact Name:	Client Reference:
		ENVIRONMENTAL LABORATORIES	

rtificate nalysis

	Labor	Laboratory Report No:		E045950			Page	Page: 3 of 4	Final
	Client	Client Name:		Douglas Partners	iers		snld	plus cover page	Cert
ENVIRONMENTAL LABORATORIES	Conta	Contact Name:	¥	Kurt Plambeck	¥		Date	Date: 09/12/09	of Ana
	Client	Client Reference:	^	West Hoxton 71500	71500		This n	This report supercedes reports issued on: N/A	ued on: N/A
Laboratory Identification		239635	239636	239637	crm	lcs	qm		
Sample Identification		BD3/27110	BD3/27110 BD4/27110 BD3/26110	BD3/26110	20	20	ЭÒ		
Depth (m)		- 6	۱	1	ŀ	ł	ŀ		
Sampling Date recorded on COC		27/11/09	27/11/09	26/11/09	1	!	1		
Laboratory Extraction (Preparation) Date		4/12/09	4/12/09	4/12/09	4/12/09	4/12/09	4/12/09		
Laboratory Analysis Date		7/12/09	7/12/09	7/12/09	4/12/09	4/12/09	4/12/09		
Method: E026.2 Acid extractable metals - mercury Mercury	EQL 0.05	0.11	0.08	0.05	%66	119%	<0.05		

Results expressed in mg/kg dry weight unless otherwise specified

E026.2: 0.5g digested with nitric/hydrochloric acid. Analysis by CV-ICP-MS or FIMS.

Douglas Partners

Certificate

Final

of Analysis

This report supercedes reports issued on: N/A

1.45c. 101.1	plus cover page	Date: 09/12/09
-	[d	Ä

12/09	
Jate: 09/1	
T	

4 of 4	
Page:	
`	

|--|

BD3/27110 BD4/27110 BD3/26110

239636

239635

Laboratory Identification

Sample Identification

Client Reference:

26/11/09 4/12/09 7/12/09

27/11/09 4/12/09 7/12/09

27/11/09 4/12/09 7/12/09

Laboratory Extraction (Preparation) Date

Laboratory Analysis Date

Method: E005.2

Moisture Moisture

Depth (m) Sampling Date recorded on COC

17

1

Ξ

EQL :

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Results expressed in % w/w unless otherwise specified

10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·	plus cover pa	Date: 09/12/

of 4	
Page: 4	
Б	

ENVIRONMENTAL LABORATORIES

Report Date: 4/12/2009 Report Time: 12:29:56PM

Sample

Receipt

Quality, Service, Support

	Client Detai	Is		Laboratory	Reference Information						
Client Name: Client Phone:	Douglas Partners 02 9809 0666		Please have this information ready when contacting Labmark.								
Client Fax: Contact Name: Contact Email:	02 98094095 Kurt Plambeck plambeckk@doug	laspartners.com.au		oratory Report: tation Number:	E045950 - Not provided, standard prices appl						
Client Address:	96 Hermitage Roa West Ryde NSW	đ		oratory Address:	Unit 1, 8 Leighton Pl. Asquith NSW 2077						
Project Name:	West Hoxton		Pho	ne:	61 2 9476 6533						
Project Number:	71500		Fax:		61 2 9476 8219						
CoC Serial Numbe Purchase Order: Surcharge:	- Not provided -	ied (results by 6:30pm on	Ema Rep	orting Contact:	ct: Ros Schacht Ros.Schacht@labmark.com.au Leanne Boag						
Sample Matrix:	SOIL		Ema	il:	leanne.boag@labmark.com.au						
Date Sampled (ear Date Samples Rec	•	26/11/2009		A Accreditation:	13542						
Date Sample Rece	ipt Notice issued:	03/12/2009 04/12/2009		GMP License: MA License:	185-336 (Sydney) 6105 (Sydney)						
Date Preliminary R Client TAT Reques	-	10/12/2009 10/12/2009		S Approval: S Entry Permit:	NO356 (Sydney) 200521534 (Sydney)						
Reporting Require	ements: Electronic	Data Download required: N	lo	Ir	voice Number: 09EA7243						
Sample Condition	: COC rece	eived with samples. Report	numbe								

Report number and lab ID's defined on COC.

Samples received in good order.

Samples received with cooling media: Ice bricks .

Samples received chilled. Security seals not used .

Sample container & chemical preservation suitable.

Comments:

Sample BD3/271109 tested and reported as per client request.

Holding Times:

Date received allows for sufficient time to meet Technical Holding Times.

Preservation:

Chemical preservation of samples satisfactory for requested analytes.

Important Notes:

LabMark shall responsibly dispose of spent customer soil and water samples which includes the disintegration of the sample label. A sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Report Date: 4/12/2009 Report Time: 12:29:56PM

Sample

Receipt

Notice (SRN) for E045950

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID R	EVIEW TABLE						 	Re	ques	ted A	nalys	sis	 	 		
No. Date Depth	Client Sample ID	Acid extractable metals - mercury	Acid extractable metals (M7)	Moisture	Polyaromatic Hydrocarbons (PAH)	PREP Not Reported										
239635 27/11	BD3/271109	•	•	•	•	•										
239636 27/11	BD4/271109	•		•	•	٠										
239637 26/11	BD3/261109	•		•	•	•										П
	Totals:	3	3	3	3	3										

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

Report Date: 4/12/2009 Report Time: 12:29:56PM

Sample

Receipt

Quality, Service, Support

Notice (SRN) for E045950

			Requested Analysis														
						3											
No. Date Depth	Client Sample ID	M8 - M7-T_S											ļ				
239635 27/11	BD3/271109	- Z			\dashv	-	-	-					 				 $\vdash \vdash$
239636 27/11	BD4/271109			\dashv	\dashv		\dashv	ᅱ	\dashv			_		\vdash		 \vdash	 ├─┤
239637 26/11	BD3/261109	•	一		\dashv	-	一	\dashv		\dashv		_		\vdash		\vdash	 $\vdash\vdash$
	Totals:	3	一	\dashv					-	\dashv			<u> </u>				 \vdash

ON TO LARMARK FOR INTERNAR AMENIND SLEASE FORMARA

()) **Douglas Partners** Geoschilos-Environment-Groundwater

Project Name:

Project Mgr: Project No:

Email:

id Pays 12 Ashley Street, Chatswood NSW 2068 **Envirolab Services** <u>0</u> Next Haxton Kunt Mendeck / Mathin Hy 7/500 Sampler Kunt Mendeck / Mathin Hy RT Mob. Phone: 04.4.216.901

Attn: Tania Notaras

Phone: 02 9910 6200 Fax: 02 9910 6201 Kunt. Plankelt. B. Washtopenahman warn derl.

Date Required:

Email: tnotaras@envirolabservices.com.au

,			<u>., .</u>											· 		ĺ
	Notes			,			-								26	Vanc : 5 (2)
	Other														Phone: (02) 9809 0666 Fax: (02) 9809 4095 Date & Time: 3	250
						• .									38	
Analytes					•						•				1 Received By:	Received by:
	sotsädaA						-			.				ļ .	2114	
	Phenois					•	-	-	-	_					ye Road, West Ryde 211. Date & Time: 2/12/09	
	PCBs PCBs HAq)						-	-	1			<u> </u>		d, Wee	Time:
	BTEX/ \range \text{/s-q00}		-						-			-		<u> </u>	96. Hermitage Road, West Ryde 2114 Date & Time: 2/12/09 1	Date & Time:
	Heavy Metals			1										 -	3 Hermit	
	Container type	<u>.</u> 5		<u>ب</u>						٠					Address: 96	-
Sample	lios - 2 g 1ejsw – W			7											1 ! V.'	ġ:
	Sampling . Date	00 H2													とうならので Douglas Partners	Signed:
	<u>e</u> ë	3 CA 3 B	THE SECTION													
	Sample Depth	21109	8	11.09												by:
	Sample ID	8D2 (2) 71109	239636 Boy 12 21 100	239637803/261109						<u> </u>					Lab Report No	Relinquished by:
	779	238635	23963	239637	·		l	1	1		. 1	<u> </u>		!_		<u> </u>

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 35987

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: David Holden

Sample log in details:

Your Reference: 71500, Hoxton Park Airport

No. of samples: 2 Soils
Date samples received: 07/12/09

Date completed instructions received: 07/12/09

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 10/12/09
Date of Preliminary Report: Not issued

Issue Date: 10/12/09

This document is issued in accordance with NATA's accreditation requirements.

NATA accreditation number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Joshua Lim Chemist

Envirolab Reference:

35987

Revision No: R 00

Page 1 of 13

vTPH & BTEX in Soil			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date extracted	-	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009
vTPH C6 - C9	mg/kg	<25	<25
Benzene	mg/kg	<0.5	<0.5
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1.0	<1.0
m+p-xylene	mg/kg	<2.0	<2.0
o-Xylene	mg/kg	<1.0	<1.0
Surrogate aaa-Trifluorotoluene	%	91	81

Envirolab Reference:

Revision No:

35987

sTPH in Soil (C10-C36)			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date extracted	-	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009
TPH C10 - C14	mg/kg	<50	<50
TPH C15 - C28	mg/kg	<100	<100
TPH C29 - C36	mg/kg	<100	<100
Surrogate o-Terphenyl	%	91	87

Envirolab Reference: Revision No:

35987

PAHs in Soil			
Our Reference:	UNITS	35987-1	35987-2
Your Reference	***	B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date extracted		9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	71	66

Envirolab Reference: Revision No:

Organochlorine Pesticides in soil			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date extracted	-	9/12/2009	9/12/2009
Date analysed	-	9/12/2009	9/12/200 9
HCB	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	121	123

Envirolab Reference: 35987 Revision No:

Acid Extractable metals in soil			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date digested	-	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009
Arsenic	mg/kg	10	6
Cadmium	mg/kg	<0.5	<0.5
Chromium	mg/kg	26	19
Copper	mg/kg	14	30
Lead	mg/kg	23	13
Mercury	mg/kg	0.1	<0.1
Nickel	mg/kg	5	12
Zinc	mg/kg	13	22

Envirolab Reference: 35987 Revision No:

Moisture			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date prepared	-	9/12/2009	9/12/2009
Date analysed	-	9/12/2009	9/12/2009
Moisture	%	17	22

Envirolab Reference: 35987 Revision No:

Asbestos ID - soils			
Our Reference:	UNITS	35987-1	35987-2
Your Reference		B1/0.4-0.5	B2/0.4-0.5
Date Sampled		4/12/2009	4/12/2009
Type of sample		Soil	Soil
Date analysed	-	10/12/2009	10/12/2009
Sample Description	-	approx 40g clay	approx 30g clay
Asbestos ID in soil	-	No asbestos found at reporting limit of 0.1g/kg	No asbestos found at reporting limit of 0.1g/kg
Trace Analysis	-	Respirable fibres not detected	Respirable fibres not detected

Envirolab Reference: 35987 Revision No:

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
GC-5	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.8	Moisture content determined by heating at 105 deg C for a minimum of 4 hours.
ASB.1	Qualitative identification of asbestos type fibres in bulk using Polarised Light Microscopy and Dispersion Staining Techniques.

Envirolab Reference: 35987

Revision No: R 00

Page 9 of 13

QUALITY	CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & 8	TEX in Soil						Base II Duplicate II %RPD		
Date	e extracted	-			9/12/20 09	[NT]	[NT]	LCS-5	9/12/2009
Dat	e analysed	-			10/12/0 9	[NT]	[NT]	LCS-5	10/12/09
VTF	PH C6 - C9	mg/kg	25	GC.16	<25	[NT]	[NT]	LCS-5	94%
E	Benzene	mg/kg	0.5	GC.16	<0.5	[NT]	[NT]	LCS-5	74%
	Toluene	mg/kg	0.5	GC.16	<0.5	[NT]	[NT]	LCS-5	95%
Eth	ylbenzene	mg/kg	1	GC.16	<1.0	[NT]	[NT]	LCS-5	97%
m·	+p-xylene	mg/kg	2	GC.16	<2.0	[NT]	[NT]	LCS-5	103%
c	o-Xylene	mg/kg	1	GC.16	<1.0	[NT]	[NT]	LCS-5	106%
	urrogate rifluorotoluene	%		GC.16	100	[NT]	[NT]	LCS-5	99%
QUALITY	CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in S	oil (C10-C36)						Base II Duplicate II %RPD		
Dat	e extracted	-			9/12/20 09	[NT]	[NT]	LCS-6	9/12/2009
Dat	e analysed	-			10/12/0 9	[NT]	ΪИΠ	LCS-6	10/12/09
TPH	ł C10 - C14	mg/kg	50	GC.3	<50	[NT]	[TM]	LCS-6	83%
TP⊦	l C15 - C28	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-6	97%
TPH	ł C29 - C36	mg/kg	100	GC.3	<100	[NT]	[NT]	LCS-6	88%
	Surrogate Terphenyl	%		GC.3	86	[NT]	[NT]	LCS-6	85%
QUALITY	CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
PAHs in S	Soil						Base II Duplicate II %RPD		Recovery
	e extracted				9/12/20	[NT]	[NT]	LCS-1	9/12/2009
Dat	e extracted	-			09	[[VI]	livi)	200-1	3/12/2003
Dat	te analysed	-			10/12/0 9	[NT]	[NT]	LCS-1	10/12/09
) Na	aphthalene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-1	83%
Acei	naphthylene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Ace	enaphthene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
1	Fluorene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-1	95%
Pho	enanthrene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-1	96%
Aı	nthracene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	(NR)
Flu	uoranthene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-1	83%
	Pyrene	mg/kg	0.1	GC.12 subset	<0.1	[ПП]	[NT]	LCS-1	94%

Envirolab Reference: Revision No: 35987 R 00 NATA

ACCREDITED FOR

TECHNICAL

COMPETENCE

Duplicate Sm#

Duplicate results

Spike Sm#

Spike %

Blank

						,	'		Recovery
	PAHs in Soil						Base II Duplicate II %RPD		
	Benzo(a)anthracene	mg/kg	0.1	GC.12 subset	<0.1	[17]	[NT]	[NR]	[NR]
	Chrysene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	LCS-1	98%
	Benzo(b+k)fluoranthene	mg/kg	0.2	GC.12 subset	<0.2	[NT]	[NT]	[NR]	[NR]
	Benzo(a)pyrene	mg/kg	0.05	GC.12 subset	<0.05	[NT]	[NT]	LCS-1	97%
	Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
	Dibenzo(a,h)anthracene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
	Benzo(g,h,i)perylene	mg/kg	0.1	GC.12 subset	<0.1	[NT]	[NT]	[NR]	[NR]
	Surrogate p-Terphenyl-d14	%		GC.12 subset	114	[TN]	[NT]	LCS-1	71%
~	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
_	, , , , , , , , , , , , , , , , , , , ,		"-		Bianik	Bupilouto Ottis	Baphodio Toddio	Opinio Civiii	Recovery
	Organochlorine Pesticides in soil						Base II Duplicate II %RPD		
	Date extracted	-			9/12/20	[NT]	[NT]	LCS-6	9/12/2009
					09				
	Date analysed	-			9/12/20 09	[NT]	[NT]	LCS-6	9/12/2009
	HCB	mg/kg	0.1	GC-5	<0.1	[NT]	[1/1]	[NR]	[NR]
	alpha-BHC	mg/kg	0.1	GC-5	<0.1	[N1]	[ПП]	LCS-6	116%
	gamma-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	beta-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	114%
	Heptachlor	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	104%
	delta-BHC	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	Aldrin	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	112%
	Heptachlor Epoxide	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	106%
	gamma-Chlordane	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	alpha-chlordane	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
_	Endosulfan I	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	pp-DDE	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	116%
	Dieldrin	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	119%
	Endrin	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	109%
	pp-DDD	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	114%
	Endosulfan II	mg/kg	0.1	GC-5	<0.1	[NI]	[NT]	[NR]	[NR]
	pp-DDT	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	Endrin Aldehyde	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	[NR]	[NR]
	Endosulfan Sulphate	mg/kg	0.1	GC-5	<0.1	[NT]	[NT]	LCS-6	122%
	Methoxychlor	mg/kg	0.1	GC-5	<0.1	[NT]	[ТИ]	[NR]	[NR]
	1		I		1		1		

Envirolab Reference: 35987 Revision No: R 00

%

Surrogate TCLMX

QUALITY CONTROL

UNITS

PQL

METHOD

[NT]

[NT]

117

GC-5

120%

LCS-6

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II %RPD		
Date digested	-			09/12/0 9	[NT]	[NT]	LCS-1	09/12/09
Date analysed	-			10/12/0 9	[NT]	[TM]	LCS-1	10/12/09
Arsenic	mg/kg	4	Metals.20 ICP-AES	<4	[TN]	[NT]	LCS-1	100%
Cadmium	mg/kg	0.5	Metals.20 ICP-AES	<0.5	[NT]	[NT]	LCS-1	104%
Chromium	mg/kg	1	Metals.20 ICP-AES	<1	[NT]	[NT]	LCS-1	103%
Copper	mg/kg	1	Metals.20 ICP-AES	<1	[NT]	[TM]	LCS-1	107%
Lead	mg/kg	1	Metals.20 ICP-AES	<1	[NT]	[TN]	LCS-1	108%
Mercury	mg/kg	0.1	Metals.21 CV-AAS	<0.1	[NT]	[TM]	LCS-1	108%
) Nickel	mg/kg	1	Metals.20 ICP-AES	<1	[NT]	[NT]	LCS-1	104%
Zinc	mg/kg	1	Metals.20 ICP-AES	<1	[NT]	[NT]	LCS-1	103%

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Moistare	<u> </u>			
Date prepared	_			9/12/20 09
Date analysed	-			9/12/20 09
Moisture	%	0.1	LAB.8	<0.10

QUALITY CONTROL	UNITS	PQL	METHOD	Blank
Asbestos ID - soils				
Date analysed	-			[NT]

Envirolab Reference: 35987 Revision No: R 00

Report Comments:

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab

procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier:

Joshua Lim

INS: Insufficient sample for this test

NT: Not tested PQL: Practical Quantitation Limit

<: Less than

>: Greater than

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 35987 Revision No: R 00

Page 13 of 13

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
enquiries@envirolabservices.com.au
www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 35984

Client:

Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: David Holden

Sample log in details:

Your Reference: 71500, Hoxton Park Airport

No. of samples: 11 Waters
Date samples received: 07/12/09

Date completed instructions received: 07/12/09

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 10/12/09
Date of Preliminary Report: prelim 10/12/09

Issue Date: 11/12/09

NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

Results Approved By:

Joshua Lim Chemist

Envirolab Reference:

35984

Revision No:

R 01

Page 1 of 14

vTPH & BTEX in Water Our Reference: Your Reference Date Sampled Type of sample	UNITS	35984-1 GW2 4/12/2009 Water	35984-2 GW3 4/12/2009 Water	35984-3 GW4 4/12/2009 Water	35984-4 GW5 4/12/2009 Water	35984-5 GW6 4/12/2009 Water
Date extracted	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Date analysed	_	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
TPH C6 - C9	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<2.0	<2.0	<2.0
o-xylene	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0
Surrogate Dibromofluoromethane	%	97	96	84	94	96
Surrogate toluene-d8	%	100	101	99	100	100
Surrogate 4-BFB	%	97	98	97	96	97

vTPH & BTEX in Water						
Our Reference:	UNITS	35984-6	35984-7	35984-8	35984-9	35984-10
Your Reference		GW7	GW8	GW9	OW1	OW2
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Date analysed	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
TPH Cs - C9	μg/L	<10	<10	<100	<10	<10
Benzene	μg/L	<1.0	<1.0	<10	<1.0	<1.0
Toluene	μg/L	<1.0	<1.0	<10	<1.0	<1.0
Ethylbenzene	µg/L	<1.0	<1.0	<10	<1.0	<1.0
m+p-xylene	μg/L	<2.0	<2.0	<20	<2.0	<2.0
o-xylene	μg/L	<1.0	<1.0	<10	<1.0	<1.0
Surrogate Dibromofluoromethane	%	95	95	95	95	95
Surrogate toluene-d8	%	100	100	100	101	100
Surrogate 4-BFB	%	97	96	96	97	97

Envirolab Reference: Revision No:

35984

r		
vTPH & BTEX in Water		
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled	*********	4/12/2009
Type of sample		Water
Date extracted	-	10/12/2009
Date analysed	.	10/12/2009
TPH C6 - C9	μg/L	<10
Вепле	μg/L	<1.0
Toluene	μg/L	<1.0
Ethylbenzene	μg/L	<1.0
m+p-xylene	μg/L	<2.0
o-xylene	μg/L	<1.0
Surrogate Dibromofluoromethane	%	92
Surrogate toluene-d8	%	100
Surrogate 4-BFB	%	96

Envirolab Reference: 35984 Revision No: R 01

sTPH in Water (C10-C36)						
Our Reference:	UNITS	35984-1	35984-2	35984-3	35984-4	35984-5
Your Reference		GW2	GW3	GW4	GW5	GW6
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C15 - C28	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	102	107	97	105	96

sTPH in Water (C10-C36)						
Our Reference:	UNITS	35984-6	35984-7	35984-8	35984-9	35984-10
Your Reference		GW7	GW8	GW9	OW1	OW2
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
TPH C10 - C14	μg/L	<50	<50	<50	<50	<50
TPH C15 - C28	μg/L	<100	<100	<100	<100	<100
TPH C29 - C36	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	107	109	101	103

sTPH in Water (C10-C36)		
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled		4/12/2009
Type of sample		Water
Date extracted	-	9/12/2009
Date analysed	-	9/12/2009
TPH C10 - C14	μg/L	<50
TPH C15 - C28	μg/L	<100
TPH C29 - C36	μg/L	<100
Surrogate o-Terphenyl	%	111

Envirolab Reference: 35984

Revision No: R 01

Client Reference:

71500, Hoxton Park Airport

PAHs in Water						
Our Reference:	UNITS	35984-1	35984-2	35984-3	35984-4	35984-5
Your Reference		GW2	GW3	GW4	GW5	GW6
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	•	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	2.4	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	1.6	<1	<1	<1
Pyrene	μg/L	<1	1.4	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Surrogate p-Terphenyl-d14	%	100	111	102	107	80

PAHs in Water						
Our Reference:	UNITS	35984-6	35984-7	35984-8	35984-9	35984-10
Your Reference		GW7	GW8	GW9	OW1	OW2
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Surrogate p-Terphenyl-d14	%	74	88	109	102	111

Envirolab Reference:

35984

Revision No:

71500, Hoxton Park Airport Client Reference:

MALL 1 NAC 4		
PAHs in Water	LINITO	25004.44
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled		4/12/2009
Type of sample		Water
Date extracted	·	9/12/2009
Date analysed	-	10/12/2009
Naphthalene	μg/L	<1
Acenaphthylene	μg/L	<1
Acenaphthene	μg/L	<1
Fluorene	μg/L	<1
Phenanthrene	μg/L	<1
Anthracene	μg/L	<1
Fluoranthene	μg/L	<1
Pyrene	μg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	μg/L	<1
Benzo(b+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	μg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	μg/L	<1
Benzo(g,h,i)perylene	μg/L	<1
Surrogate p-Terphenyl-d14	%	110

Envirolab Reference: 35984 Revision No:

Total Phenolics in Water						
Our Reference:	UNITS	35984-1	35984-2	35984-3	35984-4	35984-5
Your Reference		GW2	GW3	GW4	GW5	GW6
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009
Date analysed	-	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009
Total Phenolics (as Phenol)	mg/L	<0.050	<0.050	<0.050	0.37	<0.050

Total Phenolics in Water						
Our Reference:	UNITS	35984-6	35984-7	35984-8	35984-9	35984-10
Your Reference		GW7	GW8	GW9	OW1	OW2
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009
Date analysed	-	11/12/2009	11/12/2009	11/12/2009	11/12/2009	11/12/2009
Total Phenolics (as Phenol)	mg/L	<0.050	<0.050	<0.050	<0.050	0.49

Total Phenolics in Water		
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled		4/12/2009
Type of sample		Water
Date extracted	-	11/12/2009
Date analysed	-	11/12/2009
Total Phenolics (as Phenol)	mg/L	<0.050

Envirolab Reference: 35984 Revision No:

HM in water - dissolved						
Our Reference:	UNITS	35984-1	35984-2	35984-3	35984-4	35984-5
Your Reference		GW2	GW3	GW4	GW5	GW6
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	_	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	0.1	0.2	<0.1	0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel-Dissolved	μg/L	3	6	11	<1	18
Zinc-Dissolved	µg/∟	14	32	17	5	16

HM in water - dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	35984-6 GW7 4/12/2009 Water	35984-7 GW8 4/12/2009 Water	35984-8 GW9 4/12/2009 Water	35984-9 OW1 4/12/2009 Water	35984-10 OW2 4/12/2009 Water
Date prepared	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
Date analysed	-	10/12/2009	10/12/2009	10/12/2009	10/12/2009	10/12/2009
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	0.2
Chromium-Dissolved	µg/L	<1	<1	<1	1	<1
Copper-Dissolved	μg/L	1	6	3	7	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel-Dissolved	µg/∟	3	2	8	3	2
Zinc-Dissolved	μg/L	13	12	20	10	1

HM in water - dissolved		
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled		4/12/2009
Type of sample		Water
Date prepared	-	9/12/2009
Date analysed	-	10/12/2009
Arsenic-Dissolved	μg/L	<1
Cadmium-Dissolved	μg/L	0.2
Chromium-Dissolved	μg/L	<1
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	µg/∟	<0.5
Nickel-Dissolved	µg/L	2
Zinc-Dissolved	µg/L	<1

Envirolab Reference: 35984 Revision No:

Miscellaneous Inorganics						
Our Reference:	UNITS	35984-1	35984-2	35984-3	35984-4	35984-5
Your Reference		GW2	GW3	GW4	GW5	GW6
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	8/12/2009	8/12/2009	8/12/2009	8/12/2009	8/12/2009
Date analysed	-	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
рН	pH Units	7.2	6.9	6.9	6.9	6.9
Calcium - Dissolved	mg/L	17	44	45	160	58
Magnesium - Dissolved	mg/L	140	640	300	580	290
Hardness by calculation	mgCaCO3 /L	620	2,700	1,300	2,800	1,300

Miscellaneous Inorganics						
Our Reference:	UNITS	35984-6	35984-7	35984-8	35984-9	35984-10
Your Reference		GW7	GW8	GW9	OW1	OW2
Date Sampled		4/12/2009	4/12/2009	4/12/2009	4/12/2009	4/12/2009
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	8/12/2009	8/12/2009	8/12/2009	8/12/2009	8/12/2009
Date analysed	•	9/12/2009	9/12/2009	9/12/2009	9/12/2009	9/12/2009
рН	pH Units	6.2	7.1	6.4	6.8	6.8
Calcium - Dissolved	mg/L	1.9	33	38	28	50
Magnesium - Dissolved	mg/L	5.7	130	180	180	380
Hardness by calculation	mgCaCO3 /L	28	620	840	810	1,700

Miscellaneous Inorganics		
Our Reference:	UNITS	35984-11
Your Reference		BD1/041209
Date Sampled		4/12/2009
Type of sample		Water
Date prepared	-	8/12/2009
Date analysed	-	9/12/2009
рН	pH Units	6.9
Calcium - Dissolved	mg/L	53
Magnesium - Dissolved	mg/L	390
Hardness by calculation	mgCaCO3 /L	1,700

Envirolab Reference: Revision No:

Client Reference: 71500, Hoxton Park Airport

Method ID	Methodology Summary
GC.16	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS.
GC.3	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
GC.12 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
LAB.30	Total Phenolics - determined colorimetrically following disitillation.
Metals.22 ICP-MS	Determination of various metals by ICP-MS.
Metals.21 CV-AAS	Determination of Mercury by Cold Vapour AAS.
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
Metals.20 ICP-AES	Determination of various metals by ICP-AES.

Envirolab Reference: 35984 Revision No:

Client Reference: 71500, Hoxton Park Airport

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTPH & BTEX in Water						Base II Duplicate II %RPD		
Date extracted	-			10/12/2 009	[NT]	[NT]	LCS-W1	10/12/2009
Date analysed	-			10/12/2 009	[NT]	[NT]	LCS-W1	10/12/2009
TPH C6 - C9	μg/L	10	GC.16	<10	[NT]	[NT]	LCS-W1	101%
Benzene	µg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	97%
Toluene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	100%
Ethylbenzene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	100%
m+p-xylene	µg/L	2	GC.16	<2.0	[NT]	[NT]	LCS-W1	103%
o-xylene	μg/L	1	GC.16	<1.0	[NT]	[NT]	LCS-W1	101%
Surrogate Dibromofluoromethane	%		GC.16	95	[NT]	[NT]	LCS-W1	96%
Surrogate toluene-d8	%		GC.16	101	[NT]	[NT]	LCS-W1	100%
Surrogate 4-BFB	%	1	GC.16	96	[NT]	[NT]	LCS-W1	99%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
sTPH in Water (C10-C36)						Base II Duplicate II %RPD		
Date extracted	-			9/12/20 09	[NT]	[NT]	LCS-W2	9/12/2009
Date analysed	-			9/12/20 09	[NT]	[TM]	LCS-W2	9/12/2009
TPH C10 - C14	μg/L	50	GC.3	<50	[NT]	[NT]	LCS-W2	77%
TPH C15 - C28	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	99%
TPH C29 - C36	µg/L	100	GC.3	<100	[NT]	[NT]	LCS-W2	94%
Surrogate o-Terphenyl	%		GC.3	95	[NT]	[ПП]	LCS-W2	97%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II %RPD		
Date extracted	-			9/12/09	[NT]	[NT]	LCS-W2	9/12/09
Date analysed	-			10/12/0 9	[NT]	[ЛП]	LCS-W2	10/12/09
Naphthalene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	87%
Acenaphthylene	μg/L	1	GC.12 subset	<1	[NI]	[NT]	[NR]	[NR]
Acenaphthene	μg/L	1	GC.12 subset	<1	[NT]	[171]	[NR]	[NR]
Fluorene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	88%
Phenanthrene	µg/L	1	GC.12 subset	<1	[NI]	[ПЛ]	LCS-W2	90%
Anthracene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	μg/L	1	GC.12 subset	<1	[NT]	[TM]	LCS-W2	75%

Envirolab Reference:

Revision No:

Client Reference:

71500, Hoxton Park Airport

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base il Duplicate II %RPD		
Pyrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	LCS-W2	85%
Benzo(a)anthracene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	μg/L	1	GC.12 subset	<1	[NT]	[TN]	LCS-W2	100%
Benzo(b+k)fluoranthene	µg/L	2	GC.12 subset	<2	[NT]	[TM]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	GC.12 subset	<1	[NT]	[ТИ]	LCS-W2	100%
Indeno(1,2,3-c,d)pyrene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	GC.12 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	μg/L	1	GC.12 subset	<1	[NT]	[ТИ]	[NR]	[NR]
<i>Surrogate</i> p-Terphenyl-d ₁₄	%		GC.12 subset	105	[NT]	[NI]	LCS-W2	101%

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Total Phenolics in Water						Base II Duplicate II %RPD		
Date extracted	-			11/12/0 9	35984-1	11/12/2009 11/12/2009	LCS-W1	11/12/09
Date analysed	-			11/12/0 9	35984-1	11/12/2009 11/12/2009	LCS-W1	11/12/09
Total Phenolics (as Phenol)	mg/L	0.05	LAB.30	<0.050	35984-1	<0.050 <0.050	LCS-W1	88%

	QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
	HM in water - dissolved				!		Base II Duplicate II %RPD		
	Date prepared				9/12/09	35984-1	9/12/2009 9/12/2009	LCS-W1	9/12/09
_	Date analysed	-			10/12/0 9	35984-1	10/12/2009 10/12/2009	LCS-W1	10/12/09
)	Arsenic-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	35984-1	<1 <1	LCS-W1	106%
	Cadmium-Dissolved	μg/L	0.1	Metals.22 ICP-MS	<0.1	35984-1	<0.1 <0.1	LCS-W1	108%
	Chromium-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	35984-1	<1 <1	LCS-W1	94%
	Copper-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	35984-1	<1 <1	LCS-W1	96%
	Lead-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	35984-1	<1 <1	LCS-W1	111%
	Mercury-Dissolved	µg/L	0.5	Metals.21 CV-AAS	<0.5	35984-1	<0.5 <0.5	LCS-W1	118%
	Nickel-Dissolved	μg/L	1	Metals.22 ICP-MS	<1	35984-1	3 3 RPD: 0	LCS-W1	104%
	Zinc-Dissolved	µg/L	1	Metals.22 ICP-MS	<1	35984-1	14 16 RPD: 13	LCS-W1	98%

Envirolab Reference:

Revision No: R

Client Reference:

71500, Hoxton Park Airport

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	••••	Spike Sm#	Spike % Recovery
Miscellaneous Inorganics						Base II Duplicate II %RPD			
Date prepared	-			8/12/20 09	35984-1	8/12/2009 8/12/200	9	LCS-W1	8/12/2009
Date analysed	-			8/12/09	35984-1	9/12/2009 9/12/200	9	LCS-W1	09/12/09
pH	pH Units		LAB.1	[NT]	35984-1	7.2 7.2 RPD: 0		LCS-W1	102%
Calcium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	35984-1	17 17 RPD: 0		LCS-W1	105%
Magnesium - Dissolved	mg/L	0.03	Metals.20 ICP-AES	<0.03	35984-1	140 140 RPD: 0		LCS-W1	102%
Hardness by calculation	mgCaCO 3/L	1	Metals.20 ICP-AES	<1	35984-1	620 620 RPD: 0		[NR]	[NR]
QUALITY CONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spi	ke % Recovery	
Total Phenolics in Water				Base +	Duplicate + %RPD)		-	
Date extracted	-		35984-11	11/12/2	009 11/12/2009	35984-2		11/12/09	
Date analysed	-		35984-11	11/12/2	009 11/12/2009	35984-2		11/12/09	
Total Phenolics (as Pheno	l) mg/L		35984-11	<0.	.050 <0.050	35984-2		90%	
QUALITY CONTROL	UNITS	3	Dup. Sm#		Duplicate	Spike Sm#	Spi	ike % Recovery	
HM in water - dissolved				Base +	Duplicate + %RPI)			
Date prepared	_		35984-11	9/12/2	009 9/12/2009	35984-2		9/12/09	
Date analysed	-		35984-11	10/12/2	009 10/12/2009	35984-2		10/12/09	
Arsenic-Dissolved	µg/L		35984-11		<1 <1	35984-2		108%	
Cadmium-Dissolved	μg/L		35984-11	0.2	0.2 RPD: 0	35984-2 11 35984-2 8		116%	
Chromium-Dissolved	µg/L		35984-11		<1 <1			112%	
Copper-Dissolved	μg/L		35984-11		<1 <1			84%	
Lead-Dissolved	μg/L		35984-11		<1] <1	35984-2		108%	
Mercury-Dissolved	μg/L		35984-11		<0.5 <0.5	35984-2		118%	
Nickel-Dissolved	μg/L		35984-11	2	2 RPD: 0	35984-2		106%	
Zinc-Dissolved	μg/L		35984-11		<1 <1	35984-2		94%	
QUALITY CONTROL	UNIT	3	Dup. Sm#		Duplicate	Spike Sm#	Sp	ike % Recovery	
Miscellaneous Inorganics	i			Base +	Duplicate + %RPI				
Date prepared	-		35984-11	8/12/2	2009 8/12/2009	35984-2		09/12/09	
Date analysed	_		35984-11	9/12/2	2009 9/12/2009	35984-2		09/12/09	
рH	pH Un	its	35984-11	6.9	6.9 RPD: 0	[NR]		[NR]	
Calcium - Dissolved	mg/L	.	35984-11	53	53 RPD: 0	35984-2		106%	
Magnesium - Dissolved	mg/L	.	35984-11	390	400 RPD: 3	35984-2		108%	
Hardness by calculation	mgCa(oo	35984-11	1700	1800 RPD: 6	[NR]		[NR]	

Envirolab Reference: Revision No:

Client Reference: 71500, Hoxton Park Airport

Report Comments:

Total Petroleum Hydrocarbons in water: PQL has been raised due to the sample matrix requiring dilution. (too much sediment).

Asbestos was analysed by Approved Identifier:

Not applicable for this job

INS: Insufficient sample for this test

NT: Not tested PQL: Practical Quantitation Limit

<: Less than

>: Greater than

RPD: Relative Percent Difference

NA: Test not required

LCS: Laboratory Control Sample

NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable;

>5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable.

Surrogates: 60-140% is acceptable for general organics and 10-140% for

SVOC and speciated phenols.

Envirolab Reference: 35984 Revision No: R 01

Project Name:

Hyde Page 12 Ashley Street, Chatswood NSW 2068 · To: Envirolab Services Attn: Tania Notaras Kunt Planberth Q. Mazykaparahana .. Lomeran Next Hexton

7/12/03... Lab Quote No......

Date Required:

Project Mgr: Project No:

Email:

Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au

. Notes				M		Faultolah 12 Ashley St	Ph; 9910 6200	100 NO: 35 840	Timp recalved:	Yemp. Constantion	Security: hadeverthone		999	2 (2 / g
	Ottlet												Phone: (02) 9809 0666	(02) 9809 - Date & Time:
Analytes	•				,									Received By: 55
Α	sionen9 sotsedsA	\ \ \ \ \		>	>	\ \ \	<u> </u>		7				2	VQ.
	HGT SBOG HAG	? ?	> \	>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	> >	>	\ \ \	\ \ \	/ / /	\ \	7	7	96 Hermitage Road, West Ryde 2114 Alea Date & Time: Date & Time:
	Heavy Metals VETEX	>	3	>	>	>	>	>	>	>	7	1	7 7	96 Hermit
,	Container type	9/1855	5	0	6	9	9	5	-5	بل	9	گ`	9	Address:
Sample	·····	V.	8	4	< <u></u>	S	<u>\</u>	V	S	ら	\$	S		
<u> </u>	Sampling . Date	POLCT!	112	21	1/12	1/1/	- 5	1	Ē	2117	1-	X	11/12	To Ma
-	- Lab		7	553	5	<u>ک</u>	٠	1.	8	1	5	+	2	Dougle
	Sample Depth	0	54-05		104-O-ST				0	0-6		8H26 54-35	BH 27 01-02	Lab Report No. Send Results to: Relinquished by:
	Sample	710	DH.₩	C1 #X	841 13	8 11 19	CCHd	21.2	DN 22	8 11 20	8474 8474	ØH26	BH 27	Lab Report No. Send Results to: Relinquished by: (3

Notes 12 Ashley Street, Chatswood NSW 2068 Phone: 02 9910 6200 Fax: 02 9910 6201 Email: tnotaras@envirolabservices.com.au Other **Envirolab Services** Attn: Tania Notaras Analytes <u>ö</u> Kut. Plantie ch. Q. Ulizhapartima. Lomi Art 7//2/03 Lab Quote No. Nest Hoxton Phanded Markin 7/500 Sampler Kint Phanded Markin RT Mob. Phone: 04.4.7/6.907 sotsed2A Phenois HA9 OCPs/ BTEX/ HGT Heavy Metals >Container type Ŋ V Sample Type S - .soil W - water **c**⁄) Sampling Date 1 10 7 <u>ښ</u> 9 д С ふ 15-1-5-1 Sample Depth 90 10.0 Date Required: Project Name: Project Mgr: Project No: Festand Email: Sample ID TO THE 15 A

> Phone: Fax:

Date & Time: Date & Time:

MADA Received By:

96 Hermitage Road, West Ryde 2114

Address:

Relinquished by: (aitin Falla Signed:

Relinquished by:

Send Results to: Douglas Partners

Lab Report No.

Signed:

Date & Time: 2 (12

Date & Time:

Received By:

## Douglas Fundamental Fu	CHAINO	Sampler: Kint Plendeck Mathin Hode Pay 12 Ashley Street, Chatswood NSW 2068 Sampler: Chit 276 92 Sampler: Ch	Sample Analytes Analytes Notes	Containet Wetals BTEX/ TPH OCPs/ PCBs PAH PAH PAH PAH PAH PAH PAH PA		12 0 0 187		11/2/2		\Box		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 1/1/2		12 24[1] Phone:	, West Ryde	E. Jahren Date & Time: 2 / 2 / 2 / 1 / 1 / 1 / 1 / 1 / 2 / 2 /
Sample Lab Depth ID O - 0 - 1 - 0 - 3 Sults to: Douglas Red by: 7. House better the body of the body	O r's Waler	Mob. Phone:	Sample	91s(—ᡛ		11/22	11197	26/11	26/11		7	11/50	?d	<u>\$</u>	1 \	Signed:
Sample Depth	Partn.	77		E E	-	-	77	4	4	١	4	∞	<u> </u>	-	<u>~</u>	Selono	4003
	Douglas neatechiles - Enviro	Project Name: Project No: Project Mgr: Email: Date Required:		Sample Sample ID Depth		0.1-6.3				-	(7W3 3.5.		.		GW7 10-9-10		LX

7/500 Sampler Kint

Project Name:

Project Mgr: Project No:

Email:

RT_Mob. Phone: 044.716.20

Envirolab Services :0<u>1</u> .

12 Ashley Street, Chatswood NSW 2068

Attn: Tania Notaras

Email: tnotaras@envirolabservices.com.au

7/12/03 Lab Quote No..... Kunt. Plan beck @ Maykespartinna. Com the

Date Required:

٠.

-	-		Sample							Analytes	S	-		2		Notes	_
Sample Depth		고 요 Guildma	əie	teniainer ontainer	Heavy Metals NETEX	HGT \sq00	PCBs PAH	slonadq	sotsedaA.								
		ខ	a	φ C		_		1		- 							
7 - X - 5 - X	-	197 391		ن	7	<u> </u>	,	\	7	+	-						
7 7 7	1.	14 06/11		-	7)	7		7	+		-					
0.8-8.0						>	7	7	,	1	-	_				-	
1 - V	+				7	7)	7	7	-	-	-					
	1		=======================================		7	,		,	7	+	1.	-					
15 H 4 05 5 5 1 9 1 9 1 9 1 9 1 9 1		[8 27]]			7	/	(7	-		-					ļ
10101	!	T				?	7	•	7	-		1		1			
V: (1/1/2)		 • •		·	7	7	7		-7	<u> </u>		1					
	+ -	1			7.	<u>(,</u>	7		1	1	-						
		1	27-i1		7.	7	7		Z	<u> </u>	-	-	-				
7	2007	ىب	-		>	7	<u>}</u>		1	·	-	- -					
6-1-6-3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	24 27(1	→ (1(7		7	$\frac{1}{2}$		·\.	-	-			- 1	9809 0666	999	
<u>.</u>													יו ב	Filone: (02)	(02) 9809 4095	995	
Lab Report No. Send Results to:		Douglas Partners	: \	Address: 9	96 Hermitage Road, Wast Ryde 2114	age Ros	d, West	Ryde 2	114	Received By:	ad By:	NY.	-	Da	Date & Time:	2/12/08 3:30	9
Relinquished by:		Coche.	Signed;	with		Date & Time:	Date & Time:	٤	7	Received By:	d By:) } 		Dale & Time:	Time:		
Relinquished by:		ı	Signed:		• 1												
				١		•											

Project Name:

Project Mgr: Project No:

Email:

Envirolab Services . To: Nest Hoxton Kust Phenbeck L

12 Ashley Street, Chatswood NSW 2068 7. Mob. Phone: 04.4.7/6.907

Attn: Tania Notaras

Email: tnotaras@envirolabservices.com.au KINC. Plantecck. B. Maythesperdwern. Kitter Mill.

Date Required:

				Sample	 .		•				Æ	Analytes							
Sample	Sample	Lab	. ნι	E Telt	jer T	SI		SS.	 	-						Other	<u>2</u>	Notes .	
	Deptil	5	Samplir Date	lios S sw - W	Contair type	/ea/ staM	378 197	900 309 1A9	Phen	edsA							ļ. 1		<u> </u>
21.12		7,	27111	V.	<u>-</u> 2	7	7	<i>j</i>	7	7			-						
7 I C	7 5 6	1	27/11)	-	7	7	7	\	}		ŀ							π-
7 7 7	0.00	1	27(1)				7		7							•	-		1
	17.00	X	23/11			7	7		7	\downarrow			+	<u> </u>					T
1,	2.57.5	1	27/1			7	7	_	?				1.						T
7117	2.0-).0	1	27[[[7	7	1	7	7			+						1
2417	201207105	3	11/22	-		. 7	7	7		7				-			1		Γ-
21112	2.8-30	1.	11/42	·			7		<u> </u>	.			-	-	-				T
1 ~	5 4-9 17 33		25/11			7.	7	7	1	7			+	-					1
4	2.4.2.6		11152			¥	>		7	-				-					$\overline{}$
2H 25	6.3-6.5	35	7411			7	. 7		7	7				<i>·</i>		<u>}</u>			
15H 28	6.3-0.5	38	27/11	>>	5 .	Ż	7)	7	7 .					Phone:	1			
ah Report No.	d No.						, 1		, de la companya de l	7777		,			Fax:	3			
Send Results to:	1	uglas	Dauglas Partners	Ų.	Address: 96	96'Hermita	fage R	Je Road, Wet	χ. Σ./~	2/69/	A_R	Received By:	N.		1 1	Date & Time: 2/12	12/09	3:30	
Relinquished by:	$\overline{\lambda}$	なったと	٦	Signed:\	2/1/2		Date	Date & Time:			l .	Received By:	ρ			Date & Time:			
Relinquished by:	ed by:		Olgineu.	i ciù.															

9	Douglas Partners acidentist Environment - Growndwaler	
	9	

12 Ashley Street, Chatswood NSW 2068 Phone: 02 9910 6200 Fax: 02 9910 6201 Emall: tnotaras@envirolabservices.com.au Envirolab Services Áttn: Tania Notaras Ku.C. Plankeck. Q. Maykayandhun. Lozzi, Kul. 7 Mob. Phone. 044 7/6 207 West Hoxton Kint 1. Date Required: Project Name: Project Mgr. Project No: Email:

	h	<u>. ,</u>	, , ,	- T	1 1	 · · · · · ·	 , ,	-1	
: -								99	2/12/29 Z:30,
	Omer-							-	(02) 9809 Jale & Time:
Analytes									Received By: ()
•	Heavy Metals BTEX/ PCBs PAH PAH PAH PAH	7	7/	7	-				96 Hermitage Road, West Ryde/2114, Date & Time: 2 12 69 1
Sample	Container type) <u>. </u>							Address:
	යු ප ප් enliqmsව stsC	37 27(1	<u> </u>	40	· E				Douglas Partners
	Sample Sample ID Depth	05-8-30	301/26/109	Bot 12/1109 501/27/109	3024				Lab Report No. Send Results to: Relinquished by:

Page___ of __

Project Name:

To: Envirolab Services

Hoxton Park Airport 71500., Sampler AHP/DH RT Mob. Phone:98090666

12 Ashley Street, Chatswood NSW 2068

Attn: Aileen

Email: tnotaras@envirolabservices.com.au

4 DAY TURNAROUND... Lab Quote No. David Holden/AHP/ Ronnie Tong

Date Required:

Project Mgr: Project No:

Email:

		-	"	Sampl								Analytes							
Sample Si	Sampl L. e IIC	Sampling	gniiqms2 etsQ	lios - S W - Water	Container type	Heavy Metals	RTEX/ TPH	HA9	Phenols	60rprall	ارن					Other	ē	Notes	
GW2		4	4/12/09	3	bottles	0		۵	Ø	0	40								
GW3		2 4	4/12/09	×	pottles				*******	-						_			
GW4	<u> </u>	\$ \$	4/12/09	W	pottles														
GW5	<u> </u>	7	4/12/09	M	pottles											_			
GW6		4	4/12/09	*	bottles											_			
GW7		 -	4/12/09	3	pottles												Envirolab Serv	Ses	
GW8		 	4/12/09	3	pottles											III)II VII Chat	2.9	200	
GW9		≫	4/12/09	Μ	bottles				_		_				q	No: 3	DD NO: 35-484		
OW1		2	4/12/09	Α	pottles						_	 			os de la la la la la la la la la la la la la	rocety ad: 7	Date received: 7/0/09		
OW2		10	4/12/09	×	pottles					-					Hace	Ned by:	Facelved by: C. F.		
BD1/041209	<u> </u>	11	4/12/09	3	bottles	-7	\rightarrow	\	7	7	>				1000	ooling: Welloo	Cooling: Kellcopack		
Lab Report No.	0				1										Pho Pho	one: (C	Phone: (02) 9809 0666	99	
Send Results to:		iglas P	Douglas Partners		Address: 9	96 Hermitage Road, West Ryde 2114	itage F	Road, 1	Vest R	yde 21	14				rax:	י נוני	(20) 9809 4095	33	2
Relinquished by:	l .		Signed:	τö			Dad	Date & Time:	ле:			Received	By:	4 6 7	allun	M Date	Date & Time:	Received By: 16, 1c. Hallyway Date & Time: 1/16 0	
Relinquished by:	ıy:		Signed:	<u></u>			Dat	Date & Time:	je:			Received By:	 			Date	8 1 H I I I		
									i										

CHAIN OF CUSTODY

Email: tnotaras@envirolabservices.com.au Phone: 02 9910 6200 Fax: 02 9910 6201 12 Ashley Street, Chatswood NSW 2068 To: Envirolab Services Attn: Aileen David Holden/AHP/ Ronnie Tong 71500., Sampler: AHP/DH Lab Quote No. RT Mob. Phone:98090666 Hoxton Park Airport...... 4 DAY TURNAROUND... Project Name: Project Mgr: Project No:

Date Required:

Email:

Notes Time ratelved: 6 6 Cooling Isologask Other lob No: Analytes Aspestos **bCB** ٥ ОСЬ Phenols HA9 HdT **BTEX**/ Netals Незиу Container type <u>ā</u>. ă Sampl e Type M - water Ś Ø lios - S 04/12/09 04/12/09 Sampling Date 7 Lab ID Sample Depth 0.4-0.5 0.4 - 0.5Sample ID 2 5 8 B **B**2 8

Form COC Rev0/November 2006

₽

Page ___

> Phone: Fax:

Date & Time:

2 show

Received By: Received By:

96 Hermitage Road, West Ryde 2114

Address:

Douglas Partners

Send Results to: Lab Report No.

Relinquished by: Relinquished by:

Signed: Signed:

Date & Time: Date & Time:

Date & Time:

Becurity: ImfoliBrokenittona

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:

Douglas Partners 96 Hermitage Rd

West Ryde NSW 2114

Attention:

David Holden

Sample log in details:

Your reference:

Envirolab Reference:

Date received:

Date results expected to be reported:

71500, Hoxton Park Airport

ph: 02 9809 0666

Fax: 02 9809 4095

35984

07/12/09

11/12/09

Samples received in appropriate condition for analysis:

YES

No. of samples provided

11 Waters

Turnaround time requested: Temperature on receipt

Standard Cool

Cooling Method:

Ice

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

ph: 02 9809 0666 Fax: 02 9809 4095

Client:

Douglas Partners 96 Hermitage Rd

West Ryde NSW 2114

Attention: Kurt Plambeck

Sample log in details:

Your reference: 71500, West Hoxton

Envirolab Reference: 35840

Date received: 02/12/09

Date results expected to be reported: 7/12/09

Samples received in appropriate condition for analysis:

No. of samples provided

15 Soils

Turnaround time requested:

Temperature on receipt

Cool

Cooling Method:

Cool

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst

ph: 02 9910 6200 fax: 02 9910 6201

email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

APPENDIX E
Calibration Certificates

Service Department BIOLAB (Aust) Pty Ltd

121 Beringarra Avenue Malaga WA 6090

Phone: 08 9262 7555 Fax: 08 9248 6585

Calibration Certificate and Service Report

Instrument Details	
Company: Douglas Partners Pty Ltd	
Instrument: MiniRAE 2000 PID	Biolab Ref: 68491
Serial Number: 110-003382	Instrument ID: DP400

Service Report

Item	Test	Fail	Pass	Comments
Battery Pack	Rechargeable		<u> </u>	Alkaline battery adapter fitted.
			-	
Switch/Keypad	Operation (✓	
Display	Operation		✓	
Filter	Condition		✓	
	Seal		✓	
Pump	Operation		✓	Serviced
	Flow `		. ✓	
PCB .	Condition		✓	
Connectors	Condition		✓	
Lamp Type	10.6eV		✓	Cleaned sensor and lamp.

			-	
Sensor	Operation		1	
Alarms	Audible/Visual		/	
Alai IIIS	Settings		<u>`</u> -	
Software	Version		-	
Datalogger	Operation		· ·	
Damioggei	Operation		 	

Certificate of Calibration

This is to certify that the above instrument has been calibrated in accordance with the calibration procedures as recommended in the instruments service manual with the following results:

Sensor	Calibration Gas &	Concentration	Certified	Gas Bottle No.	Instrun	nent Reading
			245基数		Zero	Span
PID	Isobutylene	100ppm	NIST	106883	0.0	100

		***************************************	***************************************			

Calibrated and serviced by: _

Nunzio Corvaia

Date: <u>19/11/2009</u> Cal Due: <u>19/05/2010</u>

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

Unit ID. DP40
Date of Calibration (Sobrtslene
Calibration Gas. 1/12/09
Concentration Recorded. 98
Calibrated by KP
Battery Charged Yes/No
Lamp OK (*/*@s/No)
Operated by
Signed A

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

Unit ID. DP400
Date of Calibration 25/11/09
Calibration Gas Isobutylene
Concentration Recorded
Calibrated by RP
Battery Charged (Pes/No
Lamp OK (Yes/No)
Operated by
Signed C
OIG(ICU

 $\Delta \Delta$.

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

Unit ID. 2440
Date of Calibration 26/1109
Calibration Gas 150 Wylere
Concentration Recorded. L 📀
Calibrated by ICP
Battery Charged Yes/No
Lamp OK (Yes/No)
Operated by 150
Signed.

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

Unit ID. Dryoo
Date of Calibration 4.2 59
Calibration Gas 1 sobotylene
Concentration Recorded.
Calibrated by SP
Battery Charged Ps/No
Lamp OK (Yes/No)
Operated by
Signed P

Douglas Partners Pty Ltd ABN 75 053 980 117 96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685 Phone (02) 9809 0666 Fax (02) 9809 4095 www.douglaspartners.com.au

Unit ID DP 100
Date of Calibration 27/11/9
Calibration Gas 150 botylene
Concentration Recorded 99
Calibrated by
Battery Charged S/No
Lamp OK (2 8/No)
Operated by
Signed

ENVIROEQUIP

Your Environmental Equipment Supplier

GA2000 - SERVICE REPORT

COMPANY	Douglas Partners		
CONTACT	Wen-Fei Yuen/Kathy Romanis		
EQUIPMENT	GA2000	SERIAL NO.	GA05712
QUOTE NO.	N/A	RECEIVED	16/03/09

REQUEST/PROBLEM DESCRIPTION

CH4 reading 1.0% in fresh air

This Gas Meter has been performance checked / calibrated* as follows:

Calibration	Cal Value	Reading	Cal Value	Reading	Pass?
CH4	50% vol	49.8%	0.00% vol	0.00%	Υ
CH4 LEL -check	50% LEL (2.5%CH4)	2.4%			Υ
H2s	25ppm	26ppm	0ppm	0ppm	Y
O2	21.0% vol	20.9%	0.00% vol	0.00 %	Υ
CO	100ppm	99ppm	0ppm	0ppm	Y
CO2	40% vol	41.2%			Υ
Operations Check					
Cleaned/checked Y	☐ In line Filter Check Y		☐ Charged 100 %		

^{*} Calibration gas traceability information is available upon request.

COMM	EN	TS/AD	DITION	AL F	EPAIR	S/SERV	/ICES	S PERFO	RME	D	
	_	1.			1.0		-				

- Readings could be residual from previous. Sensor is in good condition.

SERVICED BY	Principe Antonio		COMPLETED	18/03/09
SIGNATURE		100		
		ノ、		

Level 1, 4 Talavera Road, North Ryde NSW 2113 Australia

Telephone: +61 2 8817 4244

Fax: +61 2 9889 4622

Email: rentals.syd@enviroequip.com

Internet: www.enviroequip.com

Free Call (interstate): 1-800-675-756

7.86-3.44 34.46 x 7.2 312 20

······································		etails/ Cond			12
Project Name	JOXTON	Honce	A1280	RT	
Project Number	7450				
Location	175 SV	(LCX)	(ON)		
	Bore In:	stallation De	tails		
Date/Time					
Bore/ Standpipe ID	Cold g	SWILL V	cer G	N3 -	C C
Relative Level					
Ground Water Level					
Bore Depth	7,900	<u></u>			
Installed By	,				
	Bore De	velopment D	etails		
Date/Time	T 3/17	12:	අව		
Ground Water Level	3.44		(7.00)defril
Estimated Bore Volume	32	-			1
Total Volume Purged		ORY			
Equipment	Beul	5			
Purged By	DIH				
9/	Bore	e Purge Deta	ils		
Date/Time	14(12	11:20	Dan		
Ground Water Level	4.5	- <u>- ح</u>			•
Estimated Bore Volume					
Total Volume Purged					
Equipment					
Purged By					
	Low F	low/Purge Te	esting		
		Wate	er Quality Parai		
Volume/ time	ΩO	larand	104	150xp	Temp
i	0.04	0	6.44	OVERTO	520
2	006	0	6.40	654(NE)	25-70
3	0.07	0	6.38	634(Vic)) (1
4	0.0g	0	6 - 37	629	t i
ζ	3.07	0	6-38	666	t r
	Grou	ndwater San	npling		
Date/Time	41	, , , , , , , , , , , , , , , , , , , 	11:20) <u>o</u>	
Weather Conditions	Fil	~e		_	
Sample ID	0 W	<u> </u>	<u> </u>		
Sample Appearance	TUR:	CI S			
Filtration performed	بع ٢	s - i(h	1- Field	Filher	·
QA/QC Samples					
Sampling Containers	200	al., la	<i>~</i>	IL Plast Han, Phen	ads)
Comments/ Observations				·	
Sampled By	(D) H				

the state of the s

Project Details/ Conditions 1: CXTON PARK AIRPORT Project Name Project Number 71500.00 WEST HOXTON Location Bore Installation Details Date/Time Buss weit Futherest Bore/ Standpipe ID ow Fran Relative Level Ground Water Level Bore Depth Installed By Bore Development Details 3112/09 Date/Time Ground Water Level 35L. Estimated Bore Volume Total Volume Purged 5414 Equipment Purged By DH Bore Purge Details 4/12 12:30pm Date/Time (4V) Ground Water Level Estimated Bore Volume Total Volume Purged Equipment Purged By Low Flow/Purge Testing Water Quality Parameters Chauct toub 12 mp Volume/ time @ · 3cg *(* (6.2 0.15 Groundwater Sampling 50~~ 4/12/09 Date/Time Fine Weather Conditions Sample ID Sample Appearance Mer-HM- Field Filter Filtration performed BD1/04/209. QA/QC Samples 2 vial; lander, IL Plastic, 2 (x26 BD) Sampling Containers Comments/ Observations DIL). Sampled By

	Project Details/ Conditions
Project Name	HONTON YARK AIRPORT
Project Number	71500,00
Location	WEST HOXTON.
	Bore Installation Details
Date/Time	
Bore/ Standpipe ID	6001
Relative Level	
Ground Water Level	
Bore Depth	3.97
Installed By	
	Bore Development Details
Date/Time	3/12/09 1:10/2-
Ground Water Level	0P7
Estimated Bore Volume	DPT:
Total Volume Purged	DRY
Equipment	BALC
Purged By	(D/1)
	Bore Purge Details
Date/Time	
Ground Water Level	
Estimated Bore Volume	
Total Volume Purged	
Equipment	
Purged By	
	Low Flow/Purge Testing
	Water Quality Parameters
Volume/ time	
	1,800
NO -37	
14	1/20
	Crown durator Sampling
Ď-l-/T	Groundwater Sampling
Date/Time	
Weather Conditions	
Sample ID	
Sample Appearance	
Filtration performed	
QA/QC Samples	
Sampling Containers	•
Comments/ Observations	
<u></u>	
Sampled By	

	Project De	eta <u>il</u> s/ Condit	tions			
Project Name	Herren	PARK.	AIRPORT	-		
Project Number	D1500	· •		·		
Location	•	HOX707		-		
		tallation Det	ails			
Date/Time			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Bore/ Standpipe ID	$G(\iota)$ 2					
Relative Level	- GW-			-107		
Ground Water Level						
Bore Depth	4-98-	`	 ,			
Installed By		W. + WT				
modanos oy	Bore Dev	elopment De	etails	<u></u>		
Date/Time	3/210					
Ground Water Level	2-2-2-			4-98	1000	
Estimated Bore Volume	204		~			
Total Volume Purged	A D	·~~ /				
Equipment	Bail	· ` - (
Purged By	DiH	,,,,				
r diged by		Purge Detai	Is			
Date/Time	4 (12	Jon 3	٠ ٥ حوم			
Ground Water Level	2 2.	104 0	-4-			
Estimated Bore Volume	i~	<u> </u>				
Total Volume Purged						
Equipment	-				**	
Purged By			····			
1 diged by	Low El	ow/Purge Te	stina			
	1		Quality Parar	neters		
Volume/ time	3464	Gers	PH	TURB	BUT S	
of the state of th	0-61	09.99	7.02	331	72-1	
7		10.08	6.78	3/0	51.6	
2	Civ	996	6-68	المحرح ا	21-3	
- न	64	9.83	6.64	337	21.0	
4	0:43	Q-74	6.61	382	>0.9	
	0.43	9.74	1.59	231	20.9	
	1 - 1 - 2		6 /			
	-	-				
		 				
<u> </u>	Groui	ndwater Sam	pling	<u></u>		
Date/Time	T 411	2 109	3:000	~ ·		
Weather Conditions	Fin	=				
Sample ID	6,W 2	· .				
Sample Appearance	1.7-	· · · · · · · · · · · · · · · · · · ·		•		
Filtration performed	Mon-	- 4m -	Field	Filtel		
QA/QC Samples						
Sampling Containers	7	٠, ١٤,	Auber	Lolos +	٦٢ .	
Sampling Contamers	12	1240	250-	- (Har	Physicals	
Comments/ Observations	- 120					
	1 .					
Sampled By	10 /m					

3.33 1-8.4x 7-2.

	Project De	tails/ Condit			-
Project Name	+10x	TOW VA	rik Air	70RT	
Project Number		71500	3		
Location	(Columbia	y Wes		TON	
· · · · · · · · · · · · · · · · · · ·	Bore Ins	tallation Det			
Date/Time	-	***			
Bore/ Standpipe ID	6,00				
Relative Level				***	
Ground Water Level	 -				
Bore Depth	4-97				
Installed By					
mistalied by	Rore Dev	elopment De	etails	······································	
Date/Time	2/17	12:30	3.		/ >
Ground Water Level	2 23	12.00	14	.97 de	PIC
	5:37			7 ()	1 - 2 /
Estimated Bore Volume	+ ~	<u> </u>			
Total Volume Purged	1 Danie	·	·		
Equipment Pursued But	BILL				
Purged By	<i> </i>	Divers Data	lo.		
	Bore 417	Purge Detai	211/2		
Date/Time	1 22	! \ 1	1.,		
Ground Water Level	7.5 in				
Estimated Bore Volume			· · · · · · · · · · · · · · · · · · ·		
Total Volume Purged			<u> </u>		
Equipment	 _				
Purged By	<u> </u>	(D. T.			
	Low Fig	ow/Purge Te:	· Quality Parar	motors	
		Cowander	Wally Farai	ナンイク	+01110
Volume/ time		36	Vri	10.0	90000
	(7):(1 =	24.6	6.73	0.50	24.2
6	047	24.6		OFRI	23.8
	0.43	24. F	6.43		22.7
2	6.4.	24.3	6,43	t {	3.2 L
3	D. 40	74.9	6:25	٠٠	<u> </u>
4	0.34	S-C(-K	623	1 1	53.
	0.30	84.8	4.57	- '	521.0
			<u> </u>		
					1.2
		<u> </u>		<u> </u>	<u> </u>
		dwater Sam			
Date/Time		J /0d	11 am		
Weather Conditions	Fine	·		 	·
Sample ID	6 ms				
Sample Appearance	TURK			11 2	
Filtration performed	lies.	- (HM) -	Field Fi	1tes	
QA/QC Samples					
Sampling Containers	2001	, · l au	ber, I	- Flost	
	2 pla	stic 250	such (Hh	1. Phenal	<u>`)</u>
Comments/ Observations					
Sampled By	DIH	-			

78.10

GROUNDWATER FIELD SHEET

Project Details/ Conditions FARK AIRPORT tlexten) Project Name Project Number 31300 VD Location Bore Installation Details Date/Time Bore/ Standpipe ID Relative Level Ground Water Level Bore Depth Installed By Bore Development Details Date/Time Ground Water Level Estimated Bore Volume Total Volume Purged Baler Equipment Purged By Bore Purge Details 12:20 pm ROTELLOGU Date/Time Ground Water Level Estimated Bore Volume Total Volume Purged Equipment Purged By Low Flow/Purge Testing Water Quality Parameters G~3 TURB Volume/ time (9×4 18 Pg OVENTU 669 19:09 17.35 6.54 6.52 ~(19:30 1 1 19:46 6 49 22.7 11 1947 <u>G-49</u> **Groundwater Sampling** 12:20p 4/12/09 Date/Time Weather Conditions (w4 Sample ID Sample Appearance Field Filter Filtration performed QA/QC Samples 2 wat. (onboer, 16 plastic, 2 plastic 25 ont (HM, Phends) Sampling Containers Comments/ Observations DIM Sampled By

5 % 5 L - 3.58 32 34 4 x 7.2

GROUNDWATER FIELD SHEET

The state of the s

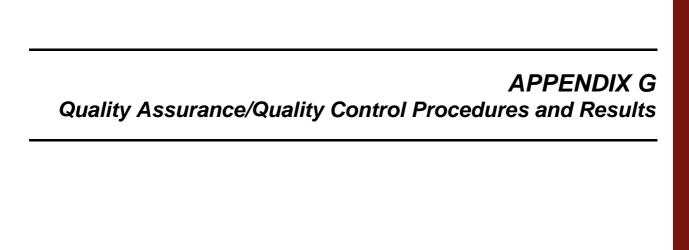
Project Details/ Conditions Horrons PARK Project Name 7150000 Project Number 155 HEXTON Location Bore Installation Details Date/Time GW5 Borel Standpipe ID Relative Level Ground Water Level Bore Depth Installed By Bore Development Details るルン (です Date/Time <u>3. 58</u> Ground Water Level Estimated Bore Volume DM Total Volume Purged Equipment DIT Purged By Bore Purge Details ५। । ७२।०-५ 12545 Date/Time Ground Water Level Estimated Bore Volume Total Volume Purged Equipment Purged By Low Flow/Purge Testing Water Quality Parameters ionduce Volume/ time 19.62 (O) 6.64 22-0 21.3 21-0 2 121 0-5 20-75 Groundwater Sampling 12:45 U (12(09 Date/Time - (---Weather Conditions ج ربح Sample ID robon ch Sample Appearance es Am-Freld Filtur Filtration performed QA/QC Samples 1 C plantie, 1 Ambig Sampling Containers 2 plantic 250ml (Uhr, Phenals Comments/ Observations 511 Sampled By

	Project Details/ Conditions
Project Name	HORTON PARK AIRPORT
Project Number	71500
Location	WEST HOXTON
	Bore Installation Details
Date/Time	
Bore/ Standpipe ID	6106
Relative Level	
Ground Water Level	4.77~
Bore Depth	
Instailed By	
	Bore Development Details
Date/Time	3/2/09
Ground Water Level	200 4.77 deep
Estimated Bore Volume	204
Total Volume Purged	COL
Equipment	BAIL
Purged By	DIM
	Bore Purge Details
Date/Time	cilis (09 2:30
Ground Water Level	7.3-
Estimated Bore Volume	3
Total Volume Purged	
Equipment	
Purged By	
	Low Flow/Purge Testing
	Water Quality Parameters
Volume/ time	GRY COMP PH FURIS TEMP.
G	0.4 11.04 5.91 CVERTO 22.T
2	6 34 73 6 3 3
3	0 34 13 2
4_	6.30 13.42 5 GO 11 20.9 12.79 13.41 6.06 797 20.0
3	
6	0.36 13.61 6.2 727 306
	0.27 13.64 6.2 720 20:6
	O I
	Groundwater Sampling UN2/09 7:20pm
Date/Time	
Weather Conditions	Fine
Sample ID	1506
Sample Appearance	I was at
Filtration performed	Yes, HM - FIELD TITES.
QA/QC Samples	12 Ol V Slattice II Am hor
Sampling Containers	2 was, it plastic, it Amber,
	5x Szow (Hand I harrand)
Comments/ Observations	
Sampled By	DH

7.15

	Project Details/ Conditions					
Project Name	HORTON PARK AIRFORT					
Project Number	7150000					
ocation	WEST HOXTON,					
	Bore Installation Details					
Date/Time	^					
Bore/ Standpipe ID	GWT					
Relative Level						
Ground Water Level						
Bore Depth	7.15					
Installed By						
	Bore Development Details					
Date/Time	3/12/19					
Ground Water Level	1.59					
Estimated Bore Volume	400					
Total Volume Purged	120 -					
Equipment	RAIL					
Purged By	DIH					
	Bore Purge Details					
Date/Time						
Ground Water Level	1.6.					
Estimated Bore Volume						
Total Volume Purged						
Equipment						
Purged By						
	Low Flow/Purge Testing					
	Water Quality Parameters					
Volume/ time	ONT CONDOR PM TURED FEMP.					
0	024 951 Fits 156 22.4					
	0.17 662 7.18 124 22.					
2	016 405 6.48 135 518					
3	0.17 38- 588 130 01.7					
Ч	5.19 334 5.71 136 21.6					
5	0.22 340 6.71 155 4.6					
6	0.22 332 5.70 150 21.6					
3	6 2 327 5.71 60 216					
	Groundwater Sampling					
Date/Time	4/12/09 /.45 pm					
Weather Conditions	Fine					
Sample ID	<u>6~7</u> ,					
Sample Appearance	Turbad					
Filtration performed	MestlM- Field Filter					
QA/QC Samples						
Sampling Containers	2 vial, 1 Lanber, 1 Plastic					
	2 plastic 25 and (um, planets)					
Comments/ Observations						
Sampled By	D 1-1					

529 -3.13 12326 17.2 1452


					1.2	فلنطر	
	Project De	tails/ Condit	ions		175.2		2
Project Name	·HOXT	con &	APR	AIR	100 th		Z
Project Number	71500	,,00					
Location	WEST	Hert o	~ ~				2λ
		tallation Det					7
Date/Time			•			0*	
Bore/ Standpipe ID	CAUSE				•		
Relative Level							
Ground Water Level	\$						
Bore Depth	₹.39	· ~~					- 1
installed By							
	Bore Dev	elopment De	etails				
Date/Time	312109		<u> </u>				
Ground Water Level	3.13				5-2	391 .	200
Estimated Bore Volume	16						
Total Volume Purged	12/2						
Equipment	Bailer	/					
Purged By	DI-+						
	Bore	Purge Detai	ls				
Date/Time	4/12		:(5				
Ground Water Level	3.1		-3	τ			
Estimated Bore Volume	(~-						
Total Volume Purged							
Equipment							
Purged By							
	Low Flo	ow/Purge Te					
			Quality	Paran	neters		
Volume/ time	०/५	(ang.	PH	·	reB	্বত্ত	
C>	6.27	07.16	7.2		GWCTU	21.0	
	G:27	73.8		<i>ص</i> ر	<u> </u>	2(4	
2	9.10	8.24	7-0	GI	10		<u>B. r</u>
	6.2	8.94	7.	O 77-	<u> </u>	20.	
	6.2	8.93	_	<u> </u>	l r		<u> </u>
5	0.2	8,46	(1.	यर		20	م <u>رح</u>
<u> </u>	0.2	8 2 3	0	3	14		
	<u> </u>	<u> </u>				-	
	ļ	-					-
			- !:- ~		<u> </u>		
		dwater Sam					
Date/Time	4 (12	(c) (·	<u>18 pu</u>	<u> </u>	,		
Weather Conditions	Fin-	2					
Sample ID	(5 W	>6					
Sample Appearance	1005	<u> </u>			7 7	//	
Filtration performed	1 Y.	- (Port	- (-)	ALC.	<u> </u>	F-29	
QA/QC Samples	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>	1	C . v	01	<u> </u>
Sampling Containers	1,5	دصد ز	~ ~~~	ر م	4) [C	10)	770
	 	6100x1c		السملا	- MM	7700	~ <u>*~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
Comments/ Observations		· 					
Sampled By	1 1 2	4-1.	···				

37.55 1.345 x 7.2 290

GROUNDWATER FIELD SHEET

Project Details/ Conditions HOXTON PARK AIRPORT. Project Name Project Number 11500 WEST Location HONTON Bore Installation Details Date/Time Co (2) 9 Bore/ Standpipe ID Relative Level Ground Water Level Bore Depth Installed By Bore Development Details 4/12/09 4:30 a Date/Time Ground Water Level Estimated Bore Volume Total Volume Purged Equipment Purged By Bore Purge Details Date/Time Ground Water Level 2,6 in Estimated Bore Volume Total Volume Purged Equipment Purged By Low Flow/Purge Testing Water Quality Parameters Volume/ time ENDUCIU WATER TO FORZ 1 RULLIE Groundwater Sampling 4/12/09 3:30= Date/Time Weather Conditions Fhe Sample ID Sample Appearance Field Filter Filtration performed QA/QC Samples plastic 250m (HM, PHENOUS) Sampling Containers Comments/ Observations HI @ Sampled By

QA/QC PROCEDURES AND RESULTS

Data Quality Objectives

The scope of the Limited Phase 2 Contamination assessment has been devised broadly in accordance with the seven step data quality objective process, as defined in Australian Standard "Guide to the Sampling and Investigation of Potentially Contaminated Soil Part 1: Non-volatile and semi-volatile compounds (AS 4482.1 – 1997). The DQO process is outlined as follows:

(1) State the Problem

The "problem" is to assess the overall contamination status of the site within a limited pre-sale due diligence period, and to determine if the site is suitable or can be rendered suitable for the proposed development.

(2) Identify the Decision

The suitability of the site for redevelopment and the scope of the required remedial works will be assessed against the SAC and GIL provided in Section 10.

(3) Identify Inputs to the Decision

The primary inputs in assessing the requirements for assessing the suitability of the site for the proposed development will be:

- Available site Information regarding site history, activities undertaken on the site and the surrounding area;
- Results of previous investigations;
- Results from the current round of investigation as detailed in the scope of works;
- The local geology, topography and hydrology;
- Potential contaminants;
- Published guidelines for assessing soil and groundwater quality;

Field observations/measurements, field mapping and analytical results.

(4) Define the Boundary of the Assessment

The site is identified as a 40 ha section of the Hoxton Park Airport that is proposed to form the site of a proposed two warehouse redevelopment. The site is presented in the Drawing 1, Appendix A.

(5) Develop a Decision Rule

The decision rule is the comparison of the analytical results against relevant published guideline criteria including:

- i) NSW DECC Guidelines for the NSW Site Auditor Scheme 2nd edition (2006);
- ii) NSW DECC Guidelines for Assessing Service Station Sites (1994);
- iii) ANZECC Guidelines for Fresh and Marine Water Quality ANZECC (2000) for the protection of 95% of species; and
- iv) Other screening references including Commonwealth legislation the *Airports Act* (1997), *Airport (Environment Protection) Schedule 2 Water Pollution Accepted Limits: Table 1.03*).

These assessment criteria will be used to evaluate whether the site is compatible with redevelopment into commercial/industrial style warehouse from a contamination standpoint.

(6) Specify Acceptable Limits on Decision Errors

In order to ensure the quality of the soil and groundwater data, appropriate and adequate quality assurance and quality control (QA/QC) measures and evaluations should be incorporated into the validation sampling and testing regime.

A field and laboratory QA/QC regime, comprising the collection and analysis of Inter-laboratory duplicate / replicate samples, Intra-laboratory duplicate / replicate samples will be implemented to meet the requirements associated with the following data quality indicators (DQIs).

conformance with specified holding times;

- accuracy of spiked samples within the laboratory's acceptable range (typically 70-130% for inorganic contaminants and greater for some organic contaminants);
- field and laboratory duplicates and replicates samples will have a precision average of +/-30% relative percent difference (RPD) for inorganic analytes and +/- 50% RPD for organic analytes;
- field replicates will be collected at a frequency of 10% of all samples; and
- no evidence of significant cross contamination during sampling or handling activities.

(7) Optimise the Design for Obtaining Data

The purpose of the current investigation is to provide representative information across the entire site. The sampling programme has therefore adopted a combination of a systematic approach as well as targeted bores for areas of environmental concern. The sampling locations are provided in Drawings 1 to 4, Appendix A.

Procedures for the collection of environmental samples, as described in Section 9, were developed prior to undertaking the assessment phase of works, which were in line with NSW EPA guidelines and current industry practice. DP employs NATA-accredited analytical laboratories to conduct sample analysis. Envirolab Services Pty Ltd was employed to conduct primary sample analysis and Labmark Pty Ltd was employed to conduct interlaboratory sample analysis.

It is therefore considered that the data quality of assessment was of a satisfactory standard.

Quality assurance and control formed an integral part of this assessment. The results of the QA/QC assessments are detailed below.

The Data Quality Indicators (DQI's) have been addressed as follows in Table G1.

Table G1 - DQIs and Evaluation Procedures

DQI	Evaluation Procedure
Documentation completeness	Completion of field and laboratory documentation including chain of custody, test bore reports.
Data completeness	Sampling at an appropriate density as per the requirements of the Sampling Design Guidelines. Bearing in mind the limited nature and time frame of the assessment, plus the overall low potential for contamination throughout much of the site a sampling density of approximately 50% of the requirement of the Sampling Design Guideline was adopted, analysis of appropriate contaminants, analysis of appropriate soil horizons, analysis of appropriate QA samples etc
Data comparability	Use of NATA accredited analytical methods, use of consistent sampling technique, commitment to equipment decontamination, field sample storage techniques etc.
Data representativeness	Sampling from targeted areas and a broad grid pattern across the site in order to obtain samples representative of contamination present. In addition some of the bores were targeted to assess known areas of potential environmental concern
Precision and accuracy for sampling and analysis	Use of NATA accredited analytical methods, achievement of 30-50% RPD for replicate analysis (as appropriate) and achievement of laboratory QC criteria.

As indicated above, the DQIs for sampling and analysis were achieved and the quality of the data satisfactorily meets the objectives of the current assessment.

Q1 - FIELD QUALITY ASSURANCE AND QUALITY CONTROL

The field QC procedures for sampling as prescribed in Douglas Partners *Field Procedures Manual* were followed at all times during the assessment.

Q1.1 Sampling Team

Field sampling was undertaken by experienced DP field staff including Environmental Scientists Kurt Plambeck, Alistair Hyde Page and David Holden. Soil samples were collected on 25 to 27 November, 1 December and 4 December 2009. Groundwater development was conducted 3 December 2009 on and groundwater sampling was conducted on 4 December 2009. Sampling was undertaken during fine and overcast weather conditions.

Q1.2 Sample Collection

Sample collection procedures and dispatch for soil and groundwater are reported in Section 9.3.

Q1.3 Logs

Logs for each sampling location were recorded in the field. The individual samples were recorded on the field logs along with the sample identity, location, depth, initials of sampler, duplicate locations, duplicate type, and site observations. Analysis to be performed on each sample and the dispatch courier were recorded on the COC, Appendix D. Test Bore Logs are presented in Appendix C. Groundwater sampling and development details were recorded in field sheets which are presented in Appendix F.

Q1.4 Chain of Custody

Chain of custody information was recorded on the Chain of Custody (COC) sheets and accompanied samples to the analytical laboratory. Signed copies of COCs are presented in Appendix D, following the laboratory reports.

Q1.5 Sample Splitting Techniques

Replicate samples were collected in the field as a measure of accuracy, precision and repeatability of the results. Field replicate samples for soil were collected from the same location and an identical depth to the primary sample. Equal portions of the primary sample

were placed into the sampling jars and sealed. The sample was not homogenised in a bowl and then split to prevent the loss of volatiles from the soil. Replicate samples were labelled with a DP identification number, recorded on DP bore logs, so as to conceal their relationship to their primary sample from the analysing laboratory. Groundwater replicate collection involved filling two sample containers by decanting approximately equal portions of the primary sample.

Q1.6 Duplicate Frequency

Field sampling comprised replicate sampling, at a rate of approximately one duplicate sample for every twenty original samples for intra-laboratory analysis, one duplicate/triplicate sample for every twenty samples for inter-laboratory analysis, trip spikes, trip blanks and a rinsate sample from the groundwater pump during groundwater sampling.

Q1.7 Field Blank Results

A field blank is a sample taken as an indication to demonstrate correct field handling. This is further discussed in Section Q1.9.

Q1.8 Background Sample

A background sample is representative of natural background soil conditions. Background samples were not applicable as part of this assessment as the land at the site and in the surrounding area have been developed over a significant period of time and not in a natural state.

Q1.9 Rinsate Samples

Decontamination was carried out between groundwater sampling events and on augurs between test bores. New tubing was used to sample each groundwater well however the tube within the pump was non disposable. Decontamination of all non-disposable soil and groundwater sampling equipment involved a "triple rinse" procedure i.e. a rinse of all particulates in were first rinsed in tap water followed a decontamination using a 3% Decon 90 solution and a final rinse in deionised water.

No rinsate samples were collected during the investigation, however the low levels of contaminants found in both soil and groundwater indicate that cross-contamination of the samples was extremely unlikely and that therefore the decontamination procedures were adequate.

Q1.10 Trip Spikes

According to the NSW EPA Guidelines for Consultants Reporting on Contaminated Sites (1997), laboratory prepared trip spikes are to be taken into the field, subjected to the same preservation methods as the field samples, then analysed, for the purposes of determining the losses in volatile organics incurred prior to reaching the laboratory.

The practicalities of trip spikes are currently being debated and a detailed procedure is yet to be finalised. Discussions with the laboratory indicated that trip spikes are generally prepared as aqueous solutions. The current assessment did not include the analysis of trip spikes, however samples were maintained at 4°C in the field, during transport and at the laboratory, sample jars/bottles were filled to limited air/head space and sample lids were securely fastened. Furthermore samples were analysed within recommended holding times. It is therefore considered that the potential for volatile loss was minimal.

Q1.11 Trip Blanks

Laboratory prepared soil and water trip blanks are used to assess cross-contamination of samples. Trip blanks were not analysed as part of this assessment, however, there was no evidence of cross-contamination in the soil and/or groundwater samples based on the low levels detected. It is therefore considered that cross contamination had not occurred during the course of the round trip from the site to the laboratory.

Q1.12 Field Instrument Calibration

The groundwater parameters were measured with a 90FL-T water quality meter. The water quality meter was calibrated at Enviroequip and the pH meter was calibrated prior to use in the field with pH buffer solutions of 4 and 10. The calibration certificate can be found in Appendix E.

All soil samples were screened for the presence of Total Photo-Ionisable Compounds (TOPIC) using a calibrated Photo-Ionisation Detector (PID). The PID was calibrated at Enviroequip and in the field with Isobutylene gas. The calibration certificate and daily calibration records can be found in Appendix E.

Q1.13 Relative Percentage Difference

A measure of the consistency of results for field samples is derived by the calculation of relative percentage differences (RPDs) for duplicate samples. A RPD of \pm 30% is generally considered typically acceptable for inorganic analytes by EPA, although in general a wider RPD range (50%) may be acceptable for organic analytes.

Q1.13.1 Intra-Laboratory Analysis

Intra-laboratory duplicates were conducted as an internal check of the reproductively within the primary laboratory (Envirolab Pty Ltd) and as a measure of consistency of sampling techniques. Replicate samples were collected at a rate of approximately one replicate sample for every ten original samples collected and also analysed at a rate of 5% of primary samples analysed.

The comparative results of analysis between original and duplicate samples are summarised in the tables below.

Table Q1 – Intra-laboratory Results Heavy Metals

	As	Cd	Cr ¹	Cu	Pb	Hg	Ni	Zn	B(a)P	Total PAH
GW3/0.4-0.5	6	<0.5	20	14	17	<0.1	6	10	<0.05	<0.1
BD1/261109 ⁴	6	<0.5	18	12	13	<0.1	6	10	<0.05	<0.1
Difference	0	0	2	2	4	0	0	0	0	0
RPD (%)	0	0	11	15	27	0	0	0	0	0
GW8/0.3-0.5	7	<0.5	16	11	22	<0.1	8	15	<0.05	<0.1
BD2/261109 ⁴	6	<0.5	14	9	19	<0.1	6	12	<0.05	<0.1
Difference	1	0	2	2	3	0	2	3	0	0
RPD (%)	15	0	13	20	15	0	29	22	0	0
BH15/0.1-0.3	8	<0.5	27	8	37	<0.1	6	32	0.08	0.68
BD1/271109 ⁴	8	<0.5	24	7	34	<0.1	5	24	0.05	0.45
Difference	0	0	3	1	3	0	1	8	0.03	0.23
RPD (%)	0	0	12	13	8	0	18	29	46	41
OW2	<1	<0.1	<1	<1	<1	<0.1	2	1	<1	<0.1
BD1 041209 ³	<1	0.2	<1	<1	<1	<0.1	2	<1	<1	0.2
Difference	0	0	0	0	0	0	0	0	0	0.1
RPD (%)	0	0	0	0	0	0	0	0	0	67

Difference

RPD (%)

0

0

				,	, .		
	C6-	C10-			Ethyl		
	C9	C36	Benzene	Toluene	benzene	xylenes	phenols
OW2	<10	<250	<1	<1	<1	<3	470
BD1 041209 ³	<10	<250	<1	<1	<1	<3	<50

0

0

0

0

0

0

420

162

Table Q2 – Intra-laboratory TPH, BTEX, phenols

0

0

Most of calculated RPD values were within the acceptable range of \pm 30 for inorganic analytes (±50% for organic) for the sample and its duplicates with the exception of those shaded. However, this is not considered to be of concern due to:

The low actual differences in the concentrations of the replicate pairs;

0

0

- Replicates, rather than homogenised duplicates were used to avoid volatile loss;
- Some of the duplicate samples being collected in filling material which is heterogeneous in nature, therefore differences are representative of the material and not the result inconsistencies in the sampling technique or laboratory precision; and
- Most of the recorded concentrations being at/ close to the practical quantitation limit.
- All other QA/QC parameters met the DQI's

It is therefore considered that the results indicate an acceptable consistency between the samples and their duplicates and indicate that suitable field sampling methodology was adopted and laboratory precision was achieved.

Q1.13.2 Inter-Laboratory Analysis

Inter-laboratory duplicates were conducted as a check of the reproductively of results between the primary laboratory (Envirolab Pty Ltd) and a secondary laboratory (Labmark Pty Ltd) and as a measure of consistency of sampling techniques. Inter-laboratory duplicates were collected at a rate at least one replicate sample for every 5 original samples collected and also analysed at a rate of 5% of primary samples analysed. Primary chemicals of concern were analysed at a higher frequency to other chemicals.

The comparative results of analysis between original and inter-laboratory duplicates are summarised in the tables below. Note that where the laboratory PQL are different and both

samples are below PQL (or one sample is below PQL and other has a recorded detection below the other lab PQL) the difference and RPD has been given as zero (0).

Table Q3 - Inter-laboratory Results

	As	Cd	Cr ¹	Cu	Pb	Hg	Ni	Zn	B(a)P	Total PAH
GW9/2.8-3.0	-	-	-	1	1	-	-	-	<0.05	<0.1
BD3261109 ⁹	-	-	-	-	-	-	-	-	<0.5	<0.5
Difference	-	-	1	-	-	-	1	-	0	0
RPD (%)	-	-	-	-	-	-	-	-	0	0
BH6/0.1-0.3	7	<0.5	16	19	18	<0.1	9	28	<0.05	<0.1
BD4/271109 ⁹	7	<0.1	16	15	20	0.11	8	25	<0.5	<0.5
Difference	0	0	0	4	2	0.01	1	3	0	0
RPD (%)	0	0	0	24	11	10	12	11	0	0
BH1/0.1-0.3	5	<0.5	18	21	15	<0.1	11	20	<0.05	<0.1
BD3/271109 ⁹	5	<0.1	15	18	14	0.08	9	19	<0.5	<0.5
Difference	0	0	3	3	1	0	2	1	0	0
RPD (%)	0	0	18	15	7	0	20	5	0	0

All of calculated RPD values were within the acceptable range of □ 30 for inorganic analytes (□50% for organic). It is therefore considered that the results indicate an acceptable consistency between the samples and their duplicates and indicate that suitable field sampling methodology was adopted and laboratory precision was achieved.

Q2 - LABORATORY QUALITY ASSURANCE AND QUALITY CONTROL

Q2.1 Chain of Custody

Chain of custody information was recorded on the Chain of Custody (COC) sheets and accompanied samples to the analytical laboratory. COCs contained receipt date and time and the identity of samples. Signed copies of COCs are presented in Appendix D, following the laboratory reports.

Q2.2 Holding Times

A review of the laboratory report sheets and chain-of-custody documentation indicated that holding times were met, as summarised in the table below.

Recommended maximum **Matrix Analyte** Holding time met holding time Soil Heavy Metals: As, Cd, Cr, 6 months Yes Cu, Pb, Hg, Ni, Zn TPH C₆-C₉ 14 days Yes TPH C₁₀-C₃₆ 14 days Yes **BTEX** 14 days Yes 14 days Yes PAH OCP 14 days Yes PCB 14 days Yes Phenols 14 days Yes pН 7 days Yes Asbestos Nil yes Water Metals 6 months yes TPH C₆-C₉ 14 days yes TPH C₁₀-C₃₆ 7 days yes 14 days **BTEX** yes PAH 7 days yes рН 6 hours yes hardness 28 days yes

Table Q4 - Holding Times

Q2.3 Analytical Laboratory

Samples were submitted to the following laboratories for analysis:

- Primary Laboratory: Envirolab Services Pty Ltd (Chatswood);
- Secondary Laboratory: Labmark Environmental Laboratories (Asquith)

Both laboratories are NATA accredited. Envirolab's accreditation number is 2901 and is accredited for compliance with ISO/IEC 17025. Envirolab tests comply with NATA and NEPM. In house procedures are employed by Envirolab in the absence of documented standards.

Labmark's NATA accreditation number is: 13542. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA/ APHA documents.

Q2.4 Analytical Methods

The laboratory analytical methods are provided on the laboratory certificates in Appendix D and summarised below in Tables Q5 and Q6.

Table Q5 - Soil Analysis

Analyte	Limit of Reporting (mg/kg) Envirolab/labmark	Envirolab Reference Method	Labmark Reference Method
Heavy Metals Cd, Cr, Cu, Pb, Ni, Zn	1.0/0.1-5.0	Metals.20 ICP-AES	E022.2 digested in nitric/hydrochloric acid, analysis by ICP-MS
Arsenic (As)	4.0/1.0	Metals.20 ICP-AES	E022.2 digested in nitric/hydrochloric acid, analysis by ICP-MS
Mercury (Hg)	0.10/0.05	Metals.21 ICP-AAS	E026.2 digested in nitric/hydrochloric acid, analysis by CV-ICP-MS or FIMS
VOC	0.5-10/0.5-5.0	GC.14	E016.2 methanol extraction, analysis by P&T/GC/MS
TPH C ₆ -C ₉	25/10	GC.16	E029.2/E016.2 methanol extraction, analysis by P&T/GC/FID/MSD
TPH C ₁₀ -C ₃₆	250/250	GC.3	E006.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/FID
BTEX	0.5-2/0.2-1.0	GC.14	E002.2 methanol extraction, analysis by P&T/GC/PID/MSD
OCP	0.1/0.05	GC-5	E013.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/dual ECD
PCB	0.1/0.5	GC-6	E013.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/dual ECD
PAH	0.05-0.1/0.5-1.0	GC.12 subset	E007.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MS
Phenols	1-10/0.5-1.0	GC.12	E008.2 DCM/Acetone/Hexane (10:45:45) extraction, analysis by GC/MS
Asbestos	qualitative identification	AS4964-2004, qualitative identification using Polarised Light Microscopy and Dispersion Staining Techniques.	Not analysed

Table Q6 - Groundwater Analysis

Analyte	Limit of Reporting (µg/L) Envirolab/labmark	Envirolab Reference Method
Heavy Metals, As, Cd, Cr, Cu, Pb, Ni, Zn	0.1-1.0/0.5-5.0	Metals.22 ICP-MS
Mercury (Hg)	0.5-0.1	Metals.21 CV-AAS
BTEX	1-2/5-10	GC.13
TPH C ₆ -C ₉	10/50	GC.16
TPH C ₁₀ -C ₃₆	250/250	GC.3
PAH	0.1-0.2	GC.12 subset
рН	0.1	LAB.1

The following QA/QC procedures were conducted by the laboratory. The results are included in the laboratory reports in Appendix D.

Q2.5 Surrogate Spike

This sample is prepared by adding a known amount of surrogate, which behaves similarly to the analyte, prior to analysis to each sample. The recovery result indicates the proportion of the known concentration of the surrogate that is detected during analysis. These results are within acceptance limits as specified in Envirolab Services, indicating that the extraction technique was effective.

The laboratory acceptance criteria for surrogate samples is generally 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.6 Practical Quantitation Limits - PQLs

The PQL is the lowest quantity of an analyte which can be detected during the analysis. PQLs at different analytical laboratories can differ based on the analytical techniques.

Q2.7 Reference and Daily Check Sample Results - Laboratory Control Sample (LCS)

This sample comprises spiking either a standard reference material or a control matrix (such as a blank of sand or water) with a known concentration of specific analytes. The LCS is then analysed and results compared against each other to determine how the laboratory has performed with regard to sample preparation and analytical procedure. LCSs are analysed at a frequency of 1 in 20, with a minimum of one analysed per batch.

The laboratory acceptance criteria for LCS samples is generally 70-130% for inorganics/metals; and 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.8 Laboratory Duplicate Results

These are additional portions of a sample which are analysed in exactly the same manner as all other samples. The laboratory acceptance criteria for duplicate samples is: in cases where the level is <5xPQL - any RPD is acceptable; and in cases where the level is >5xPQL - 0-50% RPD is acceptable.

Q2.9 Laboratory Blank Results

The laboratory blank, sometimes referred to as the method blank or reagent blank is the sample prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, it can be determined by processing solvents and reagents in exactly the same manner as for samples. Laboratory blanks are analysed at a frequency of 1 in 20, with a minimum of one per batch.

Q2.10 Matrix Spike

This is a sample duplicate prepared by adding a known amount of analyte prior to analysis, and then treated exactly the same as all other samples. The recovery result indicates the proportion of the known concentration of the analyte that is detected during analysis. The laboratory acceptance criteria for matrix spike samples is generally 70-130% for inorganics/metals; and 60-140% for organics; and 10-140% for SVOC and speciated phenols.

Q2.11 Results of Laboratory QA

The laboratory QA for surrogate spikes, LCS, laboratory duplicate results, method blanks and matrix spikes were generally within the acceptance standards. There were, however a few comments made in the laboratory reports which are summarised in Table Q7 below.

Table Q7 - Laboratory QA Comments

Laboratory Report	Comment
ELS 35840	No comments
ELS 35858	Phenols in soil spike recovery failed due to matrix interference
ELS 35984	PQL of TPH raised due to sample matrix requiring dilution (due to high sediment)
ELS 35987	No comments
Labmark E045950	No comments

It was therefore considered that an acceptable level of laboratory precision and consistency was achieved and that surrogate spikes, LCS, laboratory duplicate results, method blanks and matrix spike results were of an acceptable level.