Appendix 2

Holmes and Holmes Pty Ltd

Preliminary Acid Sulphate Soil Investigation South of Lake Cathie December 1998

HOLMES & HOLMES PTY. LTD.

CHARTERED ENGINEERS (AUSTRALIA)

A STREET, A DATE OF THE SERVING OF THE PARTY OF THE PARTY

A.C.N. 001 266 271

P.O. Box J 159, Coffs Harbour Jetty, 2450 Reg. Laboratory No. 5702 40 Rippingale Road, Korora, 2450 Phone/Fax (066) 53 6457

15th December 1998 (972 615)

Attention of Mr. B. Tierney c/o Luke & Company PORT MACQUARIE NSW 2444

Dear Sirs,

PRELIMINARY ACID SULPHATE SOIL INVESTIGATION SOUTH OF LAKE CATHIE (FORMERLY RAINBOW PACIFIC SITE

We have now collated the information obtained from the drilling, sampling and testing of six test holes in the low areas of this site.

The boreholes were located, levelled and staked by Luke & Company, as Borehole 101 to Borehole 106, (inclusive) and these numbers have been adopted in this Report.

The results are summarised on the attached Plan, indicating a depth of overburden (clayey material) and the R.L. to which excavation can proceed without encountering significant acid sulphate soil problems. Testing of samples throughout the depth of the profile (to five metres depth) suggests that the material at depth is the prime source of potentially acid sulphate soil.

Inspection of the Plan also indicates that significant depths of clayey overburden occur on the western side of the site, with the ridge line (with the access road) and the area to the east, providing the better area for the winning of dredgeable sediments.

Acid sulphate soil problems are also less significant on the eastern side of the area investigated, with Eoreholes 1 and 2 providing about four metres depth of material which can be won without generating significant quantities of acid such as would require remediation.

`Continued........

Preliminary Aciá Sulphate Soil Investigation, south of Lake Cathie

It is therefore recommended that, if the investigation of a fill material source in this area is to be further pursued, the area between the access road and the creek line to the east, is the area in which the investigation should be concentrated.

Yours faithfully,

W. H. G. HOLMES, E.E., MIE(AUST) HOLMES & HOLMES PTY. LTD.

66536457

RECORD OF BOREHOLES W1 & W2
CLIENT: LUKE & COMPANY
PROJECT: Rainbow Beach, Bonny Hills

Dia of boring: Bo week

Bong hole:	Samples of Core Recov		Ç	nange of S	1445	
TOTAL	Depth :	Type or%	Legens	Depth	A.H.D Level	Description of Strata
BHI.	108		//			Sandy silty CLAY, gray, moist/dry, fin
26-11-02	****	150 S	17			CLAY, high plasticity
5:74	÷	8	1/			Dk. grey moiet, firm
	an 4"		4	•	:	3-3
	* 1 2	E. S	//			CLAY, high plasticity
3 0	offer no and	2 55 2 16	1	-1.0		Lt. grey with yellow brawn
		X250 (5	//	•		mothings
		15				moist, firm
		9	//			
**	2 2 2 0	22	//	_		CLAY andenta planticity
	T T	i i	100	-2-0	W.L	CLAY, moderate plasticity with a little gravel (fine)
-	7.0	8	800		7	It grey mottled greenish yell br
		9 5	1./	-		wet, firm.
		9	1%			
e * *	n nu o	*				End of Hole
BH 2			1/			Sandy sitty CLAY, grey, moist, firm
1		1.	//			CLAY high plasticity
5.14	4 00 0	Q F				Dk. grey moist, firm
* -	4 5 2	m f	1			C. A. J. L. J. alasticity
	9	100	//	1.0		CLAY, high plasticity It grey with yellow brown mothing
	a ^	9É	//	1.0		moist, firm
8 8		D _{is}	//			
B.			90,0		W.L	CLAY with a little fine gravel, moist/w
8 , 200		98	10/3		7	
, e,		28	1	-2.0		CLAYEY SAND
i		00	//	2.0	}	Light gray
%	ew i	R 5	17	[ļ	wet, firm/soft
						End of Hole
		19			1	
			1			
	ype of semple 50 mm, dia. un	diet der	e arm ede	Remar	ks (Obs	ervations on ground water, etc.)
. 0	- disturbed samp	ole.		W.L	as me	easured on 6.12.02
-N (.)	- standard penet		6	I.		

66536457

RECORD OF BOREHOLES W3 & WAL

CLIENT: LUKE & COMPANY PROJECT: Rainbow Beach, Bonny Hills

Dia of boring: Bo www. Type of boring: hand awaps Lining tubes: Stem & pipe Samples or Bornshole Change of Strata Core Recovery Number Description of Strata AHD Depth Legend Level SILTY CLAY Grey, dry BH 3 CLAY high plasticity 26.11:02 Dk. grey 5.16 moist, firm CLAY high plasticity Lt. gray with yellow brown mottlings 1.0 moist, firm CLAY high plasticity Grey, CLAY, moderate plasticity soft/fin CLAY, moderate plasticity Mattled It grey & yell brown moist/wet, firm. CLAY, high plasticity Gray dry/moist, firm CLAY, high plasticity Grey mottled yellow-brown 1.0 moist, firm W.L

Key to type of sample

U (SOI - 50 mm, dia, undisturbed sample

- disturbed sample, . . N.() - standard penetration test.

No. in brackets gives . .

No of blows/300 mm penetration

Remarks (Observations on ground water, etc.)

straintly sandy

red br. mottles

CLAY, mad. plasticity, It. gray, moist

Mothed Higrey & yell br with some

CLAY, moderate plasticity, slightly sandy, It. grey, moist/wet, firm

CLAY, moderate plasticity ...

moist/wet, firm

W.L as measured on 6112.02

2.0

RECORD OF BOREHOLE Nº W5 & WG

CLIENT: LUKE & COMPANY PROJECT: Rainbow Beach, Bonny Hills

No, of blows/300 mm, penatration

Dia of boring: 80 mm

	Type of bo	ring hand	auge	er .			Lining tubes: Stand pipe
		Samples of Core Reco-		C	Z la egnen	(rafa	
	Date	Depth	Type or %	Ftðsud	Depth	A.H.D.	Description of Strata
	3.12.02 BH 5 4.5		150 201 201				CLAY, high plasticity Grey with yell br. mottlings moist, frim
Commence of the commence of th			SFI		-1·0 -	W.L	CLAY, moderate plasticity Grey & Ligrey moist/wet, firm
					-2-0		SAND, fine grained, poorly graded. Slightly silty/clayey Grey wet medium dense
12							Find of Hole
	BHG 5.43			進速		170	SILTY SAND, fine grained, poorly graded Grey, moist, loose
			æ		-1.0		SAND, fine grained, poorly
					-2.0	W.L	graded Slightly silty Dirty white moist, becoming wet
2							medium dense.
		YPe of sample 50 mm, die und disturbed sampl	a _{ci}		Remark	s (Obse	End of Hole rvations on ground water, etc.)
۱	No, in br	m standard penetr rackets gives	ation (est.		W.L	as w	easured on 6-12-02

RECORD OF BOREHOLE Nº W7 & W8

CLIENT: LUKE & COMPANY
PROJECT: Rainbow Beach, Bonny Hills

No. of blows/300 mm, penetration

Dia of horing: ...80 mm

17	Type of bo	ringhand	auge	× ,		V1000 MANAGE	Lining tubes: Stand pipe.
		Samplès Core Racos		C	hange of \$	trata	0.5
9	Date	Depth	Type or%	Lagend	Depih	A,H.D	Description of Strata
	3.12.02 BH 7 4.79				-1.0	₩.L	CLAY, high plasticity Grey moist, firm CLAY, high plasticity Grey-brown, moist, firm. SAND fine grained, poorly graded Slightly Silty Grey moist, becoming wet medium dense
e	BH 8 4.79				-1.0	W.L.	CLAY, high plasticity Mottled grey & yellow brown moist, firm CLAY, high plasticity Grey moist/wet, firm SAND, fine grained, poorly graded Gerey wet, medium dense. End of Hole
	0 (SO)	ype of sample 50 mm, dia, uni disturbed sample standard penetr	a, :::			Si	rvations on ground water, etc.)
1	No. in b	rackers gives		1	W.L	as m	easured on 6.12.02

RECORD OF BOREHOLE Nº W9 & W10

GLIENT: LUKE & COMPANY

PROJECT: Rainbow Beach, Bonny Hills

Dia of boring ... Bomm Type of boring: ... hand anger.Stand, pipe..... Limity tubes: Samples of Care Recovery Change of Strata Description of Strata A.H. D Type Date Depin SANDY CLAY moderate plasticity 3-12-02 BH 9 Grey moist, firm CLAYEY SAND fine grained Grey-brown moist, soft/firm W.L SAND, fine grained poorly graded Sightly silty Grey wet loose/med.dense End of Hole CLAY, high plasticity Grey with yellow-brown mottles moist, firm/soft BH 10 W.L 1.0 SAND fine grained, poorly graded Slightly silty Grey loose/med. dense Key to type of sample Remarks. (Observations on ground water, etc.) U (50) - 50 mm, dia undisturbed sample " - disturbed sample. N () - standard penetration test. No. in brackets gives W.Las measured on 6.12.02 No. of blows/300 mm. penetration

grie in

8.0 4.8.8

RECORD OF BOREHOLE Nº W11 & W12

CLIENT: LUKE & COMPANY

PROJECT: Rainbow Beach, Bonny Hills

	H.		PROJEC	:T: }	wind	on K	reach, Bonny Hills
	Ground lev	el:		,	ananine)	iai,	Dia of boring Bomm
	Type of bo	ring:hand	auge	25			Lining (ut)es: Stand pipe
j		Samples of Core Recov	1	-	2 to sense	11319	W. F. 2 100
	Date.	Depth	Type.	Lagend	Depin	A.H.D	Description of Strata
	3-12-02		. ór %	17		Favar	
	BH 11	361		//			13 124 all 28
				//			# N # # # #
	5.49		100				CLAY high plasticity
		2 2	199				Grey
्				//	-1.0		moist/wet
		A R E NIC ME	25 12	//			firm
		# # # # G 02 020		//			No. 12 Mars and 12
1		** * **		//			
		alere .		//		W.L	
					-2.0	1	SAND, fine grained, booky graded
1	95 19 18	8.					SAND, time graines, (33
				10.00			Slightly Silty
		ida ta .	# 5x 5				Grey
1			27 — 18		Ì		wet, medium dense
				$\cdot \cdot \cdot \cdot$			End of Hole
1	BH 12	7 7400 11 (1	75 A A				n 80 g ² a24 £ g
	C 11		naja j				CLAY high plasticity
1	D-(1	ter des					Grey with some yellow nottles
1			21 290	//			moist
1	*****	Myseskii 🐫 🐧		//	1		firm
1				//	-1.0		7,000
1		9629 E E		//			
1			u a	//		MIL	CLAYEY SAND, fine grained
1		O Flance Many 2 to 1				5	Yellow-brown
1				/ /	2.0		hleT
	5 1 2 3			/ /	-2:0		soft/firm
1		* * *	200	1:		88	SAND, fine grained, poorly graded
			145				Strightly silty
		0000		····Fix			Yellow,
-		, while o early	a *	: .t : ;			wet, loose. End of Hole
ı		Type of sample.			Remark	s. (Close	rvations on ground water, etc.)
	0.150	- 50 mm, dis. un - dissurbed samp		sample.			
	N-(-)	- standard penetr	ation toss	2	VIII I	5	easured on 6.12.02
		racken gives ilows/300 mm. peni	Étration		Wit	. 25 W	easured on 6.12.0.0

No. of blows/300 mm, penetration

RECORD OF BOREHOLE Nº W 13

CLIENT: LUKE & COMPANY

PROJECT: Rainbow Beach, Bonny Hills

Dia of boring ... 80 mm Ground level:.... Stand pipe Type of boring: hand auger Lining tubes:..... Samples or Core Recovery Change of Strata Description of Strata A.H.D Date Depth Depth 01% CLAY, moderate plasticity Mottled yell: br. and grey 3.12.02 BH 13 moist, soft/firm CLAY, high plasticity Grey 1:0 moist/wet soft /firm CLAYEY SAND, fine grained Yellow wet Soft SAND, fine grained, poorly graded 1t. Yellow. wet, loose/med, dense Key to type of sample Remarks: (Observations on ground water, etc.) U (50) - 60 mm, dra, undisturbed sample, - disturbed sample. N(i,j) - standard penetration test. W.L. as measured on 6.12:02 No. in brackets gives

66536457

hs Marbour City Council Environmental Laboratory

38 Gordon Street Cof's Harbour NSW 2450

Telephone (02) 3648 4460 Fax: (02) 6348 4466

HOLMES & HOLMES P.O. BOX 1159 COFFS HARBOUR JETTY NSW 2450

CLIENT:

No of SAMPLES:
DATE COLLECTED:
DATE RECEIVED: BATCH NUMBER: 06.12.02 09.12.02 2098

Page 1 of 2

TIME RECEIVED 9:00 AM

12.
-
ا عبداً ا
\rightarrow
30044
_ ~
\vdash
-7
1
1
mare!
-
-
D-
5 4
7
\sim
. (4)

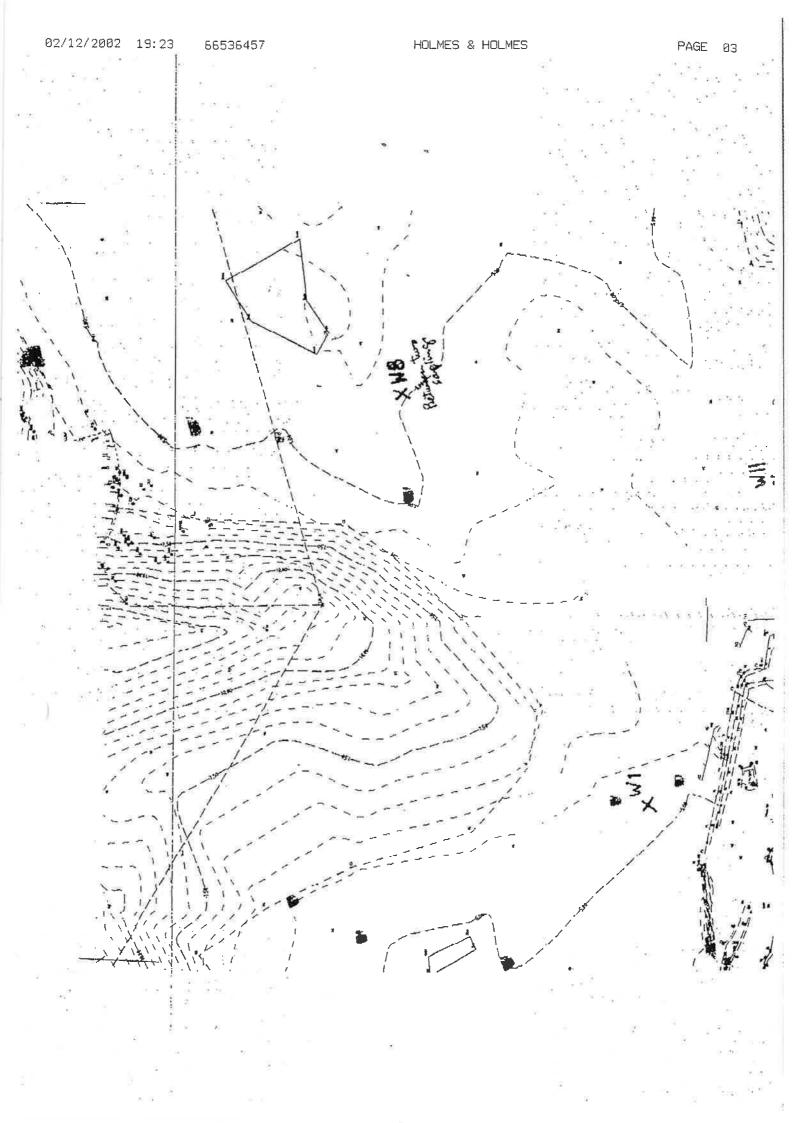
	1.		25				*)÷	
		Manganese	Aluminim	Jron	Sodium	Magnesium	Calcium	Uniforde	Sulphate	Alkalinity as CaCO,	(estimation by conductivity)	Total Dissolved Solids	Conductivity	pHg	ANALYSIS
		EL9 .	EL9	EL9	673	EL9	EL9	EL10	EL10	EL3	EC 70	E1 21	213	NO.	METHOD
	ic i	merL	Digit.	mg/L	mg/L	l'Agni	mg/L	T/gm	mg/L	7,8tu	mg/C	nSicm.			SLIND
		143	458	15/2	1060	470	150	3660	733	65	4730	9460	5.6	178602	LW
-	100	777	7.5	71.5	003	303	181	7000	857	4	410	8820	4.1	209%/2	14/2
	0.067	7 067	0.60	37.5	17.7	170	0.00	225	051	97	724	1447	6.6	209823	W.
	1.233.	-	3.07	080	121	41.0	1830	104	107		3025	6050	5,0	2098/4	SALVELL - WATER
	0.348	303	30.7	463	105	9.85	1300	747	1	1	2115	4230	.53	2018/5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0.251	97	7.59	1-	1	1	30.3	. 2.2			71	141.6	4	2098/6	ALER
	1.06	187	25.5	801	46.7	24.4	371	69.6	-4		642	1387	7.1	7.03£0.7	
	3.56	159	76.8	1250	(1.9	210	5740	767	105		6500	0.0		2098/3	
	0.052	21.9	9.58	24.1	4.55	ē.	44.8	13.2	2]		115	130		2008.0	
	0.059	161	37.5	22.4	7.37	8.83	43.8	36.7	9	- 15	237.0	2,3	2010	DLAN.	
1	0 111	170	974	125	23.0	13.5	25.00	165	7	2	1105	5.0	100001	11W	
1000	-	1 63	2 2 2	786	500	0707	120	777	77	3285	6570	5.7	2098/12	W12	
-64-10-	0.39	7.047	Keic	300	43,0	392	985	107	101	1254	. 2507	6,4	2098/12	F/13	
6.039	0.85	0.642	. 00.5	9.69	10.4	127	32.5			224	448	7.2	2098:12	WIM	

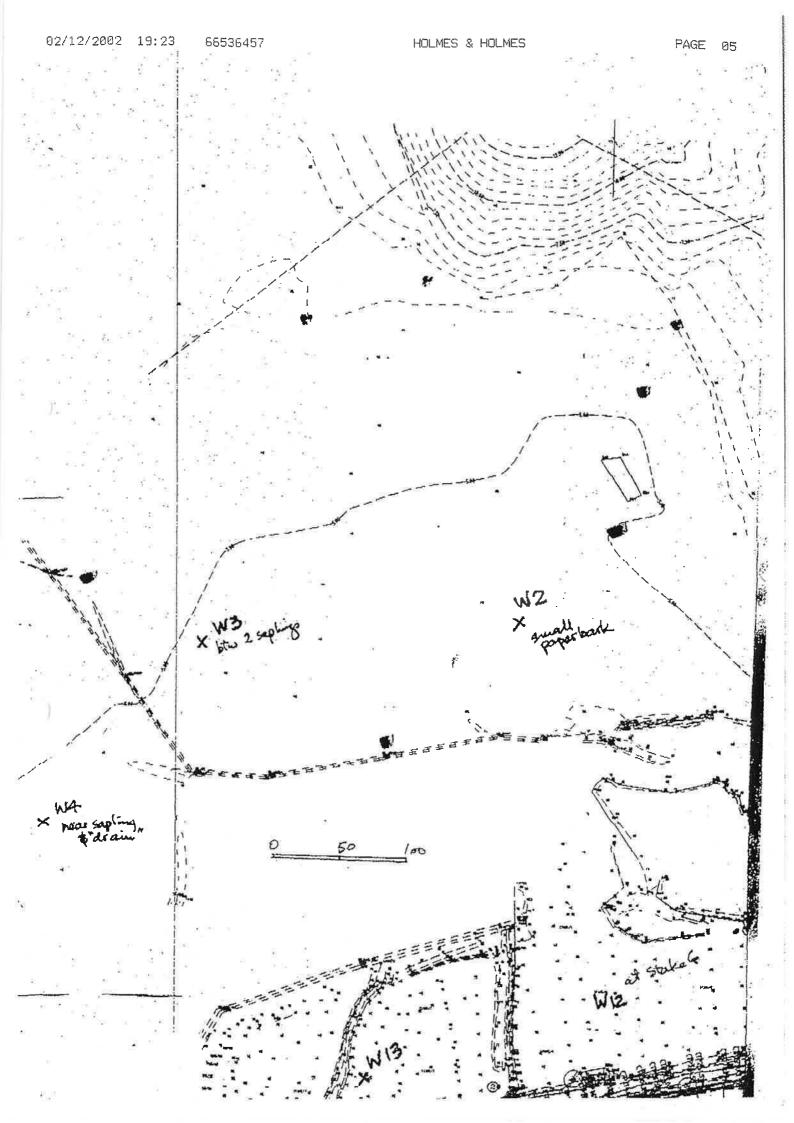
NATA endorsed test report. This document shall not be reproduced, except in full.

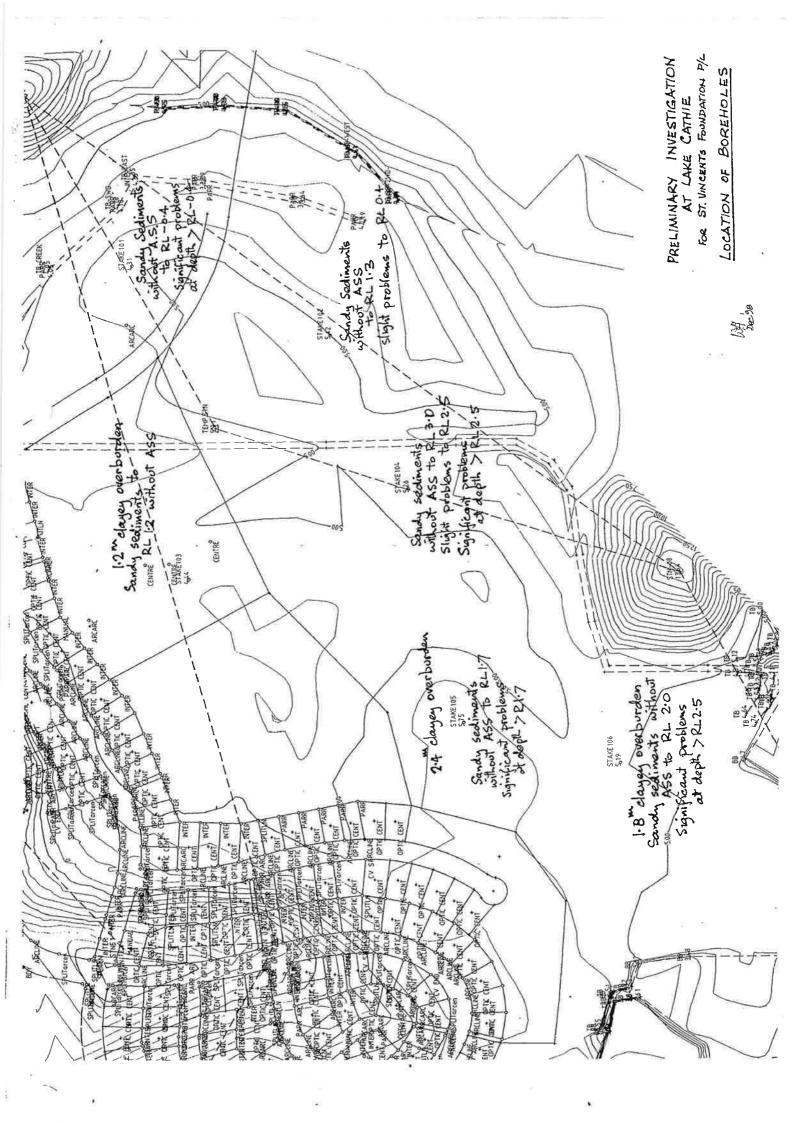
Ĵ.₽. 2	A SP	,	_	_							- 10400	14	w 0		a:	
B J Wadleigh Laboratory Manager CHCC Environmental Laboratory This Laborator [Necreptiation]	* Samples dispatched to AGAL (NATA Accreditation No.198) for analysis. O/N: E05742. *Samples collected by client and analysed as received. Aralysis performed according to "Stancard Methods for the Exam nation of Water & Wastewater", 20th Edition, 1998, Applying the pages of this report have been checked and approved for release. **Mathematical Report Rep		Potassium	Manganese	Aluminium	fron	Sodicm	Magresium	Calcium	Cyloride*	Sulphate*	(estimation by concluc (vity)	Tota: Dissolved Solids	Conductivily	plt	ANALYSIS
Date I Laboratory This Laboratory is accedized by the National Association of Testing Authorities, Ausvalia. [Acceditation Numbers: 12359 (Chemical)]	ans report dated 25.07.(c) NATA Accreditation N allysed as received, kancard Methods for the l checked and approved f		EL9	RI 3	El O	EIO	FIG	F10	P10 2014	MW. DIA	EL3	700	FI 75	Fi S	EL12	METHODNO.
Date Date Association of J	3. (o:198) for analysis. (Exam nation of Water I for release. 4-8-03	Offin	med l	Tâu	Tight	1.80	T.Sus	T.Sau	mg/L	பிதிய	Jøm	7.63412	Molem			STINU
Testing Author	ysis. O/N; E0	0.002	1.100	1.22	4.34	16.4	3,45	16.5	49	1.2	16	. 95	190	0.0	11539	N/S
illes, Austalia	15742. ewater", 20th	1.16	0.009	2.71	3.03	17.9	2.47	2.78	53	\$£	4	161	32!	5,0	. 1153/10	01.A
	Edition, 199	1.40	0.060	0.232	2.71	132	21.9	7.54	240	150	83	572	1144	5.5	1153/11	IlAt
	8, APHA.	2.45	0.267	0.373	1.74	931	194	74.3	1405	580		3565	7130	<u>4</u> دن	1153/12	1W12
		1.53	0.120	0 694	0.890	430	S#.4	20.2	350	580	177	1437	2875	7. I	1153/13	g d
5		1.54	0.022	1 45	777	183	3 31	25	4)	200	5	8	179	27	112017	
through cul from S. U (Ocean	verts - p verts - p verts - p verts - p verts - p	ES.1	0.027	625	1.0.1	2.40	7 /2	3/1) t	- C		65	133	6.7	115.015 51.24	
Surface White through culvert of lite (near		148	0.454	0.869	32.4	4 92	0.40	3	0.4	13		54	700	OFFCELL	914	200

Fage 2 of 2

HOLMES & HOLMES PTY. LTD. CHARTERED ENGINEERS (AUSTRALIA) ACN. 001 266 271


P.O. Box J 159, Coffs Harbour Jetty, 2450 40 Rippingale Road, Korora, 2450


Phone/Fax 66 53 6457


Dam

RAINBOW BEACH GROUNDWATER LEVELS

	:	577	^, ~~~~	· .	*1						* 1 .0°	9 %	· · · · · · · · ·	90.	
W	. 1	2	3	4	5	6	7	B	9	10	11:	12	13	14	
RL. G.L	5.74	5-14-	5.16	4714	4.50	5-43	4.79	4:79	5.04	4.81	5-47	5:11	1,401	(# T	- 4
	120	245]15	205	Total I	95	100	100	95	215	205	190	330	(4)	
RL Top of Pipe	5.86	5.39	5.28	4.95	4-61	5.53	4.89	489	5.14	5.03	5-70	5-30	1, 1	*	
Date	GH.	Dece	mber	500	22					5)¥ 74		8			
	.2890	2575	3110	3520	2480	2570	2.675	2780	2415	2270	3(85	3090	3230		",
18 g	630	690	1530	2100	1080	670	1035	1630	1080	1145	1115	.1330	1380		
Depte to W.L.	2260	1885	1580	1420	1400	1900	1660	1150	1435	1125	2070	1760	185D		
RL WL	3.60	3:51	3.70	3.53	3.21	3-63	3-23	374	3.71	3.91	3.63	3.54		20 NO.	8.81
Date	21	Jan	lary	2003	3					i i		2 1			٠.
Serger For	2.890	2575	3110	3520	2480	2570	2675	2780	2415	22.70	3185	3090	3230		. ·
38 8	620	. 37	1695	2340	1060	760	1145	1630	1125	1045	1075	1370	2030	33	
Dopth to W.L. below. Top of Pipe	2270	1660	14-15	1180	1420	1810	1550	1150	1290	1225	2110	1720	1200	s —————	
RL WL	- 2		3.87	3-77	3.19	3.72.	3.34	3.74	3.85	3.81	3.59	3.5 <i>B</i>			E 5
Date	. 31	Mai	-ch	200	3						1.				
50 P.			4,3									9			
				51.0				1165			(86)	* *	3		
Doplinto W.L.	2066	625	605	310	780	1285	865	83o	715	540	1450	1060	625.	60m	outh
RL.WL			A.48	4.64	3-83	4.25	4.03	4.06	4.43	449	4.25	4.24	Trace of		•
Levight of Pipe	2890	25.75	3110	3520	2480	2570	2695	2780	2415	2270	3185	3090	3230		
RL Blad lipe	2.9	2.82	2:17	1.43	2-/3	2.96	2.20	2-11	2.73	2.76	2.52	2.21			

CLIENT: Luke & Company PROJECT: Preliminary A.S.S Assessment, Lake Cathie

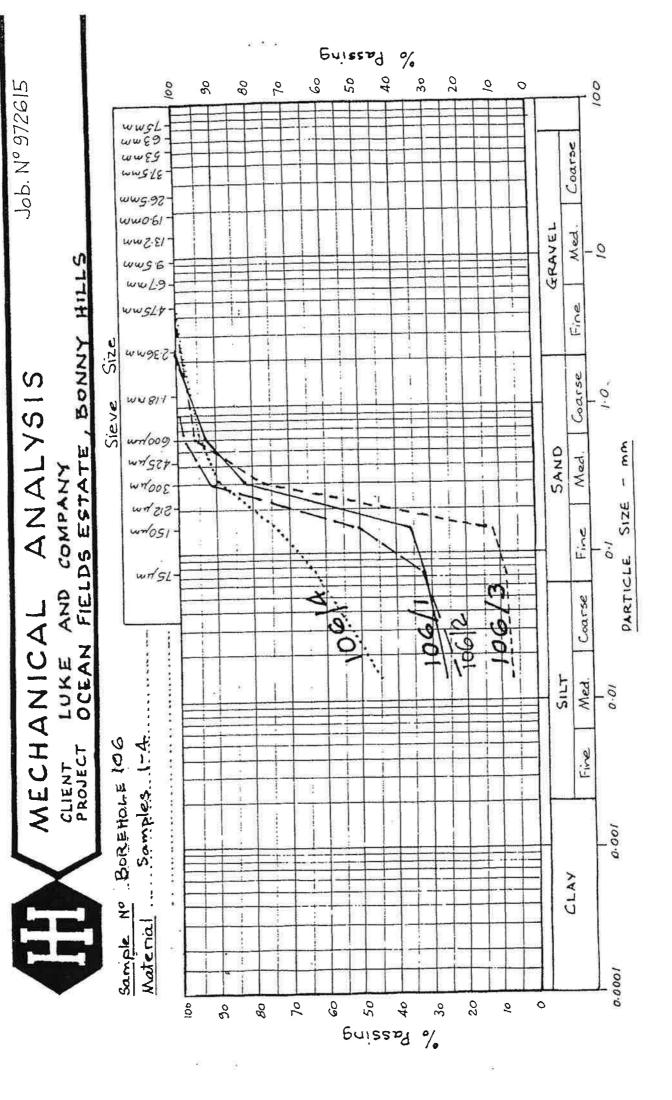
AHD Toyota-mounted Aimil Pty Ltd Type of boring: Continuous flight auger Lining tubes:.... A.S.S Change of Strata Description of Strata Potential Daily Depth Progress Depth Dk. grey clayey Topsoil. 21-10-98 Sample No. 5.4 Esturine CLAY with 105/1 some peaty remnants and humus. 105/2 wet, soft. no remediation required CLAY, slightly sandy Lt. grey & yellow mottled wet, soft. 3.3 FINE SAND, slightly clayey Lt. grey wet, loose 3.0 2.7 FINE clayey SAND 105/4 wet, loose 105/5 500 07 End of Hole Remarks: (Observations on ground-water, etc.) Key to type of sample U (50) - 50 mm, dia undisturbed sample WT@ 2.0" below G.L. (3.75 AHD) disturbed sample,) - standard penetration test. No, of blows/300 mm, penetration

CLIENT: Luke & Company PROJECT: Preliminary A.S.S Assessment, Lake Cathie

5.19 AHD Dia of boring BO.mm.
Aimil Pty Ltd Tayota-mounted

Daily	Samples o Core Recov		CH	lange of S	l/ata	Description of Strata	A.S.S	ı
Progress	Depth	Type or %	Legend	Depth	AHD. Level	Description 5. Swarp	Potantia	<u>L</u>
21-10-98	Sample No.			_	4.8	Dk. grey clayey Topsoil		
	106/1	J	\otimes		4.0	Mixed sand & clay.		
	106/2			-1.0	3.4	Esturine CLAY, Dk. grey with yellow mottlings. wet, Soft.		regured
	106/3			-2·o		FINE SAND, v. silty Lt. grey saturated, loose.	Very Slight	no remediation
s	106/4			-4.c		FINE Clayey SAND Grey - brown V. Wet, soft. CLAY(Residual)	High PO	equires management
<u> </u>				5.0	0.2	mottled red & yellow, wet, firm End of Hole		2

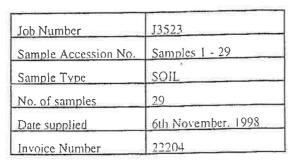
U (50) - .50 mm, dia undisturbed sample


1 ~ disturbed sample,

N () - standard penetration test.

No, in brackets gives

No. of blows/300 mm penetration


WT@ 1300 below G.L. (3.9 AHD)

Environmental Analysis Laboratory Centre for Coastal Management

PO BOX 5125, EAST LISMORE NSW 2480 AUSTRALIA TELEPHONE: (02) 6620 3678 FACSIMILE: (02) 6620 3957

Certified Laboratory Practice

REG. No.: CLP0052

23rd November, 1998

Att/ Mr Bill Holmes Holmes & Holmes Pty Ltd PO Box J159 COFFS HARBOUR JETTY NSW 2450

Dear Bill,

Herewith are the analysis results of 29 soil samples supplied on 6th November, 1998. Results were previously supplied by facsimile.

The sample which ranged from sand to clay showed a clear distinction between surface and depth. The samples collected at depth for many sites showed to be clearly potential acid sulphate soils however none of the surface samples would be regarded as potential acid sulphate based on the 1998 criteria (ie. the new guidelines use >0.03%Sox for sands: >0.06%Sox for clay/sands; and >0.1%Sox for clays).

Treatment of the potential acid sulphate soils using the TSA results should be sufficient: but note that some of the surface soils have high actual acidity and low water pH which is likely to have resulted from the oxidation of potential acid sulphate soils.

Please contact the laboratory if you have any queries.

Yours faithfully.

Graham Lancaster. Laboratory Manager

Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.

Analysis performed according to "Standard Methods for the Examination of Water & Wastewater", 19th Edition 1995, APHA, except where stated otherwise.

ACID SULPHATE SOIL ANALYSIS RESULTS (page 1 of 4)

Samples supplied by Holmes & Holmes P/L on 6th November, 1998 - Lab, Job No. J3523 Analysis requested by Bill Holmes - Your Order No. M0029

		Н	Conductivity	Extractable	Oxidisable Sulphur	POSA	Total	Total
Sample Site	Description	(1:5 water)	(1:5 water)	Sulphate Sulphur	%Sox	Kg H2SO4/	Sulphur	Carbon
2000			dS/m	%Skcl	(as %Sp - %Skcl)	Tonne soil	s %	2 % C
101/1	sand	5.56	0.022	0.005	<0.001	<0.1	0.01	08.0
101/2	sand	5.54	0.012	0.003	0.009	0.3	0.01	0.58
101/3	sand	5.42	0.018	0.009	<0.001	<0.1	0.02	0.92
101/4	clayey sand	6.22	0.055	0.009	0.016	0.5	0.11	0.18
101/5	clayey sand	6.11	0.088	0.013	0.161	5.0	0.36	0.31
				7.5				
102/1	sand	5.67	0.020	0.008	0.027	6.0	0.03	1.05
102/2	sand	6.27	0.008	0.003	900.0	0.2	0.01	0.10
102/3	sand	4.54	0.029	0.015	<0.001	<0.1	0.05	1.34
102/4	sand	5.20	0.027	0.019	0.016	0.5	0.03	0.67
102/5	sand	5.24	0.032	0.012	0.034	1.0	0.05	0.35
103/1	clay	5.12	0.210	0.045	<0.001	<0.1	90.0	4.62
103/2	clay	4.40	0.375	0.056	<0.001	<0.1	0.09	0.48
103/3	clayey sand	5.56	0.054	0.008	0.005	0.1	0.01	0.07
103/4	clayey sand	5.86	0.035	0.007	<0.001	<0.1	0.01	0.12
103/5	clayey sand	4.67	0.277	0.037	0.480	15.0	0.97	0.46

NOTE

- 1- All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2- Methods from Ahern CR, Blunden B and Stone Y (Eds) (1998). Acid Sulphate Soils Laboratory Methods Guidelines. ASSMAC, Wollongbar, NSW.
 - 3- Total carbon and total sulphur determined using a LECO CNS 2000 analyser
- 4- Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5- Neutralising Requirement (based on POSA, NAGP, chromium reducible sulphur, TPA or TSA) = Kg H2SO4/tonne x bulk density
- 6- The neutralising requirement does not include a safety margin for complete neutralisation (a factor of 1.5 is often recommended)
- 7- Oxidisable Sulphur was determined using peroxide oxidation and analysis of sulphate = peroxide sulphur KCL extractable sulphate sulphur 8- POSA (Potentially Oxidisable Sulphuric Acidity) (Kg H2SO4/lonne soil) = %Sox * 30,59

9- Conductivily 1 dS/m = 1 mS/cm = 1000 µS/cm

checked:

ACID SULPHATE SOIL ANALYSIS RESULTS (page 2 of 4)

Samples supplied by Holmes & Holmes P/L on 6th November, 1998 - Lab. Job No. J3523 Analysis requested by Bill Holmes - Your Order No. M0029

sand sand clayey sand clayey sand sand sand sand sand sand clay eyed	(TAA) TPA Kg pH)6 6.12	Acidity (TPA)	Acidity (TSA)	Density	Requirement	Bequirement	Beginsement
sand 4.63 sand 4.67 sand 4.62 clayey sand 5.10 clayey sand 5.08 sand 4.94 sand 5.73 sand 5.73 sand 4.57 sand 4.57 sand 4.57 clay 4.21 clay 3.42							מלחוו בוווסווי
sand 4.63 sand 4.67 sand 4.62 clayey sand 5.10 clayey sand 5.08 sand 4.94 sand 5.73 sand 4.57 sand 4.57 sand 4.57 clay 4.21 clay 3.42		mole / Kg	Kg H2SO4/tonne	tonne DW/m3	Kg Lime/m3	Kg Lime/m3	Kg Lime/m3
sand 4.63 sand 4.67 sand 4.62 clayey sand 5.10 clayey sand 5.08 sand 4.94 sand 5.73 sand 4.57 sand 4.57 sand 4.57 clay 4.21 clay 3.42					(based on POSA)	(based on TPA)	(based on TSA)
sand 4.67 sand 4.62 clayey sand 5.10 clayey sand 5.08 sand 4.94 sand 5.73 sand 5.73 sand 4.57 sand 4.57 sand 4.57 clay 3.42		0.000	-0.3	1.50	0.0	0.0	0.0
sand 4.62 clayey sand 5.10 clayey sand 5.08 sand 5.73 sand 3.89 sand 4.57 sand clay 4.21 clay 3.42		0.000	-0.3	1.52	0.4	0.0	0.0
clayey sand 5.10 clayey sand 5.08 sand 5.73 sand 5.73 sand 4.57 sand 4.57 sand 4.57 clay 4.21 clay 3.42		0.004	-0.4	1.36	0.0	0.3	0.0
sand 5.08 sand 4.94 sand 5.73 sand 3.89 sand 4.57 sand 4.57 sand 4.21 clay 3.42	-	0.012	0.5	1.70	0.8	1.0	0.8
sand 4.94 sand 5.73 sand 3.89 sand 4.57 sand 4.57 clay 4.21 clay 3.42	**	0.104	5.0	1.72	8.7	8.8	8.6
sand 4.94 sand 5.73 sand 3.89 sand 4.57 sand 4.71 clay 4.21							
sand 5.73 sand 3.89 sand 4.57 sand 4.71 clay 4.21	02 8.56	0.000	-0.1	1.21	1.0	0.0	0.0
sand 3.89 sand 4.57 sand 4.71 clay 4.21		0.000	0.0	1.43	0.3	0.0	0.0
sand 4.57 sand 4.71 clay 4.21 clay 3.42		0000	6.0-	1.43	0.0	0.0	0.0
sand 4.71 clay 4.21 clay 3.42		0.00.0	-0.5	1.45	0.7	0.0	0.0
clay 4.21		0.004	0.0	1.51	1.6	0.3	0.0
clay 4.21							
clay 3.42	78 4.51	0.072	-0.3	1.05	0.0	3.7	0.0
		0.040	-1.8	1.28	0.0	2.5	0.0
		000.0	-0.2	1.36	0.2	0.0	0.0
71.5%		0000	-0.2	1.49	0.0	0.0	0.0
clayey sand 1:01		0.324	15.7	1.45	21.8	23.1	22.7
		- I)			Refer Note 5&6	Refer Note 5&6	Refer Note 5&6

NOTE:

- 1- All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2- Methods from Ahern CR, Blunden B and Stone Y (Eds) (1998). Acid Sulphate Soils Laboratory Methods Guidelines. ASSMAC, Wollongbar, NSW.
 - 3- Total carbon and total sulphur determined using a LECO CNS 2000 analyser
- 4- Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5- Neutralising Requirement (based on POSA, NAGP, chromium reducible sulphur, TPA or TSA) = Kg H2SO4/tonne x bulk density
- 6- The neutralising requirement does not include a safety margin for complete neutralisation (a factor of 1.5 is often recommended)
- 7- Oxidisable Sulphur was determined using peroxide oxidation and analysis of sulphate = peroxide sulphur KCL extractable sulphate sulphur
 - 8- POSA (Potentially Oxidisable Sulphuric Acidity) (Kg H2SO4/tonne soit) = %Sox * 30.59
- 9- Conductivity 1 dS/m = 1 mS/cm = 1000 µS/cm

ACID SULPHATE SOIL ANALYSIS RESULTS (page 3 of 4)

Samples supplied by Holmes & Holmes P/L on 6th November, 1998 - Lab. Job No. J3523 Analysis requested by Bill Holmes - Your Order No. M0029

						*000	1	1000	
ample Site	Description	pH (1:5 water)	Conductivity (1:5 water)	Sulphate Sulphur	Oxidisable Suiprur %Sox	Kg H2SO4/	Sulphur	Carbon	
			dS/m	%Skcl	(as %Sp - %Skcl)	Tonne soil	s %	2 % C	
104/1	clayey sand	5.31	0.020	0.017	0.003	0.1	0.02	1.15	
104/2	sand	5.16	0.013	0.010	<0.001	<0.1	0.01	0.30	
10,4/3	sand	4.51	0.032	0.012	0.015	0.5	0.03	1.28	
104/4	sand	5.18	0.046	0.013	0.046	4.1	0.07	09.0	
104/5	clay	3.91	0.808	0.086	0.817	25.5	2.24	96.0	
							15		
105/1	clav	5.61	0.170	0.040	0.013	0.4	0.10	3.57	
105/2	clay	5.47	0.149	0.031	0.026	0.8	0.12	3.07	
105/3	clay	5.19	0.068	0.024	<0.001	<0.1	0.02	0.25	
105/4	clavev sand	5.88	0.073	0.020	<0.001	<0.1	0.01	0.14	
105/5	clayey sand	5.80	0.102	0.016	0.142	4.4	0.20	0.27	
						-14			
106/1	clayey sand	5.61	0.123	0.021	0.008	0.2	0.04	1.56	
106/2	clav	4.83	0.197	0.044	<0.001	<0.1	0.08	0.48	
106/3	sand	6.01	0.038	900.0	<0.001	<0.1	0.01	0.07	
106/4	clay	5.40	0.192	0.027	0.340	10.6	0.62	0.99	
							0.00		

NOTE:

- 1- All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2- Methods from Ahern CR, Blunden B and Stone Y (Eds) (1998). Acid Sulphate Soils Laboratory Methods Guidelines. ASSMAC, Wollongbar, NSW.
 - 3- Total carbon and total sulphur determined using a LECO CNS 2000 analyser
- 4- Bulk density was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5- Neutralising Requirement (based on POSA, NAGP, chromium reducible sulphur, TPA or TSA) = Kg H2SO4/tonne x bulk density
- 6- The neutralising requirement does not include a safety margin for complete neutralisation (a factor of 1.5 is often recommended)
- 7- Oxidisable Sulphur was determined using peroxide oxidation and analysis of sulphate = peroxide sulphur KCL extractable sulphate sulphur
 - 8- POSA (Potentially Oxidisable Sulphuric Acidity) (Kg H2SO4/tonne soil) = %Sox * 30.59
- 9- Conductivity 1 dS/m = 1 mS/cm = 1000 µS/cm

checked:

ACID SULPHATE SOIL ANALYSIS RESULTS (page 4 of 4)

Samples supplied by Holmes & Holmes P/L on 6th November, 1998 - Lab. Job No. J3523 Analysis requésted by Bill Holmes - Your Order No. M0029

			Total Actual		Total Potential	Total Sulphidic	Lab. Bulk	Neutralising	Neutralising	Neutralising
Sample Site	Description	TAA	Acidity (TAA)	TPA	Acidity (TPA)	Acidity (TSA)	Density	Requirement	Requirement	Requirement
		퓼	mole / Kg	Hd	mole / Kg	Kg H2SO4/tonne	tonne DW/m3	Kg Lime/m3	Kg Lime/m3	Kg Lime/m3
			137.0					(based on POSA)	(based on TPA)	(based on TSA)
104/1	cláyey sand	4.57	900.0	7.58	0.000	-0.3	1.44	0.2	0.0	0.0
104/2	sand	4.63	0.004	8.00	0.000	-0.2	1.43	0.0	0.0	0.0
104/3	, sand	3.93	0.024	7.73	0.000	-1.2	1.31	9.0	0.0	0.0
104/4	sand	4.47	0.008	4.82	0.012	0.2	1.32	1.9	8.0	6.0
104/5	" clay	3.98	0.019	1.70	0.684	32.6	1.19	30.3	39.8	38.7
105/1	clay	4.66	0.008	5.03	0.008	0.0	0.94	0.4	0.4	0.0
105/2	clay	4.32	0.040	4.59	0.020	-1.0	0.92	8.0	6.0	0.0
105/3	clay	4.22	0.020	4.30	0.004	-0.8	1.56	0.0	6.0	0.0
105/4	clayey sand	4.78	0.004	6.56	000.0	-0.2	1.80	0.0	0.0	0.0
105/5	clayey sand	5.30	0.002	2.83	0.052	2.5	1.51	6.7	3.8	3.7
106/1	pass vevelo	4 63	8000	ر 1	0 004	° 0-	1 53	0.4	0.3	0.0
106/2	clav	3.71	0.056	3.63	0.024	.1.6	1.14	0.0	1.3	0.0
106/3	sand	5.03	0.002	7.02	0.000	-0.1	1.54	0.0	0.0	0.0
106/4	clav	4.66	0.004	2.91	0.094	4.4	1,41	15.0	6.5	6.2
	`							Refer Note 5&6	Refer Note 5&6	Refer Note 5&6

NOTE:

- 1. All analysis is Dry Weight (DW) samples dried and ground immediately upon arrival (unless supplied dried and ground)
- 2- Methods from Ahern CR, Blunden B and Stone Y (Eds) (1998). Acid Sulphate Soils Laboratory Methods Guidelines. ASSMAC, Wollongbar, NSW,
 - 3- Total carbon and total sulpbur determined using a LECO CNS 2000 analyser
- 4. Bulk deneity was determined immediately on arrival to laboratory (insitu bulk density is preferred)
- 5- Neutralising Requirement (based on POSA, NAGP, chromium reducible sulphur, TPA or TSA) = Kg H2SO4/tonne x bulk density
- 6- The neutralising requirement does not include a safety margin for complete neutralisation (a factor of 1,5 is often recommended)
- 7- Oxidisable Sulphur was determined using peroxide oxidation and analysis of sulphate = peroxide sulphur KCL extractable sulphate sulphur
 - 8. POSA (Potentially Oxidisable Sulphuric Acidity) (Kg H2SO4/lonne soil) = %Sox * 30.59
- 9- Conductivity 1 dS/m = 1 mS/cm = 1000 µS/cm

N (1 - standard penetration test.

No, of blows/300 mm, penetration

No, in brackets gives

RECORD OF BOREHOLE No. 101

CLIENT: Luke & Company

PROJECT: Preliminary A.S.S Assessment, Lake Cathie

4.31 AHD Ltd Tayota-mounted Dia of boring: 80 mm Type of boring Continuous flight auger Lining tubes: Samples or A.S.S Change of Strata Core Recovery Daily Description of Strata Potential Type Progress Depth Depth Dark grey clayey Topsoil. 21-10-98 4.0 Sample No. FINE SAND, silty grey & It grey. moist, loose. 101/1 No potentia 3.2 101/2 FINE SAND, soft indurated Black & Dark 2.0 Brown, Saturated, 101/3 med. dense. 1.8 Slight Potential -3.0 FINE SAND, slightly silty Grey 101/4 saturated, loose. - 0.4 CLAY, Lt. grey , v wet, End of Hole 101/5 Key to type of sample Remarks: (Observations on ground-water, etc.) U (50) - 50 mm, dia undisturbed sample WT@ 900 below G.L. (3.4 AHD) - disturbed sample.

CLIENT: Luke & Company PROJECT: Preliminary A.S.S Assessment, Lake Cathie

Aimil Pty Ltd Tayota-mounted Type of boring Continuous flight auger Lining tubes:.... Daily Description of Strata Potantial Type Progress Depth Depth Grey sandy Topsoil Sample No. 21.10.98 5.2 102/1 FINE SAND, slightly silty 102/2 Grey & Lt. grey wet, loose. Slight Potential remediation requirea 2.0 3.2 FINE SAND, soft indurated Black/dk. brown 102/3 saturated, med. dense. hard indurated, dense FINE SAND with a little 102/4 fine gravel. Grey, saturated, med. dense. FINE SAND slightly silty Grey 102/5 Saturated loose End of Hole Key to type of sample Remarks: (Observations on ground-water, etc.) U (50) - .50 mm, dia undisturbed sample WT@ 1000 below G.L. (4.4 AHD) disturbed sample; No. of blows/300 mm penetration

CLIENT: Luke & Company PROJECT: Preliminary A.S.S Assessment, Lake Cathie

Ground level: 4.44 AHD Dia of boring: 80 mm.

Daily	Samples of Care Recov			ange of Si	t t	Description of Strata	A.S.S
Progress	Depth	Type	Legend	Depth	AHD. Level	Description of Strata	Potential
21-10-98	Sample No. 103/1				3.8	Dk. grey clayey Topsoil	
	103/2			- 1·0	3.2	Esturine CLAY, mottled grey & yellow wet, soft.	potential required
	103/4			-2.0		FINE SAND, slightly clayey Light grey saturated, loose.	Negligible 170 remediation
	103/5			-3·o	1.2	CLAYEY SAND dark grey v. wet, soft.	High Potential reguires management
3003	103/6 (not tested)			-4.0	0.6	CLAY (Residual) motfled red brown & grey becoming yellow - green wet, soft.	Residual Clay
eS.	not tested			-5·0	- 0.6	End of Hole	
	3 VIII VIII					ervations on ground water, etc.)	1,

U (50) - ,50 mm, dia, undisturbed sample

- disturbed sample.

No, of blows/300 mm, penetration

WT@ 1.4 below G.L. (3.0 AHD)

CLIENT: Luke & Company PROJECT: Preliminary A.S.S Assessment, Lake Cathie

5.26 AHD Aimil Pty Ltd Toyota-mounted Dia. of horing: 80 mm Ground level:.... Type of boring Continuous flight auger Lining tubes:.... Change of Strata Core Recovery Daily Description of Strata Potential AHO. Depth Progress Depth Grey sandy Topsoil. 21-10-98 Sample No 5-1 ramediation required FINE SAND silty, grey. 104/1 potential 4.8 FINE SAND slightly silty Brown, loose, wet. 1.0 4.3 104/2 FINE SAND, silty Grey & Lt. grey saturated, loose 2.0 3.1 FINE silfy SAND with a little fine gravel. 104/3 Dk. grey, saturated, loose. 2.5 High Potential requires management -3.0 FINE SAND slightly silty, Dk. brown. 104/4 Saturated, med. dense. 0.8 Esturine CLAY, Lt. grey 104/5 v. wet , v. soft. 500 0.3 End of Hole Remarks: (Observations on ground-water, etc.) Key to type of sample U (50) - 50 mm, dia undisturbed sample WT@ 800 below G.L. (4.4 AHD) disturbed sample, N () - standard penetration test.