

C. M. Jewell & Associates Pty Ltd Water and Environmental Management A.C.N. 056 283 295

SITE AUDIT STATEMENT

Schedule 1, Form 2 (Contaminated Land Management Regulation 1998)

Site Auditor (accredited under Contaminated Land Management Act 1997):

Name:	Christopher M. Jewell	Phone:	02) 4759 3251
Company	C. M. Jewell & Associates Pty Ltd	Fax:	02) 4759 3257
Address:	1/13 Kalinda Road,	Accred. No.:	9810
	Bullaburra NSW 2784		

Site Audit Statement No.: SA183/2

Site details:

 Address:
 100-120 King Street

 RANDWICK NSW
 Postcode: 2031

 Lot and DP Number:
 Part 1 of Lot 202 in DP879576, as shown on the attached "Plan A".

 Local Government Area:
 Randwick City Council

Site audit requested by:

Name:	Mr David Freeman		
Company:	Sir Moses Montefiore Jewish Home		
Address:	120 High Street		
	HUNTERS HILL NSW	Postcode:	2110
Phone:	02 9879 2715	Fax:	02 9871 2700
Name of conte	act person (if different from above):	Mr Tim Greenaway	

Consultancy who conducted the site investigations and/or remediation: URS Australia Pty Ltd

Titles of reports reviewed:

Remediation Action Plan, Lot 202 King Street, Randwick. Report No. 51072-001 Rap_Rev1_Final dated 26 November 2002, prepared by URS Australia Pty Ltd.

Supplementary Sampling and Analysis Plan – Lot 202, King Street, Randwick. Letter/Report dated 12 June 2002, prepared by URS Australia Pty Ltd.

Data Assessment Report - Lot 202, King St, Randwick. Report No. 51072-001-R001H dated 5 December 2002, prepared by URS Australia Pty Ltd.

Remediation Validation, Part 1 Area, Lot 202 King Street, Randwick. Report No. 51072-001, Revision O dated 18 September 2003, prepared by URS Australia Pty Ltd.

Other information reviewed:

Regional topographical and geological mapping.

Site Audit Statement No.: SA183/2

Summary Site Audit Report

Title: Site Audit – 100-120 King Street, Randwick (Sir Moses Montefiore Jewish Home)

Date: 17 November 2003

I have completed a site audit (as defined in the Contaminated Land Management Act 1997) and reviewed the reports and information referred to above with due regard to relevant laws and guidelines. I certify that the site (tick **all** appropriate boxes):

(a) is suitable for the following use(s):

residential, including substantial vegetable garden and poultry;

- residential, including substantial vegetable garden excluding poultry;
- residential with accessible soil, including garden (minimal home grown produce contributing less than 10% fruit and vegetable intake) excluding poultry;
- residential with minimal opportunity for soil access, including units;
- daycare centre, preschool, primary school;
- □ secondary school;
- □ park, recreational open space, playing field;
- **□** commercial/industrial use;

A composite development as an aged care and community facility comprising areas of residential use with minimal opportunity for soil access, and areas of landscaped open space, as shown on the attached "Plan B".

subject to

✓ conditions: This Site Audit Statement should be used in conjunction with the attached Summary Site Audit Report which contains important supporting information.

(b) is not suitable for any beneficial use due to risk of harm from contamination:

 \Box (comments):

I am accredited by the NSW Environment Protection Authority under the *Contaminated Land* Management Act 1997 as a Site Auditor

Accreditation Number: 9810

1

Site Audit Statement No.: SA183/2

I certify that:

- (a) I have personally examined and am familiar with the information contained in this statement, including the reports and information referred to in this statement, and
- (b) this statement is, to the best of my knowledge, true, accurate and complete, and
- (c) on the basis of my inquiries made to those individuals immediately responsible for making the reports, and obtaining the information referred to in this statement, those reports and that information are, to the best of my knowledge, true, accurate and complete.

I am aware that there are penalties for wilfully submitting false, inaccurate or incomplete information.

Signed:

Date: 17 November Loo3

Plan B

Ì

Report No. J0807.12

SITE AUDIT 100-120 KING STREET, RANDWICK

for

SIR MOSES MONTEFIORE JEWISH HOME

November 2003

Controlled Copy No. 4

C.M. Jewell & Associates Pty Ltd A.C.N. 056 283 295 A.B.N. 54 056 283 295

Water and Environmental Management

My Ref: J0807.12 17 November 2003 CMJ:jlt

 1/13 Kalinda Road, Bullaburra, NSW 2784, Australia P.O. Box 10, Wentworth Falls, NSW 2782 Phone: (02) 4759 3251 Fax: (02) 4759 3257 Email: postle@cm-jewell.com.au

Sir Moses Montefiore Jewish Home 120 High Street HUNTERS HILL NSW 2110

Attention: Mr David Freeman

Dear Mr Freeman,

RE: Site Audit - 100-120 King Street, Randwick (Sir Moses Montefiore Jewish Home)

As requested, I have carried out a Statutory Site Audit of the above land; my Site Audit Report is attached to this letter.

I consider that the site is suitable for the proposed composite development as an aged care and community facility comprising areas for residential use with minimal opportunity for soil access, and areas for public open space use. I have consequently issued a Site Audit Statement indicating that the site is now suitable for that purpose. Two copies of the Site Audit Statement and one copy of the associated Site Audit Report have been provided.

As required by the Contaminated Land Management Act 1997, I have sent copies of the Site Audit Statement to Randwick City Council and the EPA. As a courtesy, copies of the report have also been provided to Randwick City Council and URS Australia Pty Ltd.

If you have any questions please do not hesitate to contact me on (02) 4759 3251.

For and on behalf of C. M. JEWELL & ASSOCIATES PTY LTD

CHRIS JEWELL

Distribution Sir Moses Montefiore Jewish Home (Controlled Copy No. 1) URS Australia Pty Ltd (Controlled Copy No. 2) Randwick City Council (Controlled Copy No. 3) CMJA Library (Controlled Copy No. 4) File (Original) | |}

.

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	1
	1.1	Background	1
	1.2	Involvement of Auditor	1
	1.3	Scope and Structure of Review Report	1
	1.4	Limitations and Intellectual Property Matters	
2.0	SITE I	INFORMATION	3
2.0	2.1	Site Identification and Location	
	2.2	Site Setting.	
	2.3	Topography and Drainage	
	2.4	Geology	
	2.5	Hydrogeology	
	2.6	Site History	
	2.7	Contaminants of Concern	
	2.8	Proposed Development	
	2.9	Assessment Criteria	
		2.9.1 Adopted Criteria	
		2.9.2 Auditor's Comments	
2.0	d I II A		
3.0	3.1	MARY OF PREVIOUS INVESTIGATIONS	
	3.1 3.2	Auditor's Comments Initial Supplementary Works, July 2002	
	5.2		
		3.2.1 Soil Sampling and Analysis3.2.2 Stockpile Assessment	
	3.3	3.2.3 Asbestos Survey Soil and Groundwater Sampling, August 2002	12
	5.5	3.3.1 Soil Sampling	
		3.3.2 Groundwater Sampling	
	3,4	Soil Sampling, September 2002	14
	3.5	Discussion of Results.	
	5.5	3.5.1 Auditor's Comments	
4.0	σενπ	EDIAL AND VALIDATION WORKS	
4.0	4.1	Pre-Remediation Works	
	4.1	4.1.1 Hydrocarbon-Impacted Area	
		4.1.2 Lead-Impacted Area	
		4.1.3 Groundwater Sampling	
	4.2	Remediation/Validation Objectives	
	7.2	4.2.1 Objectives	
		4.2.2 Auditor's Comments	18
	4.3	Remedial Works	
		4.3.1 Works Completed	
		4.3.2 Remediation of TPH-Impacted Area	19
		4.3.3 Remediation of Stockpiles and Areas Impacted by Asbestos-Contain	
		Material (ACM)	
		4.3.4 Remediation of Lead-Impacted Area	
		4.3.5 Auditor's Comments	
	4.4	Validation Program	
		4.4.1 Validation of TPH Remedial Area	
		4.4.2 Validation of Stockpiled Materials	
		4.4.3 Validation of Lead Remedial Area	
		4.4.4 Other Lead-Impacted Areas	. 23

	4.5	 4.4.5 PAH-Impacted Areas	23 24 25 25 25 26
	5.1	LETENESS AND ADEQUACY OF INVESTIGATION	27
	5.2	Validation Sampling	27
	5.3	Sampling Procedures	27
	5.4	Quality Assurance/Quality Control	28
	5.5	Groundwater Issues	28
	5.6	Aesthetic Issues	
	5.7	Chemical Mixtures	
	5.8	Reporting Standards	28
6.0	CONC	LUSIONS	28
REFER	ENCE	5	30

Important Information about your Environmental Site Assessment

TABLES

Table 1	Assessment Criteria - Soils
Table 2	Soil Sampling and Analysis Schedule – July 2002
Table 3	Analysis Schedule – August 2002
Table 4	Results of TPH Analysis – Groundwater Samples
Table 5	Summary Statistics of Validation Data

FIGURES

- Figure 1 Site Location and Setting
- Figure 2 Site Layout and Previous Sampling Locations
- Figure 3 Asbestos Validation Sampling Locations and Areas of Concern
- Figure 4 TPH Delineation Sampling Locations
- Figure 5 Lead Delineation Sampling Locations
- Figure 6 TPH Validation Sampling Locations TPH Remedial Excavation
- Figure 7 TPH Validation Sampling Locations Balance of Site
- Figure 8 PAH Validation Sampling Locations
- Figure 9 Location of Placement Cells

APPENDICES

- Appendix A Contaminant Groups
- Appendix B Communications with the Auditor
- Appendix C Information Relied Upon by the Auditor
- Appendix D QA/QC Information

ASSOCIATED REPORTS

Remediation Action Plan, Lot 202 King Street, Randwick. Report No. 51072-001 Rap_Rev1_Final dated 26 November 2002, prepared by URS Australia Pty Ltd.

Supplementary Sampling and Analysis Plan – Lot 202, King Street, Randwick. Letter/Report dated 12 June 2002, prepared by URS Australia Pty Ltd.

Draft Data Assessment Report - Lot 202, King St, Randwick. Report No. 51072-001-R001G dated 20 September 2002, prepared by URS Australia Pty Ltd.

Data Assessment Report - Lot 202, King St, Randwick. Report No. 51072-001-R001H dated 5 December 2002, prepared by URS Australia Pty Ltd.

Remediation Validation, Part 1 Area, Lot 202 King Street, Randwick. Report No. 51072-001, Revision O dated 18 September 2003, prepared by URS Australia Pty Ltd.

LIST OF ABBREVIATIONS

İ

<u>Measures</u>	
μg/L	micrograms per litre
km	kilometre
L	litre
m	metre
m^2	square metre
mg/kg	milligrams per kilogram
mm	millimetre
<u>General</u> AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
AST	above-ground storage tank
CLM Act	Contaminated Land Management Act
CMJA	C. M. Jewell & Associates Pty Ltd
DA	development application
DLWC	Department of Land and Water Conservation
DP	deposited plan
DQO	data quality objectives
EPA .	Environment Protection Authority
ESA	Environmental Site Assessment
HDPE	high-density polyethylene
NATA	National Association of Testing Authorities
NEPM	National Environment Protection Measure
PID	photoionisation detector
PQL	practical quantitation limit
PSH	phase-separated hydrocarbons
QA	quality assurance
QC	quality control
RAP	remediation action plan
RL	relative level
RPD	relative percentage difference
TCLP	Toxicity Characteristic Leaching Procedure
UCL	upper confidence limit
UST	underground storage tank
Analytes - Or	ganic
BaP	benzo(a)pyrene
BTEX	benzene, toluene, ethyl benzene, xylene
OCP	organochlorine pesticides
OPP	organophosphorus pesticides
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyls
SVOC	semivolatile organic compounds
TPH	total petroleum hydrocarbons
VHC	volatile halogenated compounds
VOC	volatile organic compounds
Analytes - In	<u>organic</u>
As	arsenic
Cd	cadmium
Cr	chromium
Cu	copper
Fe	iron
Hg	mercury
Mn	manganese
Ni	nickel
Pb	lead
Zn	zinc

1.1 Background

This Site Audit Report relates to a portion of land located at 100-120 King Street, Randwick, in New South Wales.

Specifically, the Site Audit relates to the validation work completed by URS Australia Pty Ltd (URS) on behalf of Sir Moses Montefiore Jewish Home (and as described in URS's report dated 18 September 2003).

The Site Audit which this report describes was requested by Mr David Freeman of Sir Moses Montefiore Jewish Home on 27 May 2002, for the purpose of complying with the conditions of the Notice of Determination dated 29 October 2002 issued by Randwick City Council in respect of Development Application No. 02/00551/G1, under the Environmental Planning and Assessment Act 1979. The Site Audit is thus a Statutory Site Audit under the provisions of Part 4 of the Contaminated Land Management Act 1997.

The audit was conducted for the purpose of determining

- (i) the nature and extent of any contamination of the land,
- (ii) the nature and extent of the investigation or remediation,
- (iii) what investigation or remediation remains necessary before the land is suitable for any specified use or range of uses.

The Site Audit Report has been prepared in accordance with the guidelines issued by the NSW Environment Protection Authority (EPA) (*Guidelines for the NSW Site Auditor Scheme*, 1998). It has been prepared by Christopher Jewell, who is a Site Auditor accredited under the NSW Contaminated Land Management Act 1997.

1.2 Involvement of Auditor

The Auditor became involved in this project at the start of URS's current engagement, and has had appropriate input into the scope and planning of that phase of assessment. He had no involvement in work previously undertaken on the site by others.

The Auditor reviewed the Supplementary Sampling and Analysis Plan (June 2002) and Draft Data Assessment Report (September 2002) prepared by URS.

Following that review, he concluded that residual contamination of the site was such as to preclude development of the site without prior remediation. Accordingly, on 30 September 2002, the Auditor issued Site Audit Statement SA183, indicating that the site was not suitable for any beneficial use due to risk of harm from contamination. A process of remediation planning, remediation and validation was recommended in the Site Audit Statement.

That work has now been completed and the results reviewed.

The Auditor has visited the site on four occasions. A compliance checklist has been completed and is held on file.

1.3 Scope and Structure of Review Report

Section 2 of this report sets out basic identification and location information concerning the site, and briefly describes the site's topography, geology and hydrogeological setting. An indication of the site's history and an outline of the proposed future use and the associated assessment criteria are also provided.

Section 3 sets out a summary of previous environmental assessments undertaken on the site by environmental consultancies other than URS, together with additional environmental assessments carried out by URS.

The completed remedial works and validation sampling and the associated validation results are discussed within Section 4.

Section 5 of this report presents an audit of the completeness and adequacy of the environmental assessments and validation works which have been completed. The audit was carried out against the criteria established by the NSW EPA publication, *Guidelines for the NSW Site Auditor Scheme* (1998), but also incorporates the reviewer's own judgement; reference has been made to other guideline publications issued or endorsed by the NSW EPA, including *Guidelines for Consultants Reporting on Contaminated Sites* (1997), *Guidelines for Assessing Service Station Sites* (1994), *Sampling Design Guidelines* (1995) and the National Environmental Protection (Assessment of Site Contamination) Measure (1999), as appropriate.

Section 6 of this report sets out the Auditor's conclusions with regard to the current condition of the land at the site and its suitability for the intended use.

Throughout this report, extensive use has been made of the site assessment and validation reports prepared by URS; sections of those reports have been adopted for use in this report.

1.4 Limitations and Intellectual Property Matters

This report has been prepared by C. M. Jewell & Associates Pty Ltd for the use of the client and local government agency identified in Section 1.1, for the specific purpose described in that section.

The work has been carried out, and this report prepared, utilising the standards of skill and care normally expected of a site auditor practising in New South Wales under the requirements of the Contaminated Land Management Act 1997. The level of confidence of the conclusions reached is governed, as in all such work, by the scope of the investigation carried out and by the availability and quality of the data. The Auditor has satisfied himself that the available data are adequate to support the conclusions he has reached, and comply with the minimum requirements indicated in the guideline documents specified for the NSW Site Auditor Scheme. Where limitations or uncertainties in conclusions are known, they are identified in this report. However, no liability can be accepted for failure to identify conditions or issues which arise in the future and which could not reasonably have been assessed or predicted using the site information and analytical data available for review.

Data collected by others have, of necessity, been used to support the conclusions of this report. Those data have been subjected to reasonable scrutiny but have essentially, and necessarily, been used in good faith. Liability cannot be accepted for errors in data collected by others where such errors could not have been detected by reasonable scrutiny of the data and supporting information supplied to or requested by the Auditor.

This report, any original data contained in the report, and its findings and conclusions remain the intellectual property of C. M. Jewell & Associates Pty Ltd. A licence to use the report for the specific purpose identified in Section 1.1 is granted to the persons identified in that section on the condition of receipt of full payment for the services involved in the preparation of the report.

It is recommended that this report should not be used by other persons or for other purposes than those identified in Section 1.1 without prior reference to the Auditor. The report should not be reproduced except in full and with the permission of C. M. Jewell & Associates Pty Ltd.

2.0 SITE INFORMATION

2.1 Site Identification and Location

The site is located at 100-120 King Street, Randwick, New South Wales. The site location is shown on Figure 1. Australian Map Grid Zone 56H co-ordinates of the centre of the site are approximately 33700E 6246650N. At the date of this report, the site was owned by the Honorary Board of Management of the Sir Moses Montefiore Jewish Home.

The site lies within Randwick City Council local government area and is currently zoned 2B and 2C. The site is identified as Part 1 of Lot 202 in DP879576, in the Parish of Alexandria, County of Cumberland.

The site is approximately rectangular in shape, with maximum dimensions of approximately 165 metres north–south by 178 metres east–west, and has an area of approximately $27,100 \text{ m}^2$.

An indication of the site's former layout is provided on Figure 2.

2.2 Site Setting

The site is located in a predominantly residential area, bounded as outlined below.

To the north

The site is bounded to the north by Govett Lane. Residential properties are located on the northern side of Govett Lane.

To the east

The site is bounded to the east partially by Dangar Street but mostly by Part 2 of Lot 202. Residential properties are located to the east of Dangar Street.

To the south

King Street bounds most of the site to the south although Part 2 of Lot 202 bounds part of the site to the south. The Moriah Daycare facility is located in the south-west corner of the site. Residential properties are located across King Street.

To the west

Lot 201, which together with Lot 202 was the former location of the Randwick Bus Depot, adjoins the western boundary of the site. A NSW State Transit Authority bus depot is located to the west of Lot 201.

2.3 Topography and Drainage

Following is URS's description of the topography prior to the most recent remediation works.

... the ground gently sloped in a general westerly direction across the site. A constructed cutting was located in the eastern third of the site to improve the access for the bus depot operations. This cutting was been reinforced by the placement of a concrete retaining wall which effectively divided the site into a higher eastern section and a lower western section.

A number of stockpiles exist on site, some of which are up to 4 m high. The estimated volume of the stockpiled material is approximately $9,000 \text{ m}^3$. The largest of these stockpiles extends from half way along the King Street boundary towards the centre of the site and is comprised primarily of building rubble and sandy soil, with some areas of sandstone rubble.

In the northwestern section of the site there was a large excavated area, which was undertaken as part of the previous remediation works at the site. The excavation was approximately 100 m in length running east to west and up to 40 m in width. The elevation of the base of the excavation was between 37 and 38 m AHD.

As most of the site has been cleared of pavement, and the surface soils are typically sandy, it is expected that at present rainfall will infiltrate the surface soils either directly or via runoff from the pavement. Prolonged heavy rainfall may cause saturation of the surface soils and percolation of rainwater into the groundwater system. This situation will change following redevelopment, when most of the site will be paved and rainwater will be directed to an engineered drainage system.

The site has been inundated under high rainfall/runoff conditions.

2.4 Geology

Reference to the 1:100,000-scale Sydney Geological Sheet (9130, Edition 1, 1983) indicates that the site is situated on the Holocene sediments of the Botany Basin. The sediments are variable in thickness, ranging up to 35 metres, although thickness is commonly of the order of 15 metres in the north of the basin. The sediments predominantly consist of well-sorted quartz sands interbedded with minor clay, peat and ironstone lenses. Most of the formation overlies the eroded bedrock surface of the Triassic Hawkesbury Sandstone, although moderately to highly weathered horizons of Ashfield Shale have been observed to underlie the Botany Sands in the north and west of the basin.

Site observations during assessment and validation have confirmed the presence of Holocene Sands to the maximum depth of investigation.

Reference to the Sydney 1:100,000 Soils Landscape Series Sheet (9130) indicates that the site is underlain by aeolian soil of the Newport soil landscape. The typical characteristics are shallow (less than 0.5 metre), well-sorted siliceous sands overlying moderately deep (less than 1.5 metres), buried soils including yellow podzolic soils, with sandy topsoils on crests and gentle slopes. Deep podzols are found on steep slopes, on lower slopes, and in depressions. Limitations of this soil landscape group include very high soil erosion hazard, localised steep slopes, non-cohesive topsoil, and very low soil fertility.

Intrusive investigations indicated that fill from 0.1 metre up to several metres thick overlies most the site. URS described the fill as being of a similar type to the underlying natural material.

2.5 Hydrogeology

The Quaternary alluvial, estuarine and, in places, aeolian sediments are known locally as the Botany Sands. The Botany Sands host an unconfined aquifer that has in the past been used extensively for water supply purposes. The aquifer is still used for industrial and irrigation purposes.

Groundwater movement within the Botany Sands occurs via primary porosity (i.e. intergranular flow). The hydraulic conductivity of the cleaner sands ranges up to 30 metres per day (m/d), with 10-15 m/d more typical for the clayey and peaty sands in the area. Yields obtained from the Botany Sands are generally moderate to high, usually of the order of 10 litres per second (L/s), although yields of up to 35 L/s have been obtained from the aquifer for industrial purposes.

The groundwater in the Botany Basin is considered to be of good and generally potable quality. It has a low salinity, typically less than 200 milligrams per litre (mg/L), although higher concentrations of up to 4000 mg/L occur. The pH of the water is generally low, usually of the

order of 5.0 to 6.0 pH units, allowing for the enhanced solubility of most metals, including iron, in the aquifer.

Intrusive investigations at the site indicated the presence of groundwater at depths of less than 3 metres. It was assessed that the hydraulic gradient at the site was towards the west, although the regional gradient in the Botany Aquifer it is generally towards the south-west.

The nearest receptors of the groundwater flowing from the site are likely to be irrigation wells located at Randwick Racecourse. At its closest point, Randwick Racecourse is located approximately 330 metres south-west of the site.

2.6 Site History

URS provided the following site history.

The former Randwick Bus Depot has been the subject of several site contamination investigations conducted between 1991 and 1998 by both Sinclair Knight and Dames & Moore (D&M).

A detailed site historical study was conducted by Doring (1990)....The historical data provided in the Doring study indicates that the eastern portion of the original depot, including both Lots 201 and 202, was used for tram and bus mechanical services (workshops, depot) throughout its life. The study indicated that the area initially commenced operations as a tramway workshop and depot in 1881.

Critical uses of the site, not known to have occurred on either Lot 201 or Lot 202, which have occurred in other areas of the depot (the western portion of original depot property where the present day STA bus depot exists), as reported by Doring, included:

- A foundry;
- Munitions and arms manufacturing during WWII; and
- Electrical substations.

2.7 Contaminants of Concern

On the basis of the site history and previous environmental investigations undertaken at the site, potential contaminant groups of concern were identified as:

- heavy metals;
- monocyclic aromatic hydrocarbons, particularly benzene, toluene, ethyl benzene, and xylenes (BTEX);
- total petroleum hydrocarbons (TPH); and
- polycyclic aromatic hydrocarbons (PAH).

The individual compounds that make up these contaminant groups are listed in Appendix A.

Given the age of the buildings that had been located on the site, it was considered that asbestos was also a contaminant of concern.

2.8 **Proposed Development**

It is proposed that the site be redeveloped for an aged care facility.

2.9 Assessment Criteria

2.9.1 Adopted Criteria

The investigation criteria proposed by URS are as follows.

For areas under building footprints, they are the guideline levels set out in Column 2 of the table: 'Soil Investigation Levels for Urban Redevelopment Sites in NSW', in the NSW EPA's *Guidelines for the NSW Site Auditor Scheme* (1998).

For open space areas, the proposed criteria are the guideline levels set out in Columns 3 and 5 from the EPA table cited above.

Criteria derived from Column 2 are health-based soil investigation levels for residential settings where there is minimal opportunity for soil access. Criteria derived from Column 3 are health-based soil investigation levels for parks, recreational open space and playing fields. Both sets of criteria were originally developed by Imray and Langley in 1996, and currently reissued as Imray and Langley (1999): *Health-Based Soil Investigation Levels*, National Environment Protection (Assessment of Site Contamination) Measure (the NEPM), Schedule B, Guideline 7A. These soil investigation levels are also listed in Columns D and E of Table 5-A, Schedule B(1) of the NEPM.

Criteria derived from Column 5 are provisional phytotoxicity-based investigation levels, and are identical to the Interim Urban Ecological Investigation Levels listed in Table 5-A, Schedule B(1) of the NEPM.

Criteria for TPH and BTEX are those published in the NSW EPA's *Guidelines for Assessing* Service Station Sites (1994) and listed in its Table 3 – 'Threshold Concentrations for Sensitive Land Use – Soils'.

These criteria are listed in Table 1.

TABLE 1 Assessment Criteria – Soils (mg/kg)								
Analyte	<i>EPA Column 2*</i> (NEPM Column D) Residential with Minimal Access to Soil	<i>EPA Column 3*</i> (NEPM Column E) Parks, Recreational Open Space & Playing Fields	EPA Column 5* (NEPM Interim Urban Ecological) Phytotoxicity- based Criteria ^{††}	Sensitive Land Use – Soils [†]				
Arsenic	400	200	20					
Cadmium	80	40	3	_				
Chromium (III)	480,000	240,000	400	-				
Copper	4000	2000	100	-				
Lead	1200	600	600	-				
Mercury (inorganic)	60	30	15					
Nickel	2400	600	60	-				
Zinc	28,000	14,000	200	-				
PAH	80	40	-					
Benzo(a)pyrene	4	2	-	-				
TPH C ₆ -C ₉	-	-	-	65				
TPH C ₁₀ -C ₄₀	-	-	-	1000				
Benzene	_	-	-	1				
Toluene		-	-	1.4 [‡] /130 [§]				
Ethyl benzene	-		-	3.1 /50 ₽				
Total xylenes	-	-	-	14 ^{**} /25 [¶]				

Notes: * NSW EPA (1998)

⁺⁺ Interim EILs for the urban setting are based on considerations of phytotoxicity, ANZECC B levels, and soil survey data from urban residential properties in four Australian capital cities.

^{**} The carbon number is an 'equivalent carbon number' based on a method that standardises according to boiling point. It is a method used by some analytical laboratories to report carbon numbers for chemicals evaluated on a boiling point GC column.

[†] and notes below: NSW EPA (1994)

- The toluene threshold concentration is the Netherlands MPC to protect terrestrial organisms in soil. This value is obtained by applying a US EPA assessment factor to terrestrial chronic No Observed Effect Concentration (NOEC) data. The MPC is an 'indicative' value (Van de Plassche et al. 1993; Van de Plassche & Bockting 1993).
- ⁸ Human health and ecologically based protection level for toluene. The threshold concentration presented here is the Netherlands intervention value for the protection of terrestrial organisms. Other considerations such as odours and the protection of groundwater may require a lower remediation criterion.
- The ethyl benzene threshold concentration is the Netherlands MPC for the protection of terrestrial organisms in soil. No terrestrial ecotoxicological data could be found for use in the Netherlands criteria derivation. Therefore, equilibrium partitioning has been applied to the MPC for water to obtain estimates of the MPC for soil. The MPC for water has been derived from aquatic ecotoxicological data (Van de Plassche et al. 1993; Van de Plassche & Bockting 1993).
- I Human health based protection level for ethyl benzene or total xylenes as shown. The threshold concentration presented here is the Netherlands intervention value. Other considerations such as odours and the protection of groundwater may require a lower remediation criterion.
- ** The xylene threshold concentration is the Netherlands MPC for the protection of terrestrial organisms in soil. No terrestrial ecotoxicological data could be found for use in the Netherlands criteria derivation. Therefore, equilibrium partitioning has been applied to the MPC for water to obtain an estimate of the MPC for soil. The MPC for water has been derived from aquatic ecotoxicological data. The concentration shown applies to total xylenes and is based on the arithmetic average of the individual xylene MPCs (Van de Plassche et al. 1993; Van de Plassche & Bockting 1993).

2.9.2 Auditor's Comments

The suggested criteria are considered appropriate for the site and the proposed use.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

The site forms part of a property which operated as a tram and bus depot from 1881 until the 1980s. The western portion of this property houses the current Randwick NSW State Transit Authority Bus Depot. Excerpts from URS's Data Assessment Report for the site are provided below, and include a brief summary of previous investigations undertaken on the site as part of investigations of the property. As indicated below, some data from previous investigations have been used to complement data more recently obtained by URS to complete an environmental assessment of the site.

At the Auditor's request an evaluation of the quality and usability of pre-existing data was undertaken at the beginning of URS's assessment. Only data of acceptable quality were to be incorporated in the current dataset.

In 1997, STA required subdivision of the greater property area into Lots 201 and 202 in preparation for future divestment. The subdivision required the demolition of buildings which straddled the boundary of Lot 201 and Lot 202. As the demolition works appeared to have been conducted in an uncontrolled manner Lot 202 required Post Demolition Validation in 1998 to assess if the demolition works had not adversely impacted the environmental condition of the site. The 1998 assessment was completed prior to the enactments of various sections of the *Contaminated Land Management Act, 1997*. In particular the works did not result in a Site Audit Statement (SAS) being prepared by an Independent Site Auditor which is a key requirement in the DA approvals process for Randwick City Council.

The objective of the assessment is to combine the results of recent investigations (July, August and September 2002) and historic investigations (1995 and 1998) in order to characterise the site condition for review by the site Auditor and preparation of a SAS.

The former Randwick Bus Depot has been the subject of several site contamination investigations conducted between 1991 and 1998 by both Sinclair Knight (SKM) and Dames & Moore (D&M) as outlined below:

- Sinclair Knight Partners (SKP, 1991) Preliminary Geotechnical and Environmental Investigation of the State Transit Authority's Randwick Bus Depot;
- Dames & Moore (D&M, 1991) Feasibility/Design Study for a Site Remediation Program at the Randwick Bus Depot;
- D&M (1992) EPA Compliance Report, Site Remediation Program: Phase I, Randwick Bus Depot;
- D&M (1994) EPA Compliance Report, Initial Site Validation Program, Randwick Bus Depot;
- D&M (1995) EPA Compliance Report, Final Site Validation Program, Randwick Bus Depot; and
- D&M (1998) EPA Compliance Report Post Demolition Site Validation Program Lot 202 King and Dangar Streets Randwick.

A detailed review of the historical files and reports was completed to establish the extent of data which could be considered suitable for the purposes of validation reporting. Data was considered useable if the appropriate level of field and laboratory QA/QC was undertaken in accordance with current NSW EPA Guidelines and where data had continued to be relevant following the uncontrolled demolitions undertaken at the time of the decommissioning of the Depot. The uncontrolled demolition rendered some of the data unusable from a materials tracking perspective.

Appropriate data, relevant to the current site conditions, was extracted from each of these reports in order to undertake this assessment . . . Other data has been rejected as not being suitable for site validation reporting.

Acceptable data from the sampling at the site (1991-1998) have been reviewed as part of the assessment process in April 2002. URS assessed the data for its suitability for inclusion in the final site validation of Lot 202 with respect to the current Auditor Guidelines. Several of the data were found to be invalid for reasons such as lack of laboratory certificates and laboratory quality assurance/quality control (QA/QC). This resulted in all data prior to and including 1994 as being identified as unsuitable for validation and issue of a SAS.

The summary table below outlines the analytes and numbers of acceptable historical data (1991 - 1998) considered suitable by URS for use in the final site validation.

Analytes	Number of Retained Historic Samples
Heavy Metals	30
TPH/BTEX	54
TPH only	7
PAHs	10

Summary tables for data collected during the 1995 and 1998 works and considered suitable for validation purposes are provided in Appendix C.

URS's sampling strategy is outlined below.

The NSW EPA Sampling Design Guidelines (1995) state that for a site of this size (2.93 hectares), approximately 40 sample locations is optimum for analysing and defining the site for a specific landuse and reducing the possibility of the occurrence of contamination 'hotspots'. Based on the selected contaminants of concern and the locations of accepted historic samples, URS recommended that supplementary site assessment be undertaken for asbestos, metals, TPH/BTEX and PAHs. Although over 54 historical samples for TPH/BTEX could be retained, the samples are concentrated in localised areas associated with excavations. The intention of the supplementary works was to enable a spread of the sample locations across the site

URS devised a sampling and analysis plan (URS 12 June 2002) for supplementary works at Lot 202 based on the data gaps listed above and submitted the plan to the Site Auditor for approval commensurate with current NSW EPA Auditor Guidelines.

The number of sampling locations for the supplementary works at Lot 202 has been devised using an approximate 40 m grid pattern with a total of an additional 25 sample locations as outlined in the Sampling and Analysis Plan (12 June 2002). Samples collected at each location were analysed for different sets of contaminants of concern. For example, only 15 of the locations required samples for PAHs and 10 locations for heavy metals. The background to this is that some of the historical data is considered valid in particular areas (for particular analytes) and the supplementary program fulfilled the existing data gaps for each contaminant of concern. The locations were chosen on the basis of where sampling and analysis for particular analytes had not been completed historically. The extent of supplementary sampling was minimised to a level required to meet the Site Auditor's Guidelines and submitted to the Site Auditor for comment prior to commencing the fieldwork.

3.1 Auditor's Comments

The Auditor reviewed the Supplementary Sampling and Analytical Plan developed by URS and suggested some minor modifications in a facsimile dated 26 June 2002 to URS. A copy of this facsimile is provided in Appendix B.

3.2 Initial Supplementary Works, July 2002 3.2.1 Soil Sampling and Analysis

The initial supplementary works carried out by URS included:

- the excavation of twenty-eight test pits (identified as TP1 to TP28) across the site on a grid pattern with an approximate spacing of 40 metres;
- analysis for PAHs, for samples collected from seventeen sample locations;
- analysis for heavy metals, for samples collected from fourteen sample locations;
- analysis for TPH and BTEX, for samples collected from fourteen sample locations; and
- analysis for asbestos, for samples collected from twelve sample locations.

The sampling and analysis schedule for initial supplementary sampling is summarised in Table 2, whilst the sampling locations are shown on Figure 2.

TABLE 2								
Soil Sampling and Analysis Schedule – July 2002								
Sample	Heavy Metals	ТРН	BTEX	РАН	Asbestos			
TP01/0.3-0.5				<u>, , , , , , , , , , , , , , , , , , , </u>	✓			
TP01/1.3-1.5		✓	\checkmark					
TP02/0.2-0.4	✓			✓				
TP03/0.3-0.5		\checkmark	\checkmark		 ✓ 			
TP04/0.3-0.5	\checkmark			√				
TP04/1.3-1.5	\checkmark	·		\checkmark				
TP5/0.3-0.5					✓			
TP5/1.3-1.5	✓			✓				
TP6/1.3-1.5		\checkmark	\checkmark	√				
TP07/0.3-0.5				\checkmark				
TP8/0.3-0.5	 ✓ 			✓				
TP8/1.3-1.5	✓	\checkmark	✓					
TP09/0.3-0.5					<u>√</u>			
TP9/1.3-1.5		✓	 ✓ 					
TP10/0.3-0.5				✓				
TP11/0.3-0.5					✓			
TP12/0.3-0.5	✓			✓				
TP13/0.2-0.4					✓			
TP14/0.3-0.5	✓	\checkmark	<u>√</u>	√				
TP14/1.3-1.5	✓		\checkmark	√				
TP14/2.4-2.6	,	✓	✓					
TP15/0.3-0.5	√	✓	✓	✓				
TP15/1.3-1.5	✓	1	✓	✓				
TP16/0.2-0.4	✓			✓				
TP17/0.3-0.5					✓			
TP18/0.3-0.5	✓	✓	✓	✓				
TP19/0.3-0.5					✓			
TP20/0.3-0.5	✓			✓	✓			
TP21/0.3-0.5		✓	✓	✓	✓			
TP22/0.3-0.5	 ✓ 	✓	✓		✓			
TP22/1.3-1.5	\checkmark	1	✓		✓			
TP23/0.3-0.5					<u>√</u>			
TP23/1.3-1.5	✓	✓	✓	✓				
TP24/0.3-0.5		 ✓ 	✓ ¹					
TP25/0.5-0.7	✓	✓	✓	✓				
TP25/1.3-1.5	1	 ✓ 	✓	✓				
TP26/0.3-0.5	✓	√	✓	\checkmark				
TP26/1.3-1.5	✓	~	✓	\checkmark				
TP26/2.9-3.0		✓	✓					
TP27/0.3-0.5					✓			
TP28/0.3-0.5					✓			

The results of laboratory analysis indicated that the concentrations of contaminants of concern were within the assessment criteria except for the following:

- lead (1880 mg/kg) in sample TP02/0.2-0.4; and
- TPH C_{10} - C_{36} (1716 mg/kg) in sample TP25/1.3-1.5.

Furthermore, asbestos was not detected in any of the samples.

3.2.2 Stockpile Assessment

URS's summary of the stockpile assessment follows.

In addition to the assessment of insitu materials, investigation of the stockpiles on the site was also required to determine their suitability to remain on site for use as fill. Survey results have indicated that the total volume of the stockpiles is approximately 9000 m^3 . To achieve the stockpile assessment URS undertook the following scope of work:

- Site inspection to establish those stockpiles requiring sampling. Stockpiles which were comprised of concrete and or brick rubble are not considered to require assessment. Stockpiles comprising soils were identified for assessment.
- Division of those stockpiles requiring assessment by an excavator into zones of approximately 300 m³ for individual assessment.

Ten stockpiles (identified as SP1 to SP7, and SP9 to SP11) were identified as comprising predominantly sandy soil. SP2 was identified as a concrete rubble stockpile but was also sampled. Samples were collected from these stockpiles, as described below, and analysed for heavy metals, TPH, BTEX, and PAH.

Samples were collected from stockpiles containing predominantly soil. One composite sample (3 point) from each approximate 300 m³ was collected. Stockpiles SP2, SP8, SP12, SP13, SP14, SP15, SP16, SP18 and SP19 consist of concrete slabs or brick (SP15 only) will be recycled and either retained on site or taken off site for recycling.

The results of laboratory analysis indicated that the concentrations of contaminants of concern were within the assessment criteria.

The stockpile samples were also submitted to a laboratory to determine whether any asbestos fibres were present in the samples. Asbestos (chrysotile) was only found in the sample from stockpile SP1. URS stated:

The stockpile was resampled and 4 representative samples were collected across the 300 m^3 . One sample was collected from each quadrant of the 300 m^3 . Each of these samples returned a non-detect result for asbestos. No asbestos cement fragments were identified in SP1.

3.2.3 Asbestos Survey

URS described the asbestos survey as follows:

The asbestos assessment followed the approach outlined in the ACLCA Code of Practice (draft February 2002). Sampling was undertaken by test pits such that observations of any suspect potential AC materials can be made. The sampling program was extended by a walk-over inspection of the whole site by an asbestos specialist. An outcome of the walk-over inspection was the inclusion of a further 2 test pits (TP27 and TP28) in a location where some demolition material had been spread, adjacent to the eastern boundary of the site.

An asbestos survey was conducted by Hibbs & Associates Pty Ltd (Hibbs) on 19 and 20 July 2002. To assist with the survey Hibbs divided the site into assessment zones. The survey identified the following issues:

- Fragments of bonded asbestos cement sheeting were noted at various locations around the site including within the assessment zones No. 1, 4, 5 . . .
- Some demolition rubble mixed with soil was spread across the eastern area of the site (grid location A3 A5) adjacent to the site boundary. Cement bonded asbestos fragments were observed in this material.

A copy of the summarised results of the asbestos survey is included in Appendix C. The delineated areas of concern, with respect to asbestos, are shown on Figure 3.

3.3 Soil and Groundwater Sampling, August 2002 3.3.1 Soil Sampling

Twenty-four boreholes (identified as BH01 to BH24) were drilled and sampled to delineate the TPH contamination found in the soil samples collected from test pits in July 2002. The boreholes were drilled within and around the large excavated area on the site, which was a result of previous partial remediation of the site. The samples submitted for analysis are summarised in Table 3. A copy of the summarised laboratory results is provided in Appendix C; sample locations are shown on Figure 2.

TABLE 3					
Analysis Schedule – August 2002					
Sample Analyte					
BH1/2.3-2.5					
BH2/2.5-2.7					
BH3/1.0-1.2					
BH3/3.0-3.2					
BH4/3.2-3.4					
BH5/1.8-2.0					
BH8/3.7-3.9	· · · · · · · · · · · · · · · · · · ·				
BH9/2.0-2.2					
BH10/1.0-1.2					
BH11/1.0-1.2					
BH12/2.2-2.3	TPH/BTEX				
BH13/0.8-1.3					
BH14/2.0-2.2					
BH15/1.3-1.5					
BH16/1.0-1.2					
BH17/0.4-0.7					
BH18/3.3-3.5					
BH20/2.0-2.2					
BH21/1.8					
BH22/2.5-2.7					
BH23/1.3-1.5	_				
BH24/0.8-1.0					

The results of laboratory analysis indicated that the concentrations of TPH and BTEX were within the assessment criteria for all samples, except for the following:

- TPH C₁₀-C₃₆ (4134 mg/kg) in sample BH2/2.5-2.7;
- TPH C_{10} - C_{36} (4751 mg/kg) in sample BH5/1.8-2.0;
- TPH C_{10} - C_{36} (1774 mg/kg) in sample BH14/2.0-2.2;
- TPH C₁₀-C₃₆ (1320 mg/kg) in sample BH15/1.3-1.5;
- TPH C_{10} - C_{36} (13,227 mg/kg) in sample BH18/3.3-3.5; and
- TPH C_{10} - C_{36} (1129 mg/kg) in sample BH20/2.0-2.2.

TPH C_{10} - C_{36} concentrations also exceeded the assessment criterion in samples DUP09 (3524 mg/kg TPH C_{10} - C_{36}) and DUP10 (5833 mg/kg TPH C_{10} - C_{36}), which were duplicate

samples of BH2/2.5-2.7. Sample DUP07 (10,795 mg/kg TPH C_{10} - C_{36}), a duplicate of sample BH5/1.8-2.0, also contained TPH C_{10} - C_{36} at a concentration exceeding the assessment criterion.

The TPH (C_{10} - C_{36}) concentrations exceeding the assessment criterion were found in soil samples collected from boreholes located in the western and southern end of the pit area. Furthermore, these soil samples were collected from close to or at the depth of the water table. URS noted that the analytical results were consistent with olfactory indications of contamination noted in the field.

URS also noted that:

No observations of impact (i.e. odour) were made in the boreholes completed just beyond the northern boundary of the pit (BH3, BH4, BH7 and BH8). The analytical results of the soil samples supported these observations with TPH concentrations below the laboratory detection limit. Further towards the middle and eastern end of the pit, soil samples were found to be above the laboratory limit of detection but below the guideline value of 1000mg/kg.

3.3.2 Groundwater Sampling

Boreholes BH03, BH05, BH12, and BH18 were completed as groundwater monitoring bores and identified as MW2, MW3, MW4, and MW1, respectively. Monitoring bores MW1 (BH18) and MW2 (BH03) were installed downgradient of the pit, while the other two bores were installed within the pit. Monitoring bore MW3 (BH05) was installed close to the location of test pit TP25, whilst MW4 (BH12) was installed in the eastern upgradient end of the pit. Groundwater was sampled from these boreholes on 28 August 2002 and submitted for analysis for TPH and BTEX. A copy of the summarised laboratory results is provided in Appendix C. The locations of test pits completed as groundwater monitoring bores are shown on Figure 2.

The results of analysis indicated that BTEX concentrations were below the limit of reporting for all samples. The TPH concentration in the sample collected from MW2 was below the limit of reporting, whilst the TPH concentrations in the remaining bores were relatively high, as follows:

- TPH C_6 - C_9 (43 µg/L) and TPH C_{10} - C_{36} (72,333 µg/L) in sample MW1;
- TPH C_6-C_9 (39 µg/L) and TPH $C_{10}-C_{36}$ (28,659 µg/L) in sample MW3; and
- TPH C_6 - C_9 (<20 µg/L) and TPH C_{10} - C_{36} (25,887 µg/L) in sample MW4.

Furthermore sample DUP19, a duplicate sample of MW1, also contained high concentrations of TPH (132 μ g/L TPH C₆-C₉ and 115,182 μ g/L TPH C₁₀-C₃₆).

3.4 Soil Sampling, September 2002

Another fourteen test pits (identified as TP100 to TP113) were excavated in September 2002, in order to further delineate the TPH contamination in the vicinity of the pit. At least one sample from each pit was submitted for laboratory analysis for TPH. The samples submitted had generally been collected from a depth of between 3 and 4 metres, the approximate depth at which the TPH contamination was identified in the August 2002 sampling. A copy of the summarised laboratory data is included in Appendix C, whilst sampling locations are shown on Figure 2.

The results of laboratory analysis indicated that TPH concentrations for all samples were within the assessment criteria and below the limit of reporting.

3.5 Discussion of Results

URS provided the following discussion of results.

Based on all the available information from the retained historical data (1991-1998) and the 2002 data the following applies:

- All heavy metal analysis reported concentrations below the NEPM HIL D with the exception of a lead sample at TP02. The concentration however is not greater than 250% of the guideline and is therefore not identified as a contamination 'hot spot' in accordance with the NEPM guidelines.
- All samples analysed for OC/OPs, VHCs, cyanide, sulphates and phenols were either below the relevant criteria or below the level of reporting by the laboratory.
- Several samples selected for PAH analysis reported low concentrations of PAHs, however, there were no exceedances of NEPM HIL D for either total PAH or benzo(a)pyrene.
- The investigations were able to establish the general trend for the location of TPH impact within the site. Borehole samples taken from inside the main pit on site such as BH2, BH5, BH14, BH15 and BH20 and one location at the western end outside the pit, BH18, all indicated TPH concentrations in excess of the relevant guidelines. The western end of the main pit appears to be the key area of TPH impacted material.
- No observations of impact (i.e. odour) were made in the boreholes completed just beyond the northern boundary of the pit (BH3, BH4, BH7 and BH8). Similarly, the analytical results of the soil samples supported these observations in that the results were below the laboratory detection limit. As such, it is considered that the extent of any source and/or impact has been established in this area. Further towards the middle and eastern end of the pit, soil samples were found to be odorous and above the laboratory limit of detection but below the guideline value of 1000 mg/kg.
- TPH results outside of the pit at the western end reported concentrations below the limit of reporting by the laboratory. The absence of concentrations of TPH does not correspond to the presence of hydrocarbon odour during investigations. The laboratory had been requested to reanalyse a percentage of the samples to confirm the TPH results.
- Samples analysed for TPH/BTEX or only TPH indicate several samples below the relevant guidelines and/or below the level of reporting from the laboratory.

URS considered that removal of asbestos cement fragments could be undertaken by hand picking followed by inspection by a suitably qualified asbestos consultant.

URS also noted that:

On the basis of the limited presence of asbestos fibres in SP1 (1 sample returned positive detection out of a total of 5 samples), it is considered reasonable to retain the stockpile on site as backfill. As a precautionary measure the stockpile should be placed beneath building slabs and/or pavements and that suitable control and contingency measures are taken to minimise dust generation during the relocation of the stockpile.

The groundwater results indicated TPH to be present in three wells (MW1, MW3 and MW4), however [the sample from] MW2 [had] concentrations below the limit of reporting by the laboratory. This indicates that the TPH contaminated water is present within the main pit and flowing . . . in a westerly direction out of the pit. The results for MW2 and the analyses and observations made during the soil investigations, has shown no evidence of TPH contamination to the north of the pit.

3.5.1 Auditor's Comments

The Auditor reviewed the report concerned and considers that the course of action proposed by URS was appropriate.

4.0 REMEDIAL AND VALIDATION WORKS

4.1 **Pre-Remediation Works**

4.1.1 Hydrocarbon-Impacted Area

To further delineate the extent of hydrocarbon impact, and to assess the areas requiring remediation, two additional rounds of drilling and sampling were conducted in and around the area of concern. Drilling was carried out between 12 and 24 April 2003.

Seven boreholes (identified as BH100 to BH106) were drilled to a depth below the water table or to bedrock, in the area to the east of the existing excavation. The boreholes were logged and photoionisation readings recorded; a total of twenty-one soil samples were submitted for laboratory analysis for TPH and BTEX. Samples were collected from both above and below the water table.

The results of analysis indicated that the concentrations of the contaminants of concern in all samples were within the assessment criteria.

Because elevated TPH concentrations had previously been recorded in monitoring well MW4, four boreholes (identified as BH107 to BH110) were drilled in the vicinity of this well. A total of fourteen samples collected from these boreholes were submitted for analysis for TPH and BTEX.

The results of analysis indicated that the concentrations of the contaminants of concern in all samples were within the assessment criteria.

During the second round of drilling, fifteen boreholes (identified as BH111 to BH114, BH201 to BH209, MW05, and MW05A) were drilled; two (MW05 and MW05A) were completed as monitoring wells. URS noted that this round of drilling was designed to provide:

an accurate estimate of the depth of hydrocarbon impact within the remediation area at the western end of the existing excavation.

During this round of sampling a total of fifty-two samples were analysed for TPH. Samples collected from all boreholes except BH207, BH208, BH209, and BH114 were also analysed for BTEX.

The results of analysis indicated that the concentrations of the contaminants of concern were within the assessment criteria for all samples with the following exceptions:

- TPH C_{10} - C_{36} (1432 mg/kg) in sample BH203_2.5-2.9;
- TPH C_{10} - C_{36} (1066 mg/kg) in sample BH205_1.9-2.3;
- TPH C_{10} - C_{36} (1277 mg/kg) in sample MW05A_2.3-2.7; and
- TPH C_{10} - C_{36} (5474 mg/kg) in sample BH208_1.0-1.4;

The sampling locations are shown on Figure 4, whilst a copy of the summarised laboratory data is provided in Appendix C.

4.1.2 Lead-Impacted Area

URS carried out some initial soil sampling in July 2002 to supplement historical data and to help fill in areas where historical data were for various reasons no longer useable. Of the samples analysed for heavy metals, one – identified as TP02/0.2-0.4 (1880 mg/kg lead) – contained lead at a concentration exceeding the investigation criterion.

URS undertook further investigations in 2003 to delineate the elevated lead concentration detected at test pit TP02. Sampling was carried out at thirty-two locations (identified as TP02, HA201 to HA209, TP201 to TP212, TP301 to TP304, TP306, TP307, TP309, and TP311 to TP313) via hand augering and test pitting. A total of eighty-six samples collected from these sampling locations were analysed for lead; the following samples contained lead in concentrations exceeding the NEPM 'D' guideline:

- TP02/0.5-0.6 (1880 mg/kg lead);
- TP02/1.0-1.1 (6600 mg/kg lead);
- HA202/0.4-0.5 (2940 mg/kg lead);
- HA204/0.2-0.3 (1430 mg/kg lead);
- HA204/0.6-0.7 (2460 mg/kg lead);
- HA204/1.0-1.1 (5100 mg/kg lead);
- HA207/0.2-0.3 (1460 mg/kg lead);
- HA207/0.6-0.7 (1340 mg/kg lead);
- HA207/1.0-1.1 (5130 mg/kg lead);
- HA208/0.6-0.7 (3370 mg/kg lead);
- TP202/0.5-0.6 (2330 mg/kg lead);
- TP204/0.5-0.6 (1660 mg/kg lead);
- TP206/0.5-0.6 (1390 mg/kg lead);
- TP207/0.5-0.6 (6460 mg/kg lead);
- TP207/1.0-1.1 (1900 mg/kg lead);
- TP212/1.0-1.1 (3730 mg/kg lead);
- TP302/0.5-0.6 (2810 mg/kg lead); and
- TP303/1.0-1.1 (1780 mg/kg lead).

In addition, the following samples contained lead in concentrations exceeding the NEPM 'E' guideline:

- HA201/0.2-0.3 (819 mg/kg lead);
- HA202/0.2-0.3 (749 mg/kg lead);
- HA205/1.0-1.1 (999 mg/kg lead);
- HA206/0.6-0.7 (764 mg/kg lead);
- HA208/1.0-1.1 (716 mg/kg lead);
- TP202/1.0-1.1 (631 mg/kg lead);

- TP204/1.0-1.1 (1080 mg/kg lead); and
- TP205/0.2-0.3 (614 mg/kg lead).

The sampling locations are shown on Figure 5, whilst a summary of the laboratory results is provided in Appendix C.

4.1.3 Groundwater Sampling

URS carried out groundwater sampling of monitoring wells MW01 to MW04, on 28 August 2002, and re-sampled those bores on 3 December 2002. Monitoring wells MW05 and MW05a were sampled on 9 May 2003. All samples were analysed for TPH and BTEX; BTEX compounds were below the limit of reporting in all samples. The results of TPH analysis for the three rounds of sampling are summarised in Table 4.

	TABLE 4 Results of TPH Analysis – Groundwater Samples							
($\mu g/L$) Sample Date TPH C ₆ -C ₉ TPH C ₁₀ - C ₁₄ TPH C ₁₄ - C ₂₈ TPH C ₂₉ - C ₃₆ TPH C ₁₀ - C ₃₆								
MW1	28-Aug-02	43	17,000	53,200	2090	72,290		
MW2	28-Aug-02	<20	<50	<100	<50	ND		
MW3	28-Aug-02	39	5830	21,200	1590	28,620		
MW4	28-Aug-02	<20	4250	20,700	937	25,887		
DUP19*	28-Aug-02	132	26,800	84,800	3450	115,182		
MW1	03-Dec-02	<20	5650	14,900	896	21,446		
MW2	03-Dec-02	<20	<50	<100	<50	ND		
MW3	03-Dec-02	<20	2770	17,000	1800	21,570		
MW4	03-Dec-02	<20	1260	6410	1160	8830		
MW05	09-May-03	<20	243	1800	224	2267		
MW05a	09-May-03	<20	2680	9190	1160	13,030		

Duplicate of MW1

ND Not detected

Locations of the monitoring wells are shown on Figure 4.

4.2 Remediation/Validation Objectives

4.2.1 Objectives

The remediation objectives as stated by URS were:

- to make the site suitable for the proposed residential [use] with minimal soil access and open space land areas surrounding the building areas;
- to protect human health (residents, site workers, off-site workers and off-site residents) and the environment from hazards relating to remediation works;
- confirmation that hydrocarbon impacted soil identified during environmental assessments are remediated to a level appropriate for the proposed land use of the site;
- compliance with regulatory and legislative requirements; and
- compliance with RCC Contaminated Land Policy, 1999.

4.2.2 Auditor's Comments

The Auditor reviewed the remedial action plan and amendments and considered that the proposed remediation was technically feasible and was appropriate to render the site suitable for the proposed use.

4.3.1 Works Completed

Cardinal Project Services (Cardinal) carried out remedial works from December 2002 to March 2003, whilst J A Bradshaw Pty Ltd (JAB) undertook remedial works from 7 July to 9 September 2003. JAB was supported by Responsive Environmental Solutions (RES). Hibbs and Associates Pty Ltd (Hibbs) and URS supervised the works.

The remedial works are described in detail below.

4.3.2 Remediation of TPH-Impacted Area

Prior to the commencement of remedial works within this area, an exclusion zone was established in order to contain the related excavation, stockpiling and operational processes and to prevent contamination of validated areas of the site. Remediation of the area impacted by petroleum hydrocarbons commenced on 7 July 2003.

The remedial excavation was progressed using a 'strip mining' procedure. Separate stockpiles were established, to receive material designated as 'contaminated', 'suspect', and 'clean'. The strip mining procedure involved:

- removal and stockpiling of overburden as suspected clean material;
- excavation of hydrocarbon-impacted material; and
- segregation of impacted material into suspect and contaminated stockpiles, on the basis of visual and olfactory observations together with photoionisation detector (PID) readings.

The final remediated zone comprised two distinct areas: namely, the main excavation, which included the hot spot located at Borehole BH15, and an area targeting the hot spot centred on Z3-8. The remedial areas are shown on Figure 4.

URS noted that, with the inclusion of the area around the BH15 excavation (approximately 30 square metres), the main excavation covered an area of approximately 1000 square metres. The length of the walls was estimated to be approximately 170 metres. The excavation around Z3-8 was estimated at 50 square metres with a linear wall length of approximately 40 metres.

The remedial excavation often extended below the water table, which according to URS was 'elevated due to heavy rains prior to the remediation'. Material above the impacted zone consequently slumped into the base of the excavation. In an effort to control this slumping and reduce ingress of groundwater, only a small area was excavated in each progressive strip. A validation sample was collected from the base of the strip prior to backfilling to a level above the water table in order to prevent the excavation collapsing.

When strip mining, in order to minimise the risk of cross-contamination, each strip overlapped the preceding adjacent strip. This overlap was considered necessary to ensure the removal of all impacted material.

4.3.3 Remediation of Stockpiles and Areas Impacted by Asbestos-Containing Material (ACM)

The proposed method for remediating the areas impacted by ACM included the following.

• Excavation, via a surface scrape, of at least a 300-millimetre layer of soil and demolition materials containing ACM fragments over the area where demolition waste had been spread. Any ACM fragments visible at the base of the excavation were to be removed manually. All ACM was to be disposed of at a licensed landfill.

- Excavation and off-site disposal of soil stockpile SP7, where ACM fragments had been observed. Any ACM fragments visible at the base of the excavation were to be removed manually.
- A visual inspection of the entire surface prior to validation of the excavation base for asbestos fibres, and subsequent validation sampling on a 20-metre grid spacing.

Excavation of Fill Containing ACM Fragments

Fill material containing ACM had previously been identified along the eastern boundary of the site adjacent to Dangar Street. This area was excavated to a depth of between 0.3 and 1 metre, the depth to the natural sands, with the volume of excavated material estimated at 600 cubic metres.

Removal of Stockpile SP7

Stockpile SP7, which had an estimated volume of 30 cubic metres, was excavated and disposed of off site. Fragments visible at the stockpile footprint were removed manually.

Building Survey

Hibbs carried out a Hazardous Building Survey to assess whether it was necessary to remove additional materials from the buildings prior to their demolition. Minor quantities of asbestos containing materials were identified within the buildings; these included:

- one localised area of flat asbestos cement (AC) sheeting as wall panelling;
- two AC downpipes; and
- AC fragments in localised areas within the former recreation building.

As noted by URS:

Assessment of ACM on the site was assisted through previous asbestos removal works completed in 1995 by the STA. Previous reporting by D&M (1995) compiled details of the asbestos removal program . . . A report issued by SKP (1991) identified asbestos containing materials in several structures at the site. The sketch included in Appendix L [URS] illustrates the buildings comprising ACM. Verification of the removal of the identified ACM was provided by New Environment Pty Ltd. The asbestos removal works undertaken in 1995 was supported by a visual inspection and air monitoring for asbestos fibres.

Remediation of Stockpiles SP2 and SP19

During the sorting of on-site stockpiled materials into sandstone/concrete and residual sand/fill, Cardinal observed AC building materials within stockpile sectors SP2 and SP19. These materials had not been visible during previous inspection of the stockpiles. URS and Hibbs visited the site on 3 February 2002 to inspect these AC materials. Given the small quantity of AC materials in the stockpile, it was assessed that the sorting process could continue, and any ACM fragments would be removed by hand. Trained personnel, utilising appropriate environmental and health protection measures, removed the ACM, which was stored appropriately on site, prior to off-site disposal.

Soil separated from stockpiles SP2 and SP19 was subsequently sampled and analysed for asbestos fibres, in order to validate the material for on-site re-use. Hibbs inspected the areas underlying SP2 and SP19 for ACM. The area was sampled and analysed for asbestos fibres to ensure that no cross-contamination of soil had occurred on the site.

The separation process ultimately produced:

- concrete and sandstone, which was crushed and re-used on site;
- two stockpiles (identified as SP-A and SP-B) of residual sandy material; and
- ACM, which was stored appropriately, prior to disposal.

About 16 bags of ACM fragments and five large (1-metre) sections of suspected asbestos pipe were subsequently removed off site for disposal.

URS noted that ACM fragments were collected manually from the locations, as previously advised by Hibbs. All manual collection was carried out under the supervision of Hibbs, and the material was either placed in polythene bags or wrapped in polythene sheeting before being transported off site to an appropriately licensed landfill facility.

4.3.4 Remediation of Lead-Impacted Area

Remedial excavation of the lead-impacted area around test pit TP207 was conducted on 15 August 2003. The remedial excavation measured 4 metres by 3 metres and was 1.8 metres deep, the depth at which natural sands were encountered. The excavated materials were stockpiled and covered with black plastic sheet in Part 2 of the Lot. As the materials are no longer located on Part 1 of the Lot, they will not be dealt with further in this audit, but will rather be addressed in the Stage 2 audit.

4.3.5 Auditor's Comments

The Auditor visited the site twice during remediation. A member of the Auditor's support team attended on another occasion. URS staff maintained full-time supervision of remediation. The Auditor is satisfied that the remediation contractors carried out their work in an appropriate manner.

4.4 Validation Program

4.4.1 Validation of TPH Remedial Area

A total of sixty-four validation samples (identified as EXB-01 to EXB-64) were collected from the base of the excavation, and a further forty-eight validation samples (identified as EXW-01 to EXW-48) were collected from the walls of the excavation. All samples were analysed for TPH. URS noted that sampling density was greater where volume of groundwater ingress and degree of excavation collapse were greater. Wall samples were collected from the depth of greatest identified impact. The sampling locations are shown on Figure 6, and a copy of the summarised laboratory data is provided in Appendix C.

Analysis results indicated that the following samples contained TPH in concentrations exceeding the assessment criteria:

- EXW-04 (2383 mg/kg TPH C₁₀-C₃₆);
- EXW-05 (2008 mg/kg TPH C₁₀-C₃₆);
- EXW-20 (1218 mg/kg TPH C₁₀-C₃₆);
- EXW-28 (8570 mg/kg TPH C₁₀-C₃₆);
- EXW-41 (3090 mg/kg TPH C₁₀-C₃₆);
- EXB-04 (1734 mg/kg TPH C₁₀-C₃₆);
- EXB-09 (1744 mg/kg TPH C₁₀-C₃₆); and
- EXB-60 (1074 mg/kg TPH C₁₀-C₃₆).

URS indicated that the areas around these samples were re-excavated with the exception of sample location EXB-60. Sample locations EXW-18, EXW-35, EXW-37, EXW-47 were also excavated.

In addition to the primary validation samples, URS also collected nine spot check samples, which targeted elevated analytical validation results. This process involved re-excavation of the material at the location and the collection of a base sample and two wall samples. The nine spot check samples included three base samples (identified as SCB-01 to SCB-03) and six wall samples (identified as SCW-01 to SCW-06). The samples were submitted to the laboratory to be analysed for TPH. The locations of spot checks 1, 2, and 3 are shown on Figure 6.

Once all remedial works at the TPH remedial area were completed, the surface of the area was scraped (to a depth of approximately 75 millimetres) with an excavator. Eight validation samples (SS-01 to SS-08) were collected over this area on a 20-metre grid, and submitted for laboratory analysis for TPH. A figure showing these sample locations is included in Appendix C. The results of laboratory analysis are also included in Appendix C.

The material obtained during the surface scrape was stockpiled, sampled and validated for re-use beneath the building footprints, and covered with 0.5 metre of clean material. The material was placed in Cell 6, the location of which is shown on Figure 9.

The results of analysis indicated that TPH concentrations in all samples were within the assessment criteria.

Figure 7 shows TPH validation sampling locations for the balance of the site. Results of laboratory analysis for these samples are provided in Appendix C.

4.4.2 Validation of Stockpiled Materials

Material excavated from the TPH remediation area was, as mentioned previously, stockpiled as either Contaminated, Suspected Contaminated, or Believed Clean. The Contaminated and Suspected Contaminated materials were initially sampled at a rate of one sample per 100 cubic metres. The Believed Clean materials were sampled at a rate of between one in 10 and one in 25 cubic metres.

If analysis results for Suspected Contaminated materials were not within the assessment criteria, the material was classified and then transported off site. If the materials were within the assessment criteria, the material was re-sampled by URS at a rate of one sample per 25 cubic metres. If these results also met the assessment criteria, the material was placed beneath building footprints and covered with at least 0.5 metre of clean material. This material was placed into placement cells 1 to 4; their location is shown on Figure 9.

Furthermore URS noted that:

Clean material was stockpiled adjacent to the excavation and sampled. At times during the excavation period, due to a lack of alternative backfill being readily available, this clean stockpiled material was reused as backfill prior to the receipt of laboratory results. Records were kept of the placement of this material in the event that the analytical results indicated that the material did not meet the Remediation Guideline. If the material exceeded the Remediation Guideline it was subsequently re-excavated and sent for off-site disposal.

All materials removed off site for disposal were classified JAB/RES as Solid Waste.

4.4.3 Validation of Lead Remedial Area

Following completion of the remedial excavation around test pit TP207, four validation samples (identified as EXW-101c to EXW-104c) were collected from the walls of the excavations, and one validation sample (identified as EXB-101) was collected from the base of the excavation. The five samples were submitted for laboratory analysis for lead. URS noted that the wall samples were collected at depths between 1 and 1.5 metres. The sampling locations are shown on Figure 5, and the summarised laboratory results are provided in Appendix C.

Analysis results indicated that lead concentrations in the validation samples were all within the assessment criterion, which, because in the final development this area will be covered by a building, is the NEPM 'D' guideline.

4.4.4 Other Lead-Impacted Areas

During sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in-situ material that contained lead in concentrations that exceeded the assessment criterion for open space use. The samples representing this material included 41.3 level S1, 41.3 level S2 (960 mg/kg lead), 41.3 level S3, 41.3 level S4, and Road 2-05 (960 mg/kg lead).

The material was within the assessment criterion for the areas beneath the proposed building footprints.

The material was subsequently buried beneath the proposed building footprints, above the water table, and covered with a layer of clean fill material. The material was placed into placement cells 5 and 8, as shown on Figure 9.

4.4.5 PAH-Impacted Areas

During sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in-situ material that contained PAH in concentrations exceeding the assessment criterion for open space use.

The material was within the assessment criterion for the areas beneath the proposed building footprints.

The material was subsequently buried beneath the proposed building footprints – above the water table – and covered with a layer of clean fill material. This material was placed into placement Cell 7, which is shown on Figure 9.

The PAH validation sampling locations are shown on Figure 8. A copy of the summarised laboratory data is provided in Appendix C.

4.4.6 Validation of Areas and Stockpiles Containing ACM

Excavation of Fill Containing ACM Fragments

Following excavation of the fill material containing ACM along the eastern boundary of the site, four validation samples (identified as AS-Z1-01 to AS-Z1-04) were collected from the base of the excavation and submitted for analysis for asbestos. Validation sampling together with a detailed visual inspection of the final excavation, carried out by Hibbs, was used to assess whether the ACM had been adequately removed.

Asbestos was not detected in the samples analysed.

Validation of Stockpile SP7

Following removal of the stockpile, Hibbs carried out a detailed visual inspection of the stockpile footprint, and reported that the material had been removed satisfactorily.

Validation of Stockpiles SP2 and SP19

As mentioned above, the residual sandy material, which resulted from separation of ACM, concrete, and sandstone from stockpiles SP2 and SP9, was set aside in two stockpiles, namely SP-A (the larger stockpile) and SP-B (the smaller stockpile). Sampling of this material was undertaken at a rate of approximately 1 sample per 400 cubic metres, resulting in the collection of fourteen validation samples (identified as SPA_01 to SPA_14) from stockpile SP-A and two validation samples (identified as SPB_01 and SPB_02) from SP-B.

Furthermore, four validation samples (identified as SP-BASE 01 to SP-BASE 04) were collected, on a 20-metre grid, over the footprint of the stockpile segregation work zone.

Asbestos was not detected in any of the samples analysed.

The asbestos validation sampling locations are shown on Figure 3.

4.4.7 Validation of Moriah Daycare Area

URS noted the following in relation to the construction of the Moriah Daycare Centre.

Following acquisition of Lot 202 by Sir Moses Montefiore Jewish Home in 1998, the Moriah College entered a sub-lease agreement with Sir Moses Montefiore Home. Moriah commenced planning for the construction of the daycare centre in early 1999. A survey completed by Proust and Gardner of Lot 202 on 1 July 1999 illustrated an extensive stockpile of rubble material in the south-east corner of the site (refer Appendix D [URS]) located in part of the area presently occupied by the Moriah Daycare centre. A note on the survey drawing indicates that excavation activities were underway at the time of the survey. It is assumed that these works were associated with the development of the Moriah Daycare centre as it is understood that no other earthworks were completed on the Montefiore property until 2002. The Proust and Gardner survey undertaken in September 2002 (refer Appendix E [URS]), illustrates the boundaries and features of the finished daycare centre.

URS understands that the building pad forming the base of the daycare centre was constructed of rubble sandstone and concrete materials, which were likely to have been stockpiled in the vicinity of the daycare centre. The building pad is raised and the batters of the underlying materials are exposed. The materials forming the building pad are similar in nature to the materials which were previously in a stockpile located directly adjacent to the Daycare centre. these stockpiles were characterised and validated through an investigation completed by URS in 2002....

From previous reporting by Dames & Moore, URS compiled a summary of validation information related to the area occupied by the Moriah Daycare centre which indicated that:

- observations during the excavation of Zone 5 in 1995 indicated that the extent of contamination was minimal;
- over-excavation was completed to provide an increased level of confidence that no significant additional pockets of petroleum hydrocarbon were present in these areas;
- the excavation extended to bedrock;
- a total of 4 validation samples were collected from the bedrock surface and walls of the excavation;
- concentrations of TPH (C₁₀-C₃₆) detected in the validation samples ranged from less than the laboratory reporting limit of 250 mg/kg to 700 mg/kg; and
- re-instatement of the excavation was completed with validated reused site soil materials. These materials were also backfilled in other site excavations and the stockpiles were sampled at a ratio of no less than 1 sample per 200 m³. The samples were analysed for

concentrations of TPH and BTEX. A total of 42 samples were applicable to the reused materials. Statistical analysis was completed on the data set and the 95% UCL for TPH (C₁₀-C₃₆) was calculated to be 476 mg/kg and the maximum concentration was 980 mg/kg.

URS noted that although it was not possible to confirm the source of the backfill materials used to establish the building pad of the Daycare centre, survey data suggest the materials probably came from stockpiles directly adjacent to the development area. URS validated these stockpiles in 2002 as suitable for standard residential use with access to soil.

URS also stated that the following factors further validate the suitability of the Moriah Daycare for its current use.

The areas understood to be available to the visitors of the daycare centre include the main building and the playground to the rear of the building. It is understood that the underlying backfill material has been covered with a variable thickness of topsoil and subsequently artificial grass, landscaping or paving was placed overlying the topsoil to create a playground. As such, access to the underlying backfill material is restricted.

4.4.8 Air Monitoring

Hydrocarbon Remediation

Environmental Resources Management Australia Pty Ltd (ERM) managed air monitoring for JAB during the hydrocarbon remediation works. Air monitoring involved the use of a high volume air sampler on three separate sampling events (18, 16, and 24 July 2003) and the use of two dust deposition gauges for the duration of the hydrocarbon remediation works (twenty-five days). One dust deposition gauge was placed on the west site boundary and one on the east site boundary.

The results of the monitoring indicated that the dust concentrations during the monitoring period were within acceptable levels.

ACM Remediation

Hibbs carried out collection and analysis for airborne respirable asbestos fibres in accordance with the WorkSafe Australia *Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Dust* (NOHSC:3003, 1998).

Sampling was carried out in December 2002, during remediation of SP7 and fill containing ACM adjacent to Dangar Street, and also over the period 3 to 28 February 2003 during the sorting of stockpiles SP2 and SP19.

The monitoring results indicated that the levels of airborne respirable fibres were below the reporting limit (<0.01 fibres/ml) during the monitoring program.

4.4.9 Auditor's Comments

Regular liaison was maintained with URS throughout remedial work. Significant variations in expected conditions, and the means of dealing with them, were discussed.

The Auditor visited the site twice during the course of remediation, and a further visit was carried out by a member of the Auditor's support team. The Auditor is satisfied that the procedures adopted by URS and Hibbs during remediation were adequate to ensure effective validation, and to protect worker and public health and safety.
4.5 URS's Conclusions

URS concluded the following:

On the basis of the results of the remediation validation sampling, monitoring and visual validation inspections, URS concludes that the Part 1 area of Lot 202 King Street, Randwick has been remediated in accordance with the RAP (URS, 7 February 2003) and the NSW EPA Accredited Auditor's requirements for this portion of the site. Part 1 has been defined by a survey undertaken by a licensed registered survey[or] and is included as Appendix A [URS].

Validation of the hydrocarbon remediation has been achieved through sampling and laboratory analysis. URS considers that hydrocarbon impacted materials have been remediated in accordance with the RAP and that the residual surfaces satisfy the NSW EPA Service Station guideline, as adopted for the remediation guideline. The 95% UCL of average TPH concentration satisfies the adopted remediation guideline for data sets compiled for either the hydrocarbon remediation area, or for the whole of the Part 1 area.

Remediation of the hydrocarbon impacted material has removed the source of the ongoing groundwater contamination with TPH.

Validation of the lead and PAH remediation has been completed by dividing the respective data sets into data applicable to either the open space or building footprints. Data relevant to the open space areas has been assessed against the NEPM HIL Level E guideline values and conversely, data relevant to the building footprints has been assessed against the NEPM HIL Level D guideline values.

Validation of the lead remediation has been achieved through sampling and laboratory analysis. URS considers that the lead impacted materials have been remediated in accordance with the RAP Modification (26 August 2003) and that the residual surfaces or backfilled materials satisfy either the NEPM HIL Level D or Level E guideline in the respective guideline areas.

Validation of the materials impacted with polyaromatic hydrocarbons has been achieved through sampling and laboratory analysis. The backfilled materials satisfy either the NEPM HIL Level D or Level E guideline in the respective guideline areas.

Asbestos removal works have been conducted in accordance with the RAP to the satisfaction of an asbestos specialist, Hibbs. NSW Health has provided a written endorsement of the asbestos remediation methodology. The review completed by NSW Health stated that "... the risk to people's health from asbestos would appear to be so small that it need not be considered further" and as such, indicates that no unacceptable health risk with respect to asbestos remains.

Off-site disposal of waste materials during the remediation program was undertaken in accordance with the NSW EPA Waste Guidelines (1999) and the site specific Sydney Water Trade Waste Agreement.

As a consequence of the remediation and the validation program, Part 1 of Lot 202 as illustrated in the survey plan attached as Appendix A [URS] is considered to be suitable for the composite land use of medium density residential with minimal access to soils and open space areas. The delineation between the medium density residential areas and the open space areas is defined by the master plan drawings (Rev A, 08/03) as prepared by JJTW, presented as Figure 3 [URS].

URS's summary statistics for the analytical data for the soil sampling at the site are provided in Table 5. The samples and data used in validating the site and calculating the statistics below are included in Appendix C.

Summar	y Statis	ABLE 5 tics of V mg/kg)		n Data			
Analyte	PQL	Set	Min.	Max.	Mean	C.V.	95% UCL*
Lead - NEPM 'D' Areas	<1	40	<1	2810	337.2	1.62	484.3 ‡
Lead - NEPM 'E' Areas	<1	71	<1	749	97.63	1.46	323.8 †
Benzo(a)pyrene - NEPM 'D' Areas	< 0.5	13	<0.5	6.2	0.87	1.85	2.5†
Benzo(a)pyrene - NEPM 'E' Areas	< 0.5	39	<0.5	3.7	0.63	1.01	0.8*
Total PAHs - NEPM 'D' Areas	<1	13	<0.5	61.2	8.65	1.84	19.2†
Total PAHs - NEPM 'E' Areas	<1	39	<0.5	38.7	7.79	0.93	9.8*
TPH – Remediation area	<250	155	<50	1074	295.4	0.54	316.8 *
TPH – Balance of site	<250	119	<50	900	294.6	0.49	316.9 *
TPH - Backfill	<250	41	<50	906	293.4	0.56	337.0 *

Notes: PQL laboratory practical quantitation limit

Set number of samples in data set

Min. minimum concentration

Max. maximum concentration

Mean arithmetic mean

C.V. coefficient of variation

* Calculated via procedure D (NSW EPA, 1995)

[†] Calculated via procedure G (NSW EPA, 1995)

[‡] Calculated via US EPA Non-parametric Jack knife

4.5.1 Auditor's Comments

The Auditor has reviewed the validation report. Clarification was sought from URS on a number of issues, and this was provided in written form. Correspondence is attached in Appendix B. Disposal documentation for materials transported off site has been sighted. The Auditor is satisfied that remediation was carried out in an appropriate manner, and endorsed the conclusions of URS.

5.0 COMPLETENESS AND ADEQUACY OF INVESTIGATION

5.1 Initial Sampling Strategy

The strategy adopted by URS to assess and validate existing data, and the sampling carried out to fill the data gaps so identified, are considered appropriate.

5.2 Validation Sampling

The number of validation samples taken within the site, together with their distribution, is considered adequate. These samples provide an adequate level of assurance that concentrations of contaminants in soil are within the agreed criteria.

5.3 Sampling Procedures

The sampling procedures adopted by URS, as outlined in the assessment and validation reports, have been reviewed. These procedures are considered to comply with general industry standards and to be adequate to ensure the integrity of the data set used to assess contamination and validate remediation on this site.

C. M. Jewell & Associates Pty Ltd Water & Environmental Management

5.4 Quality Assurance/Quality Control

The quality assurance and quality control procedures adopted by URS, as outlined in the assessment/validation reports, have been reviewed. These procedures are considered to comply with general industry standards and to be adequate to ensure the integrity of the data set used to assess contamination and validate remediation on this site.

A review of the laboratory QC results presented in the validation report has also been undertaken. A copy of the QC portion of the auditing checklist has been provided in Appendix D.

The QA/QC criteria examined in this review included:

- Precision
- Accuracy
- Sensitivity
- Representativeness
- Comparability
- Completeness
- Holding times
- Blanks

The Auditor considers that the overall quality of data and their presentation are of an adequate standard to support the conclusions he has reached.

5.5 Groundwater Issues

The Auditor considers that hydrocarbon contamination of groundwater has been adequately remediated, and does not consider that the potential for off-site migration of contamination originating from the site is an issue of concern.

5.6 Aesthetic Issues

The Auditor does not consider that aesthetic issues are now of concern on this site. Odorous soils have been effectively remediated.

5.7 Chemical Mixtures

The Auditor does not consider that the potential for chemical mixtures is an issue of concern on this site.

5.8 Reporting Standards

Although minor matters requiring clarification were identified in the validation report, the validation report and underlying RAP generally comply with the NSW EPA's *Guidelines for Consultants Reporting on Contaminated Sites* (1997).

6.0 CONCLUSIONS

The Auditor considers that the site has been validated to the required standard, and that analysis of validation samples demonstrates that concentrations of contaminants of concern remaining on the site are within the criteria applicable to residential use with minimal opportunity for soil access, or park and open space use as appropriate for the proposed development.

C. M. Jewell & Associates Pty Ltd Water & Environmental Management The Auditor has thus concluded that it is appropriate to issue a Site Audit Statement which indicates that the site is suitable for use as an aged care and community facility comprising areas for residential use with minimal opportunity for soil access, and areas for public open space use.

REFERENCES

Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand (2000): Australian and New Zealand Guidelines for Fresh and Marine Water Quality. National Water Quality Management Strategy.

Australian and New Zealand Environment and Conservation Council/National Health and Medical Research Council (1992): Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites.

Imray, Paula and A. Langley (1999): *Health-Based Soil Investigation Levels*, National Environment Protection (Assessment of Site Contamination) Measure, Schedule B, Guideline 7A.

NSW Environment Protection Authority (1994): *Guidelines for Assessing Service Station Sites*, Chatswood NSW.

NSW Environment Protection Authority (1995): Sampling Design Guidelines, Chatswood NSW.

NSW Environment Protection Authority (1997): Guidelines for Consultants Reporting on Contaminated Sites, Chatswood NSW.

NSW Environment Protection Authority (1998): Guidelines for the NSW Site Auditor Scheme, Chatswood NSW.

Taylor, Roscoe and A. Langley (1999): *Exposure Scenarios and Exposure Settings*, National Environment Protection (Assessment of Site Contamination) Measure, Schedule B, Guideline 7B.

Van de Plassche, E. J. and G. J. M. Bockting (1993): Towards Integrated Environmental Quality Objectives for Several Volatile Compounds. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, Report No. 679101 011, 1993.

Van de Plassche, E. J., M. D. Polder and J. H. Canton (1993): Derivation of Maximum Permissible Concentrations for Several Volatile Compounds for Water and Soil. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands, Report No. 679101 008, 1993.

WorkSafe Australia (1998): Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Dust (NOHSC:3003).

C. M. Jewell & Associates Pty Ltd Water and Environmental Management ABN 54 056 283 295

Important Information About Your Environmental Site Assessment

These notes have been prepared by C. M. Jewell & Associates using guidelines prepared by the National Ground Water Association (NGWA) and other sources. They are offered to help you in the interpretation of your Environmental Site Assessment (ESA) reports.

REASONS FOR CONDUCTING AN ESA ESAs are typically, though not exclusively, carried out in the following circumstances:

- as pre-acquisition assessments, on behalf of either purchaser or vendor, when a property is to be sold;
- as pre-development assessments, when a property or area of land is to be redeveloped or have its use changed – for example, from a factory to a residential subdivision – as a requirement for development approval;
- as pre-development assessments of greenfield sites, to establish 'baseline' conditions and assess environmental, geological, hydrological constraints to the development of, for example, a landfill; and
- as audits of the environmental effects of an ongoing operation.

Each of these circumstances requires a specific approach to the assessment of soil and groundwater contamination. In all cases, however, the objective is to identify and if possible quantify the risks which unrecognised contamination poses to the proposed activity. Such risks may be financial (for example, clean-up costs or limitations on site use), or physical (for example, health risks to site users or the public).

THE LIMITATIONS OF AN ESA

Although the information provided by an ESA can reduce exposure to such risks, no ESA, however diligently carried out, can eliminate them. Even a rigorous professional assessment may fail to detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled.

The extent of sampling and subsequent analysis of soils is necessarily limited, and is generally targeted towards areas where contamination is considered to be most likely, based on the knowledge of the site history and visual observation. This approach maximises the probability of identifying contaminants; however, it may not identify contamination which occurs in unexpected locations or from unexpected sources.

Further, soil, rock and aquifer conditions are often variable, resulting in non-homogenous contaminant distributions across a site. Contaminant concentrations are identified at chosen sample locations; however, conditions between sample locations can only be inferred on the basis of the estimated geological and hydrogeological conditions and the nature and extent of identified contamination. Boundaries between zones of variable contamination are often indistinct, and must be interpreted based on available information and the application of professional judgement. The accuracy with which subsurface conditions can be characterised depends on the frequency and methods of sampling and the uniformity of subsurface conditions and is therefore limited by the scope of works undertaken.

ESA 'FINDINGS' ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual subsurface conditions only at those points where samples are taken, when they are taken. Data derived through sampling and subsequent laboratory testing are interpreted by geologists, engineers or scientists who then render an opinion about overall subsurface conditions, the nature and extent of contamination, its likely impact on the proposed development and appropriate remediation measures. Statistical tools may be used to assist in such assessment, but the validity of conclusions depends entirely on the degree to which the original data reflect site conditions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions.

Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise its impact. For this reason, owners should retain the services of their consultants through the development stage, to identify variances, to conduct additional tests which may be needed, and to recommend solutions to problems encountered on site. SUBSURFACE CONDITIONS CAN CHANGE

Subsurface conditions are changed by natural processes and the activity of people. An ESA report is based on conditions that existed at the time of subsurface exploration; decisions should not be based on an ESA report whose adequacy may have been affected by time. Speak with the consultant to learn if additional tests are advisable.

ESA SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Every study and ESA report is prepared in response to a specific Brief to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. A report should not be used by other persons for any purpose, or by the client for a different purpose. No individual other than the client should apply a report even apparently for its intended purpose without first conferring with the consultant. No person should apply a report for any purpose other than that originally contemplated without first conferring with the consultant.

AN ESA REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS Your environmental report should not be used:

- when the nature of the proposed development is changed - for example, if a residential development is proposed instead of a commercial one;
- when the size or configuration of the proposed development is altered;
- when the location or orientation of the proposed structure is modified;
- when there is a change of ownership; or
- for application to an adjacent site.

To help avoid costly problems, refer to your consultant to determine how any factors which have changed subsequent to the date of the report may affect its recommendations.

AN ESA REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when design professionals develop their plans based on misinterpretations of an ESA. To help avoid these problems, the environmental consultant should be retained to work with appropriate design professionals to explain relevant findings and to review the adequacy of their plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE GEOLOGICAL REPORT

Final borehole or test pit logs are developed by environmental scientists, engineers or geologists based upon their interpretation of field logs (assembled by site personnel) and laboratory evaluation of field samples. Only final logs are customarily included in our reports. These logs should not under any circumstances be redrawn for inclusion in site remediation or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimise the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-toofrequent result.

To reduce the likelihood of borehole log misinterpretation, the complete report must be available to persons or organisations involved in the project, such as contractors, for their use. Those who do not provide such access may proceed under the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing all the available information to persons and organisations such as contractors helps prevent costly construction problems and the adversarial attitudes which may aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because an ESA is based extensively on judgement and opinion, it is necessarily less exact than design documents produced by other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are not exculpatory clauses designed to foist liabilities onto some other party. Rather, they are definitive clauses which identify where your consultant's responsibilities begin and end. Their use helps all parties involved recognise their individual responsibilities and take appropriate action.

Some of these definitive clauses are likely to appear in your ESA report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions. 1

. |

- 1

, ;

. .

, i

CONFORT SMALL LICKTON BOOMD VACA. 194/9205 (1946) PERIN MICHAEL PARKS HEAVY NETALS, D19955 1941,04034, (1990) THE COMPLEX A TW-83 11-62 10 0.27.4 \$ V3-1 1020+

SAMPLE LOCATION AND ANALYSIS

LEGEND

B PGBT-5 MSI MARKET 1916, MALESTE

0

LINETHS LOCATORS (ALL* 2002 UNITING LOCATIONS (AND 2002)

LAMPLING LOCATIONS (1874 200) 8 X

LINGT SIX STOCKED

INVESTIGATION STREAM

DONOR IN MARK STOOPPEL RUNKE INCOVER Ň

Document: J0807.12 Rev: 1 Date: 13/11/2003 Author: JDM

Figure 2

abstracted from URS Report Project No. 51072-001

Site Layout and Previous Sampling Locations

SCALE 1:325

Contaminant Groups

APPENDIX A

. J

. 1

POLYCYCLIC AROMATIC HYDROCARBONS

Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b) & (k) fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene

TOTAL PETROLEUM HYDROCARBONS

 C_6 - C_9 Fraction C_{10} - C_{14} Fraction C_{15} - C_{28} Fraction C_{29} - C_{36} Fraction

MONOCYCLIC AROMATIC HYDROCARBONS

Benzene Toluene Ethylbenzene meta- & para-Xylene ortho-Xylene

HEAVY METALS

Arsenic (As) Cadmium (Cd) Chromium (Cr) Copper (Cu) Lead (Pb) Mercury (Hg) Nickel (Ni) Zinc (Zn)

> C.M. Jewell & Associates Pty Ltd Water and Environmental Management

APPENDIX B

Communications with the Auditor

 ~ 1

1 j

. .

- 1 - 1

 $\langle \gamma \rangle$

· 1

1 1

. 1

C. M. Jewell & Associates Pty Ltd Water and Environmental Management A.B.N. 54 056 283 295

fax transmission

P.O. Box 10, Wentworth Falls, NSW 2782, Australia 1/13 Kalinda Road, Bullaburra, NSW 2784, Australia

 Phone (02) 4759 3251
 Email postie@cm-jewell.com.au
 Fax (02) 4759 3257

 (International +61 247 59 3251)
 (International +61 247 59 3257)

Ref: J0807.13	Date: 14 October, 2003	Time: 9:55
To: URS Australia Pty Ltd		c.c.
Attention: Fran Mitchell	8822	Attention:
Fax No. 8925 5555	From: Chris Jewell	Fax No.
Original to follow: No		Total pages including cover: 2

Subject: Lot 202 King Street, Randwick

Fran,

I have carried out a review of your Remediation Validation Report for Part 1 of Lot 202 King Street Randwick. I have some comments and have noted several issues which require clarification. These are as follows:

- 1. In the validation of the TPH remediation area it is noted that the areas around validation sampling locations, containing concentrations of TPH exceeding the assessment criteria, were re-excavated. Were these areas revalidated?
- 2. Could you please show on a figure, the locations of surface validation samples SS-01 to SS-08 which were collected once all remedial works at the TPH remedial area were completed the surface of the area was scraped.
- 3. In the validation report it is noted that:

Clean material was stockpiled adjacent to the excavation and sampled. At times during the excavation period, due to a lack of alternative backfill being readily available, this clean stockpiled material was reused as backfill prior to the receipt of laboratory results. Records were kept of the placement of this material in the event that the analytical results indicated that the material did not meet the Remediation Guideline. If the material exceeded the Remediation Guideline it was subsequently re-excavated and sent for off-site disposal.

Was the excavation re-validated when these backfill materials were re-excavated?

- 4. URS note that, in the remedial excavation around TP207, the wall samples were collected at depths between 1 and 1.5 meters yet the highest lead concentration in TP207 was at a depth of 0.5 and 0.6 metres. Please comment
- 5. It was noted during sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in situ material that contained lead in concentrations that were not within the assessment criteria for open space use. The samples representing this material included 41.3 level S1, 41.3 level S2 (960 mg/kg lead), 41.3 level S3, 41.3 level S4, and Road 2-05 (960 mg/kg lead). The material was subsequently buried beneath the proposed building footprints. Was validation sampling carried on the areas from where the materials were excavated? Please

comment on the heterogeneity of lead within this material as the original analysis of sample 41.3 Level S2 Dup contained 11.3 g/kg of lead.

- 6. Please indicate the fate of the stockpile from which sample LSP-04 was collected.
- 7. During sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in situ material that contained PAH in concentrations that were not within the assessment criteria for open space use. What samples represent the VENM material? Was validation undertaken for the areas from where the material was excavated?
- 8. There appears to be some discrepancies between the PAH validation samples shown in Tables 20 and 21 and the samples located in the NEPM D guideline area as shown on Figure 7. Please update the figure and tables and show all validation samples on the figure where appropriate.
- 9. Please forward the disposal documentation for Appendix Q.
- 10. The location of test pit TP204 does not appear to be shown on any figures.
- 11. Section 6.5.2 of the report notes a further two rounds of drilling and sampling was conducted in August 2003 to further delineate the extent of hydrocarbon impact and assess the areas requiring remediation. Should the sampling dates be April 2003?
- 12. In Section 6.5.2 (sub-section Concrete Stockpile Segregation) it is noted that URS and Hibbs visited the site on 3 February 2002. Should the date be 2003?
- 13. No details have been provided for the groundwater sampling carried out on 9 May 2003. Please comment.
- 14. Please provide the co-efficient of variation and indicate the procedure (method) used to calculate the 95% UCL in Table 23.
- 15. Could you please provide electronic copies of your figures so that I may adapt them for use in the SSAR.
- 16. Please provide all sampling and analysis data and disposal documentation (Kurnell landfill etc) that relates to the VENM material exported off the site?

For and on behalf of C. M. JEWELL & ASSOCIATES PTY LTD

CHRIS JEWELL

URS

3 November 2003 Project No. 51072-001

CM Jewell & Associates Pty Ltd PO Box 10, Wentworth Falls, NSW, 2782

Attention: Chris Jewell NSW EPA Site Auditor

DOCUM	ENT CONTI	ROL
Control No:	10422	· ·
Date received:	4.11.0	3
Job No:	0807	<u></u>
Routing:	CART	<u></u>
and an a particular design of the second	JJDM	THE.
	FILE	

Dear Chris,

Subject: Lot 202 King St Part 1 Remediation Validation Response to Auditor's Queries

1. In the validation of the TPH remediation area it is noted that the areas around validation sampling locations, containing concentrations of TPH exceeding the assessment criteria, were re-excavated. Were these areas re-validated?

Yes. Clean materials were typically backfilled in the remediation excavations prior to the receipt of analytical validation data. This was undertaken as the excavations were generally unstable when left open. In cases where the original validation samples exceeded the remediation guideline values, the reinstated backfill was excavated (including clean placed material) and loaded to the contaminated stockpile. The underlying material was subsequently excavated to remove the material represented by the failed sample. Similarly, this excavated material was loaded to the contaminated stockpile and validation sampling was repeated on the established surface. Examples of where this occurred included EXB-59 (replaced failed sample EXB-09) and EXB-61 (replaced failed sample EXB-04). Refer Table 2 (for failed/excavated samples) and Figure 5a illustrates the failed/excavated samples as a 'ghosted' grey sample identification point.

URS Australia Pty Ltd (ABN 46 000 691 690) Level 3, 116 Miller Street North Sydney, NSW 2060 Australia Tel: 61 2 8925 5500 Fax: 61 2 8925 5555

2. Could you please show on a figure, the locations of surface validation samples SS-01 to SS-08 which were collected once all remedial works at the TPH remedial area were completed the surface of the area was scraped.

The attached cad file 059.dwg illustrates the location of these surface samples. This figure will be included in the revised validation report.

3. In the validation report it is noted that:

"Clean material was stockpiled adjacent to the excavation and sampled. At times during the excavation period, due to a lack of alternative backfill being readily available, this clean stockpiled material was reused as backfill prior to the receipt of laboratory results. Records were kept of the placement of this material in the event that the analytical results indicated that the material did not meet the Remediation Guideline. If the material exceeded the Remediation Guideline it was subsequently re-excavated and sent for off-site disposal."

Was the excavation re-validated when these backfill material materials were reexcavated?

Yes - The underlying excavation surface was subsequently re-validated following the removal of the impacted backfill. The only location where the backfill was originally suspected as being 'clean' and then subsequently found to exceed the remediation guideline value was for original backfill sample identification CSP-11. Once the material represented by CSP-11 had been re-excavated, the base of the excavation was re-validated by collection of sample EXB-60.

4. URS note that, in the remedial excavation around TP207, the wall samples were collected at depths between 1 and 1.5 metres yet the highest lead concentration in TP207 was at a depth of 0.5 and 0.6 metres. Please comment.

Observations made during the remediation excavation of investigation location TP207 indicated that the wall surfaces from 0.3 m to 1.7 m comprised a heterogenous profile of sand fill material, containing some brick, concrete and PVC fragments. The validation samples (as presented in **Table 10**) were collected from between 1.0 and 1.5 m bgl. In consideration of the visual heterogeneity of the wall profile, it was considered appropriate that a representative sample of the wall material would comprise a composite sample collected across the depth of 1 to 1.5 mbgl. It is, however, recognised that the depth where the highest concentration was detected was at 0.5 m bgl and that this depth was not sampled in the validation sampling. However,

it is not considered that this is an issue of concern on the basis that the nature of the fill profile was visually heterogenous.

5. It was noted during sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in situ material that contained lead in concentrations that were not within the assessment criteria for open space use. The samples representing this material included 41.3 level S1, 41.3 level S2 (960 mg/kg lead), 41.3 level S3, 41.3 level S4 and Road 2-05 (960 mg/kg). The material was subsequently buried beneath the proposed building footprints. Was validation sampling carried on the areas from where the materials were excavated?

Material represented by samples "41.3 level S1", "41.3 level S2", "41.3 level S3", "41.3 level S4" comprised a single stockpile, excavated from the site material requiring removal to establish the building pad level of BE41.3. This material was relocated and replaced as Cell 5 (refer Figure 6). The location of building pad level BE41.3 is illustrated on the bulk earthworks drawing provided as **Appendix S**. The stockpiled material was sourced from the building pad BE41.3 in the north-eastern section of the site at a depth of approximately 2.0 - 3.0 m below the original ground level. No validation of the underlying surface was completed, as the concentrations satisfied the NEPM HIL-D guideline value, with the exception of field duplicate 41.3 Level S2 Dup. The landuse of the underlying surface, representing the building pad level of BE41.3, will be for the main nursing home building and therefore is within the NEPM HIL-D guideline area.

The source area of the stockpiled material appeared to be natural sand at this depth and it is suspected that the elevated lead concentrations are a result of cross contamination from overlying historic fill materials. The suspected source of contamination is from a layer of fill along the northern batter of building pad BE41.3 and along the northern section of the batter between building pads BE44.6 and BE41.3.

For further background on this sampling and results, please refer to the earlier correspondence (URS to CM Jewell, 26 August 2003).

With regard to samples Road2-0.5, URS requested that RES collect further samples at the base of the excavation should RES/JA Bradshaw wish to export underlying material as VENM. The sampling was not requested for validation purposes and as such, was not included in the Validation Report (18 September 2003). The data collected in this sampling are samples Road2a and Road 2b, both collected at 1 mbgl as analysed in Labmark laboratory batch no. 015415. The analytical result for each of these samples was a lead concentration of <2 mg/kg. Appendix X has been compiled as a tabulation of the VENM assessment data provided by RES/JA Bradshaw.

5b. Please comment on the heterogeneity of lead within this material as the original analysis of sample 41.3 Level S2 Dup contained 11.3 g/kg of lead.

A discussion of the variability of results between the primary analysis (by Labmark) of sample "41.3 Level S2 Dup" and its interlaboratory duplicate (by ALS) and associated laboratory check samples (by ALS) is provided in Section B1.2.4 of **Appendix B** of the Part 1 validation report.

There were no visual indicators of lead impact in the excavations undertaken. The likely source of the lead impact is considered to be associated with the historic operations of the bus or tram depot. Paint workshops were located on the property and it is possible that the impact is associated with waste paint or paint stripping residues. However, no paint flakes were observed in the test pits completed. Another possible source is from handling of lead acid batteries. This source is considered more likely as it is consistent with the absence of visual indicators.

6. Please indicate the fate of the stockpile from which sample LSP-04 was collected.

A stockpile of fill material excavated from the northern section of BE41.3 was sampled by URS (samples LSP-03 and LSP-04) and the result for one of the samples (2200 mg /kg for LSP-04) indicate that this material does not meet the NEPM 'D' Guideline.

As communicated in earlier correspondence (URS to CM Jewell, 26 August 2003), this material was not addressed within the Part 1 remediation works. Material represented by LSP-03 and LSP-04 was relocated to the Part 2 area and subsequently replaced as impacted fill in the dedicated cell placement area constructed as part of the Part 2 remediation works. Details of these works will be reported in full in the Part 2 Validation Report (under preparation).

For further background on this sampling and results, please refer to the earlier correspondence (URS to CM Jewell, 26 August 2003).

7. During sampling and analysis of material for the purpose of VENM classification, RES identified some stockpiled and in situ material that contained PAH in concentrations that were not within the assessment criteria for open space use. What samples represent the VENM material? Was validation undertaken for the areas from where the material was excavated?

The analytical data collected by RES for the intended purpose of VENM classification illustrated that the material was not VENM. Some discussion of this is made in Section 6.10.3 of the report. Following receipt of these results and inspection of the stockpile by URS, exportation of the stockpile as VENM was rejected and it was decided to retain the

material on-site. As such, these samples are not related to characterisation of the VENM exported off-site. Assessment details of the exported VENM is addressed in Question 16.

Two discrete samples were collected from RES from a volume of approximately 800 m³ of material which was excavated from the batter area between the building pads of BE41.3 and BE38.1 (refer **Appendix S**) and placed in stockpile. The samples are "38-41.2 S1 Front" and "38-41.3 S1 Back" as analysed in Labmark batch no.015187.

Sample	B(a)P (mg/kg)	Total PAHs (mg/kg)
38-41.2 S1 Front	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
38-41.3 S1 Back	6.2	61.2

Analytical PAH results for these samples are provided in the following table:

Note: <LOR denotes no detection above the laboratory limit of reporting

In response to these results, URS completed sampling of the stockpile in 4 sectors, to establish if the PAH concentrations were consistent throughout the 800 m³ volume. Sampling of the stockpile is represented by samples LSP-05 through to LSP-12 inclusive, while samples LSP-11 and LSP-12 are relevant to the sector of the stockpile where the RES sample "38-41.3 S1 Back" was collected.

Sample ID	Lab/Batch	B(a)P	total PAHs
LSP-05	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
LSP-06	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
LSP-07	SGS/ 24520	0.09	0.93
LSP-08	SGS/ 24520	0.2	3.4
LSP-09	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
LSP-10	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
LSP-11	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
LSP-12	SGS/ 24520	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>

Based on these results and considering the RES results, the 95% UCL of the data set representing the entire stockpile was calculated to be 2.7 mg/kg (BaP) and 25.8 mg/kg (total PAHs). The highest result for the "38-41.3 S1 Back" was less than 250% of the

NEPM HIL-D guideline. However, a conservative approach was taken to extract the sector of the stockpile represented by "38-41.3 S1 Back" from the balance of the stockpile. The material represented by "38-41.3 S1 Back" was replaced under a building footprint, in the placement location, Cell 7 (illustrated on Figure 7). The balance of the material was replaced as Cell 6, similarly under a future building footprint, although URS did not consider this necessary, as the result satisfied the NEPM HIL-E open space guideline value.

No validation sampling was undertaken on the excavation surface from which the stockpile was sourced. This was considered unnecessary as the isolated detection of elevated PAHs in the stockpile, was assumed to be associated with the small quantity of fill material which had been inadvertently mixed with the underlying VENM during the excavation. Non natural fill material, including bricks and some steel, was observed by URS in minor quantities within the 800 m³ stockpile. The stockpile otherwise comprised natural virgin excavated white sands.

The majority of the residual surface from where the material was excavated was finished as a batter between building pads BE41.3 and BE38.1. This batter comprised a natural white sand profile. As such, it was not considered necessary to validate the surface for PAHs as the source of the PAHs was assumed to be associated with the fill materials. In addition, the residual surface of the excavation underlies the main building footprint and as such, there is minimal access to soil in this location on the site.

8. There appears to be some discrepancies between the PAH validation samples shown in Tables 20 and 21 and the samples located in the NEPM D guideline area as shown on Figure 7. Please update the figure and tables and show all validation samples on the figure where appropriate.

URS has reviewed Figure 7 and Tables 20 and 21 and established that there is an inconsistency between Table 20 and Figure 7 with respect to the location of TP10. TP10 was not illustrated on Figure 7 and as such, the Figure has been revised.

However, the following background is provided on the compilation of the Figure and Tables which may assist in the interpretation.

Figure 7 illustrates investigation/validation locations relevant to PAH analysis. This investigation was undertaken prior to the bulk earthworks program, however it was intended that this data would be utilised for validation purposes. This strategy was communicated in e-mail correspondence earlier this year (C. Vernon, 21 May 2003).

As part of the bulk earthworks program, materials were moved around the site to form the building platforms as per the earthworks construction drawing included as

Appendix S. A summary of the materials movements was discussed in the Validation Report (refer Section 6.15).

For assessment purposes, materials excavated from areas underlying building footprints and subsequently relocated elsewhere on the site have been conservatively assumed to have been relocated to open space areas. However, the investigation locations representing these materials are depicted in their original locations at the time of the investigation. For example, materials surrounding TP8, although originally located in an area covered by a future building footprint, were excavated to form building pad BE41.3. As such, data from TP8 has been assumed to be part of the open space NEPM HIL-E data set on the basis that the material may have been relocated to an open space area. However, Figure 7 records the original location of the investigation location.

To summarise the destination of the data, Tables 20 and 21 include a column outlining the current location of the material in consideration of the bulk earthworks program.

9. Please forward the disposal documentation for Appendix Q.

Landfill disposal documentation for the disposal of materials assumed to be impacted with asbestos are included with **Appendix Q**. These materials were transported and disposed of as Solid Waste at Penrith Waste Services.

10. The location of test pit TP204 does not appear to be shown on any figures.

Testpit TP204 was undertaken in the Part 2 validation area, to be reported on shortly. TP204 was completed in July 2003 at the former location of TP02. TP02 represents the location of TP204.

11. Section 6.5.2 of the report notes a further two rounds of drilling and sampling was conducted in August 2003 to further delicate the extent of hydrocarbon impact and assess the areas requiring remedaition. Should the sampling dates be April 2003?

Yes, the dates should be April 2003. This will be corrected in the report revision.

12. In Section 6.5.2 (sub-section Concrete Stockpile Segregation) it is noted that URS and Hibbs visited the site on 3 February 2002. Should the date be 2003?

Yes, the date should be 3 February 2003. This will be corrected in the report revision.

13. No details have been provided for the groundwater sampling carried out on 9 May 2003. Please comment.

Sampling of wells MW05 and MW05a was completed on 9 May 2003 prior to the commencement of the hydrocarbon remediation works. Other wells proposed for sampling in this event included MW3 and MW4. MW1 had been destroyed at an earlier time by vehicle movements. Monitoring well MW05a had been installed to replicate MW1. Monitoring wells MW3 and MW4 could not be sampled on 9 May due to the flooding of the excavation area.

The monitoring event included:

- Measurement of the height of the water table at each of the monitoring wells using a water level probe;
- Purging and sampling of each of the two monitoring wells;
- Measurement of field water quality parameters including temperature, dissolved oxygen, electrical conductivity and redox potential; and
- Laboratory analysis of the groundwater samples for the identified contaminants of concern; TPH (total petroleum hydrocarbons) and BTEX (benzene, toluene, ethylbenzene and xylene).

Table 22a provides a summary of the field water quality parameters. Parameters were relatively consistent over the sampling events. In addition, the groundwater level at MW05 and MW05a measured in May 2003 was substantially higher than that previously measured at nearby MW1 (now destroyed) in August and December 2002. This water level rise is attributed to the flooding of the excavation area.

14. Please provide the co-efficient of variation and indicate the procedure (method) used to calculate the 95% UCL in Table 23.

The 95% UCL calculations were completed using the statistical procedures, either Procedure D or G as documented in the NSW EPA 1995 guideline, "Contaminated Sites: Sampling Design Guidelines", indicated in Table 23. An exception to this is the 95% UCL calculation for the NEPM HIL-D area for lead concentrations. The coefficient of variation for this data set is 1.63 and the 95% UCL concentration estimated by the NSW EPA "Procedure G" for log-normal distributions was 9510.9 mg/kg, which exceeds the remediation guideline value. However, this result appears biased given the calculated 95% UCL concentration exceeds the maximum individual sample concentration. The US EPA approach to the estimation of the 95% UCL (US EPA, 1997¹) was calculated as a 95% UCL of 483.2 mg/kg, by using the non-parametric Jacknifed mean method. This

¹ United States Environmental Protection Agency (1997), *The Lognormal Distribution in Environmental Distributions*.

result appears to be a more accurate estimation of the 95% UCL given the range of the lead concentrations within the data set.

15. Could you please provide electronic copies of your figures so that I may adapt them for use in the SSAR.

These drawings have been provided by e-mail in PDF format on 31 October 2003.

16. Please provide all sampling and analysis data and disposal documentation (Kurnell landfill etc) that relates to the VENM material exported off the site?

Appendix X has been created to include a tabulation of the VENM assessment data provided by RES/JA Bradshaw. Data relevant to material originally proposed as VENM and then subsequently rejected as such is also included in the table. These samples, collected by RES, include "41.3 Level samples" (Labmark batch no. 014981), "Road 2 samples" (Labmark batch no. 15068), "38.1-41.3 samples" (Labmark batch no. 015187).

Disposal documentation in the form of landfill weighbridge receipts were not provided by JA Bradshaw for the disposal of the VENM material. URS understands that this documentation was unavailable as the material was accepted as VENM filling material. Some material was accepted by Besmaw Pty Ltd at Lot 2 DP559 922 Captain Cook Dr, Kurnell Penilsula. A secondary destination for the disposal of the VENM material was to a holding depot owned by JA Bradshaw in St Peters. Letters detailing the acceptance of the material at each of these locations are included with **Appendix X**.

Yours sincerely, URS AUSTRALIA PTY LTD

Fran Mitchell Project Manager

Martin Howell Project Director

Enclosures: Table 22a Field Water Quality Parameters – Groundwater Sampling Table 23 Analytical Validation Data – Statistical Summary Appendix Q – Cardinal Demolitions Asbestos Disposal Documentation Appendix X – Analytical Data for Soil samples representing VENM excavated at King St, Randwick Appendix X Disposal Documentation (Holt Group 7 May 2003, JA Bradshaw 12 May 2003) Figure 7 PAHs Validation Sample Locations

APPENDIX C

Information Relied Upon by the Auditor

TABLE 1 - 1995 Historical Data

		<u> </u>					. 1			7			1	1		1			-			ł	1	1	i					1	1	1	•	Т	1	1			1		1	-		- <u>1</u>	
VHCs	mg/kg		I	I		J	1	1	I	ł	ı	t	1	I	I	I	I	I	1		1	: [1		I		1	I	I	1	QN	g	g	Z	I	1	I	1	1	I		I	I	1	1
PCBs	mg/kg		1	i		I	I	1	ł	5	ţ	I	I	1	I	1	Ļ	1	1	.		1	1		1	1	ΠŊ	QN	QN	Q	1	I	1	ı	1	1	1	I	1	1		l	1	1	1
OC/OPs	mg/kg		I	1		1	-	1	1	1	1	1	1	1	1	1	I	3	t		1	1	1	1	1	I	Q	ND	DN	R	1		1	1	1	1	I	1	I	I		I	I	l	I
Benzo(a)	mg/kg	4	<lor< td=""><td>0.5</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>I</td><td>I</td><td>I</td><td>1</td><td> 1</td><td>1</td><td></td><td>1</td><td>1</td><td> </td><td>1</td><td>1</td><td>ι</td><td>1</td><td>1</td><td>1</td><td>ſ</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>I</td><td>1</td><td>I</td><td></td><td>I</td><td>1</td><td>I</td><td>I</td></lor<>	0.5		1	1	1	1	1	1	I	I	I	I	I	1	1	1		1	1		1	1	ι	1	1	1	ſ	1	1	1	1	1	I	I	I	1	I		I	1	I	I
РАН	mg/kg	80	<lor< td=""><td>6.3</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>ł</td><td>I</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>I</td><td>1</td><td>1</td><td>1</td><td>I</td><td>1</td><td>ł</td><td>1</td><td>1</td><td>1</td><td>ł</td><td>1</td><td>1</td><td>I</td><td>1</td><td></td><td>I</td><td>1</td><td>I</td><td>I</td></lor<>	6.3		1	1	1	1	1	1	1	1	1	ł	I	1	1			1	1	1	1	1	I	1	1	1	I	1	ł	1	1	1	ł	1	1	I	1		I	1	I	I
BTEX	mg/kg		I	l		1	1	1	1	I	1	I	I	1	1	I	1		1		1	1		1	1	1	1	1	1	ļ	QN	g	QN	ND	Q	g	QN	QN	Q	QN		ΠN	DN	I	1
Hall	Бу/бш	1000	1	ł		1	1	1	1	1	-	I	1	1	i	I		1	1		1	1	1	1	1	I	1	1		1	QN	Q	g	g	ą	QN	QN	ΠN	QN	QN		QN	QN	QN	006
Чd	щ%g	1200	1	120		5	1	4	4	6	14	⊲LOR	83	<lor< td=""><td><!--</td--><td>LOR</td><td>6</td><td>40R</td><td>6</td><td></td><td>AOR</td><td>5</td><td>15</td><td><lor< td=""><td>^LOR</td><td>14</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>. 1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>1</td><td>, I</td><td>1</td><td>1</td><td></td><td>I</td><td>1</td><td>1</td><td>1</td></lor<></td></td></lor<>	</td <td>LOR</td> <td>6</td> <td>40R</td> <td>6</td> <td></td> <td>AOR</td> <td>5</td> <td>15</td> <td><lor< td=""><td>^LOR</td><td>14</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>. 1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>1</td><td>, I</td><td>1</td><td>1</td><td></td><td>I</td><td>1</td><td>1</td><td>1</td></lor<></td>	LOR	6	40R	6		AOR	5	15	<lor< td=""><td>^LOR</td><td>14</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>. 1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>1</td><td>, I</td><td>1</td><td>1</td><td></td><td>I</td><td>1</td><td>1</td><td>1</td></lor<>	^LOR	14	1	1	1	1	1	. 1	1	1	I	I	1	, I	1	1		I	1	1	1
Date of	Sampling	Guideline/HIL 'D'	1995	1995		1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1935	1995	1995		1995	1995	1995	1895	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995		1995	1995	1995	1995
Batch		Guid	N95/035203	N95/035204	9606041	9505153	9505153	9505196	9506018	9506018	9506018	9506025	8506018	9505153	9505153	9505153	9505153	9505153	9505153	N95/031688	9505153	9505153	9506025	9506025	9506025	9506025	9505849	9505849	9505849	9505849	9505849	9505849	9505849	9505849	9505802	9505802	9505802	9505802	9505815	9505802	N95/032612	9505815	9505815	9502353	9502353
Laboratory			AGAL	AGAL	Enviromet	Enviromet	Enviromet	Enviromet	Enviromet	Enviromet	AGAL	Fright	Enviromet	Enviromet	Fiviromet	Enviromet	Enviromet	Amdel	Amdei	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	AGAL	Amdel	Amdel	Amdel	Amdel															
Sample Depth	•		0-0.15	0-0.15		0-0.15	0-0.15	0-0.15	0-0,15	0-0.15	0-0,15	0-0.15	0-0.15	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.15		0-0.15	0-0.15	0 15-0 3	0.15-0.3	0.15-0.3	0.15-0.3	0-0.15	0-0.15	0-0.15	0-0.15	0-1.5	0-1.5	0-1.5	0-1.5	2.7-2.9	2.7-2.9	2.7-2.9	2.7-2.9	5.5-5.7	2.7-2.9		2.7-2.9	2.7-2.9	1.0-1.2	0.5-0.7
coc ID	 		V3-1	V3-2		Z2-M1	Z2-M2	Z2-M6	Z2-M7	Z2-M8	Z2-M9	Z2-M11	NE-M1	Z7-1	2-12	77-3	4	7-5		i	2-12	- 87 12	PS-19	54 54 57 54	PS-14	PS-15	Pest-1	Pest-3	Pest4	Pest-5	1W-S1	TW-S2	ES-ML	TW-S4	Z8-1	Z8-2	Z8-3	ZB-4	ZB-5	Z8-6		Z8-7	Z8-8	SZ-61	SZ-62

Prepared By RSM Checked By Dod 2

%.

TABLE 1 - 1995 Historical Data

:

t . .

											-																					<u> </u>		;	,	<u> </u>	 ,	,				;				·	,	
VHCs	mg/kg		I	ł	I	ł	I	ł	I	I	1	1	ł	1	1	I	1	I	I	I	1	1	1	I	1	1	I	ł	1	ł		ł	I	1	1	1	1	1	I	I		l	I	I	1	1	1	1
PCBs	mg/kg		I	;	1	I	I	1	1	I	I	I	ł	1	I	1	I	I	I	L	-	1	1	1	1	1	1	1	ſ	1		I	1	1	1	1	1	1	1	1		1	1		I	I	I	1
OC/OPs	mg/kg		1	1	1	1	I	1	1	1	1	1	T	1	ı	I	1	I	I	1	ł	I	1	1	1	1	1	i	I	I		1	I	I	-	1	1	1	1	1		1	I	Ι	I	1	1	1
Benzo(a)	mg/kg	4	t	1	I	1	1	1	1	t	1	1	1	1	1	I	1	1	1	1	I	1	1	[I	1	1	1	1	I		1	۱	1		1	1	1	1	1		. 1	I	1	1	1	1	I
PAH	mg/kg	80	1	1	1	1	ľ	1	1	1	1	1	1		1	1	I	1	1	1	1	I	1	1	1	1	1	1	t	I		I	I	i	1	1	1	I	1	I		I	1	1	1	1	I	ſ
BTEX	mg/kg		1	1	I	I	- 0	Q	QN	QN	QN	QN	Q	QN	QN	QN	ND	QN	ΠŊ	9	Q	ND	ND	QN	DN	QN	g	g	Q	QN		QN	QN	g	g	QN	Q	Q	QN	QN		QN	ND	QN	ND	QN	QN	QN
НЧТ	mg/kg	1000	QN	QN	QN	QN	pl_aw	P ND	4 ND	ON ¥	JAND!	GN OT	d'NZ	QN	g	QN	QN	DN	ΩN	QN	QN	ND	DN	QN	510	g	Q	g	9	Q		ND	ΩN	Q	g	1300	400	360	QN	QN		520	Q	Q	g	QN	QN	ND
멉	mg/kg	1200	1	1	1	t	1	1	1	1		1	1	1	1	1	1	1	1	1	1		1	1	I	I	1	1	1	I		I	l	I		I	1	1	1	1		1	I	[1	1	1	T
Date of	Sampling	Guideline/HIL 'D'	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995		1995	1995	1995	1995	1995	1995	1995	1995	1995		1995	1995	1995	1995			
Batch		Guic	9502353	9502353	9502353	9502353	9502353	9505659	9505659	9505659	8505659	8505659	9505659	9505727	9505668	9505668	9505668	9505668	9505668	9505668	9505727	9505727	9505777	9505777	9505777	9505777	9505777	9505777	9505777	9505815	N95/032613	9503656	9503656	9503656	9503656	9505802	9505802	9505802	9505802	9505849	N95/032831	9505802	9505802	9505802	9505802	9503299	9503299	9503299
Laboratory			Amdel	Amdel	Amdel	Amdet	Amdel	Amdeî	Amdel	Amdel	Amdel	Amdel	Amdel	Andel	Amdel	Amdel	Amdei	Amdel	AGAL	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	AGAL	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdei												
Sample Depth			0.5-0.7	1.5-1.7	3.0-3.2	1.5-1.7	1.5-1.7	2.2-2.4	2.2-2.4	22-2.4	2.2-2.4	2.2-2.4	4.5-4.7	2.2-2.4	2.2-2.4	2.2-2.4	2.2-2.4	2.2-2.4	2.2-2.4	2.2-2.4	22-24	2 2-2.4	4.5.4.7	4.5-4.7	4.5-4.7	4.54.7	2.2-2.4	2.2-2.4	2.2-2.4	2.2-2.4		1.5-1.7	1.5-1.7	1.5-1.7	1.5-1.7	3.0-3.2	3.0-3.2	3.0-3.2	3.0-3.2	3.0-3.2	3.0-3.2	3.0-3.2	1.5-1.7	3.0-3.2	1.5-1.7	0.8-1.0	0.8-1.0	0.8-1.0
COC ID			SZ-63	SZ-51	SZ-52	SZ-53	SZ-54	1-12	72-2	E-22	22-4	Z2-5	22-6	Z2-7	Z2-12	Z2-13	Z2-14	Z2-15	Z2-16	Z2-17	Z2-18	Z2-19	22-20	Z2-21	Z2-22	E2-22	Z2-24	72-25	Z2-26	Z2-27		Z3-1	Z3-2	Z3-3	Z3-4	Z3-8	6-EZ	Z3-10	Z3-11	Z3-12		Z3-13	Z3-14	Z3-15	Z3-16	HAB1	HAB2	HA83

Prepared By RSM Checked By Dod 2

Page 2 of 3

ж. ,

TABLE 1 - 1995 Historical Data

VHCs	mg/kg		1	F
PCEs	mg/kg		1	1
oc/oPs	mg/kg		.	1
Benzo(a)	mg/kg	4	J	1
PAH		80		1
BTEX	mg/kg		QN	QN
НД	Булбш	1000	QN	ND
Ър	mg/kg		1	1
Date of	Sampling	Guideline/HIL 'D'		
Batch		Gui	9503388	9503299
Laboratory			Amdel	Amdel
Sample Depth			0.8-1.0	0.8-1.0
coc ID			HA84	HA85

,¥

NOTES (1) ND denotes not detected (2) ¹² denotes not analysed (3) <LOR denotes less than laboratory limit of reporting

Page 3 of 3

s:projects\51072\001\Reports\Tables\Historical1995_1998.xls\Table 1\19-09-02

TABLE 2 - 1998 Historical Data

,%. \

]

•

													;
Phenols	mg/kg		QN	QN	Q	QN	Q	Q	QN	QN	QN	QN	QN
Sulphate	тg/kg	2000	1140	119	205	32	21	11	21	32	37	44	15
Cyanide	mg/kg	1000	Q	Q	QN	DN	ND	QN	QN	Q	Q	QN	Q
VHCs	mg/kg		l	1	1	1	1	l	1	I	1	I	
PCBs	mg/kg		I		1	[1	Ι	1	1	1	I	1
oc/oPs	mg/kg		1	I	1	I	(1	1	1	ł	1	ſ
Benzo(a)	mg/kg	4	Ł	1.3	3.3	<lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td>1.3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>0.5</td><td>1.3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.5</td><td>1.3</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	0.5	1.3	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
PAH	mg/kg	80	12.85	16.45	40.05	<lor< td=""><td>7.5</td><td><lor< td=""><td>8.85</td><td>21.2</td><td><lor< td=""><td>6.3</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	7.5	<lor< td=""><td>8.85</td><td>21.2</td><td><lor< td=""><td>6.3</td><td><lor< td=""></lor<></td></lor<></td></lor<>	8.85	21.2	<lor< td=""><td>6.3</td><td><lor< td=""></lor<></td></lor<>	6.3	<lor< td=""></lor<>
BTEX	mg/kg		I	1	1		:	1	1	I	1	1	
HdT	mg/kg	1000	1	1		1	1	1		1			
Чр	mg/kg	1200	40	105	175	84	140	33	159	196	26	232	4
Date of	Sampling	Guideline/HIL 'D'	2-06-98	2-06-98	2-06-98	30-06-98	30-06-98	15-07-98	15-07-98	15-07-98	15-07-98	8-07-98	15-07-98
Batch		Guidell	ES10697	ES10697	ES10697	ES11195 30-06-98	ES11195	ES11357 15-07-98	ES11357 15-07-98	ES11357	ES11357	ES11304	ES11357
Laboratory			ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS
Sample Depth			0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15	0-0.15
coc ID	1		RBD001	RBD002	RBD003	T3006-S1	T3006-S3	- Fay	VD3	VD4	VD6	RBD007	VD-Ramp

NOTES (1) ND denotes not detected (2) '-' denotes not analysed (3) <LOR denotes less than laboratory limit of reporting

Prepared By RSM Checked By <u>Dvol 2</u>

Page 1 of 1

TABLE 3 - 2002 Residual Inorganic Anarytical Data (concentrations in mg/kg)

DUP02 ES34736-0 <lor <lor <lor 2 2 2 2 2 2 2 2</lor </lor </lor 	2 5 <⊥OR
TTP18_0.3-0.5 ES34735-0 <lor <lor 5 9</lor </lor 	-10K
TP14 0.3-0.5 ES34735-0 <lor <lor 2 6 6</lor </lor 	39 15
TP25 0.5-0.7 TP26 0.3-0.5 TP18 0.3-0.5 ES34735-0 ES34735-0 ES34735-0 ES34735-0 ES34735-0 A 1 1 1 <	≤ 31 4LOR
TP25 0.5-0.7 ES34735-0 1 <0R <0R 3 69	2 79 26 <lor< td=""></lor<>
ES34682-0 ES34682-0 1 <10R <10R 2 9	2 55 28 4.0R
5 1.3.1.5 TP26 1.3.1.5 TP26 1.3.1.5 1.9.1.5 34682-0 ES34682-0 ES34682-0 ES34682-0 1.3.1.5 1 2 2 2 2 1 2 2 2 1.0R 3 3 3 2 3 75 17 8 8 1	- 26 59 <lor< td=""></lor<>
5 1726 1.3-1.5 ES34682-0 2 <lor 17</lor 	1 164 58 4LOR
ES:	2 113 33 33
Sample ID LOR 1	
Health Investigation Levels NEPM HIL 'A' NEPM HIL 'D' NEPM HIL 'E' 100 400 200 40 100 80 40 200 100 400 200 40	600 600 14000 30
Health Investigation Levels	4000 12000 28000 60
Heal NEPM HIL 7 100 100	1000 600 7000 15
Arsenic Čadmium Chromium	Copper Nickel Lead Žinc Mercury

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

TAP Ted:

Prepared By____ Checked by ____
TABLE 3 - 2002 Residual Inorganic Analytical Data (concentrations in mg/kg)

TP16_0.2-0.4	ES34741-0		2	00	< LUK	ę	ця	3	e	60	00	218			<10R		
DUP03	EB47571-0		L		<lor< td=""><td>2</td><td>-</td><td>_</td><td>2</td><td></td><td>7</td><td>4</td><td></td><td></td><td>~LOR</td><td></td><td></td></lor<>	2	-	_	2		7	4			~LOR		
TTP20 0 2.0 51 TP22 0 3.0 51 TP22 1.3-1.51 TP23 1.3-1.51	FS34736-0		a0 1/	1011	<lor< td=""><td>.</td><td></td><td><10K</td><td>40R</td><td></td><td></td><td>a) lor</td><td></td><td></td><td><lor< td=""><td></td><td></td></lor<></td></lor<>	.		<10K	40R			a) lor			<lor< td=""><td></td><td></td></lor<>		
TP22 1.3-1.5	CC37796.0	0.0014000			<10R			<10R	6		2		107		<10R		
TP22 0 3-0.51		E034/30-U	00		<1 OR			m		-	50		<u>c</u>		OR</td <td></td> <td></td>		
1200 0 20 5	11 20 202	EC34/30-0		V V C	NOR NOR		</td <td>< OR</td> <td></td> <td>202</td> <td>6</td> <td>4</td> <td><pre> «LUK</pre></td> <td></td> <td></td> <td></td> <td></td>	< OR		202	6	4	<pre> «LUK</pre>				
איזמוים	5-00	ES34736-0		HC V				Y	r 1	-	38	9	16		60	4LUK	
	TP15_0.3-0.5 [P15_1.3-1.3]	ES34736-0		۔ ر			4			2	[c	•			<10K	
	TP15_0.3-0.5	ES34736-0		100		<_CK	~ -	- 1	£	a C V		30	24	3		<pre></pre>	
- 1	Sample ID	Batch Number	LOR			*	Ŧ	-	-	Ŧ	-			-		0.1	
	evels		NEPM HIL 'E'	í	200	40	000	700	2000	000	6UU	600		14000		30	-
	Health Investigation Levels		A, TH WEEN OL TH WEEN W. TH WEEN		400	80		400	4000		2400	1200		28000		μ	2
	Health		VICTIM UNIT		100	20		6	1000		600	0000		2000		41	<u>n</u>
		ř.			Arsenic	Codminum.		Chromium		Cupper	Nickel		Lead	Zinc			Mercury

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

Prepared By TAP Checked by Dod 2

TABLE 3 - 2002 Residual Inorganic Analytical Data (concentrations in mg/kg)

1

TP8 1.3-1.5 EC34761-0		<lor< th=""><th><lor< th=""><th><lor< th=""><th><10R</th><th><l0r< th=""><th>< LOR</th><th><lor< th=""><th>((</th><th><10K</th><th></th></lor<></th></l0r<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th><10R</th><th><l0r< th=""><th>< LOR</th><th><lor< th=""><th>((</th><th><10K</th><th></th></lor<></th></l0r<></th></lor<></th></lor<>	<lor< th=""><th><10R</th><th><l0r< th=""><th>< LOR</th><th><lor< th=""><th>((</th><th><10K</th><th></th></lor<></th></l0r<></th></lor<>	<10R	<l0r< th=""><th>< LOR</th><th><lor< th=""><th>((</th><th><10K</th><th></th></lor<></th></l0r<>	< LOR	<lor< th=""><th>((</th><th><10K</th><th></th></lor<>	((<10K	
TP12 0.3-0.5 TP8 0.3-0.5		<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td><lor< td=""><td>3</td><td>9</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td><lor< td=""><td>3</td><td>9</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td><lor< td=""><td>3</td><td>9</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>		<lor< td=""><td>3</td><td>9</td><td></td><td><lor< td=""><td></td></lor<></td></lor<>	3	9		<lor< td=""><td></td></lor<>	
TP12_0.3-0.5	E034/41-0	LOR</td <td><lor< td=""><td>-</td><td>7</td><td><10R</td><td>44</td><td>45</td><td></td><td><lor< td=""><td></td></lor<></td></lor<></td>	<lor< td=""><td>-</td><td>7</td><td><10R</td><td>44</td><td>45</td><td></td><td><lor< td=""><td></td></lor<></td></lor<>	-	7	<10R	44	45		<lor< td=""><td></td></lor<>	
	ES34/41-U	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>2</td><td><lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>	2	<lor< td=""><td></td><td><lor< td=""><td></td></lor<></td></lor<>		<lor< td=""><td></td></lor<>	
TP5 1.3-1.5	ES34741-0	< OR	I OR	40R	< OR	<. _OR	-	<10R		<lor< td=""><td></td></lor<>	
1	ES34741-0	21 OB		< OR	AL OR	N N N		N N N		<lor< td=""><td></td></lor<>	
TP02 0.2-0.41 TP04 0.3-0.5 TP04 1.3-1.5	ES34741-0									<lor< td=""><td></td></lor<>	
TP04 0.3-0.5	ES34741-0			V CIY	- -		7	2 10	66	<10R	
TP02 0.2-0.4	ES34741-0		2	¥9¦,		14	2		433	40 I V	101
Sample ID	Batch Number	LOR						~~	-	t	
1 orrale		NEPM HIL 'E'	200	40	200	2000	600	600	14000		30
Interference		NEPM HIL 'A' NEPM HIL 'D' NEPM HIL 'E'	400	80	400	4000	2400	1200	28000		99
	Healt	NEPM HIL 'A'	100	20	100	1000	600	300	7000		15
	- -		Arsenic	Cadmium	Chromium	Conner	Nickel	Lead	Zinc		Mercury

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 3\19-09-02

Prepared By T.AP Checked by Ded 2

TABLE 3 - 2002 Residual Inorganic Analytical Data (concentrations in mg/kg)

.

[] .)

ž	11001	. Investigation	anale	Sample ID	DUP12	DUP13	DUP14
(Lean	Health livesugation revers				CC2/761_0	EC34761-0
				Batch Number	001+001	1011001	
		NEPM HILL	NEPM HI 'E'	LOR			
			000		∧ RC	<lor< td=""><td><10R</td></lor<>	<10R
Arsenic	00L	400	500	- -			A OR
Codminu	20	80	40				
		001	200		Å ROÅ	<10R	<10K
Chromum	3	777		•		NO IN	<10R
Tanac C	1000	4000	2000	-			
		0076	600	-	^LOR	4LOR	< COK
Nickel	000						a V
- Dea	300	1200	600	1	7		
	2000	28000	14000	÷	4		
	1001						
				ľ			NOR NOR
Merchin	13	60	30	0.1	<pre>>FOR</pre>		

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 3\19-09-02

Prepared By <u>TAP</u> Checked by <u>Pod2</u>

: :

TP25 0.5-0.7 TP26 0.3-0.5 TP26 2.9-3.0 TP14 0.3-0.5 TP18 0.3-0.5 ES34735-1 ES34736-1 e10R <10R <10R <t< th=""><th>NA <pre>ALOR N/A N/A N/A N/A N/A N/A N/A N/A</pre></th></t<>	NA <pre>ALOR N/A N/A N/A N/A N/A N/A N/A N/A</pre>
TP14_2.4-2.6 ES34735-1 <lor 159 611</lor 	 ▲LOR T10 T10 ▲LOR ▲LOR ▲LOR ▲LOR ▲LOR
TP14 0.3-0.5 ES34735-1 <lor <lor< td=""><td> ▲LOR </td></lor<></lor 	 ▲LOR
TP26_2.9-3.0 ES34735-1 <lor 259 694</lor 	40R 953 953 853 853 853 853 853 853 853 853 853 8
1P26 0.3-0.5 ES34735-1 <lor 169</lor 	169 169 10R 10R 10R 10R 10R 10R
TP25_0.5-0.7 ES34735-1 <lor <lor 316</lor </lor 	132 148 448 40R 10R 10R 10R 10R
DUP01 ES34682-1 <lor 116</lor 	385 134 134 134 108 108 108 108
134682-1 17P14 1.3-1.5 534682-1 ES34682-1 540R 1 10R 113 142	501 4.0R 4.0R 4.0R 4.0R 4.0R 4.0R 4.0R
TP26 1.3-1.5 ES34682-1 <lor 113</lor 	564 162 839 839 839 80 8 0 8 0 8 0 8 0 8 8 9 8 0 8 8 9 8 3 9 8 3 9 8 3 8 8 3 8 8 3 8 8 3 8 3
TP26 1.3-1.5 TP2 ES34682-1 ES <lor 254</lor 	1110 352 352 352 − 352 − 352 − 352 − 10R <10R <10R <10R <10R <10R <10R <10R
Sample ID Batch Number LOR 2 50	100 100 0.2 0.2 0.2 0.2 0.2
Guideline 65	1000
C6 - C9 Fraction	C10-C17 Fraction C29-C36 Fraction C10-C36 Total Benzene Toluene Chlorobenzene Etitybenzene Etitybenzene meta- & para-Xylene ortho-Xylene

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 4\19-09-02

Prepared By <u>TAR</u> Checked by <u>Dtd/T</u>

•

· · ·

DUP03 EB47571-1 ▲LOR
TP24 0.3-0.5 TP22 0.3-0.5 TP22 1.3-1.5 TP21 0.3-0.5 ES34736-1 ES34736-1 ES34736-1 ES34736-1 ES34736-1 ES34736-1 ALOR <lor< td=""> /lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<></lor<>
17P23 1.3-1.5 ES34736-1 €LOR <
1722 1.3-1.5 ES34736-1 ES34736-1 ECOR <1.0R 1.0R 1.0R 1.0R 1.0R 1.0R
17P22 0.3-0.5 ES334736-1 ES334736-1 <
TP24 0.3-0.5 ES34736-1 ES34736-1 ▲LOR ▲LOR
DUP04 ES34736-1 4.0R <1.0R <1.0R <1.0R <1.0R <1.0R <1.0R <1.0R <1.0R <1.0R
0.3-0.5 TP15 1.3-1.5 4736-1 ES34736-1 LOR <1.0R LOR <1.0R
17715 0.3-0.5 ES34736-1 ES34736-1 <
DUP02 ES34736-1 ES34736-1 <10R
Sample ID Batch Number LOR 2 00 100 02 02 02 02 02 02 02
Guideline 65 1000
C6 - C9 Fraction C10 - C14 Fraction C10 - C14 Fraction C15 - C28 Fraction C29 - C36 Fraction C10-C36 Total Benzene Toluene Chiorobenzene Ettythenzene meta- & para-Xylene ortho-Xylene

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 4\19-09-02

Prepared By TAP Checked by P.42

. . .

.

BH8 3.7-3.9 ES35296-0 <u>4.0R</u> 4.0R <LOR DUP14 ES34761-1 ES34761-1 <LOR A A A ROA ROA
 TP6
 1.3-1.5
 TP8
 1.3-1.5

 ES34741-1
 ES34761-1
 ROA A CR ROA A ROA ROA ROA DUP07 ES34741-1 Å Å Å Å Å Å R Å R Å Å DUP05 ES34741-1 ROA ROA ROA ROA ROA ROA TP03 0.3-0.5 TP09 1.3-1.5 ES34741-1 ES34741-1 TP01 1.3-1.5 ES34741-1 A A A A A ROAR ROAR ALOR ALOR XOAAA ROAAA ROAAA Sample ID Batch Number NOR N ~ 6666 Guideline 1000 85 Ethylbenzene meta- & para-Xylene ortho-Xylene
 C6
 C9 Fraction

 C10
 C14 Fraction

 C15
 C28 Fraction

 C29
 C36 Fraction

 C26
 C36 Fraction
 Chlorobenzene Benzene Toluene

NOTES

(1) <LOR denotes less than the laboratory limit of reporting
 (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xis\Table 4\19-09-02

Checked by Dod 2 Prepared By TMP

BH12_2.2-2.3	ES35296-0			<20	7.5.1	2	328	<lor< th=""><th></th><th>C04</th><th></th><th></th><th><pre>LOK</pre></th><th>al DP</th><th>207</th><th><lor 10R</lor </th><th><lor< th=""><th></th><th>-FON</th><th><10R</th><th></th><th></th><th></th></lor<></th></lor<>		C04			<pre>LOK</pre>	al DP	207	<lor 10R</lor 	<lor< th=""><th></th><th>-FON</th><th><10R</th><th></th><th></th><th></th></lor<>		-FON	<10R			
BH11_1.0-1.2	FS35296-0			20	105		582	A OR		107			_ ≜OR	10		4LOR	A OR		2LOK	A OR			
DUP12	ECSE706_0	0.0000000	-	002	5	52	596	BO I≥		789			1 <lor< td=""><td></td><td>VLOR VLOR</td><td><lor< td=""><td></td><td></td><td>▲LOR</td><td></td><td>157</td><td></td><td></td></lor<></td></lor<>		VLOR VLOR	<lor< td=""><td></td><td></td><td>▲LOR</td><td></td><td>157</td><td></td><td></td></lor<>			▲LOR		157		
RH20 2 0-2.2 BH10 1.0-1.2	1000000	Loostar-V		 		5	620			816			a V V		- ALOR	1 ≤I OR			A OR				
I RH20 2.0-2.2		E235290-U			2	305	ACR.		2012	の部的らしたのが知道	「「「「「「」」」「「」」」」							¥ S V	<10R				
החקו ורו		ES35296-0			<2U	< 0R			×01> -									 ▲LOR			ALOR -		
000000	-1	ES35296-0			42N	ao ⊳			A OR		PLUK			×0, ×			¥07▼	<10R		2012	AI OR		
	BH3_1.U-1.4	ES35296-0			8			<_OK	i V		<pre>LOK</pre>			- <lor< td=""><td>10</td><td>YOT V</td><td><10R</td><td><1 OR</td><td></td><td></td><td>2017</td><td></td><td></td></lor<>	10	YOT V	<10R	<1 OR			2017		
	BH1_2.3-2.5	FS35296-0	2010001		<20		4LUK	<lor< td=""><td>2</td><td>577</td><td><10R</td><td></td><td></td><td>I OR</td><td></td><td><lor< td=""><td><_LOR</td><td>2</td><td></td><td>< ▲LOR</td><td></td><td></td><td></td></lor<></td></lor<>	2	577	<10R			I OR		<lor< td=""><td><_LOR</td><td>2</td><td></td><td>< ▲LOR</td><td></td><td></td><td></td></lor<>	<_LOR	2		< ▲LOR			
	BH17 0.4-0.7	EC35906_D			20		- COR	<lor< td=""><td></td><td>Y CY V</td><td>I or</td><td></td><td></td><td>aur</td><td>107</td><td>^LOR</td><td>A OR</td><td>Ē</td><td>YU1</td><td>A N N N</td><td></td><td>PLUK</td><td></td></lor<>		Y CY V	I or			aur	107	^LOR	A OR	Ē	YU1	A N N N		PLUK	
	Sample 1D	Dotab Ni mbar	Batch Nulliver	LOR	c	7	50	100		100				¢ ¢	0.Z	0.2	60		0.2	60	4.0	0.2	
	Guideline					8					1002	nnni											
						IC6 - C9 Fraction	C40_C14 Erartion		1013 - 020 FIAUUI	C29 - C36 Fraction		IC10-C36 01al			Renzene			Chlorobenzene	Ethylpenzene		Imeta- & para-Xylene	artho-Xviene	

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 4\19-09-02

•

BH16 1.0-1.2	ES35296-0		20		<10R	578		717	795			aC Iv			aC iv		<10K	∆ DR		<pre>COR</pre>		
BH14 2.0-2.2 BH15 1.3-1.5 BH16 1.0-1.2	ES35296-0		20	740	110	906		304	「「「「「「「」」なっています。	「「「「「「「」」」				<pre> COR </pre>	2		 ^LOR	ao iv		<lok< td=""><td></td><td></td></lok<>		
BH14_2.0-2.2	ES35296-0		06/	720	414	1360		<pre>>LOR</pre>	CALLY A TO A LOCAL	いた。日本には、これの方法で			2075	<10R			<lor </lor 	2		_ ∧LOR		
DUP10	FS35296-0	22222		3	1800	0000	7700	213	うためにていていたのであり	The DOUDLESS		-	4LUK	A-OR		×C7×	< OR			_ A DR		
00HDQ	EC2EDOR-D	LOUDENU C		270	030	0050	7400	134		111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			A0.^			AO1^	AC IA		V CY	A DR		
I BH2 2.5-2.7		0-0270003		<20	1170		0197	454		· 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十				10	YD7		2017	5	AO NO			
C. 1 2 1 1 1 1 2 2 1 1 1 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2		E233290-U		<20 <20	5	2	350		-LUR	445			A OR			≤ 0R			▲ OR			
10412 0813		ES35296-0		200		-FUR	130		2 OK	130			40 IV		AOA ►	aO Iv			AC IN		<lor< td=""><td></td></lor<>	
	1.2-C.2_22HB	ES35296-0				140	503	100		613				577	-LOR	IC N		< COR			<pre> COR COR</pre>	
	1.1 THE	ES35296-0			7	A			<lor< td=""><td></td><td></td><td></td><td></td><td>S-LUR</td><td><1.0R</td><td>0</td><td></td><td> AOR</td><td></td><td></td><td><10R</td><td></td></lor<>					S-LUR	<1.0R	0		 AOR			<10R	
4	Sample ID	Batch Number	1 OR		2	50	007	200	100	20				0.2	60	ļ	0.2	C U 2		7.0	0.2	
	Guideline				65						1000											
					C6 - C9 Fraction	CAL Fraction		IC15 - C28 Fraction		ו	ICT0-C36 Total			Вептепе		i oluene	Chlorobenzene		בתואוספוולפוופ	Imeta- & para-Xviene		

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xis\Table 4\19-09-02

Dod 2

Prepared By TAC Checked by Dod -

:

TP103 3.5-3.7 ES35360-0	<pre></pre> <pre></pre>	
BH23 1.3-1.5 BH24 0.8-1.0 TP100 2.0-2.2 TP101 3.0-3.2 TP102 1.0-1.2 TP103 3.5-3.7 ES35293-0 ES35360-0 ES35360-0 ES35360-0 ES35360-0 ES35360-0	 LOR LOR LOR LOR LOR LOR LOR NIA NIA NIA NIA NIA NIA NIA NIA 	
ES35360-0	4.0R 4.0R 4.0R 4.0R 1.0R	
TP100 2.0-2.2 ES35360-0	4.0R 4.0R 4.0R 4.0R 7.0R 1.0R 1.0R 1.0R 1.0R 1.0R 1.0R 1.0R 1	
BH24_0.8-1.0 ES35293-0	<pre><10R 94 94 94 60 606 606 606 606 606 606 606 606 606</pre>	
BH23 1.3-1.5 ES35293-0	40R 40R 134 10R 10R 134 10R 10R 10R 10R 10R 10R 10R 10R	
BH4 3.2-3.4 ES5298-0	 ▲LOR ▲LOR ▲LOR ▲LOR ▲LOR ▲LOR 	
BH18_3.3-3.5 ES5298-0	13 4240 8690 8690 284 40R 40R 40R 40R 40R 40R 40R	
DUP07 ES35296-0	 <20 3550 6910 	
BH5 1.8-2.0 ES35296-0	 <20 1550 151 151 3050 3050 3050 151 < < < < < < < /ul>	
Sample ID Batch Number	LOR 2 100 100 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	
Guideline	1000	
	C6 - C9 Fraction C10 - C14 Fraction C15 - C28 Fraction C15 - C28 Fraction C15 - C28 Fraction C10-C36 Total Environ C10-C36 Total Toluene Ethylbenzene Ethylbenzene Ethylbenzene	

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 4\19-09-02

Prepared By 7 AP Checked by Dod 2

 $\widehat{\mathbb{C}}_{\mathbb{C}}$

ì ;

101-108	ES35561-0		<10R	< OR		YO1v	<10R	<lor< th=""><th></th><th></th><th>NA</th><th>N/A</th><th></th><th>A/N</th><th>N/A</th><th>N/A</th><th>LIVA -</th><th></th><th></th><th></th></lor<>			NA	N/A		A/N	N/A	N/A	LIVA -			
- 1	ES35561-0		<_ LOR			<10R	<10R	<10R			NIA	NIA		N/A	N/A	NIA		N/A		
TP109 3.0-3.2	ES35561-0		I OR			ALOR	<lor< td=""><td>AO IV</td><td></td><td></td><td>N/A</td><td>VIII</td><td>AN</td><td>NN</td><td>A/N</td><td></td><td>N/A</td><td>NIA</td><td></td><td></td></lor<>	AO IV			N/A	VIII	AN	NN	A/N		N/A	NIA		
TP108 3.5-3.7	ES35360-0		4 O D			< LOR	<1 OR		SEUR		NI/A		NA	N/A	N/A		N/A	NA		
TD106 3 0.3 2 TP107 3.5-3.7 [TP108 3.5-3.7]	ES35360-0			207	^LOR A	A OR			ALOK		NU/	¥2	N/A	N/A	NISA	V/N	MA	AVA		
TD106 3 0-3 2	FC-55260 0	D-000000	40.	<luk< td=""><td>IOR</td><td></td><td></td><td></td><td></td><td></td><td></td><td>AN</td><td>NA</td><td>NILA</td><td></td><td>A/N</td><td>AVA</td><td>N/A</td><td></td><td></td></luk<>	IOR							AN	NA	NILA		A/N	AVA	N/A		
0110409		0-0022222		<lor< th=""></lor<>	AL OR			<lok< td=""><td>aC V</td><td></td><td></td><td>NA</td><td>NIA</td><td>1.17</td><td>N/A</td><td>N/A</td><td>NIA</td><td>A114</td><td></td><td></td></lok<>	aC V			NA	NIA	1.17	N/A	N/A	NIA	A114		
	04 3.5-3.7 [P105 3.0-3.2	ES35360-0		<10R			^ CCX	<lor td="" <=""><td></td><td></td><td></td><td>NIA</td><td>VIN</td><td>Y/N</td><td>N/A</td><td>N/A</td><td>NI/N</td><td></td><td>NA</td><td></td></lor>				NIA	VIN	Y/N	N/A	N/A	NI/N		NA	
	TP104 3.5-3.7	ES35360-0		A ∩R		¥07	4LOR	<10R		¥0,1		NIA		NA	NVA	NIZ		NA	A/A	
	TP104 1.0-1.2 TP10	ES35360-0		2		4.0R	<10R	A OR		<10R		N11A	22	NA	N/A		4Z	NA	NA	
	Sample ID	Batch Number	202		7	50	100		nni				0.2	0.2	6 U		0.2	0.2	60	4.0
	Guideline				65					1000										
					Ch - C9 Fraction			C15 - C28 FIBCUUL	IC29 - C36 Fraction	Circle Total			Banzene		Ionerie	Chlorobenzene	Ethylhenzene	moto & nora-Xvlana		ortho-Xylene

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 4\19-09-02

Prepared By TAP Checked by Dad2

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Comple ID	TP110 3 0.3 9 TP111 2.0-2.2 [TP112 3.0-3.2 [P113 2.0-2.2] PT13 3.0-3.2	TP111 2.0-2.2	TP112 3.0-3.2	1 P113 Z.U-Z.Z	17113 3.0-04
	Guideline	Odilipic IL		0	LOOEDGA D	EC255661_0	ES35561-0
X		Batch Number	ES35561-0	E535301-U	E000001-0		
		FUR			10		A DR
an Oo Further	85	6	<10R	<-LOK	PLOR V	101	
	3	C ²	A OR	<10R	<lor< td=""><td>< LOR</td><td><10K</td></lor<>	< LOR	<10K
C10 - C14 Fraction				A 08	<10R	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
C15 - C28 Fraction		nn				A OR	<lor< td=""></lor<>
		100	- HOL		107		
UZ8 - COD FIACIUL			A OR	< OR	A_OR	4LOR	₹0¥
C10-C36 Total	1000						
							A11A
		60	N/A	N/A	NA	NIA	AIN
Benzene		7.0		11/4	NUA	N/A	NIA
		0.0	AN	A/M			
Ionene		100	VIN	N/A	N/A	NA	NA
Chlorobenzene		7-0			NIA	NIA	N/A
		5		NA			
Ethylbenzene			VIIN	NIA	N/A	NA	N/A
Imeta- & nara-Xvlene		7-0				AIIA	N/A
		50	A/A	NA	AN A		
Inrho-Xvlene		7-0					

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

Prepared By <u>TAP</u> Checked by <u>DAZ</u>

P15_1.3-1.5	ES34736-2			<lor< th=""><th><lor< th=""><th>I OR</th><th></th><th></th><th>V NOY</th><th><10R</th><th><lor< th=""><th>21 OB</th><th></th><th>ALUR</th><th><lor< th=""><th><1 OR</th><th></th><th>NO.</th><th><lor< th=""><th>< LOR</th><th>∆ NOR</th><th></th><th>ALUR ALUR</th><th>ALOR</th><th></th><th></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<>	<lor< th=""><th>I OR</th><th></th><th></th><th>V NOY</th><th><10R</th><th><lor< th=""><th>21 OB</th><th></th><th>ALUR</th><th><lor< th=""><th><1 OR</th><th></th><th>NO.</th><th><lor< th=""><th>< LOR</th><th>∆ NOR</th><th></th><th>ALUR ALUR</th><th>ALOR</th><th></th><th></th></lor<></th></lor<></th></lor<></th></lor<>	I OR			V NOY	<10R	<lor< th=""><th>21 OB</th><th></th><th>ALUR</th><th><lor< th=""><th><1 OR</th><th></th><th>NO.</th><th><lor< th=""><th>< LOR</th><th>∆ NOR</th><th></th><th>ALUR ALUR</th><th>ALOR</th><th></th><th></th></lor<></th></lor<></th></lor<>	21 OB		ALUR	<lor< th=""><th><1 OR</th><th></th><th>NO.</th><th><lor< th=""><th>< LOR</th><th>∆ NOR</th><th></th><th>ALUR ALUR</th><th>ALOR</th><th></th><th></th></lor<></th></lor<>	<1 OR		NO.	<lor< th=""><th>< LOR</th><th>∆ NOR</th><th></th><th>ALUR ALUR</th><th>ALOR</th><th></th><th></th></lor<>	< LOR	∆ NOR		ALUR ALUR	ALOR		
17075 0 5-0 77226 0.3-0.31P14 0.3-0.31P18 0.3-0.31P15 0.3-0.51P15 1.3-1.	ES34736-2			<lor< td=""><td><10R</td><td></td><td></td><td></td><td><lor< td=""><td><10R</td><td><10R</td><td></td><td>107</td><td><lor -<="" td=""><td><lor< td=""><td>2012</td><td></td><td><lok< td=""><td><pre>LOR</pre></td><td>ALOR</td><td>ao r</td><td></td><td>Z Z D Z V</td><td></td><td></td><td></td></lok<></td></lor<></td></lor></td></lor<></td></lor<>	<10R				<lor< td=""><td><10R</td><td><10R</td><td></td><td>107</td><td><lor -<="" td=""><td><lor< td=""><td>2012</td><td></td><td><lok< td=""><td><pre>LOR</pre></td><td>ALOR</td><td>ao r</td><td></td><td>Z Z D Z V</td><td></td><td></td><td></td></lok<></td></lor<></td></lor></td></lor<>	<10R	<10R		107	<lor -<="" td=""><td><lor< td=""><td>2012</td><td></td><td><lok< td=""><td><pre>LOR</pre></td><td>ALOR</td><td>ao r</td><td></td><td>Z Z D Z V</td><td></td><td></td><td></td></lok<></td></lor<></td></lor>	<lor< td=""><td>2012</td><td></td><td><lok< td=""><td><pre>LOR</pre></td><td>ALOR</td><td>ao r</td><td></td><td>Z Z D Z V</td><td></td><td></td><td></td></lok<></td></lor<>	2012		<lok< td=""><td><pre>LOR</pre></td><td>ALOR</td><td>ao r</td><td></td><td>Z Z D Z V</td><td></td><td></td><td></td></lok<>	<pre>LOR</pre>	ALOR	ao r		Z Z D Z V			
TP18_0.3-0.5	ES34735-2			<lor< td=""><td>A OR</td><td></td><td></td><td>ALOR NOIN</td><td><lor< td=""><td><10R</td><td></td><td></td><td></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><lor ■</lor </td><td>< LOR</td><td>a ⊡ V</td><td></td><td></td><td></td><td>ALOR</td><td></td><td></td></lor<></td></lor<></td></lor<>	A OR			ALOR NOIN	<lor< td=""><td><10R</td><td></td><td></td><td></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><lor ■</lor </td><td>< LOR</td><td>a ⊡ V</td><td></td><td></td><td></td><td>ALOR</td><td></td><td></td></lor<></td></lor<>	<10R				<lor< td=""><td>A OR</td><td></td><td></td><td><lor ■</lor </td><td>< LOR</td><td>a ⊡ V</td><td></td><td></td><td></td><td>ALOR</td><td></td><td></td></lor<>	A OR			<lor ■</lor 	< LOR	a ⊡ V				ALOR		
[P14 0.3-0.4	ES34735-2	İ		<lor< td=""><td></td><td></td><td>¥01⊽</td><td><1 ↓ ↓ ↓ ↓</td><td><lor< td=""><td>A OR</td><td></td><td></td><td>< LOK</td><td>4.0R</td><td>2017</td><td></td><td>404</td><td><lor< td=""></lor<></td><td>A OR</td><td></td><td></td><td>V V V</td><td>OR</td><td></td><td></td><td></td></lor<></td></lor<>			¥01⊽	<1 ↓ ↓ ↓ ↓	<lor< td=""><td>A OR</td><td></td><td></td><td>< LOK</td><td>4.0R</td><td>2017</td><td></td><td>404</td><td><lor< td=""></lor<></td><td>A OR</td><td></td><td></td><td>V V V</td><td>OR</td><td></td><td></td><td></td></lor<>	A OR			< LOK	4.0R	2017		404	<lor< td=""></lor<>	A OR			V V V	OR			
TP26 0.3-0.5	ES34735-2			<i or<="" td=""><td></td><td>2077</td><td><10K</td><td><10R</td><td><1 OR</td><td>100</td><td></td><td>STUR</td><td><lor< td=""><td>A DR</td><td></td><td></td><td>¥0,∆</td><td>∧ DR</td><td></td><td></td><td></td><td><1 OR I</td><td><1.0R</td><td>100</td><td></td><td></td></lor<></td></i>		2077	<10K	<10R	<1 OR	100		STUR	<lor< td=""><td>A DR</td><td></td><td></td><td>¥0,∆</td><td>∧ DR</td><td></td><td></td><td></td><td><1 OR I</td><td><1.0R</td><td>100</td><td></td><td></td></lor<>	A DR			¥0,∆	∧ DR				<1 OR I	<1.0R	100		
TP25 0 5-0 7	FS34735-2			100		<pre><pok< pre=""></pok<></pre>	<lor< td=""><td>< OR</td><td></td><td></td><td></td><td><lor< td=""><td><aa< p=""></aa<></td><td></td><td></td><td>¥0,4</td><td></td><td></td><td></td><td></td><td>¥0,7</td><td><lor< td=""><td>2012</td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	< OR				<lor< td=""><td><aa< p=""></aa<></td><td></td><td></td><td>¥0,4</td><td></td><td></td><td></td><td></td><td>¥0,7</td><td><lor< td=""><td>2012</td><td></td><td></td><td></td></lor<></td></lor<>	<aa< p=""></aa<>			¥0,4					¥0,7	<lor< td=""><td>2012</td><td></td><td></td><td></td></lor<>	2012			
וממות	EC34682-7	<u> </u>				<10K	<lor< td=""><td>a V V</td><td></td><td></td><td>¥01₹</td><td>ALOR</td><td>A OR</td><td></td><td></td><td>4LOR</td><td>A DR</td><td></td><td></td><td>PLOR</td><td><_ _ _ _ _ _ _ _ _ _ _ _ _ _</td><td>A OR</td><td>1</td><td></td><td>4LOK</td><td></td></lor<>	a V V			¥01₹	ALOR	A OR			4LOR	A DR			PLOR	<_ _ _ _ _ _ _ _ _ _ _ _ _ _	A OR	1		4LOK	
	TP25 1.3-1.3 P26 1.3-1.3 P14 1.3-1.3	<u> </u>			PLUK	<l< td=""><td>¢ OR</td><td></td><td></td><td>ч Г Г</td><td>LOR.</td><td><10R</td><td></td><td></td><td></td><td>4.0R</td><td></td><td></td><td>Y N N</td><td><lor< td=""><td><10R</td><td>a V</td><td></td><td></td><td>≜LOR</td><td></td></lor<></td></l<>	¢ OR			ч Г Г	LOR.	<10R				4.0R			Y N N	<lor< td=""><td><10R</td><td>a V</td><td></td><td></td><td>≜LOR</td><td></td></lor<>	<10R	a V			≜ LOR	
	TP26 1.3-1.	E034002-2			<10K	1 ⊲LOR			YD1	ALQR	<pre>LOR</pre>	A OR		5	4 CQR	4OR			<pre>COK</pre>	<pre>~LOR</pre>	<10R	100		<10R	0.6	
	TP25 1.3-1.	ES34082-2			<10R	N N N N N			¥0] ▼	<pre>LOR</pre>	<10R			SLUK	LOR	I OR		4LUR	ALOR	<10R	A OR		YOY	<pre> </pre>	SLOR	
	Sample ID	Batch Numbe		LOR	0.5	2			0.5	0.5	- - -		0.2	0.5	0.5	75		0.5	0.5	0.5			C.D	0.5	40	
	n Levels		NEPM	HIL T																					80	
	Health Investigation Levels		NEPM	HIL'D'										1							-				20	
	Health		NEPM	, Y. IIH											-							le	a			
						Naphthalene	Acenaphthylene	Aconanhthene			Phenanthrene	Anthracene	Finoranthene			Benz(a)anthracene	Chrysene	Domand h Nillionanthane		Renzo(K)IIUUI allineite	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Dihona/a h)anthranene		Benzo(g.n.i)perviene	1 OIAI

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

Prepared By <u>TAP</u> Checked by <u>Dad 2</u>

:							2.0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.4 0.0 0.3 0.1 0.04 1.3 -1.4 0.0 0.3 0.4	19-0-2-0-160	P16 0 2-0 4	P02 0 2-0.4	Po4 0.3-0.5	rP04 1.3-1.5	TP07_0.3-0.4	DUPD6
	Health	Health Investigation Levels	Levels	Sample ID	DUPU4				0 17707	C-LATAPO	FC34741-2	FS34741-2	ES34741-2	ES34741-2
				Batch Numbe	ES34736-2	ES34736-2	ES34/30-2	1024/30-2	_	7-1-12007				
	NEPM	NEPM	NEPM											
	111 171	ים, ווח	ц, ШН	LOR										auiv
				75	IOR	<10R	<10R	<lor< td=""><td><lor< td=""><td><lor< td=""><td>¥01¢</td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>¥01¢</td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td>¥01¢</td><td></td><td></td><td></td></lor<>	¥01¢			
Naphthalene						NO IA	<lor< td=""><td><lor< td=""><td>0.8</td><td><lor< td=""><td>4LOR</td><td>< COR</td><td>YOT -</td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>0.8</td><td><lor< td=""><td>4LOR</td><td>< COR</td><td>YOT -</td><td></td></lor<></td></lor<>	0.8	<lor< td=""><td>4LOR</td><td>< COR</td><td>YOT -</td><td></td></lor<>	4LOR	< COR	YOT -	
Acenaphthylene							v. DR	<1.0R	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>≤LOR</td><td>4UK</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>≤LOR</td><td>4UK</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>≤LOR</td><td>4UK</td></lor<></td></lor<>	<lor< td=""><td>≤LOR</td><td>4UK</td></lor<>	≤LOR	4UK
Acenaphthene				<u> </u>				A OR	<10R	<10R	<lor< td=""><td><lor< td=""><td><lor< td=""><td><10K</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><10K</td></lor<></td></lor<>	<lor< td=""><td><10K</td></lor<>	<10K
Fluorene				¢.0					2.8	<lor< td=""><td>≤LOR</td><td><lor< td=""><td>0.6</td><td><lor< td=""></lor<></td></lor<></td></lor<>	≤LOR	<lor< td=""><td>0.6</td><td><lor< td=""></lor<></td></lor<>	0.6	<lor< td=""></lor<>
Phenanthrene				0.5	V TOTS					I OR	<i.or< td=""><td><lor< td=""><td><lor< td=""><td>LOR</td></lor<></td></lor<></td></i.or<>	<lor< td=""><td><lor< td=""><td>LOR</td></lor<></td></lor<>	<lor< td=""><td>LOR</td></lor<>	LOR
				0.5	LOR	<pre>COH</pre>	Y CLUR		-			a V V	-	<1 OR
Aminaceite				2	0.5	<10R	▲OR	AOR	2.9	7.1				
Fluoranthene							A OR	< OR	7.1	1.6	<lor< td=""><td>¥0]∨</td><td>0</td><td></td></lor<>	¥0]∨	0	
Pyrene				0.0	-				C.	90	<1 OR	<lor< td=""></lor<>	^LOR	<luk< td=""></luk<>
Dentelanothracene				0.5	<10R	<10K	4FUR				2	aO ⊽	0.6	<10R
				0.5	<lor< td=""><td><lor< td=""><td>⊲LOR</td><td>¥01¢</td><td>3.7</td><td>10,10</td><td></td><td></td><td>× 0</td><td><1.0R</td></lor<></td></lor<>	<lor< td=""><td>⊲LOR</td><td>¥01¢</td><td>3.7</td><td>10,10</td><td></td><td></td><td>× 0</td><td><1.0R</td></lor<>	⊲LOR	¥01¢	3.7	10,10			× 0	<1.0R
Curysene	1			0.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td></td><td>5</td><td></td><td></td><td>AC IV</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td></td><td>5</td><td></td><td></td><td>AC IV</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td>4</td><td></td><td>5</td><td></td><td></td><td>AC IV</td></lor<></td></lor<>	<lor< td=""><td>4</td><td></td><td>5</td><td></td><td></td><td>AC IV</td></lor<>	4		5			AC IV
			1	0.5	<lor< td=""><td><lor< td=""><td><lor< td=""><td><10R</td><td>2</td><td>0.0</td><td>404 10-</td><td></td><td></td><td>ao Iv</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><10R</td><td>2</td><td>0.0</td><td>404 10-</td><td></td><td></td><td>ao Iv</td></lor<></td></lor<>	<lor< td=""><td><10R</td><td>2</td><td>0.0</td><td>404 10-</td><td></td><td></td><td>ao Iv</td></lor<>	<10R	2	0.0	404 10-			ao Iv
Benzo(K)nuoranuleile	1			0 T	A0 I>	< OR	⊲LOR	<lor< td=""><td>3.7</td><td>0.9</td><td>FOT</td><td></td><td></td><td></td></lor<>	3.7	0.9	FOT			
Benzo(a)pyrene			+			aC iv	I OR	<lor< td=""><td>2.1</td><td>0.6</td><td><lor< td=""><td>¥0,1≥</td><td></td><td></td></lor<></td></lor<>	2.1	0.6	<lor< td=""><td>¥0,1≥</td><td></td><td></td></lor<>	¥0,1≥		
Indeno(1.2.3.cd)pyrene	je je	-						A OR	< OR	<lor< td=""><td>⊲LOR</td><td>⊲LOR</td><td><pre>LOR</pre></td><td>2 LQY</td></lor<>	⊲LOR	⊲LOR	<pre>LOR</pre>	2 LQY
Dibenz(a.h)anthracene	G			0.5	Ъ V				23	2.0	<lor< td=""><td><lor< td=""><td>₹LOR</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>₹LOR</td><td><lor< td=""></lor<></td></lor<>	₹LOR	<lor< td=""></lor<>
Beazo(a h Naculane				0.5	<10R	¥ ⊽			1001000 000000		21 OR	<1 OR	4.9	<lor </lor
Transa and a second second		20 80		40	12	<10R	<lor< td=""><td><pre>LUK</pre></td><td>100 Mars</td><td></td><td>1017</td><td></td><td></td><td></td></lor<>	<pre>LUK</pre>	100 Mars		1017			
1 OIA	1													

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) NVA denotes not analysed Prepared By TAP Checked by Dwd2

• •

C

/ . .

,

						THE 4 0 4 E	010110	Di IPrig	TP12 0.3-0.51P10 0.3-0.51P8 0.3-0.5	P10 0.3-0.4	TP8_0.3-0.5	DUP12
	Health	Health Investigation Levels	Levels	Sample ID	Sample 10 1 P3 1.3-1.3 Pro 1.3-1.4		_ L	S	EC34741-2	FS34761-2	ES34761-2	ES34761-2
				Batch Numbe	ES34/41-2	7-14/4001	7-1#/#000					
	NEPM	NEPM	NEPM									
	11 'A'	LI IL	HIL T	LOR								
				60	<lor< td=""><td><lor< td=""><td>A LOR</td><td><lor< td=""><td><10R</td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td>A LOR</td><td><lor< td=""><td><10R</td><td></td><td></td><td></td></lor<></td></lor<>	A LOR	<lor< td=""><td><10R</td><td></td><td></td><td></td></lor<>	<10R			
Naphthalene				15	<10R	4.0R	4LOR	⊲LOR	<lor 1</lor 	AOR		
Acenaphthylene					EC IV	a P P	<l or<="" td=""><td>ALOR</td><td><lor< td=""><td><lor< td=""><td>₹LOR</td><td>SLUK</td></lor<></td></lor<></td></l>	ALOR	<lor< td=""><td><lor< td=""><td>₹LOR</td><td>SLUK</td></lor<></td></lor<>	<lor< td=""><td>₹LOR</td><td>SLUK</td></lor<>	₹ LOR	SLUK
Acenaphthene							I OR	<10R	<lor< td=""><td><lor< td=""><td><lor 1</lor </td><td>ALOR</td></lor<></td></lor<>	<lor< td=""><td><lor 1</lor </td><td>ALOR</td></lor<>	<lor 1</lor 	ALOR
Fluorene							AO I>	0.7	<lor< td=""><td><lor< td=""><td>ALOR</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>ALOR</td><td><lor< td=""></lor<></td></lor<>	ALOR	<lor< td=""></lor<>
Phenanthrene								N N S	< OR	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Anthracene				C.U				¢ ,	∩R</td <td><1 OR</td> <td><lor< td=""><td><lor< td=""></lor<></td></lor<></td>	<1 OR	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Elioranthene				0.5	<pre>~LOK</pre>	¥5				2012	<i or<="" td=""><td><lor< td=""></lor<></td></i>	<lor< td=""></lor<>
				0.5	^LOR	ALOR	<luk <</luk 	a. 				aC īV
ryrene				12	A OR	<lor< td=""><td><_ LOR</td><td>0.5</td><td><10R</td><td>2LUK</td><td></td><td></td></lor<>	<_ LOR	0.5	<10R	2LUK		
Benz(a)anthracene							<1 OR	0.8	<lor< td=""><td><lor< td=""><td><lor< td=""><td><pre>COK</pre></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><pre>COK</pre></td></lor<></td></lor<>	<lor< td=""><td><pre>COK</pre></td></lor<>	<pre>COK</pre>
Chrysene				0.0				0	I OR	ALOR	<1.0R	<lor< td=""></lor<>
Benzo(b)fluoranthene				с. П				200	 E B C F C	<10R	<lor.< td=""><td><lor< td=""></lor<></td></lor.<>	<lor< td=""></lor<>
Benzo(k)fluoranthene				0.5	AC A					∆ SOR	<_lOR	≤LOR
Benzo(a)nvrene			4	2 0.5	YO_ V	¥077					A OR	A OR
				0.5	<10R	<lor< td=""><td>< LOR</td><td><pre>VLOK</pre></td><td>-LUK</td><td></td><td></td><td></td></lor<>	< LOR	<pre>VLOK</pre>	-LUK			
Indeno(1.2.3.1)	2			50	<1.0R	<lor< td=""><td><lor <</lor </td><td><lor< td=""><td><lor< td=""><td>¥01⊽</td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor <</lor 	<lor< td=""><td><lor< td=""><td>¥01⊽</td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td>¥01⊽</td><td></td><td></td></lor<>	¥01⊽		
Dibenz(a.n)antinacene				0	A DR	<10R	<10R	0.6	<lor< td=""><td><lur <</lur </td><td>201</td><td></td></lor<>	<lur <</lur 	201	
Benzo(g.h.i)perylene							A D I A	7.7	<10R	<pre> COR </pre>	<pre></pre>	SLUK
Total		0	80	40								

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) NA denotes not analysed

Prepared By <u>TAP</u> Checked by <u>D</u> d2

TABLE 6 - Residual Asbestos Analytical Data

1

TP21_0.3-0.5 ES34736 Mixture of sand. of stones and debris	Not Detected		
TP23_0.3-0.5 ES34736 Mixture of san fstones, fragments plaster and debris	Not Detected		
 7 0.3-0.5 TP20 0.3-0.5 TP22 0.3-0.5 TP22 1.3-1.5 TP23 0.3-0.5 TP21 0.3-0.5 534736 ES34736 ES34736 ES34736 ES34736 ES34736 534736 Mixture of sand, Mixture of sand, Mixture of sand, Mixture of sand, Mixture of sand, and the stones, fragments of stones, fragments of stones, fragments of stones, fragments of stones, and debris and debris and debris 	Not Detected		
TP22_0.3-0.5 ES34736 Mixture of sand, sotnes and debris	Not Detected Not Detected Not Detected		
0.3-0.5 TP20 0.3-0.5 34736 ES34736 of sand, Mixture of sand, fragments stones, fragments of aster and plaster and debris and debris	Not Detected		
TP17 0.3-0.5 ES34736 Mixture of sand, stones, fragments of plaster and biturnin and debris	Mot Datacted	Nor Delega	
TP19_0.3-0.5DUP02TP17_0ES34736ES34736ES34Mixture of sand, Mixture of sand, Mixture of fragmentsof stones, of stones, of stones, plaster and debris		Not Detected	
TP19_0.3-0.5 ES34736 Mixture of sand, Mix fragments of frag plaster and debris		Not Detected	
TP19_0.3-0.5DUP02TP17ES34736ES34736ES3Mixtureof sand, MixtureMixtureMixtureof sand, mixtureof sand, mixturefragmentsof fragmentsof plaseSample Descriptionplaster and debrisplaster and debrisplaster and debrisplaster and debrisof plaster and debris		Asbestos Result	

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 6\19-09-02 Page 18 of 20

Prepared By <u>TAP</u> Checked by <u>Dod 2</u> TABLE 6 - Residual Asbestos Analytical Data

						TDA0 0 2-0 5	TTPAG 0 3-0 5 1 TP13 0 2-0.4
		TD92 02 05 15 1	TP01 03-05	PU3 0.3-0.0	0.0-0.0 00-1		
	curuc				100244	EC34741	FS34741
	1017574	EC3A741	FS34741	1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- ナーナ - ナーウクリ		
				the of condu	Mixture of sandy soil	Mixture of sand,]	Mixture of sandy soil,
	Soil	Mixture of sand,	Mixture of sandy soli,		sand, Mixture of sandy soil, Mixture of sandy soil, Mixture of sandy soil and the reference framewith of strongs. fragments of	etonee framents of	stones. fragments of
		stones. fragments	stones. fragments stones, fragments of soil,	soil, stones	Stones, plaint matter	alouted, nements of	placter and hithmin and
Samula Description		inf nlaster and	plaster and bitumin 1	fragments of plaster	and plaster and bitumin/fragments of plaster/fragments of plaster and plaster and bitumin/fragments of plaster	מוחבה פווח הבהויא	
author coordinate		- 11	and debris	and debris	bitumin and debris		deuls
	Not Defected Not Defec	Not Detected	Not Detected	Not Detected	Not Detected	Not Detected	Not Delected
ASDESTOS RESULT							

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 6\19-09-02 Page 19 of 20

Dede

Prepared By <u>TAP</u> Checked by <u>Dud2</u>

TABLE 6 - Residual Asbestos Analytical Data

DUP07 DUP08 I P ES34741 ES34741 I Mixture of sandy soil, Soil Mixture of sandy soil, Soil Mixture stone stones, fragments of plaster and bitumin and debris debris	DUP08 ES34741	I PZ/ U.S-U.S I PZ/ U.S-U.S I PZ/ U.S-U.S ES34741 ES34741 ES34741 Mixture of sand, Mixture of sandy soli, Mixtur	IP2/ U.S-U.S IF2/ U.S-U.S IF2/ U.S-U.S IF2/ ES34761 ES347761 ES34777761 ES347761 ES347761<	ES34741 Mixture of sandy local	ES34741 ES34761
41 ES34741 Indy soll, Soll bents of biturnin	ES34741	ES34741 Mixture of sand, h	ES34741 Mixture of sandy soli,	ES34741 Mixture of sandy ¹	ES34/61
41 ES34741 Indy soil, Soil biturnin	ES34741	ES34/41 Mixture of sand, h	Mixture of sandy soil,	Mixture of sandy	Mixture of sand
ndy soil, Soil bitumin		Aixture of sand, N	Vixture of sandy soil,	Mixture of sandy ¹	Mixture of sand
indy soil, Soil ments of biturnin		Aixture of sarto, ly Hones framments s	vilxure or sariug sour	enil stones	
bitumin debr			stones, plau mauri		stones, stones and debris
	hitimio	of bitumin and for	bitumin and fragments of plaster, brick fragments of plaster	fragments of plaster	
		debris	and bitumin and debris	and debris	
Achastos Result Not Detected Not		Not Detected	Not Detected	Not Detected	Not Detected

s:projects\51072\001\Reports\Tables\Residual data-a.xls\Table 6\19-09-02 Page 20 of 20

Prepared By <u>TAP</u> Checked by <u>Pulz</u>

 TABLE 7 - 2002 Stockpile Inorganic Analytical Data

 (concentrations in mg/kg)

:

.

ļ

IUUTIE IUUTIE 1 1 3 1 3 3 1 53 33 52 33 33 52 33 33 0.5 333 33
Dupt/1 Dupt/1 Dupt/1 E834762-0 E847653-0 1 1 - - - 3 3 - 1 19 19 - 1 - 19 218 - 7 7 20 7 7 - - 5 70 0.1 - 0.1 - 5 5
······························
DJUP15 ES34762-0 3 3 3 11 11 115 115 115 115
SP10 ES34762-0 <lor 3 3 9 9 9 54 54 26 26 26 26</lor
SP11-9 ES34762-0 A_OR A_OR A_OR 5 6 6 6 7 45 45 20 20 20 20
SP7 ES34762-0 A_OR <1.0R 78 78 78 78 78 78 78 33 33 33
SP6 ES34762-0 400 12 3 3 3 400 12 0 8 12 12 12 12 12 12 12 12 12 12 12 12 12
SP5 ES34762-0 2 16 141 141 141 141 141 −2 2 2 2 57 67
SP4 ES34762-0 4.0R - 4.0R - 3 3 3 3 7 23 23 23 23 23 23 23
SP3 E534762-0 2 4.0R 3 3 3 3 3 69 69 69 121 121 121 0.2
5P2 ES34762-0 <lor <lor <lor 3 3 3 749 749 749 285 285 285</lor </lor </lor
SP1 ES34762-0 7 <10 11 11 11 11 11 229 278 278 278 278 02
Sample ID Balch Balch CIR Balch CIR CIR CIR CIR CIR CIR CIR CIR CIR CIR
Health Investigation Levels Health Investigation Levels 11L /A NEPM HIL 'D' NEPM 0 400 2 0 400 2 0 400 2 0 400 2 0 1200 2 0 28000 1
NEPM 1 2220
Arsenic Chromium Copper Nitckel Zino Mercury

NOTES (1) 소LOR denotes iess than the laboratory limit of reporting (2) NA denotes not analysed Prepared By <u>Dod 7</u>. Checked By <u>Dod 7</u>. TArdLE 8 - 2002 Stockpile TPH/BTEX Analyrical Data (concentrations in mg/kg)

ŀ 14 - F 14 - F

DUP16	3-1 EB47654-1	t		<pre></pre>	 	-	201 1					2 40.2	1			 		2 40.2				
DUP08	FB47653-			<lor< th=""></lor<>		ч Г	<lor< td=""><td>V</td><td></td><td><10R</td><td></td><td>0.12</td><td></td><td></td><td>82</td><td></td><td>202</td><td>40.7 V</td><td>5</td><td></td><td></td><td></td></lor<>	V		<10R		0.12			82		202	40.7 V	5			
DUP17	FS34762-1			<1 OR		<luk< td=""><td><10R</td><td></td><td></td><td>~LOR</td><td></td><td><lor< td=""><td>1</td><td>ALOR</td><td>20 IV</td><td></td><td><luk< td=""><td>< 0R</td><td>10</td><td>PECIA VECIA</td><td></td><td></td></luk<></td></lor<></td></luk<>	<10R			~LOR		<lor< td=""><td>1</td><td>ALOR</td><td>20 IV</td><td></td><td><luk< td=""><td>< 0R</td><td>10</td><td>PECIA VECIA</td><td></td><td></td></luk<></td></lor<>	1	ALOR	20 IV		<luk< td=""><td>< 0R</td><td>10</td><td>PECIA VECIA</td><td></td><td></td></luk<>	< 0R	10	PECIA VECIA		
DUP15	EC34762-1			2012		< OR	< 0R		257	<10R		<10R		≜ COR	a V V		<10R	A OR		r J V		
SP10	COATED 4	1-20 24003		0017		ACOR	ALOR ALOR		227	<1 OR		aO I>		^LOR	a0 1		≜ LOR		107	*LOR		
SP11-9	+ COLUCIE	1-70/#600			222	<10R			<pre>CUK</pre>	<10B			, roi	≤ DR		SLUR	<1.0R	100		10 10 10		
SP7	10000	1-79/4/021				A OR			AOA R	QC V	577	 100		9017		× CH	BO ₩		4LOH	A DR		
SP6		ES34762-1			CR	2012		5	× NOR NOR	100	5	100	57			Å P	5		<luk< td=""><td></td><td></td><td></td></luk<>			
CDF	0	ES34762-1			A RO RO	0017		<10K	aC IV		4LOK					- LOR	00		<pre>COR</pre>		157	
YU3	540	ES34762-1			^	001	57	4.0R	n V		<pre></pre>		YOV V		4LUK	<10R		Y V	~ LOR			_
900	213	FS34762-1			A DR		YUL	102	2	2077	102				<10H	<1 OR		< OK	ALOR		4 4 1 4	
000	Z dS	ECALTRD-1			20 IV		×0,0×	^LOR		PLOR	<lor< td=""><td></td><td>7 00</td><td></td><td>¢LOR</td><td>100</td><td></td><td>A DR</td><td>< 0B</td><td></td><td>40K</td><td></td></lor<>		7 00		¢LOR	100		A DR	< 0B		40K	
	SP1	EC31767_1					¢[0R	232		169	400			PLUK	ALOR	50		<pre>LOR</pre>			- €LOR	
	Sample ID		מפוכה	LOR	6	1	22	100		2			~ ~	7'N	02		7.0	0.2	- -	7.1	0.2	
	Criteria				12	8					1000											
			, h			C6 - C9 Praction	C10 - C14 Fraction			C29 - C36 Fraction	Total Total			Benzene	T. 21,0000		Chlorobenzene	Elhyhanzana		Imela- & para-Xylene	ortho-Xviene	HTFX Total

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) NiA denotes not analysed

Prepared By TAP Checked By Dod1

SP11-9	ES34762-2				<10K	<10R			- SLUK	<lor< th=""><th><10R</th><th></th><th></th><th>2 LUK</th><th></th><th>N N N N</th><th></th><th>4LUK</th><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>a N</th><th></th><th>VTOK</th><th></th></lor<></th></lor<></th></lor<></th></lor<>	<10R			2 LUK		N N N N		4LUK	<lor< th=""><th><lor< th=""><th><lor< th=""><th>a N</th><th></th><th>VTOK</th><th></th></lor<></th></lor<></th></lor<>	<lor< th=""><th><lor< th=""><th>a N</th><th></th><th>VTOK</th><th></th></lor<></th></lor<>	<lor< th=""><th>a N</th><th></th><th>VTOK</th><th></th></lor<>	a N		VTOK	
SP7	FS34762-2			¥0,1	<lor< td=""><td>a No I></td><td></td><td>YUL VLUA</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	a No I>		YUL VLUA	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<></td></lor<></td></lor<>			<lor< td=""><td><lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td><10R</td><td><lor< td=""></lor<></td><td><lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<></td></lor<>			<10R	<lor< td=""></lor<>	<lor< td=""><td>A OR</td><td></td><td></td><td><10R</td><td></td></lor<>	A OR			<10R	
SP6	EC34762-9			<lor< td=""><td><lor< td=""><td>2017</td><td></td><td>4LOK</td><td>4.9</td><td>1.6</td><td>34</td><td></td><td>3.2</td><td>1.5</td><td>1.6</td><td></td><td>1.1</td><td>D.6</td><td>1.1</td><td><i or<="" td=""><td>HO IV</td><td></td><td><10R</td><td>19.6</td><td></td></i></td></lor<></td></lor<>	<lor< td=""><td>2017</td><td></td><td>4LOK</td><td>4.9</td><td>1.6</td><td>34</td><td></td><td>3.2</td><td>1.5</td><td>1.6</td><td></td><td>1.1</td><td>D.6</td><td>1.1</td><td><i or<="" td=""><td>HO IV</td><td></td><td><10R</td><td>19.6</td><td></td></i></td></lor<>	2017		4LOK	4.9	1.6	34		3.2	1.5	1.6		1.1	D.6	1.1	<i or<="" td=""><td>HO IV</td><td></td><td><10R</td><td>19.6</td><td></td></i>	HO IV		<10R	19.6	
SP5	ECONTRO 0	2-2011000		<lor< td=""><td><10R</td><td>201</td><td>4LUK</td><td><10R</td><td><lor< td=""></lor<></td><td><10R</td><td>00</td><td>2.2</td><td></td><td>0.5</td><td>0.6</td><td></td><td>0.8</td><td><10R</td><td>0.6</td><td>N N N</td><td></td><td></td><td><10R</td><td>4.4</td><td></td></lor<>	<10R	201	4LUK	<10R	<lor< td=""></lor<>	<10R	00	2.2		0.5	0.6		0.8	<10R	0.6	N N N			<10R	4.4	
SP4	0 0001001	2-20/4002		<lor< td=""><td><1 OR</td><td></td><td>401∧</td><td><lor< td=""><td>4.0R</td><td>N DE</td><td></td><td></td><td><_ ALOR</td><td>< 0.R</td><td></td><td></td><td><_OR</td></lor<></td><td>A OR</td><td><1 OR</td><td></td><td></td><td>4LUR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>	<1 OR		401∧	<lor< td=""><td>4.0R</td><td>N DE</td><td></td><td></td><td><_ ALOR</td><td>< 0.R</td><td></td><td></td><td><_OR</td></lor<>	4.0R	N DE			<_ ALOR	< 0.R			<_OR	A OR	<1 OR			4LUR	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
6D3		EC34/b2-2		< OR	40 F		<lor< td=""><td>⊲LOR</td><td>0.5</td><td></td><td></td><td>7.1</td><td>1.4</td><td>90</td><td></td><td>0.0</td><td></td><td>2012</td><td></td><td></td><td></td><td>×07</td><td>0.5</td><td>7.6</td><td></td></lor<>	⊲LOR	0.5			7.1	1.4	90		0.0		2012				×07	0.5	7.6	
cD2	272	ES34762-2		<1 OR			1 P R	 0R 			2104	<10H	A D D D			<lor< td=""><td>ALOR A</td><td></td><td></td><td></td><td>¥07⊽</td><td>_ ∧LOR</td><td>≤ OR</td><td><1 OR</td><td></td></lor<>	ALOR A				¥07⊽	_ ∧LOR	≤ OR	<1 OR	
r do	5	ES34762-2				CLOK	<lor< td=""><td>108</td><td>107</td><td>4, 0</td><td>0.6</td><td>3.4</td><td>α r</td><td></td><td></td><td>2</td><td>, c</td><td></td><td></td><td>7</td><td>1.1</td><td></td><td></td><td>第四部第一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二</td><td></td></lor<>	108	107	4 , 0	0.6	3.4	α r			2	, c			7	1.1			第四部第一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
	Sample ID	Batch	EC -	1	0.0	0.5	50	0.5		0.0	0.5	ч С		0.0	0.5	0.5			<u>c.</u> 0	0.5	0.5	0.5		<u>c.u</u>	_
	evels		NEDMAN '																	2					40
	Health Investigation Levels		TENED IN MEDNING IN NEDMINE																	4					80
	Health																			¥					20
					Nanhthalene		Acenaphinylene	Acenaphthene	Fluorene	Phonanthrane			Fluoranthene	Pvrene	Ranz(a)anthranene		Chrysene	Benzo(b)fluoranthene	Renzork)Buoranthene	Benzo/a)ntrane			Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Total

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

Prepared By <u>Dæd</u>

TABLE 9 - 2002 Stockpile PAH Analyrıcal Data (concentrations in mg/kg)

Ì

.

. .

		1	Cample ID	SP10	DUP15	DUP17	DUP11	חטרום
Heal	Health Investigation Levels	Leveis	Calipter ic	EC34762-2	FS34762-2	ES34762-2	EB47653-2	EB47654-2
				1				
I NEPM HIL A	INEPM HIL 'U'		LUN			2		
	÷		0.5	<lor< td=""><td><lor td="" <=""><td><pre>LUK</pre></td><td></td><td></td></lor></td></lor<>	<lor td="" <=""><td><pre>LUK</pre></td><td></td><td></td></lor>	<pre>LUK</pre>		
			0.5	▲LOR	<lor< td=""><td><lor< td=""><td><lor< td=""><td><10K</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><10K</td></lor<></td></lor<>	<lor< td=""><td><10K</td></lor<>	<10K
			50	LOR	<lor< td=""><td>⊲LOR</td><td><lor< td=""><td>SILOR</td></lor<></td></lor<>	⊲LOR	<lor< td=""><td>SILOR</td></lor<>	SILOR
			2.2	A OR	<lor< td=""><td><lor< td=""><td>ALOR</td><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td>ALOR</td><td><lor< td=""></lor<></td></lor<>	ALOR	<lor< td=""></lor<>
				AC IV	<10R	<1.0R	<lor< td=""><td>3.4</td></lor<>	3.4
				- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	<10R	<lor< td=""><td><lor< td=""><td>0.7</td></lor<></td></lor<>	<lor< td=""><td>0.7</td></lor<>	0.7
					0.7	<lor< td=""><td><lor< td=""><td>e</td></lor<></td></lor<>	<lor< td=""><td>e</td></lor<>	e
					0.8	<10R	<_LOR	3.7
			0.00	207 IV	<1.0R	<lor< td=""><td><lor< td=""><td>1.5</td></lor<></td></lor<>	<lor< td=""><td>1.5</td></lor<>	1.5
					_ AOR	OR</td <td><lor< td=""><td>1.6</td></lor<></td>	<lor< td=""><td>1.6</td></lor<>	1.6
			500		0.5	<10R	<10R	e
Benzo(b)fluoranthene					2 NOR	<10R	<lor< td=""><td>3</td></lor<>	3
Benzo(k)fluoranthene	.				A OR	<10R	<1.0R	1.8
Benzo(a)pyrene	4	7	200	<10R	<10R	<10R	<lor< td=""><td>.</td></lor<>	.
De			2 4		A DR	4LOR	<10R	4OR
Dibenz(a.h)anthracene					<1 OR	<10R	<lor< td=""><td>1.2</td></lor<>	1.2
Benzo(g.h.i)perylene			0.0	2012	2	<lor< td=""><td><lor< td=""><td>23.9</td></lor<></td></lor<>	<lor< td=""><td>23.9</td></lor<>	23.9

NOTES (1) <LOR denotes less than the laboratory limit of reporting (2) N/A denotes not analysed

s:projects\51072\001\Reports\Tables\Stockpiles-a.xls\Table 9\19-09-02

ŗ

Prepared By <u>TAP</u> Checked By <u>Dodz</u>

TABLE 10 - 2002 Stockpile Asbestos Analytical Data

011-4 100	ES34/02	Q		
242	ES34762	CZ		
SP6	ES34762	GN		
SP5	ES34762		רוא	
SP4	FS34762		NN	
SP3	EC3A767		Q	
SP7	C001760	1004/04	QN	
100		E234/02	Chrisofile	
ļ				ASDESIOS

NOTES (1) NDdenotes not detected

s:projects\51072\001\Reports\Tables\Stockpiles-a.xls\Table 10\19-09-02

Prepared By <u>±AP</u> Checked By <u>Dod2</u>

TABLE 10 - 2002 Stockpile Asbestos Analytical Data

SP1D	1 EC24078				
SP1C	12021070	0184000	Z		
SP1B		E004810		2	
SP1A		ES349/8	Civ	ב ב	
FD01		ES349/8			
DUP16		EB47654		צח	
DIP17		FS34762		Z	
D11045		ES34762			
0200	01-10	EC3/760	1011001		1
3				> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

NOTES (1) NDdenc

s:projects\51072\001\Reports\Tables\Stockpiles-a.xls\Table 10\19-09-02

Prepared By <u>TAP</u> Checked By <u>Dode</u>

5.0 Inspection Findings

The following section details the site inspection findings of the site.

Table 1: Asbestos Inspection Findings of the Site – Lot 202, Former RandwickBus Depot

Lot 202 of the former Randwick Bus Depot was divided into the eight (8) areas. The site plan contained in Appendix 2 shows the location of these areas.

AREA	DESCRIPTION OF AREA	ASBESTOS INSPECTION FINDINGS
Area 1	SE Section of the site – the eastern section of this area has long sparse to thick grasses. There is a large stockpile located in the SE corner, which comprises mostly large concrete-pieces.	Many small AC fragments were noted on the ground surface along the eastern side of this area (i.e. between coordinates A3 and A5) -with-light-building-rubble.—Refer-to-
	The ground surface of the site access road to the south is predominately crushed building rubble material. The site access road to the north is covered with a concrete slab surface.	Sample No. S2807-01 in Appendix 1.
	Long, sparse to thick grasses restricted visual access to the area located near the mid western side.	
Area 2	Mid Southern Section of the site – the area is predominately covered with a concrete ground slab. There are several small stockpiles, which appear to comprise mostly sandy soil and have a light grass cover and light vegetation.	No asbestos or AC fragments were noted on the ground surface and the surface of the stockpiles.
	There is a small building located on the mid western side and appears to have been constructed post 1980.	
Area 3	NE Section of the site – there is a building, which occupies a large portion of this area.	No asbestos or AC fragments were noted on the ground surface.
	The ground surface of the area north of the building is predominately bitumen. Grass areas to the east and west of the building restricted visual access.	
	The building in this area appears to have been constructed post 1980.	e
Area 4	Mid Northern Section of the site – there is a building, which occupies a large portion of this area.	landing to the three southern
	Long, thick grasses restricted visual access surrounding the building to the north, west and east. The ground surface of the area south of the building is predominately bitumen.	entrances and also immediately south of this building (which has a bitumen ground surface). Refer to Sample No. S2807-04 in Appendix 1.
		Several small AC fragments were noted on the timber flooring in a localised area (i.e. NE corner) inside

Ì

HIBBS & Associates PTY.LTD.

AREA	DESCRIPTION OF AREA	ASBESTOS INSPECTION FINDINGS
		the building. Refer to Sample No. S2807-05 in Appendix 1. Note: These AC fragments were removed by Hibbs & Associates.
		2 AC downpipe sections (with a total of 5 metres) were noted on the grassed area immediately NW of the building. Refer to Sample No. S2807-06 in Appendix 1.
		Note: The roof and eaves lining on the building in this area has been removed and is suspected to have been AC sheeting.
Area 5	NW Section of the site – concrete ground surface. A large stockpile located in the eastern section of this area comprises mostly bricks and large concrete pieces. A small stockpile in the far SW corner appears to be	At least 10 small AC fragments were noted on the surface of the small far SW stockpile (fringe SW corner of small stockpile only). Refer to Sample No. S2807-07 in Appendix 1.
	mostly sandy soil with a grass cover and light vegetation. There is a building located on the eastern side of this area.	3 small AC fragments were noted on the concrete ground immediately west of the building. Refer to Sample No. S2807-07 in Appendix 1.
	Long, thick grasses and low-height vegetation restricted visual access on the northern embankment.	Note: The roof and eaves lining on the building in this area has been removed and is suspected to have been AC sheeting.
Area 6	Mid Western Section of the site – mostly earth ground surface with very light, sparse grass cover. The northern section is covered with a concrete ground slab. Part of a large stockpile, which is also present in Area 7 comprises mostly large concrete pieces, some large brick sections and sandy soil / earth material.	No asbestos or AC fragments were noted on the ground surface.
Area 7	SW Section of the site – several large stockpiles mostly comprising large concrete pieces, large brick sections, sandy soil / earth material and other construction materials (eg; rail lines sections, metal pipes).	No asbestos or AC fragments were noted on the ground surface and the surface of the stockpiles.
	Concrete ground surface noted in the SW and SE corners of this area.	
	Long, thick grasses and low-height vegetation restricted visual access particularly on the top portion of most stockpiles and the eastern embankment.	
Area 8	Near the centre of the site - large excavated area.	No asbestos or AC fragments were noted on the ground surface.
	Areas of long, thick grasses, reeds and low- height vegetation restricted visual access.	

Table 1 TPH Analytical Results Historical Samples

Total BTEX	9	QN	QN	QN	QN	QN .	N/A	QN	ND	QN	DN .	QN	QN .	QN	QN	QN .	DN	QN	QN	QN	DN -	ON .	QN	ND						
Total TPH C10-C36	220	QN	QN	DN	QN	QN	QN	QN	QN	. 700	QN	006	DN .	ŊŊ	QN	QN	QN	QN	GN	QN.	QN	QN	QN	QN	QN	QN .	ND	DN	QN .	510 · ·
QC Sample ID / Batch No.	LOR													-																
Sample Date		1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995
Sample ID		HA81	HAŖ2	HA83 [.]	HA84	HA85	SZ-51	- SZ-52	SZ-53	SZ-54	SZ-61	SZ-62	SZ-63	TW-S1	TW-S2	TW-S3	TW-S4	Z2-1	Z2-12	Z2-13	Z2-14	Z2-15	Z2-16	Z2-17	Z2-18	Z2-19	Z2-2	Z2-20	Z2-21	Z2-22
Batch No		9503299	. 9503299	9503299 i	9503388	9503299	9502353	9502353	9502353	9502353	9502353	9502353	9502353	9505849	9505849	9505849 :	9505849	9505659	9505668	9505668	9505668 .	9505668	9505668	9505668	9505727	9505727	9505659	9505777	9505777	9505777
Laboratory		Amdel	Amdel	Amdel	Amdel	Amdel	Amdei	Amdel	Amdel	Amdel	Amdel	Amdel	Amdeł	Amdei	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	. Amdel	Amdel	Amdel

Prepared by: <u>LMW</u> (URS) Checked by: <u>FMM</u> (URS)

s:projects\51072\001\Validation\Data Sets\TPH Results Tables_v2.xls\Historical Validation - 1995 Page 1 of 2

.

TPH Analytical Results Historical Samples Table 1

- 1 (A ₂ -) 	Total BTEX	ΩN	DN	QN	ON .	DN	QN	DN	an	QN	QN_	QN	QN	QN	QN	QN	Ņ	QN.	QN	- UN	CN .
Total TPH	C10-C36	UN .	QN	QN	QN .	QN	ND	QN N	QN	Q	1300	360	QN	. ND.	QN	QN	QN	QN	ND	QN	QN
QC Sample ID /	Batch No.								-				AGAL N95/032831						AGAL N95/032612		
Sample	Date	1995	1995	1995	1995	1995	1995	1995 ·	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995
	Sample ID	Z2-23	Z224	Z2-25	Z2-26	Z2-3	Z2-4	Z2-5	Z2-6	22-7	Z3-8	Z3-10	· Z3-12	Z8-1	Z8-2	Z8-3	Z8-4	Z8-5	Z8-6	Z87	Z8-8
	Batch No	9505777	. 9505777	9505777	9505777	9505659	9505659 .	9505659	9505659	9505727	9505802	9505802	9505849	9505802	9505802	9505802	9505802	9505815	9505802	9505815	9505815 :
	Laboratory	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel -	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdel	Amdei /	Amdel	Amdel -	Amdel	. Amdel	Amdeł	Amdel

Notes: LOR ND N/A

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed

s:projects\51072\001\Validation\Dafa Sets\TPH Results Tables_v2.xls\Historical Validation - 1995 Page 2 of 2

· · · · · · ·

Prepared by: <u>LMW</u> (URS) Checked by: <u>FMM</u> (URS)

Table 2 TPH Analytical Results Failed or Excavated Samples

ł

Total C10-C36	1904	2002	2000	2150	607	1/31	2218	1744	QN	5440	810	1960	1970	510	2310	1500	1090	950	410	1218	8570	146	260	3090	ND	491	116	QN	QN	513	Q	ON .	139	5474	619	221	Q	ND	598	444	479	1432	QN	495	DN	DN	1066	. 183
100 - 100	443	100		7.1			100	112	400	170	<100	<100	<100	<100	<100 ·	<100	<100 ►	<100	<100	192	320	<100	<100	100	<100	150	<100 <	4100	- <100	<100	<100	400	<100	444	- 100	400	<100	<100	194	-100	<100	· <100	<100	<100	<100	<100	579	<100
100	1710	0175	0440	7210	204	0121	1520	1300	<100	4300	. 660	1560	1640	410	1750	1150	900	780	410	. 606	6470	146	260	2050	<100	341	116	400	<100	400	901×	<100	139	3820	449	221	400	<100	404	370	381	991	<100	398	<100	<100	787	183
50	620	220	010	2	0	124	698	332	<50	970	150	400	330	100	560	350	190	170	<50	117	1780	<50	×50	1040	<50	<20	<50	~20	<50	113	. <50.	<50	~20	1210	170	· <50	.⊲50	<50	<50	74	86:	441	<50	97	<50	<50	<50	<50
2 2	ų	ۍ ۲ د	7	y 4	y	2		Ŷ	V	٩ ۲	Ŷ	문	<10	√0	₽	<10	10	<10	다 고	Q	₽.	4	Q	8	ଟ	V	7	Q	7	₽	₽	8	Q	8	Q .	2	ୖ୰	6	V	₽	2	2	22	~2	<2	<2	<2	Ŷ
									-	QC05 / QC08									-		QC19 / QC20													•											DUP10			
, and and more	7 77 79	00-10-1 20 20 2	00-70-7	0-10-0	8-0/-02	8-07-03	9-07-03	9-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	10-07-03	12-07-03	21-07-03	28-07-03	28-07-03	28-07-03	4-08-03	24-04-03	24-04-03	24-04-03	24-04-03	23-04-03	23-04-03	23-04-03	23-04-03	23-04-03	23-04-03	23-04-03	23-04-03	23-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	22-04-03	22-04-03
	1 VIN DA		- EAV-UD	- Car-U/		EXB-04	· CSP-11	EXB-09	: EXW-18	· SSP-01	SSP-02	5SP-03	SSP-04	SSP-05	SSP-06	SSP-07	SSP-08	SSP-09	SSP-10	EXW-20	EXW-28	EXW-35	EXW-37	EXW-41	EXW-47	BH209 1.0-1.4	BH209_1.5-1.9	BH209_2.0-2.4	BH209 2.5-2.9	BH207_1.5-1.9	BH207_2.2-2.6	BH207_2.8-3.2	¹ BH208_0.5-0.9	BH208 1.0-1.4	BH208 1.5-1.9	'BH114 1.0-1.4	BH114 1.5-1.9	BH114_2.0-2.4	BH202_2.0-2.4	BH203_0.5-0.9	BH203 1.0-1.4	BHZ03 2.5-2.9	BH204 0.5-0.9	BH204 1.0-1.4	I BH204 2.0-2.4	BH204 2.5-2.9	BH205 1.9-2.3	BH205 2 5-2 9
addiandiilea	And Connector	Vvali Odinjue	Vvali Sample		Clean Stockpile	Base Sample	Clean Backfill	Base Sample	Wall Sample	Suspect Stockpile	Wall Sample	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation														
	100000	1070707U	E0408/B		E340905	ES40905	ES40959	ES40959	ES41009		No.014769	No.014769	No.014769	No.014769	No.014769	No.014769	No.014778	No.014778	No.014778	ES41007	ES41124	ES41274	ES41300	ES41300	ES41436	ES39386	ES39386	- ES39386 '	ES39386	ES39375	ES39375	ES39375	ES39375	ES39375	ES39375 1	ES39375	ES39375	ES39375	ES39352									
Laboratory		ALO	ALO	ALO	ALS	ALS	ALS	ALS ·	ALS	Labmark	ALS	ALS	· ALS ·	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	. ALS	ALS	ALS	ALS	ALS	ALS	VLS 7	ALS									

Prepared by: LMW (URS) Checked by: FMM (URS)

N

S:51072/001/Validation/Data Sets/TPH Results Tables_v2.xls/Failed Validation

Table 2 TPH Analytical Results Failed or Excavated Samples

Total C10-C36		138	QN	QN	Q	438	147	QN	838	639	450	109	QN	QN	QN	QN	1277	1774	1320	795	Q	13214	4134 .	1129	4751	QN	448	1716
C29-C36 Tc	100	<100	<100	<100 +	<100	. <100	<100	<100	299 .	<100.	<100	<100	<100	<100	<100 <100	<100	<100	4.0R	304	217	<lor .<="" th=""><th>284</th><th>154</th><th><lor< th=""><th>151</th><th><10R</th><th>132</th><th>352</th></lor<></th></lor>	284	154	<lor< th=""><th>151</th><th><10R</th><th>132</th><th>352</th></lor<>	151	<10R	132	352
C15-C28	100	138	<100	¢100	<100 ≤100	366	147	100	461	526	360	109	400	€100	100	<100	952	1360	906	578	¢LOR	8690	2810	824	3050	4LOR	316	1110
C10-C14	1 5 0	. <50	<50	: <50	<50	72	<20 <20	<50	78	113	06 .	- <50	-20 	: <50	<50	, <50	325	414	110	<lor< th=""><th><10R</th><th>4240</th><th>1170</th><th>305.</th><th>1550</th><th><10R</th><th>⊴LOR</th><th>254</th></lor<>	<10R	4240	1170	305.	1550	<10R	⊴LOR	254
60-90	2	V	V	8	Ŷ	₹	8	8	₽	8	8	2	ଟ	₽	8	2	2	<20	<20 ·	<20	<20	13 [5 7	~20	<20 <20	₹OR	LOR	<lor< th=""></lor<>
QC Sample ID	LOR			DUP13						DUPOG			DUP07															
sample Date		22-04-03	22-04-03	22-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	15-04-03	15-04-03	15-04-03	15-04-03	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	10-09-02	23-07-02	23-07-02
Sample ID		BH206 1.0-1.4	BH206 1.5-1.9	BH206 2.5-2.9	BH111 2.5-2.9	· BH111 0.5-1.4	BH111 1.5-1.9	BH111 2,0-2 4	BH201 0.5-0.9	BH201_1.0-1.4	: BH201 1-5-1:9	BH201_2.0-2.4	BH201 2.5-2.9	MW05 1.0-1.4	MW05 2.5-2.9	'MW05A_1.7-2.1	MW05A 2.3-2.7	BH14_2.0-2.2	BH15 1.3-1.5	BH16 1.0-1.2	BH17_0.4-0.7	BH18 3.3-3.5	BH2 2.5-2.7	BH20 2.0-2.2	BH5 1.8-2.0	. TP109 3.0-3.2	TP25 0.5-0.7	TP26 1.3-1.5
SampleType		Delineation Validation	Delineation Validation	Defineation Validation	Delineation Validation	 Defineation Validation 	Delineation Validation	Delineation Validation	Delineation Validation	 Delineation Validation 	Defineation Validation	Delineation Validation	Delineation Validation	Delineation Validation -	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	. Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation
Laboratory Batch No.		ES39352	ES39352	ES39352	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39306	ES39306	ES39306	ES39306	ES35296	ES36296	ES35296	ES35296	ES35296	ES35296	ES35296	ES35296	ES35561	ES34735	ES34682
Laboratory		ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	[–] ALS	ALS	· ALS	STR .	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS

•

Notes: LOR N/A

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed

Page 2 of 2

S:51072/001///alidation/Data Sets/TPH Results Tables_v2.xts/Failed Validation

Prepared by: LMW (URS) Checked by: FMM 1.4RS)

1

1

Table 3 TPH/BTEX Analytical Results Delineation Samples

0.1.10

	Tolal Xylene		ΩN	QN		NU.	Q.		DN 4	a i	ON.		2 ;			GN	QN	Q	ON.	QN	ON	QZ	QN	Q	QN	QN	QN	QN	QN	an	QN	QN	Q	Q	DN	Ð	ON	ġ	2	9	Q	QN	g	Q	Q	ND.	QN	Q	Q
	Ethylbenzene	0.2	<0.2	<0.2	<u>602</u>	202	<0.2	- 0.2 - 0.2	20.2	<0.2 •	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40 ⁻²	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2
	Chlorobenzene	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	202	<0.2	<0.2	<0.2	2.02			<0.2	- Q.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Toluene	0.2	<0.2	<0.2	<0.2	20 ⁻²	402	~0.7 V	20.2	<0.2	<0.2	602	<0.2	40.2	202	<0.2	<0.2	Q.2	40.2	<u>6</u> 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0,2	<0.2	<0.2	Z 0>	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
	Behzene	0.2	<0.2	<u>50.2</u>	<0.2	<0.2	<0.2	6 0.2	· <0.2	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	. <0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2.	<0.2	<0.2
ТРН	Total C10-C36		QN	· 833	170	9	QN	2	ON.	2	QN	448	1716	169	839	953	Q	QN		2	9	2	400	ON	QN	Q	102	QN	Ð	Ð	134	QN	, QN	. ON	nD	:: UN	445	816	707 :	465	130	1774 :	1320 .	795	QN	13214	4134	1129	QN
Helt	C29-C36	100	<100	134	<100	<100	<100	400	<100	<100	<100	132	352	100	162	<100	<100	<100	100	<100	<100	<100	168	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 <100	<100	<100	<100	<100	<100	<100	304	217	<100	284	. 154	<100	<100
Hat	C15-C28	100	<100	583	611	<100	<100	<100	<100	<100	<100	316	1110	169	564	694	<100	<100	<100	<100	<100	<100	232	<100	<100	<100	102	<100	<100	<100	134	<100	<100	<100	<100	<100	350	620	582	328	130	1360	906	578	<100	8690	2810	824	00L>
teH	C10-C14	50	<50	115	159	<50	<50	<50	<50	<50	<50	<50	254	<50	113	259	<50	<50	. <50	<50	<50	<50	<50	<50	<50	<50	05> .	<50	<50	<50	<50	<50	<50	<50	<50	<50	95	196	125	137	<50	414	110	<50	<50	4240	1170	305	<50
TPH *	60-90			2	8	₽	₽	4	V	V	V	Q	8	Q	Q	Q	\$	8	8	2	\$	₽	8	Ŷ	8	8	\$	2	8	2	\$	<20	2	50 ₹2	<20	20	<20.	<20	<20	<20	~20	<20.	20	~20	<20	6	<20	~20	<20
	CC Sample ID	LOR		DUP01		DUP04		••	DUP02/DUP03								DUP05	DUP07/DUP08		DUP13/DUP14					,		DUP15/DUP16		-		DUP17							DUP12	DUP13	-									
	Sample Date		23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	27-08-02	27-08-02	27-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02	28-08-02
	Sample ID		TP14 0.3-0.5	TP14 1.3-1.5	TP14_24-2.6	TP15_0.3-0.5	TP21_0.3-0.5	TP22_0.3-0.5	TP22_1.3-1.5	TP23_1.3-1.5	TP24 0.3-0.5	TP25_0.5-0.7	TP25_1.3-1.5	TP26_0.3-0.5	TP26_1.3-1.5	TP26_2.9-3.0	TP01 1.3-1.5	TP03_0.3-0.5	TP06_1.3-1.5	TP08_1.3-1.5	TP09 1.3-1.5	TP15 1.3-1.5	SP1	SP10	SP11-9	645	SP3	5P4	SP5	SP6	SP7	BH01 2.3-2.5	BH04 3.2-3 4	BH08 3.7-3.9	BH03 1.0-1.2	EH03 3.0-3.2	BH09.2.0-2.2	BH10 1.0-1.2	BH11 1.0-1.2	BH12 2.2-2.3	BH13 0.8-1.3	BH14 2.0-2.2	BH15 1.3-1.5	BH16 1.0-1.2	BH17 0.4-0.7	BH18 3.3-3.5	BH2 2.5-2.7	BH20 2.0-2.2	BH21_1.7
	ory Batch No Sample ID Sample Date CC Sam		ES34735	ES34682	ES34735	- ES34736	ES34736	ES34736	ES34736	ES34736	ES34736	ES34735	ES34682	ES34735	ES34682	ES34735	ES34741	ES34741	ES34741	ES34761	ES34741	ES34736	ES34762	ES34762	ES34762	ES34762	ES34762	FS34762	ES34762	ES34762	F\$34762	FS35796	FS35298	ES35296	FS35296	ES35296 ES35296	ES35296												
	Labbratory		ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	Al S	AIS	U N	ALS	AIS	ALS	AIS	AIS	AIS	AIS	AIS	ALS ALS	ALS									

111

1

Prepared by: LMW (URS) Checked by: FMM (URS)

1

 \sim

Page 1 of 4

s.projects\51072\001\Valide@onData Sets\7PH Results Tables_v2.xis\Defineation Valide@on

Table 3 TPH/RTFX Analvfical Results	Delineation Samples	трн трн трн трн
--	---------------------	-----------------

	1 2		÷						·																		ī					T	~~~			-		_	_;	;-		,					
			QN	QN	QN	N/A	NN	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Q	9	ġ	Q	Q	QN	QN	Q	Q	Q	Q	Q	Q	9	ON	QN	Q	Q	QN	92	Ð	g	QN	9!	2	AN I
	Entylogizane		<0.2	02	<0.2	N/A	N/A	N/A	N/A	NIA	NIA	NIA	N/A	NIA	N/A	N/A.	N/A	N/A	N/A	N/A	. VIA	<0.2	<u>4</u> ,2	407 210	405 402	<0.2	<0.2 ,	40,2	<0.2	<0.2	<0.2.	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	.≺0.2	<0.2	<0.2	<0.2	<0,2	40.2	0,9 7	1 712
		7.02	<0.2	<0.2	<0.2	N/A	N/A	N/A	NA	NIA	NIA	NIA	NIA	N/A	N/A	N/A	N/A	N/A	NIA	NIA	NIA	<0.2	<0,2	<0.2	<0.2	<0.2	0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 •	<0.2	40.2	<0.2	<0.2	<u>6</u> 2	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	705
		7.02	<u>602</u>	40.2 40.2	<0.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	\$0.2	<0.2	<0.2	<0.2	<u>6</u> 2	<0.2 .	Q 7	<0.2	<0.2	<0.2	~0.2 V	<u>^0.2</u>	<0.2	<0.2	40.2	<0.2	<u> <0.2</u>	<0.2	₹0.2 9	1 202
	Belizene	7.02	40.2	<0.2	40.2	NIA	NIA	N/A	N/A	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	40.2	<0.2	<0.2	<0.2	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	202	<0.2	40.2	40.2	≤0,2	<0.2	-<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	1 2.02
TPH		04Z	134	606 :	4751	Ð	- ON	- ON	- ON	- ON	ON	QN	- Q	QN	DN	ND .		a	ON.	, DN	Q	QN	DN	QN	QN	QN	Q	QN	DN	g	Q	. QN	Q	QN	Q	Q	Ð	Ð	Q	QN	QN	ΟN	479	620	QN	Ð	an .
Her	1729-1530 1400	00L2	<100	<100	151	<100	~100	<100	.<100	<100	<100	<100	<100	0015	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	×100	<100	<100	<100	<100	<100	<100 -	<100	<100	<100	<100	4100	<100	<100 1
TPH	979-915	202	134	512	3050	<100	<100	<100	<100	<100	<100	<100	<100	101~	<100	<100	<100	4100	<100	<100	<100	<100	<100	<100	4100	<100	<100	<100	<100	<100	<100	<100	<100	√100	~100 ~	<100	<100	<100	<100	<100	<100	100.	397	519	400	100	<100
ТРН	510-514	140	~~	94	1550	\$50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50 .	<50	₹0	<50	<50	<50	<50	<50	<50	€0	<50	<50	<50	€0	<50	<50	<50	<50	\$50	<50	<50	<50	<50	<50	<50	<50	82	101	50	<50	<50 L
Her		-		-		-	-		f	1			-				i			_								_		•••	-			-							-	-		†			-
	loc sample in	DUP16				4			DUP101/DUP102			DUP103			DUP106				-		DUP110/DUP111				. DUP01			. DUP02						DUP03					DUP04								
	sample pate	28-08-02	28-08-02	28-08-02	28-08-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02 ·	10-09-02	10-09-02	10-09-02	. 10-09-02	. 10-09-02	10-03-02	10-09-02	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	12-04-03	14-04-03	14-04-03	14-04-03	14-04-03	15-04-03	15-04-03	15-04-03	15-04-03	15-04-03
	sample ID	BH22_2.5-2.7	BH23_1.3-1.5	BH24_0.8-1.0 -	BH5 1.8-2.0	TP1002.0-2.2	TP1013.0-3.2	TP1021.0-1.2	TP1033.5-3.7	TP1041.0-1.2	TP1043.5-3.7	TP1053.0-3.2	TP1063.0-3.2	TP1073.5-3.7	TP1083:5-3.7	TP1093.0-3.2	TP1103.0-3.2 ·	TP1112.0-2.2	TP1123.0-3.2 -	TP1132.0-2.2	TP1133.0-3.2-	BH100 4.5-4.9	BH100_5.5-5.9	BH101_2.8-3.2	BH101 4.0-4.4	BH101 5.5-5.9	BH102_2.8-3.2	BH102 4.2-4.6.	BH102 5.2-5.3	BH103_2.8-3.2	BH103_4.3-4.7		BH104 2.8-3.2	BH104 4.3-4.7	BH104 5.9-6.1	BH105_2.8-3.2	BH105 4.3-4.7	BH105_5.8-6.2	BH106 2.5-2.9	BH106_4.0-4.4	BH106 5.5-5.9	BH106 6.2-6.6	BH107 0.5-0.9	BH107 1.0-1.4	BH107_1.5-1.8	MW05 1.0-1.4	MW05 2.5-2.9
	Batch No	ES35296	ES35293	ES35293	ES35296	ES35360	ES35360	ES35360	ES35360	ES35360	ES35360	ES35360	ES35360 .	ES36360	ES35360	ES35561	ES35561	ES35561	ES35561	ES35561	ES35561	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306 -	ES39306	ES39306	ES39306	ES39306												
	Laboratory	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	- ALS -	ALS .	ALS	STA	ALS	ALS	ALS															

Page 2 of 4

. s:projectst51072\001\Validation\Data Sets\TPH Results Tables_v2.xis\Delineation Validation

.

.

1

]

.]

.
 .

Prepared by: LMW (URS) Checked by: FMM*:* IRS)

Total Xylerie	g	29								חצו	מא	2	QN	QN	QN	QN	DN .	QN	ND	QN	QN	2				QN	QN	GN	QN	Q	Q	9			g	ND	Q	Q			NN.			2	QN	QN	AD.
Elhylbenzene	<0,2		202	20.2	202	7.02	20.2	20.2		202	- 0.2 - 0.2	<0.2 <	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	202	7.05	202	<0.2 0.2	<0.2	: <0.2	<0.2	<0.2	<0.2	<u>60.2</u>	2.02	40	<0.2	<0.2	<0.2	<0.2	0.2	2.02	2.02	202	202	0.2	<0.2	<0.2	0,0
Chlorobenzene	<0.2	202	2.02	- Z.U.Z.	7.02	20.2	7.02	202	710	7.05	<0.2 <0.3	40.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	~0'N		Z.U>	2.02	0.2	<0.2	<0.2	<0.2	<0.2	≤0.2	<0.2 5.5	707	2012	- Z0>	<0.2	. <0.2	<0.2	<0.2	<0.2	2.02	20.2	202	<0.2	<0.2	<0.2	
- <u>-</u>	<0.2			2.02	202	2.0	2.12	2.02			20.2	-0	<0.2	<0,2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	40.2	<0.2	2.02	7.02	20.2	<0.2 60.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2.02	717 7	<0.2	<0.2	<0.2	<0.2	<0.2	-0,2	<0,2	202		<0.2	<0.2	<0.2	
.00					1	, İ.			7.02	Z NZ	202	202	<0.2	<0.2	<0.2	40.2	<0.2	<0.2	<0.2	<0.2	402	<0.2	202		2.05	10 10 10	<0.2	<0.2 ·	<0.2	<0.2	<0.2	<0.2.	7.02	9.0 V V	- 105	40.2 2	<0.2	<0.2	40.2	-0.2 	20.Z			202	<0.2	<0.2	
TPH Total C10-C36	Q	12//	101	710	283	2/2 :		119 :	- 252	3/1	- COD	Q2	438	147	- DN	QN	QN	838	639	450	109	9		N. N.	DAC UN	Q	444	479	1432	117	Q	QN	485 CIV		2	159	169	127	Q	133	1066	183		138	Q	Q	Ī
TPH C29-C36	4100	100						100			~100 ~100	×100	<100	<100	<100	<100	<100	299	<100	-100 -100	001×	√100	4100		194	00[>	<100	<100 .	<100.	<100	001∨	<100	00 V 00		10012	<100	<100	2100 V	<100	100	279	<100		2100 1001>	<100	<100	
CI5-C28	₹100	952				ł							[1						- 1	- 1		Í	404								1								1	- 1		13.R	1	<100	
Clo-C14	√50	325	707	971 100	55	0.00 92 92	90L	150	e f		113	\$50	72	<50	<50	₹ 0	<50	78,	113	60	<50	₽	- ₽		202	203 2	74	86	441	<50 .	<50	\$ <u>5</u> 0	97	1221	\$19	<50	<50	<50	€0	<50	<50	220		7.5	€0	<50	-
Hat Boog							1		1				,	-											210	Τ	1						Q (T	7 V	—		
QC Sample ID	••	Tothic	envinn	-		-									-	-			DUP06		-	DUP07								DUPag .				DUPIO		DUP11.				DUP12						DUP13	
<u>e</u>	15-04-03	15-04-03	10-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	- 16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	16-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	22-04-03	22-04-03	22-04-03	22-04-03	22-04-03	22-04-03	22-04-03	22-04-03	22-D4-D3	22-04-03	22-04-03	
le D	1.7-2	MW05A 2.3-2.7		BH108 1.0-1.4	BH108 1.6-1.8	BH109 0.5-0.9	BH109 1.0-1.4	BH109_1.5-1.9	BH109 2.0-2.3	BH110_0.5-0.9	BH110 1.0-1.4	BH110 1 9-1-8		BH111 1.5-1.9	BH111_2.0-2.4.	BH111 2.5-2.9	BH111_3.0-3.4	BH201_0.5-0.9	BH201_1.0-1.4				BH201 3.0-3.4	BHZ01 3.5-3.9	BHZ02 2.0-2.4	BH202 4.0-4.4	BH203 0.5-0.9	BH203 1.0-1.4	BH203_2.5-2.9	BH203_3.0-3.4	BH203 3.5-3.9	BH204 0.5-0.9	BH204 1.0-1.4	BHZU4 2.0-2.4	BH204 3.0-3.4	BH112 1.0-1.4	BH112 1.5-1.9	BH112_2.0-2.2	BH113_0.7-1.1	BH113 1.2-1.6	BH205_1.9-2.3	BH205_2,5-2,9	BHZU5 3.0-3.4	BH206 1 0.1 4	BH206 1.5-1.9		
Batch No.	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	ES39306	E539306	ES39306	ES333U5	ES34306	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES39307	ES3935Z CC3035Z	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	E039352 E030352	FS39352	ES39352	ES39352	ES39352	ES38352	E\$39352	ES39352	ES39352	EV39352	EC30355	ES39352	ES39352	
Labolatory	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	- ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS ·	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	ALS	ALO	ALS	ALS	

Table 3

.

Page 3 of 4

s:projects\51072\001\Validation\Data Sets\TPH Results Tables_v2.xts\Delineation Validation .

.

Prepared by: LMW (URS) Checked by: FMM (URS)

-

TPH/BTEX Analytical Results **Delineation Samples** Table 3

Total Xy 'n Chlorobe 1. 이 너희 이 1 NIA NIA NIA NIA NIA NIA NIA NIA NIA ž N NA **N**N ₹ MAN 관관 TPH stal C10-C36 2 g C29-C36 ¹⁰0 TPH ×100 C15-C28 100 V <100 400 400 400 138 3820 449 341 116 116 00 82 님 C10-C14 HdT \$ \$ \$ \$ \$ \$ \$ \$ \$ <u>8</u> TPH. C6-C9 ų 23-04-03 23-04-03 23-04-03 23-04-03 23-04-03 23-04-03 23-04-03 24-04-03 24-04-03 24-04-03 24-04-03 ä -04-03 BH114 2.0-2.4 BH207 1.5-1.9 BH207 2.2-2.6 BH207 2.8-3.2 BH208 0.5-0.9 () 1 1 0 1.5-1.9 2.0-2.4 5-2.9 1-0-1-4 3.0-3.2 <u>-</u> BH208 BH208 BH208 BH209 BH209 BH114 ES39375 ES39375 ES39386 ES39386 S39375 ES39375 3939386 ES39375 ES393 ALS

Notes: LOR ND

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed

Page 4 of 4

s:projects\51072\001\Validation\Data Sets\TPH Results Tables_v2_xis\Delineation Validation

Prepared by: LMW (URS) Checked by: FMM 0. [RS]

Lead Analytical Delineation Results -NEPM 'D' Guidefine Area Table 4

0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TP14 0.3-0.5 TP14 0.3-0.5 TP26 1.3-1.5 TP26 1.3-1.5 TP20 0.3-0.5 TP207 1.3-1.5 TP207 0.5-0.6 TP208 0.5-0.6 TP208 0.5-0.6 TP208 0.5-0.6 TP208 0.5-0.6 TP208 0.5-0.6 TP209 0.5-0.6 TP201 0.5-0.6 TP201 0.5-0.6 TP301 0.5-0.6
0.3-0.5 1.3-1.5 0.3-0.5 1.3-1.5 1.3-1.5 0.5-0.6 0.5-0.6	TP14 TP26 TP26 TP26 TP26 TP26 TP26 TP207 TP207 TP207 TP207 TP207 TP207 TP207 TP207 TP207 TP208 TP208 TP209 TP208 TP209 TP208 TP209
4 1.3-1.5 6 0.3-0.5 6 1.3-1.5 5 1.3-1.5 7 0.5-0.6 7 1.0-1.1	TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2
6 0.3-0.5 6 1.3-1.5 5 1.3-1.5 7 0.5-0.6 77 0.5-0.6 77 2.0-2 1	TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2
6 1.3-1.5 5 1.3-1.5 77 0.5-0.6 77 1.0-1.1	TP2 TP2 TP2 TP2 TP2 TP2 TP2 TP2
5 1.3-1.5 77 0.5-0.6 77 1.0-1.1 77 2.0.2 1	1P20 1P20 1P20 1P20 1P20 1P20 1P20 1P20
77 0.5-0.6 77 1.0-1.1 77 2 0.2 1	1P20 1P20 1P20 1P20 1P20 1P20 1P20 1P20
7 2 0.2 1	1P20 1P20 1P20 1P20 1P20 1P20 1P20 1P20
	1P20 1P20 1P20 1P20 1P20 1P20 1P20 1P30
0 0 2 0 0	1P20 1P20 1P20 1P20 1P20 1P30
8 1.0-1.1	TP20 TP20 TP20 TP20 TP30
8 2.0-2.1	TP20 TP20 TP30 TP30
9.0-5-0.6	TP20 TP20 TP30 TP30
9 1.0-1.1	TP20 TP30 TP30
9_2.0-2.1	1P30
1 0.5-0.6	TP30
1 1.0-1.1	
TP301_1.5-1.6.	TP30
12 0.5-0.6	TP302
TP302_1.0-1.1	TP30
TP302 1.5-1,6	TP30
TP303 0.5-0.6	TP30
TP303_1.0-1.1	TP30
TP303_1.5-1.6	TP30
TP311_0.5-0.6	TP31
1_1.0-1.1	TP311
TP312_0.5-0.6	TP31
12_1.0-1.1	TP312
TP313_0.5-0.6	TP3
TP313_1:0-1.1	TP3

Notes: LOR

Analytical Laboratory Limit of Reporting Historical LOR

Relocated - Material relocated to beneath building footprints or hard paved areas Insitu - Material remains insitu at respective location marked on plans at current time Stockpile - Samples collected from stockpiled material, replaced on-site

2 6

sprojects151072001/Validation/Data Sets/Lead Tables_v2.xlsINEPM D DELINEATION only

Page 1 of 1

6

Table 5 Lead Analytical Delineation Results -NEPM 'E' Guideline Area

Location		Relocated ¹	Insitu ²	Relocated ¹	Relocated ¹	Relocated ¹	Insitu ²	Insitu ²	Relocated ¹	Insitu ²	Insitu ²	Relocated ¹																	
Lead (mg/kg)	1/5*	83	15	\$2	₽	14	11	120	5	<5	77	41	4	14	£⊳	<5	9	<5	84	140	232	4	33	159	196	26	30	5	39
QC Sample ID / Laboratory Batch No.	LOR						-	Enviromet 9606041									AGAL N95/031688										DUP04		
Sample Date		1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	1995	30-06-98	30-06-98	8-07-98	15-07-98	15-07-98	15-07-98	15-07-98	15-07-98	23-07-02	23-07-02	23-07-02
satch No. Sample ID Date		NE-M1	PS-12	PS-13.	PS-14	PS-15	V3-1	V3-2	Z2-M1	Z2-M11	Z2-M2	Z2-M6	Z2-M7.	Z2-M9.	Z7-1	Z7-5	. Z7-6	Z7-7	T3006-S1	T3006-S3	RBD007	VD Ramp	VD1	VD3	VD4	VD6	TP15_0.3-0.5	TP15_1.3-1.5	TP18_0.3-0.5
Batch No.		9506018	9506025	9506025	9506025	9506025	N95/035203	N95/035204	9505153	9506025	9505153	9505196	9506018	9506018	9505153	9505153	9505153	9505153	ES11195	ES11195	ES11304	ES11357	ES11357	ES11357	ES11357	ES11357	ES34736	ES34736	ES34735
Laboratory E		Enviromet	Enviromet	Enviromet	Enviromet	Enviromet	AGAL	AGAL	Enviromet	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	ALS	ALS	ALS									

Prepared by: LMW (URS) Checked by: FMM (URS)

1

S:\Prc' 151072\001\Validation\Data SetsLead Tables_v2.xls NEPM 7 DELINEATION only

1 × 1 ∩f']

Page 2 of 3

S:\Projects\51072\001\\Validation\Data SetsLead Tables_v2.xls NEPM E DELINEATION only

Location		Relocated ¹	Relocated ¹	Relocated ¹	Relocated ¹	Insitu ²	Insitu ²	Relocated ¹	Relocated ¹	Relocated ¹	Insitu ²	Stockpile ³	Stockpilė ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Insitu ²	Insitú ²	Insitu ²	Insitu ²	Insitu ²	Insitu ²	Insitu ²	Insitu ²	Insitu ²	Insitu ²
Lead (mg/kg)	115*	2	50	2	-	17	Ā	ę	۲.	44	88	278	54	45	749	204	37	141	120	218	202	155	۲ حا	536	6	-	417 ·	192	3	542
QC Sample ID / Laboratory Batch No.	LOR			DUP02 / DUP03			DUP06	DUP12	DUP13/DUP14			-	-			DUP15/DUP16				DUP17				QC05 / QC06						-
Sample Date		23-07-02	23-07-02	23-07-02	23-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	23-07-03	23-07-03	23-07-03	23-07-03	23-07-03	23-07-03	31-07-03	31-07-03	31-07-03	31-07-03
atch No Sample ID Date		TP20_0.3-0.5	TP22_0.3-0.5	TP22_1.3-1.5	TP23_1.3-1.5	TP04_0.3-0.5	TP04_1.3-1.5	TP08_0.3-0.5	TP08_1.3-1.5	TP12_0.3-0.5	TP16_0.2-0.4	SP:1	SP10	SP11-9	SP2	SP3	SP4	, SP5.	SP6	SP7	TP210_0.5-0.6	TP210_1.0-1.1	TP2:10_2.1-2.2	TP211_0.5-0.6	TP211_1.0-1.1	TP211_2.0-2.1	TP304_0.5-0.6	TP304_1.0-1.1	TP304_1.5-1.6	TP306_0.5-0.6
Batch No		ES34736	ES34736	ES34736	ES34736	ES34741	ES34741	ES34761	ES34761	ES34741	ES34741	ES34762	ES41189	ES41189	ES41189	ES41189	ES41189	ES41189	ES41346	ES41346	ES41346	ES41346								
		ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS .	. ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS

. . .

Table 5 Lead Analytical Delineation Results -NEPM 'E' Guideline Area

Prepared by: LMW (URS) Checked by: FMM (URS)

5
Lead Analytical Delineation Results -NEPM 'E' Guideline Area Table 5

Location		Insitu ²	Insitu ²	Insitu ²	Ilnsitu ²	Insitu ²
Lead (mg/kg)	1/5*	122	ę	46	250	5
QC Sample ID / Laboratory Batch No.	LOR					QC31 / QC32
Sample Date		31-07-03	31-07-03	31-07-03	31-07-03	31-07-03
Sample ID		TP306_1.0-1.1	TP306_1.5-1.6	TP307_0.5-0.6	TP307_1.0-1.1	TP307_1.5-1.6 31-07-03
Batch No		ES41346	ES41346	ES41346	ES41346	ES41346
Laboratory		ALS	STR	ALS	ALS	ALS'

Notes LOR

- Analytical Laboratory Limit of Reporting
- Relocated Samples collected prior to Bulk Earthworks program and material likely to have
 - been relocated. Assumed to have been relocated to open space area
- Insitu Material remains insitu at respective location marked on plans at current time 2 3
 - Stockpile Samples collected from stockpiled material, replaced on-site

S:\Project ' 1072\001\Validation\Data SetsLead Tables_v2.xls NEPM E Prt.INEATION only

Prepared by: LMW (URS) Checked by: FMM (URS)

PAH Analytical Defineation Results NEPM 'D' Guideline Area Table 6

		_				
		Insitu ²	Insitu ²	Insitu ²	Insitu ²	Insitu ² ,
		QN	QN	QN	0.6	ND
Benzo(a)	1	<0.5	<0.5	<0.5	<0.5	<0.5
			DUP01			DUP10/DUP11
Sample		23-07-02	23-07-02	23-07-02	23-07-02	24-07-02
		TP14_0.3-0.5	TP14_1.3-1.5	TP26_0.3-0.5	TP26_1.3-1.5	TP05_1.3-1.5
	- ON IISNEE	ES34735	ES34682	ES34735	ES34682	ES34741
		ALS	ALS	ALS	ALS	ALS

Notes

Relocated - Material relocated to beneath building footprints or hard paved areas

Insitu - Material remains insitu at respective location marked on plans at current time с сл ю́

Stockpile - Samples collected from stockpiled material, replaced on-site

S:\Projects\51072\001\Validation\Data Sets\PAH Tables_v2.xls \ NEPMiD DELINEATION only

Page 1 of 1

5

Table 7 PAH Analytical Delineation Results NEPM 'E' Guideline Area ~

	Location	۶ ۱۰۰	Insitu ²	Insitu ²	Relocated ¹	Insitu ²	Insitu ²	Relocated ¹	Relocated ¹	Relocated ¹	Relocated ¹	Insitu ²	Insitu ²	Relocated ¹	Relocated ¹	Relocated ¹	Insitu ²	Stockpile ³	Stockpile ^{, 3}	Stockpile ³	Stockpile ³	Stockpile ³							
	Total PAHs		QN	6.3	ΠN	7.5	6.3	ND	QN	8.85	21.2	ΩN	QN	- ON	ΠD	ŅD	DN	ND	· DN	DN	4.9	DN	ND	38.7	21.3	ND	ND	ND	23.9
Benzo(a)p	0	0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	1.3	<0.5 <	<0.5 <	<0-5 <	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	3.7	2	<0.5	<0.5	<0.5	1.8
	QC Sample ID	LOR							•			•	-							DUP06	•	•	*						DUP15/DUP16
Sample	Date		1995	1995	30-06-98	30-06-98	8-07-98	15-07-98	15-07-98	15-07-98	15-07-98	15-07-98	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	24-07-02·	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02 .	25-07-02	25-07-02	25-07-02	25-07-02	25-07-02
	Batch No Sample ID		V3-1	V3-2	T3006-S1	T3006-S3	RBD007	VD Ramp	VD1	VD3	VD4	VD6	TP15_0.3-0.5	TP15_1.3-1.5	TP18_0.3-0.5	TP20_0.3-0.5	TP21_0.3-0.5	TP23_1.3-1.5	TP04_0.3-0.5	TP04_1.3-1.5	TP07_0.3-0.5	TP08_0.3-0.5	TP12_0.3-0.5	TP16_0.2-0.4	SP1	SP10	SP11-9	SP2	SP3
	Batch No		N95/035203	N95/035204	ES11195	ES11195	ES11304	ES11357	ES11357	ES11357	ES11357	. ES11357	ES34736	ES34736	ES34735	ES34736	ES34736	ES34736	ES34741	·ES34741	ES34741	ES34761	ES34741	ES34741	ES34762	ES34762	ES34762	ES34762	ES34762
	Laboratory		AGAL -	. AGAL	ALS	ALS	ALS	ALS	ALS	ALS	. ALS	ÀLS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS'	ALS	ALS .	ALS	ALS	ALS	ALS

S:\Projects\51072\001\Validation\Data Sets\PAH Tables_v2.xts \ NEPMⁱE DELINEATION only

Prepared by: LMW (URS) Checked by: FMM (URS)

,

PAH Analytical Delineation Results Table 7

NEPM 'E' Guideline Area

Location		Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Relocated ¹	
Tótal PAHs		ΟN	4.4	19.6	ND	- ON	
Benzo(a)p yrenë	0.0	<0.5	0.6	1.1	<0.5	<0.5	
QC Sample ID	LOR				DUP17		•
Sample Date		25-07-02	25-07-02	25-07-02	25-07-02	25-07-02	
Sample ID	· •	SP4	SP5	. SP6 .	SP7	TP10_0.3-0.5	
Batch No		ES34762	ES34762	ES34762	ES34762	ES34761	×
Laboratory		ALS	ALS	ALS	ALS	ALS	-

Notes

Relocated - Samples collected prior to Bulk Earthworks program and material likely to have been relocated. Assumed to have been relocated to open space area

 $\sim \infty$

Insitu - Material remains insitu at respective location marked on plans at current time Stockpile - Samples collected from stockpiled material, replaced on-site

S:/Projects\51072\001\Validation\Data Sets\PAH Tables_v2.xls \ NEPM E DELINEATION only

 (\mathbf{O})

Table 8 TPH Analytical Results Excavation Validation Samples

Prepared by: LMW (URS) Checked by: FMM "...3S)

1

Page 1 of 3

S.51072/001/Validation/Data Sets/TPH Results Tables_v2.xis/Excavation Validation

•

ł

.

Table 8 TPH Analytical Results Excavation Validation Samples

• •

																											•									_								
Total C10-C36	GN.	299	QN	820	QN	QN	240	. DN	UN .	QN	GN	QN	QN	DN	DN	204	QN	QN	DN	<u>'</u> ŪN	DN	QN	DN	QN	466	QN	QN	155	QN	471	ND	ND	ND	135	QN	312	QN	256						
C29 - C36	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	. <100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	133	<100	<100	<100	<100	<100	<100	<100	≪100
C15 - C28	<100	239 .	<100	606	<100	<100	240	<100	<100	<100	<100	<100	<100	400	<100	<100	<100	<100	<100	<100	<100	204	<100	<100	<100	<100	<100	<100	<100.	<100	389	<100	<100	155	<100	338 .	<100	<100	<100	135	<100	249	<100	256
C10 - C14	<50	60	<50	214	<50	· <50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	77	<50	~50	<50	<50	<50	<50	<50	<50 ·	<50	<50	63	<50	<50
C6 - C9	6 7	\$	<2	<2	5	<2	2	5	Q	<2	<2	\$	4	<2	<2	<2	42	<2	<2	Ŷ	V	₽	₹2.	<2	√2	\$	8	~~	Q	<2	2	2	۲۲ V	<2	5	Ŷ	₽.	4	<2	<2	<2	^2	₽.	<2
QC Sample ID	QC13	QC14					QC15 / QC16																							QC21	-	•		-				QC24 / QC25	QC26					
Sample Date	14-07-03	15-07-03	15-07-03	15-07-03	17-07-03	17-07-03	17-07-03	17-07-03	17-07-03	18-07-03	18-07-03	18-07-03	18-07-03	19-07-03	19-07-03	21-07-03	21-07-03	21-07-03	22-07-03	22-07-03	. 22-07-03	22-07-03 -	22-07-03	22-07-03	22-07-03	22-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	25-07-03	25-07-03	25-07-03	28-07-03	28-07-03	28-07-03	28-07-03:	28-07-03	28-07-03
Sample ID	EXW-26	EXB-25	EXB-26	EXW-27	EXB-27	EXB-28	EXB-29	EXB-30	EXB-31	EXB-32	EXB-33	EXB-34	EXB-35	EXB-36	EXB-37	EXB-38	EXB-39	EXB-40	EXB-41	EXB-42	EXB-43	EXW-29	. EXW-30	EXW-31	EXB-44	EXW-32	EXB-45	EXB-46	EXB-47	EXB-48	EXW-33	- EXW-34	EXB-49	EXB-50	EXB-51	EXB-52	EXB-53	EXB-54	EXB-55	EXB-56	EXB-57	EXB-58	EXW-36	EXW-38 -
Laboratory BatchiNo SampleType Sam	Wall Sample	Base Sample	Base Sample	Wall Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	 Wall Sample 	Wall Sample	Wall Sample	Base Sample	Wall Sample	Base Sample	Base Sample	Base Sample	Base Sample	Wall Sample	Wall Sample	Base Sample	Base Samplé	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Wall Sample	Wall Sample
Batch No	ES41028	ES41049	ES41049	ES41049	ES41075	ES41075	ES41075	ES41075	ES41100	ES41100	ES41100	ES41100	ES41100	ES41124	ES41124	ES41124	ES41152	ES41152	ES41152	ES41152	ES41152	ES41152	ES41152	ES41152	ES41192	ES41192	ES41215	ES41215	ES41215	ES41215	ES41215	ES41215	ES41244	ES41244	ES41244	ES41244	ES41244	ES41244	ES41274	ES41300	ES41300	ES41300	ES41300	ES41300
Laboratory	ALS	ALS	ALS.	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS																					

Prepared by: LMW (URS) Checked by: FMM (URS)

.

Page 2 of 3

S.51072/001/Validation/Data Sets/TPH Results Tablas_v2.xls/Excavation Validation

Table 8 TPH Analytical Results Excavation Validation Samples

Total C10-C36	154	514	QN	QN	1074	QN	765	QN	DD .	QN	ND	ND	DN	ΝĎ	DN	681	ΠN	619	292	152	QN	QN	QN	431	206	252	QN	QN	ND	QN	QN
C29 - C36	<100	<100	<100	<100	109	<100	<100	<100	<100	<100	. <100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	142	<100	- <100	<100	<100	<100 ·	<100	<100
C15 - C28	154	406	<100	<100	· 744	<100	596	<100.	. <100	<100	<100	<100	<100	<100	<100	512	<100	475	292	152	<100	<100	<100	289 ·	206	252	<100	<100	<100	<100	<100
C10-C14	<50	108	<50	<50	221	<50	169	<50	<50	<50	<50	<50	<50	<50	€0	169	<50	144	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
69 - 69	V	3	₽	22	2	8	2	Š,	8	8	Ø	42	0	8	\$	₽	V	0	2	₽,	7	⊽	8	<2	₽	₽	8	₽	2	\$	2
ac sample ID									- QC29 / QC30																	QC41					QC42
cample hate	28-07-03	28-07-03	28-07-03	29-07-03	29-07-03	29-07-03	29-07-03	29-07-03	29-07-03	29-07-03.	29-07-03	29-07-03	- 29-07-03	4-08-03	4-08-03	4-08-03	4-08-03	4-08-03	4-08-03	4-08-03	4-08-03.	4-08-03	4-08-03	12-08-03	12-08-03	12-08-03	12-08-03	12-08-03	12-08-03	12-08-03.	12-08-03
	EXW-39	EXW-40	EXW-42	EXB-59	EXB-60	EXB-61	EXB-62	SCB-01	SCB-02	SCW-01	SCW-02	SCW-03	SCW-04	EXB-63	EXB-64	EXW-43	EXW-44	EXW-45	EXW-46	EXW-48	SCB-03	SCW-05	SCW-06	SS : 01	SS:02	SS-03	SS-04	SS-05	SS:06	SS-07	SS-08
Cample lyde	Wall Sample	Wall Sample	Wall Sample	Base Sample	Base Samplé	Base Sample	Base Sample	Spot Check	Spot Check	Spot Check	Spot Check	Spot Check	Spot Check	Base-Sample	Base Sample	Wall Sample	Wall Sample	Wali Sample	Wali Sample	Wall Sample	Spot Check	Spot Check	Spot Check	ScrapedSurface	ScrapedSurface	ScrapedSurface	ScrapedSurface	ScrapedSurface	 ScrapedSurface 	ScrapedSurface	ScrapedSurface
aboratory batchino sample ly	ES41300	ES41300	ES41300	ES41301	ES41301	ES41301	ES41325	ES41325	ES41325	ES41325	ES41325	ES41325	ES41325	ES41436-	ES41436	ES41436	ES41436	ES41436	ES41436.	ES41436	ES41436	ES41436	ES41436	ES51573	ES51573	ES51573	ES51573	ES51573	ES51573	ES51573	ES61573
Laboratory	STR.	ALS ALS	ALS	ALS	ALS -	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS							

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed

Notes: LOR NID NIA

Page 3 of 3

S:51072/001/Validation/Data Sets/TPH Results Tables_v2.xis/Excavation Validation

Prepared by: LMW (URS) Checked by: FMM ".'RS)

1

1.1

]

Table 9 TPH Analytical Results Backfill Validation Samples

Total C10-C3 319 380 356 184 271 271 386 ND 236 ND 26492262 133 906 ND 420 115 748 321 ND 247 Ð g 166 532 2 9**29 - 9**29 <100 <100 √100 100 2010 100 001 1000 1000 <100 <100 <100 <100 <100 <131 <100 100 100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 100 C15 - C28 <100 319 255 255 <100 <100 573 <100 213 <100 <100 236 235 395 7100 <100 207 133 133 133 100 133 100 <100 <100 271 362 166 <100 294 277. 100 184 574 137 321 404 C10 - C14
 60
 61
 62
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65
 65< 50 30 386586 2012812020 CG - C9 \Im 999999 00000 $\overset{\sim}{\lor}$ Ŕ \Im 2020 2 LOR QC Sample ID QC17 / QC18 ~dc27 / ac28 QC22 / QC23 QC09 QC03 Sample Date 7-07-03 7-07-03 7-07-03 7-07-03 7-07-03 9-07-03 15-07-03 18-07-03 18-07-03 22-07-03 22-07-03 24-07-03 24-07-03 24-07-03 24-07-03 24-07-03 29-07-03 29-07-03 29-07-03 30-07-03 14-07-03 14-07-03 17-07-03 21-07-03 24-07-03 25-07-03 28-07-03 28-07-03 29-07-03 29-07-03 12-07-03 29-07-03 30-07-03 9-07-03 9-07-03 30-07-03 8-07-03 Sample ID CSP-12 CSP-13 CSP-01 CSP-02 CSP-03 CSP-26 CSP-14 CSP-16 CSP-33 CSP-04 CSP-05 CSP-06 CSP-09 CSP-10 CSP-15 CSP-18 CSP-19 SSP-13 CSP-17 CSP-20 CSP-21 CSP-22 CSP-23 CSP-24 CSP-25 CSP-28 CSP-29 SSP-15 SSP-16 CSP-32 SSP-17 CSP-27 CSP-30 CSP-31 SSP-11 **SSP-12** SSP-14 Sample Type Suspect Stockpile Suspect Stockpile Suspect Stockpile Suspect Stockpile Suspect Stockpile Suspect Stockpile Suspect Stockpile Clean Stockpile Clean Stockpile Clean Stockpile **Clean Stockpile** Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile **Clean Stockpile** Clean Stockpile Clean Stockpile Clean Stockpile **Clean Stockpile Clean Stockpile** Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Clean Stockpile Batch No ES41075 ES41100 ES41152 ES41152 ES40905 ES41215 ES41215 ES41215 ES41215 ES40905 ES40905 ES40905 ES40905 ES40905 ES40959 ES40959 ES41009 ES41028 ES41049 ES41152 ES41244 ES41244 ES41244 ES41325 ES40959 ES41100 ES41274 ES41300 ES41325 ES41007 ES41325 ES41301 ES41301 ES41301 ES41301 ES4130⁻ ES41301 DEIOW ALS

Prepared by: LMW (URS) Checked by: FMM (URS)

Page 1 of 2

Backfill Validation Samples TPH Analytical Results Table 9

		<u>.</u>		,	1
Total C10-C36	. 309 .	185	DN	134	
C29 - C36	∽100	100	. <100	. <100	
C15 - C28	309	185	<100 ·	134	
C10 - C14	<50	<50	<50	<50	
60 - 90	8	.7	7	<2	
QC Sample ID	, ² 00	. QC40			
Sample Date	30-07-03	5-08-03	5-08-03	5-08-03	
Sample ID	SSP-18	CSP-34	SSP-19	SSP-20	
Sample Type	Suspect Stockpile	Clean Stockpile	Suspect Stockpile	Suspect Stockpile	
Batch No	ES41325	ES41462	ES41462	ES41462	-
Laboratory	ALS	ALS	ALS	ALS	

Notes: LOR ND N/A

Analytical Laboratory Limit of Reporting Not detected above LOR. Not anatysed

h.

Page 2 of 2

......

1

Prepared by: LMW (URS) Checked by: FMM ⁴¹ IRS)

1 1 1

S:51072/001/Validation/Data Sets/TPH Results Tables_v2.xis/Backfill

5. G. 15																				1	T		- 1	1	-	-	1							-1		-1	-			~ T	~~ _T	7
TPH Total C10-C36	CIN	QN	QN	· QN	QN	833	. 077	Q	QN	QN	QN	QN	Q	QN	QN	QN	QN	400	QN	QN	Q	102	Q	QN	QN	134	QN	DN	465	130	ON	642	134	606	QN	DN	QN	GN	DN	GN	QN	GN
TPH C29-C36			۱	1	<100	134	<100	<100	<100	<100	<100	<100	<100	√100	100	<100	<100	168	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	· <100	<100	<100	<100	<100	<100	<100	<100	<100	<100
TPH C15-C28		1	1	I	<100	. 583	611	<100	<100 ·	<100	<100	<100	<100	<100	<100	<100	<100	232	<100	<100	<100	102	<100	<100	<100	134	<100	<100	328	130	<100	502	134	512 、	<100	<100	<100	<100	<100	<100	<100	<100
TPH C10-C14		1	1	1	: <50	116	159	<50	<50	· <50		<50	. <50	<50	<50	. <50	<50	. <50	. <50	: <50	<50	<50	. <50	<50	<50	. <50	<50	<50	137	<50	: <50	140	. <50	94	<50	<50	<50	<50	<50	· <50	<50	<50
ТРН С6-С9	í		I	ł	Ø	8	Ø	Q	8	\$	Q	₽	₹7	2	\$	Q	4	Q	Ŷ	₽	₽	2	2	\$	Q	0	<20	<20	<20	<20	<20	<20	8	Q	₹	\$	\$	8	Q	Q	₽	2
QC Sample ID / Laboratory Batch No.		AGAL N95/032612				DUP01					-	DUP05	DUP07 / DUP08		DUP13 / DUP14							DUP15/DUP16				DUP17										-			DUP110 / DUP111			-
Samole Date		1995	1995	· 1995	23-07-02	23-07-02	23-07-02	1 23-07-02	23-07-02	: 23-07-02	23-07-02	24-07-02	24-07-02	24-07-02	24-07-02	: 24-07-02	24-07-02	25-07-02	- 25-07-02	25-07-02	'-25-07-02	25-07-02	25-07-02	25-07-02	. 25-07-02	. 25-07-02	, 28-08-02 .	, 28-08-02	: 28-08-02	. 28-08-02	28-08-02	28-08-02	28-08-02	. 28-08-02	10-09-02	10-09-02	: 10-09-02	10-09-02	: 10-09-02	12-04-03	12-04-03	, 12-04-03
Sample ID	Z8-5	Z8-6	Z8-7	Z8-8	TP14_0.3-0.5	TP14 1.3-1.5	TP14_2.4-2.6	TP15_0.3-0.5	TP21 0.3-0.5	TP23 1.3-1.5	TP24 0.3-0.5	TP01_1.3-1.5	TP03_0.3-0.5	TP06 1.3-1.5	TP08_1.3-1.5	TP09_1.3-1.5	TP15 1.3-1.5	SP1	SP10	SP11-9	SP2	SP3	SP4	SP5	SP6	SP7	BH03_1.0-1.2	BH03 3.0-3.2	BH12_2.2-2.3	BH13_0.8-1.3	BH21_1.7	BH22_2.5-2.7	· BH23_1.3-1.5	BH24 0.8-1.0	TP106 3.0-3.2	TP111 2.0-2'2	TP112 3.0-3.2	TP113 2.0-2.2	· TP113 3.0-3.2	BH100_4.5-4.9	BH100 5.5-5.9	BH101 2.8-3.2
Batoń Wo	9505815	9505802	9505815	9505815	ES34735	ES34682	ES34735	ES34736	ES34736	ES34736	ES34736	ES34741	ES34741	ES34741	ES34761	ES34741	ES34736	ES34762	ES34762	. ES34762	ES34762	ES34762	ES34762	ES34762	ES34762	ES34762	ES35296	ES35296	ES35296	ES35296	ES35296	. ES35296	ES35293	ES35293	ES35360	ES35561	ES35561	ES35561	ES35561	ES39306	· ES39306	ES39306
	Amdei	Amdel .	. Amdel	Amdel	ALS	ALS	ALS	ALS	ALS	ALS	. ALS	ALS	- ALS	ALS	ALS	ALS	ALS	ALS	ALS	. ALS	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	ALS								

Prepared by: LMW (URS) Checked by: FMM "URS)

Page 2 of 3

s:projects/51072/001/Validation/Data Sets/TPH Results Tables_v2.xts/Balance of Site Validation

Validation Samples - Balance of Site TPH Analytical Results Table 17

888888 222222222 TPH C29-C3 100 ŧ 1 Ц ł 1 ł I. ł I ł 1 ł 1 ł T ł ł ł 1 L ł Ł ł 11 T T I 1 ł T 1 T 1 Т I ł I ιİ 100 I I. 1 l ł L 1 1 ł ł I L 1 I 1 ł 1 Ł 1 ł 1 I. 1 1 ł ł F 1 [1 1 1 1 ł ł ł } ł ł ł ł ł 1 ł ł ł 50 ł I l 1 ł [1 1 ł ł ł l ۱ 1 T ł ł t ł ; ł ł TPH C6-C9 1 1 ł l I l 1 I ł ł l 1 ł ł I ł ł Ł 1 N 1 ł L I 1 1 ł ł I I 1 1 ł 1 T 1 ł LOR đ AGAL N95/032831 g 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 SZ-63 TW-S1 TW-S2 TW-S2 TW-S4 SZ-54 SZ-61 SZ-62 Z2-12 Z2-13 Z2-14 Z2-16 Z2-16 Z2-16 Z2-17 Z2-19 Z2-19 Z2-20 Z2-22 Z2-22 Z2-22 Z2-3 Z2-4 Z2-5 HA85 SZ-51 SZ-52 SZ-53 Z3-12 Z8-1: Z8-2 Z8-3 Z8-4 HA83 HA84 HA81 HA82 <u>72-7</u> 9503299 9503388 9502353 9502353 9505777 9505777 9505659 9505849 9505659 9505659 9505802 9505802 9503299 9502353 9502353 9502353 9502353 9502353 9505849 9505849 9505849 9505659 9505668 9505668 9505668 9505668 9505668 9505668 9505659 9505659 9505849 9505802 9505802 9503299 9505727 9505777 9505727 9503299 9505727 9505777 aborator Amdel Aîndel Amdel Amdel <u>Amdel</u> Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel Amdel

Page 1 of 3

s.projects\51072\001\Validation\Data Sets\TPH Results Tables_v2.xts\Balance of Site Validation

Prepared by: LMW (URS) Checked by: FMM (URS)

Validation Samples - TPH Area TPH Analytical Results Table 16

Fotal C10-C36 ND 256 154 514 ND 765 ND 765 ND 765 ND 74 619 22 22 029 - 030 100 v 100 v -100 1> <100 100 <100 ×100 ₹ 100 109 100 <100 <100 <100 √100 1 00 <100 <142 142 <100 00 10 00 <100 <100 <100 C15 - C28 256 154 154 256 406 <100 744 <100 $\begin{array}{c} 4100\\ -1202\\ -12$ <100 <100 <100 <100
289.
252
252</pre> ₹ 100 100 100 100 100 <100 100 C10 - C14
 50
 50
 50

 50
 50
 50
 50

 50
 50
 50
 50
 50

 50
 50
 50
 50
 50
 50

 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50
 50 <50</pre> ₹<u></u>
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48
 48< 60 - 90 J Ц ₩ ₩ ぴぴ 0000000 00000000 Ŷ ų 000 QC Sample ID QC29 / QC30 QC41 QC42 Sample Date 28-07-03 28-07-03 28-07-03 28-07-03 29-07-03 29-07-03 29-07-03 29-07-03 12-08-03 12-08-03 29-07-03 29-07-03 29-07-03 4-08-03 4-08-03 4-08-03 4-08-03 4-08-03 4-08-03 4-08-03 4-08-03 12-08-03 12-08-03 12-08-03 28-07-03 29-07-03 29-07-03 4-08-03 29-07-03 4-08-03 12-08-03 2-08-03 12-08-03 EXW-40 EXW-42 SCW-02 SCW-03 SCW-04 EXB-63 EXW-38 EXB-64 EXW-43 EXW-44 EXW-39 EXW-45 EXB-59 EXB-62 SCB-01 EXW-36 EXB-60 EXB-61 SCW-01 EXW-46 EXW-48 SCB-03 SCW-05 SCW-06 SCB-02 SS-02 SS-03 \$S-05 SS-04 SS-06 SS-07 SS-08 SS-01 ScrapedSurface ScrapedSurface-ScrapedSurface ScrapedSurface Base Sample Base Sample Wall Sample Wall Sample ScrapedSurface ScrapedSurface ScrapedSurface ScrapedSurface sample Type Wall Sample Wall Sample Wall Sample Base Sample Base Sample Base Sample Spot Check Spot Check Wall Sample Wall Sample Wall Sample Wall Sample Base Sample Wall Sample Spot Check Spot Check Spot Check Spot Check Spot Check Spot Check Spot Check ES41300 ES41300 ES41436 ES41436 ES41436 ES41325 ES41325 ES51573 ES51573 Batch No ES41300. ES41325 ES41300 ES41300 ES41325 ES41325 ES41325 ES41325 ES41436 ES41436 ES41436 ES41436 ES41436 ES51573 ES41301 ES41301 ES41436 ES51573 ES41436 ES51573 ES41301 ES51573 ES51573 ES5157 ALS ALS ALS ALS ALS ALS

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed ND ND Notes:

Prepared by: LMW (URS) Checked by: FMM ⁴ (RS)

Page 4 of 4

			۰,	
Table 16	TPH Analytical Results	Validạtion Samples - TPH Area		

		7	[···]					÷		· _]		7		· · ·]		-															- T	Ţ		Т	÷Ţ		.		_1	ŀ	1
total C10-C36	299	DN	820	ND	DN	240	QN	Q	QN	ND	QN	Q	QN	QN	QN	QN	QN	QN	Q	QN .	Q	204	QN	Q	Q	QN	QN	QN	QN		155		400	DN I	471	QN	QN	QN	135	DN	312
C29 - C36	<100	<100	<100	<100	<100	-100	<100	<100	<100	<100	<100	<100.	<100	<100	<100	<100	.<100	<100	<100	-100 <	<100	<100	<100	<100	<100	<100	<100	<100	<100	400		<100 <100	<100 *	nnt>	133	<100	<100	<100	<100	<100	<100
C15-C28	239	<100	606 .	<100	<100	240	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100`	<100	<100	<100	<100	<100	204	<100	<100	<100	<100	<100	<100	<100	<100	155	200	389	<100	338	<100	<100	<100	135	<100	249
C10-C14	60	<50	214	. <50	<50	<50	. <50	<50	<50	<50	<50	. <50	· <50	<50	: <50	<50	<50	<50	<50	<50	<50	<50	<50	. <50	<50	<50	<50	<50	<50	<50	250		11	<\$0 10	<50	<50	<50	<50	<50	<50	: 63
C6 - C9	<2	<2	2	42	<2	₽	42	<2	<2	42	<2	<2	<2	<2	<2	⊲2.	5	Ŷ	<2	2	- <2	.<2	ц	<2	<2	, <2	<2	<2 .	ų	2.	₽	V	7	2	2	52	52	52	2>	2	∕2 [.]
QC Sample ID	QC14					QC15/QC16															,								QC21		-						QC24 / QC25	QC26			
Sample Date	15-07-03	15-07-03	15-07-03	17-03-03	17-07-03	17-07-03	17-07-03	17-07-03	18-07-03	18-07-03	18-07-03	18-07-03	19-07-03	19-07-03	21-07-03	21-07-03	21-07-03	22-07-03	22-07-03	22-07-03	22-07-03	22-07-03	22-07-03	22-07-03	22-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	24-07-03	Z4-07-03	24-07-03	24-07-03	25-07-03	25-07-03	25-07-03	28-07-03	28-07-03	28-07-03	28-07-03
Sample ID	EXB-25	EXB-26	- EXW-27	EXB-27	EXB-28	EXB-29	EXB-30	EXB-31	EXB-32	EXB-33	EXB-34	EXB-35	· EXB-36	EXB-37	EXB-38	EXB-39	EXB-40	EXB-41	EXB-42	EXB-43	EXB-44	EXW-29	EXW-30	EXW-31	EXW-32	EXB-45	EXB-46	EXB-47	EXB-48	EXB-49	EXB-50	EXB-51	EXW-33	EXW-34	EXB-52	EXB-53	EXB-54	EXB-55	EXB-56	EXB-57	EXB-58
taioratory Batch No Samole Type Sample ID	Base Sample	Base Sample	Wall Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Wall Sample	Wall Sample	Wall Sample	Wall Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Wall Sample	Wall Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample	Base Sample
Batch No	ES41049	FS41049	ES41049	ES41075	ES41075	ES41075	ES41075	ES41100	ES41100	ES41100	ES41100	ES41100	ES41124	ES41124	ES41124	ES41152	ES41152	ES41152	ES41152	ES41152	ES41192	ES41152	ES41152	ES41152	ES41192	ES41215	ES41215	ES41215	ES41215	ES41244	ES41244 ·	ES41244	ES41215	ES41215	ES41244	ES41244	ES41244	ES41274	ES41300	ES41300	ES41300
lahoratory	ALS	Al S	ALS	ALS -	ALS	ALS	ALS	ALS .	ALS .	ALS	ALS	ALS	ALS	ALS																											

Page 3 of 4

S:51072/001/Validation/Data Sets/TPH Results Tables_v2.xts/TPH Area Validation

. Prepared by: LMW (URS) Checked by: FMM (URS)

1

١

Table 16 TPH Analytical Results Validation Samples - TPH Area

Total C10-C36 ND 189 ND 189 ND 189 ND 180 ND P 230 P 230 P 230 P 240 22 99 g 2222 999999 99 C29 - C30 153 <100 100 100 100 100 <100 <100 <100</pre> 100 100 ≤100 <100</pre> 100 100 100 100 100 <100 <100 100 128 100 <100 100 100 100 100 100 100 <100 ≤100 <100 <100 ≤100 ×100 C15 - C28 <100 ₹ 8 100 <100 100 100 <100 <100 <100 <100 <100 <100 139 <100 <100 <100 C10 - C14 $\frac{1}{20}$ <50 ₹<u></u>20 8 영영영영영 <u>888</u> 診診診诊 <u> 00 - 90</u> 성성성운 88888 **₽**₽₽₽₽₽ 2 V \heartsuit ぴぴ 20 Ϋ́ 20000 Q <u>ଟ</u> ଟ <u>ଟ</u>ା ଟ QC Sample ID QC01 / QC02 QC07 / QC08 QC04 QC13 Sample Date 8-07-03 8-07-03 8-07-03 9-07-03 9-07-03 9-07-03 9-07-03 9-07-03 10-07-03 12-07-03 12-07-03 12-07-03 12-07-03 12-07-03 12-07-03 12-07-03 14-07-03 14-07-03 14-07-03 14-07-03 14-07-03 7-07-03 7-07-03 8-07-03 9-07-03 9-07-03 9-07-03 9-07-03 9-07-03 10-07-03 14-07-03 14-07-03 14-07-03 7-07-03 7-07-03 7-07-03 8-07-03 9-07-03 4-07-03 [4-07-03 14-07-03 EXW-02 EXW-03 EXW-06 EXW-14 ÉXW-15 EXW-08 EXB-05 EXW-10 EXW-07 EXW-12 EXW-09 EXB-16 **EXB-06** EXB-07 EXB-08 EXB-10 EXW-13 EXW-16 ÉXB-13 EXB-14 EXB-15 EXB-03 EXB-11 EXB-24 EXW-24 EXW-01 EXW-11 EXB-12 EXW-17 EXB-17 EXW-19 EXW-21 EXB-21 EXB-22 EXB-19 EXB-18 EXB-20 **EXB-23** EXW-22 EXW-23 EXW-25 EXW-26 Base Sample Base Sample. Wall Sample Wall Sample Base Sample Base Sample Base Sample Wall Sample Base Sample Wall Sample Wall Sample Wali Sample Wall Sample Base Sample Wall Sample Base Sample Base Sample Base Sample Wall Sample Wall Sample Base Sample Wall Sample Wall Sample Wall Sample Wall Sample Wali Sample Base Sample Wall Sample Base Sample Base Sample Base Sample Base Sample Base Sample Base Sample Base Sample Base Sample Wall Sample Wall Sample Wall Sample Wall Sample Wall Sample Wall Sample ES40959 ES40959 ES41009 No.014762 ES40959 ES40905 ÉS40905 No.014762 No.014762 Batch No ES40876 ES40876 ES40876 ES40905 ES40905 ES40905 ES40905 ES40905 ES40905 ES40959 ES40959 ES40959 ES40959 · ES41009 ES41009 ES41007 ES41028 ES41028 ES40959 ES40959 ES41009 ES41009 ES41009 ES41007 ES41007 ES41007 ES41028 ES41028 ES41007 ES41028 ES41028 ES41007 Labmark aborato ALS ALS ALS ALS ALS ALS abmark ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS

Prepared by: LMW (URS) Checked by: FMM ° '?(S)

Page 2 of 4

S:51072/001/Validation/Data Sets/TPH Results Tables_v2:xls/TPH Area Validation

Table 16 TPH Analytical Results Validation Samples - TPH Area

Total C10-C36	-	ΩN	ND	DN	360	ND	- ON	169	839	953	DN	DN	DN	445	816	707	ON .	DN	DN	ON .	DN	QN	DN	QN	DN	ND	QN	DN	QN	QN	QN	QN	DN	ND	226	QN .	ND	Q	QN	QN
C29 - C36	100 .	·	1	1	1	<100	<100	<100	162	<100	<100	<100	<100	<100	· <100.	<100	<100	<100	<100	<100	<100	<100	<100	. <100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	. <100
C15 - C28	100		1	1]	<100	<100	169	564	694	<100.	<100	<100	350 .	620	582	<100 -	<100 .	<100	<100	<100	<100	<100	<100.	<100 ·	<100	<100	<100	<100	<100	<100	<100	<100	<100	226	<100	<100 .	<100	<100	<100
C10-C14	50	-	-	1]	: <50	<50	. <50	113	: 259	<50	; <50	<50	. 95	196	125	i <50	<50	≤50 \	<50	<50	· <50	- <50	<50	. <50	<50	<50	<50	<50	. <50	<50	<50	<50 .	: <50	. <50	. <50	<50	<50	· <50	- <50
C6 - C9	2		1	ŀ	1	√2	<2	\$	<2.	<2	<20	<2	<20.	<20	<20	<20	2	<2	₹	<2	<2	₽	₹2	<2	5	2	V	22	.<2	<2	₹	<2	<2	8	<2	<2	~2	~2	5	V
Sample Date C. Sample ID	LOR		·				DUP02 / DUP03									DUP13				DUP101 / DUP102			DUP103	-	DUP106							DUP09		-						
Sample Date		1995	1995	1995	1995	23-07-02	23-07-02	23-07-02	23-07-02	23-07-02	27-08-02	27-08-02	27-08-02	28-08-02	28-08-02	28-08-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	10-09-02	16-04-03	16-04-03	16-04-03	17-04-03	17-04-03	17-04-03	17-04-03	17-04-03	22-04-03	22-04-03	22-04-03	23-04-03	7-07-03	7-07-03
Sample ID		Z2-23	22-25	Z2-26	Z3-10	TP22 0.3-0.5	TP22 1.3-1.5	TP26' 0.3-0.5	TP26 1.3-1.5	TP26_2.9-3.0	BH01 2.3-2.5	BH04 3.2-3.4	BH08 3.7-3.9	BH09 2.0-2.2	BH10 1.0-1.2	BH11 1.0-1.2	TP100 2.0-2.2	TP101 3.0-3.2	TP102 1.0-1.2	TP103 3.5-3.7	TP104 1.0-1.2	TP104 3.5-3.7	TP105 3.0-3.2	TP107 3.5-3.7	TP108 3.5-3.7	TP110 3.0-3:2	. BH111 3.0-3.4	BH201 3.0-3.4	BH201 3.5-3.9	BH202 3.5-3.9	BH202 4.0-4.4	BH203 3.0-3.4	BH203 3.5-3.9	BH204 3.0-3.4	BH205 3.0-3.4	BH205 3.5-3.9	BH206 3.0-3.4	BH208 3.0-3.3	EXB-01	EXB-02
Laboratory Batch No Sample Type Sample ID	- - -	Historic Validation	Historic Validation	Historic Validation	Historic Validation	Delineation Validation.	Delineation Validation	Defineation Validation	Delineation Válidation	Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Deliheation Validation	Delineation Validation	Delineation Validation	Delineation Validation .	Delineation Validation	Delineation Validation	Delineation Validation	. Delineation Validation	Delineation Validation	Delineation Validation	Delineation Validation	Base Sample	Rase Samile														
Batch No		9505777	9505777	9505777	9505802	ES34736	ES34736	ES34735	ES34682	ES34735	ES35296	ES35298	ES35296	ES35296	ES35296	ES35296	ES35360	. ES35360	ES35360	ES35561	ES39307	ES39307	ES39307	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	ES39352	· ES39375	ES40876	FS40905 -						
Laboratory		Amdel	Amdel	Amdel	Amdel	ALS	ALS	ALS	ALS	ALS	ALS.	ALS	ALS	ALS	ALS	ALS	ALS .	ALS	ALS	ALS	AI S																			

Prepared by: LMW (URS) Checked by: FMM (URS) ļ

i i

}

1

]

1

8 H.V.V

1

Page 1 of 4

Table 15 Asbestos Validation Results

	i sa si si si si si si si si si si si si si														1		
	Aspestos Result	QN	QN	QN	QN	QN	QN .	QN	QN	ND	QN	DN	QN	. GN	ND	ND	, DN
	Sample Description	Mixture of sandy soil, stones, fragments of plaster and bitumen and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster, corroded metal and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and bitumen and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and bitumen and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris,	Mixture of sandy soil, stones, plant matter, fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter, fragments of plaster and brick and debris	Mixture of sandy soil, stones and debris	Mixture of sandy soil, stones, fragments of plaster and debris	Mixture of sandy soil, stones, fragments of plaster and debris
	QC Sample ID	- - - - -															
-	Sample Date	18-03-03	18-03-03	.18-03-03	. 18-03-03	18-03-03	.18-03-03	18-03-03	18-03-03	18-03-03	18-03-03	18-03-03	18-03-03	30-04-03	30-04-03	30-04-03	30-04-03
	Sample ID	A_03	SPA_04	SPA_05	. SPA_06	SPA_07	SPA_08	SPA_09	SPA_10	SPA_11	SPA_12	SPB_01	SPB_02	SP-BASE 01	SP-BASE 02	SP-BASE 03	SP-BASE 04
	Batch No	2661 / 3625	2661/3625.	2661 / 3625	2661 / 3625	2661 / 3625	2661 / 3625	2661 / 3625	2661 / 3625	2661/3625	2661/3625	2661/3625	2661 / 3625	ES39497	ES39497	ES39497	ES39497
	Laboratory	ASET	ASET	ASET	ASET	ASET	ASET	· · ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET
-																	

Prepared by:LMW (URS) Checked by: FMM (!!RS)

s:projects\51072\001\Validation\Asbestos Results Table.xis

ND - No detection

Table 15 Asbestos Validation Results

																		 										.	1
Asbestos Result		. ND	(ND	UN.			DN	-	QN	!	QN	DN		ND	1	QN		QN		QN	DN	QN		ND	QN	UN .		Q
Sample Description	Mixture of sandy soil, fragments of plaster and	debris	Mixture of sandy soil, fragments of plaster and	debris.	Mixture of sandy soil, stones, fragments of	Mixture of candy soil stones and dehris		Mixture of sandy soll, stones, tragments of plaster and bitumen and debris.	Mixture of sandy soil, stones, fragments of	plaster and debris.	Mixture of sandy soil, stones, plant matter and	debris.	Mixture of sand, stones and debris	Mixture of sandy soil, stones, plant matter,	fragments of plaster and debris.	Mixture of sandy soil, stones, plant matter,	fragments of plaster and debris.	 Mixture of sandy soil, stones, plant matter,	fragments of plaster and cement and debris.	Mixture of sandy soil, stones, plant matter,	fragments of plaster and debris.	Mixture of sand, stones and debris	Mixture of sand, stone, plant matter and debris		Mixture of sand, stones and debris	Mixture of sand, stones and debris	Mixture of sandy soil, stones, plant matter, framments of plaster and dehris		Mixture of sandy soil, stones, plant matter, fragments of plaster and bitumen and debris.
OC Sample ID					ה והל בעות הלמו והל ב			DUP17				-			FD01										DUP01				
Samile Date		25-07-02		25-07-02	04 00 94 00	ZU-1U-0Z	70-70-92	25-07-02		25-07-02		25-07-02	25-07-02	-	.8-08-02	-	· · 8-08-02	-	8-08-02		8-08-02	7-01-03		7-01-03	7-01-03	7-01-03			18-03-03
Sample II)		SP11-9		SP2		240	SP4	SP5		SP6		SP7	TP11 0.3-0.5		SP1A		SP1B		SP1C		SP1D	AS-Z1-01		AS-Z1-02	AS-Z1-03	AS-Z1-04	יע ארט י		SPA 02
		ES34762		ES34762		E334/02	ES34/62	ES34762		ES34762		ES34762	ES34761		ES34978		ES34978		ES34978		ES34978	ES37609		ES37609	ES37609	ES37609		CZNC / 1007	, 2661/3625
		ASET		ASET		AUT -	ASET	ASET		ASET		ASET	ASET		ASET		ASET		ASET		ASET	ASET		ASET	ASET	ASET		AGE	ASET

Prepared by:LMW (URS) Checked by: FMM (URS)

: |

Page 2 of 3

į

1

.....

s:projects\51072\001\Validation\Asbestos Results Table.xjs

ND - No detection

Table 15 Asbestos Validation Results

Asbestos Result	QN	ND	QN	QN	QN	ND	QN	QN	QN	QN .	QN .	QN	QN	QN	Chrysotile Asbestos Detected	QN
Sample Description	Mixture of sand, stones, fragments of plaster and bitumen and debris.	Mixture of sand, fragments of plaster and debris	Mixture of sand, stones, fragments of plaster and debris	Mixture of sand, stones and debris	Mixture of sand, stones and debris	Mixture of sand, stones, fragments of plaster and debris	Mixture of sand, stones, fragments of plaster and debris	Mixture of sand, stones, fragments of bitumen and debris	Mixture of sandy soil, stones, fragments of plaster and bitumen and debris	Mixture of sandy soil, stones, fragments of plaster and debris	Mixture of sandy soil, stones, fragments of plaster and debris	Mixture of sandy soil, stones, plant matter, fragments of plaster and bitumen and debris	Mixture of sandy soil, stones, fragments of plaster and bitumen and debris	Mixture of sandy soil, stones, plant matter, fragments of plaster, brick and bitumen and debris	Mixture of sandy soil, stones, fragments of plaster and bitumen, plant matter and debris.	Mixture of sandy soil, fragments of plaster and debris.
QC Sample ID						DUP02 / DUP03				DUP07 / DUP08						
Sample Date	23-07-02	23-07-02	23-07-02	23-07-02	, 23-07-02	23-07-02	23-07-02	23-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	24-07-02	25-07-02	25-07-02
Sample ID	TP17_0.3-0.5	TP19_0.3-0.5	TP20_0.3-0.5	TP21_0.3-0.5	TP22_0.3-0.5	TP22_1.3-1.5	TP23_0.3-0.5	TP27_0,3-0.5	TP01_0.3-0.5	TP03_0.3-0.5	TP05_0.3-0.5	TP09_0.3-0.5	TP13_0.2-0.4	TP28_0.3-0.5	SP1	SP10
vy Batch No	ES34736	. ES34736	ES34736	ES34736	ES34736	ES34736	ES34736	ES34741	· ES34741	ES34741.	ES34741	ES34741	ES34741	ES34741	ES34762	ES34762
Laboratory	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET	ASET

ND - No detection s:projects\51072\001\\Validation\Asbestos Results Table.xls

Prepared by:LMW (URS) Checked by: FMM (11RS)

:

۰.

NEPM 'E' Guideline Areas Reused Backfill PAH Validation Table 14

	11							
Location	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³ .	
Total PAHs	DN	UN .	ΩN	0.93	3.4	QN	ND	
Benzo(a) pyrene 0.5	<0.5	<0.05	<0.05	0.09	0.2	<0.05	<0.05	
QC Sample ID		LSP-DUP01						
Sample Date	19-08-03	26-08-03	26-08-03	26-08-03	26-08-03 ¹	26-08-03!	26-08-03	
Sample ID	38-41.3 S1Front	LSP-05	LSP-06	LSP-07	LSP-08	LSP-09	LSP-10	
Batch No	No.015187	2,4520	24520	24520	24520	24520	24520	
Laboratory	Labmark	SGS	SGS	SGS	SGS	SGS	SGS	Notor '
			÷	+			به يو ب	ŧ

120120-001

Notes

Relocated - Samples collected prior to Bulk Earthworks program and material likely to have been

relocated. Assumed to have been relocated to open space area

Insitu - Material remains insitu at respective location marked on plans at current time 20

Stockpile - Samples collected from stockpiled material, replaced on-site

Prepared by: LMW (URS) Checked by: FMM (URS)

S:\Projects\51072\001\\Validation\Data Sets\PAH Tables_v2.xIs\NEPM E REUSED BACKFILL

Page 1 of 1

Table 13 Reused Backfill PAH Validation NEPM 'D'Guideline Areas

		,								
Location		Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Relocated ¹	Stockpile ³	Stockpile ³	Stockpile ³	
zo(a) 'ene Total PAHs		QN	2.2	QN	ŌN	1.2	61.2	ΟN	ND	
Benzo(a) pyrene	0.5	<0.5	· <0.5	<0.5	<0.5	<0.5	6.2	<0.05	<0.05	
QC Sample ID	LOR		41.3 Level S2 DUP			Road2_0.5 DUP				
Sample Date	4	31-07-03	31-07-03	31-07-03	31-07-03	7-08-03	19-08-03	26-08-03	26-08-03	•
Sample ID		41.3 Level S1	41.3 Level S2	41.3 Level S3	41.3 Level S4	Road2 0.5	38-41.2 S2Back	LSP-11	LSP-12	
· Batch No		No.014981	No.014981	No.014981	No.014981	No.015068	No.015187	24520	24520	
Laboratory		Labmark	Labmark	Labmark	Labmark	Labmark	Labmark	SGS	SGS	

Notes

- <</

Reiocated - Material relocated to beneath building footprints or hard paved areas Insitu - Material remains insitu at respective location marked on plans at current time Stockpile - Samples collected from stockpiled material, replaced on-site

S:\Projects\51072\001\Validation\Data Sets\PAH Tables_v2.xlsNEPM D REUSED BACKFILL

Prepared by: LMW (URS) Checked by: FMM (URS)

Page 1 of 1 .

Table 12 Reused Backfill Lead Validation NEPM 'E' Guideline Areas

<u> </u>									
Location	Stockpile ³	Stockpile ³	Stockpile ³	Stackpile ³	Stockpile ³				
Lead (mg/kg) 1 / 5*	213	102	60	200	4	290	23	. 88	45
GC Sample ID / Laboratory Batch No.				LSP-DUP01					
Sample Date	31-07-03	31-07-03	19-08-03	26-08-03	26-08-03	26-08-03	26-08-03	26-08-03	26-08-03
Sample ID	LSP-01	LSP-02	38-41.3 S1Front	LSP-05	LSP-06	LSP-07	LSP-08	LSP-09	LSP-10
Batch No	ES41573	ES41573	No.015187	24520	24520	24520	24520	24520	24520
Laboratory	ALS	ALS	Labmark	. SOS	SGS	SGS	SGS	SGS	SGS

Notes LOR

Reporting

likely to have been relocated. Assumed to have been relocated to open space.

Insitu - Material remains insitu at respective location marked on plans at current time

Stockpile - Samples collected from stockpiled material, replaced on-site

<u>~ с т</u>

S:\Projects\51072\001\Validation\Data Sets\Lead Tables_v2.xls STOCKPILES - NEPM E

1

1111

C.V

Prepared by: LMW-(URS) Checked by: FMM (URS)

Page 1 of 1

NEPM 'D' Guideline Areas · Lead Validation Reused Backfill Table 11

3					_				
	Location	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Relocated ¹	Stockpile ³	Stockpile ³	Stockpile ³
Lead	(mg/kg) 1 / 5*	44	960	170	210	360	24	130	13
QC Sample ID / Laboratory	Batch No. LOR		41.3 Level S2 DUP			Road2_0.5 DUP.			
Sample	Date	31-07-03	31-07-03	31-07-03	31-07-03	7-08-03	19-08-03	26-08-03	26-08-03
	Sample ID	41.3 Level S1	41.3 Level S2	41.3 Level S3	41.3 Level S4	Road2_0.5	No.015187 38-41.2 S2Back	LSP-11	LSP-12
	Batch No	No.014981	No.014981	No.014981	No.014981	No.015068	No.015187	24520	24520
	Laboratory	Labmark	Labmark	Labmark	· Labinark	Labmark	Labmark	SGS	SGS

Notes: LOR

Analytical Laboratory Limit of Reporting

Historical LOR

 $\sim \infty$

Relocated - Material relocated to beneath building footprints or hard paved areas

Insitu - Material remains insitu at respective location marked on plans at current time Stockpile - Samples collected from stockpiled material, replaced on-site

S:\Projects\51072\001\Validation\Data Sets\Lead Tables_v2.xis STOCKPILES - NEPM D

Page 1 of 1

Prepared by: LMW (URS) Checked by: FMM (LIRS)

Table 10 Lead Remediation (TP207) Validation Samples

Location	Insitu ²	Insitu ²	Insitu ^z	Insitu ²	Insitu ²
Lead (mg/kg) 1 / 5*	1	392	353	817	684
Sample Date LOR	15-08-03	15-08-03	15-08-03	15-08-03	15-08-03
Sample ID	EXB-101	EXW-101c	EXW-102c	EXW-103c	EXW-104c
Batch No	ES41683	ES41683	ES41683	ES41683	ES41683
Laboratory	ALS	ALS	ALS	ALS	ALS

Notes: LOR *

Analytical Laboratory Limit of Reporting -Historical LOR

Relocated - Material relocated to beneath building footprints or hard paved areas

3 5

Insitu - Material remains insitu at respective location marked on plans at current time

Stockpile - Samples collected from stockpiled material, replaced on-site

S:\Projects\51072\001\Validation\Data Sets\Lead Tables_v2.xls\TP207 VALIDATION - NEPM D

Prepared by: LMW (URS) Checked by: FMM (URS)

Page 1 of 1

;;;;;

.

i -

Table 17 TPH Analytical Results Validation Samples - Balance of Site

ALS	ES39306	BH101 4,0-4.4	12-04-03	DUP01	₽	<50	<100	<100	UN -
AIS	ES39306	1	: 12-04-03		Ŷ	<50	<100 ·	<100	ÛN -
ALS	ES39306		12-04-03		\$2	<50	<100	<100	QN
ALS .	ES39306	BH102 4.2-4.6	12-04-03	DUP02	° V	<50	<100	<100	Q
ALS'	ES39306		12-04-03		2	<50	<100	<100	QN
S	ES39306	BH103 2.8-3.2	12-04-03		~2	<50	<100	-<100	Q
ALS	ES39306		12-04-03		22	<50	<100	<100	DN
S	ES39306	BH103 5.7-5.8	: 12-04-03		42	<50	<100	<100	QN
с S	ES39306		. : 12-04-03		<2	: <50	<100	<100	QN
ALS	ES39306	BH104 4.3-4.7	12-04-03	DUP03	2	<50	<100	· <100	Q
S	ES39306	BH104 5.9-6.1	12-04-03		\$: <50	<100	<100	QN
AI S	ES39306		12-04-03		2	<50	<100	<100	ND
ALS	ES39306		: 12-04-03		₽	<50	<100	<100	DN
ALS	FS39306	BH105 5.8-6.2	12-04-03		2	. <50	<100	<100	ND
ALS	ES39306	BH106 2.5-2.9	14-04-03	DUP04 · ·	4	<50	<100	<100	Ð
0.	ES39306	BH106 4.0-4.4	. 14-04-03		2	<50	<100	<100	QN
ALS	ES39306	BH106 5.5-5.9	14-04-03		2 ·	<50	<100	<100	Q
ALS	ES39306	BH106 6.2-6.6	14-04-03		₹2	<50 L	<100	<100	Q
S	ES39306	BH107 0.5-0.9	15-04-03		7	82	397	<100	479
AIS	ES39306		15-04-03		2	101	519	<100	620
C.	ES39306	4.	15-04-03		2	<50	<100 ·	<100	ND
ST	ES39306	J	16-04-03	DUP05	<2	62	395	<100	457
ALS	ES39306	BH108 1.0-1.4	16-04-03		7	- 106	511	<100	617
ALS	ES39306	1	: 16-04-03		5.	53	240	<100	293
ALS	- ES39306		16-04-03		₽	<50 ·	272	<100	272
S	ES39306	BH109 1.0-1.4	16-04-03		\$	105	538	107	750
ALS	ES39306		16-04-03		2	: 150	569	<100	719
LS	ES39306	BH109 2.0-2.3	16-04-03		<2	. 56	180	400	236
LS I	ES39306	BH110 0.5-0.9	16-04-03		₽	. <50	377	<100	377
LS 1	ES39306	BH110 1.0-1.4	16-04-03		<2	115	490	<100	605
ALS	ES39306	BH110 1.5-1.9	16-04-03		2	<50	223	<100	223
ALS	· ES39306 ·		16-04-03		\$	<50	<100	<100	ND
ALS	ES39352	BH112 1.0-1.4	22-04-03	DUP11	<2	<50	159	<100	159
ALS	ES39352	BH112 1.5-1.9	22-04-03		~2	< <50	169	<100	169
S	ES39352	BH112 2.0-2.2	22-04-03		<2	: <50 .	127	<100	127
ALS	ES39352	BH113_0.7-1.1	22-04-03		\$. <50	<100	<100	Q
	0100001			oruno.	?	150	- C C Y	100 100 100	133

Analytical Laboratory Limit of Reporting Not detected above LOR Not analysed Notes: LOR N/A

stprojects/51072/001/Validation/Data Sets/TPH Results Tables_v2.xts/Batance of Site Validation

Page 3 of 3

Prepared by: LMW (URS) Checked by: FMM (URS)

Table 18 Lead Analytical Validation Results -NEPM 'D' Guideline Area

Stöckpile Stockpile¹ Stockpile Stockpile Insitu² Insitu² Insitu² Insitu² Insitu² Insitu² Insitu ² Insitu² Insitu² Insitu² Insitu² Insitu.² Insitu ² Insitu² Insitu² Insitu ' Insitu⁵ Insitu² Insitu Insitu Insitu ² Insitu² Insitu ² 1 / 5* 2810 1780 672 466 562 960 170 210 569506 164 323 39 297 250 59 85 24 67 $\overline{\mathbf{v}}$ 44 <u>,</u> \sim **~~~** 2 2 32 LOR Batch No. 41.3 Level S2 DUP DUP10 / DUP11 QC34 / QC35 DUP01 QC04 QC33 QC Sam 23-07-02 23-07-02 23-07-02 24-07-02 23-07-03 23-07-03 23-07-03 23-07-03 23-07-03 23-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 23-07-02 23-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 31-07-03 Dat TP208_0.5-0.6 TP209_0.5-0.6 TP302_0.5-0.6 TP14 0.3-0.5 TP14_1.3-1.5 TP26_0:3-0.5 TP301 0.5-0.6 TP301_1.5-1.6 TP302_1.5-1.6 TP303_0.5-0.6 TP303 1.5-1.6 TP311 0.5-0.6 TP05_1.3-1.5 TP209_1.0-1.1 TP301_1.0-1.1 TP302 1.0-1.1 TP26_1.3-1.5 TP207_2.0-2.1 TP208_1.0-1.1 TP208_2.0-2.1 41.3 Level S2 41.3 Level S3 TP303 1:0-1.1 41.3 Level S1 41.3 Level S4 TP311 1.0-1.1 TP209 2.0-2. No.014981 No.014981 ES34735 ES34682 ES34735 No.014981 ES41189 ES41189 ES41189 ES41189 ES41189 ES41189 ES41189 No.014981 ES41346 ES41346 ES41346 ES41346 ES41346 ES41346 ES41346 ES41346 ES34682 ES34741 ES41346 ES41463 ES41463 Labmark Labmark Labmark Labmark ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS . ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS

Prepared by: _____

(URS) (FIRS)

Page 1 of 2

s:projects\51072\001\Validation\Data Sets\Lead Tables_v2.xls\NEPM D

Table 18 Lead Analytical Validation Results NEPM 'D' Guideline Area

)) Location	Insitu ^z	Insitu ²	Insitu ²	Insitu ²	Relocated ¹	Insitu ^z	Insitu ²	linsitu ²	Insitu ²	Insitu ²	Stockpile ³	Stockpile ³	Stockpile ³
Lead (mg/kg 1 / 5*	÷	V	V	∑.	960	~	392	353	817	684	- 24	130	13
CC Sample ID / Laboratory Batch No.				n	Road2_0.5 DUP						•		
Sample Date	31-07-03	31-07-03	31-07-03	31-07-03	7-08-03	15-08-03	15-08-03	15-08-03	15 . 08-03	15-08-03	19-08-03	26-08-03	26-08-03
Sample ID	TP312_0.5-0.6	TP312_1.0-1.1	TP313_0.5-0.6	TP313_10-1_1	Road2_0.5	EXB-101	EXW-101c	EXW-102c	: EXW-103c	EXW-104c	38-41.2 S2Back	LSP-11	LSP-12
Batch No	ES41463	ES41463	ES41463	ES41463	No.015068	ES41683	ES41683	ES41683	ES41683	ES41683	No.015187	. 24520	24520
Laboratory	ALS	ALS	ALS	ALS	Labmark	ALS	ALS	ALS .	ALS	ALS	Labmark	SGS	SGS

Notes: LOR

Analytical Laboratory Limit of Reporting Historical LOR

Relocated - Material relocated to beneath building footprints or hard paved areas

insitu - Material remains insitu at respective location marked on plans at current time

 \sim က

Stockpile - Samples collected from stockpiled material, replaced on-site

Page 2 of 2

(URS) (URS)

Prepared by: ____ Checked by: ___

s:projects\51072\001\Validation\Data Sets\Lead Tables_v2:xls\NEPM D

Table 19 Lead Analytical Validation Results NEPM 'E' Guideline Areas

Relocated Relocated Relocated Relocated[.] Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Insitu ^{2.} Insitu² nsitu ² Insitu ² Insitu⁵ 120 140 ₽ 4 232 159 196 83 ő ₽ ÷ ഗ ∜ 77 4 4 ۰Ŷ Ŷ ₽ 84 33 30 4 ശ 26 4 S LOR ch No. Enviromet 9606041 AGAL N95/031688 QC Sample | DUP04 30-06-98 30-06-98 15-07-98 15-07-98 15-07-98 15-07-98 23-07-02 23-07-02 15-07-98 8-07-98 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 1995 TP15_1.3-1.5 TP15 0.3-0.5 T3006-S3 VD Ramp RBD007 T3006-S1 ·Z2-M11 NE-M1 PS-12 .PS-13 : PS-15 Z2-M1 Z2-M2 Z2-M6 Z2-M7 : Z2-M9 PS-14 V3-2 V3-1 Z7-5 Z7-6 - Z7-1 L-12 VD3 VD4 · VD6 VD1 N95/035203 N95/035204 9505153 9505153 ES11304 9506018 9506025 9506025 9506025 9505153 9506018 ES11195 ES34736 9506025 9506025 9505153 9505196 9506018 9505153 ES11195 9505153 ES34736 ES11357 ES11357 ES11357 ES11357 ES11357 Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet Enviromet AGAL AGAL ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS

Prepared by: EMW (URS) Checked by: FMM (URS)

Page 1 of 3

1

s.projects/51072/001/Validation/Data Sets/Lead Tables_v2.xls/NEPM E

Table 19 Lead Analytical Validation Results NEPM 'E' Guideline Areas

Relocated ¹ Relocated ¹ Relocated Relocated Relocated Relocated Relocated Relocated Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Stockpile Insitu ² Insitu ² Insitu ² Insitu Insitu Insitu⁴ Insitu ⁴ Insitu Insitu 218 278 749 204 120 155 536. 213 141 202 4 88 5445 v 50 39 37 2 17 v v တ \sim က *** LOR DUP02 / DUP03 DUP13 / DUP14 DUP15 / DUP16 QC05 / QC06 DUP12 DUP06 DUP17 QC Sar 25-07-02 25-07-02 23-07-03 23-07-02 23-07-02 23-07-02 24-07-02 24-07-02 24-07-02 24-07-02 25-07-02 25-07-02 25-07-02 25-07-02 25-07-02 23-07-03 23-07-03 23-07-03 23-07-03 31-07-03 23-07-02 23-07-02 24-07-02 24-07-02 25-07-02 25-07-02 23-07-03 TP210 0.5-0.6 TP211_0.5-0.6 TP20_0.3-0.5 TP210 1.0-1.1 TP210_2.1-2.2 TP18. 0.3-0.5 TP22_0.3-0.5 TP23 1.3-1.5 TP12_03-05 TP211 1.0-1.1 TP22_1.3-1.5 TP:04_0.3-0.5 TP04_13-1.5 TP08_0.3-0.5 TP08 1.3-1.5 TP16_0.2-0.4 TP211_2.0-2.1 LSP-01 SP11-9 SP10 SP5 SP2 SP3 SP4 SP6 SP1 SP7 ES34735 ES34736. ES34736 ES34762 ES34736 ES41189 ES41:189 ES41189 ES34736 ES34741 ES34762. ES34762 ES34762 ES34762 ES41189 ES41189 ES41573 ES34762 ES34762 ES34762 ES34762 ES34741 ES34741 ES34761 ES34741 ES41189 ES34761 ALS AĿS ALS ALS Prepared by: LMW (URS) Checked by: FMM (URS)

Page 2 of 3

s.projects\51072\001\Validation\Data Sets\Lead Tables_v2.xls\NEPM E

Lead Analytical Validation Results NEPM 'E' Guideline Areas Table 19

Location	Stockpile ³	Insitu ²	Insitu ⁻²	Insitu ²	Stockpile ³												
Lead (mg/kg) 1 / 5*	102	417	192	en	542	122	3	46	250	5	60	200	4	290	23	88	45
QC Sample ID / Laboratory Batch No.										QC31 / QC32		LSP-DUP01					
Sample Date	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	31-07-03	19-08-03	26-08-03	26-08-03	26-08-03	26-08-03	26-08-03	26-08-03
Sample ID	LSP-02	TP304_0.5-0.6	TP304_1.0-1.1	TP304_1 5-1 6	TP306_0.5-0.6	TP306_1.0-1.1	TP306_1.5-1.6	TP307_0.5-0.6	TP307_1.0-1.1	TP307_1.5-1.6	38-41.3 S1Front	LSP-05	ⁱ LSP-06	LSP-07	LSP-08	LSP-09	LSP-10
Batch No	ES41573	ES41346	ES41346	No.015187	24520	24520	24520	24520	24520	24520							
Laboratory	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	ALS	Labmark	SGS	SGS	SGS	SGS	SGS	SGS

Notes

LOR

Analytical Laboratory Limit of Reporting

Relocated - Samples collected prior to Bulk Earthworks program and material likely to have

been relocated. Assumed to have been relocated to open space area

Insttu - Material remains insitu at respective location marked on plans at current time

0 N

Stockpile - Samples collected from stockpiled material, replaced on-site

s:projects\51072\001\Validation\Data Sets\Lead Tables_V2.xls\NEPM E

Page 3 of 3

Prepared by: LMW (URS) Checked by: FMM (112S)

Table 20 PAHs Analytical Validation Results -NEPM 'E' Guideline Areas

Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Relocated Stockpile³ Stockpile Stockpile Stockpile Insitu ² Insitu² Insitu² Insitu² Insitu ² Insitu ^z Insitu 8.85 21.3 21.2 38.7 7.5 0 N ΩN 4,9 QN <u>n</u> QN ND 6.3 6.3 ND g Ŋ RD QN QN g g QN R Benzo(a)pyrene <0.5.0 <0.5 0.5 <0.5 . 0.5 0 <0.5. <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 ₹0.5 <0.5 <0.5 0.5 <0.5 <0.5 <0.5 <0.5 0.5 0.6 0.5 0.5 <u>ب</u> 3.7 ŝ LOR DUP06 15-07-98. 25-07-02 25-07-02 15-07-98 15-07-98 15-07-98 23-07-02 23-07-02 23-07-02 23-07-02 24-07-02 24-07-02 24-07-02 24-07-02 24-07-02 25-07-02 30-06-98 30-06-98 15-07-98 23-07-02 23-07-02 24-07-02 25-07-02 8--07-98 1995 1995 TP23_1.3-1.5 TP04_1.3-1.5 TP16_0.2-0.4 TP15 0.3-0.5 TP20_0.3-0.5 TP21_0.3-0.5 TP04_0.3-0.5 TP07_0.3-0.5 TP08_0.3-0.5 TP12 0.3-0.5 TP15_1.3-1.5 TP18 0.3-0.5 T3006-S3 [3006-S1 RBD007 VD Ramp SP11-9 SP10 V3-2 VD3 VD4 VD6 V3-1 ZD1 SP1 SP2 Sam N95/035204 N95/035203 ES34736 ES34735 ES11195 ES11195 ÉS34736 ES34736 ES34762 ES34762 ES34762 ES11304 ES11357 ES34736 ES34736 ES34762 ES11357 ES11357 ES11357 ES11357 ES34741 ES34741 ES34741 ES34761 ES34741 ES34741 AGAL ALS ALS ALS AĽS ALS AGAL ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS

Prepared by: LMW (URS) Checked by: FMM (URS)

Page 1 of 2

s:projects\51072\001\Validation\Data Sets\PAH Tables_v2.xls\NEPM E

PAHs Analytical Validation Results -NEPM 'E' Guideline Areas Table 20

Location		Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Stockpile ³	Relocated ¹	Stockpile ³							
Total PAHs		23.9	ΩN	4.4	19.6	DN	, ON	DN	, DN	dN .	0.93	3.4	CIN ,	DN	
Benzo(a)pyrene	0.5	1.8	<0.5	. 9.0	1 .1	<0.5	<0.5	<0.5	<0.05	<0.05	0.09	0.2	<0.05	<0.05	
QC Sample ID	LOR	DUP15/DUP16				DUP17			LSP-DUP01						
Sample Date		25-07-02	25-07-02	25-07- <u>-</u> 02	25-07-02	25-07-02	25-07-02 .	19-08-03	26-08-03	26-08-03	26-08-03	· 26-08-03	26-08-03	26-08-03	
Sample ID		SP3	SP4	SP5	SP6	SP7	TP10_0.3-0.5	38-41.3 S1Front	LSP-05	LSP-06	LSP-07	LSP-08	TSP-09	1.SP-10	
Batch No		ES34762	ES34762	ES34762	ES34762	ES34762	ES34761	No.015187	, 24520	24520	24520	24520	24520	24520	
Laboratory		ALS	ALS	ALS	ALS	ALS	ALS	Labmark	SGS	SGS	SGS	SGS	SGS	ŚĠŚ	

Notes

C

Relocated - Samples collected prior to Bulk Earthworks program and material likely to have been

relocated. Assumed to have been relocated to open space area Insitu - Material remains insitu at respective location marked on plans at current time Stockpile - Samples collected from stockpiled material, replaced on-site

s:projects\51072\001\Validation\Data Sets\PAH Tables_v2.xls\NEPM E

Page 2 of 2

Prepared by: LMW (URS) Checked by: FMM // RS)

PAHs Analytical Validation Results NEPM 'D' Guideline Areas Table 21

Stockpile³ Relocated Stockpile ³ Stockpile³ Stockpile⁵ Stockpile Stockpile Stockpile Insitù ² Insitu ² Insitu ² Insitu² Insitu ² 61.2 0.6 2.2 QN. ŊN ND ND 22 ND 0 Z 1,2 R QN Benzo(a)py < 0.05<0.05 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 0.5 6.2 LOR mple ID 41.3 Level S2 DUP Road2 0.5 DUP DUP10 / DUP11 DUP01 26-08-03 23-07-02 23-07-02 23-07-02 23-07-02 24-07-02 31-07-03 31-07-03 31-07-03 31-07-03 19-08-03 26-08-03 7-08-03 38-41.2 S2Back TP14_0.3-0.5 TP14 1.3-1.5 TP26_0.3-0.5 TP26_1.3-1.5 TP05_1.3-1.5 41.3 Level S2 41.3 Level S3 41.3 Level S4 41.3 Level S1 Road2 0.5 LSP-11 LSP-12 No.015187 No.014981 No.015068 No.014981 No.014981 ES34735 No.014981 ES34682 ES34735 ES34682 ES34741 24520 24520 Labmark Labmark Labmark Labmark Labmark Labmark ALS ALS ALS SGS SGS ALS ALS

Notes

 $\alpha \infty$

Relocated - Material relocated to beneath building footprints or hard paved areas

Insitu - Material remains insitu at respective location marked on plans at current time

Stockpile - Samples collected from stockpiled material, replaced on-site

s:projects\51072\001\Validation\Data Sets\PAH Tables_v2xis\NEPM D

Page 1 of 1

Prepared by: LMW (URS) Checked by: FMM (URS)

Table 22 Analytical Results - Groundwater Samples

5 House	67	·,									
Total Xylene		UN		CN	UN					CIN	QN
ortha-Xylene 2		۶	V V	Ŷ	1	10	۵ ا	% €	10	¢ ا	14
meta- & para-Xytene 2		0	"₽		' \v	. 0	10	* \$	10	0	۰¢
Ethylbenzene 2		8	Ŷ	V	0	- - -	- 0	۶ ۱	' Ø	Ŷ	10
Ghlarobenzene: 2		¢	Ş	Ø	V		, S	10	10	Ŷ	5
Toluene 2		Ø	Q	V	Ŷ		0	v ۱۷	Ŵ	Ŷ	¢
Benzene		⊽	⊽	v	V	V	• •	V	V	V	⊽
C10-C36		72290	QN	28620	25887	21446	GN	215/0	8830	2267	13030
C29-C36 50		2090	<50	1590	937	896	<50	1800	1160	224	1150
C14.C28 100		53200	<100	21200	20700	14900	<100	17000	6410	1800	9190
G10-C14 50		17000	<50	5830	4250	5650	<50	2770	1260	243	2680
C6-C3 20	÷	43	<20	38	<20	20 20	. <20	<20	<20	<u>2</u> 0	<20
	Batch No.	ES35294	ES35294	ES35294	ES35294	ES37037	ES37037	ES37037	ES37037	ES39706	ES39706
	Date	28-Aug-02	28-Aug-02	28-Aug-02	28-Aug-02	03-Dec-02	03-Dec-02	03-Dec-02	03-Dec-02	09-May-03	09-May-03
	Sample Id	MW1	MW2	MW3	MW4	MW01	MVV02	MW/03	MW04	MW05	MW05a

All results in ug/L unless otherwise stated Analytical Laboratory Limit of Reporting Analyte not detected above LÖR

Note: LOR ND

001/Vaiidalion/Dala Sets/Groundwater Results Table.xis/Groundwater Analytical Results

s:projeats/L

1 of 1

1

Prepared By: I ^aURS) Checked By: I JRS)

Table 22a Field Water Quality Parameters -Groundwater Sampling

يا ماري اندارين

. P

i i

· · · · ·

. .

Sample Id	Date Sampled	Top of Casing	Depth to SWL	SWL		Field W	Field Water Quality Parameter	Parameter	
-			(mTOC)	(mAHD)	Ë	Ηd	H	Redox	DO
			Prior to Purging					Potential (Eh)	
					uS/cm		с	тV	mg/L
									5
MW1	28-Aug-02	38.74	3.26	35.48	248	6.69	15.5	177	2.13
MWZ	28-Aug-02	38.72	3.32	35.4	240	6.06	17.1	431	5.77
MW3	 28-Aug-02 	37.73	1.94	35.79	465	6.71	14.1	260	4.99
MW4	28-Aug-02	38.71	2.15	36.56	830	6.92	13.6	159	2.54
MW01	3-Dec-02	38.74	3.669	35.071	21	6.85	26.2	119	3.27
MW02	3-Dec-02	38.72	3.716	35.004	9	5.78	25.3	394	5.15
				-				c,	
MW03	3-Dec-02	37.73	2.319	35.411	767	0.08	24.2	142	3.73
MW04	3-Dec-02	38.71	2.51	36.2	592	6.72	26.2	133	1.10
ANAIOE	0 Mov 03	30.050	000 6	36 15	06	L	18.3	-15	3.80
COANIN	0-1VIAY-00	000.00							
MW05a	9-May-03	37.600	1.400	36.2	150	,	18.5	-22	3.50

Table 23 Analytical Validation Data Statistical Summary

the second s

•

Validation Data Sof	Data Sof	No. Samples	Weart	Má ximum	ٽي کي	Statistical	Distribution	95%UCL	Remediation Guideline Level	Remediation Guideline Level (max allowable)	Reference Remediation Guideline Level
									-		
Lead NEPM D Areas	refer Table 18	40	337.15	2810	1.62	US EPA Non-parametric Jacknife	Non-Parametric	483.0	1200	3000	NEPM HIL-D
Lead NEPM E Areas	refer Table 19	71	97.63	749	1.46	NSW EPA Procedure G	Log Normal	323.8	600	1500	NEPM HIL-E
Benzo(a)pyrene NEPM D Areas	refer Table 21	13	0.87	6.2	1.85	NSW EPA Procedure G	Log Normal	2.5	4	10	NEPM HIL-D
Benzo(a)pyrene NEPM E Areas	refer Table 20	39	0.63	3.7	1.01	NSW EPA Procedure D	Normal	0.8	2	5	NEPM HIL-E
Total PAHs NEPM D Areas	refer Table 21	13	8.65	61.2	1.84	NSW EPA Procedure G	Log Normal	19.2	80	200	NEPM HIL-D
Total PAHs NEPM E Areas	refer Table 20	39	7.79	38.7	0.93	NSW EPA Procedure D	Normal	9.8	40	100	NEPM HIL-E
TPH Validation -								,			-
TPH Remediation Area	refer Table 16	155	295.42	1074	0.54	NSW EPA Procedure D	Normal	316.8	1000	2500	NSW EPA, 1994
TPH Validation -											
Balance of Site	refer Table 17	119	294.59	006	0.49	NSW EPA Procedure D	Normal	316.9	1000	2500	NSW EPA, 1994
TPH Backfill	refer Table 9	41	293.37	906	0.56	NSW EPA Procedure D	Normal	337.0	1000	2500	NSW EPA, 1994

Prepared by: LMW (URS) Checked by: FMM (URS)

s:projects\51072\001\Validation\Data Sets\Stats Summary.xts

Page 1 of 1

Status								-																			Not VENM -	Excavat e d and replaced at Cell 5	2 ci etti 7 - 1 c	not venm - Excavated and	replaced at Cell 5	Not VENM -		replaced at Cell 5	Not VENM -		replaced at Cell 5	
B(a)P	mg/kg	<0.5	0.5 ĕ.	<0.5	<0.5		0. 5	40.5	<0.5	40.5	<0.5 20.5	<0.5	-0°5 V	<0.5	<0.5	<0.5	- 	0. 5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	<0.5			41 <u>5</u> 411			65 6	「「「「「」」」	Nin)	1 -05		動展	N N N	権力加加
PAHs	mg/kg	4	₽	∀	∇		V	₽	₽	₽	₽	₽	∀	₽,	4	1.7	₽	₽	₽	A	₽	⊽	4	4	∀			T T Ituc		構成	Δ_{ij}			2.2			∀	
ğ	mg/kg	F.0≻	1.0×	≤0.1	1.0⊳		£0.1	1.0≻	F:0∑	1 .0≻	<0.1	F.0>	0.17	<0.1 	40.1	<02	<0.2	40.2	<0.2	40,2	<0.2	402	6.2	40.2	40.2			Å2			-≺0.2			~0.2				
Hg	mg/kg	1		ı	,		10≻	F0≻	<0.1	1.0>	,	1	·	ı	ι	<0.05	0.05	<0.05	40.05	40.05	<0.05	<0.05	<0.05	<0.05	¢0.05			<0.05			<0.05			<0.05			<0.05	
Zh	mg/kg	1.3	1.8	0.63	<0.5		4	∀	V	₽	マ	Ч	19	ŧ	₽	ເດ	ф	'n	ស	Ą	9	₽	₽	Ŷ	ß			12 12			150	項目 出版 項目		96 S			54	
ž	mg/kg	7	<05	1.2	40.5		V	∇	Ā	₽	₽	⊽	⊽	₽	∇	4	4	4	V	₽	∀	4	4	4	Ą			Å			1^{+}			1 - 2 h			$\mathbf{T}_{\mathbf{r}}$	
Ъb	mg/kg	2.8	2.5	1.9	<0.5		4	Ч	4	4	4	Q	65	4	⊽	· Ø	Ť	01	9	4	16	6	4	Ц	5			- Ŧ			096			620			170	
5	mg/kg	<0.5	0.59	<0.5	<0.5		₽	₽	₽	∀	V	¢	4	2	₽	Q	₽	4	6	Q	Q	4	Q	6	6			9 		請述 時間	ZZ -			18			12	
J	mg/kg	3.5	1.1	1.8	<0.5		۲	ы	4	4	7	ល	ſŊ	⊽	⊽	Ч	ю	7	ы	ល	2	⊽	Ā	₽	4			I > 1			22 22	時間の		2			r S	
G	mg/kg	40.5	<0.5	40.5	<0.5		₽	₽	4	Ā	4	∀	4	· \	₽.	F.0≻	I.0≻	1.0	£.0∑	40.1	<0.1	F.0>	₽	1 0	1.0			-0.1			102	単位					£.0>	海豚に行
As	mg/kg	1.7	<0.5	0.64	<0.5		₽	۲۰۹	\	7	V	Ā	4	4	∀	∇	∇	\forall	¢	₽	∀	Ā	4	Ą	4			Δ.			$\mathbf{T}_{\mathbf{r}}$	推済をある		Υ.			4	
Total TPH	mg/kg	pu	pu	pu	l hd		nd	pu	рп	pu	μu	μđ	pu	pu	ъđ	pu	nd	рц	nd	рц	pu	pu	nd	pu	pu			р н			nd			m_{1}			nd 👘	
location		BE41.1 (0-1m)	BE41.1 (0-1m)	BE41.1 (0-1m)			BE38.1(0-0.8m)	BE38.1(0-0.8m)	BE38.1(0-0.8m)		BE38.1 (0.8 - 2m)	BE38.1 (0.8 - 2m)	BE38.1 (0.8 - 2m)	BE38.1 (0.8 - 2m)		BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	BE38.1 (2 - 5m)	and the second se		RP413			BEALS			BE413				
Sample ID/ Depth		KSI	KCD	TOT -	Blank	VITEL	KS1	K52	K53	Blank	57	KC)	KG.	5 <u>7</u>	Blank	5P7	SP8	SP9	SP10	SP11	SP12	SP13	SP14	SP15	SP16				15.5		41.3 Level S2 a			41.3 Lenel SZ Dup			413 Level 53	
Tab Renort	in Just one	IFT141		co- ide			1477147	Mav-03	m farm		16111.61	Terrat	80 mm (T.M 014687												LSPA FO M T										

| J

. J

· · · · ·

• •

ママ 02 07 07 <0.05 <0.05 ∞ \? ⊽ ⊽ 2 2 Q Q $\forall \ \forall$ 1.0 1.0 $\nabla \nabla$ pu pu LM 015068 Road 1 (0.5m) BB41.3 roadway Road 1(1.5m) BE41.3 roadway

0.5 0.5

	Road 2 (0.5m) *	BEAL3 roadway	₽ ₽	ų	ΓO>	ология 1993 - ОС- 1993 - Состания 1993 - Состания 1993 - Состания	3	960	$\mathbf{A}_{\mathbf{r}_{i}}$	$\frac{1}{2}$	Ιfg	602 1	12 12	190 190	Not VENM - Excavated and replaced at Cell
	Konit2 (0.5m) Drp	Dup Road? (0.5m)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOY		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	690			0.16	±02	1 <u>7</u>		NOT VELVAN - Excavated and 20.5 replaced at Cell
T MOTSATE	Road 2a (10 m)	BF41.3 roadway	NA	I	I	'		4	ŀ	1	,	,	ŗ	ı	
		BE41.3 roadway	NA	ı	4		·	4	•	,	ı	ł	,	ı	
T N 015787	(UT a C1 (D 5m)	RF41 3 insitu	nđ	Ą	<0.1	4	ი	9	V	ŵ	<0.05	<0.2	¢	<0.5	
ADDLUD		BE41 3 insitu	nd	4	<0.1	4	10	11	۲	9	<0.05	<0.2	V	<0.5	
	A1353(15m)	BE41.3 insitu	nđ	4	<0.1	4	Q	6	4	ų	<0.05	<0.2	4	40.5	
	Read 3 (0-1 m)	BF44.6 roadway	pu	V	1.0>	V	6	Q	4	ų	<0.05	<0.2	∀	<0.5	
	Road 3 (1-2m)	BF44.6 roadway	цd	₽	<0.1	7	6	Q	4	Ÿ	<0.05	<0.2	4	<0.5 0.5	
	DunV2	Dup2 Road 5 (1-2m)	pu	⊽	<0.1	ŝ	Q	Q	Ħ	₽	<0.05	<0.2	¢	<0.5	
	T-invit		awaiting results	ults											
															Not VENM - Excavated and
								5	はなけいに見	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 05		Ý	5 U V	replaced at Cell 6
	38-41.3 51 Front*	BE38-41.3 s/pile	1	7	Tny		q. X	2				「「「「」」で			-
										時間には					, Not VENM -
										0			1.0 A	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Excavated and
	<u>38 ±1</u> 3 52 Back	BE38-113 (Pite-1: 1)	101-10	7	101-10-1-10-1-10-1-10-1-10-1-10-1-10-1	7		L C C		₩ *	40.05 <0.05	 40.2 		<0.5	-
	44.6 SPI 0-1m		ри ,	7 7		7 -	4 6	ۍ د	7	, v	50.0>	¢.0>	V	<0.5	
	44.6 SPI 1-2m	bb44.6 tusitu	na	7 7			1	ł	7	v	<0.05	<0.7	V	<0.5	
	44.6 5P2 0-1m	BE44.6 mSitu	ġ, 'n	7 7			3 6	¢ ډ	' V	9 ₩	€0.0≥	<0.2	' ∀	<0.5	
	DupV1		na Maritine		1.07	-	'n	ķ	ł	1					
	TripV1		awamng resum		10	c	5	ſ	7	ų	20 US	<0.5	V	<0.5	
	44.6 SP2 1-2m	BE44.6 insitu	рц Г	7''		4	4 9	7 -	7 5	7 4	500	607	7	и С У	
	41.1 SP1	BE41.1 s/pile 1	nd	₽	T:N>	-	7	বা ।	7	7 4			7		
	41.1 SP2	BE41.1 s/pile 2	nd	∇	1.0≻	2	Ø	5	∀	Ŷ	c(li,l)>	40.2	7		
Notes:									2	1041					
	material not disposed	entropy and the second second as VENM, to be reused on-site under building slabs (Raot2 0.5m) or disposed offsite as Solid Waste (38–41.3 SI and 52)	nder build	ng slabs (R	aod2 0.5m) (or disposed	offsite as So.	hd Waste (C	115 E.1 <u>8</u> -81	(79 put					
Dup	Duplicate sample														
Trip	Triplicate sample														
ı	not analysed														
6.1															

1

ţ

-)

× ----- ,

.

Section Section j j

• •

1

APPENDIX D QA/QC Information

10.0 LABORATORY

- 1. Is the laboratory identified?
- 2. Was a NATA registered laboratory used?
- 3. Did the laboratory perform the requested tests?
- 4. Are laboratory methods identified?
- 5. Were all the laboratory methods adopted NATA endorsed?
- 6. Are any non-standard methods adequately justified and validated?
- 7. Were the appropriate test procedures followed?
- 8. Are PQLs and MDLs for each analyte/matrix combination given?
- 9. Were the reporting limits satisfactory?
- 10. Was the NATA Seal on the reports?
- 11. Were the reports signed by an authorised person?
- 12. Were laboratory reports satisfactory? Comment as required.

COMMENTS:

(Comment Yes below) ~ 7 1 1 Ì NA / 1 1 V 1

No

	· .		
 		 ad the state of the state of the state of the state of the state of the state of the state of the state of the	

1) Number of samples collected

Soil:	41	
Water:	belander	
Soil:	See there should	
Water:	A	

2) Number of days of sampling:

3) Number and type of QA/QC samples collected:

		SOIL	i		WATER	
	No.	Frequency	Criterion	No.	Frequency	Criterion
Field Duplicates		~107-	102.			
Trip Blanks	S					
Wash Blanks	4					
Other (Field Blanks, Spiked Trip Blanks, etc.)	ં છે					

4) Field Duplicates

	Control	Limits	Yes	No
				(Comment Below)
a. Were an <u>adequate number</u> of field duplicates collected?			Ko	
b. Were RPDs within control limits?	Min	Max		
OrganicsMetals/Inorganics	٥	35-50%	Yes.	

COMMENTS:

The frequency of collection and enely is of trip blanks, trip spikes, and
rinsate blanks was low but adequate to arrest sample handbing,
and potential cross contamination and loss of valatiles in field
·
moledinis.
Intertaboration diplicates also analyted at a frequency of 4%.

Ŀ

· · · ·

. 1

Were an adequate number of trip blanks collected? Were the trip blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) COMMENTS: No. ef gruptly collected with collected with collected with collected with collected with collected with collected with collected with collected with collected with collected for the fold 6) Wash Blanks	5) Trip Blanks		
 b) Were the trip blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) COMMENTS: No. of curyuly collected were extended for existing effective for existing effecti	, .	Yes	(Comment
No. of gaugule collected with soleguest for siscisting polaritist for cross contamination in the field 6) Wash Blanks a. Were an adequate number of wash blanks collected? b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. COMMENTS: The window of samples collected with stepret for size(sing			
6) Wash Blanks a. Were an adequate number of wash blanks collected? b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. COMMENTS: The number of sample collected with adequate for assets ing	COMMENTS:		
6) Wash Blanks a. Were an adequate number of wash blanks collected? b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. COMMENTS: The number of sample collected with steppet for assets ing	No. of gample collected we adequate for assessing evoss contamination in the field	p of the	J fer
a. Were an adequate number of wash blanks collected? b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. <u>COMMENTS:</u> <u>The number of sample collected</u> with identified of a stretsing			
a. Were an adequate number of wash blanks collected? b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. <u>COMMENTS:</u> <u>The number of sample collected</u> with identified of a size of size of sample of the size of the si	5) Wash Blanks		
b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as necessary. <u>COMMENTS:</u> <u>The number of samples collected with identify for 255clscing</u>		Yes	(Commen
The number of samples collected was adequate for assessing	 b. Were the wash blanks free of contaminants? (If no, comment whether the contaminants present are also detected in the samples and whether they are common laboratory chemicals.) 7) Overview: Was field QA/QC satisfactory? Comment as 		
	COMMENTS:		
decontantination procedures of the sampling operforment.	The number of samples collected will adequate for 2	sselsing	

LABORATORY INTERNAL QUALITY CONTROL PROCEDURES 12.0

1) Type and Number of QA/QC Samples

	SOIL			WATER				
	No.	Frequency	Criterion	No.	Frequency	Criterion		
Method Blanks/Reagent Blanks		1/batch	Ilbaten			<u> </u>		
Matrix Spikes/Matrix Spike Duplicates		N 18%	10%					
Standard/Certified Reference Material Analysis		~18%	107.					
Laboratory Duplicates		~ 150%	10%					
Surrogates where spoticulate-		100%	100%					

Control Limits

Max

1352

130%

20%

Min

706

D

<u>7</u>0

Yes

1

 \checkmark

 \checkmark

Х

 \checkmark

. 🗸

No (Comment

Below)

My

 γ

- 2) Were the method blanks/reagent blanks free of
- **bontamination**?
- 3) Were the spike recoveries within control limits? Organics
 - Metals/Inorganic
- 4) Were the RPDs of the laboratory duplicates within control limits?
- 5) Were the surrogate recoveries within control limits?
- 6) Were the origin and batch number of certified reference material stated?
- 7) Are all QC results provided?
- 8) Was the overall standard of Laboratory QA/QC adequate? Comment below.

COMMENTS:

Overall standard of Laboratory Offac was adequate. of batch no. not stated Origen 12,6

ł

13.0 DATA USABILITY

01

Are the field and laboratory analytical data provided of adequate quality for the purpose of this audit? Comment below as necessary.

14.0 ASSESSMENT CRITERIA

Assessment criteria discussed Assessment criteria appropriate Assessment criteria tabulated in text Assessment criteria provided as appendix Assessment criteria appropriately referenced Limitations of criteria stated and discussed

Required?	Present?	Adequate?	Comments
1		1	
1	Ý		
1	V		
×			
\checkmark		1	
1		1	

14.1 Evaluating land-use suitability

Has the consultant followed the decision process for assessing urban redevelopment sites (pp 28-29 of the Auditor guidelines) when assessing the suitability for a particular land use?

14.2 Soil Investigation Levels (SILs)

Has the consultant used SILs? Have SILs been used appropriately and competently by the consultant? If SILs have not been used, has the consultant undertaken a site-specific risk assessment?

14.3 Petroleum hydrocarbons

Has the consultant used the threshold values published in the *Guidelines for Assessing* Service Station Sites 1994?

If the Service Station Guideline criteria have not been used, has the consultant undertaken a site specific risk assessment?

Yes	No	Comments
		Yas

Laboratory QA/QC

Job No. 0867 Job King St Rondwick

Batch No.

Batech No	Analyte	Total Number of Samples	Number of Primary Samples	Number of Field Duplicates	Method Blank	Lab Duplicates	MS/ MSD	LCS	Surrogate	cir
9306	TPH / BJEX	44	39	5	.3	6	6	6	Vor.	/
39307	TIDH/BOTEY	14	12	2	1	2	2	2	, cu	~
39352	TMY/BJEX	32	27	5	ユ	4	4	4	V BU	. ~
39375	TPU	10	10	0		2	2	2	r rhe.	/
39386	TPH	4	4	0	1	0	2	2	r.	-
4-0576	ТРИ	6	6	<i>c</i>	1	<u> </u>	2	2		· ·
40905	ТРИ	20	18	2	1	2	2	2	-	~
40959	три	16	14 12*	٥	1	2	2	2-	· · · · · · · · · · · · · · · · · · ·	
41007	TPH	10	8	2		0	2	2	· · ·	·/+
41009	трн '	10	S # 2	0	1	2	2	2	~	
41028	TPN .	10	8	2	<u> </u>	2	2	2_	<u> </u>	
41049	TDH	5	4	1	1	0	2	2	~ ~	V +
* 41075	TPH	8	5#2*	L 1.	i	0	2	2	~	r
\$41100	ТРН	10	7 4 2*	1	1	2	2	2	-	-
41124	TPN	5	4		1	4-	2	2	-	<u> </u> ~
41152	TPH	11	l (D	1	2	2	2		-
4192	}	2	2	D	1	Ø	2	2	~	1
41215		۱,	10	1	۱	2	2	2	/	
* +1244	ТРИ	13	9 # 2*	2	ł	4	2	2	_/	Y
+ 41274	TPH	6	3 \$ 2*	1	ł .	0	2	-2.	~] ~
41300		t)	10	0	1	2	2	2	•••••] ~
4(30)	TPH	10	9	1	١	2	2_	2		5
A1325	TPU	12	15	ſ	1	2	2	2	~	1
* 41436	TPH	13	1/ 4 2*	0	1	2	2	2	-	· ·
4 1462	TPH	A	_3	1	1	0	2	2	-	
* 41.573		10	8 # 2*			2_	2	2_		
]
						1				1
										1
		~								1
					· · · · ·					1
									•	1
							_			
							1	-		

RB : Aniste blank