

PHASE 2 ENVIRONMENTAL SITE ASSESSMENT ALL SEASONS SALAMANDER SHORES HOTEL 147 SOLDIERS POINT ROAD, SOLDIERS POINT

Prepared for:

Salamander Shores Hotel Pty Ltd c/- Sake Development Suite 11, 340 Darling Street BALMAIN NSW 2041

Report Date: 13 April 2010 Project Ref: ENVIWARA00284AB

Written/Submitted by:

1-12

Approved by: James R

Laurie Fox Associate Environmental Geologist

Reviewed by:

Coffey Environments Australia Pty Ltd ACN 140 765 902 19 Warabrook Boulevard Warabrook NSW 2304 Australia T +61 2 4016 2300 F +61 2 4016 2380 coffey.com ENVIWARA00284AB-R01a

Damien Hendrickx Environmental Scientist James McMahon Business Manager - Newcastle

13 April 2010

Salamander Shores Hotel Pty Ltd c/- Sake Development Suite 11, 340 Darling Street BALMAIN NSW 2041

Attention: Sarah Kelly

Dear Sarah

RE: PROPOSED HOTEL REDEVELOPMENT ALL SEASONS SALAMANDER SHORES HOTEL PHASE 2 ENVIRONMENTAL SITE ASSESSMENT

Coffey Environments Pty Ltd (Coffey) is pleased to present the findings of our Phase 2 Environmental Site Assessment for the above site.

We draw you attention to the enclosed sheet entitled "*Important Information about Your Coffey Environmental Report*', which should be read in conjunction with the report.

We trust that our report meets with your requirements. If you have any questions regarding this matter please contact the undersigned in our Warabrook Office.

For and on behalf of Coffey Environments Australia Pty Ltd

James. R

James McMahon Business Manager - Newcastle

RECORD OF DISTRIBUTION

No. of copies	Report File Name	rt File Name Report Date Status		Prepared for:	Initials
1	ENVIWARA00284AB- R01.doc	Final	13 April 2010	Sake Development	
1	ENVIWARA00284AB- R01.doc	Final	13 April 2010	Coffey Environments Pty Ltd	

CONTENTS

LIST	OF ATTACHMENTS	I
ABB	REVIATIONS	II
EXE	CUTIVE SUMMARY	111
1	INTRODUCTION	1
1.1	General	1
1.2	Objectives	1
1.3	Scope of Work	1
2	SITE INFORMATION	2
2.1	Site Identification	2
2.2	Site Description	2
2.3	Current Surrounding Landuse	3
2.4	Regional Geology	3
2.5	Acid Sulfate Soils	3
2.6	Hydrogeology	3
2.7	Topography and Drainage	3
3	REVIEW OF PREVIOUS ASSESSMENTS	5
3.1	Phase 1 ESA (Coffey, 2009)	5
3.2	Geotechnical Assessment (Coffey, 2009)	6
4	POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CHEMICALS OF CONCERN	7
5	ASSESSMENT CRITERIA	8
5.1	Soil Investigation Levels	8
6	SAMPLING AND ANALYSIS PLAN	9
7	FIELD AND LABORATORY PROGRAMME	10

CONTENTS

7.1	Soil Sampling	10
7.2	Field Quality Assurance/Quality Control	10
7.3	Laboratory Analysis	10
8	RESULTS	12
8.1	Subsurface Conditions	12
8.2	PID Results	13
8.3	Quality Assurance/Quality Control Results and Data Usability	13
8.4	Laboratory Results	13
9	DISCUSSION	14
10	CONCLUSION	15
11	LIMITATIONS	16
12	REFERENCES	17

LIST OF ATTACHMENTS

Tables

Table LR1:	Summary of Soil Laboratory Results
Table LR2:	Summary of Duplicate and Triplicates Sample Results
Table LR3:	Summary of Wash Blank Results

Figures

Figure 1:	Site Location Map
Figure 2:	Approximate Borehole Location Plan

Appendices

Appendix A:	Site Photographs
Appendix B:	Borehole Logs and Explanation Sheets
Appendix C:	PID Results
Appendix D:	Data Validation Report
Appendix E:	Laboratory Reports and Chain of Custody Documentation

ABBREVIATIONS

AEC	Area of Environmental Concern
AST	Aboveground Storage Tank
C6-C36	Hydrocarbon chainlength fraction
Bgs	below ground surface
вн	Borehole
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
сос	Contaminant of Concern
ESA	Environmental Site Assessment
mg/kg	milligrams per kilogram
NATA	National Association of Testing Authorities
NSW EPA	Environment Protection Authority of New South Wales
NSW DEC	Department of Environment and Conservation of New South Wales
ОСР	Organochlorine Pesticide
OPP	Organophosphorous Pesticide
PAH	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyl
PID	Photoionisation Detector
Ppm	parts per million
QA	Quality Assurance
QC	Quality Control
RPD	Relative Percent Difference
ТРН	Total Petroleum Hydrocarbon

EXECUTIVE SUMMARY

Coffey Environments Pty Ltd was commissioned by Sake Development on behalf of Salamander Shores Hotel Pty Ltd to conduct a Phase 2 Environmental Site Assessment (ESA) for the proposed redevelopment of the All Seasons Salamander Shores Hotel located at 147 Soldiers Point Road, Soldiers Point NSW

Coffey understands that the proposed development will consist of construction of a four storey accommodation building, underground (basement) parking areas and residential apartments. The objectives of the Phase 2 ESA were to make an assessment of the contamination status of the site, and to provide recommendations for further investigations, management and/or remediation (if required).

To achieve the objective, the following scope of work was undertaken:

- A brief review of previous investigations conducted at the site;
- · Field investigations including soil sampling from 10 locations with a hand auger;
- · Laboratory analysis of selected soil samples; and
- Data assessment and preparation of this Phase 2 ESA report.

A review of the previous Phase 1 ESA conducted by Coffey revealed five areas of environmental concern, relating to fill on site, storage areas (general storage and pool chemical storage) and the maintenance shed/fuel storage areas. The 10 boreholes were drilled to target these AECs, and also to provide spatial coverage across the site. A borehole could not be drilled by hand methods near the maintenance shed due to the existing pavements in and around the shed.

Selected soil samples were submitted for laboratory analysis for a number of contaminants of concern, including heavy metals, hydrocarbons, pesticides, asbestos and chloride. The laboratory results were assessed against the criteria relevant to the site redevelopment (residential with minimal access to soils). The assessment indicated that contaminant concentrations were either below laboratory reporting limits or the adopted investigation levels. Asbestos was not detected in the samples analysed, and a maximum chloride concentration of 63mg/kg was recorded.

Based on the laboratory results, the likelihood for significant contamination to be present at the site is considered to be low, and further investigations (including management or remediation) are not required.

1 INTRODUCTION

1.1 General

This report presents the findings of a Phase 2 Environmental Site Assessment (ESA) undertaken by Coffey Environments Pty Ltd (Coffey) for the All Seasons Salamander Shores Hotel (the site). The site is located at 147 Soldiers Point Road, Soldiers Point NSW. The site location is shown in Figure 1.

The work was commissioned by Sake Development in response to a proposal from Coffey (Reference ENVIWARA00284AB-P01 dated 17 February 2010). It is understood that the Phase 2 ESA will be submitted as part of Sake Development's response to the Department of Planning queries regarding the proposed redevelopment of the site.

It is understood that the proposed redevelopment will consist of construction of a four storey hotel with approximately 180 guest rooms (including residential apartments), associated amenities (pool, gym, bars etc) and underground (basement) parking. It is also understood that 4 five-storey apartment blocks are proposed, each consisting of approximately 20 apartments.

This report has been written in accordance with the relevant sections of the NSW EPA (1997) *Guidelines of Consultants Reporting on Contaminated Sites.* This report must be read in conjunction with the attached sheet titled "*Important Information about your Coffey Environmental Report*", which can be found at the end of this report.

1.2 Objectives

The objectives of the Phase 2 ESA were to:

- Make an assessment of the soil contamination status of the site through sampling and laboratory testing; and
- Assess the need for further investigations, management and/or remediation.

1.3 Scope of Work

To achieve the objectives, the following scope of work was undertaken:

- A brief review of previous investigations conducted at the site;
- · Field investigations including soil sampling from 10 locations with a hand auger;
- · Laboratory analysis of selected soil samples; and
- Data assessment and preparation of this Phase 2 ESA report.

2 SITE INFORMATION

2.1 Site Identification

The site is located at 147 Soldiers Point Road, Soldiers Point NSW and is identified as Lot 31 DP 529002, within the Parish of Tomaree and the County of Gloucester. The location of the site is shown in Figure 1, and a site layout is presented in Figure 2. The site has an approximate area of 12,304m² and is situated in the local government area of Port Stephens Council.

2.2 Site Description

A Coffey Environmental Scientist visited the site on 26 February 2010 for the Phase 2 ESA. Photographs of the site are included in Appendix A and site features are shown in Figure 2. Observations made during the site visit are summarised below:

- The existing hotel consisted of a four-storey accommodation building in the central portion of the site, and a bitumen and gravel carpark in the western section of the site (Photographs 1 and 8);
- The north-western section of the site is characterised by a bitumen carpark and a bar (Photograph 2);
- Garden beds were located around the accommodation building and carpark. Two groundwater monitoring wells were observed in and near the carpark (Photograph 3);
- An elevated concrete carpark was located adjacent to the south-western section of the accommodation building (Photograph 4);
- An undercover maintenance shed is located at the southern end of the accommodation building. The floor of the maintenance shed was observed to be concrete, with no visible cracks or staining (Photograph 5);
- The central section of the site was the highest point of the site, with an access road leading from the carpark in the western section of the site to the accommodation building (Photograph 6);
- A liquefied petroleum gas (LPG) aboveground storage tank (AST) is located in the south-western corner of the site. The LPG AST is situated on brackets and is raised off the ground (Photograph 7);
- A water tank/pumping system is located in the south-western corner of the site (Photograph 9);
- The eastern side of the site is defined by a number of garden beds along the accommodation building, as well as a covered outdoor seating area (Photograph 10);
- The north-eastern section of the site consisted of a two-tiered outdoor seating area and restaurant for the hotel (Photograph 11);
- An aboveground swimming pool is located on the eastern side of the accommodation building. The swimming pool is raised approximately three metres higher than the eastern side of the site shown in Photograph 10;
- The accommodation building and carparks appear to have been constructed on cut and fill platforms of the site.

2.3 Current Surrounding Landuse

The surrounding landuse consists of the following:

- The publicly accessible foreshore of Salamander Bay to the east;
- Residential and remnant bushland to the north and south; and
- Soldiers Point Road and the Soldiers Point Holiday Park to the west.

The general area around the site consists of a mixture of vacant land, remnant bushland, low-density residential properties and commercial businesses.

2.4 Regional Geology

A review of the Newcastle 1:100,000 Geological Series Sheet indicates that the site is underlain by Quaternary sediments, typically containing gravels, sands, silts, clays, "coffee rock" and marine and freshwater deposits. During field activities, rocks similar to the Carboniferous Nerong Volcanics (comprising toscanite, dacite, andesite, ignimbite, agglomerate, conglomerate, sandstone, and siltstone) were observed to outcrop on the site. Additionally, the site is elevated above the surrounding landscape, and as such it is likely that the majority of the site is positioned on an inlier of the Nerong Volcanics, surrounded by younger Quaternary sediments.

2.5 Acid Sulfate Soils

Reference to the Acid Sulfate Soils (ASS) Risk Map for Port Stephens indicates the site is located in an area where there is no know occurrence of acid sulfate soil materials. The map also indicates that the landform is dominated by bedrock slopes, elevated Pleistocene and Holocene dunes and elevated alluvial plains.

2.6 Hydrogeology

Previous investigations undertaken by Coffey at the site indicated that groundwater was likely to be encountered at depths ranging from approximately 1m to approximately 5m below the ground surface (bgs). Perched groundwater may be present on low permeability soils above the bedrock. Regional groundwater would be expected to flow in an easterly direction towards Salamander Bay.

A search, at the request of Coffey, was conducted by the Department of Water and Energy (DWE) to identify licensed water wells within a 1 km radius of the site. The search indicated that the nearest registered groundwater bore is located approximately 0.5km to the west of the site and is used as a monitoring bore. The water bearing zone of this bore was recorded at 0.8-6.2m bgs.

2.7 Topography and Drainage

Regional topography in the vicinity of the site is typified by an elongated peninsular (Soldiers Point) extending into Port Stephens approximately 600m wide and 3km long with a transition of residual slightly undulating terrain situated to the west of the area and near shore low lying aeolian dunes and estuarine tidal flats toward the east.

Reference to the 1:25,000 Topographic Map of Port Stephens indicates that the site is positioned on the northern side a prominent low rounded residual knoll/hill with surface relief ranging from approximately RL20m to RL6m (AHD).

Drainage at the site is assessed to occur predominantly by infiltration into the sand subsoil with some minor overland flow over paved surfaces directed to dedicated storm water drainage structures over the site. Vegetation across the site comprises maintained lawns and gardens, with some stands of trees up to 10m height.

3 REVIEW OF PREVIOUS ASSESSMENTS

Previous assessments conducted at the site included a Phase 1 ESA and a geotechnical assessment, both carried out by Coffey. Summaries of these assessments are included in the following sections.

3.1 Phase 1 ESA (Coffey, 2009)

A Phase 1 ESA for the site was conducted by Coffey in 2009 (Reference ENVIWARA00284AA-R01 dated 2 March 2009). The assessment included a desktop study of regional topography, geology and hydrogeology, a review of site history from local government records, NSW EPA notices, historical titles and aerial photographs, and a site walkover to identify potential areas of concern.

The following is a summary of the site history based on the review conducted by Coffey:

- An examination of the planning certificate under Section 149 (2) and (5) of the Environmental Planning and Assessment Act, 1979, states that the land to which the certificate relates is not a current investigation or remediation site, and not subject to an investigation or remediation order, which was confirmed by reference to the register of notices issued under the Contaminated Land Management Act (1997);
- A search of the NSW WorkCover Dangerous Goods Records indicated that above-ground LPG tanks have been present on site since at least 1976;
- Title Search records indicate that prior to its purchase and use as a commercial property, the site
 was formerly under the ownership at one time by Port Stephens Council, the Commonwealth of
 Australia, or the farming Cromarty Family; and
- Observations from selected historic aerial photographs indicate that prior to at least 1963 the site was undeveloped, and by 1976 part of the current hotel development had been constructed. Up to at least 1963 land use surrounding the site was dominated by horticulture and residential developments, in combination with remnant bushland. Since 1963, residential and commercial developments have become more widely distributed surrounding the site, with a noted reduction of remnant bushland cessation of horticultural land use by 1983.

At the time of the site walkover, the site was operating as the All Seasons Salamander Shores Hotel. The site was identified to be elevated between 5-10m above the surrounding landscape adjacent to the hotel grounds. Onsite buildings comprised predominantly the main hotel building which forms a U-shaped building, and was positioned immediately adjacent to part of the southern and eastern boundaries of the site, cutting across diagonally to the central-northern boundary. The remainder of the site was comprised of dining and recreational areas, car parking facilities and gardens. Within the north-eastern corner of the site, associated with recreational and dining faculties, modifications to the ground surface were identified by the presence of three (3) tier-levels, indicative of cut and fill processes. Additionally the lowest tier was raised above the level of an adjacent public-access road immediately to the north of the site. Maintenance sheds and fuel storage areas were observed in areas of elevated car parking; present on large concrete slabs that were observed to be in good condition.

The report identified five Areas of Environmental Concern (AECs) relating to the use of fill materials across the site, car parking and pavements, storage areas, the pool chemical storage area and the maintenance shed. The report concluded that there was potential for contamination to exist on the site and a Phase 2 ESA was recommended to assess potential soil/groundwater contamination at the site.

3.2 Geotechnical Assessment (Coffey, 2009)

A geotechnical assessment for the site was conducted by Coffey in 2009 (Reference GEOTWARA20848AA-AB dated 24 March 2009). The assessment included drilling of seven hand auger boreholes across the site (to refusal depths ranging from approximately 0.25m to 1m bgs), drilling and rock coring of two boreholes with a drilling rig (to a maximum depth of approximately 7m bgs), installation of groundwater monitoring wells in the two deep boreholes, logging of subsurface conditions encountered, laboratory testing of soils, and provided geotechnical advice for the proposed development including slope stability, site classification and foundation conditions.

The subsurface conditions encountered during the drilling included fill overlying aeolian sands, residual clays and weathered rock. Groundwater was observed in the two monitoring wells at depths ranging from approximately 1.1m bgs to 2.6m bgs.

Based on the subsurface conditions encountered and the laboratory testing conducted, Coffey concluded that shallow footings comprising strip and pad footings were likely to be founded in the rock. Coffey also concluded that the site had a low risk of slope instability, and that retaining walls should be designed for surcharge loading from slopes, other retaining walls, structures and other existing/future improvements in the vicinity of the proposed structures.

4 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN AND CHEMICALS OF CONCERN

The potential areas of AECs and chemicals of concern (COCs) identified based on the results of the Phase 1 ESA are outlined below in Table 1.

AEC	POTENTIAL CONTAMINATING ACTIVITY	сос	LIKELIHOOD OF CONTAMINATION
1. Fill material use across site	Importation of fill material of unknown quality used across the site for levelling purposes.	Heavy metals TPH, BTEX, PAH, OCP, OPP, PCB, and asbestos	Low/Medium
2. Car Parking Area	Along with potential use of fill, the degradation of the car park pavement provides a preferential pathway for contaminant entry into underlying substrates	Heavy metals TPH, BTEX, PAH, OCP, OPP, PCB, and asbestos	Low/Medium
3.Storage Area	Potential storage of contaminated materials, and/or the weathering and leaching of contaminants from stored materials or items	Heavy metals TPH, BTEX, PAH, PCB, and asbestos	Low/Medium
4.Pool Chemical Storage	Spills relating to the storage of pool chemicals, and petroleum products used on pool filtration system. Weathering of metal components associated with pool filtration system,	Heavy metals, TPH, BTEX, PCB, Chloride	Low/Medium
5.Maintenance and Fuel Storage Area	Storage of potential contaminated materials, and oils and fuels.	Heavy metals TPH, BTEX, PAH, OCP, OPP, and PCB	Low

TABLE 1 – SUMMARY OF POTENTIAL AREAS AND CHEMICALS OF ENVIRONMENTAL CONCERN

NOTES:

* = It is important to note that this is not an assessment of the financial risk associated with the AEC in the event contamination is detected, but a qualitative assessment of the probability of contamination being detected at the potential AEC.

Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc; BTEX - Benzene, Toluene, Ethylbenzene and Xylenes; TPH - Total Petroleum Hydrocarbons; PAH - Polycyclic Aromatic Hydrocarbons; OCP - Organochlorine Pesticides; PCB – Polychlorinated Biphenyls; OPP – Organophosphorus Pesticides

5 ASSESSMENT CRITERIA

5.1 Soil Investigation Levels

The investigation levels for soil were established based on the following references:

- NSW DEC Guidelines for the NSW Auditor Scheme (Second Edition) (DEC, 2006);
- NSW EPA, Guidelines for Assessing Service Station Sites, (NSW EPA, 1994);
- National Environmental Protection Council (NEPC) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM) (NEPC, 1999).

The NSW DEC (2006) and NEPC (1999) present health based investigation levels for different land uses (eg. industrial / commercial, residential, recreational etc.) as well as provisional phytotoxicity based investigation levels.

The proposed land use is a hotel redevelopment which includes residential apartments and will likely incorporate garden beds and landscaped areas. Therefore the health-based investigation levels for *residential landuse with gardens and accessible soil* (Column 2 of Appendix II in DEC 2006) have been adopted as the investigation levels.

The NSW DEC (2006) Guidelines do not provide investigation levels for volatile petroleum hydrocarbon compounds. The NSW EPA (1994) Guidelines for Assessing Service Station Sites provide an indication of acceptable threshold levels for cleanup of total petroleum hydrocarbons (TPH) compounds at service station sites to be reused for sensitive land uses. For semi-volatile petroleum hydrocarbons (C16 – C35 and >C35) investigation levels are provided in the NSW DEC (2006) guidelines, however, these are based on the NEPC 1999 health-based investigation levels, which require the laboratory analysis to unequivocally differentiate between aromatic and aliphatic compounds. Therefore, the investigation levels provided in the NSW EPA (1994) guidelines have been adopted in this assessment.

The NSW DEC (2006) guidelines state that there are currently no national or NSW DEC endorsed guidelines relating to human health or environmental investigation of material containing asbestos on sites. Site Auditors must exercise their judgement when assessing if a site is suitable for a specific use in the light of evidence that asbestos may be a chemical of concern. Enhealth (2005) *Guidelines for Asbestos in the Non-Occupational Environment* provides some guidance on assessing and managing asbestos in soil although does not provide a threshold concentration or investigation level for asbestos. For this site, Coffey Environments propose to adopt conservative criteria for asbestos (both fibrous and cemented fragments) of 'no detectable asbestos present in surface soils'.

The relevant soil investigation levels are summarised in Table LR1.

6 SAMPLING AND ANALYSIS PLAN

The site sampling and analysis plan was designed to target the main AECs identified in the Phase 1 ESA. The total area of the site is approximately 12,304m². The NSW EPA (1995) Sampling Design Guidelines recommends about 25 sampling locations for a site of this area, subject to site history and the location of the AECs. This is based on detecting a circular hotspot of about 28.9m in diameter with 95% confidence. For the purposes of this assessment, 10 sampling locations (EHA1-10) were selected to assess the potential for contamination to exist at the site, targeting the identified AECs.

The 10 sampling locations were assessed by hand augered boreholes. The boreholes were positioned to provide spatial coverage across the site yet target the main AECs identified. The review of the previous Phase 1 ESA and the site observations indicated that the main AECs were fill materials across the site (including in carparks), storage areas, pool chemical areas, and the maintenance shed and LPG AST. The borehole locations are shown on Figure 2, and were positioned at the following locations:

- EHA1 in the carpark area;
- EHA2 next to the LPG AST;
- EHA3 next to the pool area; and
- EHA4-10 across the remainder of the site to assess general site conditions.

Due to the prevailing surface pavement next to the maintenance shed (bitumen roadway) and the concrete floor inside the shed, a borehole could not be drilled next to the shed with the hand auger.

7 FIELD AND LABORATORY PROGRAMME

7.1 Soil Sampling

Field work for the investigation was undertaken on 26 February 2010 by a Coffey Environmental Scientist. Ten boreholes (EHA1-EHA10) were drilled in locations targeting the AECs identified on the site, as well as spatially across the site to assess general site conditions. The approximate locations of the boreholes are shown on Figure 2.

The boreholes were drilled to the depth of hand auger refusal (a maximum depth of approximately 0.5m bgs). Refusal in each of the boreholes occurred in extremely weathered bedrock.

Environmental soil samples were collected from the surface of the boreholes, then at changes in lithology. The samples were collected directly from the hand auger, which was decontaminated between samples. A clean pair of disposable gloves was used for each discrete sample.

The soil samples were divided into two subsamples. The first subsamples were placed into 250mL laboratory supplied glass jars for laboratory analysis. The second subsamples were placed into zip-lock plastic bags for headspace screening and asbestos analysis. Each sample was placed directly into an ice-chilled esky and remained chilled during transportation to the laboratory.

7.2 Field Quality Assurance/Quality Control

Sampling activities were undertaken in accordance with Coffey's Standard Operating procedures (SOPs), which are based on industry accepted practice.

One duplicate sample was collected for every 10 primary samples collected. One triplicate sample was collected for every 20 samples collected. A rinsate (wash blank) sample was collected at the end of the fieldwork to assess decontamination procedures.

7.3 Laboratory Analysis

The primary and duplicate samples were dispatched to the NATA-accredited SGS laboratory in Alexandria, NSW. The triplicate sample selected for analysis was dispatched to the NATA-accredited MGT laboratory in Oakleigh, VIC. The samples were dispatched to the laboratory under chain of custody conditions.

In accordance with Coffey's proposal, the samples were analysed for the following:

- Heavy Metals (As, Cd, Cr, Cu, Pb, Hg, Ni, Zn) 19 samples;
- Total Petroleum Hydrocarbons (TPH) 6 samples;
- Benzene, Toluene, Ethylbenzene, Xylene (BTEX) 6 samples;
- Polynuclear Aromatic Hydrocarbons (PAH) 19 samples;
- Asbestos 10 samples;
- Organochlorine Pesticides (OCP) 6 samples;
- Polychlorinated Biphenyls (PCB) 6 samples;

- Organophosphorus Pesticides (OPP) 6 samples; and
- Chloride 3 samples.

Samples were selected for analysis based on the AEC and associated COCs.

8 **RESULTS**

8.1 Subsurface Conditions

Borehole logs and explanation sheets are included in Appendix B. The subsurface conditions encountered are summarised below in Tables 3 and 4.

UNIT	SOIL TYPE	DESCRIPTION			
1A	FILL (Roadbase)	Gravelly sand and sandy gravel, fine to medium grained sand, brown and grey, fine to coarse grained gravel			
1B	FILL (Garden bed)	Silty sand, fine to medium grained sand, dark brown with some woodchips at the surface			
2	TOPSOIL	Silty sand, fine to medium grained, dark brown			
3	COLLUVIUM	Sand and silty sand, fine to medium grained, brown and dark brown			
4	EXTREMELY WEATHERED BEDROCK (Rhyodacite and Siltstone)	Sand and gravel, fine to medium grained sand, pale grey and brown, with some low plasticity clay			

TABLE 3 – SUMMARY OF SUBSURFACE SOIL TYPES

8.2 PID Results

A Photoionisation Detector (PID) was used to screen the samples for volatile compounds. The results of the screening ranged from 0.1ppm to 1.1ppm and are included in Appendix C.

8.3 Quality Assurance/Quality Control Results and Data Usability

Samples were received by SGS and MGT within the recommended holding times. A data validation report is included in Appendix D. Copies of the Chain of Custody documentation are included in Appendix E.

Table LR2 presents the relative percentage differences (RPDs) between the primary sample and the duplicate and triplicate samples analysed. Table LR3 presents the results of the laboratory analysis performed on the rinsate (wash blank) sample.

A review of the Coffey quality assurance/quality control (QA/QC) indicates that RPDs were generally within the acceptable range of 0 to 50% with the exception for total xylenes between EHA20.0-0.1 and duplicate sample QC1 (67%), and for chloride between EHA7 0.0-0.1 and duplicate sample QC3 (97%). These RPD exceedances are considered to be attributed to the low concentrations detected.

The rinsate sample indicated that concentrations of heavy metals, TPH, BTEX and PAH were not detected above the laboratory detection limits.

The laboratory internal QA/QC reports indicated that the appropriate laboratory quality assurance/quality control procedures and rates were undertaken for contamination studies, and that:

- Surrogate, matrix spike and laboratory control sample recoveries were within the acceptable range of 70 to 130%; and
- Method blanks were free of contamination and duplicate RPDs were within the acceptable ranges.

The field and laboratory QA/QC assessment indicates that the data obtained for the contamination assessment is reliable and usable.

8.4 Laboratory Results

The laboratory results were assessed against the investigation levels described in Section 5.2. Soil analytical results are summarised in Tables LR1. The laboratory analytical reports are included in Appendix E. The results indicated that:

- Concentrations of heavy metals, TPH, BTEX, PAH, OCP, OPP and PCB were either not detected, or were recorded below the adopted investigation levels;
- Asbestos was not detected in the samples analysed; and
- A maximum chloride concentration of 63mg/kg was recorded in sample EHA3 0.0-0.1.

9 DISCUSSION

Based on a review of the previous Phase 1 ESA conducted by Coffey at the site, five AECs were identified relating to fill of unknown origin used to level the site and as roadbase for the carparks, storage areas on the site, the pool chemical storage area and the maintenance shed/fuel storage areas.

Ten hand augered boreholes were drilled across the site to assess potential soil contamination. Boreholes EHA1-3 were drilled targeting the AECs identified on the site. Boreholes EHA4- 10 were drilled across the remainder of the site to assess general site conditions. Due to the pavement inside (concrete) and adjacent (bitumen) to the maintenance shed, a borehole could not be drilled by hand next to this AEC.

Selected soil samples were analysed for a number of COCs, including heavy metals, hydrocarbons, pesticides, chloride and asbestos. The results were compared to adopted soil investigation levels for Column 2 residential landuse. The laboratory results revealed that concentrations of heavy metals, hydrocarbons and pesticides were either not detected above laboratory detection limits, or were recorded below the adopted investigation levels. Asbestos was not detected in the samples analysed and a maximum chloride concentration of 63mg/kg was recorded. This concentration is considered to be indicative of background concentrations.

The laboratory results indicated there was a low likelihood for significant contamination to be present at the site.

10 CONCLUSION

The All Seasons Salamander Shores Hotel is situated on an elongated peninsular (Soldiers Point) extending into Port Stephens. The hotel currently consists of a multi-storey accommodation building, bar, pool, landscaped areas and a carpark. It is understood that the proposed redevelopment of the hotel will consist of construction of a new four storey accommodation building, underground (basement) parking and residential apartments.

A review of the previous Phase 1 ESA conducted by Coffey revealed five areas of environmental concern, relating to fill on site, storage areas (general storage and pool chemical storage) and the maintenance shed/fuel storage areas. The 10 boreholes were drilled to target these AECs, and also to provide spatial coverage across the site. A borehole could not be drilled by hand methods near the maintenance shed due to the existing pavements in and around the shed.

Selected soil samples were submitted for laboratory analysis for a number of contaminants of concern, including heavy metals, hydrocarbons, pesticides, asbestos and chloride. The laboratory results were assessed against the criteria relevant to the site redevelopment (residential with minimal access to soils). The assessment indicated that contaminant concentrations were either below laboratory reporting limits or the adopted investigation levels. Asbestos was not detected in the samples analysed, and a maximum chloride concentration of 63mg/kg was recorded.

Based on the laboratory results, the likelihood for significant contamination to be present at the site is considered to be low, and further investigations (including management or remediation) are not required.

11 LIMITATIONS

The findings within this report are the result of discrete/specific sampling practices used in accordance with normal practices and standards. To the best of our knowledge they represent a reasonable interpretation of the general conditions of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

It is the nature of contaminated site investigations that the degree of variability in site conditions cannot be known completely and no sampling and analysis program can eliminate all uncertainty concerning the condition of the site. Professional judgement must be exercised in the collection and interpretation of the data.

The investigations undertaken were limited by access constraints and are considered to provide an assessment of the likely contamination conditions at the locations sampled.

In preparing this report, current guidelines for assessment and management of contaminated land were followed. This work has been conducted in good faith in accordance with Coffey's understanding of the client's brief and general accepted practice for environmental consulting.

This report was prepared for Sake Development with the objective of assessing the presence of contamination on the site that could potentially impact on the proposed hotel redevelopment. No warranty, expressed or implied, is made as to the information and professional advice included in this report. The report is not intended for other parties or other uses. Anyone using this document does so at their own risk and should satisfy themselves concerning its applicability and, where necessary, should seek expert advice in relation to the particular situation.

This report does not cover hazardous building materials issues. Information within the report including borehole logs should not be used for geotechnical investigation purposes.

12 REFERENCES

Coffey Environments (2009) Phase 1 Environmental Site Assessment, All Seasons Salamander Shores Hotel, Soldiers Point NSW, Reference ENVIWARA00284AA-R01 dated 2 March 2009.

Coffey Environments (2010) All Seasons Salamander Shores Hotel, 147 Soldiers Point Road, Soldiers Point, Phase 2 Environmental Site Assessment, Reference ENVIWARA00284AB-P01 dated 17 February 2010.

Coffey Geotechnics (2009) Proposed Salamander Shores Hotel Redevelopment, Reference GEOTWARA20848AA-AB dated 24 March 2009.

Geological Survey of NSW (1966) 1:100,000 Newcastle Geological Series Sheet, No. SI 56-2 First Edition.

Land and Property Information (2001) Port Stephens 1:25,000 Topographic Map, Sheet 9332-4S, 2nd Edition.

NSW EPA (1994) Guidelines for Assessing Service Station Sites. ISBN 0-7310-3712-X.

NSW EPA (1995) Sampling Design Guidelines. ISBN 0-7310-3756-1.

NSW EPA (1997) Guidelines for Consultants Reporting on Contaminated Sites. ISBN 0 7310 3892 4.

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme. ISBNo0-7313 0177 3.

Soil Conservation Service of NSW (1995) Port Stephens Acid Sulfate Soil Risk Map, Edition 1.

Important information about your **Coffey** Environmental Report

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of the land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an on-going operation.
- To provide due diligence on behalf of a property vendor.
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

Scope of Investigations

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within practical time and budgetary constraints, and in reliance on certain data and information made available to Coffey. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.

Important information about your Coffey Environmental Report

Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

Contact Coffey for additional assistance

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

Tables

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

Table LR1 - Summary of Soil Laboratory Results

All results in mg/kg

Sample ID		PHYTOTOXICITY	LABORATORY	EHA1	EHA1	EHA2	EHA3	EHA3	EHA4	EHA4	EHA5	EHA5	EHA6	EHA6
Depth (m)		INVESTIGATION	DETECTION	0.0-0.1	0.2-0.3	0.0-0.1	0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1	0.2-0.3
Date of Sampling	LEVELS	LEVELS	LIMIT	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10
Dute of Gumping				20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10
Metals														
Arsenic	400 ¹	20 ³	3	<3	<3	4	4	4	<3	<3	<3	6	<3	<3
Cadmium	80 ¹	3 3	0.3	< 0.3	< 0.3	<0.3	0.3	< 0.3	< 0.3	<0.3	< 0.3	< 0.3	< 0.3	<0.3
Chromium	400 ¹	400 ³	0.3	1.8	1.7	3.7	8.2	3.4	1.9	2.4	3.1	2.4	2.7	3.2
Copper	4000 1	100 ³	0.5	3.1	2.7	13	54	45	6.4	7.1	8.3	7.3	4.5	8.8
Lead	1200 ¹	600 ³	1	5	4	14	15	16	8	11	57	64	2	3
Nickel	2400 ¹	60 ³	0.5	0.8	0.8	1.8	2.4	2.1	0.9	1.3	2.1	1.8	0.94	1.4
Zinc	28000 ¹	200 ³	0.5	18	14	97	130	89	23	19	46	25	19	31
Mercury	60 ¹	1 ³	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Petroleum Hydrocarbo	ns													
C6 - C9 Fraction	65 ²		20	<20	<20	<20	-	-	<20	<20	-	-	-	-
C10 - C14 Fraction			20	<20	<20	<20	-	-	<20	<20	-	-	-	-
C15 - C28 Fraction			50	<50	<50	<50	-	-	<50	<50	-	-	-	-
C29 - C36 Fraction			50	<50	<50	<50	-	-	<50	<50	-	-	-	-
Total C10-C36	1000 ²			<20	<20	<20	-	-	<20	<20	-	-	-	-
BTEX														
Benzene	1 ²		0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	-	-	-	-
Toluene	1.4 ²		0.1	<0.1	<0.1	<0.1	-	-	<0.1	<0.1	-	-	-	-
Ethylbenzene	3.1 ²		0.1	<0.1	<0.1	0.2	-	-	<0.1	<0.1	-	-	-	-
Total Xylene	14 ²		0.3	0.4	<0.3	1	-	-	<0.3	<0.3	-	-	-	-
Polynuclear Aromatic Hydro	carbons													
Benzo(a)pyrene	4 1		0.05	< 0.05	< 0.05	0.07	0.16	0.24	<0.05	< 0.05	0.11	0.11	< 0.05	< 0.05
Total PAHs	80 ¹		1.7	<1.7	<1.7	1.78	2.25	3.02	<1.7	<1.7	2.32	2.23	<1.7	<1.7
Organochlorine Pesticides														
Aldrin & dieldrin	40 ¹		0.1	-	-	<0.1	-	-	<0.1	<0.1	<0.1	-	-	
DDT+DDE+DDD	800 1		0.1	-	-	<0.1	-	-	<0.1	<0.1	<0.1	-	-	-
Heptachlor	40 1		0.1	-	-	<0.1	-	-	<0.1	<0.1	<0.1	-	-	-
Chlordane	200 1		0.1	-	-	<0.1	-	-	<0.1	<0.1	<0.1	-	-	-
Organophosphorus Pesticid														
Total OPPs			0.2	-	-	<0.2	-	-	<0.2	<0.2	<0.2	-	-	-
1010113			0.2		-	-0.2			~0.2	-0.2	~0.2	-	-	
Polychlorinated Biphenyls														
Total PCBs	40 ¹		0.9	-	-	<0.9	-	-	<0.9	<0.9	<0.9	-	-	-
Chloride			0.25	-	-	-	63	41	-	-	-	-	-	-
Asbestos	Not detected		detection	Not detected	-	Not detected	Not detected	-						

Notes:

Concentration exceeds adopted health-based investigation levels Result

Result Concentration exceeds adopted phytotoxicity investigation levels

Not Analysed
 ¹ NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition) - Appendix II, Column 2 (residential with minimal access to soil)
 ² Based on NSW EPA (1994) Guidelines for Assessing Service Station Sites

³ NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition) - Appendix II, Column 5 (provisional phytotoxicity levels)

Table LR1 - Summary of Soil Laboratory Results

All results in mg/kg

Sample ID Depth (m) Date of Sampling	INVESTIGATION	PHYTOTOXICITY	LABORATORT	EHA7	EHA7	EHA8	EHA8	EHA9	EHA9	EHA10	
			DETECTION	0.0-0.1	0.2-0.3	0.0-0.1	0.4-0.5	0.0-0.1	0.3-0.4	0.0-0.1	EHA10 0.2-0.3
Date of Sampling	LEVELS	LEVELS	LIMIT	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10	26/2/10
	LEVELO	LEVELO	LIMII	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10	20/2/10
Metals						-					
Arsenic	400 ¹	20 ³	3	<3	<3	<3	<3	4	4	<3	<3
Cadmium	80 1	3 3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	400 1	400 ³	0.3	2.7	3.1	2.4	3.6	9	8.2	1.5	1.4
Copper	4000 1	100 3	0.5	14	18	7.9	15	15	18	0.8	<0.5
Lead	1200 1	600 ³	1	3	5	3	4	10	10	1	<1
Nickel	2400 1	60 ³	0.5	1.4	1.7	1.7	2	3.6	3.9	<0.5	<0.5
Zinc	28000 1	200 3	0.5	46	54	49	96	180	160	5.9	3.2
Mercury	60 ¹	1 3	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Total Petroleum Hydrocarbo	ons										
C6 - C9 Fraction	65 ²		20	-	-	<20	-	-	-	-	-
C10 - C14 Fraction			20	-	-	<20	-	-	-	-	-
C15 - C28 Fraction			50	-	-	<50	-	-	-	-	-
C29 - C36 Fraction			50	-	-	<50	-	-	-	-	-
Total C10-C36	1000 2			-	-	<20	-	-	-	-	-
BTEX											
Benzene	1 ²		0.1	-	-	<0.1	-	-	-	-	-
Toluene	1.4 ²		0.1	-	-	<0.1	-	-	-	-	-
Ethylbenzene	3.1 ²		0.1	-	-	<0.1	-	-	-	-	-
Total Xylene	14 ²		0.3	-	-	<0.3	-	-	-	-	-
Polynuclear Aromatic Hydro	ocarbons										
Benzo(a)pyrene	4 ¹		0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
Total PAHs	80 ¹		1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	<1.7
Organochlorine Pesticides											
Aldrin & dieldrin	40 ¹		0.1	-	-	-	-	<0.1	-	<0.1	-
DDT+DDE+DDD	800 ¹		0.1	-	-	-	-	<0.1	-	<0.1	-
Heptachlor	40 ¹		0.1	-	-	-	-	<0.1	-	<0.1	-
Chlordane	200 1		0.1	-	-	-	-	<0.1	-	<0.1	-
Organophosphorus Pesticid	des										
Total OPPs			0.2	-	-	-	-	<0.2	-	<0.2	-
Polychlorinated Biphenyls											
Total PCBs	40 ¹		0.9	-	-	-	-	<0.9	-	<0.9	-
Chloride			0.25	46	-	-	-	-	-	-	-
Asbestos	Not detected		detection	Not detected	-						

Notes:

Concentration exceeds adopted health-based investigation levels Result

Result Concentration exceeds adopted phytotoxicity investigation levels

Not Analysed
 ¹ NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition) - Appendix II, Column 2 (residential with minimal access to soil)
 ² Based on NSW EPA (1994) Guidelines for Assessing Service Station Sites

³ NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (2nd Edition) - Appendix II, Column 5 (provisional phytotoxicity levels)

Table LR2 - Summary of Duplicate and Triplicate Sample Results

All results in mg/kg

Sample ID	EHA2	QC1 (Duplicate of		EHA7	QC3 (Duplicate of		EHA7	QC3A (Triplicate	
Depth (m)	0.0-0.1	EHA2 0.0-0.1)		0.0-0.1	EHA7 0.0-0.1)		0.0-0.1	of EHA7 0.0-0.1)	
Date of Sampling	26/2/10	26/2/10	RPD%	26/2/10	26/2/10	RPD%	26/2/10	26/2/10	RPD%
Laboratory	SGS	SGS		SGS	SGS		SGS	MGT	
	000	000		000	000		000	MOT	
Metals									
Arsenic	4	4	0%	<3	<3	NC	<3	2.9	NC
Cadmium	<0.3	<0.3	NC	<0.3	<0.3	NC	<0.3	<0.5	NC
Chromium	3.7	3.6	3%	2.7	2.6	4%	2.7	<5	NC
Copper	13	13	0%	14	12	15%	14	11	24%
Lead	14	15	7%	3	3	0%	3	<5	NC
Nickel	1.8	1.7	6%	1.4	1.5	7%	1.4	<5	NC
Zinc	97	96	1%	46	48	4%	46	35	27%
Mercury	<0.05	<0.05	NC	<0.05	<0.05	NC	<0.05	<0.1	NC
Total Petroleum Hydrocarbons		+							
C6 - C9 Fraction	<20	<20	NC	-	-	-	-	-	-
C10 - C14 Fraction	<20	<20	NC	-	-	-	-	-	-
C15 - C28 Fraction	<50	58	NC	-	-	-	-	-	-
C29 - C36 Fraction	<50	96	NC	-	-	-	-	-	-
Total C10-C36	<20	154	NC	-	-	-	-	-	-
10001010000	20								
BTEX									
Benzene	<0.1	<0.1	NC	-	-	-	-	-	-
Toluene	<0.1	<0.1	NC	-	-	-	-	-	-
Ethylbenzene	0.2	0.2	0%	-	-	-	-	-	-
Total Xylene	1	2	67%	-	-	-	-	-	-
Polynuclear Aromatic Hydrocarbons									
Benzo(a)pyrene	0.07	0.05	33%	<0.05	<0.05	NC	<0.05	<0.1	NC
Total PAHs	1.78	<1.7	NC	<1.7	<1.7	NC	<1.7	<0.1	NC
Organochlorine Pesticides									
Aldrin & dieldrin	<0.1	<0.1	NC	-	-	_	-	-	_
DDT+DDE+DDD	<0.1	<0.1	NC	-	_			-	
Heptachlor	<0.1	<0.1	NC	-	-	-	-	-	-
Chlordane	<0.1	<0.1	NC	-	-	-	-	-	-
Organophosphorus Pesticides							l		
Total OPPs	<0.2	<0.2	NC	-	-	-	-	-	-
Polychlorinated Biphenyls		+			+		 		
Total PCBs	<0.9	<0.9	NC	-	-	-	-	-	-
Oblasida				10	10	07%	40	20	2001
Chloride	-	-	-	46	16	97%	46	32	36%

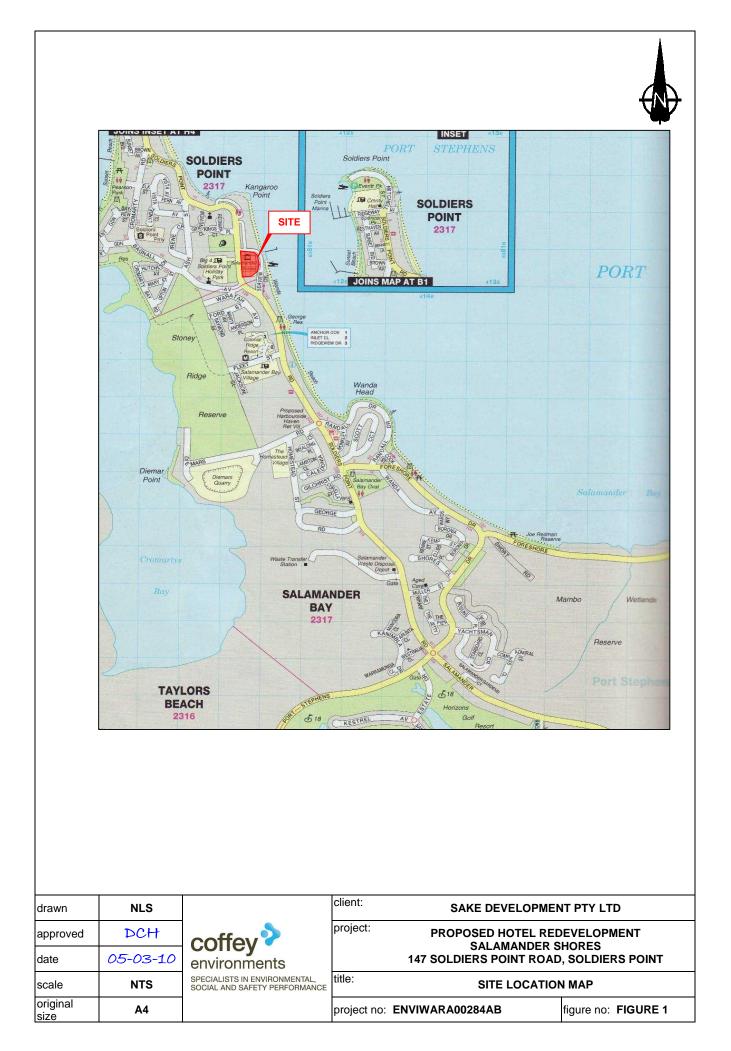
Notes:

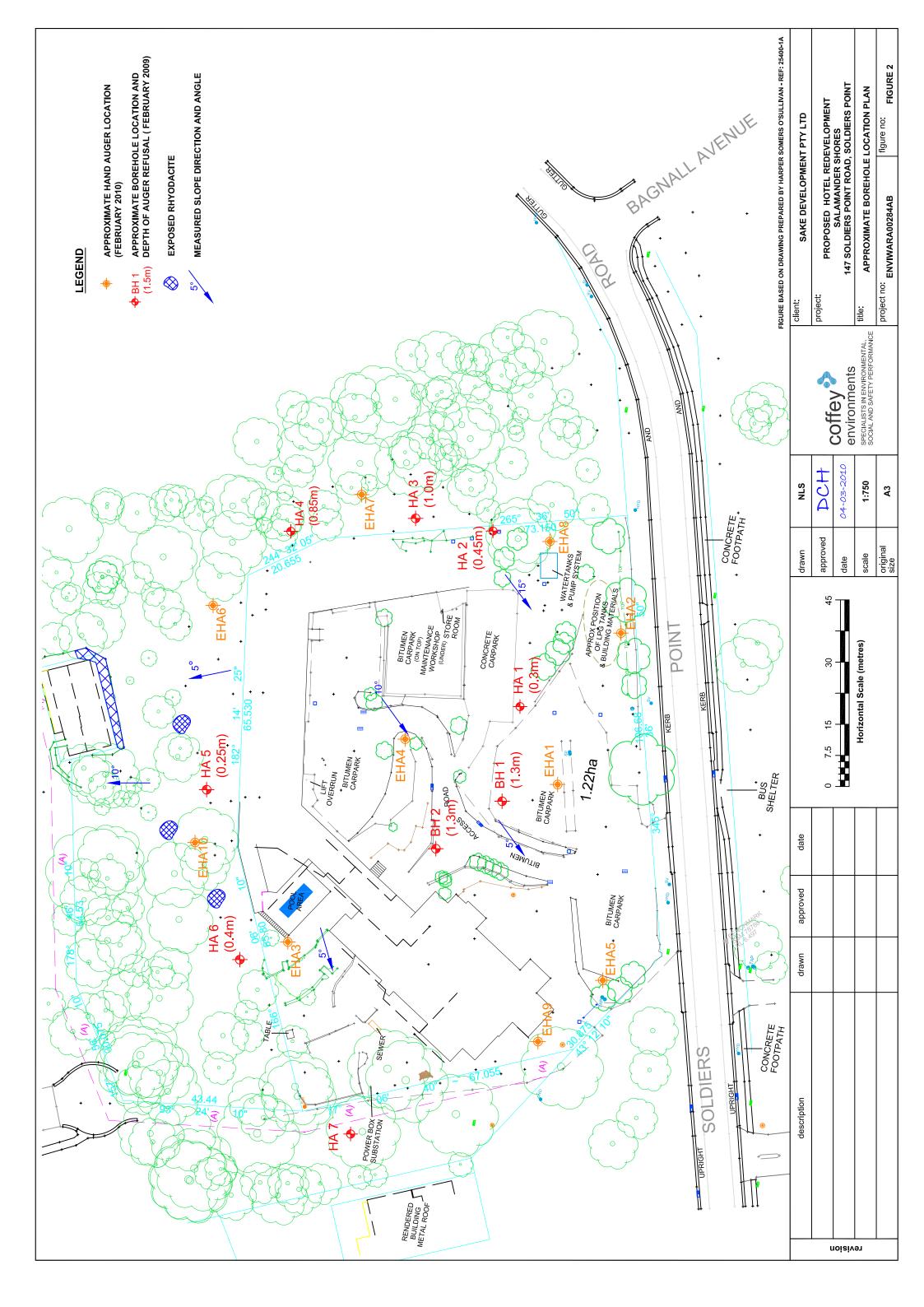
RPD

RPD exceeds control limit of 50%

NC RPD not calculated either the primary or duplicate samples (or both) did not produce results

- Not Analysed


Table LR3 - Summary of Wash Blank Results


All results in μ g/L

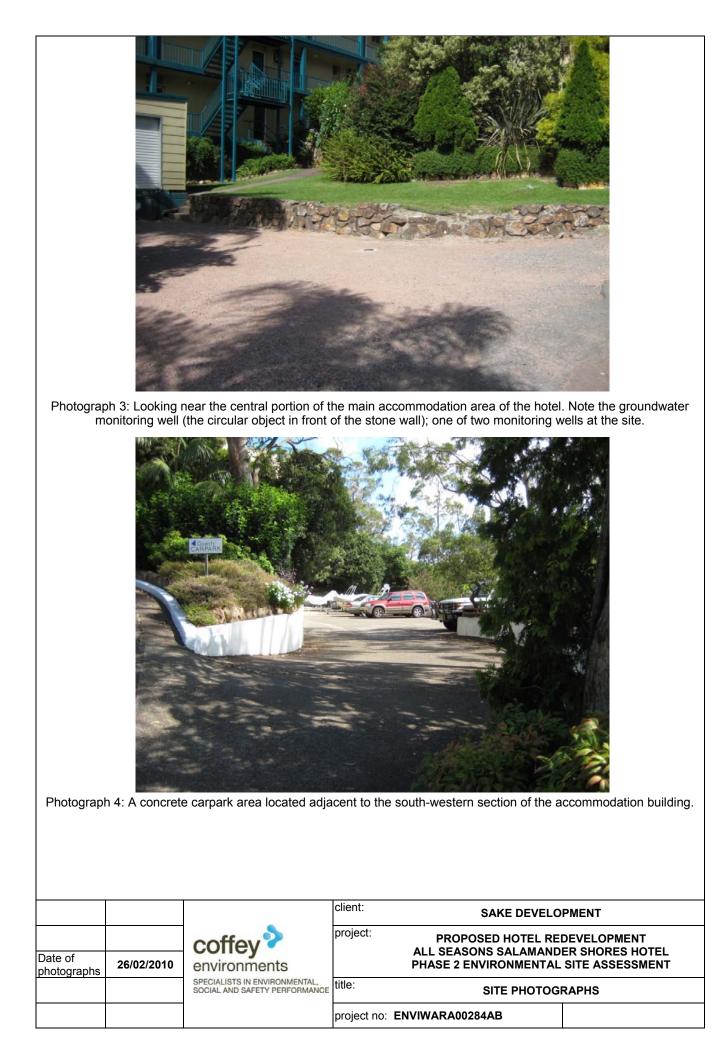
Sample ID	QCA
Sample Type	Wash Blank
Date of Sampling	26/2/10
Metals	
Arsenic	<1
Cadmium	<0.1
Chromium	<1
Copper	<1
Lead	1
Nickel	<1
Zinc	6
Mercury	<0.5
Total Petroleum Hydrocarbons	
C6 - C9 Fraction	<40
C10 - C14 Fraction	<100
C15 - C28 Fraction	<200
C29 - C36 Fraction	<200
Total C10-C36	<100
BTEX	
Benzene	<0.5
Toluene	<0.5
Ethylbenzene	<0.5
Total Xylenes	<1.5
Polycyclic Aromatic Hydrocarbons	
Benzo(a)pyrene	<0.5
Total PAHs	<9

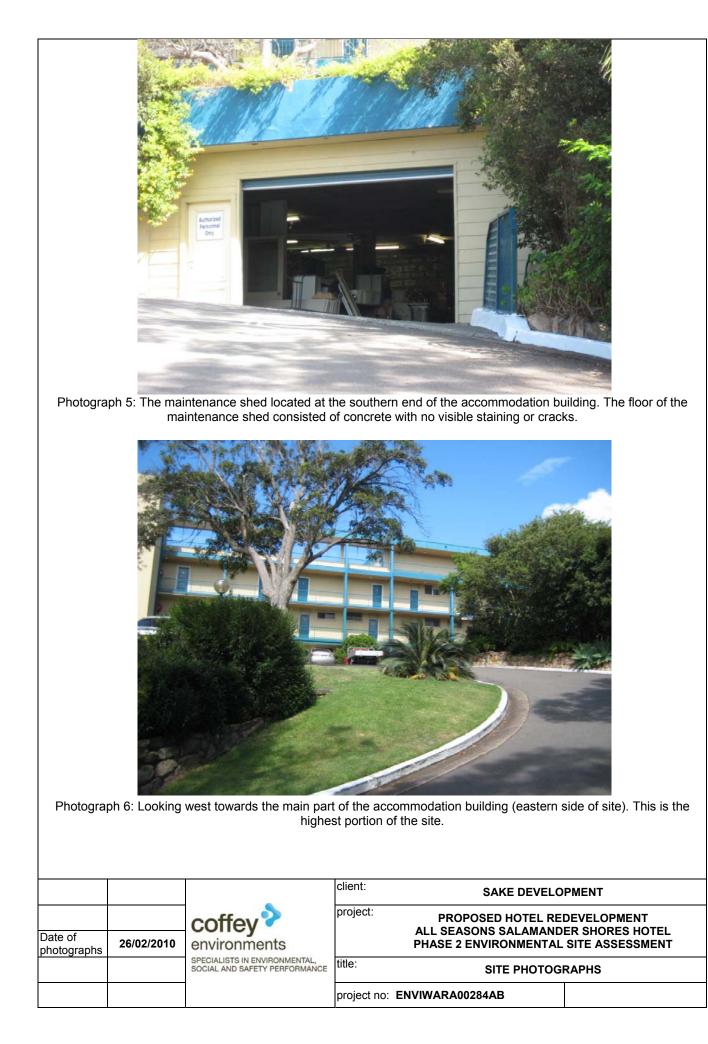
Figures

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

Appendix A Site Photographs

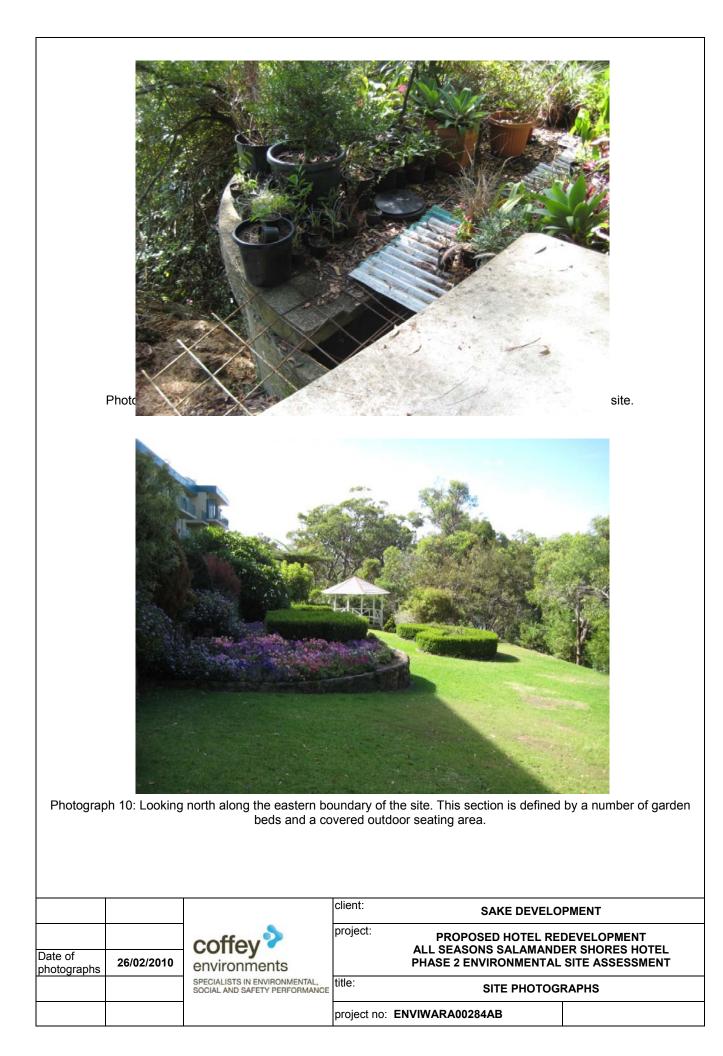
Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point




Photograph 1: The accommodation building and main carpark area of the Salamander shores Hotel, looking east from Soldiers Point Road.

Photograph 2: The bitumen carpark in the north-western corner of the site

			client: SAKE DEVELOPMENT				
		coffey	project:				
Date of photographs	26/02/2010	environments		ALL SEASONS SALAMANDER SHORES HOTEL PHASE 2 ENVIRONMENTAL SITE ASSESSMENT e: SITE PHOTOGRAPHS			
		SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	title:				
			project no:	ENVIWARA00284AB			



Photograph 7: The LPG AST located in the south-western section of the site.

Photograph 8: Overview of the carpark areas of the hotel (western section of the site).

			client: SAKE DEVELOPN	PMENT			
		coffey	project:				
Date of photographs	26/02/2010	environments	ALL SEASONS SALAMANDER SHORES HOTEL PHASE 2 ENVIRONMENTAL SITE ASSESSMENT				
		SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	title:	SITE PHOTOGRAPHS			
			project no:	ENVIWARA00284AB			

Photograph 11: The outdoor seating area in the north-eastern corner of the site.

			client:	SAKE DEVELO	PMENT
		coffey	project:	PROPOSED HOTEL REI ALL SEASONS SALAMAND	
Date of photographs	26/02/2010	environments		PHASE 2 ENVIRONMENTAL SITE ASSESSMENT	
		SPECIALISTS IN ENVIRONMENTAL, SOCIAL AND SAFETY PERFORMANCE	title:	SITE PHOTOGI	RAPHS
			project no:	ENVIWARA00284AB	

Appendix B Borehole Logs and Explanation Sheets

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

Soil Description Explanation Sheet (1 of 2)

DEFINITION:

In engineering terms soil includes every type of uncemented or partially cemented inorganic or organic material found in the ground. In practice, if the material can be remoulded or disintegrated by hand in its field condition or in water it is described as a soil. Other materials are described using rock description terms.

CLASSIFICATION SYMBOL & SOIL NAME

Soils are described in accordance with the Unified Soil Classification (UCS) as shown in the table on Sheet 2.

PARTICLE SIZE DESCRIPTIVE TERMS

NAME	SUBDIVISION	SIZE
Boulders		>200 mm
Cobbles		63 mm to 200 mm
Gravel	coarse	20 mm to 63 mm
	medium	6 mm to 20 mm
	fine	2.36 mm to 6 mm
Sand	coarse	600 μm to 2.36 mm
	medium	200 μm to 600 μm
	fine	75 μm to 200 μm

MOISTURE CONDITION

- Dry Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
- **Moist** Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
- Wet As for moist but with free water forming on hands when handled.

CONSISTENCY OF COHESIVE SOILS

TERM	UNDRAINED STRENGTH S _U (kPa)	FIELD GUIDE
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 - 25 A finger can be pushed into the sto about 25mm depth.	
Firm	25 - 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 - 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 - 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

DENSITY OF GRANULAR SOILS

TERM	DENSITY INDEX (%)		
Very loose	Less than 15		
Loose	15 - 35		
Medium Dense	35 - 65		
Dense	65 - 85		
Very Dense	Greater than 85		

MINOR COMPONENTS

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:	
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%	
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%	

SOIL STRUCTURE

	ZONING	CEMENTING			
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.		
Lenses	Discontinuous layers of lenticular shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.		
Pockets	Irregular inclusions of different material.				

GEOLOGICAL ORIGIN WEATHERED IN PLACE SOILS Extremely Structure and fabric of parent rock visible. weathered material						
Residual soil	Structure and fabric of parent rock not visible.					
TRANSPORTE Aeolian soil	D SOILS Deposited by wind.					
Alluvial soil	Deposited by streams and rivers.					
Colluvial soil	Deposited on slopes (transported downslope by gravity).					
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.					
Lacustrine soil	Deposited by lakes.					
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.					

coffey **>**

Soil Description Explanation Sheet (2 of 2)

FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60 mm and basing fractions on estimated mass)					USC	PRIMARY NAME					
S	~	arse 2.0 mm	CLEAN GRAVELS (Little or no fines)	Wide range in grain size and substantial amounts of all intermediate particle sizes.			GW	GRAVEL			
3 mm i		'ELS If of co r than 2	CLE GRA (Lit fin	Predo with r	ominantly one size or nore intermediate siz	a range of sizes es missing.	GP	GRAVEL			
SOILS than 60	l eye)	GRAVELS More than half of coarse fraction is larger than 2.0 mm	GRAVELS WITH FINES (Appreciable amount of fines)		plastic fines (for iden dures see ML below		GM	SILTY GRAVEL			
RAIINED rials less 0.075 m	ie naked	More fraction	GRA WITH (Appre amo of fi		c fines (for identificat L below)	ion procedures	GC	CLAYEY GRAVEL			
COARSE GRAIINED SOILS More than 50% of materials less than 63 mm is larger than 0.075 mm	about the smallest particle visible to the naked eye)	arse 2.0 mm	AN IDS IDS ttle ro ss)	Wide amou	range in grain sizes a nts of all intermediat	and substantial e sizes	SW	SAND			
CO/ an 50% lar	ticle visi	SANDS In half of co maller than 2	CLEAN SANDS (Little or no fines)	Predominantly one size or a range of sizes with some intermediate sizes missing.		SP	SAND				
More th	llest par	SANDS More than half of coarse stion is smaller than 2.0 n	SANDS WITH FINES (Appreciable amount of fines)		plastic fines (for identidation of the set o		SM	SILTY SAND			
	the sma	SANDS More than half of coarse fraction is smaller than 2.0 mm	SAI WITH (Appre amo	Plastic fines (for identification procedures see CL below).			SC	CLAYEY SAND			
	out		IDENTIFICAT	ION PROCEDURES ON FRACTIONS <0.2 mm.							
nan	s at	0	DRY STREN	GTH	DILATANCY	TOUGHNESS					
ILS less tl 75 ml	rticle i	SILTS & CLAYS Liquid limit less than 50	None to Low		Quick to slow	None	ML	SILT			
FINE GRAINED SOILS In 50% of material less is smaller than 0.075 i	(A 0.075 mm particle is		TS & iquid	TS & (iquid iss tha	TS & (iquid iss tha	TS & - iquid ss the	Medium to H	ligh	None	Medium	CL
SRAIN of ma aller th	.075 n	SIL L	Low to medi	um	Slow to very slow	Low	OL	ORGANIC SILT			
-INE C n 50% is sma	(A 0	LAYS mit tin 50	Low to medi	um Slow to very slow		Low to medium	MH	SILT			
FINE GRAINED SOILS More than 50% of material less than 63 mm is smaller than 0.075 mm		SILTS & CLAYS Liquid limit greater than 50	High		None	High	СН	CLAY			
Mc 6		SILT Li _i grea	Medium to H	ligh	None	Low to medium	ОН	ORGANIC CLAY			
HIGHL' SOILS	Y OF	RGANIC	Readily ident frequently by		y colour, odour, spon s texture.	gy feel and	Pt	PEAT			
• Low p	lastic	city – Liqu	id Limit W _L les	s than	35%. • Medium plasti	city – W _L between 35%	6 and 50%.				

SOIL CLASSIFICATION INCLUDING IDENTIFICATION AND DESCRIPTION

COMMON DEFECTS IN SOIL

TERM	DEFINITION	DIAGRAM	TERM	DEFINITION	DIAGRAM
PARTING	A surface or crack across which the soil has little or no tensile strength. Parallel or sub parallel to layering (eg bedding). May be open or closed.		SOFTENED ZONE	A zone in clayey soil, usually adjacent to a defect in which the soil has a higher moisture content than elsewhere.	AND THE OWNER
JOINT	A surface or crack across which the soil has little or no tensile strength but which is not parallel or sub parallel to layering. May be open or closed. The term 'fissure' may be used for irregular joints <0.2 m in length.		TUBE	Tubular cavity. May occur singly or as one of a large number of separate or inter-connected tubes. Walls often coated with clay or strengthened by denser packing of grains. May contain organic matter	
SHEARED ZONE	Zone in clayey soil with roughly parallel near planar, curved or undulating boundaries containing closely spaced, smooth or slickensided, curved intersecting joints which divide the mass into lenticular or wedge shaped blocks.		TUBE CAST	Roughly cylindrical elongated body of soil different from the soil mass in which it occurs. In some cases the soil which makes up the tube cast is cemented.	
SHEARED SURFACE	A near planar curved or undulating, smooth, polished or slickensided surface in clayey soil. The polished or slickensided surface indicates that movement (in many cases very little) has occurred along the defect.		INFILLED SEAM	Sheet or wall like body of soil substance or mass with roughly planar to irregular near parallel boundaries which cuts through a soil mass. Formed by infilling of open joints.	

72810-03/02/2009

Rock Description Explanation Sheet (1 of 2)

		ock substance, defect and mass are defined as follows engineering terms roch substance is any naturally occu		of miner	als and organic	material which cannot be				
		disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively homogenous material, may be isotropic or anisotropic.								
Defect	Di	iscontinuity or break in the continuity of a substance or substances.								
Mass		ny body of material which is not effectively homogeneous ore substances with one or more defects.	. It can consist of	two or m	iore substances	without defects, or one or				
SUBSTANCE	DES	CRIPTIVE TERMS:	ROCK	ROCK SUBSTANCE STRENGTH TERMS						
ROCK NAME		imple rock names are used rather than precise eological classification.	Term	Abbrev- iation	Point Load Index, I _{s(50)} (MPa)	Field Guide				
PARTICLE SIZE	G	rain size terms for sandstone are:								
Coarse grained		ainly 0.6mm to 2mm	., .							
•		ainly 0.2mm to 0.6mm	Very Low	VL	Less than 0.1	Material crumbles under firm blows with sharp end of pick;				
Fine grained	Μ	ainly 0.06mm (just visible) to 0.2mm				can be peeled with a knife; pieces up to 30mm thick can				
FABRIC		erms for layering of penetrative fabric (eg. bedding, eavage etc.) are:				be broken by finger pressure.				
Massive	N	o layering or penetrative fabric.			044-00	F				
Indistinct		ivering or fabric just visible. Little effect on properties.	Low	L	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show with firm bows of a				
Distinct		ayering or fabric is easily visible. Rock breaks more asily parallel to layering of fabric.				pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break				
Term Abb	revia									
Residual Soil	RS	Soil derived from the weathering of rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly	Medium	м	0.3 to 1.0	during handling. Readily scored with a knife; a				
Extremely	xw	transported. Material is weathered to such an extent that it has soil properties, ie, it either disintegrates or				piece of core 150mm long by 50mm diameter can be broken by hand with difficulty				
Weathered Material		can be remoulded in water. Original rock fabric still visible.	High	н	1 to 3	A piece of core 150mm long by 50mm can not be broken				
Highly Weathered Rock	нw	Rock strength is changed by weathering. The whole of the rock substance is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Some minerals are decomposed to buyging the page of the page of the page of the				by hand but can be broken by a pick with a single firm blow; rock rings under hammer.				
		to clay minerals. Porosity may be increased by leaching or may be decreased due to the deposition of minerals in pores.	Very Hig	n VH	3 to 10	Hand specimen breaks after more than one blow of a pick; rock rings under				
Moderately Weathered Rock	MW	The whole of the rock substance is discoloured, usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no	Extreme	v FH	More than 10	hammer. Specimen requires many				
Slightly	sw	longer recognisable. Rock substance affected by weathering to the	High	y <u> </u>		blows with geological pick to break; rock rings under hammer.				
Weathered Rock		extent that partial staining or partial discolouration of the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rock is recognisable; strength properties are essentially those of the fresh rock substance.			ubstance Stre					
Fresh Rock	FR	Rock substance unaffected by weathering.	perpendi	cular to th		n strength anisotropic rocks may				
Notes on Weath 1. AS1726 sugges substance weat	ts the	, ,	2. The term term. Wh makes it engineeri	"extreme ile the terr clear that ng terms.	ly low" is not used n is used in AS17 materials in that s	d as a rock substance strength 26-1993, the field guide therein strength range are soils in th for isotropic rocks (and				
advantage in ma given in AS1726 2. Where physical associated with	aking : 3. and c igneo	hemical changes were caused by hot gasses and liquids us rocks, the term "altered" may be substituted for he abbreviations XA, HA, MA, SA and DA.	anisotrop 10 to 25 different	ic rocks v imes the	which fall across the point load index less the strength index less the streng	(50). The ratio may vary for rocks often have lower ratios				

Rock Description Explanation Sheet (2 of 2)

ROCK MA		Diagram		aphic Log Note 1)	DEFECT SHAPE Planar	TERMS The defect does not vary i orientation
Term	Definition				.	
Parting	A surface or crack across which the rock has little or no tensile strength. Parallel or sub parallel to layering		20 Bedding		Curved	The defect has a gradual change in orientation
	(eg bedding) or a planar anisotropy in the rock substance (eg, cleavage).		20 Cleavage	(Note 2)	Undulating	The defect has a wavy surface
	May be open or closed.			(NOLE 2)	Stepped	The defect has one or mo well defined steps
Joint	A surface or crack across which the rock has little or no tensile strength. but which is not parallel or sub				Irregular	The defect has many shar changes of orientation
	parallel to layering or planar anisotropy in the rock substance.		60	(Note 2)		ment of defect shape is partly by the scale of the observation
	May be open or closed.			(1010 2)	ROUGHNESS Slickensided	FERMS Grooved or striated surfac usually polished
Sheared Zone	Zone of rock substance with roughly parallel near planar, curved or				Polished	Shiny smooth surface
(Note 3)	undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of		35		Smooth	Smooth to touch. Few or r surface irregularities
	the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.	·/· · · ·		~	Rough	Many small surface irregulariti (amplitude generally less tha 1mm). Feels like fine to coars sand paper.
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.		40	いいがの	Very Rough	Many large surface irregularities (amplitude generally more than 1mm Feels like, or coarser than ve coarse sand paper.
Crushed Seam	Seam with roughly parallel almost planar boundaries, composed of				COATING TER Clean	MS No visible coating
(Note 3)	disoriented, usually angular fragments of the host rock substance which may be more				Stained	No visible coating but surfaces are discoloured
	weathered than the host rock. The seam has soil properties.			17 1	Veneer	A visible coating of soil or mineral, too thin to measur may be patchy
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.				Coating	A visible coating up to 1mi thick. Thicker soil material usually described using appropriate defect terms (e infilled seam). Thicker roc strength material is usuall described as a vein.
					BLOCK SHAPE Blocky	TERMS Approximately
Extremely Weathered Seam	Seam of soil substance, often with gradational boundaries. Formad by weathering of the rock substance in		32 TITTTT	5115	Tabular	equidimensional Thickness much less than length or width
	place.	Seam	-y-		Columnar	Height much greate than cross section

2. Partings and joints are not usually shown on the graphic log unless considered significant.

^{3.} Sheared zones, sheared surfaces and crushed seams are faults in geological terms.

coff	ey >> environments	Borehole No.	EHA 1
Engine	ering Log - Borehole	Sheet Office Job No.:	1 of 1 ENVIWARA00284AB
Client:	SAKE DEVELOPMENT	Date started:	26.2.2010
Principal:		Date completed:	26.2.2010
Project:	ALL SEASONS SALAMANDER SHORES HOTEL	Logged by:	DCH
Borehole Location	on: REFER TO FIGURE 2	Checked by:	

Easting:

Northing

material substance

classification symbol

graphic log

Checked by:

consistency/ density index

moisture condition

R.L. Surface:

datum:

A pocket b penetro-meter

100 200 400

Not Measured

structure and additional observations

slope:

bearing:

material

soil type: plasticity or particle characteristics, colour, secondary and minor components.

-90°

		23								4 0 0 4	
ЧH			N	E			SP	FILL: Gravelly SAND, fine to medium grain grey / brown, gravel fine to coarse grained	ned, pale D		FILL (ROAD BASE)
			None Observed		1						
			l Ĉ								
			None	E			SP	SAND: fine to medium grained, brown, sor fine to coarse grained (siltstone gravel).	ne gravel		EXTREMELY WEATHERED
											-
		***						Terminated due to refusal on bedrock.		+	
					0.5			Borehole EHA 1 terminated at 0.4m			
						4					_
						1					-
						1					-
											-
						4					-
					1. <u>0</u>						
						1					-
						1					-
											_
											-
					1. <u>5</u>	-					
						1					-
						1					-
						1					-
											-
met	hod				2.0 support			notes, samples, tests	classification sy		consistency/density index
AS				screwing*	M mud		nil	U ₅₀ undisturbed sample 50mm diameter	soil description		VS very soft
AD RR			auger roller/t	drilling* icone	C casing penetration			U ₆₃ undisturbed sample 63mm diameter D disturbed sample	based on unified system	classification	S soft F firm
W CT			washb cable f	ore	1231		ice	N standard penetration test (SPT) N* SPT - sample recovered	moisture		St stiff VSt very stiff
HA B			hand a	uger		no resistar ranging to refusal		Nc SPT with solid cone	D dry		H hard
DT B			diatub blank l		water 10/1/9	98 water le		V vane shear (kPa) P pressuremeter	M moist W wet		Fb friable VL very loose
S v			V bit TC bit		on da	te shown		Bs bulk sample	Wp plastic limi	t	L loose
T *bit:	show	n by:	suffix		water			E environmental sample R refusal	W _L liquid limit		D dense
e.g.			ADT		- water	outflow					VD very dense

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10

drill model and mounting:

drilling information

support water

hole diameter:

penetration

123

method

Hand Auger

depth metre RL

100 mm

notes

samples, tests, etc

Form GEO 5.3 Issue 3 Rev.2

L	へ	1		ey	-100*				onments			Boreho	ble	No.	EHA 2
Ε	ng	jir	ne	ering	j L	.og	- E	Bor	ehole			Sheet Office	Job	No.:	1 of 1 ENVIWARA00284AB
Clie	ent:			SAK	E D	EVE	LOP	MEN	т			Date st	tarte	ed:	26.2.2010
Prir	ncipa	I:									I	Date co	omp	olete	d: 26.2.2010
Pro	ject:			ALL	SE	ASO	NS S	ALA	MANDER SHORE	ES HOTEL	I	Logged	d by	:	DCH
		e Lo	cati	on: REF	ER	TO F	GUI	RE 2				Checke	ed b	y:	
						Auger			Easting:	slope: -90					Surface: Not Measured
nole	e diam	eter:			100 m	m			Northing	bearing:				dat	um:
dri	illing	info	orma	ation			mate	· · · · · · · · · · · · · · · · · · ·	ubstance				1		
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity c	aterial or particle characteristics, and minor components.	moisture condition	consistency/ density index	k	300 benetro- 400 meter	structure and additional observations
ЧЧ		N	ved	E			\otimes	GP	FILL: Sandy GRAVEL, fi brown, sand fine to medi	ne to medium grained, dark um grained.	D				FILL (ROAD BASE)
			Observed			_									
			None C												
			Ž	E		_		SM	Silty SAND: fine to medi some coarse rhyodacite		-				EXTREMELY WEATHERED
					-				Terminated due to refusa Borehole EHA 2 termina	al on rhyodacite. ted at 0.3m					
						-									-
						0.5									_
						-									-
															-
						-									-
															-
						1.0									
						1.0									_
															-
						-									-
															-
						-									-
						1. <u>5</u>									_

.

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10			- 1. <u>5</u> - - - - 2.0			
Γ	method		support	notes, samples, tests	classification symbols and	consistency/density index VS very soft
	AS AD	auger screwing* auger drilling*	M mud N nil C casing	U ₅₀ undisturbed sample 50mm diameter U ₆₃ undisturbed sample 63mm diameter	soil description based on unified classification	VS very soft S soft
\sim	RR	roller/tricone	penetration	D disturbed sample	system	F firm
šev.	w	washbore	1234	N standard penetration test (SPT)		St stiff
3 5	СТ	cable tool	no resistance ranging to	N* SPT - sample recovered	moisture	VSt very stiff
sue	HA	hand auger	∞∞∞∞∞arefusal	Nc SPT with solid cone	D dry	H hard Fb friable
5.3 Issue 3 Rev.2	DT B	diatube blank bit	water	V vane shear (kPa) P pressuremeter	M moist W wet	VL very loose
5.5	ь V	V bit	▲ 10/1/98 water level on date shown	Bs bulk sample	Wp plastic limit	L loose
GEO	Ť	TC bit		E environmental sample	W ₁ liquid limit	MD medium dense
e E	*bit shown l		water inflow	R refusal		D dense
Form	e.g.	ADT	- water outflow			VD very dense

C	CC	b	f	ey	Ż	•	ən	vire	onments			Borel	nol	e N	lo.	ЕНА З
E	ing	jir	e	ering	j L	.og	- I	Bor	rehole			Shee Office	-	ob	No.	1 of 1 ENVIWARA00284AE
Cli	ent:			SAK	KE D	DEVE	LOP	MEN	Τ			Date	sta	arte	d:	26.2.2010
Pri	ncipa	1:										Date	со	mp	lete	d: 26.2.2010
Pro	oject:			ALL	SE.	ASO	NS S	SALA	MANDER SHORES	HOTEL		Logg	ed	by:		DCH
Во	rehole	e Lo	catio	on: REF	ER	TO F	GU	RE 2				Chec	ke	d b	y:	
drill	model	l and	mou	nting: ł	Hand	Auger			Easting:	slope:	-90°				R.L	Surface: Not Measured
	e diamo				100 m	ım	.		Northing	bearing:					dat	um:
dr	illing	Info	rma	tion	1	+	mat	1	ubstance							
method	5 Denetration	support	water	notes samples, tests, etc	RL	depth metres		classification symbol	mater soil type: plasticity or pa colour, secondary and	rticle characteristics,	moisture	condition consistency/ density index		kF	300 by perietro-	structure and additional observations
ЧЧ		N		E				SP	FILL: Silty SAND, fine to med brown, some woodchips at si							FILL (GARDEN BED)
			None Observed	E		-										

<u>a</u>e

			No	E		- 0.5			Termin	ated due		al on rhyc	ered at 0 dacite bou m									
						- 1. <u>0</u> - - - 1.5																
						2.0																-
rm GEO 5.3 Issue 3 Rev.2	metho AS AD RR W CT HA DT B V T *bit sh e.g.	a rr c h d b V T tbysu	uger d oller/triv ashbo able to and au iatube lank bi bit C bit	cone re ol iger	M C pern 122 ₩ wat	ter 10/1/98	io resistano anging to efusal 3 water le e shown nflow	ce	notes, s U ₅₀ D N N N C V P Bs E R	undistu disturb standa SPT - s SPT wi vane sl pressu bulk sa	urbed samp urbed sample ord penetral sample rec ith solid cor hear (kPa) rremeter ample nmental sam	tion test (S covered ne	diameter	soil de based system moistu D M W Wp	 n ed class			consister VS S F St VSt H Fb VL L MD D VD	-	very soft soft firm stiff very stiff hard friable very loose loose medium dense very den	se dense	

Engineering Log - Borehole SAKE DEVELOPMENT

Client:

coffey

Principal: Project:

ALL SEASONS SALAMANDER SHORES HOTEL

environments

Во	rehole	e Lo	catio	on: REF	ER	TO F	ïGUł	RE 2			С	hecke	d b	y:	
drill	mode	land	mou	nting: I	Hand	Auger			Easting: slope	e: -90°				R.L	Surface: Not Measured
	e diam				100 m	m			Northing bear	ng:				dat	tum:
dr	illing	info	rma	tion			mate		ubstance					1	
method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	material soil type: plasticity or particle charact colour, secondary and minor compo		condition	consistency/ density index	¹⁰⁰ A pocket		
НА		N	None Observed	E		-		SM	TOPSOIL: Silty SAND, fine to medium gra brown. Clayey SAND: fine to medium grained, pa brown, clay low plasticity, some rhyodacite	le grey /	D				TOPSOIL EXTREMELY WEATHERED
						0.5			Terminated due to refusal in bedrock. Borehole EHA 4 terminated at 0.5m						
AS AD RR W CT HA DT B V T	shown	au ro ca bi bi V To by sut	uger d Iler/tri ashbo able to and au atube ank bi bit C bit	re Iol Iger	M C per 1 W wa Wa	ter 10/1/98	n anging to efusal 3 water le e shown		notes, samples, tests U _{s0} undisturbed sample 50mm diameter U _{s3} undisturbed sample 63mm diameter D disturbed sample 63mm diameter D disturbed sample 63mm diameter N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	classification soil descripti based on unit system moisture D dry M moist W wet Wp plastic WL liquid lit	tion ified cla				consistency/density indexVSvery softSsoftFfirmStstiffVStvery stiffHhardFbfriableVLvery looseLlooseMDmedium denseDdenseVDvery dense

Borehole No. EHA 4 Sheet 1 of 1 ENVIWARA00284AB Office Job No.: 26.2.2010 Date started: 26.2.2010 Date completed: DCH Logged by:

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10

										onment				Boreho Sheet	ole N	0.	EHA 1 of 1	
Ēr	າູ	ji	n	ee	ering	j L	og	- [Bor	rehole				Sneet Office	Job l	No.:		WARA00284
lier	nt:				SAK	E D	EVE	LOP	MEN	Т			[Date st	tarte	d:	26.2.2	2010
rine	cipa	al:											[Date co	ompl	eted	26.2.2	2010
roj	ect:				ALL	SE	450	NS S	ALA	MANDER SHO	RES HOTEL		L	_oggeo	d by:		DCH	
					n: REF			IGU	RE 2					Checke	ed by			
	node diarr			nour	0	Hand . 100 m	Auger			Easting: Northing	slope: bearin					R.L. datu	Surface:	Not Measured
				mat	ion	100 111		mat	erial s	ubstance								
	Denetration		support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol		material iy or particle character ry and minor compon		moisture condition	consistency/ density index	200 A pocket	1		tructure and onal observations
5			N	_	E			{ }	SM	TOPSOIL: Silty SANE brown.), fine to medium grair	ned, dark	D				TOPSOIL	
				served		-	-											
				None Observed			_											
				Ñ														
					Е			o o o o	SP	Gravelly SAND: fine to brown, fine to coarse	o medium grained, pa grained siltstone grav	ale grey / el.					EXTREMEL' SILTSTONE	YWEATHERED
								· a' ·		Borehole EHA 5 term	nated at 0.4m							
							0. <u>5</u>											
							_											
							-											
							_											
							_											
							1.0											
							_											
							-											
							_											
							-											
							1. <u>5</u>											
							-											
							-											
							-											
							2.0					al17	ation	nhol			concistor	w/density index
etho S D	bd				rewing* illing*	м	mud casing	N	nil		ample 50mm diameter ample 63mm diameter	soil des	ation syn cription 1 unified c				consistend VS S	cy/density index very soft soft
R I			rolle	er ur er/tric hbor	one	per	etration			D disturbed sar		system					F St	firm stiff
T A			cab han	le too d aug	bl			o resista anging to efusal	nce	N* SPT - sample Nc SPT with solie	recovered cone	moisture D dr	у				VSt H	very stiff hard friable
Т			blar	ube 1k bit +		wat	10/1/98			V vane shear (H P pressuremeter		W we	oist et astic limit				Fb VL L	friable very loose loose
			V bi TC I			I —	on date	snown		Bs bulk sample E environmenta			uid limit				MD	medium dense

and a

L),	U	1	1(Ξy	Ś	C		V 11 V	onment			-	Boreho	le N	0.	EHA	4 6	
_	n	a	in	ee	erino	a L	.oa	- E	Зоі	rehole				Sheet Office ,	loh I	lo ·	1 of FNV	1 IWARA002	844
	ent								MEN					Date st				.2010	047
rir	ncij	pal:											[Date co	ompl	eted:	26.2.	.2010	
ro	jec	ct:			ALL	. SE	ASO	NS S	ALA	MANDER SHO	RES HOTEL		l	_ogged	d by:		DCH	1	
lor	eh	ole	Loc	atic	on: REF	ER	TO F	GU	RE 2				(Checke	ed by	:			
rill	mo	del a	and	mou	nting:	Hand	Auger			Easting:	slope	: -90°				R.L. \$	Surface:	Not Measured	
		amei na i		rma	tion	100 m	ım	mat	erial s	Northing ubstance	bearir	ng:				datur	n:		
		_			notes									lex /	et tro-	-			
IIIEIIIOU		N penetration	support	water	samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plastici colour, seconda	material y or particle characte ry and minor compor	ristics, nents.	moisture condition	consistency/ density index	100 A pocket	a		structure and ional observatio	ns
E			N		E			{ }	SM	TOPSOIL: Silty SAND brown.	, fine to medium grai	ned, dark	D				FOPSOIL		
				eq		-	-												
				Observed		_	_		SC	Clayey SAND: fine to	medium grained ora	nge / dark					TREME	LY WEATHERED	, <u> </u>
				None O	E				30	brown, clay low plastic rhyodacite gravels.	ity, some fine to coal	rse grained				F	RHYODAC	ITE	
				z															
							-	/											
_							0.5	<u>/</u>		Terminated due to ref	usal in bedrock.								
										Borehole EHA 6 termi									
							_												
							-												
							_												
							1.0												
							1.0												
							_												
							-												
							1. <u>5</u>												
							-												
							-												
							20												
eth	nod		aur	aer sr	rewing*		2.0 oport mud	 N	nil	notes, samples, tests U ₅₀ undisturbed s	ample 50mm diameter	classifica soil desci		nbols an	d		consister VS	cy/density index very soft	
, כ ג			au		illing*	C per	casing netration				ample 63mm diameter	based on system	•	lassificat	ion		S F	soft firm	
Г			wa: cat	shbor ole too	e ol		234 L	io resista anging to	nce	N standard pene N* SPT - sample	etration test (SPT) recovered	moisture		n - e			St VSt	stiff very stiff	
A F			dia	nd au tube	-	wat	ter	efusal		Nc SPT with solid V vane shear (k P pressuremete	Pa)	D dry M mo	ist				H Fb VL	hard friable verv loose	
			bla V b TC			⊻		3 water I e shown	evel	P pressuremete Bs bulk sample E environmenta			stic limit id limit				VL L MD	very loose loose medium densi	e
its g.	how	vn by		x			water in water c			R refusal	·						D VD	dense very dense	

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10

environments

Engineering Log - Borehole SAKE DEVELOPMENT

Hand Auger

Client:

coffey

Principal: Project:

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10

drill model and mounting:

ALL SEASONS SALAMANDE

Borehole Location: REFER TO FIGURE 2

MANDER SHORE	ES HOTEL		Date co Loggec	ompleted I by:	d: 26.2 DCH	2.2010 1	
			Checke	ed by:			
Easting:	slope:	-90°		R.L	. Surface:	Not Measured	ĺ
Northing	bearing:			datu	um:		
bstance							
			cy/ dex	ket etro- er		-	

Borehole No.

Office Job No.:

Date started:

Sheet

EHA 7

26.2.2010

ENVIWARA00284AB

1 of 1

hol	e d	iam	ete	:		1	100 m	m			Northing	bearing:				da	tum:
dı	-		inf	or	mat	ion	;		mate		ubstance						
method		N penetration	tores	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	mate soil type: plasticity or pa colour, secondary and	article characteristics,	moisture condition	consistency/ density index	k	300 benetro- 400 meter	
AH		20	,							SP	SAND: fine to medium grain	ed, brown.	D				COLLUVIUM
					served	E		_									
					None Observed	E		_		SC	Clayey SAND: fine to mediu grey, clay low plasticity, som rhyodacite gravels.	m grained, orange / le fine to coarse graine	d				EXTREMELY WEATHERED
			**					0.5			Terminated due to refusal in						
								_			Borehole EHA 7 terminated	at 0.5m					
								_									
								_ 1. <u>0</u>									
								-									
								_									
								_ 1. <u>5</u>									
								_									
								_									
met AS AD RR W CT HA DT B V T *bit e.g.		<u> </u> d	i I V I	olle vasi cabl	er dri r/tric hbor e toc d auç	e ol	M C 1 2	1000000 - P		nil 1ce	notes, samples, tests U _{s0} undisturbed sample 6 U _{es3} undisturbed sample 6 D disturbed sample N standard penetration N* SPT - sample recover Nc SPT with solid cone	50mm diameter soil 63mm diameter bas syst test (SPT) rred moi D	i sture dry				consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable
DT B V T *bit e.g.		own	ן - by s	olan / bit FC b	oit		-	10/1/98		evel	V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sampl R refusal	e WL	moist wet plastic limit liquid limit				Fb friable VL very loose L loose MD medium dense D dense VD very dense

Engineering Log - Borehole SAKE DEVELOPMENT

Client:

Principal: Project:

ALL SEASONS SALAMANDER SHORES HOTEL

Borehole Location: REFER TO FIGURE 2

drill	mc	odel			ountir			Auger			Easting:	slope:	-90°					Surface:	Not Measured
		ame					100 m	m	.		Northing	bearing	:				dat	tum:	
dr	-	_	info	brm	atio				mate		ubstance	an			~ ×		5	1	
method	1	c penetration	support	water	Sa	notes amples, ests, etc	RL	depth metres	graphic log	classification symbol	materi soil type: plasticity or par colour, secondary and r	ticle characteris	stics, ents.	moisture condition	consistency/ density index	¹⁰⁰ A pocket			tructure and onal observations
HA			N	None Observed		E		-		SM	Silty SAND: fine to medium g some fine grained (ash?) part	rained, dark bro icles at surface	own, s.	D				COLLUIVU	И
						E		0.5	0 0 0 0 0 0	GP	Gravelly SAND: fine to mediu brown, fine to coarse grained	m grained, darl rhyodacite grav	k grey / vel.					EXTREMEL RHYODACI	Y WEATHERED TE
met	hod	1						- - - 1. <u>0</u> - - - - - - - - - - - - - - - - - - -			Borehole EHA 8 terminated at		classifica		nbols an	d		consistent	cy/density index very soft
AS AD RR W CT HA DT B V T *bit: e.g.		wn b	a ro ca di bl V T v y su	ager asht able and a atub ank bit C bit	tool auger e bit	g* ə	C per 1 2 wat	ter 10/1/98	n no resistal ranging to refusal 8 water le e shown nflow		U ₅₀ undisturbed sample 50 U ₅₀ undisturbed sample 63 D disturbed sample 63 D standard penetration te N* SPT - sample recovere Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample R refusal	8mm diameter est (SPT) ed	based on system D dry M mc W we Wp pla	unified c	lassificat	ion		S F VSt H Fb VL L MD D VD	soft firm stiff very stiff hard friable very loose loose medium dense dense very dense

Borehole No.

Office Job No .:

Date completed:

Date started:

Logged by:

Checked by:

Sheet

EHA 8

26.2.2010

26.2.2010

ENVIWARA00284AB

1 of 1

DCH

J	;(C	T	Te	ЭУ	I	6	env	Viro	onment	5		Ē	Boreho	le No).	EHA	9	
													S	Sheet			1 of 1		
		g	n	ee						ehole				Office			ENVIV 26.2.2	VARA00284	A
lier					SAK	ED	EVE	LOP	MEN	I				Date st					
	cip					05								Date co	•	etea:	20.2.2 DCH	010	
	ect									MANDER SHOI	CO HUIEL			-oggeo			DCII		
					n: REF		Auger	GUI		Easting:	slope:	-90°		Checke			urface:	Not Measured	
	diar				0	100 m	•			Northing	bearin	ıg:				datum	:		
Iril		_	nfoi	rmat	ion	1		mate		ubstance				×	6				
	penetration		support	water	notes samples, tests, etc	RL	depth	graphic log	classification symbol		material ty or particle character try and minor compon		moisture condition	consistency/ density index	100 A pocket	a		ucture and al observations	
	12	3	N		E				SP	FILL: Gravelly SAND, / grey, gravel fine to c	fine to medium graine	ed, brown	D				ill (Road e	BASE)	
				None Observed	E		-			7 grey, graver line to c	Jarse granica.								
					E			0 0 0 0	GP	Sandy GRAVEL: fine gravel, pale grey, san	d fine to medium grain						ILTSTONE	WEATHERED	
							0. <u>5</u>			Terminated due to ref Borehole EHA 9 termi									
							_												
							1.0												
							-												
							-												
							-												
							-												
							1. <u>5</u>												
							-												
							_												
							-												
							2.0												
eth S D R T A T	od		au rol wa ca ha dia bla V l	ger di ler/tric ishboi ble to nd au atube ank bit	re ol ger	M C pei 1	pport mud casing netratio 2 3 4 		level	U ₆₃ undisturbed s D disturbed sar	etration test (SPT) e recovered d cone kPa) er	W we Wp pla	a unified of the second se	classifica			consistency VS S F St VSt H Fb VL L MD	/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense	

BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10

cof	fey 🦻 environments	
UUI	icy	Borehole No.
Engin	aaring Lag Darahala	Sheet
Engin	eering Log - Borehole	Office Job No.:
Client:	SAKE DEVELOPMENT	Date started:

Principal: Project:

drill model and mounting:

pi Li

ALL SEASONS SALAMANDER SHORES HOTEL

Easting:

Borehole Location: **REFER TO FIGURE 2**

Hand Auger

			[Date st	arted:	26.2.	2010	
			[Date co	ompleted	: 26.2.	2010	
SHORES HOT	EL		L	oggeo	ł by:	DCH		
			(Checke	ed by:			
	slope:	-90°			R.L.	Surface:	Not Measured	
	bearing:				datu	ım:		
material			ure tion	stency/ ty index	pocket penetro- meter		structure and onal observations	

EHA10

1 of 1 **ENVIWARA00284AB**

	hole	diame	eter:			100 m	m			Northing	bearir	ng:				da	tum:	
	dri	illing	info	rma	tion			mate	erial s	ubstance			-					
	method	5 penetration	support	water	notes samples, tests, etc	RL	depth metres	graphic log	classification symbol	soil type: plasticity colour, secondai	material y or particle characte ry and minor compor	eristics, nents.	moisture condition	consistency/ density index	¹⁰⁰ 弄 pocket			ucture and al observations
	HA		N	None Observed	E	-			SM	TOPSOIL: Silty SAND, brown. Gravelly SAND: fine to / orange, fine to coarse	o medium grained, da e grained rhyodacite	ark brown	D				EXTREMELY RHYODACITE	WEATHERED
BOREHOLE 00284AB.GPJ COFFEY.GDT 5.3.10							- - 1.0 - 1.5 - - - - - - - - - - - - - - - - - - -			Borehole EHA10 termi								
Form GEO 5.3 Issue 3 Rev.2	meth AS AD RR W CT HA DT B V T *bit s e.g.	hown b	au rol wa cai ha dia bla V t	ger d ler/trid shbo ble to nd au atube ank bi bit bit fix	re ol ıger	M C per	mud casing etration 3 4 n rater	n anging to efusal 3 water le e shown		U ₆₃ undisturbed sa D disturbed sam	tration test (SPT) recovered cone Pa)	soil dese based or system D dr M m W we Wp pla	n unified o e y oist				consistency/ VS S F St VSt H Fb VL L L MD D VL	density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense

Appendix C PID Results

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

Photolonisation Detector (PID) Results

job no:

ENVIWARA00284AB

sheet 1 of 2

Date / Time of Calibra	principal: Salamander Shores Hotel date: 26 February 2010 project: Phase 2 Environmental Site Assessment by: DCH location: 147 Soldiers Point Road, Soldiers Point checked by: PID serial number: MINIRAE 2000 (SN: 110-002708) lamp voltage: 10.6eV PID Calibration 26/2/10										
Calibrated by: _DCF	۱ ۱		RACKOROUNIC	MAYIM	1 4 0 7						
SAMPLE ID	DEPTH	DURATION (mins)	BACKGROUND READING (ppm)	MAXIMUM READING (ppm)	LAST READING (ppm)	NOTES					
EHA1	0.0-0.1	1	0.0	0.8	0.6						
EHA1	0.2-0.3	1	0.0	0.6	0.4						
EHA2	0.0-0.1	1	0.0	0.8	0.7						
EHA2	0.2-0.3	1	0.0	0.5	0.1						
EHA3	0.0-0.1	1	0.0	0.7	0.1						
EHA3	0.3-0.4	1	0.0	0.5	0.3						
EHA4	0.0-0.1	1	0.0	0.9	0.4						
EHA4	0.3-0.4	1	0.0	0.4	0.2						
EHA5	0.0-0.1	1	0.0	0.6	0.4						
EHA5	0.3-0.4	1	0.0	0.9	0.8						
EHA6	0.0-0.1	1	0.0	0.3	0.1						
EHA6	0.2-0.3	1	0.0	0.2	0.1						
EHA7	0.0-0.1	1	0.0	1.3	1.1						
EHA7	0.2-0.3	1	0.0	0.9	0.7						
EHA8	0.0-0.1	1	0.0	0.6	0.4						
EHA8	0.4-0.5	1	0.0	0.9	0.3						
EHA9	0.0-0.1	1	0.0	0.4	0.3						

Photolonisation Detector (PID) Results

job no:

ENVIWARA00284AB

sheet 2 of 2

client:	Sake Deve	lopment		Of	ffice:	Narabrook
principal:	Salamande	er Shores Ho	otel	di	ate: 2	26 February 2010
project:	Phase 2 Er	nvironmenta	al Site Assessme	ent by	y: /	ОСН
location:	147 Soldie	rs Point Roa	ad, Soldiers Poin	1t cl	hecked by:	
PID serial number:	MINIRA	E 2000 (SN	I: 110-002708)	lar	mp voltage: 10	0.6eV
PID Calibration R	ecord					
Date / Time of Calibra	ation: <u>26/</u>	/2/10	Calit	bration gas: 100 p	opm ISOBUTYLE	NE
Zero Calibration (0).0ppm) Actua	al <u>0.0</u> Ir	ppm 🛛 Span	Calibration (100	ppm) Actual	Reading100ppm
Calibrated by: _DCH	4					
SAMPLE ID	DEPTH	DURATION (mins)	BACKGROUND READING (ppm)	MAXIMUM READING (ppm)	LAST READING (ppm)	NOTES
EHA9	0.3-0.4	1	0.0	0.4	0.2	
EHA10	0.0-0.1	1	0.0	0.5	0.2	
EHA10	0.2-0.3	1	0.0	0.3	0.1	

Appendix D Data Validation Report

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

DATA COMPLETENESS

Field Considerations

	Yes / No	Comment
Were all critical locations sampled?	Yes	
Were all critical depths sampled?	Yes	
Were the SOPs appropriate and complied with?	Yes	
Was the sampler adequately experienced?	Yes	
Was the field documentation complete?	Yes	
Is a copy of the signed chain of custody form for each batch of samples included?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were all critical samples analysed according to sampling plan?	Yes	
Were analytes analysed as per sampling plan?	Yes	
Were the laboratory methods appropriate?	Yes	
Were the laboratory methods adopted NATA endorsed?	Yes	
Was the NATA Seal on the laboratory reports?	Yes	
Were the laboratory reports signed by an authorised person?	Yes	
Were the laboratory PQLs below the criteria?	Yes	

Was sample documentation complete?	Yes	
Were sample holding times complied with?	Yes	

COMPLETENESS CONCLUSION

	Yes / No	Comment
Was data adequately complete?	Yes	

DATA COMPARABILITY

Field considerations

	Yes / No	Comment
Was there more than one sampling round?	No	Only one sampling round was conducted
Were the same sampling methodology and SOPs used for all sampling?	Yes	Only one sampling round was conducted
Was all sampling undertaken by the same sampler?	Yes	
Were sample containers, preservation, filtering the same?	Yes	
Could climatic conditions (temperature, rainfall, wind) have influenced data comparability?	No	Only soil samples were taken – these are unlikely to have been affected by climatic conditions.
Were the same types of samples collected (filtered, size fractions etc) for each media?	Yes	

Laboratory Considerations

	Yes / No	Comment
Were the same analytical methods used (including clean up)?	Yes	
Were the PQLs the same?	No	Different PQLs were used between SGS (the primary laboratory) and MGT (the secondary laboratory)
Were the same laboratories used?	No	SGS was the primary laboratory and MGT was the secondary laboratory
Were the units reported the same?	Yes	

COMPARABILITY CONCLUSION

	Yes / No	Comment
Was data adequately comparable?	Yes	

DATA REPRESENTATIVENESS

Field Considerations

	Yes / No	Comment
Was appropriate media sampled?	Yes	
Was media identified sampled?	Yes	
Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable.	Yes	
Were the samples in proper custody between the field and reaching the laboratory?	Yes	
Were the samples received by the laboratory in good condition?	No	One sample (EHA2 0.2-0.3) was received broken at the laboratory

Laboratory Considerations

	Yes / No	Comment	
Were all samples analysed according to SAQP?	NA	There was no SAQP for this assessment.	

REPRESENTATIVENESS CONCLUSION

	Yes / No	Comment
Was data adequately representative?	Yes	

DATA PRECISION AND ACCURACY

Field considerations

	Yes / No	Comment
Were the SOPs appropriate and complied with?	Yes	Based on available Coffey Environments Standard Operating Procedures.

Laboratory Considerations for Soil

	Metals	ТРН	BTEX	PAH	OCP	РСВ	OPP	Chloride	Asbestos
Primary	19	6	6	19	6	6	6	3	10
Field QA/QC									
Intralab Dup	2, 11%	1, 17%	1, 17%	2, 11%	1, 17%	1, 17%	1, 17%	1, 33%	0
Interlab Dup	1, 5%	0	0	1, 5%	0	0	0	1, 33%	0
Trip Spike	NA	NA	0	NA	NA	NA	NA	NA	NA
Trip Blank	NA	NA	0	NA	NA	NA	NA	NA	NA
Wash Blanks	1	1	1	1	0	0	0	0	NA
LAB QA/QC									
Lab Blanks	3	2	2	3	1	1	1	2	0
Lab Dups	1	1	0	2	1	1	1	0	0
Matrix Spikes	1	1	1	2	1	1	0	1	0
Lab Control	1	3	0	1	0	0	5	2	0
Surrogate	0	0	2	8	1	1	2	0	0

	Yes / No	Comment
Field QA/QC		
Were an adequate number of field duplicates analysed?	Yes	
Were the RPDs of the field duplicates within control limits?	No	Two soil duplicates had RPDs exceeding the control limit (50%) for total xylenes and chloride.
Were an adequate number of trip blanks analysed?	No	No trip blanks were analysed for the sampling
Were the trip blanks free of contaminants	NA	
Were an adequate number of trip spikes analysed?	No	No trip spikes were analysed for the sampling
Were the trip spikes recoveries within control limits?	NA	
Were an adequate number of wash blanks analysed?	Yes	
Were the wash blanks free of contaminants?	Yes	
Lab QA/QC		
Were an adequate number of laboratory blank samples analysed?	Yes	
Were the blanks free of contaminants?	Yes	
Were an adequate number of laboratory matrix spikes and laboratory control samples analysed?	Yes	
Were an adequate number of surrogate spike samples analysed?	Yes	
Were the spikes recoveries within control limits?	Yes	

Were an adequate number of laboratory duplicates analysed?	Yes	
Were the laboratory duplicate RPDs within control limits?	Yes	

PRECISION AND ACCURACY CONCLUSION

	Yes / No	Comment
Was soil data adequately precise?	Yes	
Was soil data adequately accurate?	Yes	
Was water data adequately precise?	NA	
Was water data adequately accurate?	NA	

Analysis	Method Based On	NATA Registered
TPH C6-C9/BTEX	Based on USEPA 5030B and 8260B	Yes
TPH C10-C36	SGS method SEO-020	Yes
РАН	SGS method SEO-030	Yes
Metals	SGS method SEM-010	Yes
OCP	Based on USEPA 8080/8082	Yes
OPP	Based on USEPA 8080/8082	Yes
РСВ	Based on USEPA 8080/8082	Yes
Chloride	Based on APHA 4110B	Yes
Asbestos	SGS method AN602	Yes

Table D1: Laboratory Methodologies (SGS) - Soil

Table D2: Holding Times (SGS) - Soil

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met		
TPH C6-C9/BTEX	14 days	6 days	Yes		
TPH C10-C36	14 days	6 days	Yes		
РАН	14 days	6 days	Yes		
Metals	6 months	10 days	Yes		
OCP	14 days	6 days	Yes		
OPP	14 days	6 days	Yes		
РСВ	14 days	6 days	Yes		
Chloride	14 days	6 days	Yes		
Asbestos	NA				

Table D3: Laboratory Methodologies (MGT) - Soil

Analysis	Method Based On	NATA Registered
РАН	Based on USEPA 8270C	Yes
Metals	Based on USEPA 6020 (USEPA 7470/71 for Mercury)	Yes
Chloride	Based on APHA 4500-CI	Yes

Table D4: Holding Times (MGT) - Soil

Soil Analysis	Holding Time	Maximum Time Between Sampling and Extraction	Holding Times Met
РАН	14 days	4 days	Yes
Metals	6 months	4 days	Yes
Chloride	14 days	4 days	Yes

Appendix E Laboratory Reports and Chain of Custody Documentation

Phase 2 Environmental Site Assessment All Seasons Salamander Shores Hotel, Soldiers Point

ANALYTICAL REPORT

8 March 2010

Coffey Environments Pty Ltd

Lot 101, 19 Warabrook Blvd Warabrook **NSW 2304**

Your Reference: ENVIWARA00284AB

Our Reference: SE76267 Samples: Received: 24 Soils, 1 Water 02/03/2010

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of: SGS ENVIRONMENTAL SERVICES

Client Services: Sample Receipt: Laboratory Manager: Simon Matthews Angela Mamalicos Edward Ibrahim

Simon.Matthews@sgs.com AU.SampleReceipt.Sydney@sgs.com Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Dong Liang Quality Manager

Huong Crawford

Metals Signatory

Ravee Sivasubramaniam Asbestos Signatory

Ly Kim Ha

Organics Signatory

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 41

SGS Australia Ptv Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t +61 (0)2 8594 0400 f + 61 (0)2 8594 0499

www.au.sgs.com

BTEX in Soil						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-7	SE76267-8
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA4_0.0-	EHA4_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (BTEX)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed (BTEX)		6/03/2010	6/03/2010	6/03/2010	6/03/2010	6/03/2010
Benzene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Total Xylenes	mg/kg	0.4	<0.3	1.0	<0.3	<0.3
BTEX Surrogate (%)	%	73	84	83	83	78

BTEX in Soil			
Our Reference:	UNITS	SE76267-1	SE76267-2
		5	1
Your Reference		EHA8_0.0-	QC1
		0.1	
Sample Matrix		Soil	Soil
Date Sampled		26/02/2010	26/02/2010
Date Extracted (BTEX)		4/03/2010	4/03/2010
Date Analysed (BTEX)		6/03/2010	6/03/2010
Benzene	mg/kg	<0.1	<0.1
Toluene	mg/kg	<0.1	<0.1
Ethylbenzene	mg/kg	<0.1	0.2
Total Xylenes	mg/kg	<0.3	2.0
BTEX Surrogate (%)	%	86	84

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 2 of 41

TRH in soil with C6-C9 by P/T						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-7	SE76267-8
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA4_0.0-	EHA4_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (TRH C6-C9 PT)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed (TRH C6-C9 PT)		6/03/2010	6/03/2010	6/03/2010	6/03/2010	6/03/2010
TRH C6 - C9 P&T	mg/kg	<20	<20	<20	<20	<20
Date Extracted (TRH C10-C36)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed (TRH C10-C36)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
TRH C10 - C14	mg/kg	<20	<20	<20	<20	<20
TRH C15 - C28	mg/kg	<50	<50	<50	<50	<50
TRH C29 - C36	mg/kg	<50	<50	<50	<50	<50

TRH in soil with C6-C9 by P/T			
Our Reference:	UNITS	SE76267-1	SE76267-2
		5	1
Your Reference		EHA8_0.0-	QC1
		0.1	
Sample Matrix		Soil	Soil
Date Sampled		26/02/2010	26/02/2010
Date Extracted (TRH C6-C9 PT)		4/03/2010	4/03/2010
Date Analysed (TRH C6-C9 PT)		6/03/2010	6/03/2010
TRH C6 - C9 P&T	mg/kg	<20	<20
Date Extracted (TRH C10-C36)		4/03/2010	4/03/2010
Date Analysed (TRH C10-C36)		4/03/2010	4/03/2010
TRH C10 - C14	mg/kg	<20	<20
TRH C15 - C28	mg/kg	<50	58
TRH C29 - C36	mg/kg	<50	96

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 3 of 41

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Soil						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-5	SE76267-6
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA3_0.0-	EHA3_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	0.11	0.17	0.28
Pyrene	mg/kg	<0.10	<0.10	0.10	0.16	0.26
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	0.15	0.24
Chrysene	mg/kg	<0.10	<0.10	<0.10	0.16	0.26
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	0.31	0.47
Benzo[a]pyrene	mg/kg	<0.05	<0.05	0.07	0.16	0.24
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	0.11	0.17
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	<0.10	0.13	0.20
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.78	<2.25	<3.02
Nitrobenzene-d5	%	70	77	77	73	80
2-Fluorobiphenyl	%	71	72	74	73	71
p -Terphenyl-d14	%	72	79	95	74	79

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 4 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Soil						
Our Reference:	UNITS	SE76267-7	SE76267-8	SE76267-9	SE76267-1 0	SE76267-1 1
Your Reference		EHA4_0.0- 0.1	EHA4_0.3- 0.4	EHA5_0.0- 0.1	EHA5_0.3- 0.4	EHA6_0.0- 0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	0.31	0.25	<0.10
Pyrene	mg/kg	<0.10	<0.10	0.28	0.23	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	0.10	0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	0.14	0.15	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	0.26	0.25	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	0.11	0.11	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	0.11	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	0.12	0.13	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<2.32	<2.23	<1.7
Nitrobenzene-d5	%	82	79	82	78	80
2-Fluorobiphenyl	%	75	70	74	72	72
p -Terphenyl-d14	%	93	70	86	80	81

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 5 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Soil						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-1	SE76267-1
		2	3	4	5	6
Your Reference		EHA6_0.2- 0.3	EHA7_0.0- 0.1	EHA7_0.2- 0.3	EHA8_0.0- 0.1	EHA8_0.4- 0.5
Sample Matrix		Soil	Soil	0.3 Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.7	<1.7	<1.7
Nitrobenzene-d5	%	78	78	86	87	83
2-Fluorobiphenyl	%	70	71	77	76	76
p -Terphenyl-d14	%	82	78	87	86	85

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 6 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Soil						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-2	SE76267-2
Your Reference		7 EHA9_0.0-	8 EHA9_0.3-	9 EHA10_0.0	0 EHA10_0.2	1 QC1
four Reference		0.1	епа <u>9_</u> 0.3- 0.4	-0.1	-0.3	
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Naphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
2-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
1-Methylnaphthalene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Acenaphthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluorene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[a]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Chrysene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo[a]pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	0.05
Indeno[123-cd]pyrene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo[ghi]perylene	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
Total PAHs (sum)	mg/kg	<1.7	<1.7	<1.7	<1.7	<1.7
Nitrobenzene-d5	%	86	87	71	87	80
2-Fluorobiphenyl	%	83	76	82	77	80
p -Terphenyl-d14	%	85	87	79	88	87

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 7 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Soil		
Our Reference:	UNITS	SE76267-2
Your Reference		4 QC3
Sample Matrix		Soil
Date Sampled		26/02/2010
		20/02/2010
Date Extracted		4/03/2010
Date Analysed		4/03/2010
Naphthalene	mg/kg	<0.10
2-Methylnaphthalene	mg/kg	<0.10
1-Methylnaphthalene	mg/kg	<0.10
Acenaphthylene	mg/kg	<0.10
Acenaphthene	mg/kg	<0.10
Fluorene	mg/kg	<0.10
Phenanthrene	mg/kg	<0.10
Anthracene	mg/kg	<0.10
Fluoranthene	mg/kg	<0.10
Pyrene	mg/kg	<0.10
Benzo[a]anthracene	mg/kg	<0.10
Chrysene	mg/kg	<0.10
Benzo[b,k]fluoranthene	mg/kg	<0.20
Benzo[a]pyrene	mg/kg	<0.05
Indeno[123-cd]pyrene	mg/kg	<0.10
Dibenzo[ah]anthracene	mg/kg	<0.10
Benzo[ghi]perylene	mg/kg	<0.10
Total PAHs (sum)	mg/kg	<1.7
Nitrobenzene-d5	%	91
2-Fluorobiphenyl	%	85
p -Terphenyl-d14	%	107

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 8 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

OC Pesticides in Soil						
Our Reference:	UNITS	SE76267-3	SE76267-7	SE76267-8	SE76267-9	SE76267-1 7
Your Reference		EHA2_0.0- 0.1	EHA4_0.0- 0.1	EHA4_0.3- 0.4	EHA5_0.0- 0.1	EHA9_0.0- 0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
cis-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-Endosulfan	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
p,p-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	91	95	88	81	84

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 9 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

OC Pesticides in Soil			
Our Reference:	UNITS	SE76267-1 9	SE76267-2 1
Your Reference		EHA10_0.0 -0.1	QC1
Sample Matrix		Soil	Soil
Date Sampled		26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC (Lindane)	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
o,p-DDE	mg/kg	<0.1	<0.1
alpha-Endosulfan	mg/kg	<0.1	<0.1
trans-Chlordane	mg/kg	<0.1	<0.1
cis-Chlordane	mg/kg	<0.1	<0.1
trans-Nonachlor	mg/kg	<0.1	<0.1
p,p-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
o,p-DDD	mg/kg	<0.1	<0.1
o,p-DDT	mg/kg	<0.1	<0.1
beta-Endosulfan	mg/kg	<0.1	<0.1
p,p-DDD	mg/kg	<0.1	<0.1
p,p-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Endrin Ketone	mg/kg	<0.1	<0.1
2,4,5,6-Tetrachloro-m-xylene (Surrogate	%	84	90

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

 Page 10 of 41

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t + 61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com

OP Pesticides in Soil by GCMS						
Our Reference:	UNITS	SE76267-3	SE76267-7	SE76267-8	SE76267-9	SE76267-1
						7
Your Reference		EHA2_0.0- 0.1	EHA4_0.0- 0.1	EHA4_0.3- 0.4	EHA5_0.0- 0.1	EHA9_0.0- 0.1
Comple Metrix		Soil	0.1 Soil	0.4 Soil	0.1 Soil	0.1 Soil
Sample Matrix						
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Dichlorvos	mg/kg	<1	<1	<1	<1	<1
Dimethoate	mg/kg	<1	<1	<1	<1	<1
Diazinon	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
Chlorpyrifos-ethyl	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Bromofos-ethyl	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
2-fluorobiphenyl (Surr)	%	99	96	87	91	92
d14-p-Terphenyl (Surr)	%	87	88	76	87	84

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 11 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

OP Pesticides in Soil by GCMS			
Our Reference:	UNITS	SE76267-1	SE76267-2
		9	1
Your Reference		EHA10_0.0	QC1
		-0.1	
Sample Matrix		Soil	Soil
Date Sampled		26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010
Dichlorvos	mg/kg	<1	<1
Dimethoate	mg/kg	<1	<1
Diazinon	mg/kg	<0.5	<0.5
Fenitrothion	mg/kg	<0.2	<0.2
Malathion	mg/kg	<0.20	<0.20
Chlorpyrifos-ethyl	mg/kg	<0.2	<0.2
Parathion-ethyl	mg/kg	<0.2	<0.2
Bromofos-ethyl	mg/kg	<0.2	<0.2
Methidathion	mg/kg	<0.5	<0.5
Ethion	mg/kg	<0.2	<0.2
Azinphos-methyl	mg/kg	<0.20	<0.20
2-fluorobiphenyl (Surr)	%	88	97
d14-p-Terphenyl (Surr)	%	76	89
			·

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 12 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PCBs in Soil						
Our Reference:	UNITS	SE76267-3	SE76267-7	SE76267-8	SE76267-9	SE76267-1 7
Your Reference		EHA2_0.0- 0.1	EHA4_0.0- 0.1	EHA4_0.3- 0.4	EHA5_0.0- 0.1	EHA9_0.0- 0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1262	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Arochlor 1268	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive PCB	mg/kg	<0.90	<0.90	<0.90	<0.90	<0.90
PCB_Surrogate 1	%	91	95	88	81	84

PCBs in Soil			
Our Reference:	UNITS	SE76267-1	SE76267-2
		9	1
Your Reference		EHA10_0.0	QC1
		-0.1	
Sample Matrix		Soil	Soil
Date Sampled		26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010
Arochlor 1016	mg/kg	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1
Arochlor 1262	mg/kg	<0.1	<0.1
Arochlor 1268	mg/kg	<0.1	<0.1
Total Positive PCB	mg/kg	<0.90	<0.90
PCB_Surrogate 1	%	84	90

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Anions in soil					
Our Reference:	UNITS	SE76267-5	SE76267-6	SE76267-1 3	SE76267-2 4
Your Reference		EHA3_0.0- 0.1	EHA3_0.3- 0.4	EHA7_0.0- 0.1	QC3
Sample Matrix		Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted		4/03/2010	4/03/2010	4/03/2010	4/03/2010
Date Analysed		4/03/2010	4/03/2010	4/03/2010	4/03/2010
Chloride, Cl 1:5 soil:water	mg/kg	63	41	46	16

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

 Page 14 of 41

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t +61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-5	SE76267-6
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA3_0.0-	EHA3_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Arsenic	mg/kg	<3	<3	4	4	4
Cadmium	mg/kg	<0.3	<0.3	<0.3	0.3	<0.3
Chromium	mg/kg	1.8	1.7	3.7	8.2	3.4
Copper	mg/kg	3.1	2.7	13	54	45
Lead	mg/kg	5	4	14	15	16
Nickel	mg/kg	0.8	0.8	1.8	2.4	2.1
Zinc	mg/kg	18	14	97	130	89

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE76267-7	SE76267-8	SE76267-9	SE76267-1	SE76267-1
					0	1
Your Reference		EHA4_0.0-	EHA4_0.3-	EHA5_0.0-	EHA5_0.3-	EHA6_0.0-
		0.1	0.4	0.1	0.4	0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Arsenic	mg/kg	<3	<3	<3	6	<3
Cadmium	mg/kg	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	1.9	2.4	3.1	2.4	2.7
Copper	mg/kg	6.4	7.1	8.3	7.3	4.5
Lead	mg/kg	8	11	57	64	2
Nickel	mg/kg	0.9	1.3	2.1	1.8	0.94
Zinc	mg/kg	23	19	46	25	19

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 15 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-1	SE76267-1
		2	3	4	5	6
Your Reference		EHA6_0.2-	EHA7_0.0-	EHA7_0.2-	EHA8_0.0-	EHA8_0.4-
		0.3	0.1	0.3	0.1	0.5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Arsenic	mg/kg	<3	<3	<3	<3	<3
Cadmium	mg/kg	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	3.2	2.7	3.1	2.4	3.6
Copper	mg/kg	8.8	14	18	7.9	15
Lead	mg/kg	3	3	5	3	4
Nickel	mg/kg	1.4	1.4	1.7	1.7	2.0
Zinc	mg/kg	31	46	54	49	96

Metals in Soil by ICP-OES						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-2	SE76267-2
		7	8	9	0	1
Your Reference		EHA9_0.0-	EHA9_0.3-	EHA10_0.0	EHA10_0.2	QC1
		0.1	0.4	-0.1	-0.3	
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Metals)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Arsenic	mg/kg	4	4	<3	<3	4
Cadmium	mg/kg	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium	mg/kg	9.0	8.2	1.5	1.4	3.6
Copper	mg/kg	15	18	0.8	<0.5	13
Lead	mg/kg	10	10	1	<1	15
Nickel	mg/kg	3.6	3.9	<0.5	<0.5	1.7
Zinc	mg/kg	180	160	5.9	3.2	96

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 16 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Metals in Soil by ICP-OES		
Our Reference:	UNITS	SE76267-2
		4
Your Reference		QC3
Sample Matrix		Soil
Date Sampled		26/02/2010
Date Extracted (Metals)		8/03/2010
Date Analysed (Metals)		8/03/2010
Arsenic	mg/kg	<3
Cadmium	mg/kg	<0.3
Chromium	mg/kg	2.6
Copper	mg/kg	12
Lead	mg/kg	3
Nickel	mg/kg	1.5
Zinc	mg/kg	48

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

 Page 17 of 41

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t +61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-5	SE76267-6
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA3_0.0-	EHA3_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Mercury	mg/kg	<0.05	<0.05	<0.05	0.06	<0.05

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE76267-7	SE76267-8	SE76267-9	SE76267-1	SE76267-1
					0	1
Your Reference		EHA4_0.0-	EHA4_0.3-	EHA5_0.0-	EHA5_0.3-	EHA6_0.0-
		0.1	0.4	0.1	0.4	0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Mercury	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-1	SE76267-1
		2	3	4	5	6
Your Reference		EHA6_0.2-	EHA7_0.0-	EHA7_0.2-	EHA8_0.0-	EHA8_0.4-
		0.3	0.1	0.3	0.1	0.5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Mercury	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

Mercury Cold Vapor/Hg Analyser						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-2	SE76267-2
		7	8	9	0	1
Your Reference		EHA9_0.0-	EHA9_0.3-	EHA10_0.0	EHA10_0.2	QC1
		0.1	0.4	-0.1	-0.3	
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Extracted (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Date Analysed (Mercury)		8/03/2010	8/03/2010	8/03/2010	8/03/2010	8/03/2010
Mercury	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 18 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Mercury Cold Vapor/Hg Analyser Our Reference:	UNITS	SE76267-2
Your Reference Sample Matrix Date Sampled		4 QC3 Soil 26/02/2010
Date Extracted (Mercury)		8/03/2010
Date Analysed (Mercury)		8/03/2010
Mercury	mg/kg	<0.05

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 19 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Asbestos ID in soil						
Our Reference:	UNITS	SE76267-1	SE76267-3	SE76267-5	SE76267-7	SE76267-9
Your Reference		EHA1_0.0-	EHA2_0.0-	EHA3_0.0-	EHA4_0.0-	EHA5_0.0-
		0.1	0.1	0.1	0.1	0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed		5/03/2010	5/03/2010	5/03/2010	5/03/2010	5/03/2010
Sample Description		33g	98g	27g	56g	34g
		Sand,soil,pl	Sand,soil,pl	Sand,soil,pl	Sand,soil,pl	Sand,soil,pl
		ant matter				
Asbestos ID in soil	-	No	No	No	No	No
		asbestos	asbestos	asbestos	asbestos	asbestos
		detected	detected	detected	detected	detected
		Organic	Organic	Organic	Organic	Organic
		fibres	fibres	fibres	fibres	fibres
		detected*	detected*	detected*	detected*	detected*

Asbestos ID in soil						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-1	SE76267-1
		1	3	5	7	9
Your Reference		EHA6_0.0-	EHA7_0.0-	EHA8_0.0-	EHA9_0.0-	EHA10_0.0
		0.1	0.1	0.1	0.1	-0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed		5/03/2010	5/03/2010	5/03/2010	5/03/2010	5/03/2010
Sample Description		68g	90g	128g	64g	99g
		Sand,soil,pl	Sand,soil,pl	Sand,soil,pl	sand,soil,ro	sand,plant
		ant matter	ant matter	ant matter	cks	matter
Asbestos ID in soil	-	No	No	No	No	No
		asbestos	asbestos	asbestos	asbestos	asbestos
		detected	detected	detected	detected	detected
		Organic	Organic	Organic	Organic	Organic
		fibres	fibres	fibres	fibres	fibres
		detected*	detected*	detected*	detected*	detected*

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 20 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

BTEX in Water (µg/L)		
Our Reference:	UNITS	SE76267-2
		5
Your Reference		QCA
Sample Matrix		Water
Date Sampled		26/02/2010
Date Extracted (BTEX)		4/03/2010
Date Analysed (BTEX)		4/03/2010
Benzene	µg/L	<0.5
Toluene	µg/L	<0.5
Ethylbenzene	µg/L	<0.5
Total Xylenes	µg/L	<1.5
Surrogate	%	81

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 21 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

	1	
TRH in water with C6-C9 by P/T		
Our Reference:	UNITS	SE76267-2
		5
Your Reference		QCA
Sample Matrix		Water
Date Sampled		26/02/2010
Date Extracted (TRH C6-C9 PT)		4/03/2010
Date Analysed (TRH C6-C9 PT)		4/03/2010
TPH C6-C9 P&T	µg/L	<40
Date Extracted (TRH C10-C36)		4/03/2010
Date Analysed (TRH C10-C36)		4/03/2010
TRH C10 - C14	µg/L	<100
TRH C15 - C28	µg/L	<200
TRH C29 - C36	µg/L	<200

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 22 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

PAHs in Water		
Our Reference:	UNITS	SE76267-2
		5
Your Reference		QCA
Sample Matrix		Water
Date Sampled		26/02/2010
Date Extracted		4/03/2010
Date Analysed		4/03/2010
Naphthalene	μg/L	<0.50
2-Methylnaphthalene	µg/L	<0.5
1-Methylnaphthalene	µg/L	<0.5
Acenaphthylene	µg/L	<0.50
Acenaphthene	µg/L	<0.50
Fluorene	µg/L	<0.50
Phenanthrene	µg/L	<0.50
Anthracene	µg/L	<0.50
Fluoranthene	µg/L	<0.50
Pyrene	µg/L	<0.50
Benzo[a]anthracene	μg/L	<0.50
Chrysene	μg/L	<0.50
Benzo[b,k]fluoranthene	μg/L	<1.0
Benzo[a]pyrene	µg/L	<0.50
Indeno[123-cd]pyrene	µg/L	<0.50
Dibenzo[ah]anthracene	µg/L	<0.50
Benzo[<i>ghi</i>]perylene	µg/L	<0.50
Total PAHs	µg/L	<9
Nitrobenzene-d5	%	74
2-Fluorobiphenyl	%	79
p -Terphenyl-d14	%	93

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 23 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Trace HM (ICP-MS)-Dissolved		
Our Reference:	UNITS	SE76267-2
		5
Your Reference		QCA
Sample Matrix		Water
Date Sampled		26/02/2010
Date Extracted (Metals-ICPMS)		3/03/2010
Date Analysed (Metals-ICPMS)		3/03/2010
Arsenic	µg/L	<1
Cadmium	µg/L	<0.1
Chromium	µg/L	<1
Copper	µg/L	<1
Lead	µg/L	1
Nickel	µg/L	<1
Zinc	µg/L	6

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Page 24 of 41

Mercury Cold Vapor/Hg Analyser		
Our Reference:	UNITS	SE76267-2
		5
Your Reference		QCA
Sample Matrix		Water
Date Sampled		26/02/2010
Date Extracted (Mercury)		5/03/2010
Date Analysed (Mercury)		5/03/2010
Mercury (Dissolved)	mg/L	<0.0005

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 25 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Moisture						
Our Reference:	UNITS	SE76267-1	SE76267-2	SE76267-3	SE76267-5	SE76267-6
Your Reference		EHA1_0.0-	EHA1_0.2-	EHA2_0.0-	EHA3_0.0-	EHA3_0.3-
		0.1	0.3	0.1	0.1	0.4
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed (moisture)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Moisture	%	11	8	7	27	19

Moisture						
Our Reference:	UNITS	SE76267-7	SE76267-8	SE76267-9	SE76267-1	SE76267-1
					0	1
Your Reference		EHA4_0.0-	EHA4_0.3-	EHA5_0.0-	EHA5_0.3-	EHA6_0.0-
		0.1	0.4	0.1	0.4	0.1
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed (moisture)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Moisture	%	15	17	9	5	13

Moisture						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-1	SE76267-1
		2	3	4	5	6
Your Reference		EHA6_0.2-	EHA7_0.0-	EHA7_0.2-	EHA8_0.0-	EHA8_0.4-
		0.3	0.1	0.3	0.1	0.5
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed (moisture)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Moisture	%	11	12	15	7	9

Moisture						
Our Reference:	UNITS	SE76267-1	SE76267-1	SE76267-1	SE76267-2	SE76267-2
		7	8	9	0	1
Your Reference		EHA9_0.0-	EHA9_0.3-	EHA10_0.0	EHA10_0.2	QC1
		0.1	0.4	-0.1	-0.3	
Sample Matrix		Soil	Soil	Soil	Soil	Soil
Date Sampled		26/02/2010	26/02/2010	26/02/2010	26/02/2010	26/02/2010
Date Analysed (moisture)		4/03/2010	4/03/2010	4/03/2010	4/03/2010	4/03/2010
Moisture	%	12	12	5	4	7

This document is issued in accordance with NATA's accreditation requirements. **NATA** with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 26 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Moisture		
Our Reference:	UNITS	SE76267-2
		4
Your Reference		QC3
Sample Matrix		Soil
Date Sampled		26/02/2010
Date Analysed (moisture)		4/03/2010
Moisture	%	9

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 27 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Aethod ID	Methodology Summary
SEO-018	BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.
SEO-020	Total Recoverable Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/FID.
	Where applicable Solid Phase Extraction Manifold technique is used for aliphatic / aromatic fractionation.
SEO-030	Polynuclear Aromatic Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/MS SIM mode.
SEO-005	OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082.
AN420	Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates, and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD/FID technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
SEI-038	Anions - a range of anions are determined by Ion Chromatography, in accordance with APHA 21st Edition, 4110B.
SEM-010	Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.
SEM-005	Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.
AN602	Analysed using in house method AN602 - Qualitative identification of Asbestos Fibres, Synthetic Mineral Fibres and Organic Fibres in bulk samples (including building materials and soils) using Polarised Light Microscopy and Dispersion Staining Techniques. Our NATA Accreditation does not currently cover the identification of Synthetic Mineral Fibres and Organic Fibres, however, according to new NATA requirements, the reporting of these fibres is compulsory if detected.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN002	Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 \pm 5°C.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 28 of 41

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com SGS Australia Pty Ltd ABN 44 000 964 278

QUALITY CONTROL BTEX in Soil	UNITS	LOR	METHOD	Blank
Date Extracted (BTEX)				4/03/20 10
Date Analysed (BTEX)				6/03/20 10
Benzene	mg/kg	0.1	SEO-018	<0.1
Toluene	mg/kg	0.1	SEO-018	<0.1
Ethylbenzene	mg/kg	0.1	SEO-018	<0.1
Total Xylenes	mg/kg	0.3	SEO-018	<0.3
BTEX Surrogate (%)	%	0	SEO-018	93

QUALITY CONTROL TRH in soil with C6-C9 by P/T	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				4/03/20 10	SE76267-3	4/03/2010 [N/T]	[NR]	[NR]
Date Analysed (TRH C6-C9 PT)				6/03/20 10	SE76267-3	6/03/2010 [N/T]	[NR]	[NR]
TRH C6 - C9 P&T	mg/kg	20	SEO-018	<20	SE76267-3	<20 [N/T]	[NR]	[NR]
Date Extracted (TRH C10-C36)				4/03/20 10	SE76267-3	4/03/2010 4/03/2010	LCS	4/03/2010
Date Analysed (TRH C10-C36)				4/03/20 10	SE76267-3	4/03/2010 4/03/2010	LCS	4/03/2010
TRH C10 - C14	mg/kg	20	SEO-020	<20	SE76267-3	<20 <20	LCS	85%
TRH C15 - C28	mg/kg	50	SEO-020	<50	SE76267-3	<50 <50	LCS	79%
TRH C29 - C36	mg/kg	50	SEO-020	<50	SE76267-3	<50 <50	LCS	72%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				4/03/20 10	SE76267-1 4	4/03/2010 4/03/2010	SE76267-1	4/03/2010
Date Analysed				4/03/20 10	SE76267-1 4	4/03/2010 4/03/2010	SE76267-1	4/03/2010
Naphthalene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	97%
2-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
1-Methylnaphthalene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Acenaphthylene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	95%
Acenaphthene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	112%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 29 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE76267

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PAHs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Fluorene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Phenanthrene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	98%
Anthracene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	105%
Fluoranthene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	101%
Pyrene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	SE76267-1	105%
Benzo[a]anthracene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Chrysene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Benzo[<i>b,k</i>]fluoranthe ne	mg/kg	0.2	SEO-030	<0.20	SE76267-1 4	<0.20 <0.20	[NR]	[NR]
Benzo[a]pyrene	mg/kg	0.05	SEO-030	<0.05	SE76267-1 4	<0.05 <0.05	SE76267-1	93%
Indeno[123-cd]pyren e	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Dibenzo[<i>ah</i>]anthrace ne	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Benzo[ghi]perylene	mg/kg	0.1	SEO-030	<0.10	SE76267-1 4	<0.10 <0.10	[NR]	[NR]
Total PAHs (sum)	mg/kg	1.75	SEO-030	<1.7	SE76267-1 4	<1.7 <1.7	[NR]	[NR]
Nitrobenzene-d5	%	0	SEO-030	73	SE76267-1 4	86 89 RPD: 3	SE76267-1	71%
2-Fluorobiphenyl	%	0	SEO-030	72	SE76267-1 4	77 80 RPD: 4	SE76267-1	74%
p -Terphenyl-d 14	%	0	SEO-030	80	SE76267-1 4	87 91 RPD: 4	SE76267-1	74%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OC Pesticides in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				4/03/20 10	SE76267-7	4/03/2010 4/03/2010	SE76267-8	4/03/2010
Date Analysed				4/03/20 10	SE76267-7	4/03/2010 4/03/2010	SE76267-8	4/03/2010
НСВ	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
gamma-BHC (Lindane)	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Heptachlor	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	132%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 30 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE76267

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OC Pesticides in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Aldrin	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	135%
beta-BHC	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
delta-BHC	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	125%
Heptachlor Epoxide	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
o,p-DDE	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
alpha-Endosulfan	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
trans-Chlordane	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
cis-Chlordane	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
trans-Nonachlor	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
p,p-DDE	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Dieldrin	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	124%
Endrin	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	136%
o,p-DDD	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
o,p-DDT	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
beta-Endosulfan	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
p,p-DDD	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
p,p-DDT	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-8	110%
Endosulfan Sulphate	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Methoxychlor	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Endrin Ketone	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
2,4,5,6-Tetrachloro-m-xy lene (Surrogate	%	0	SEO-005	99	SE76267-7	95 89 RPD: 7	SE76267-8	64%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
OP Pesticides in Soil by GCMS						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				04/03/1	SE76267-3	4/03/2010 4/03/2010	LCS	05/03/10
Date Analysed				04/03/1 0	SE76267-3	4/03/2010 4/03/2010	LCS	05/03/10
Dichlorvos	mg/kg	1	AN420	<1	SE76267-3	<1 <1	LCS	87%
Dimethoate	mg/kg	1	AN420	<1	SE76267-3	<1 <1	[NR]	[NR]
Diazinon	mg/kg	0.5	AN420	<0.5	SE76267-3	<0.5 <0.5	LCS	75%
Fenitrothion	mg/kg	0.2	AN420	<0.2	SE76267-3	<0.2 <0.2	[NR]	[NR]
Malathion	mg/kg	0.2	AN420	<0.20	SE76267-3	<0.20 <0.20	[NR]	[NR]
Chlorpyrifos-ethyl	mg/kg	0.2	AN420	<0.2	SE76267-3	<0.2 <0.2	LCS	85%
Parathion-ethyl	mg/kg	0.2	AN420	<0.2	SE76267-3	<0.2 <0.2	[NR]	[NR]
Bromofos-ethyl	mg/kg	0.2	AN420	<0.2	SE76267-3	<0.2 <0.2	[NR]	[NR]
Methidathion	mg/kg	0.5	AN420	<0.5	SE76267-3	<0.5 <0.5	[NR]	[NR]

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE76267

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike %
OP Pesticides in Soil by GCMS					511#	Base + Duplicate + %RPD		Recovery Duplicate + %RPD
Ethion	mg/kg	0.2	AN420	<0.2	SE76267-3	<0.2 <0.2	LCS	91%
Azinphos-methyl	mg/kg	0.2	AN420	<0.20	SE76267-3	<0.20 <0.20	LCS	69%
2-fluorobiphenyl (Surr)	%	0	AN420	103	SE76267-3	99 86 RPD: 14	LCS	92%
d14-p-Terphenyl (Surr)	%	0	AN420	91	SE76267-3	87 89 RPD: 2	LCS	79%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
PCBs in Soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				4/03/20 10	SE76267-7	4/03/2010 4/03/2010	SE76267-9	4/03/2010
Date Analysed				4/03/20 10	SE76267-7	4/03/2010 4/03/2010	SE76267-9	4/03/2010
Arochlor 1016	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1260	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	SE76267-9	81%
Arochlor 1262	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Arochlor 1268	mg/kg	0.1	SEO-005	<0.1	SE76267-7	<0.1 <0.1	[NR]	[NR]
Total Positive PCB	mg/kg	0.9	SEO-005	<0.90	SE76267-7	<0.90 <0.90	[NR]	[NR]
PCB_Surrogate 1	%	0	SEO-005	99	SE76267-7	95 89 RPD: 7	SE76267-9	88%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 32 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE76267

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Anions in soil						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted				04/03/1 0	[NT]	[NT]	LCS	04/03/10
Date Analysed				04/03/1 0	[NT]	[NT]	LCS	04/03/10
Chloride, Cl 1:5 soil:water	mg/kg	0.25	SEI-038	<0.2	[NT]	[NT]	LCS	100%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Metals in Soil by ICP-OES						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Metals)				8/03/20 10	SE76267-1	8/03/2010 8/03/2010	SE76267-2	8/03/2010
Date Analysed (Metals)				8/03/20 10	SE76267-1	8/03/2010 8/03/2010	SE76267-2	8/03/2010
Arsenic	mg/kg	3	SEM-010	<3	SE76267-1	<3 <3	SE76267-2	70%
Cadmium	mg/kg	0.3	SEM-010	<0.3	SE76267-1	<0.3 <0.3	SE76267-2	73%
Chromium	mg/kg	0.3	SEM-010	<0.3	SE76267-1	1.8 1.9 RPD: 5	SE76267-2	74%
Copper	mg/kg	0.5	SEM-010	<0.5	SE76267-1	3.1 3.8 RPD: 20	SE76267-2	75%
Lead	mg/kg	1	SEM-010	<1	SE76267-1	5 6 RPD: 18	SE76267-2	98%
Nickel	mg/kg	0.5	SEM-010	<0.5	SE76267-1	0.8 1.1 RPD: 32	SE76267-2	71%
Zinc	mg/kg	0.5	SEM-010	<0.5	SE76267-1	18 21 RPD: 15	SE76267-2	75%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Mercury Cold Vapor/Hg Analyser						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Mercury)				8/03/20 10	SE76267-1	8/03/2010 8/03/2010	LCS	8/03/2010
Date Analysed (Mercury)				8/03/20 10	SE76267-1	8/03/2010 8/03/2010	LCS	8/03/2010
Mercury	mg/kg	0.05	SEM-005	<0.05	SE76267-1	<0.05 <0.05	LCS	114%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 33 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

QUALITY CONTROL	UNITS	LOR	METHOD	Blank
Asbestos ID in soil				
Date Analysed				[NT]
2 alo / maijoo a				11

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
BTEX in Water (µg/L)						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (BTEX)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Date Analysed (BTEX)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Benzene	µg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	103%
Toluene	µg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	104%
Ethylbenzene	µg/L	0.5	SEO-018	<0.5	[NT]	[NT]	LCS	104%
Total Xylenes	µg/L	1.5	SEO-018	<1.5	[NT]	[NT]	LCS	103%
Surrogate	%	0	SEO-018	125	[NT]	[NT]	LCS	74%

QUALITY CONTROL TRH in water with C6-C9 by P/T	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Date Analysed (TRH C6-C9 PT)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
TPH C6-C9 P&T	µg/L	40	SEO-018	<40	[NT]	[NT]	LCS	99%
Date Extracted (TRH C10-C36)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Date Analysed (TRH C10-C36)				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
TRH C10 - C14	µg/L	100	SEO-020	<100	[NT]	[NT]	LCS	80%
TRH C15 - C28	µg/L	200	SEO-020	<200	[NT]	[NT]	LCS	81%
TRH C29 - C36	µg/L	200	SEO-020	<200	[NT]	[NT]	LCS	79%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 34 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE76267

QUALITY CONTROL PAHs in Water	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Date Analysed				4/03/20 10	[NT]	[NT]	LCS	4/03/2010
Naphthalene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	97%
2-Methylnaphthalene	µg/L	0.5	SEO-030	<0.5	[NT]	[NT]	[NR]	[NR]
1-Methylnaphthalene	µg/L	0.5	SEO-030	<0.5	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	109%
Acenaphthene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	119%
Fluorene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Phenanthrene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	113%
Anthracene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	117%
Fluoranthene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	121%
Pyrene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	120%
Benzo[a]anthracene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Benzo <i>[b,k</i>]fluoranthe ne	µg/L	1	SEO-030	<1.0	[NT]	[NT]	[NR]	[NR]
Benzo[a]pyrene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	LCS	102%
Indeno[<i>123-cd</i>]pyren e	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Dibenzo[<i>ah</i>]anthrace ne	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Benzo[ghi]perylene	µg/L	0.5	SEO-030	<0.50	[NT]	[NT]	[NR]	[NR]
Total PAHs	µg/L	9	SEO-030	<9	[NT]	[NT]	[NR]	[NR]
Nitrobenzene-d5	%	0	SEO-030	86	[NT]	[NT]	LCS	111%
2-Fluorobiphenyl	%	0	SEO-030	76	[NT]	[NT]	LCS	99%
<i>p</i> -Terphenyl- <i>d</i> 14	%	0	SEO-030	98	[NT]	[NT]	LCS	105%

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

d except in full. Page

SGS Australia Pty Ltd ABN 44 000 964 278 Page 35 of 41

REPORT NO: SE76267

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Trace HM (ICP-MS)-Dissolved						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Metals-ICPMS)				3/03/20 10	[NT]	[NT]	LCS	3/03/2010
Date Analysed (Metals-ICPMS)				3/03/20 10	[NT]	[NT]	LCS	3/03/2010
Arsenic	µg/L	1	AN318	<1	[NT]	[NT]	LCS	110%
Cadmium	µg/L	0.1	AN318	<0.1	[NT]	[NT]	LCS	96%
Chromium	µg/L	1	AN318	<1	[NT]	[NT]	LCS	99%
Copper	µg/L	1	AN318	<1	[NT]	[NT]	LCS	100%
Lead	µg/L	1	AN318	<1	[NT]	[NT]	LCS	91%
Nickel	µg/L	1	AN318	<1	[NT]	[NT]	LCS	101%
Zinc	µg/L	1	AN318	<1	[NT]	[NT]	LCS	98%

QUALITY CONTROL	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
Mercury Cold Vapor/Hg Analyser						Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (Mercury)				5/03/20 10	[NT]	[NT]	LCS	5/03/2010
Date Analysed (Mercury)				5/03/20 10	[NT]	[NT]	LCS	5/03/2010
Mercury (Dissolved)	mg/L	0.0005	SEM-005	<0.000 5	[NT]	[NT]	LCS	101%

QUALITY CONTROL Hold sample- NO test required	UNITS	LOR	METHOD	Blank
Sample on HOLD		[NT]		[NT]

QUALITY CONTROL Moisture	UNITS	LOR	METHOD	Blank
Date Analysed (moisture)				[NT]
Moisture	%	1	AN002	<1

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 36 of 41

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com SGS Australia Pty Ltd ABN 44 000 964 278

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Matrix Spike % Recovery
BTEX in Soil			Base + Duplicate + %RPD		Duplicate + %RPD
Date Extracted (BTEX)		SE76267-1	4/03/2010 4/03/2010	SE76267-2	4/03/2010
Date Analysed (BTEX)		SE76267-1	6/03/2010 6/03/2010	SE76267-2	6/03/2010
Benzene	mg/kg	SE76267-1	<0.1 <0.1	SE76267-2	69%
Toluene	mg/kg	SE76267-1	<0.1 <0.1	SE76267-2	79%
Ethylbenzene	mg/kg	SE76267-1	<0.1 <0.1	SE76267-2	79%
Total Xylenes	mg/kg	SE76267-1	0.4 0.5 RPD: 22	SE76267-2	92%
BTEX Surrogate (%)	%	SE76267-1	73 77 RPD: 5	SE76267-2	90%

QUALITY CONTROL TRH in soil with C6-C9 by P/T	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted (TRH C6-C9 PT)		SE76267-1	4/03/2010 4/03/2010	SE76267-2	4/03/2010
Date Analysed (TRH C6-C9 PT)		SE76267-1	6/03/2010 6/03/2010	SE76267-2	6/03/2010
TRH C6 - C9 P&T	mg/kg	SE76267-1	<20 <20	SE76267-2	90%

QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD
Date Extracted		SE76267-2 4	4/03/2010 4/03/2010
Date Analysed		SE76267-2 4	4/03/2010 4/03/2010
Naphthalene	mg/kg	SE76267-2 4	<0.10 <0.10
2-Methylnaphthalene	mg/kg	SE76267-2 4	<0.10 <0.10
1-Methylnaphthalene	mg/kg	SE76267-2 4	<0.10 <0.10
Acenaphthylene	mg/kg	SE76267-2 4	<0.10 <0.10
Acenaphthene	mg/kg	SE76267-2 4	<0.10 <0.10
Fluorene	mg/kg	SE76267-2 4	<0.10 <0.10
Phenanthrene	mg/kg	SE76267-2 4	<0.10 <0.10

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

SGS Australia Pty Ltd

ABN 44 000 964 278

 Page 37 of 41
 Image 37 of 41

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t + 61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com
 www.au.sgs.com

PROJECT: ENVIWARA00284AB

			1				
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate				
PAHs in Soil			Base + Duplicate + %RPD				
Anthracene	mg/kg	SE76267-2 4	<0.10 <0.10				
Fluoranthene	mg/kg	SE76267-2 4	<0.10 <0.10				
Pyrene	mg/kg	SE76267-2 4	<0.10 <0.10				
Benzo[a]anthracene	mg/kg	SE76267-2 4	<0.10 <0.10				
Chrysene	mg/kg	SE76267-2 4	<0.10 <0.10				
Benzo[<i>b,k</i>]fluoranthene	mg/kg	SE76267-2 4	<0.20 <0.20				
Benzo[a]pyrene	mg/kg	SE76267-2 4	<0.05 <0.05				
Indeno[123-cd]pyrene	mg/kg	SE76267-2 4	<0.10 <0.10				
Dibenzo[ah]anthracene	mg/kg	SE76267-2 4	<0.10 <0.10				
Benzo[ghi]perylene	mg/kg	SE76267-2 4	<0.10 <0.10				
Total PAHs (sum)	mg/kg	SE76267-2 4	<1.7 <1.7				
Nitrobenzene-d5	%	SE76267-2 4	91 98 RPD: 7				
2-Fluorobiphenyl	%	SE76267-2 4	85 91 RPD: 7				
p -Terphenyl-d14	%	SE76267-2 4	107 109 RPD: 2				

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Metals in Soil by ICP-OES			Base + Duplicate + %RPD
Date Extracted (Metals)		SE76267-1	8/03/2010
		1	8/03/2010
Date Analysed (Metals)		SE76267-1	8/03/2010
		1	8/03/2010
Arsenic	mg/kg	SE76267-1 1	<3 <3
Cadmium	mg/kg	SE76267-1 1	<0.3 <0.3
Chromium	mg/kg	SE76267-1 1	2.7 2.4 RPD: 12
Copper	mg/kg	SE76267-1 1	4.5 5.7 RPD: 24

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 38 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com

PROJECT: ENVIWARA00284AB

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
Metals in Soil by ICP-OES			Base + Duplicate + %RPD
Lead	mg/kg	SE76267-1 1	2 3 RPD: 40
Nickel	mg/kg	SE76267-1 1	0.94 0.91 RPD: 3
Zinc	mg/kg	SE76267-1 1	19 22 RPD: 15

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate			
Mercury Cold Vapor/Hg Analyser			Base + Duplicate + %RPD			
Date Extracted (Mercury)		SE76267-1 1	8/03/2010 8/03/2010			
Date Analysed (Mercury)		SE76267-1 1	8/03/2010 8/03/2010			
Mercury	mg/kg	SE76267-1 1	<0.05 <0.05			

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate				
PAHs in Soil			Base + Duplicate + %RPD				
Date Extracted		SE76267-3	4/03/2010 4/03/2010				
Date Analysed		SE76267-3	4/03/2010 4/03/2010				
Naphthalene	mg/kg	SE76267-3	<0.10 <0.10				
2-Methylnaphthalene	mg/kg	SE76267-3	<0.10 <0.10				
1-Methylnaphthalene	mg/kg	SE76267-3	<0.10 <0.10				
Acenaphthylene	mg/kg	SE76267-3	<0.10 <0.10				
Acenaphthene	mg/kg	SE76267-3	<0.10 <0.10				
Fluorene	mg/kg	SE76267-3	<0.10 <0.10				
Phenanthrene	mg/kg	SE76267-3	<0.10 <0.10				
Anthracene	mg/kg	SE76267-3	<0.10 <0.10				
Fluoranthene	mg/kg	SE76267-3	0.11 0.11 RPD: 0				
Pyrene	mg/kg	SE76267-3	0.10 0.10 RPD: 0				
Benzo[a]anthracene	mg/kg	SE76267-3	<0.10 <0.10				
Chrysene	mg/kg	SE76267-3	<0.10 <0.10				
Benzo[b,k]fluoranthene	mg/kg	SE76267-3	<0.20 0.20				
Benzo[a]pyrene	mg/kg	SE76267-3	0.07 0.09 RPD: 25				
Indeno[123-cd]pyrene	mg/kg	SE76267-3	<0.10 <0.10				

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 39 of 41

SGS Australia Pty Ltd ABN 44 000 964 278 Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com

PROJECT: ENVIWARA00284AB

QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate
PAHs in Soil			Base + Duplicate + %RPD
Dibenzo[ah]anthracene	mg/kg	SE76267-3	<0.10 <0.10
Benzo[ghi]perylene	mg/kg	SE76267-3	<0.10 0.10
Total PAHs (sum)	mg/kg	SE76267-3	<1.78 <1.80
Nitrobenzene-d5	%	SE76267-3	77 80 RPD: 4
2-Fluorobiphenyl	%	SE76267-3	74 73 RPD: 1
p -Terphenyl-d14	%	SE76267-3	95 90 RPD: 5

REPORT NO: SE76267

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 40 of 41

SGS Australia Pty Ltd ABN 44 000 964 278

Environmental Services Unit 16/33 Maddox Street Alexandria NSW 2015 Australia t+61 (0)2 8594 0400 f+61 (0)2 8594 0499 www.au.sgs.com

Result Codes

 [INS]
 :
 Insufficient Sample for this test

 [NR]
 :
 Not Requested

 [NT]
 :
 Not tested

- [RPD] : Relative Percentage Difference
- Not part of NATA Accreditation
- [N/A] : Not Applicable

Report Comments

Sampled by the client

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos-containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

No respirable fibres detected using trace analysis technique.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Air-toxics and Dioxins/Furans*) This document is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

 Page 41 of 41

 Environmental Services
 Unit 16/33 Maddox Street
 Alexandria NSW 2015
 Australia

 t +61 (0)2 8594 0400
 f + 61 (0)2 8594 0499
 www.au.sgs.com

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

ABN - 50 005 085 521 e.mail:mat@matenv.com.au web : www.mgtenv.com.au

CERTIFICATE OF ANALYSIS

Coffey Environments Pty Ltd Newcastle Lot 101, 19 Warabrook Boulevard Warabrook **New South Wales 2304** Site: ENVIWARA00284AB

Report Number: 260177-A-V1 Page 1 of 6 Order Number: Date Received: Mar 02, 2010 Date Sampled: Feb 26, 2010 Date Reported: Mar 10, 2010 Contact: James McMahon

Methods

- USEPA 8270C Polycyclic Aromatic Hydrocarbons
- USEPA 6020 Heavy Metals & USEPA 7470/71 Mercury
- APHA 4500-CI (CI by Discrete Analyser)
 Method 102 ANZECC % Moisture

Comments

Notes

Authorised

ΝΔΤ

WORLD RECOGNISED

Com-fl

Michael Wright Senior Principal Chemist **NATA Signatory**

Dan Thompson Laboratory Manager NSW

Onur Mehmet Client Manager NATA Signatory

Report Number: 260177-A-V1

NATA Corporate Accreditation Number 1261 The tests, calibrations or measurements covered by this document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : 03 9564 7055 NATA Site # 1254

Adelaide

ABN - 50 005 085 521 e.mail:mat@matenv.com.au

web : www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

GLOSSARY OF TERMS

UNITS

mg/kg ug/l ppb org/100ml	milligrams per Kilogram micrograms per litre Parts per billion Organisms per 100 millilitres	mg/l ppm % NTU	milligrams per litre Parts per million Percentage Units
TERMS			
Dry LOR SPIKE RPD LCS CRM Method Blank Surr - Surrogate Duplicate Batch Duplicate Batch SPIKE USEPA APHA ASLP TCLP COC SRA	Limit of Reporting. Addition of the analyte to the sar Relative Percent Difference betw Laboratory Control Sample - rep Certified Reference Material - re In the case of solid samples thes In the case of water samples the The addition of a like compound A second piece of analysis from A second piece of analysis from	mple and reported veen two Duplicate orted as percent re ported as percent re se are performed o to the analyte targ the same sample outside mple from outside ection Authority tion rocedure (AS4439.	e pieces of analysis. secovery recovery n laboratory certified clean sands. on de-ionised water. get and reported as percentage recovery. and reported in the same units as the result to show comparison. of the clients batch of samples but run within the laboratory batch of analysis. of the clients batch of samples but run within the laboratory batch of analysis.

QC - ACCEPTANCE C	RITERIA
RPD Duplicates	Results <10 times the LOR : No Limit
	Results between 10-20 times LOR : RPD must lie between 0-50%
	Results >20 times LOR : RPD must lie between 0-20%
LCS Recoveries	Recoveries must lie between 70-130% - Phenols 30-130%
CRM Recoveries	Recoveries must lie between 70-130% - Phenols 30-130%
Method Blanks	Not to exceed LOR
SPIKE Recoveries	Recoveries must lie between 70-130% - Phenols 30-130%
Surrogate Recoverie	sRecoveries must lie between 50-150% - Phenols 20-130%

GENERAL COMMENTS

- All results in this report supersede any previously corresponded results. 1
- All soil results are reported on a dry basis. 2.
- 3. Samples are analysed on an as received basis.

QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to
- interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis - where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike. 4.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and 5. it's Total Recovery is reported in the C10-C14 cell of the Report.
- Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that 6. analyte.
- 7
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's. For Matrix Spikes and LCS results a dash "." in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result 9. A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

Environmental Laboratory NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis Air Analysis Water Analysis Soil Contamination Analysis 35Years of Environmental Analysis & Experience - fully Australian Owned

Page 2 of 6

MGT Report No. 260177-A-V1

ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : 03 9564 7055 NATA Site # 1254 **Sydney** 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217 Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Company Nam Address: Client Job No.:	Lot 101, 19 Warabrook New South	Wales 2304		Order N Report # Phone: Fax:	É: 2 C	260177)2 4016 :)2 4016 :						Receive Due: Priority Contac	t name:		Mar 5 Da Jame	es McMahon
		A00204AB											mg		Manage	r: Onur Mehmet
	Sa	ample Detail			% Moisture	Arsenic	Cadmium	Chloride	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Polycyclic Aromatic Hydrocarbons	
Laboratory whe																
Melbourne Labo								X				X				
Sydney Laborat	ory - NATA Site	#18217			X	X	X		X	X	X		Х	Х	X	
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
QC3A	Feb 26, 2010		Soil	S10-MA00859	Х	X	X	Х	Х	Х	X	X	Х	Х	Х	

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Coffey Environments Pty Ltd Newcastle	Client Sample ID		QC3A
Lot 101, 19 Warabrook Boulevard	Lab Number		T10-MA00859
Warabrook	Matrix		Soil
New South Wales 2304	Sample Date		Feb 26, 2010
Analysis Type	LOR	Units	
Polycyclic Aromatic Hydrocarbons			
Acenaphthene	0.1	mg/kg	< 0.1
Acenaphthylene	0.1	mg/kg	< 0.1
Anthracene	0.1	mg/kg	< 0.1
Benz(a)anthracene	0.1	mg/kg	< 0.1
Benzo(a)pyrene	0.1	mg/kg	< 0.1
Benzo(b)fluoranthene	0.1	mg/kg	< 0.1
Benzo(g.h.i)perylene	0.1	mg/kg	< 0.1
Benzo(k)fluoranthene	0.1	mg/kg	< 0.1
Chrysene	0.1	mg/kg	< 0.1
Dibenz(a.h)anthracene	0.1	mg/kg	< 0.1
Fluoranthene	0.1	mg/kg	< 0.1
Fluorene	0.1	mg/kg	< 0.1
Indeno(1.2.3-cd)pyrene	0.1	mg/kg	< 0.1
Naphthalene	0.1	mg/kg	< 0.1
Phenanthrene	0.1	mg/kg	< 0.1
Pyrene	0.1	mg/kg	< 0.1
Total PAH	0.1	mg/kg	< 0.1
p-Terphenyl-d14 (surr.)	1	%	84
2-Fluorobiphenyl (surr.)	1	%	96
% Moisture	0.1	%	4.0
Chloride	5	mg/kg	32
Heavy Metals			
Arsenic	2.0	mg/kg	2.9
Cadmium	0.5	mg/kg	< 0.5
Chromium	5	mg/kg	< 5
Copper	5	mg/kg	11
Lead	5	mg/kg	< 5
Mercury	0.1	mg/kg	< 0.1
Nickel	5	mg/kg	< 5

Coffey Environments Pty Ltd Newcastle	Client Sample ID		QC3A
Lot 101, 19 Warabrook Boulevard	Lab Number		T10-MA00859
Warabrook	Matrix		Soil
New South Wales 2304	Sample Date		Feb 26, 2010
Analysis Type	LOR	Units	
Zinc	5	mg/kg	35
COMMENTS:		MGT Report No. 260177-A-V	//

 Sydney

 Kingston Town Close
 1a Chilvers Rd

 leigh Vic 3166
 Thornleigh NSW 2120

 re : 03 9564 7055
 Phone : 02 9484 3300

 A Site # 1254
 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Coffey Environments Pty Ltd Newcastle	Client Sample ID	QC3A	QC3A	RPD	SPIKE	LCS	Method blank	
Lot 101, 19 Warabrook Boulevard	Lab Number	10-MA00859	10-MA00859	10-MA00859	10-MA00859	Batch	Batch	
Warabrook	QA Description		Duplicate	Duplicate % RPD	Spike % Recovery	% Recovery	1	
New South Wales 2304	Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
	Sample Date	Feb 26, 2010	Feb 26, 2010	Feb 26, 2010	Feb 26, 2010	Feb 26, 2010	Feb 26, 2010	
Analysis Type	Units			% RPD	% Recovery	% Recovery	mg/kg	
Chloride		-	-	3.0	98	123	< 5	
Polycyclic Aromatic Hydrocarbons								
Acenaphthene		< 0.1	< 0.1	< 1	106	90	< 0.1	
Acenaphthylene		< 0.1	< 0.1	< 1	105	90	< 0.1	
Anthracene		< 0.1	< 0.1	< 1	103	104	< 0.1	
Benz(a)anthracene		< 0.1	< 0.1	< 1	84	96	< 0.1	
Benzo(a)pyrene		< 0.1	< 0.1	< 1	104	105	< 0.1	
Benzo(b)fluoranthene		< 0.1	< 0.1	< 1	86	90	< 0.1	
Benzo(g.h.i)perylene		< 0.1	< 0.1	< 1	99	102	< 0.1	
Benzo(k)fluoranthene		< 0.1	< 0.1	< 1	106	116	< 0.1	
Chrysene		< 0.1	< 0.1	< 1	101	106	< 0.1	
Dibenz(a.h)anthracene		< 0.1	< 0.1	< 1	87	98	< 0.1	
Fluoranthene		< 0.1	0.2	200	105	109	< 0.1	
Fluorene		< 0.1	< 0.1	< 1	104	99	< 0.1	
Indeno(1.2.3-cd)pyrene		< 0.1	< 0.1	< 1	86	96	< 0.1	
Naphthalene		< 0.1	< 0.1	< 1	106	85	< 0.1	
Phenanthrene		< 0.1	0.2	200	102	103	< 0.1	
Pyrene		< 0.1	0.2	200	106	108	< 0.1	
Heavy Metals		Batch	Batch	Batch	Batch			
Arsenic		-	-	55	84	104	< 2	
Cadmium		-	-	< 1	89	114	< 0.5	
Chromium		-	-	43	76	114	< 5	
Copper		-	-	5.2	109	113	< 5	
Lead		-	-	31	106	113	< 5	
Mercury		-	-	< 1	74	99	< 0.1	
Nickel		-	-	11	76	120	< 5	
Zinc		-	-	13	112	114	< 5	
CONVENTS:						MOT Depart No. 20		

SGS ENVIRONMENTAL UNIT 16, 33 MADDOX ST ALEXANDRIA NSU 2015 SATTALE RECEIPT		and a second a second	Laboratory adotation Other No. OF +E 7	JOU DO 284 AB	Sheet 1 of 2		
SAMPLE RECEIPT	Sampled by: DAMION		Hendelock	Consigning Officer: DAnien HENORICICE Date Dispatched: 1/3/10	Hendercier	1	
A 1	Project Manager (report results to)	JAMES	JAMES MC MAHON	Courier Service: 721		l	
the 1	Date:	Time: Re	Received by:		Date:	Time;	
Abrilo	1/3/19	4: 30pr			s.h. (2	\$.3.	
xiti				Analyses Required		6	
Comments Container Type and Preservative and Preservative	Sample No	ö	Date Samp PAHs PAHs BTEX Metals:	5 20172 201/200 201/200 201/200		elqme8 toltibno0 qieceR no	
SOIL CLASS/PLASTIC+ICE	EHA1 0.0-0.	,	26/2/10 ////				
		3					
3	EHAL 0.0	0.0-0.1					
7	• · · · · · · · · · · · · · · · · · · ·	-0.3	1111				
5	ENA3 0.0	1.0-0					
و	1 0.3	s - 0. ۲	/			0	
	EHA4 0.0	0.0-0.1	///////////////////////////////////////	/	Recised 2		
200	11 0.3	0.3-0.4	///////////////////////////////////////		8-70	Com	
~	EHAS 0.0	1.0-0	/		Complex matt	Celino Colorida	
a)	11 0.3	3-0.4			perature on Rechort	2	Nei
0	ENAG 0.0	1.0-0			N C	7-8-4	5
2	0.	0.2-0.3	/		37 0	2	5
13	EHAJ 0.1	1.0-0.0	/				
14	11 0.2	2-0.3					
	EHAS 0.0	1.0-0	111				
	1)	1-0.5	\langle				
Special Laboratory Instructions:					JOB NUMBER MUST BE REFERENCED ON ALL	1.5.5	
Detection Limits:	Turnaround Required:	÷			SUBSEQUEN	T PAGES E	

No: 34613 Sheet 2 of 2	soricity		Time:	2/3 8-30		algras2 notibro2 rgiaceR no								The analysis					REFERENCED ON ALL B
No: 34 ENVIDACA Sheet Sheet	Consigning Officer: Davisor Haworlicick Date Dispatched: 2 1/3/10	Courrier Service: 77%7 Consignment Note No:	4	S S S S S S S S S S S S S S S S S S S	إحزنى	Analyses Required								Send to mat					
der No. Corren	DAMIEN HENDRICK	Ames McMahow	Received by:			beiqms& etsG RHA9 RH97 X3T8 = sHAM X3T8 = sHAM SisteM	26/2/10			>	26/2/10 / //	-		1	2612100	· · · · · · · · · · · · · · · · · · ·			
Laboratory Quotation / Order No. Correct	Sampled by: DAMEN	Project Manager: (report results to)		1/3/10 4:300-		Sample No.			EHA 10 0.0-	11 0.2-03	QC1			e acon	QCA				Turnaround Required:
Chain of Custody	MADOOLST NSU 2015	RECENT	0	l		Container Type and Preservative	Soil auss PLASTE +ICE EHAG	1 18	51	1	CLASS+ICE N	7	2 ¹	~	wATER ANDOR Tak OKUTALS, W	1 k plushe			
	Dispatch lo: SQS ENVIRON I Address & UNIT 16, 33 1 Phone No. BLER AND RIA	SAMPLE REC	W W N	- Arra		Comments Sample Matrix	Soil		7		Sell			7	WATER F			Special Laboratory instructions:	ts.
coffey ≯	Dispatch to: (Address & Phone No.)	Attentions	Relinquished by:	1		-												Special Labord	Detection Limits:

offey. BLUE: To be returned with results. 1:MO YEL WHITE copies: