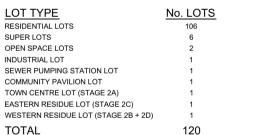


0 20 40 60 80 100m 15.10.2010 1:4000 @ A3

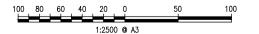
D.P.1020994 & PROPOSED LOT 11 IN UNREGISTERED PLAN OF SUBDIVISION BY BRIAN DEWING DATED 5-6-09, REF: ES46-5174DP, AT NORTH PENRITH

rincipal:	ncipal:		LAN	D	COM			
cale	ile	1:4000	Date 27/10/2010		Council Ref.			
		1.4000	Datum N/A		L.G.A. PENI	RITH		
alc's	c's	G.J.H.	Drawn. G.W.E.	Proj.	Man. G.J.H.	UBD Ref.:	163 KB	
alc's	c's	G.J.H.	Drawn. G.W.E.	Proj.	Man. G.J.H.	UBD Ref.:	1	63 KB


EPPING NSW 2121

Fax. 9869-2341 reception@crhodes.com.au www.craigandrhodes.com.au

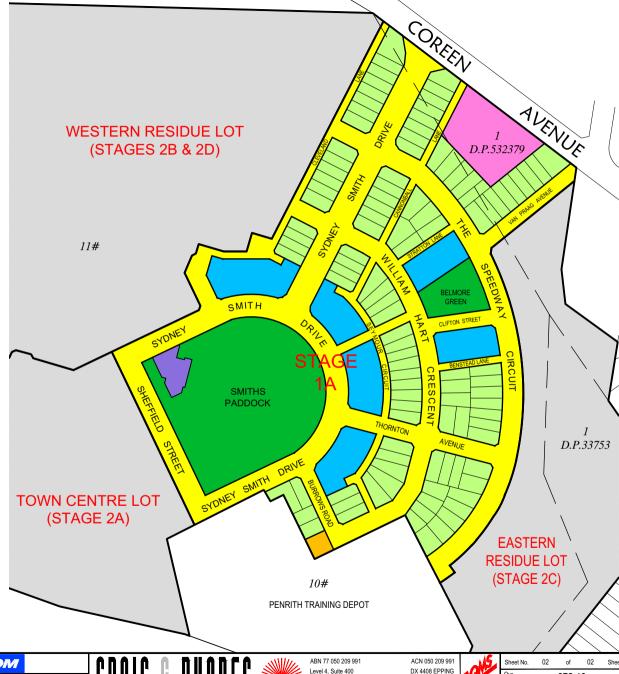
Sheet No.	01	of	02	Shee
Our Ref.		072-	10	
Dir.		Z:\072-	10	
Dwg. [Rev]	072	10L0	3 [00]	
	Our Ref.	Our Ref. Dir.	Our Ref. 072-	Our Ref. 072-10

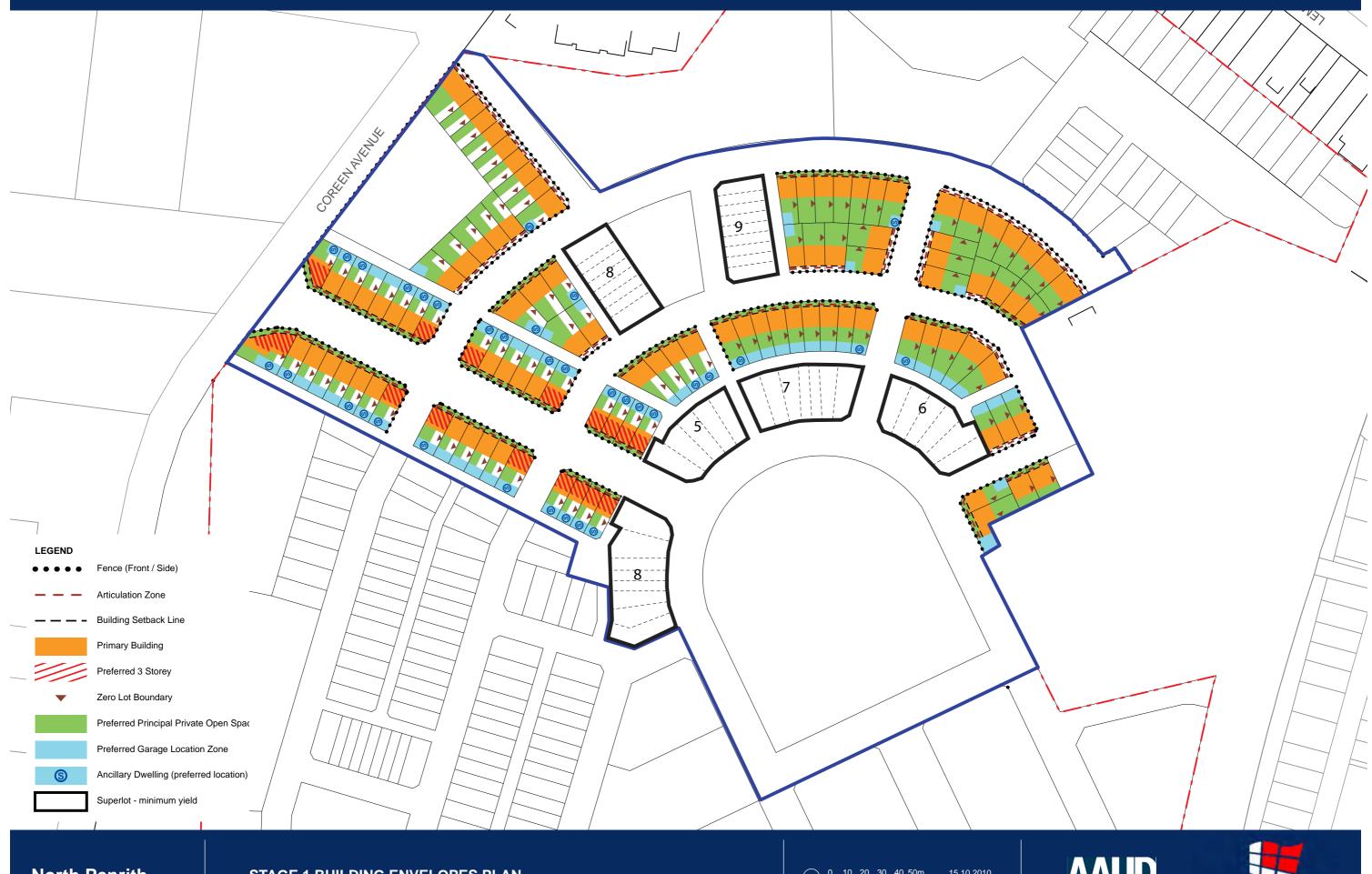


SHADING

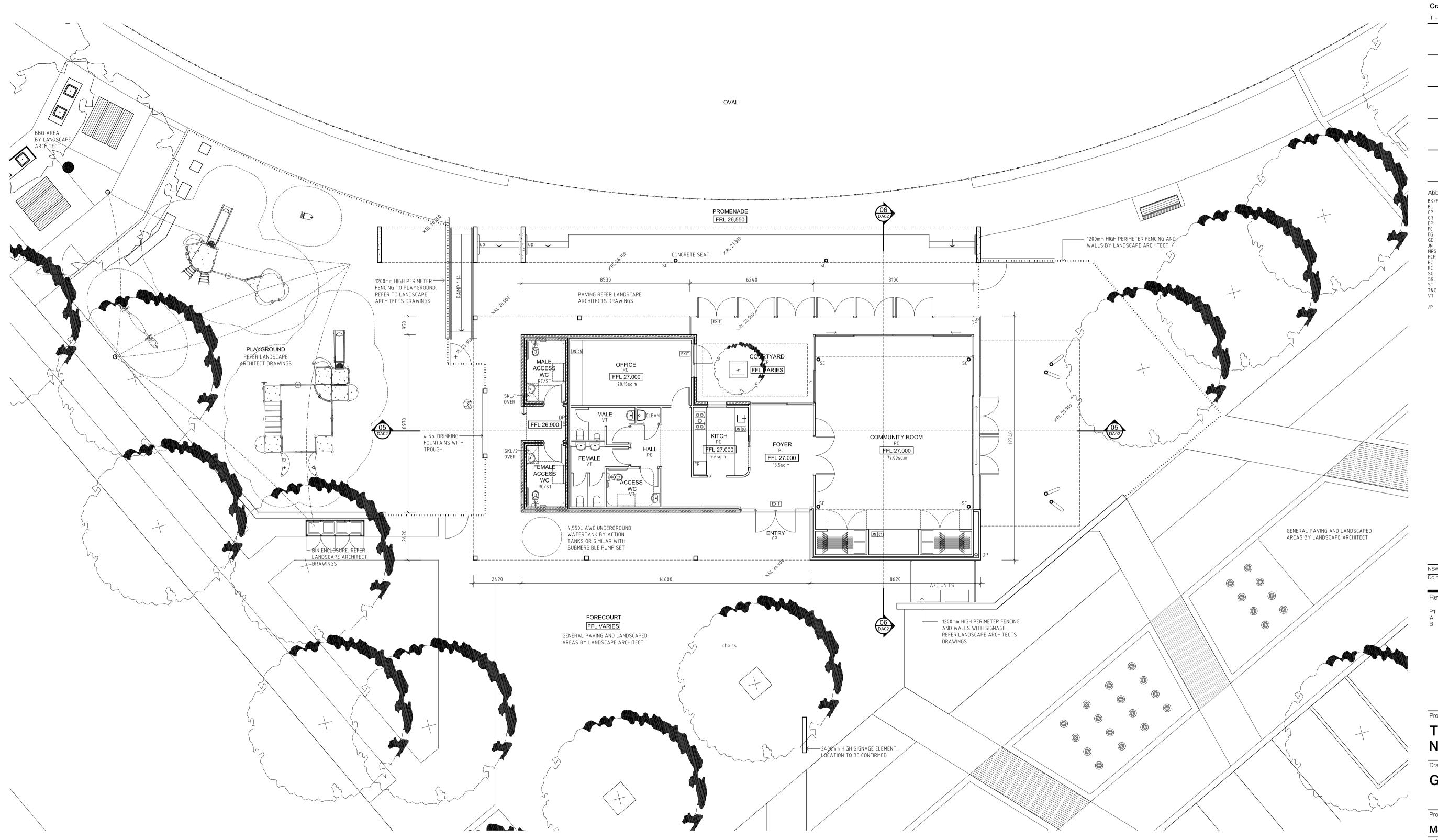
UNREGISTERED PLAN OF SUBDIVISION BY MR. SURVEYOR BRIAN DEWING DATED 5 JUNE 2009 REF: ES46-5174DP

PLAN OF PROPOSED SUBDIVISION OF LOT 1 D.P.33753, LOT 1 D.P.532379, LOTS 3 & 4 D.P.1017480, LOT 1, 2, 4, 5 & 6 D.P.1020994 & PROPOSED LOT 11 IN UNREGISTERED PLAN OF SUBDIVISION BY BRIAN DEWING DATED 5-6-09, REF: ES46-5174DP. AT NORTH PENRITH


Principal:		LAN	D(COM		
Scale	1:2500	Date 27/10/2010		Council Ref.		
	1:2500	Datum N/A		L.G.A. PENI	RITH	
Calc's	G.J.H.	Drawn. G.W.E.	Proj.	Man. G.J.H.	UBD Ref.:	163 KB



16-18 Cambridge St EPPING NSW 2121 PO Box 233


DX 4408 EPPING Tel. 9869-1855 Fax. 9869-2341 reception@crhodes.com.au www.craigandrhodes.com.au © Craig & Rhode

02 of 02 072-10 9001 Z:\072-10 07210L03 [00]

1 GROUND FLOOR PLAN

LANDCOM 330 Church Street Parramatta, NSW, 2150 T +61 2 9841 8600

F +61 2 9841 8688 PROJECT MANAGER

NPC T + 61 2 9906 8611 F +61 2 9906 7318

LANDSCAPE ARCHITECT PLACE Design Group T + 61 2 9959 5021 F +61 2 9959 5802

SURVEYORS

Craig and Rhodes T + 61 2 9869 1855 F +61 2 9869 2341

Abbreviations Legend BK/F Face Brickwork 110mm Thk Brick Wall Blockwork CP Concrete Paver CR Cement Render Cavity Brick Wall. DP Downpipe
FC Fibre Cement Sheeting
FG Fixed Glazing
GD Glass Door 110mm Thk Block Wall

JN Joinery Number MRS Metal Roof Sheeting PCP Precast Concrete Panel Polished Concrete Reinforced Concrete Steel Column SKL Skylight
ST Steel Trowel Finish
T&G Tongue & Groove Timber Flooring
VT Vitrified Tile /P Paint

Door Reference Number

Window Reference Number Skylight Reference Number \times (E)RL 0.00 Existing Spot RL. FFL 0.00 Proposed FFL

Brick Venner Wall

90mm Thk Timber Stud Wall

Thickness as Indicated

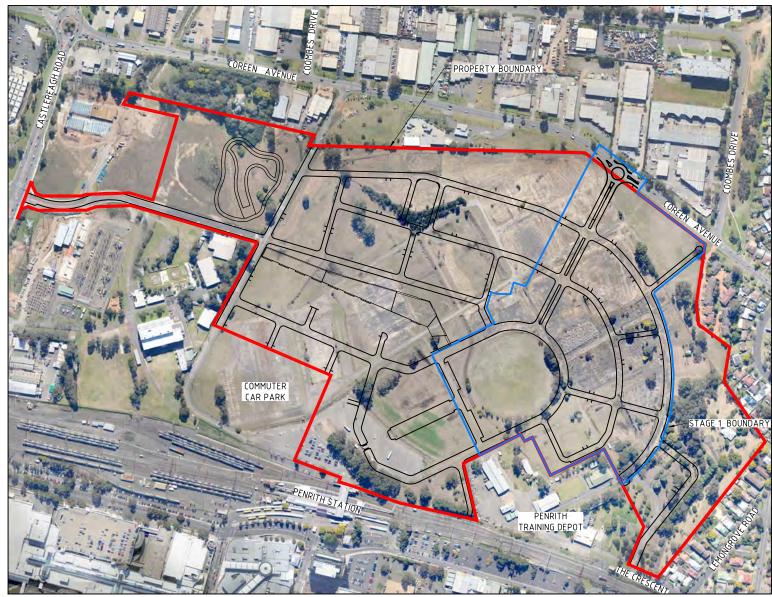
 \times RL 0.00 Proposed Spot RL.

NSW Nominated Architects: Robert Denton Reg. No. 5782, Alex Kibble Reg. No. 6015 Do not scale drawings. Verify all dimensions on site. Notify architect of all discrepancies ev Date Description Rev Date Checked Auth. P1 08.10.10 A 15.10.10 ISSUE FOR PRICING PROJECT APPLICATION 25.10.10 AMENDED PLAN

THE CRICKETERS PAVILION, **NORTH PENRITH**

GROUND FLOOR PLAN

Proj. Dir	Proj. Arch	Drawn	
MJ	DS	DS/JS	
Job No.	Date	Scale	_
090152	OCT 2010	1:100 @ A1	
Drawing No.			Revision
AR.DA.	01		В


PO Box 660 52 Albion Street Darlinghurst Surry Hills
NSW 1300 NSW 2010

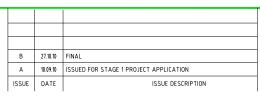
T +61 2 9281 4399 F +61 2 9281 4337 info@tannerarchitects.com.au www.tannerarchitects.com.au

tanner Architects

NORTH PENRITH

STAGE 1 PROJECT APPLICATION DRAWINGS

AERIAL IMAGE COUTESY OF NearMaps


LOCALITY PLAN

DRAWING LIST

301015-00NP-ST1-F01	TITLE SHEET
301015-00NP-ST1-F02	CONCEPT ROAD PLAN
301015-00NP-ST1-F03	CONCEPT GRADING PLAN
301015-00NP-ST1-F04	CONCEPT BULK EARTHWORKS PLAN
301015-00NP-STI-F04a	DEMOLITION PLAN
301015-00NP-ST1-F05	CONCEPT ROAD LONG SECTIONS SHEET 1 OF 4
301015-00NP-ST1-F06	CONCEPT ROAD LONG SECTIONS SHEET 2 OF 4
301015-00NP-ST1-F07	CONCEPT ROAD LONG SECTIONS SHEET 3 OF 4
301015-00NP-ST1-F08	CONCEPT ROAD LONG SECTIONS SHEET 4 OF 4
301015-00NP-ST1-F09	CONCEPT ROAD TYPICAL CROSS SECTIONS
301015-00NP-ST1-F10	COREEN AVENUE CONCEPT ROUNDABOUT INTERSECTION
301015-00NP-ST1-F11	CONCEPT STORMWATER DRAINAGE PLAN
301015-00NP-ST1-F12	CONCEPT SERVICING NETWORK
301015-00NP-ST1-F13	SEDIMENT AND EROSION CONTROL PLAN
301015-00NP-ST1-F14	SEDIMENT AND EROSION CONTROL DETAILS

WorleyParsons
resources & energy

В	27.10.10	FINAL
Α	10.09.10	ISSUED FOR STAGE 1 PROJECT APPLICATION
ISSUE	DATE	ISSUE DESCRIPTION

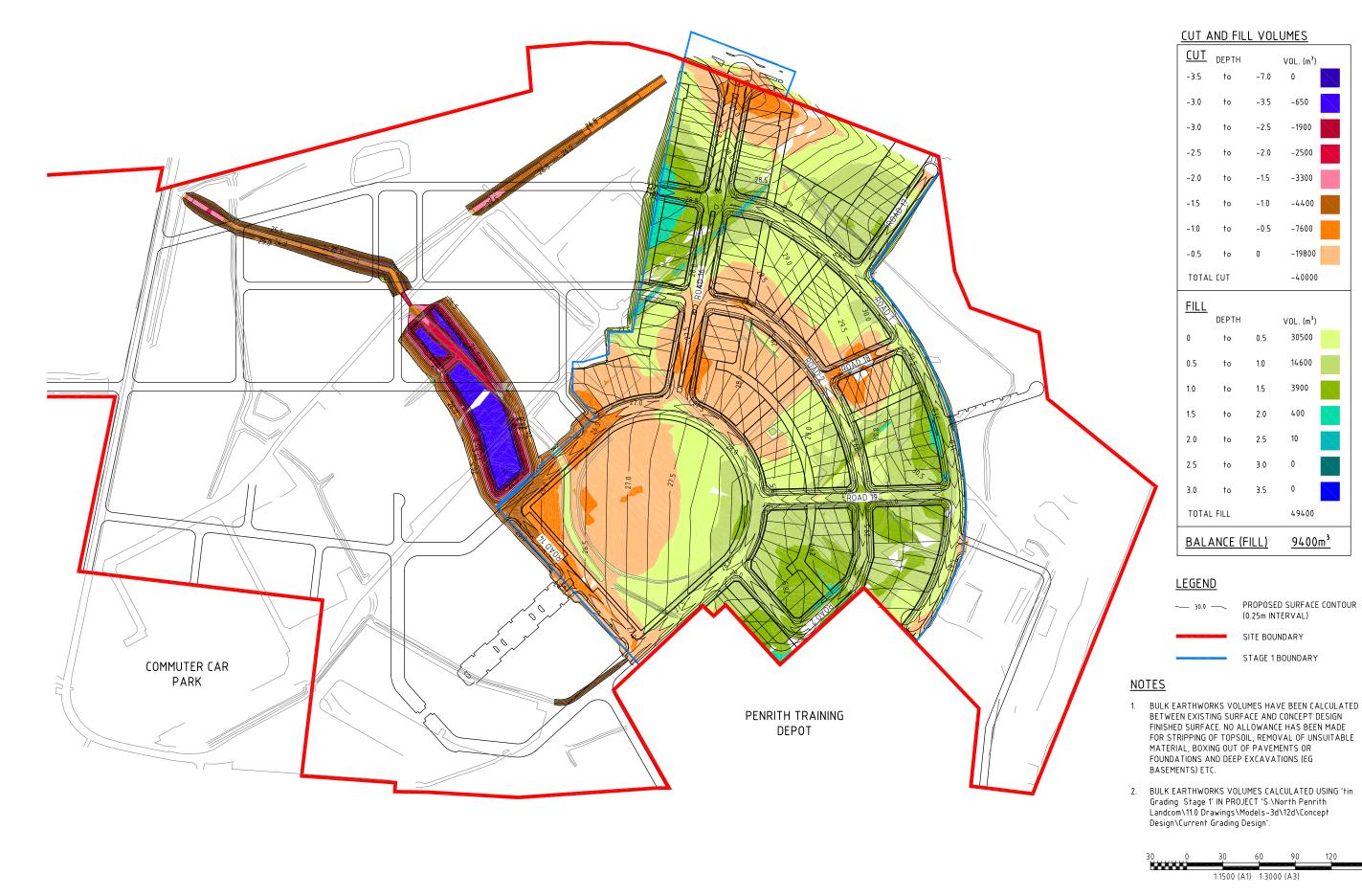
NORTH PENRITH
STAGE 1 PROJECT APPLICATION
CONCEPT ROAD PLAN

LANDCOM

B 27.10.10 FINAL

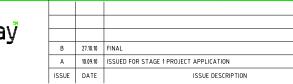
ISSUE DATE

A 10.09.10 ISSUED FOR STAGE 1 PROJECT APPLICATION

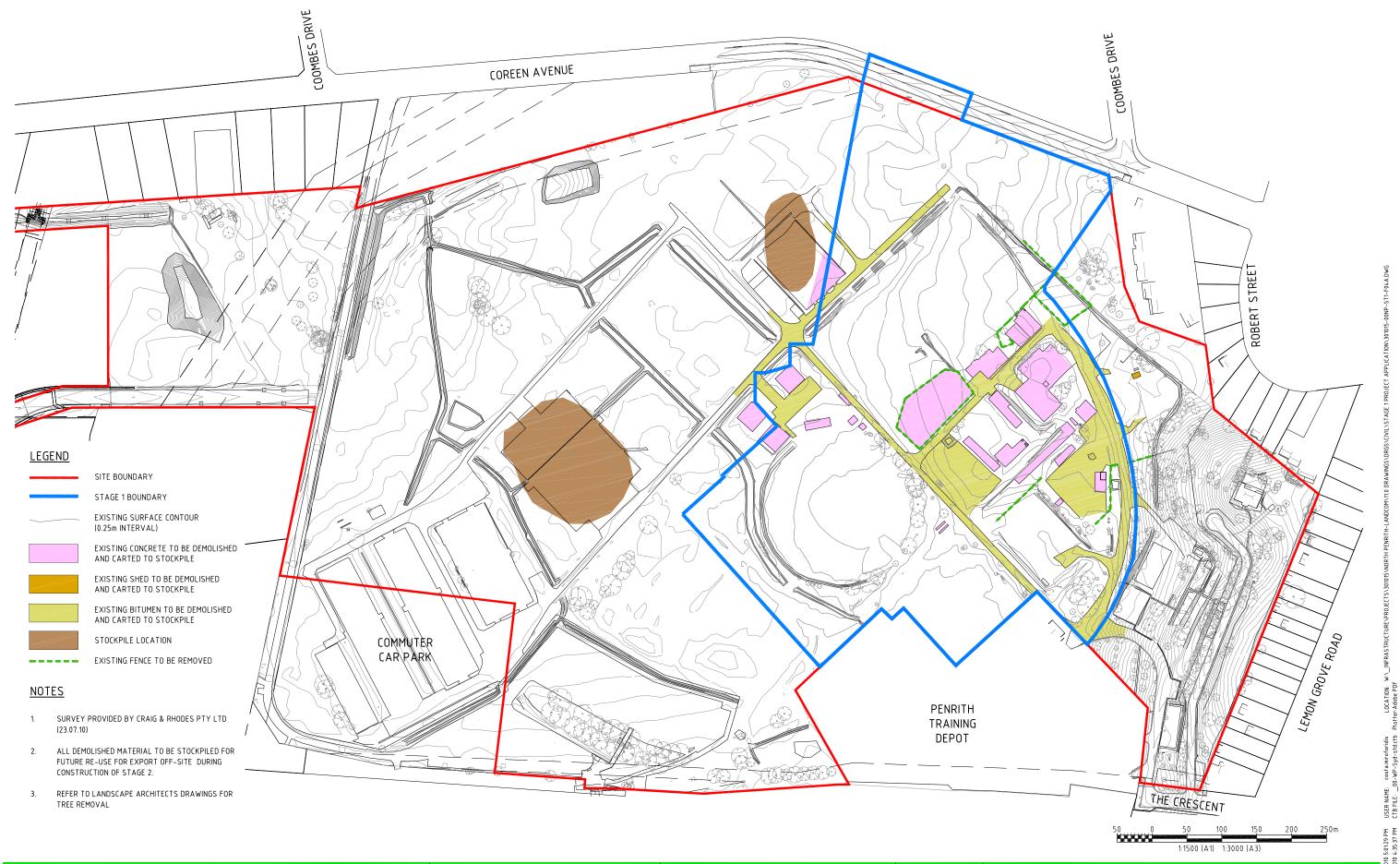

ISSUE DESCRIPTION

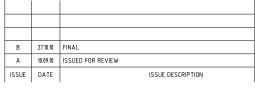
TEXISTING DRAINAGE LINE EXTENDED TOWARDS STAGE 1 BOUNDARY AT 0.5% GRADE

resources & energy

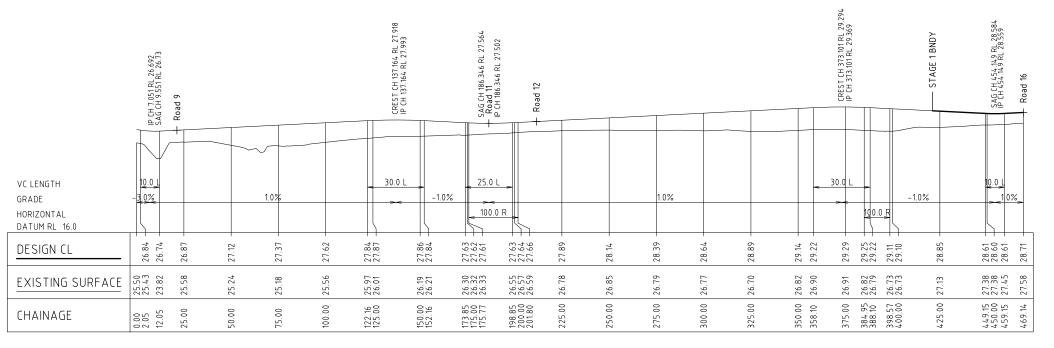

CONCEPT GRADING PLAN

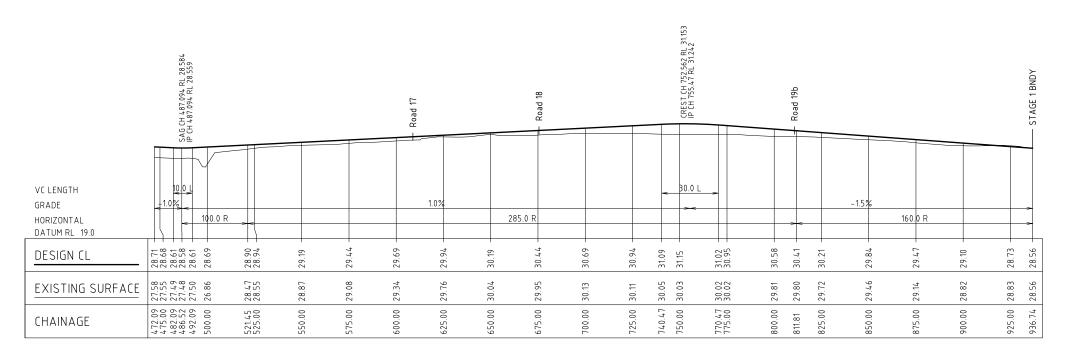
301015-00NP-ST1-F03



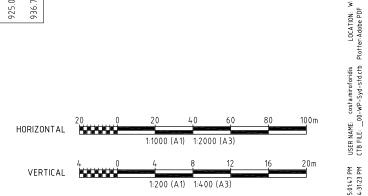


NORTH PENRITH
STAGE 1 PROJECT APPLICATION
CONCEPT BULK EARTHWORKS PLAN





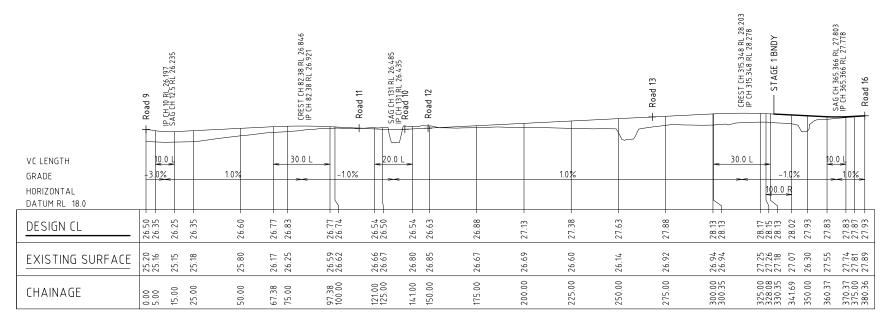
NORTH PENRITH PROJECT APPLICATION DEMOLITION PLAN

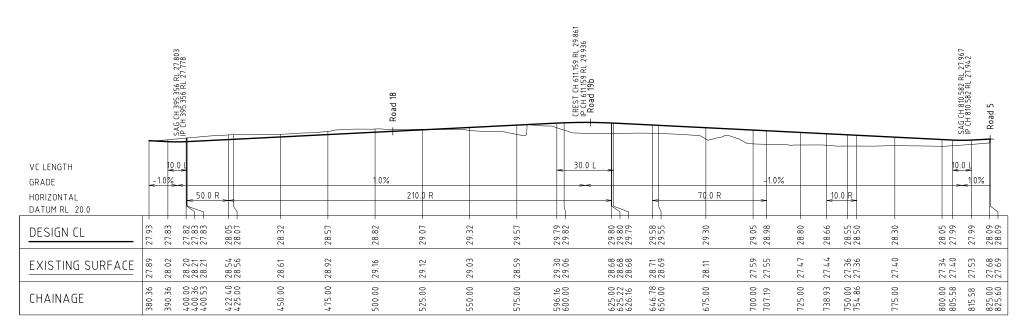

PROPOSED Road 01a LONGITUDINAL SECTION

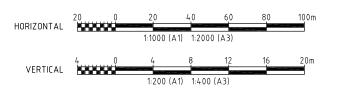
SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

PROPOSED Road 01b LONGITUDINAL SECTION

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200



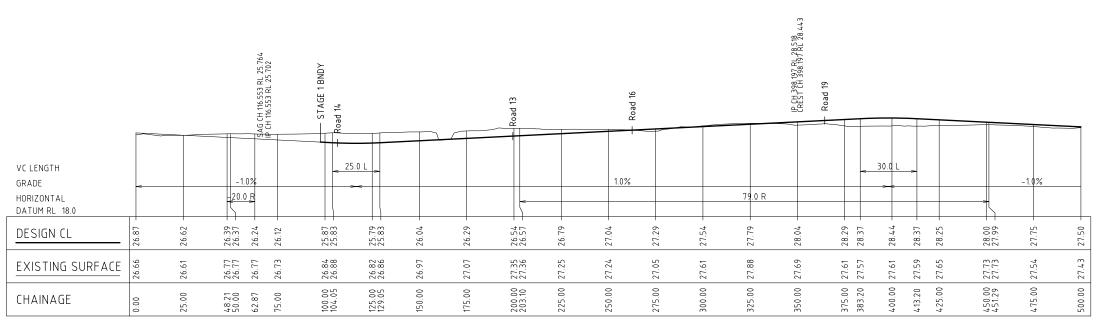

В	27.10.10	FINAL
Α	10.09.10	ISSUED FOR STAGE 1 PROJECT APPLICATION
ISSUE	DATE	ISSUE DESCRIPTION



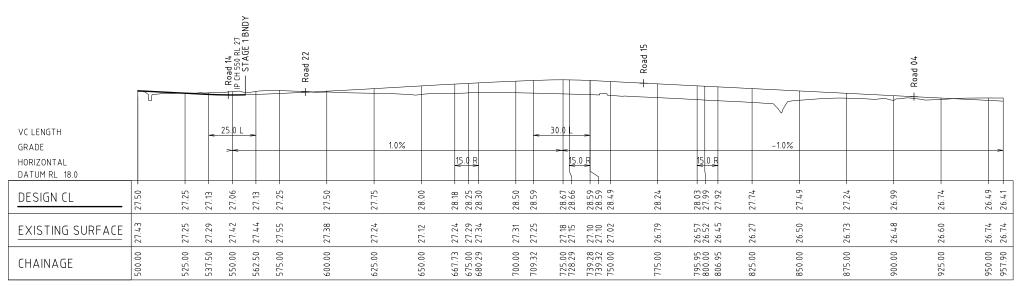
PROPOSED Road 02a LONGITUDINAL SECTION

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

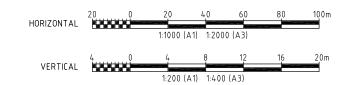
PROPOSED Road 02b LONGITUDINAL SECTION SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200



В	27.10.10	FINAL
Α	10.09.10	ISSUED FOR STAGE 1 PROJECT APPLICATION
ISSUE	DATE	ISSUE DESCRIPTION


NORTH PENRITH STAGE 1 PROJECT APPLICATION CONCEPT ROAD LONG SECTIONS SHEET 2 OF 4

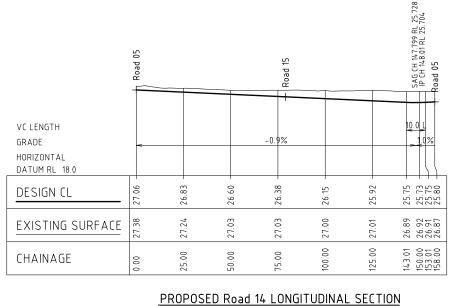
USER NAME: costa.miroforidis LOCATION: W.º CTB FILE: __00-WP-Syd-std.ctb Plotter:Adobe PDF

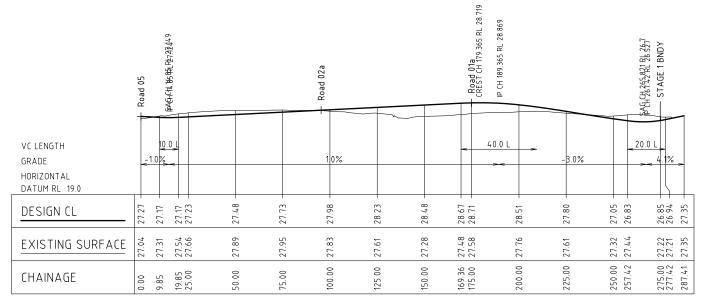

PROPOSED Road 05 LONGITUDINAL SECTION

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

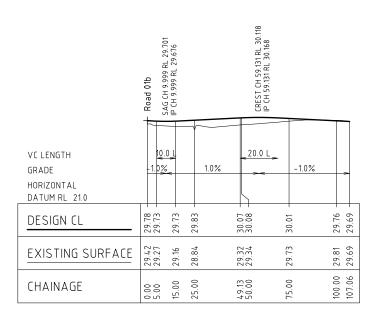
PROPOSED Road 05 LONGITUDINAL SECTION (CONT.)

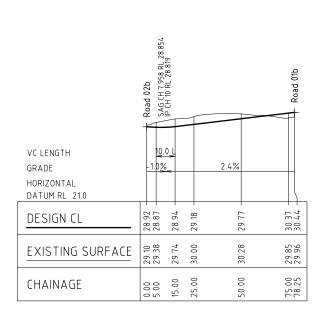
SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

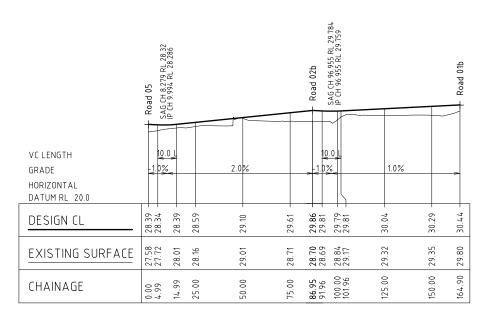




В	27.10.10	FINAL
Α	10.09.10	ISSUED FOR STAGE 1 PROJECT APPLICATION
ISSUE	DATE	ISSUE DESCRIPTION

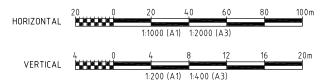





PROPOSED Road 16 LONGITUDINAL SECTION

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

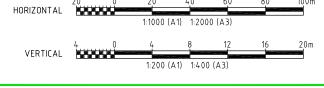
SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200


PROPOSED Road 17 LONGITUDINAL SECTION

PROPOSED Road 18 LONGITUDINAL SECTION

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

PROPOSED Road 19a LONGITUDINAL SECTION


SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

SCALE HORIZONTAL 1:1000 SCALE VERTICAL 1:200

<u>One</u> Way			
to zero harm	В	27.10.10	FINAL
	Α	10.09.10	ISSUED FOR STAGE 1 PROJECT APPLICATION
	ISSUE	DATE	ISSUE DESCRIPTION

NORTH PENRITH STAGE 1 PROJECT APPLICATION CONCEPT ROAD LONG SECTIONS SHEET 4 OF 4

USER NAME: costa.miroforidis CTB FILE: __00-WP-Syd-std.ctb

5.4

90 Deg PARKING

4.9 VERGE

PARKING

NORTH PENRITH

301015-00NP-ST1-F09

STAGE 1 PROJECT APPLICATION

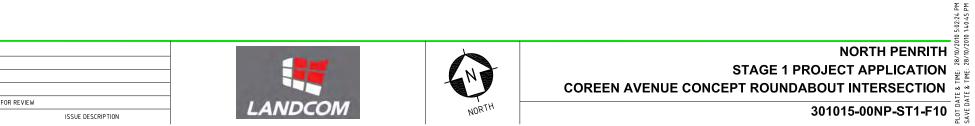
CONCEPT ROAD TYPICAL CROSS SECTIONS

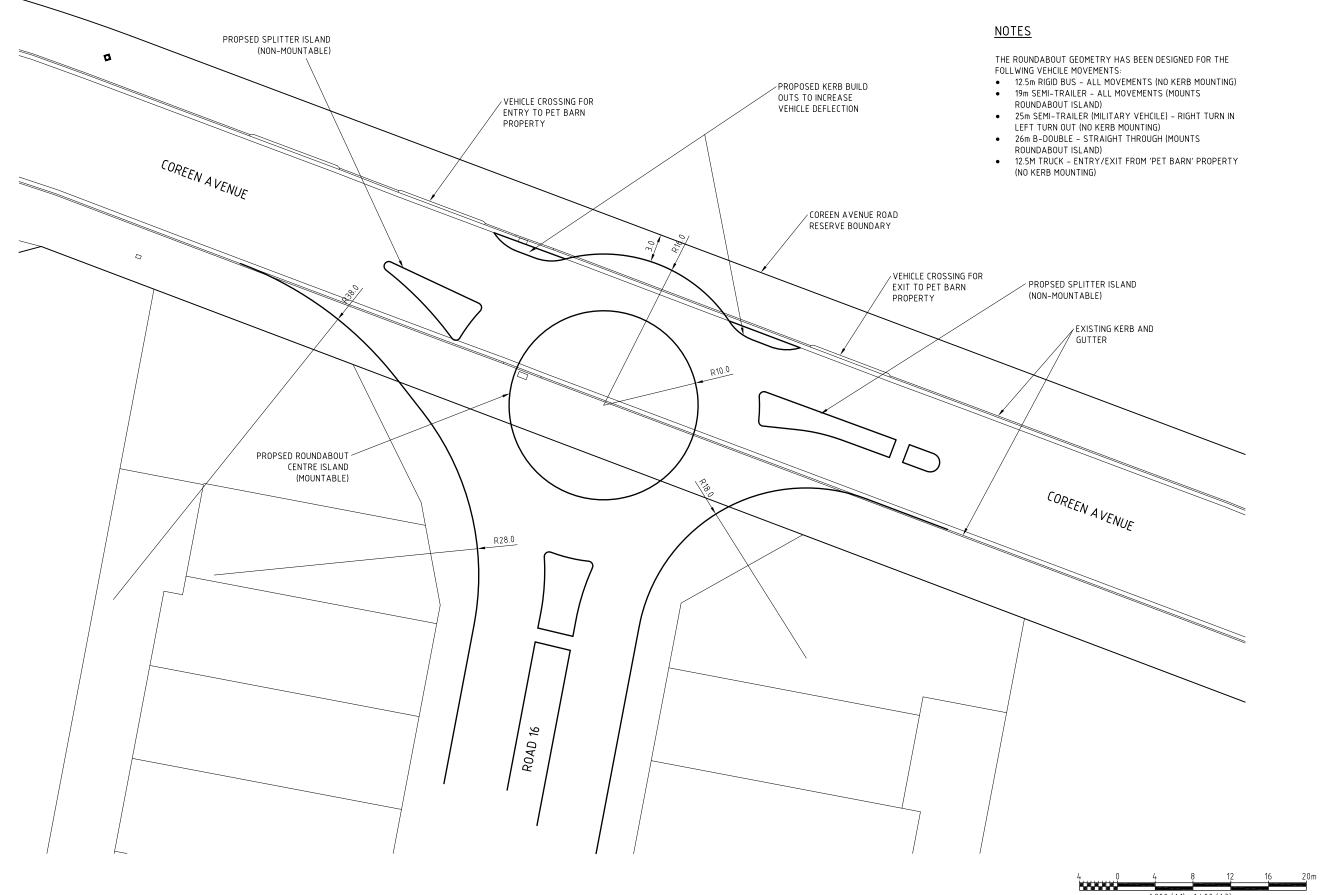
WorleyParsons

resources & energy

OneWay

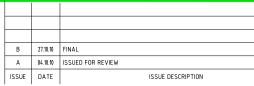
B 27.10.10 FINAL


ISSUE DATE


A 10.09.10 ISSUED FOR STAGE 1 PROJECT APPLIACTION

ISSUE DESCRIPTION

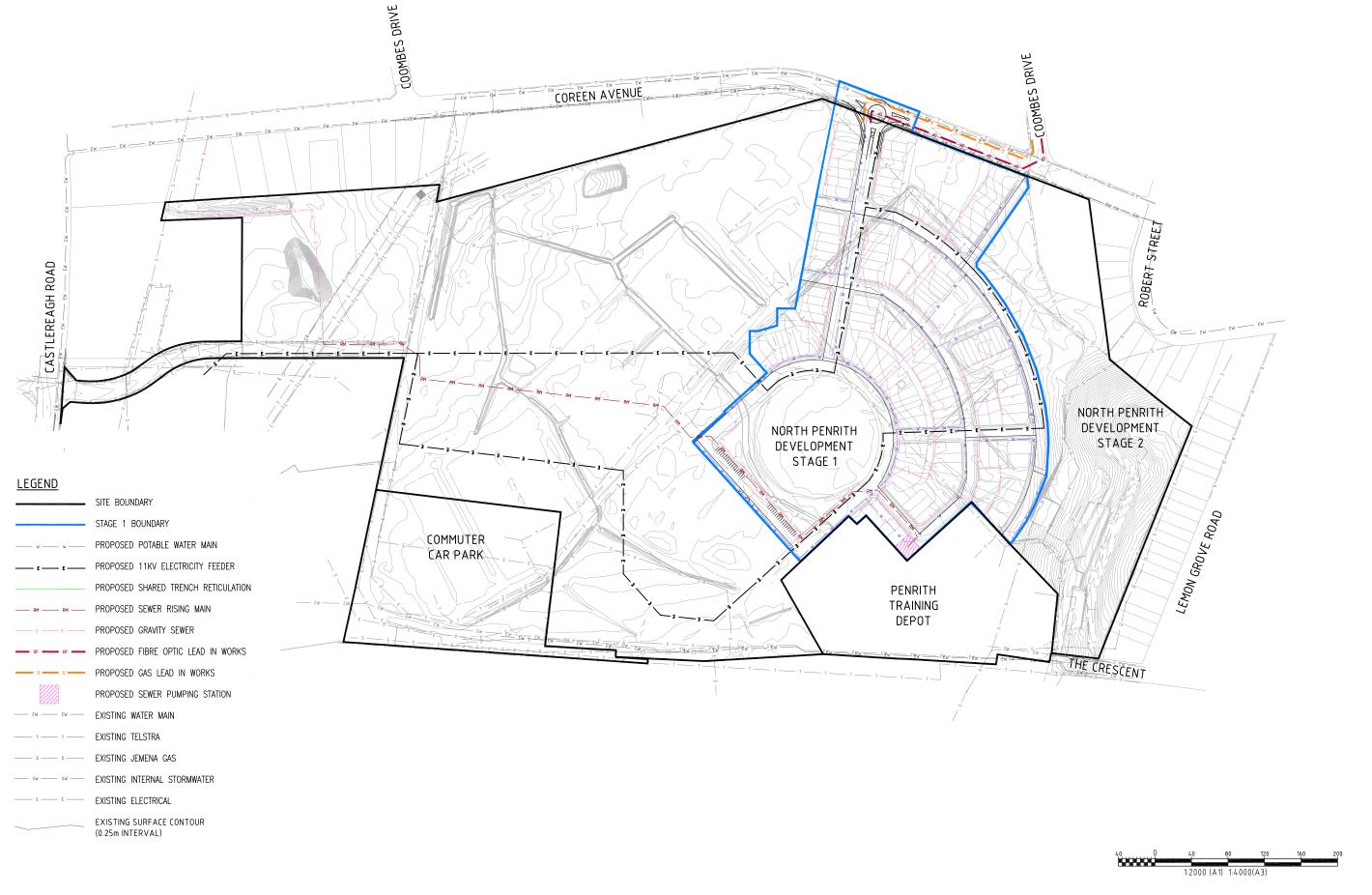
LANDCOM



LANDCOM

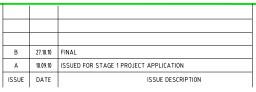
B 27.10.10 FINAL

10.09.10 ISSUED FOR STAGE 1 PROJECT APPLICATION


ISSUE DESCRIPTION

<u>LEGEND</u>

CONCEPT STORMWATER DRAINAGE PLAN


301015-00NP-ST1-F11

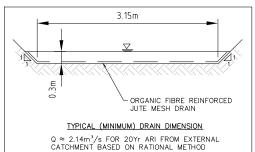
resources & energy

NORTH PENRITH
STAGE 1 PROJECT APPLICATION
CONCEPT SERVICING NETWORK

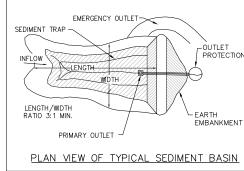
LANDCOM

B 27.10.10 FINAL

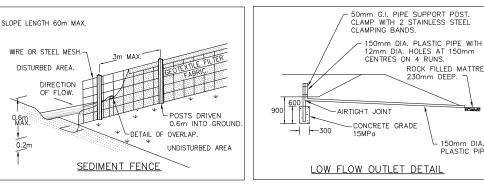
ISSUE DATE


A 10.09.10 ISSUED FOR STAGE 1 PROJECT APPLICATION

ISSUE DESCRIPTION


SEDIMENT AND EROSION CONTROL PLAN

301015-00NP-ST1-F13


resources & energy

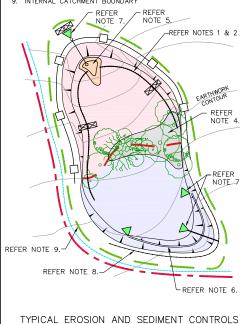
DIVERSION CHANNEL

ROCK FILLED MATTRESS 230mm DEEP. 7

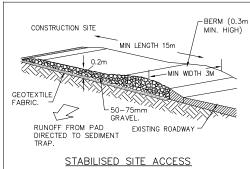
- NOTES:

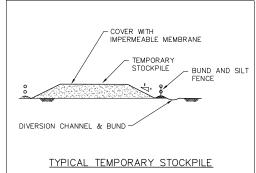
 DIVERSION DRAIN (OR LIP ON THE TOP OF FILL BATTERS)
 DIRECTING FLOW INTO SEDIMENT BASIN. STRAW BALES TO BE
 PLACED AT 50m INTERVALS AS A MINIMUM TRANSVERSE
 PROTECTIVE DEVICE.

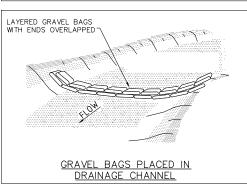
 FOR DIVERSION DRAINS OF 0-2.5% PROVIDE TRANSVERSE
 STRAW BALE PROTECTION, FOR GRADES OF 2.5-20% PROVIDE
 GRADE STABILISING STRUCTURES AND FOR GRADE 20%+
 PROVIDE ROCK CHECK DAMS.


 A 'CLEAN' WATER DRAIN SHALL BE PROVIDED ON THE HIGH
 SIDE OF THE WORKS. ALL FLOWS SHALL BE DIRECTED AROUND
 THE CONSTRUCTION SITE WITHOUT COMING IN CONTACT WITH
 DISTURBED GROUND.

 4. VEGETATION SHALL BE RETAINED IN UNDISTURBED AREAS
 AND LOCATIONS OF CUT TO FILL TRANSITIONS.
 SEDIMENT BASINS SHALL BE CONSTRUCTED IN A MANNER TO
 UTILISE THE PROPOSED FILL EMBANKMENT. BASIN DEPTH IS
 ASSUMED AT 1m TYPICALLY FOR ALL BASINS INDICATED ON
 THIS PLAN.


 BROWING ON BATTER SLOPES AS DETAILED.


- IHIS PLAN.
 PROVIDE BENCHING ON BATTER SLOPES AS DETAILED.
 LEVEL SPREADERS OR DISSIPATORS SHALL BE EMPLOYED IN
 ALL AREAS WHERE A DIVERSION, EMBANKMENT OR BATTER
 DRAIN DOES NOT OUTLET INTO ANOTHER CONTROL DEVICE.
- 8. 8PROVIDE BARRIER FENCING (PARAWEB AS A MINIMUM) IN AREAS WHERE A CUT BATTER EXCEEDS 2m IN VERTICAL
- HEIGHT.


 9. INTERNAL CATCHMENT BOUNDARY

WITHIN INDIVIDUAL CATCHMENT AREAS

ALL EROSION AND SEDIMENT CONTROL MEASURES TO BE INSTALLED IN ACCORDANCE WITH THE DEPARTMENT OF HOUSINGS "BLUE BOOK"

GEOFABRIC LINED SEDIMENT FENCE

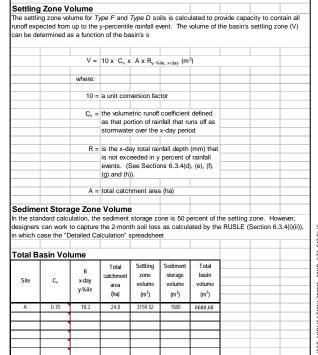
- FOR SEDIMENT FENCE, JOIN SECTIONS OF FABRIC AT A STAR PICKET WITH 150mm OVERLAP.
- 2. DRIVE 1.5m LONG STAR PICKETS INTO GROUND, 3m APART.
- 3. DIG A 150mm DEEP TRENCH ALONG THE UPSLOPE LINE OF THE FENCE FOR THE BOTTOM OF THE FABRIC TO BE ENTRENCHED.
- 4. BACKFILL TRENCH OVER BASE OF FABRIC
- FIX SELF-SIPPORTING GEOTEXTILE TO UPSLOPE SIDE OF POSTS WITH WIRE TIES OR AS RECOMMENDED BY GEOTEXTILE MANFACTURER.

DIVERSION CHANNEL

- DRAINS TO BE OF PARABOLIC OR TRAPEZOIDAL CROSS SECTION
- 2. EARTH BANKS TO BE ADEQUATELY COMPACTED IN ORDER TO
- 3. CONSTRUCTION IS OF A TEMPORARY NATURE AND SHALL BE REMOVED AT COMPLETION OF WORKS.
- 4. DIRECT DISCHARGE TO LEVEL SPREADER.
- COMPACT WITH A SUITABLE IMPLEMENT IN SITUATIONS WHERE THEY ARE REQUIRED TO FUNCTION FOR MORE THAN FIVE DAYS.
- 6. EARTH BANKS TO BE FREE OF PROJECTIONS OR OTHER IRREGULARITIES THAT WILL IMPEDE NORMAL FLOW.
- ALL OPEN DRAINS TO BE TURFED AS A MINIMUM. PROVIDE JUTE MESH LINING ON ANY DRAIN WITH A LONGITUDINAL GRADE EXCEEDING 5%.

STABILISED SITE ACCESS

- STRIP TOPSOIL AND LEVEL SITE.
- 2. COMPACT SUBGRADE
- COVER AREA WITH NEEDLE-PUNCHED GEOTEXTILE
- CONSTRUCT 200mm THICK PAD OVER GEOTEXTILE USING 40mm AGGREGATE . MINIMUM LENGTH 15 METRES OR TO BUILDING ALIGNMENT. MINIMUM WIDTH 3 METRES.
- 5. CONSTRUCT HUMP IMMEDIATELY WITHIN BOUNDARY TO DIVERT WATER TO A SEDIMENT FENCE OR OTHER SEDIMENT TRAP.

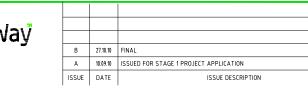

CONTROL OF WIND EROSION

- CONTRACTOR IS TO PREPARE A MANAGEMENT PLAN THAT MONITORS WIND DIRECTION AND DUST TRANSPORT OFF-SITE. RECORDS ARE TO BE KEPT OF ALL COMPLAINTS AS TO THE LOCATION, WIND DIRECTION, ACTIVITIES ON-SITE AND NATURE OF
- WORKS ARE TO BE STAGED AND DISTURBED AREAS VEGETATED IMMEDIATELY TO LIMIT POTENTIAL FOR WIND EROSION.
- DISTURBED SURFACES ARE TO BE LEFT IN A ROUGH CLODDY CONDITION WHERE POSSIBLE TO INCREASE ROUGHNESS AND SLOW SURFACE WIND SPEED.
- 4. DISTURBED SURFACES ARE TO BE KEPT IN DAMP AND A WATER CART AVAILABLE ON-SITE ALL TIMES.

STANDARD CALCULATIONS

Note: These "Standard Calci identified in figure 4.6 where basins. The more "Detailed	the design	er chooses to	not use the	RUSLE to size sediment
1. Site Data Sheet				
Site name:	North Penr	rith Defence L	and	
Site location:	North Penr	rith		
Precinct:	North Penr	rith		
Description of site:	Assumes T	ype D soils		
Site area		Site		Remarks
	Α			Remarks
Total catchment area (ha)	24.8			
Disturbed catchment area (ha)	10			
Soil analysis				
Soil landscape	Luddenham (lu	u)		DIPNR mapping (if relevant)
Soil Texture Group	Type D			Sections 6.3.3(c), (d) and (e)
Rainfall data				
Design rainfall depth (days)	5			See Sections 6.3.4 (d) and (e)
Design rainfall depth (percentile)	80			See Sections 6.3.4 (f) and (g)
x-day, y-percentile rainfall event	18.2			See Section 6.3.4 (h)
x-uay, y-percenille raililali event				
Rainfall intensity: 2-year, 6-hour storm	10.2			See IFD chart for the site

Peak flow	v is given by	the Ratio	nal Formu	la:					
		04-	0.00278	v C v E.	. v 1 v /				
		Qy =	0.00270	X C10 X I Y	' A ly, tc A /				
	where:	Q _v	is peak flo	w rate (m	3/sec) of av	erage recu	urrence inte	erval (ARI)	of "Y" ye
		C ₁₀	is the run	off coefficie	ent (dimens	sionless) fo	or ARI of 10	years. R	ural runo
							5 of Pilgrin		
				fficients ar d construc		Volume 1,	Book VIII,	figure 1.13	of Pilgrir
		F _v	, ,			ars Rural	l values are	e diven in V	/olume 1
		' у					e urban coe		
					, Table 1.6		n (1998)		
		Α			ea in hecta				
		l _{y, tc}			II intensity on of "tc" (r		or an ARI o	f "Y" years	
	_		anu a des	igii uuratto	niolic (f	imiutes of	nouis)		
Time	of concentra	tion (t.) =	0.76 x (A/	100) ^{0.38} hr	s (Volume	1. Book I\	of Pilarim	. 1998)	-
	ons or reduc			per cent.					
Peak f	ow calcu				ainfall inten	sity, I, mm	/hr		
	ow calcu	lations,			ainfall inten	sity, I, mm	/hr 50 _{yr,tc}	100 yr,tc	C ₁₀
Peak f	ow calcu	lations,	1	R				100 _{yr,tc}	C ₁₀
Peak fl	ow calcu A (ha)	tc (mins)	1 1 yr,tc	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha)	tc (mins)	1 1 yr,tc	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha)	tc (mins)	1 1 yr,tc	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha)	tc (mins)	1 1 yr,tc	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha)	tc (mins)	1 1 yr,tc	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl Site	ow calcu A (ha)	lations, tc (mins) 27	1 1 yr.tc 41.6	R 5 yr,tc	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha) 24.8	lations, tc (mins) 27	1 1 yr.tc 41.6	R 5 yr,tc 70.1	10 _{yr,tc}	20 _{yr,tc}	50 _{yr,tc}	, , ,	- 10
Peak fl	ow calcu A (ha) 24.8	lations, tc (mins) 27	1 1 yr.tc 41.6	R 5 yr,tc 70.1	10 yr,tc 79.6	20 _{yr,tc}	50 _{yr,tc}	122	- 10
Peak fl	ow calcu A (ha) 24.8 ow calcu	lations, tc (mins) 27	1 1 _{y,k} 41.6	R 5 yr. tc 70.1	10 yr.tc 79.6	20 yr.tc 92.2	50 yr.tc 109	122	0.03
Peak fi	ow calcu A (ha) 24.8 ow calcu Frequency factor	lations, tc (mins) 27 lations, A (m³/s)	1 1 yr.tc 41.6	R 5 yr,tc 70.1	10 yr,tc 79.6	20 _{yr,tc}	50 _{yr,tc}	122	0.03
Peak fl A Peak fl ARI yrs 1 yr, tc	ow calcu A (ha) 24.8 ow calcu Frequency factor (F _y)	lations, tc (mins) 27	1 1 _{y,k} 41.6	R 5 yr. tc 70.1	10 yr.tc 79.6	20 yr.tc 92.2	50 yr.tc 109	122	0.03
Peak fil Site A Peak fil ARI yrs 1 yr, tc 5 yr, tc	ow calcu A (ha) 24.8 ow calcu Frequency factor (Fy) 0.8 0.95	lations, tc (mins) 27 lations, A (m³/s) 0.069	1 1 _{y,k} 41.6	R 5 yr. tc 70.1	10 yr.tc 79.6	20 yr.tc 92.2	50 yr.tc 109	122	0.03
Peak fl Site A Peak fl ARI yrs 1 yr, tc 5 yr, tc 10 yr, tc	ow calcu A (ha) 24.8 ow calcu Frequency factor (F _y) 0.8	lations, tc (mins) 27 lations, A (m³/s) 0.069 0.138	1 1 _{y,k} 41.6	R 5 yr. tc 70.1	10 yr.tc 79.6	20 yr.tc 92.2	50 yr.tc 109	122	0.03
Peak fil Site A Peak fil ARI yrs 1 yr, tc 5 yr, tc	ow calcu A (ha) 24.8 ow calcu Frequency (Fy) 0.8 0.95	lations, tc (mins) 27 lations, A (m³/s) 0.069 0.138 0.165	1 1 _{y,k} 41.6	R 5 yr. tc 70.1	10 yr.tc 79.6	20 yr.tc 92.2	50 yr.tc 109	122	0.03



4. Volume of Sediment Basins, Type D and Type F Soils

Basin volume = settling zone volume + sediment storage zone volume

WorleyParsons resources & energy

USER NAME: costa.miroforidis CTB FILE: 00-WP-Syd-std.ctb

5:04:35 PM 4:55:09 PM