$\rm Q \approx 2.14 \, m^3/s$ FOR 20Yr ARI FROM EXTERNAL CATCHMENT BASED ON RATIONAL METHOD

DIVERSION DRAIN

- NOTES:

 DIVERSION DRAIN (OR LIP ON THE TOP OF FILL BATTERS)
 DIRECTING FLOW INTO SEDIMENT BASIN. STRAW BALES TO BE
 PLACED AT 50m INTERVALS AS A MINIMUM TRANSVERSE
 PROTECTIVE DEVICE.

 FOR DIVERSION DRAINS OF 0-2.5% PROVIDE TRANSVERSE
 STRAW BALE PROTECTION, FOR GRADES OF 2.5-20% PROVIDE
 GRADE STABILISING STRUCTURES AND FOR GRADE 20%+
 PROVIDE ROCK CHECK DAMS.

 A 'CLEAN' WATER DRAIN SHALL BE PROVIDED ON THE HIGH
 SIDE OF THE WORKS. ALL FLOWS SHALL BE DIRECTED AROUND
 THE CONSTRUCTION SITE WITHOUT COMING IN CONTACT WITH
 DISTURBED GROUND.

 4. VEGETATION SHALL BE RETAINED IN UNDISTURBED AREAS
 AND LOCATIONS OF CUT TO FILL TRANSITIONS.
 SEDIMENT BASINS SHALL BE CONSTRUCTED IN A MANNER TO
 UTILISE THE PROPOSED FILL EMBANKMENT. BASIN DEPTH IS
 ASSUMED AT 1m TYPICALLY FOR ALL BASINS INDICATED ON
 THIS PLAN.

 BROWING ON BATTER SLOPES AS DETAILED.
- IHIS PLAN.
 PROVIDE BENCHING ON BATTER SLOPES AS DETAILED.
 LEVEL SPREADERS OR DISSIPATORS SHALL BE EMPLOYED IN
 ALL AREAS WHERE A DIVERSION, EMBANKEMET OR BATTER
 DRAIN DOES NOT OUTLET INTO ANOTHER CONTROL DEVICE.
- 8PROVIDE BARRIER FENCING (PARAWEB AS A MINIMUM) IN AREAS WHERE A CUT BATTER EXCEEDS 2m IN VERTICAL
- 9. INTERNAL CATCHMENT BOUNDARY

WITHIN INDIVIDUAL CATCHMENT AREAS

STABILISED SITE ACCESS

EMERGENCY OUTLET

LENGTH

PRIMARY OUTLET

PLAN VIEW OF TYPICAL SEDIMENT BASIN

ALL EROSION AND SEDIMENT CONTROL MEASURES TO BE INSTALLED IN ACCORDANCE WITH THE DEPARTMENT OF HOUSINGS "BLUE BOOK"

GEOFABRIC LINED SEDIMENT FENCE

- FOR SEDIMENT FENCE, JOIN SECTIONS OF FABRIC AT A STAR PICKET WITH 150mm OVERLAP.
- 2. DRIVE 1.5m LONG STAR PICKETS INTO GROUND, 3m APART.
- 3. DIG A 150mm DEEP TRENCH ALONG THE UPSLOPE LINE OF THE FENCE FOR THE BOTTOM OF THE FABRIC TO BE ENTRENCHED.
- 4. BACKFILL TRENCH OVER BASE OF FABRIC
- FIX SELF-SIPPORTING GEOTEXTILE TO UPSLOPE SIDE OF POSTS WITH WIRE TIES OR AS RECOMMENDED BY GEOTEXTILE MANFACTURER.

DIVERSION CANAL

- DRAINS TO BE OF PARABOLIC OR TRAPEZOIDAL CROSS SECTION
- 2. EARTH BANKS TO BE ADEQUATELY COMPACTED IN ORDER TO
- 3. CONSTRUCTION IS OF A TEMPORARY NATURE AND SHALL BE REMOVED AT COMPLETION OF WORKS.
- 4. DIRECT DISCHARGE TO LEVEL SPREADER.
- COMPACT WITH A SUITABLE IMPLEMENT IN SITUATIONS WHERE THEY ARE REQUIRED TO FUNCTION FOR MORE THAN FIVE DAYS.
- 6. EARTH BANKS TO BE FREE OF PROJECTIONS OR OTHER IRREGULARITIES THAT WILL IMPEDE NORMAL ELOW.
- ALL OPEN DRAINS TO BE TURFED AS A MINIMUM. PROVIDE JUTE MESH LINING ON ANY DRAIN WITH A LONGITUDINAL GRADE EXCEEDING 5%.

STABILISED SITE ACCESS

- STRIP TOPSOIL AND LEVEL SITE.
- 2. COMPACT SUBGRADE
- COVER AREA WITH NEEDLE-PUNCHED GEOTEXTILE
- CONSTRUCT 200mm THICK PAD OVER GEOTEXTILE USING 40mm AGGREGATE . MINIMUM LENGTH 15 METRES OR TO BUILDING ALIGNMENT. MINIMUM WIDTH 3 METRES.
- 5. CONSTRUCT HUMP IMMEDIATELY WITHIN BOUNDARY TO DIVERT WATER TO A SEDIMENT FENCE OR OTHER SEDIMENT TRAP.

CONTROL OF WIND EROSION

- CONTRACTOR IS TO PREPARE A MANAGEMENT PLAN THAT MONITORS WIND DIRECTION AND DUST TRANSPORT OFF-SITE. RECORDS ARE TO BE KEPT OF ALL COMPLAINTS AS TO THE LOCATION, WIND DIRECTION, ACTIVITIES ON-SITE AND NATURE OF
- WORKS ARE TO BE STAGED AND DISTURBED AREAS VEGETATED IMMEDIATELY TO LIMIT POTENTIAL FOR WIND EROSION.
- DISTURBED SURFACES ARE TO BE LEFT IN A ROUGH CLODDY CONDITION WHERE POSSIBLE TO INCREASE ROUGHNESS AND SLOW SURFACE WIND SPEED.
- DISTURBED SURFACES ARE TO BE KEPT IN DAMP AND A WATER CART AVAILABLE ON-SITE ALL TIMES.

STANDARD CALCULATIONS

Rainfall data

Design rainfall depth (days) Design rainfal depth (percentie)

x-day, y-percentile rainfall event 18.2

Rainfal intensity: 2-year, 6-hour storm 10.2

Note: These "Standard Calculation" spread sheets relate only to low erosion hazard lands as identified in figure 4.6 where the designer chooses to not use the RUSLE to size sediment basins. The more "Detailed Calculation" spreadsheets should be used on high erosion hazard lands as identified by figure 4.6 or where the designer chooses to run the RUSLE in 1. Site Data Sheet Site name: North Penrith Defence Land Site location: North Penrith Precinct: North Penrith Description of site: Assumes Type D soils Remarks Total catchment area (ha) 55.5 Disturbed catchment area (Soil landscape Luddenkam (U OPNR mapping (if relevant)

5

n Flow	Calc	ulation	าร							
given by t	he Ratio	nal Formu	la:							
	Ov =	0.00278	y Can y F	, y l	, Δ					
	u,	0.00210	X 010 X 1	Y A IY, IC						
where:	Qy	is peak flow rate (m³/sec) of average recurrence interval (ARI) of "Y" ye is the runoff coefficient (dimensionless) for ARI of 10 years. Rural runo coefficients are given in Volume 2, figure 5 of Pilgrim (1998), while urba runoff coefficients are given in Volume 1, Book VIII, figure 1.13 of Pilgrim (1998), and proposition of the propo								
	C ₁₀									
	F	. ,								
	· y	Book IV, Table 1.1 of Pilgrim (1998) while urban coefficients are given in Volume 1, Book VII, Table 1.6 of Pilgrim (1998)								
	Α	is the cat	chment ar	ea in hed	tares (ha)					
	l _{v.tc}	is the average rainfall intensity (mm/hr) for an ARI of "Y" years								
		given by the Ratio Qy = where: Qy C10 Fy	given by the Rational Formu Qy = 0.00278 where: Q _y is peak fit C ₁₀ is the run coefficien runoff coe (1996) an F _y is a frequ Book IV, Volume 1 A is the cat	where: Q _y is peak flow rate (m C ₁₀ is the runoff coefficic coefficients are give runoff coefficients a (1998) and construx F _y is a frequency facts Book IV, Table 1.1. Volume 1, Book VI A is the catchment ar	given by the Rational Formula: Qy = 0.00278 x C ₁₀ x F _Y x I _{y, tc} ; where: Q _y is peak flow rate (m³/sec) of C ₁₀ is the runoff coefficient (dime coefficients are given in Volu runoff coefficients are given in (1998) and construction runc (1998) and construction runc F _y is a frequency factor for "Y" Book IV, Table 1.1 of Piligrim Volume 1, Book VII, Table 4	given by the Rational Formula: Qy = 0.00278 x C ₁₀ x F _Y x I _{y, tc} x A where: Q _y is peak flow rate (m³/sec) of average recu coefficients are given in Volume 2, figure runoff coefficients are given in Volume 1, (1998) and construction runoff coefficients F _y is a frequency factor for "Y" years. Rural Book IV, Table 1.1 of Pilgrim (1998) while Volume 1, Book VII, Table 1.3 of Pilgrim A is the catchment area in hectares (ha)	given by the Rational Formula: Qy = 0.00278 x C ₁₀ x F _Y x I _{y, tc} x A where: Q _y is peak flow rate (m³/sec) of average recurrence inte coefficients are given in Volume 2, figure 5 of Pilgrin runoff coefficients are given in Volume 1, Book VIII, (1998) and construction runoff coefficients are given F _y is a frequency factor for "Y" years. Rural values are Book IV, Table 1.1 of Pilgrim (1998) while urban coe Volume 1, Book VII, Table 1.6 of Pilgrim (1998) A is the catchment area in hectares (ha)	given by the Rational Formula: Qy = 0.00278 x C ₁₀ x F _Y x I _{y, tc} x A where: Q _y is peak flow rate (m ³ /sec) of average recurrence interval (ARI) of C ₁₀ is the runoff coefficient (dimensionless) for ARI of 10 years. Ri coefficients are given in Volume 2, figure 5 of Pilgrim (1998), w runoff coefficients are given in Volume 1, Book VIII, figure 1.13 (1998) and construction runoff coefficients are given in Append F _y is a frequency factor for "Y" years. Rural values are given in V Book IV, Table 1.1 of Pilgrim (1998) while urban coefficients ar Volume 1, Book VI, Table 1.6 of Pilgrim (1998) A is the catchment area in hectares (ha)		

See Sections 6.3.4 (d) and (e)

See Sections 6.3.4 (f) and (g)

See Section 5 3.4 (h)

See IFD chart for the site

e of concentration (t_c) = $0.76 \times (A/100)^{0.38}$ hrs (Volume 1, Book IV of Pilgrim, 1998)

lote: For urban catchments the time of concentration should be determined by more precise

Rainfall intensity, I, mm/hr A (ha) Site 5 yr,te 10 yr,te 20 yr,te 50 yr,te 100 yr,te

Peak flo	k flow calculations, 2									
ARI yrs	Frequency factor (F _y)									
		Α						Comment		
		(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m³/s)	(m3/s)			
1 yr, to	0.8	1.456								
5 yr, to	0.95	2.914								
10 yr, to	1	3.483								
20 yr, to	1.05	4.241								
50 yr, to	1.15	5.484								
100 yr, to	1.2	6.396								

	Bas	in volume	= settling a	one volun	ne + sedim	ent storag	e zone vo	lume	
Settline	Zone V	olume							
The settli	ng zone vo	lume for Ty	pe F and	Type D so	ils is calcu	lated to p	rovide cap	acity to cor	ntain a
								s settling zo	
					ce area ar	d depth to	allow for	particles to	s ettle
and can b	e determin	ed by the	following e	quation:					
		\/ -	10 x C _v x	A D	/	3,			
		V -	IU X Gy X	A X Ry-9	ile, x-day (TTI	1			
		where:							
		10 =	a unit con	version fac	tor				
		Cu =	the volume	etric runoff	coefficient	defined			
		- 00			nfall that ru				
			stormwate	r over the	x-day perio	od			
		R =	is the x-da						
					percent o				
			(g) and (h)		ns 6.3.4(d). (e). (t).			
			(g/ and (n)	<i>y.</i>					
		A =	total catch	ment area	(ha)				
	ent Stora								
								zone. How	
	can work case the "D						e RUSLE	(Section 6.	3.4(1)(1
III WIIIGI I	Jase IIIe L	retailed Ca	icolation s	preausile	ELS STIUURU	De useu.			
Total B	asin Vol	ume							
			Total	Settli na	Sediment	Total			
		R	catchment	zone	storage	basin			
Site	Cv	x-day y-%ile	area	volume	volume	volume			
			(ha)	(m ²)	(m ²)	(m ³)			

