# Appendix B

Test Pit and Borehole Logs Explanatory Notes



IP'

SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 81.2 m AHD

COORDS: 306810.7 m E 6257310.8 m N MGA94 56

| LC                                                                                                   | CATION: F      |                |             | rospe     | CT             |          |                       |                                                                                     | EXCAVATIO      |            |                         |                                                  |                                                  |
|------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|-----------|----------------|----------|-----------------------|-------------------------------------------------------------------------------------|----------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
|                                                                                                      | Test Pit       | t Informa      | tion        | ı         |                |          |                       | Field I                                                                             | Material Infor | matior     | )<br>(D                 | L 1                                              |                                                  |
| WATER                                                                                                | FIELD          | SAMPLE         | RL (m AHD)  | DEPTH (m) | GRAPHIC<br>LOG | sha      | OIL NAME; plasticit   | ESCRIPTION<br>y/grain size, colour,<br>ponents, minor cons<br>ze, colour, minor con | tituents)      | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| Not Encountered  Not Encountered                                                                     | _PP<br>=215kPa | 0.80m<br>1.00m | 81.0 -      | - 0.20    |                | Silty CL | LAY, high plasticity, |                                                                                     | ey/brown,      |            | MC~PL                   | VSt                                              | TOPSOIL  RESIDUAL                                |
| יייי ביייי שנייי פיייי |                |                | 79.0 –<br>- | - 2.00    |                | TEST F   | PIT TP1 TERMINATE     | ED AT 2.00 m                                                                        |                |            |                         |                                                  | -                                                |
| LC                                                                                                   | GGED: NJ       | IH             |             |           |                |          | CHECKED: JE           |                                                                                     |                |            | DATE: :                 | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 83.4 m AHD

COORDS: 306845.2 m E 6257300.0 m N MGA94 56

|                                                                                                                                                            | Test Pi        | Informa                  | ation      |                    |                |                       |                                                               | Fie                 | ld Material Infor | mation     | ı                                                    |                                                  |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|------------|--------------------|----------------|-----------------------|---------------------------------------------------------------|---------------------|-------------------|------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                      | FIELD          | SAMPLE                   | RL (m AHD) | DEPTH (m)          | GRAPHIC<br>LOG | sha                   | DOIL NAME; plastici<br>pe, secondary con<br>CK NAME; grain si | nponents, minor c   | onstituents)      | PID (ppmv) | MOISTURE/<br>WEATHERING                              | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                            |                |                          | -          |                    |                | TOPSO                 | IL, Clayey SILT, da                                           | ark brown           |                   |            | М                                                    |                                                  | TOPSOIL                                          |
|                                                                                                                                                            | PP<br>=150kPa  |                          | -          | - 0.10 -<br>-<br>- |                | Silty CL              | AY, high plasticity,                                          | , mottled red/brow  | n                 |            | MC~PL                                                | VSt                                              | RESIDUAL -                                       |
|                                                                                                                                                            |                |                          | 83.0 -     | -0.5               |                |                       |                                                               |                     |                   |            |                                                      |                                                  | -<br>-<br>-                                      |
| loped by Datgel  Not Encountered                                                                                                                           | _PP<br>=170kPa | 1.00m<br>D-TP2a<br>1.10m | 82.5       | - 1.0              |                |                       |                                                               |                     |                   |            |                                                      |                                                  | -<br>-<br>-                                      |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS GPJ <drawingfile>&gt; 23/11/2010 16:07 Produced by gINT Professional. Developed by Daigel</drawingfile> | .PP<br>=310kPa | 1.50m<br>D-TP2b<br>1.60m | 82.0 -     | 1.50; -            |                | Silty CL<br>siltstone | AY, medium plasti<br>e bands                                  | city, mottled grey/ | red/brown, with   |            | MC <pl< td=""><td>Н</td><td>-<br/>-<br/>-</td></pl<> | Н                                                | -<br>-<br>-                                      |
| PITS.GPJ < <drawingfile>&gt; 23/</drawingfile>                                                                                                             |                |                          | 81.5 -     | 2.00               |                | TEST P                | PIT TP2 TERMINAT                                              | TED AT 2.00 m       |                   |            |                                                      |                                                  | -                                                |
| CA TEST PIT LOG 7600 TEST F                                                                                                                                |                |                          | -          | -                  |                |                       |                                                               |                     |                   |            |                                                      |                                                  | -                                                |
| LB Log R                                                                                                                                                   |                |                          | 81.0 —     | -                  |                |                       |                                                               |                     |                   |            |                                                      |                                                  | -                                                |
| RCA_LIB_05.6                                                                                                                                               | DGGED: NJ      | H                        | l          |                    |                |                       | CHECKED: JE                                                   |                     |                   |            | DATE: 2                                              | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 80.0 m AHD

COORDS: 306771.9 m E 6257407.3 m N MGA94 56

|                                                                                                                                                                     | Test Pi        | t Informa                | ation            |                    |                |          |                                                                       | Fiel                | d Material Info | mation     |                                                  |                                                  |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|------------------|--------------------|----------------|----------|-----------------------------------------------------------------------|---------------------|-----------------|------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                               | FIELD          | SAMPLE                   | RL (m AHD)       | DEPTH (m)          | GRAPHIC<br>LOG | sha      | DI<br>OIL NAME; plasticit<br>ape, secondary com<br>CK NAME; grain siz | ponents, minor co   | onstituents)    | PID (ppmv) | MOISTURE/<br>WEATHERING                          | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                     | _PP<br>=170kPa |                          | 80.0 -           | -<br>-<br>- 0.30 - |                |          | OIL, Clayey SILT, da                                                  |                     |                 |            | MC <pl< td=""><td>Н</td><td>TOPSOIL -</td></pl<> | Н                                                | TOPSOIL -                                        |
| pa                                                                                                                                                                  | _PP<br>=320kPa | 0.50m<br>D-TP3a<br>0.60m | -<br>79.5 -<br>- | - 0.5<br>-         |                | Silty CL | _AY, high plasticity,                                                 | mottled rea/brow    | n/grey          |            | MIONTE                                           | "                                                | -                                                |
| veloped by Datgel  Not Encountered                                                                                                                                  | _PP<br>=370kPa | 1.00m                    | -<br>79.0 -<br>- | -<br>- 1.0<br>-    |                |          |                                                                       |                     |                 |            |                                                  |                                                  | -<br>-<br>-                                      |
| %/1/2010 16:07 Produced by gINT Professional, De                                                                                                                    | _PP<br>>400kPa | 1.50m<br>D-TP3b<br>1.60m | -<br>78.5 -<br>- | -<br>1.50; -       |                | Silty Sa | andy CLAY, medium                                                     | plasticity, with si | ltstone bands   |            |                                                  |                                                  | -<br>-<br>-                                      |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT_LOG_7600 TEST_PITS.GPJ_< <drawningfile>&gt; 23/11/2010 16:07 Produced by gNT Professional. Developed by Datget  TO  </drawningfile> |                |                          | 78.0 -           |                    |                | TEST P   | PIT TP3 TERMINATI                                                     | ED AT 1.80 m        |                 |            |                                                  |                                                  | -                                                |
| RCA_LIB_05.GLB Log RCA TES                                                                                                                                          | DGGED: N.      | JH                       | -                | -                  |                |          | CHECKED: JE                                                           |                     |                 |            | DATE: :                                          | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 75.7 m AHD

COORDS: 306674.6 m E 6257390.4 m N MGA94 56

|                                                                                                                                                              | Test Pi        | t Informa                | ation                      |                 |                |                       | Field Material In                                                                                                                                             | format     | ion       |            |                                                  |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|----------------------------|-----------------|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                        | FIELD          | SAMPLE                   | RL (m AHD)                 | DEРТН (m)       | GRAPHIC<br>LOG | sha                   | DESCRIPTION OIL NAME; plasticity/grain size, colour, particle ape, secondary components, minor constituents) CK NAME; grain size, colour, minor constituents) | PID (ppmv) | MOISTURE/ | WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                              | _PP<br>=490kPa |                          | 75.5 -                     | - 0.30 -        |                |                       | OIL, Clayey SILT, dark brown                                                                                                                                  |            | MC~       |            | н                                                | TOPSOIL -                                        |
|                                                                                                                                                              | _PP<br>>400kPa | 0.50m<br>D-TP4a<br>0.60m | -<br>-<br>-<br>-<br>75.0 — | - 0.5           |                | Sifty CL              | .AY, high plasticity, mottled red/brown                                                                                                                       |            | IVIC      |            | п                                                | -                                                |
| Peveloped by Datgel  Not Encountered                                                                                                                         | .PP<br>=460kPa |                          | -<br>-<br>74.5 –           | 1.00) -<br>     |                | Silty CL<br>siltstone | LAY, high plasticity, mottled grey/red/brown, with e bands                                                                                                    |            |           |            |                                                  | -<br>-<br>-                                      |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:07 Produced by gINT Professional. Developed by Datgel</cdrawingfile> | .PP<br>=410kPa | 1.50m<br>D-TP4b<br>1.60m | 74.0 —                     | -<br>- 1.5<br>- |                |                       |                                                                                                                                                               |            |           |            |                                                  | -<br>-<br>-                                      |
| G 7600 TEST PITS.GPJ < <drawingfile>&gt;</drawingfile>                                                                                                       |                |                          | -                          |                 |                | TEST P                | PIT TP4 TERMINATED AT 2.00 m                                                                                                                                  |            |           |            |                                                  | -                                                |
| CA_LIB_05.GLB Log RCA TEST PIT LO.                                                                                                                           | DGGED: N.      | JH                       | 73.5 -<br>-<br>-           | -               |                |                       | CHECKED: JE                                                                                                                                                   |            | DATE      | E: 2       | 3/11/20                                          | -<br>-<br>010                                    |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 82.8 m AHD

COORDS: 306734.8 m E 6257229.8 m N MGA94 56

|                                                                                                                                                              | Test Pi                          | t Informa                            | ation      |                |                |          | Field Materi                                                                                                                                               | al Inforn | natior     | 1                       |                                                  |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|------------|----------------|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                        | FIELD                            | SAMPLE                               | RL (m AHD) | DEPTH (m)      | GRAPHIC<br>LOG | sha      | DESCRIPTION SOIL NAME; plasticity/grain size, colour, particle ape, secondary components, minor constituent DCK NAME; grain size, colour, minor constituen | s)        | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                              | _PP<br>=380kPa<br>_PP<br>=340kPa | 0.60m<br>D-TP5a<br>0.70m             | 82.5 -     | -              |                | Silty CL | DIL, Clayey SILT, dark brown  LAY, high plasticity, mottled red/brown/grey, wi                                                                             | th        |            | MC~PL                   | H                                                | TOPSOIL -                                        |
| 16:07 Produced by gINT Professional, Developed by Datgel  Not Encountered                                                                                    | .PP<br>>600kPa                   | 1.00m  B  1.30m  1.50m  D-TP5b 1.60m | 82.0 -     | - 1.0<br>- 1.5 |                |          |                                                                                                                                                            |           |            |                         |                                                  | -                                                |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:07 Produced by gINT Professional. Developed by Datget</cdrawingfile> |                                  |                                      | 81.0 -     |                |                |          | FONE, grey PIT TP5 TERMINATED AT 2.00 m                                                                                                                    |           |            | HW                      | EL - VL                                          | BEDROCK -                                        |
| RCA_LIB_05.GLB Log RCA TES                                                                                                                                   | DGGED: N                         | JH                                   | 80.5 -     | -              |                |          | CHECKED: JE                                                                                                                                                |           |            | DATE: 2                 | 23/11/20                                         | -<br>010                                         |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 88.5 m AHD

COORDS: 306778.7 m E 6257160.3 m N MGA94 56

|                                                                                                                                                                   | Test Pi        | t Informa                | ation                                |           |                |         | Field Material I                                                                                                                                                 | nformati   | on                                                         |                                                  |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|--------------------------------------|-----------|----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                             | FIELD          | SAMPLE                   | RL (m AHD)                           | DEPTH (m) | GRAPHIC<br>LOG | sha     | DESCRIPTION SOIL NAME; plasticity/grain size, colour, particle lape, secondary components, minor constituents) DCK NAME; grain size, colour, minor constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING                                    | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                   | PP<br>=100kPa  | 0.50m<br>D-TP6a<br>0.60m | 88.5 = -                             | - 0.20 -  |                |         | OIL, Clayey SILT, dark brown                                                                                                                                     |            | MC~PL                                                      |                                                  | TOPSOIL  RESIDUAL                                |
| uced by gINT Professional, Developed by Datgel  Not Encountered                                                                                                   | _PP<br>=580kPa | 1.50m<br>D-TP6b          | 87.5 -<br>-<br>-<br>-<br>-<br>87.0 - |           |                | Sitty C | :LAY, high plasticity, mottled grey/red/brown, with                                                                                                              |            | MC <pl< td=""><td>Н</td><td>-<br/>-<br/>-<br/>-</td></pl<> | Н                                                | -<br>-<br>-<br>-                                 |
| RCA_LIB_05/GLB_Log_RCA_TEST_PIT_LOG_7800_TEST_PITS_GPJ_< <drawningfiles>= 23/11/2010 16:07 Produced by gINT Professional, Developed by Datget  TO</drawningfiles> |                | 1.60m                    | 86.5 =                               |           |                | SILTS   | TONE (SHALE), grey  PIT TP6 TERMINATED AT 2.00 m                                                                                                                 |            | HW                                                         | EL - VL                                          | BEDROCK                                          |
| ESA LIG                                                                                                                                                           | DGGED: N       | JH                       | l                                    | <u> </u>  | 1              |         | CHECKED: JE                                                                                                                                                      |            | DATE:                                                      | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 88.3 m AHD

COORDS: 306634.0 m E 6256996.2 m N MGA94 56

|                 | Test Pi        | t Informa                     | ation                                |           |                | Field Material Inform                                                                                                                                                                      | ation      | 1                       |                                                  |                                                  |
|-----------------|----------------|-------------------------------|--------------------------------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER           | FIELD<br>TEST  | SAMPLE                        | RL (m AHD)                           | DEPTH (m) | GRAPHIC<br>LOG | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)                       | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| itered          | _PP<br>>600kPa | 0.50m<br>D-TP7a<br>0.60m      | 88.0 -<br>-<br>-<br>-<br>-<br>87.5 - | - 0.10 -  |                | TOPSOIL, Clayey SILT, dark brown  FILL, Silty CLAY, high plasticity, mottled red/brown/grey, with siltstone bands, some waste concrete, bonded asbestos cement sheet fragments encountered |            | MC~PL                   | Н                                                | FILL                                             |
| Not Encountered | .PP<br>>600kPa | 1.20m  B  1.50m  D-TP7b 1.60m | 87.0 -<br>-                          | -1.0      |                |                                                                                                                                                                                            |            |                         |                                                  |                                                  |
|                 |                |                               | 86.5 -                               | -2.001-   |                | TEST PIT TP7 TERMINATED AT 2.00 m                                                                                                                                                          |            |                         |                                                  |                                                  |
|                 |                |                               | -<br>86.0 -<br>-                     |           |                |                                                                                                                                                                                            |            |                         |                                                  |                                                  |
| LO              | GGED: NJ       | IH                            | 1                                    | <u> </u>  | l              | CHECKED: JE                                                                                                                                                                                |            | ATE: 2                  | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 85.2 m AHD

COORDS: 306656.1 m E 6257059.7 m N MGA94 56

|                                                                                                                                                                | Test Pi        | t Informa                | ation            |           |                |        |                                                               |                | Field Materia                       | al Inforr | matior     | 1                       |                                                  |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|------------------|-----------|----------------|--------|---------------------------------------------------------------|----------------|-------------------------------------|-----------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                          | FIELD          | SAMPLE                   | RL (m AHD)       | DEPTH (m) | GRAPHIC<br>LOG | sha    | OIL NAME; plas<br>ape, secondary c<br>CK NAME; grain          | components, mi | , colour, particle nor constituents | 3)        | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                | _PP<br>=120kPa |                          | -<br>85.0 –<br>- | - 0.20 -  |                |        | olL, Clayey SILT,<br>ilty CLAY, high p<br>with depth, siltste |                | vy brown becom                      | ning      |            | MC~PL                   | Н                                                | TOPSOIL  - FILL  -                               |
| pa                                                                                                                                                             | _PP<br>=410kPa | 0.50m<br>D-TP8a<br>0.60m | -<br>84.5 –<br>- | - 0.5     |                |        |                                                               |                |                                     |           |            |                         |                                                  | _<br>-<br>-                                      |
| Professional, Developed by Datgel  Not Encountered                                                                                                             |                |                          | -<br>84.0 -<br>- | - 1.0     |                |        |                                                               |                |                                     |           |            |                         |                                                  | -                                                |
| < <drawingfile>&gt; 23/11/2010 16:07 Produced by gINT</drawingfile>                                                                                            | _PP<br>=220kPa | 1.50m<br>D-TP8b<br>1.60m | 83.5 -           | - 1.5     |                | SILTST | 'ONE, dark red/g                                              | grey           |                                     |           |            | HW                      | EL - VL                                          | <br>-<br>-<br>BEDROCK                            |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT_LOG_7600_TEST_PITS_GPJ_< <drawningfile>&gt; 23/11/2010_16:07 Produced by gINT Professional. Developed by Dagget</drawningfile> |                |                          | 83.0 -           | - 2.001-  |                | TEST F | PIT TP8 TERMIN                                                | IATED AT 2.00  | m                                   |           |            |                         |                                                  | -<br>-<br>-                                      |
| RCA_LIB_05.0                                                                                                                                                   | DGGED: NJ      | IH                       | 1                | ı         | ı              |        | CHECKED:                                                      | JE             |                                     |           |            | DATE: 2                 | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 18/10/2010

SURFACE RL: 83.6 m AHD

COORDS: 306651.7 m E 6257116.4 m N MGA94 56

|                                                                                                                                                                | Test Pi        | t Informa                | ation                      |                     |                |                     | Field M                                                                                                                                   | laterial Inforn | nation     | 1                       |                                                  |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|----------------------------|---------------------|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                          | FIELD          | SAMPLE                   | RL (m AHD)                 | DEPTH (m)           | GRAPHIC<br>LOG | sha                 | DESCRIPTION COIL NAME; plasticity/grain size, colour, pape, secondary components, minor consti<br>CK NAME; grain size, colour, minor cons | ituents)        | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| Not Encountered                                                                                                                                                | ₽P<br>>600kPa  | 0.50m<br>D-TP9a<br>0.60m | 83.5 -<br>83.0 -<br>82.5 - | - 0.30 0.5          | OBAI           | sha<br>(RO<br>TOPSO | ape, secondary components, minor consti                                                                                                   | ituents)        |            | М                       |                                                  | ADDITIONAL OBSERVATIONS  TOPSOIL  RESIDUAL       |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT_LOG_7600_TEST_PITS_GPJ_< <drawningfile>&gt; 23/11/2010_16:07 Produced by gINT Professional. Developed by Dalgel</drawningfile> | _PP<br>=300kPa | 1.50m<br>D-TP9b<br>1.60m | 82.0 —<br>-<br>81.5 —      | - 1.5<br>1.90 2.00- |                |                     | TONE, red/brown/grey PIT TP9 TERMINATED AT 2.00 m                                                                                         |                 |            | HW                      | EL - VL                                          | BEDROCK                                          |
| RCA_LIB_05.G                                                                                                                                                   | DGGED: NJ      | IH                       | l                          |                     |                |                     | CHECKED: JE                                                                                                                               |                 |            | ATE: 2                  | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 19/10/2010

SURFACE RL: 80.9 m AHD

COORDS: 306686.3 m E 6257235.5 m N MGA94 56

| LO              | CATION: F      |                           |            | rospe     | ect            |          |                                                                                                | EXCAVATI                                         |            |                         |                                                  |                                                  |
|-----------------|----------------|---------------------------|------------|-----------|----------------|----------|------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
|                 | Test Pit       | Informa                   | ation      |           |                |          |                                                                                                | Field Material Inf                               | ormatio    | n                       | L                                                |                                                  |
| WATER           | FIELD          | SAMPLE                    | RL (m AHD) | DEPTH (m) | GRAPHIC<br>LOG | sha      | DESCR<br>SOIL NAME; plasticity/grain<br>ape, secondary component<br>OCK NAME; grain size, colo | size, colour, particle<br>s, minor constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| Not Encountered | =320kPa        | 0.50m<br>D-TP10a<br>0.60m | 80.5 -     | - 0.20 -  |                | Silty CL | DIL, Clayey SILT, brown  LAY, high plasticity, mottled be bands aing greyer with depth         | d brown/grey/red, with                           |            | MC~PL                   | Н                                                | TOPSOIL  RESIDUAL                                |
|                 | _PP<br>=280kPa | 1.50m<br>D-TP10b<br>1.60m | 79.5       | -1.5      |                |          |                                                                                                |                                                  |            |                         |                                                  | -<br>-<br>-<br>-                                 |
| ,<br>,          |                |                           | 79.0 –     |           |                |          |                                                                                                |                                                  |            |                         |                                                  | -                                                |
|                 |                |                           | -          | -2.00)    | <i>/</i> .     | TEST F   | PIT TP10 TERMINATED AT                                                                         | 2.00 m                                           |            |                         |                                                  |                                                  |
| 200             |                |                           | -          | _         |                |          |                                                                                                |                                                  |            |                         |                                                  | -                                                |
|                 |                |                           | -          | _         |                |          |                                                                                                |                                                  |            |                         |                                                  | -                                                |
|                 |                |                           | -          | -         |                |          |                                                                                                |                                                  |            |                         |                                                  |                                                  |
| Ba a            |                |                           | 78.5 –     | -         |                |          |                                                                                                |                                                  |            |                         |                                                  |                                                  |
| LO              | GGED: NJ       | Н                         |            |           |                |          | CHECKED: JE                                                                                    |                                                  |            | DATE:                   | 23/11/20                                         | 010                                              |
|                 |                |                           |            |           |                |          | L                                                                                              |                                                  |            |                         |                                                  |                                                  |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 19/10/2010

SURFACE RL: 79.7 m AHD

COORDS: 306634.9 m E 6257193.6 m N MGA94 56

|                                                                                                                                                                 | Test Pit       | Informa                                                     |            |           |                | Field Material Infor                                                                                                                                                     | matio      | n     |                                                  |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------|------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                           | FIELD          | SAMPLE                                                      | RL (m AHD) | DEPTH (m) | GRAPHIC<br>LOG | DESCRIPTION  (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)    | PID (ppmv) |       | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| KCA_LIB_DOSEB LOG K.A. IEST PILS.GFJ < <ul> <li>Countery Processorial, Developed by gin I Processorial, Developed by Jargel</li> <li>Not Encountered</li> </ul> | _PP<br>=120kPa | 0.50m<br>D-TP11a<br>0.60m<br>B<br>1.40m<br>D-TP11b<br>1.60m | 79.5       | - 0.30    |                | TOPSOIL,  Silty CLAY, high plasticity, mottled red/brown, some organic matter  Silty CLAY, high plasticity, mottled grey, red, brown  TEST PIT TP11 TERMINATED AT 2.20 m |            | MC~PL | St VSt                                           | TOPSOIL  RESIDUAL                                |
| LC                                                                                                                                                              | )<br>DGGED: NJ | Н                                                           |            |           |                | CHECKED: JE                                                                                                                                                              |            | DATE: | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 19/10/2010

SURFACE RL: 86.6 m AHD

COORDS: 306569.4 m E 6257079.2 m N MGA94 56

|                                                                                                                                                              | Test Pi        | Informa                   | tion             |                   |                                         |          | F                                                                                                                       | Field Material Infor                 | matior     | 1                       |                                                  |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------------|-------------------|-----------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                        | FIELD          | SAMPLE                    | RL (m AHD)       | DEPTH (m)         | GRAPHIC<br>LOG                          | sha      | DESCRIPTIO<br>OIL NAME; plasticity/grain size, c<br>ape, secondary components, mino<br>CK NAME; grain size, colour, min | colour, particle<br>or constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                              |                |                           | 86.5 -           |                   | *************************************** | TOPSO    | OIL, Clayey SILT, dark brown                                                                                            |                                      |            | М                       |                                                  | TOPSOIL -                                        |
| untered                                                                                                                                                      | _PP<br>=240kPa | 0.50m<br>D-TP12a<br>0.60m | -<br>86.0 -<br>- | - 0.30 -          |                                         | Silty CL | .AY, high plasticity, mottled red/br                                                                                    | rown                                 |            | MC~PL                   | VSt                                              | RESIDUAL -                                       |
| sional, Developed by Datgel  Not Encountered                                                                                                                 |                |                           | -<br>85.5 -<br>- | - 1.0<br>- 1.30 - |                                         | SILTST   | ONE, fine grained, grey/red/brow                                                                                        | n                                    |            | HW                      | EL - VL                                          | -<br>-<br>-<br>BEDROCK                           |
| e>> 23/11/2010 16:08 Produced by gINT Profes                                                                                                                 | _PP<br>>600kPa | 1.50m<br>D-TP12b<br>1.60m | -<br>85.0 –      | - 1.5<br>1.80     |                                         |          |                                                                                                                         |                                      |            |                         |                                                  | -                                                |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:08 Produced by gINT Professional. Developed by Dargel</cdrawingfile> |                |                           | -<br>84.5 -<br>- | - 2.0<br>         |                                         | IEST P   | PIT TP12 TERMINATED AT 1.80 n                                                                                           | "                                    |            |                         |                                                  | -<br>-<br>-                                      |
| RCA_LIB_05.GLB Log RCA1                                                                                                                                      | OGGED: NJ      | Н                         | -                | _                 |                                         |          | CHECKED: JE                                                                                                             |                                      |            | DATE: 2                 | 23/11/20                                         | -<br>010                                         |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 19/10/2010

SURFACE RL: 81.9 m AHD

COORDS: 306607.9 m E 6257333.0 m N MGA94 56

|                                                                                                                                                             | Test Pi        | t Informa                 | ation      |                                                     |                |          |                                                                                                                 | Field Material Infor                      | matior     | 1                       |                                                  |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------|-----------------------------------------------------|----------------|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                       | FIELD          | SAMPLE                    | RL (m AHD) | DEPTH (m)                                           | GRAPHIC<br>LOG | sha      | DESCRIPT<br>FOIL NAME; plasticity/grain size<br>ape, secondary components, m<br>ICK NAME; grain size, colour, r | e, colour, particle<br>inor constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| Not Encountered                                                                                                                                             | _PP<br>=180kPa | 0.50m<br>D-TP13a<br>0.60m | 81.5 -     | - 0.15                                              |                | Silty CL | OlL, Clayey SILT, brown  LAY, high plasticity, mottled recordanic matter                                        | d/brown/grey, with                        |            | MC~PL                   |                                                  | TOPSOIL -                                        |
| RCA_LIB_05.GLB Log RCA TEST PIT LOG 7800 TEST PITS.GPJ < <drawingfile>&gt; 23/1/2010 16:08 Produced by gINT Professional, Developed by Datgel</drawingfile> | _PP<br>=220kPa | 1.50m<br>D-TP13b<br>1.60m | 80.5 -     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.80 - |                | siltston | LAY, high plasticity, mottled gree bands                                                                        | ey/red/brown,                             |            | HW -<br>EW              | VSt                                              | BEDROCK                                          |
| ACA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.C                                                                                                        | DGGED: N.      | iH.                       | 79.5 —     |                                                     |                | TEST F   | PIT TP13 TERMINATED AT 2.0                                                                                      | 0 m                                       |            | OATE: 2                 | 23/11/20                                         | 210                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 19/10/2010

SURFACE RL: 88.1 m AHD

COORDS: 306536.0 m E 6257366.1 m N MGA94 56

|                                                                                                                                                                  | Test Pit       | Informa                   |                       |           |                |        |                                                  |                 | Field M                  | laterial Infor     | mation     | า                                                                |                                                  |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|-----------------------|-----------|----------------|--------|--------------------------------------------------|-----------------|--------------------------|--------------------|------------|------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                            | FIELD          | SAMPLE                    | RL (m AHD)            | DEPTH (m) | GRAPHIC<br>LOG | sha    | OIL NAME; pla<br>ape, secondary<br>CK NAME; grai | components      | PTION<br>size, colour, p | article<br>tuents) | PID (ppmv) |                                                                  | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                  |                |                           | -<br>88.0<br>-        | - 0.20 -  |                |        | OIL, Clayey SIL                                  |                 | red/brown/gre            | әу                 |            | M<br>MC~PL                                                       | VSt                                              | TOPSOIL - RESIDUAL -                             |
| tered                                                                                                                                                            |                | 0.70m<br>D-TP14a<br>0.80m | -<br>87.5 -<br>-<br>- | -0.5      |                |        |                                                  |                 |                          |                    |            |                                                                  |                                                  | -<br>-<br>-<br>-                                 |
| ofessional, Developed by Datgel  Not Encountered                                                                                                                 |                |                           | 87.0 –<br>-           | -1.0      |                |        |                                                  |                 |                          |                    |            |                                                                  |                                                  | _<br>-<br>-                                      |
| RCA_LIB_05.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ < <drawingfile>&gt; 23/11/2010 16:08 Produced by gINT Professional. Developed by Datgel  TO</drawingfile> | .PP<br>=590kPa | 1.50m<br>D-TP14b<br>1.60m | 86.5                  | - 1.40 -  |                |        | AY, high plasti                                  | city, grey, sil | Itstone through          | hout, red          |            | MC <pl< td=""><td>H<br/>EL - VL</td><td>-<br/>BEDROCK</td></pl<> | H<br>EL - VL                                     | -<br>BEDROCK                                     |
| SLB LOG RCA TEST PIT LOG 7600 TEST PITS.GPJ <                                                                                                                    |                |                           | -<br>86.0 —<br>-      | -2.001-   |                | TEST F | PIT TP14 TERM                                    | IINATED AT      | 2.00 m                   |                    |            |                                                                  |                                                  | -<br>-<br>-                                      |
| RCA_LIB_05.                                                                                                                                                      | GGED: NJ       | Н                         | 1                     | ı         | 1              |        | CHECKED                                          | : JE            |                          |                    |            | DATE:                                                            | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 90.2 m AHD

COORDS: 306481.7 m E 6257250.9 m N MGA94 56

|                 | Test Pit    |                                  |                  |                             |                |          |                                                      |                | Field Materia                                | al Inform | mation     | า       |                                                  |                                                  |
|-----------------|-------------|----------------------------------|------------------|-----------------------------|----------------|----------|------------------------------------------------------|----------------|----------------------------------------------|-----------|------------|---------|--------------------------------------------------|--------------------------------------------------|
|                 | FIELD       | SAMPLE                           | RL (m AHD)       | DEPTH (m)                   | GRAPHIC<br>LOG | sha      | OIL NAME; plas<br>ape, secondary c<br>CK NAME; grain | components, mi | ON<br>, colour, particle<br>nor constituents | ;<br>s)   | PID (ppmv) |         | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                 |             |                                  | 90.0 -           | - 0.30 -                    |                |          | OIL, Clayey SILT,                                    |                | d                                            |           |            | M MC~PL | Н                                                | TOPSOIL -                                        |
| _PP<br>=3.      | 340kPa      | 0.50m<br>D-TP15a<br>QA1<br>0.60m | 89.5 —           | -<br>- 0.5<br>- 0.60 -      |                | Silty CL | .AY, high plastic<br>.AY, high plastic<br>e bands    |                | /brown/grey, witl                            | h         |            | WiO∼FL  | С                                                |                                                  |
| Not Encountered |             | 1.20m                            | -<br>-<br>89.0 — | - 1.0<br>-<br>-             |                |          |                                                      |                |                                              |           |            |         |                                                  | -<br>-<br>-<br>-                                 |
| LOGG            | o<br>280kPa | 1.50m<br>D-TP15b<br>1.60m        | 88.5 -           | - 1.5<br>-<br>-<br>- 1.80 - |                | SILTST   | ONE, grey-red                                        |                |                                              |           |            | HW      | EL - VL                                          | -<br>BEDROCK                                     |
| ,               |             |                                  | 88.0 —           |                             |                | TEST P   | PIT TP15 TERMII                                      | NATED AT 2.00  | O m                                          |           |            |         |                                                  | -<br>-<br>-                                      |
| LOGG            | GED: NJI    | H                                |                  |                             |                |          | CHECKED:                                             | JE             |                                              |           | [          | DATE: 2 | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 94.1 m AHD

COORDS: 306449.6 m E 6257333.6 m N MGA94 56

|                                                                                                                                                              | Test Pit  | Informa | ation            |                 |                | Field Material In                                                                                                                                                    | formation  | on                      |                                                  |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------------------|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------------------------------------|---------------------------------------------------|
| WATER                                                                                                                                                        | FIELD     | SAMPLE  | RL (m AHD)       | DEPTH (m)       | GRAPHIC<br>LOG | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS  |
|                                                                                                                                                              |           |         | 94.0 -           | -<br>-          |                | FILL, Clayey SILT, dark brown, with siltstone and gravel throughout                                                                                                  |            |                         |                                                  | FILL  Backfilled swimming pool - surface sinkhole |
| Not Encountered                                                                                                                                              |           |         | -<br>-<br>93.5 – | -<br>-<br>- 0.5 |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
|                                                                                                                                                              |           |         |                  | 0.70            |                | TEST PIT TP16 TERMINATED AT 0.70 m                                                                                                                                   |            |                         |                                                  |                                                   |
|                                                                                                                                                              |           |         | -                | -               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
|                                                                                                                                                              |           |         | -                | - 1.0           |                |                                                                                                                                                                      |            |                         |                                                  | _                                                 |
| Datgel                                                                                                                                                       |           |         | 93.0 -           | _               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| veloped by                                                                                                                                                   |           |         | -                | -               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| essional, De                                                                                                                                                 |           |         | -                | -               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| y gINT Prof                                                                                                                                                  |           |         | _                |                 |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| Produced by                                                                                                                                                  |           |         | 92.5 -           | - 1.5           |                |                                                                                                                                                                      |            |                         |                                                  | _                                                 |
| 2010 16:08                                                                                                                                                   |           |         | -                | _               |                |                                                                                                                                                                      |            |                         |                                                  |                                                   |
| le>> 23/11/                                                                                                                                                  |           |         | -                | -               |                |                                                                                                                                                                      |            |                         |                                                  | _                                                 |
| -<br>CDrawingFi                                                                                                                                              |           |         | -                |                 |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| ITS.GPJ <                                                                                                                                                    |           |         | -                | - 2.0           |                |                                                                                                                                                                      |            |                         |                                                  | _                                                 |
| 600 TEST F                                                                                                                                                   |           |         | 92.0 -           | <u>.</u><br>-   |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| PIT LOG 7                                                                                                                                                    |           |         | -                | _               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| 3CA TEST                                                                                                                                                     |           |         | -                | _               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| GLB Log I                                                                                                                                                    |           |         | -                | -               |                |                                                                                                                                                                      |            |                         |                                                  | -                                                 |
| RCA_LIB_05.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:08 Produced by gINT Professional. Developed by Datgel</cdrawingfile> | ogged: NJ | Н       | •                |                 | '              | CHECKED: JE                                                                                                                                                          |            | DATE:                   | 23/11/2                                          | 010                                               |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010 SURFACE RL: 90.5 m AHD

COORDS: 306462.8 m E 6257376.8 m N MGA94 56

|                                                                                                                                                     | Test Pir    | Informa                                                            | tion        |           |                |                     | Field Material Inf                                                                                                                                                                                                                                                                      | ormatio    | n                       |                                                  |                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------|-------------|-----------|----------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------------------------------------|---------------------------------------------------------------------|
| WATER                                                                                                                                               | FIELD       | SAMPLE                                                             | RL (m AHD)  | DEPTH (m) | GRAPHIC<br>LOG | sha                 | DESCRIPTION  SOIL NAME; plasticity/grain size, colour, particle lape, secondary components, minor constituents) DCK NAME; grain size, colour, minor constituents)                                                                                                                       | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS                    |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT_LOG_7600 TEST_PITS.GPJ_<-DrawingFile>> 23/11/2010 16:08 Produced by gINT Professional. Developed by Datgel    MATER | .PP >600kPa | 0.50m<br>D-TP17a<br>QA2<br>0.60m<br>B<br>1.20m<br>D-TP17b<br>1.60m | -           |           |                | sha (RO TOPSC depth | SOIL NAME; plasticity/grain size, colour, particle lape, secondary components, minor constituents) DCK NAME; grain size, colour, minor constituents) OIL, clayey SILT, dark brown, becoming red with CLAY, high plasticity, red CLAY, high plasticity, mottled red/grey, with siltstone | Md) GIA    | MOSTUR MEATHER          | Н                                                | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS  TOPSOIL  RESIDUAL |
| LIB_05.GLB LOG RCA TEST PIT LOG 7600 TEST                                                                                                           | DGGED: NJ   | H                                                                  | -<br>-<br>- | -         |                |                     | CHECKED: JE                                                                                                                                                                                                                                                                             |            | DATE:                   | 23/11/2                                          |                                                                     |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 89.1 m AHD

COORDS: 306398.0 m E 6257364.2 m N MGA94 56

|                                                                                                                                                              | Test Pi        | t Informa                        | tion                  |                                    |                |        | Field Mate                                                                                                                                             | rial Inform | matior     |                         |                                                  |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|-----------------------|------------------------------------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                        | FIELD          | SAMPLE                           | RL (m AHD)            | DEPTH (m)                          | GRAPHIC<br>LOG | sha    | DESCRIPTION  COIL NAME; plasticity/grain size, colour, partic ppe, secondary components, minor constituen CK NAME; grain size, colour, minor constitue | its)        | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                              |                |                                  | 89.0 -                | -                                  |                | TOPSC  | OIL, Clayey SILT, dark brown                                                                                                                           |             |            | М                       |                                                  | TOPSOIL -                                        |
|                                                                                                                                                              | .PP<br>=250kPa | 0.50m<br>D-TP18a<br>0.60m        | -<br>88.5 –           | - 0.30 -<br>-<br>- 0.5<br>- 0.60 - |                |        | LAY, high plasticity, red  LAY, high plasticity, mottled red/grey, with silts                                                                          | stone       |            | MC~PL                   | VSt                                              | RESIDUAL -                                       |
| Not Encountered                                                                                                                                              |                |                                  | -                     | -                                  |                | bands  | , age, presently, method load groy, martine                                                                                                            |             |            |                         |                                                  | -                                                |
|                                                                                                                                                              |                |                                  | 88.0 -                | - 1.0<br>-<br>-                    |                |        |                                                                                                                                                        |             |            |                         |                                                  | -                                                |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:08 Produced by gINT Professional. Developed by Datget</cdrawingfile> | _PP<br>=580kPa | 1.50m<br>D-TP18b<br>QA3<br>1.60m | -<br>-<br>87.5 –<br>- | - 1.40 -<br>- 1.5                  |                | SILTST | TONE, grey-red-brown                                                                                                                                   |             |            | HW                      | EL - VL                                          | BEDROCK                                          |
| TS.GPJ < <drawingfile>&gt; 23/11/201</drawingfile>                                                                                                           |                |                                  | -                     | 2.001-                             |                | TEST F | PIT TP18 TERMINATED AT 2.00 m                                                                                                                          |             |            |                         |                                                  | -                                                |
| A TEST PIT LOG 7600 TEST PIT                                                                                                                                 |                |                                  | 87.0 -<br>-<br>-      | -                                  |                | ILOI F | TI TO TERMINATED AT 2.00 III                                                                                                                           |             |            |                         |                                                  | -                                                |
| RCA_LIB_05.GLB Log RC                                                                                                                                        | DGGED: NJ      | H                                | -                     | _                                  |                |        | CHECKED: JE                                                                                                                                            |             | [          | DATE: 2                 | 23/11/20                                         | D10                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 96.2 m AHD

COORDS: 306386.2 m E 6257269.2 m N MGA94 56

|                                                                                                                                                                                                         | Test Pit        | Informa                                | ation            |                             |                |          |                                |               | Field Mate                                                      | erial Infor | matior     | 1                                                           |                                                  |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|------------------|-----------------------------|----------------|----------|--------------------------------|---------------|-----------------------------------------------------------------|-------------|------------|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                                                                   | FIELD           | SAMPLE                                 | RL (m AHD)       | DEPTH (m)                   | GRAPHIC<br>LOG | sha      | pe, secondary                  | components,   | TION<br>ze, colour, parti<br>minor constitue<br>minor constitue | nts)        | PID (ppmv) | MOISTURE/<br>WEATHERING                                     | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| Not Encountered                                                                                                                                                                                         | _PP<br>=590kPa  | 0.50m<br>D-TP19a<br>QA4<br>0.60m       | 96.0 -           | -<br>- 0.30 -<br>-<br>- 0.5 |                |          | IL, Clayey SIL                 |               | sandstone band                                                  | ds, grey    |            | MC <pl< td=""><td>Н</td><td>TOPSOIL  - RESIDUAL </td></pl<> | Н                                                | TOPSOIL  - RESIDUAL                              |
| ed by gINT Professional. Developed by Datgel                                                                                                                                                            | _PP<br>\>600kPa | 1.00m  B  1.30m  1.40m  D-TP19b  1.50m | 95.0 —<br>-<br>- |                             |                | red-brov | AY, medium p<br>wn-yellow-blac | k, with shale |                                                                 |             |            | MC~PL                                                       |                                                  | -<br>-<br>-<br>-                                 |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT_LOG_7600 TEST_PITS.GPJ_< <drawningfile>&gt; 23/11/2010 16:08 Produced by gNT_Professional. Developed by Datget  TO                                      </drawningfile> |                 |                                        | 94.5             | - 2.0                       |                |          |                                |               |                                                                 |             |            |                                                             |                                                  | -<br>-<br>-<br>-                                 |
| RCA_LIB_05.GLB                                                                                                                                                                                          | OGGED: NJ       | Н                                      |                  |                             |                |          | CHECKED                        | : JE          |                                                                 |             |            | DATE: 2                                                     | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 95.7 m AHD

COORDS: 306368.9 m E 6257183.1 m N MGA94 56

|                                                                                                                                                               | Test Pi        | t Informa                 | ation            |                   |                |                   |                                                                                   | Field Mate                 | rial Inforn | nation     | )                                                    |                                                  |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------------|-------------------|----------------|-------------------|-----------------------------------------------------------------------------------|----------------------------|-------------|------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                         | FIELD          | SAMPLE                    | RL (m AHD)       | DEPTH (m)         | GRAPHIC<br>LOG | sha               | DES(<br>OIL NAME; plasticity/gr<br>pe, secondary compon<br>CK NAME; grain size, c | ents, minor constituen     | nts)        | PID (ppmv) | MOISTURE/<br>WEATHERING                              | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                               |                |                           | 95.5<br>-<br>-   | - <i>0.20</i> -   |                |                   | IL, Clayey SILT, dark b                                                           |                            |             |            | MC~PL                                                |                                                  | TOPSOIL - RESIDUAL -                             |
| untered                                                                                                                                                       | _PP<br>=240kPa | 0.50m<br>D-TP20a<br>0.60m | 95.0 —<br>-<br>- | - 0.5<br>- 0.60 - |                | Silty CL          | .AY, high plasticity, mot                                                         | tled grey/red/brown        |             |            |                                                      |                                                  | -<br>-<br>-                                      |
| by gINT Professional, Developed by Datgel  Not Encountered                                                                                                    | .рр            | 1.50m                     | 94.5 —<br>-<br>- | - 1.0             |                |                   |                                                                                   |                            |             |            |                                                      |                                                  | -                                                |
| GPJ < <drawingfile>&gt; 23/11/2010 16:08 Produced</drawingfile>                                                                                               | >600kPa        | D-TP20b<br>1.60m          | 94.0             | -                 |                | Silty CL<br>bands | AY, high plasticity, mot                                                          | ttled grey/red, with silt: | stone       |            | MC <pl< td=""><td>Н</td><td>-<br/>-<br/>-</td></pl<> | Н                                                | -<br>-<br>-                                      |
| RCA_LIB_06.SLB_Log_RCA_TEST_PIT_LOG_7600_TEST_PITS_GPJ_ <drawningfile>&gt; 23/11/2010_16:08 Produced by gINT Professional. Developed by Dalgel</drawningfile> |                |                           | 93.5<br>-<br>-   |                   |                | TEST P            | PIT TP20 TERMINATED                                                               | AT 2.00 m                  |             |            |                                                      |                                                  | -                                                |
| RCA_LIB_05,                                                                                                                                                   | DGGED: NJ      | H                         | 1                | 1                 | ı              |                   | CHECKED: JE                                                                       |                            |             |            | DATE: 2                                              | 23/11/20                                         | 010                                              |



1P21 SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 95.7 m AHD

COORDS: 306334.9 m E 6257279.9 m N MGA94 56

|                                                                                                                                                                 | Test Pi        | t Informa                        | ation            |                        |                |                       | Field Material Ir                                                                                                                                             | nforma         | tion         | l                                                     |                                                  |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|------------------|------------------------|----------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                           | FIELD          | SAMPLE                           | RL (m AHD)       | DEPTH (m)              | GRAPHIC<br>LOG | sha                   | DESCRIPTION OIL NAME; plasticity/grain size, colour, particle ape, secondary components, minor constituents) CK NAME; grain size, colour, minor constituents) | OID (security) | ric (ppiliv) | MOISTURE/<br>WEATHERING                               | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                 |                |                                  | 95.5<br>-<br>-   | -<br>- 0.30 -          |                |                       | DIL, Clayey SILT, dark brown/red  AY, high plasticity, mottled red/brown/grey                                                                                 |                |              | M<br>MC <pl< td=""><td>Н</td><td>TOPSOIL -</td></pl<> | Н                                                | TOPSOIL -                                        |
| untered                                                                                                                                                         | .PP<br>=490kPa | 0.50m<br>D-TP21a<br>QA5<br>0.60m | 95.0 —<br>-<br>- | - 0.5<br>-<br>-        |                |                       |                                                                                                                                                               |                |              |                                                       |                                                  | -<br>-<br>-<br>-                                 |
| ofessional, Developed by Datgel Not Encountered                                                                                                                 | _PP<br>>600kPa | B<br>1.20m                       | 94.5 -<br>-<br>- | 1.00  -<br>-<br>-      |                | Silty CL<br>siltstone | _AY, high plasticity, mottled red/brown/grey, with e bands                                                                                                    |                |              |                                                       |                                                  | -<br>-<br>-                                      |
| rawingFile>> 23/11/2010 16:08 Produced by gINT Pr                                                                                                               | _PP<br>>600kPa | 1.50m<br>D-TP21b<br>1.60m        | 94.0             | - 1.5<br>-<br>- 1.80 - |                | SILTST                | ONE, grey/red                                                                                                                                                 |                |              | HW                                                    | EL - VL                                          | BEDROCK                                          |
| RCA_LIB_05.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <cdrawingfile>&gt; 23/11/2010 16:08 Produced by gINT Professional, Developed by Datgel  T</cdrawingfile> |                |                                  | 93.5             |                        |                | TEST P                | PIT TP21 TERMINATED AT 2.00 m                                                                                                                                 |                |              |                                                       |                                                  | -                                                |
| RCA_LIB_05.                                                                                                                                                     | DGGED: NJ      | iH                               | 1                |                        | ı              |                       | CHECKED: JE                                                                                                                                                   | 1              | С            | ATE: 2                                                | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 90.5 m AHD

COORDS: 306347.3 m E 6257359.6 m N MGA94 56

|                                                                                                                                                             | Test Pit     | t Informa                                                            |               |                    |                |                             |                                                                     | Fie                                                    | eld Material Inf | ormatio    | n       |                                                  |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|---------------|--------------------|----------------|-----------------------------|---------------------------------------------------------------------|--------------------------------------------------------|------------------|------------|---------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                       | FIELD        | SAMPLE                                                               | RL (m AHD)    | DEPTH (m)          | GRAPHIC<br>LOG | sha                         | D<br>OIL NAME; plastici<br>ape, secondary com<br>CK NAME; grain siz | ESCRIPTION<br>ty/grain size, col-<br>ponents, minor of | our, particle    | PID (ppmv) |         | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
| RCA_LIB_05.GLB_Log_RCA_TEST_PIT LOG_7600 TEST_PITS.GPJ_<=CnawingFile>> 23/11/2010 16:08 Produced by gINT Professional, Developed by Datgel  Not Encountered | _PP = 520kPa | D-TP21a<br>0.60m<br>0.90m<br>B<br>1.20m<br>1.50m<br>D-TP22b<br>1.60m | 90.0 -        | -1.00 -<br>-1.70 - |                | Silty CL Silty CL Siltstone | AY, high plasticity,  AY, high plasticity, e bands                  | reddish brown mottled red/brow                         | wn/grey, with    |            | M MC~PL | H                                                | TOPSOIL  RESIDUAL                                |
| LIE US: GLE LUG I                                                                                                                                           | OGGED: NJ    | <br> H                                                               | 88.0 <u>–</u> |                    |                |                             | CHECKED: JE                                                         | :                                                      |                  |            | DATE:   | 23/11/20                                         | 010                                              |



IP23 SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 84.5 m AHD

COORDS: 306364.7 m E 6257433.0 m N MGA94 56

|                                                                                                                                                                                               | Test Pi        | t Informa                        | ation            |                                   |                                         |                       | Field Mate                                                                                                                                                  | erial Inform | natior     |                         |                                                  |                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------|------------------|-----------------------------------|-----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                                                         | FIELD          | SAMPLE                           | RL (m AHD)       | DEРТН (m)                         | GRAPHIC<br>LOG                          | sha                   | DESCRIPTION FOIL NAME; plasticity/grain size, colour, particape, secondary components, minor constituentick NAME; grain size, colour, minor constituentics. | nts)         | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                                               |                |                                  | -                | -<br>-<br>- 0.30 -                | *************************************** |                       | OIL, Clayey SILT, dark brown                                                                                                                                |              |            | М                       |                                                  | TOPSOIL -                                        |
|                                                                                                                                                                                               | .PP<br>=300kPa | 0.50m<br>D-TP23a<br>QA6<br>0.60m | -<br>84.0 –<br>- | - 0.50                            |                                         |                       | LAY, high plasticity, brown                                                                                                                                 |              |            | MC~PL                   | VSt                                              | RESIDUAL -                                       |
| Not Encountered                                                                                                                                                                               |                |                                  | -                | -<br>-<br>-                       |                                         | Silty CL              | LAY, high plasticity, mottled brown/grey                                                                                                                    |              |            |                         |                                                  | -                                                |
|                                                                                                                                                                                               | _PP<br>=320kPa |                                  | 83.5             | 1.00) -<br>                       |                                         | Silty CL<br>siltstone | LAY, high plasticity, mottled brown/grey, with e bands                                                                                                      |              |            |                         |                                                  | -<br>-<br>-                                      |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ <-DrawingFile>> 23/11/2010 16:08 Produced by gINT Professional. Developed by Dargel                                                    | .PP<br>>600kPa | 1.50m<br>D-TP23b<br>1.60m        | -<br>-<br>83.0 – | -<br>-<br>-1.5                    |                                         |                       |                                                                                                                                                             |              |            |                         | Н                                                | -<br>-                                           |
| rawingFile>> 23/11/2010 16:08 P                                                                                                                                                               |                | 1.60111                          | -                | - 1.60 -<br>-<br>-<br>-<br>-1.90- |                                         | SILTST                | TONE, grey-red-brown                                                                                                                                        |              |            | HW                      | EL - VL                                          | BEDROCK -                                        |
| OG 7600 TEST PITS.GPJ < <d< td=""><td></td><td></td><td>82.5 -</td><td></td><td></td><td>TEST P</td><td>PIT TP23 TERMINATED AT 1.90 m</td><td></td><td></td><td></td><td></td><td>-</td></d<> |                |                                  | 82.5 -           |                                   |                                         | TEST P                | PIT TP23 TERMINATED AT 1.90 m                                                                                                                               |              |            |                         |                                                  | -                                                |
| 05.GLB Log RCA TEST PIT L                                                                                                                                                                     |                |                                  | -<br>82.0 —      | -<br>-<br>-                       |                                         |                       |                                                                                                                                                             |              |            |                         |                                                  | -                                                |
| RCA_LIB_                                                                                                                                                                                      | OGGED: NJ      | Н                                |                  |                                   |                                         |                       | CHECKED: JE                                                                                                                                                 |              |            | DATE: 2                 | 23/11/20                                         | 010                                              |



SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments Pty Ltd

PROJECT: Prosposed Wet n Wild Theme Park

LOCATION: Reservoir Rd, Prospect

DATE: 20/10/2010

SURFACE RL: 92.2 m AHD

COORDS: 306482.8 m E 6257071.9 m N MGA94 56

|                                                                                                                                                                | Test Pi        | t Informa                 | tion       |                                       |                |                       | Field Material Inf                                                                                                                                               | ormatio    | n                       |                                                  |                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|------------|---------------------------------------|----------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------------------------------------|--------------------------------------------------|
| WATER                                                                                                                                                          | FIELD          | SAMPLE                    | RL (m AHD) | DEPTH (m)                             | GRAPHIC<br>LOG | sha                   | DESCRIPTION  COIL NAME; plasticity/grain size, colour, particle pape, secondary components, minor constituents) CK NAME; grain size, colour, minor constituents) | PID (ppmv) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE/AESTHETICS AND ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                |                |                           | 92.0 -     | -<br>- 0.30 -                         |                |                       | OlL, Clayey SILT, dark brown  LAY, high plasticity, brown                                                                                                        |            | MC~PL                   | VSt                                              | TOPSOIL -                                        |
| Not Encountered                                                                                                                                                | _PP<br>=350kPa | 0.50m<br>D-TP24a<br>0.60m | 91.5 —     | - 0.5<br>-<br>-                       |                |                       |                                                                                                                                                                  |            |                         |                                                  | -                                                |
|                                                                                                                                                                | _PP<br>=480kPa |                           | 91.0       | 1.00 <br><br>                         |                | Silty CL<br>siltstone | LAY, high plasticity, mottled brown/grey, with e bands                                                                                                           |            |                         | H                                                |                                                  |
| J < <drawingfile>&gt; 23/11/2010 16:08 Produced by</drawingfile>                                                                                               | _PP<br>>600kPa |                           | 90.5       | - 1.5<br>-<br>- 1.70 -<br>-<br>-1.90- |                |                       | TONE, grey-red-brown PIT TP24 TERMINATED AT 1.90 m                                                                                                               | _          | HW                      | EL - VL                                          | BEDROCK -                                        |
| RCA_LIB_06.GLB Log RCA TEST PIT LOG 7600 TEST PITS.GPJ < <drawningfile>&gt; 23/11/2010 16:08 Produced by gINT Professional. Developed by Daigel</drawningfile> |                |                           | 90.0 -     | - 2.0<br>-<br>-                       |                |                       |                                                                                                                                                                  |            |                         |                                                  | -<br>-<br>-                                      |
| RCA_LIB_05.                                                                                                                                                    | DGGED: NJ      | H                         |            |                                       |                |                       | CHECKED: JE                                                                                                                                                      |            | DATE:                   | 23/11/20                                         | 010                                              |



SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 78.53 m AHD

COORDS: 306741.02 m E 6257290.29 m N MGA94 56

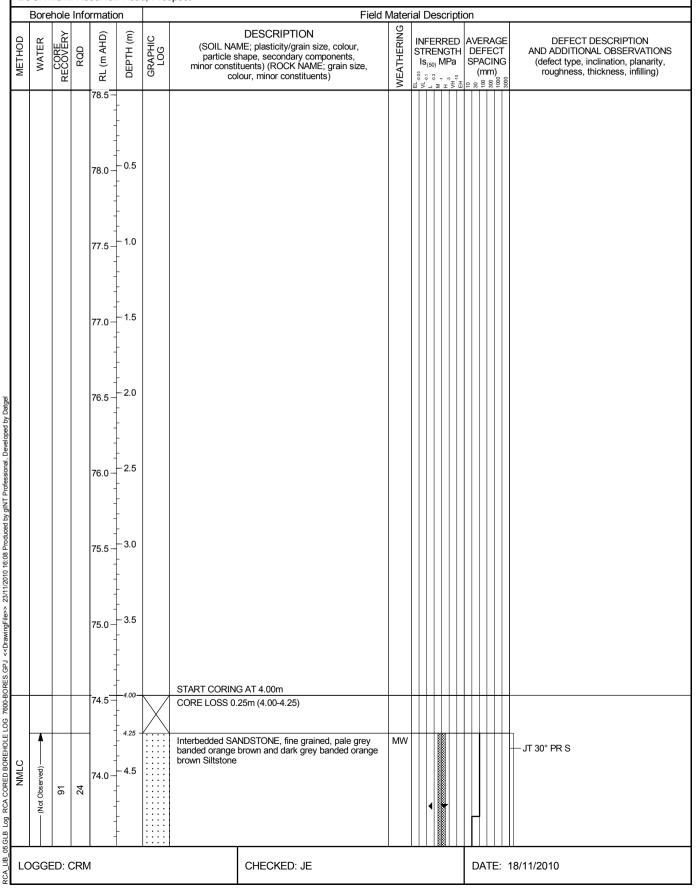
| 1        | CAI             | ION: Reserv                        |                     |                                                   | peci                       | ı              |                          | Field Material Information                                                                                                                                           |         |            |                                                  |                                          |  |  |  |  |  |
|----------|-----------------|------------------------------------|---------------------|---------------------------------------------------|----------------------------|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|--------------------------------------------------|------------------------------------------|--|--|--|--|--|
|          |                 | Borehole In                        | formatio            | n                                                 |                            |                | z                        | Field Material Info                                                                                                                                                  | ormatic | n          | _                                                |                                          |  |  |  |  |  |
| МЕТНОD   | WATER           | FIELD                              | SAMPLE              | RL (m AHD)                                        | DEPTH (m)                  | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | 2       | WEALHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |  |
|          |                 |                                    |                     | 78.5 –                                            |                            | ///            | Ŭ                        | CLAY, high plasticity, mottled grey red                                                                                                                              | MC>     | ·PL        | VSt - H                                          | RESIDUAL                                 |  |  |  |  |  |
|          |                 | SPT<br>4, 4, 7 N=11                | 0.50m<br>D<br>0.95m | 78.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.5                       |                |                          |                                                                                                                                                                      |         |            |                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-     |  |  |  |  |  |
|          |                 | 1.50m<br>SPT<br>3, 4, 9 N=13       | 1.50m<br>D          | -<br>-<br>77.0 –<br>-<br>-                        | -<br>-<br>-<br>-<br>-<br>- |                |                          |                                                                                                                                                                      |         |            |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |
|          |                 | 1.95m                              | 1.95m               | -                                                 | [                          | V/A            |                          |                                                                                                                                                                      |         |            |                                                  | _                                        |  |  |  |  |  |
| AD/T     |                 |                                    | 1.95m<br>2.00m      | 76.5                                              | -2.0                       |                |                          |                                                                                                                                                                      |         |            |                                                  | -                                        |  |  |  |  |  |
|          | ered            |                                    | U50                 | -                                                 | -                          | V/A            |                          |                                                                                                                                                                      |         |            |                                                  | -                                        |  |  |  |  |  |
|          | Not Encountered |                                    | 2.45m               | 76.0                                              | -<br>-2.5                  |                |                          |                                                                                                                                                                      |         |            |                                                  | -<br>-<br>-                              |  |  |  |  |  |
|          |                 | 3.00m<br>SPT<br>6, 18 N=R<br>3.30m | 3.00m<br>D<br>3.30m | 75.5 –                                            | -3.0                       |                |                          |                                                                                                                                                                      |         |            |                                                  | -<br>-<br>-<br>-<br>-                    |  |  |  |  |  |
|          |                 | <u> </u>                           |                     | 75.0 –<br>-<br>-<br>-<br>-                        | - 3.30 -<br>- 3.5          |                |                          | SILTSTONE, dark grey, some clay bands                                                                                                                                | EV      | V          | VL                                               | BEDROCK                                  |  |  |  |  |  |
| $\vdash$ |                 |                                    |                     | 74.5                                              | -4.0-                      |                |                          | CONTINUED AS CORED BOREHOLE                                                                                                                                          | +       |            |                                                  | _                                        |  |  |  |  |  |
|          |                 |                                    |                     | 74.0 –<br>-<br>-<br>-<br>-<br>-<br>-              | -4.5                       |                |                          | CONTINUED AS CONED BUREFIOLE                                                                                                                                         |         |            |                                                  | -                                        |  |  |  |  |  |
| LC       | GGE             | ED: CRM                            |                     |                                                   |                            |                | C                        | CHECKED: JE                                                                                                                                                          | DATE    | E: 1       | 18/11/20                                         | 010                                      |  |  |  |  |  |



## CORED BOREHOLE LOG

SHEET 2 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 78.53 m AHD

COORDS: 306741.02 m E 6257290.29 m N MGA94 56

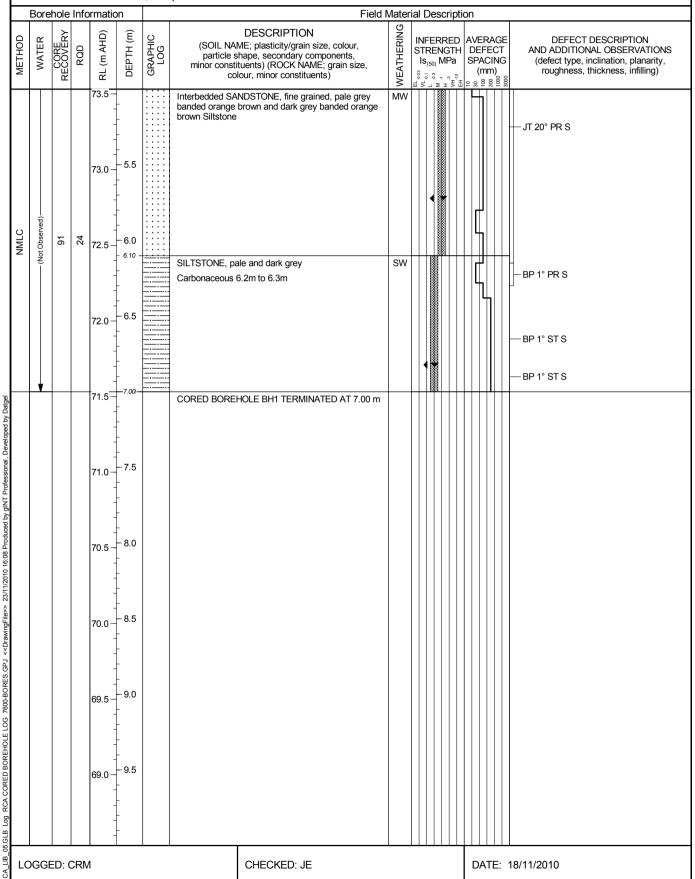




### CORED BOREHOLE LOG

SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 78.53 m AHD

COORDS: 306741.02 m E 6257290.29 m N MGA94 56





SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 76.97 m AHD

COORDS: 306674.89 m E 6257313.30 m N MGA94 56

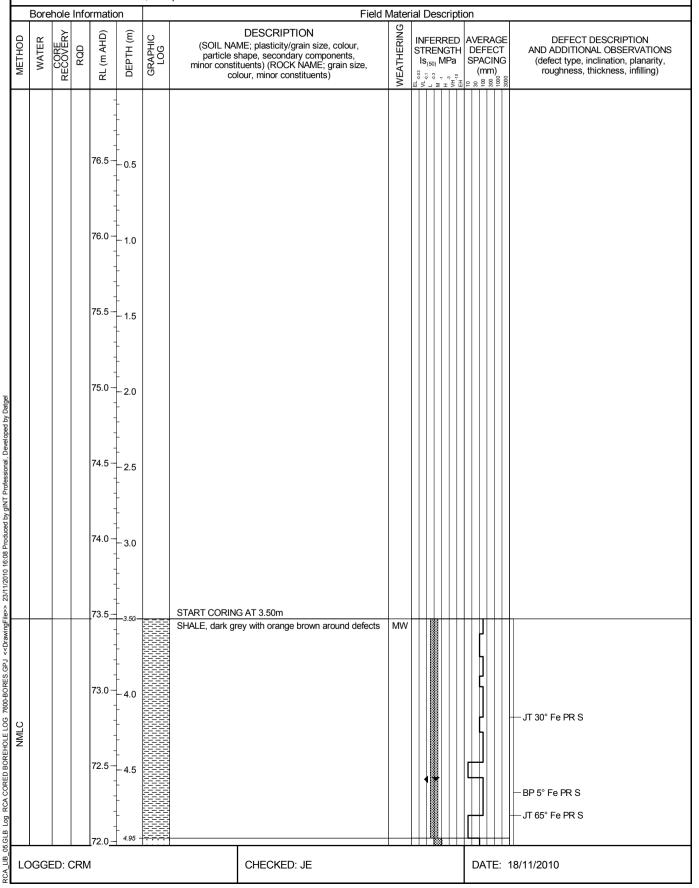
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAI             | ION: Reserv                   |                |                   | peci                                      |                | DRILL MODEL / MOUNTING: Truck mounted |                                                                                                                                                                      |                                                           |                                                  |                                                                                                                                                                    |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|----------------|-------------------|-------------------------------------------|----------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | Borehole In                   | formation      | n                 |                                           | 1              | <del>7</del> 1                        | Field Material Info                                                                                                                                                  |                                                           | L                                                |                                                                                                                                                                    |  |  |  |  |  |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER           | FIELD                         | SAMPLE         | RL (m AHD)        | DEPTH (m)                                 | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL              | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING                                   | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS                                                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                |                   | -                                         |                |                                       | TOPSOIL, SILT, brown                                                                                                                                                 | М                                                         |                                                  | TOPSOIL -                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.50m                         | 0.50m          | 76.5              | - 0.20 -<br>-<br>-<br>-<br>-<br>-<br>-0.5 |                |                                       | Sandy Silty Gravelly CLAY, high plasticity, grey brown                                                                                                               | MC>PL                                                     | F-St                                             | SLOPE WASH                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                |                   | 0.65                                      |                |                                       |                                                                                                                                                                      |                                                           |                                                  |                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | SPT<br>0, 1, 3 N=4            | D              |                   | -                                         | $\mathbb{Z}$   |                                       | CLAY, high plasticity, mottled grey red                                                                                                                              |                                                           |                                                  | RESIDUAL -                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 0.95m                         | 0.95m<br>1.00m | 76.0 -            | -1.00 -                                   |                |                                       | Silty CLAY, high plasticity, yellow                                                                                                                                  |                                                           | VSt                                              | -<br>-                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               | U50            |                   | }<br>}<br>}                               |                |                                       |                                                                                                                                                                      |                                                           |                                                  | -<br>-<br>-                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 1.50m                         | 1.50m          | 75.5 <del>-</del> | -<br>- 1.5                                |                |                                       | Mottled yellow, orange, red and grey                                                                                                                                 |                                                           |                                                  | STANDPIPE PIEZOMETER INSTALLED -                                                                                                                                   |  |  |  |  |  |
| AD/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | SPT<br>3, 5, 7 N=12           | D              |                   | -                                         |                |                                       |                                                                                                                                                                      |                                                           |                                                  | Class 18 PVC 50mm Casing and Screw Joined Machined Slotted Screen construction as follows:  Monument Type - Road Box                                               |  |  |  |  |  |
| i de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 1.95m                         | 1.95m          | 75.0 -            | -<br>-2.0<br>-<br>-                       |                |                                       |                                                                                                                                                                      |                                                           |                                                  | Monument Type - Road Box<br>0.0-3.00m Drill Cuttings<br>3.00-3.51m Bentonite Pellets<br>3.51-6.51m Slotted screen in<br>geofabric sock with 5mm gravel<br>backfill |  |  |  |  |  |
| CAZOLO LOS NON NON CONLEDEZO TOCODONESCOS NO NOTORING INC. ANTINONO TOCO TOCOCCO DE GINA TOCOSONICIA, DEVELOPOR DE CALIFORNIA DE | Not Encountered |                               |                | 74.5              | -2.5                                      |                |                                       |                                                                                                                                                                      |                                                           |                                                  | 0.88m Water Level 18/10/2010                                                                                                                                       |  |  |  |  |  |
| in the same of the |                 | 3.00m<br>SPT                  | 3.00m          | 74.0 -            | - 2.90 -<br>- 3.0                         |                |                                       | CLAY, high plasticity, mottled grey red (extremely weathered claystone)                                                                                              | MC <pl< td=""><td>H - EL</td><td>-<br/>-<br/>-</td></pl<> | H - EL                                           | -<br>-<br>-                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 2, 13,<br>9/60mm N=R<br>3.36m | D<br>3.45m     |                   | -<br>-<br>-                               |                |                                       | Carbonaccous material come soonage                                                                                                                                   |                                                           |                                                  | -<br>-<br>-                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                | 73.5_             | 3.5-                                      |                |                                       | Carbonaceous material, some seepage CONTINUED AS CORED BOREHOLE                                                                                                      |                                                           |                                                  |                                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                | 73.0              | -<br>-<br>-<br>4.0                        |                |                                       |                                                                                                                                                                      |                                                           |                                                  | -<br>-<br>-                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                | 72.5              | -4.5                                      |                |                                       |                                                                                                                                                                      |                                                           |                                                  | -<br>-<br>-                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                               |                |                   |                                           |                |                                       |                                                                                                                                                                      |                                                           |                                                  | -<br>-<br>-<br>-                                                                                                                                                   |  |  |  |  |  |
| o'l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )<br>GGE        | ED: CRM                       | <u> </u>       | 72.0 <u>-</u>     | <u> </u>                                  |                | C                                     | CHECKED: JE                                                                                                                                                          | DATE:                                                     | 18/11/2                                          | 010                                                                                                                                                                |  |  |  |  |  |



### CORED BOREHOLE LOG

SHEET 2 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 76.97 m AHD

COORDS: 306674.89 m E 6257313.30 m N MGA94 56

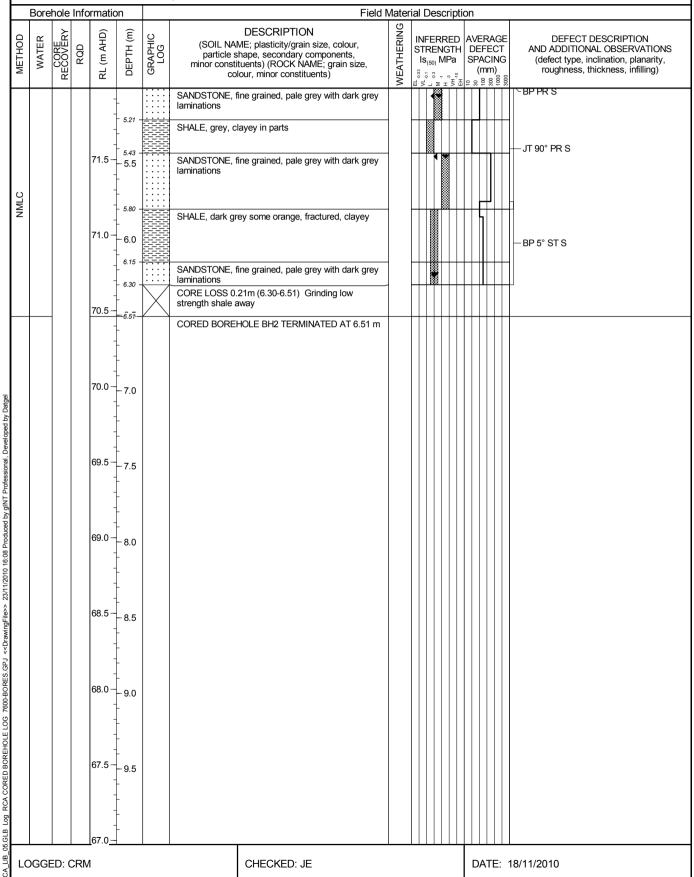




### CORED BOREHOLE LOG

SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 76.97 m AHD

COORDS: 306674.89 m E 6257313.30 m N MGA94 56





SHEET 1 OF 1

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 83.38 m AHD

COORDS: 306599.93 m E 6257151.17 m N MGA94 56

| LO     | CAT             | ION: Reserv          | oir Road            | l, Pros                              | pect                                 |                |                          | DRILL MODEL / N                                                                                                                                                      | DRILL MODEL / MOUNTING: Truck mounted |                                                  |                                                                                           |  |  |  |  |  |  |
|--------|-----------------|----------------------|---------------------|--------------------------------------|--------------------------------------|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|        |                 | Borehole In          | formatic            | on                                   |                                      |                |                          | Field Material Info                                                                                                                                                  | rmation                               |                                                  |                                                                                           |  |  |  |  |  |  |
| METHOD | WATER           | FIELD                | SAMPLE              | RL (m AHD)                           | DEPTH (m)                            | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING               | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS                                                  |  |  |  |  |  |  |
| AD/T   | Not Encountered | SPT<br>11, 2, 9 N=11 | 0.50m<br>D<br>0.95m | 83.0 -<br>-<br>-<br>-<br>-<br>82.5 - | - 0.20 -                             |                |                          | FILL, SILT, brown, rootlets  FILL, Sandy Clayey SILT, orange, some pebbles  FILL, GRAVEL, Possibly Slag, sandy brown, some coal gravel                               |                                       |                                                  | FILL                                                                                      |  |  |  |  |  |  |
|        |                 |                      |                     | 82.0 -                               | 1.0                                  |                |                          | BOREHOLE BH3 TERMINATED AT 1.50 m<br>On Fill                                                                                                                         |                                       |                                                  | Gravel not possible to auger through. moved rig 1.0m SE, also steel in ground moved again |  |  |  |  |  |  |
|        |                 |                      |                     | 81.5 -<br>-<br>-<br>-<br>-           |                                      |                |                          |                                                                                                                                                                      |                                       |                                                  |                                                                                           |  |  |  |  |  |  |
|        |                 |                      |                     | 81.0 -                               | -2.5                                 |                |                          |                                                                                                                                                                      |                                       |                                                  |                                                                                           |  |  |  |  |  |  |
|        |                 |                      |                     | 80.0<br><br><br>                     | 3.5                                  |                |                          |                                                                                                                                                                      |                                       |                                                  |                                                                                           |  |  |  |  |  |  |
|        |                 |                      |                     | 79.5 -<br>-<br>-<br>-<br>-<br>79.0 - | -4.0                                 |                |                          |                                                                                                                                                                      |                                       |                                                  |                                                                                           |  |  |  |  |  |  |
| LO     | GGE             | ED: CRM              |                     | 78.5 –                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                |                          | CHECKED: JE                                                                                                                                                          | DATE:                                 | 18/11/2                                          | 010                                                                                       |  |  |  |  |  |  |



SHEET 1 OF 2

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 83.33 m AHD

COORDS: 306595.08 m E 6257156.94 m N MGA94 56

| LOCA                        | ATION: Reserv                   |                       |            | pect      | DRILL MODEL / MOUNTING: Truck mounted |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |
|-----------------------------|---------------------------------|-----------------------|------------|-----------|---------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------|--|--|--|--|
|                             | Borehole In                     | formatio              | n<br>I     |           |                                       | z I                      | Field Material Infor                                                                                                                                                 | rormation               |                                                  |                                          |  |  |  |  |
| METHOD                      | FIELD                           | SAMPLE                | RL (m AHD) | DEPTH (m) | GRAPHIC<br>LOG                        | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |
| AD/T  AD/T  Not Encountered | 3.00m  SPT 7, 10, 10 N=20 3.45m | 4.00m<br>U50<br>4.60m | 83.0       | - 0.20    |                                       |                          | FILL, Clayey Sandy SILT, abundant rootlets  FILL, Sandy GRAVEL  Silty CLAY, medium plasticity, red  Silty CLAY, mottled grey, red and orange  SHALE, dark grey       |                         |                                                  | FILL                                     |  |  |  |  |
| LOG                         | GED: CRM                        |                       |            |           |                                       | C                        | CHECKED: JE                                                                                                                                                          | DATE: 18/11/2010        |                                                  |                                          |  |  |  |  |



SHEET 2 OF 2

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

DATE COMMENCED: 18/10/2010 DATE COMPLETED: 18/10/2010 SURFACE RL: 83.33 m AHD

COORDS: 306595.08 m E 6257156.94 m N MGA94 56

| LO                                                                                                                                                                                             | LOCATION: Reservoir Road, Prospect |             |          |                            |                                             |                |                            | DRILL MODEL / MOUNTING: Truck mounted                                                                                                                                |                         |                                                  |                                          |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------|----------|----------------------------|---------------------------------------------|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                |                                    | Borehole In | formatio | n                          |                                             |                | Field Material Information |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |  |
| METHOD                                                                                                                                                                                         | WATER                              | FIELD       | SAMPLE   | RL (m AHD)                 | DEPTH (m)                                   | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL   | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |  |  |  |
| AD/T                                                                                                                                                                                           | Not Encountered                    |             |          | 78.0 —<br>-<br>-<br>-<br>- | -5.00<br>-<br>-<br>-<br>-<br>-<br>-5.5<br>- |                |                            | SHALE, dark grey, occasional light grey claystone bands                                                                                                              | MW                      | EL - VL                                          | -<br>-<br>-<br>-<br>-                    |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |                                    |             |          | 77.5 —<br>-                | -<br>-<br>6.00                              |                |                            | BOREHOLE BH4 TERMINATED AT 6.00 m                                                                                                                                    |                         |                                                  | -                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |                                    |             |          | 77.0 —                     | -<br>-<br>-<br>- 6.5                        |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                |                                    |             |          | 76.5                       | -<br>-<br>-<br>-7.0                         |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |  |  |
| < <drawingfile>&gt; 23/11/2010 16.09 Produced by gINT Professional. Developed by Datget</drawingfile>                                                                                          |                                    |             |          | 76.0 —<br>-<br>-           | -<br>-<br>-<br>7.5<br>-                     |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |  |  |
| Produced by gINT Profess                                                                                                                                                                       |                                    |             |          | 75.5 —<br>-<br>-<br>-      | -<br>-<br>-8.0                              |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |  |  |
| ngFile>> 23/11/2010 16:09                                                                                                                                                                      |                                    |             |          | 75.0 —<br>-<br>-<br>-      | -<br>-<br>8.5<br>-                          |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>-<br>-                         |  |  |  |  |  |  |  |
| 300-BORES.GPJ < <drawi< td=""><td></td><td></td><td></td><td>74.5</td><td>-<br/>-<br/>-9.0<br/>-</td><td></td><td></td><td></td><td></td><td></td><td>-<br/>-<br/><u>-</u><br/>-</td></drawi<> |                                    |             |          | 74.5                       | -<br>-<br>-9.0<br>-                         |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br><u>-</u><br>-                  |  |  |  |  |  |  |  |
| 05.GLB Log RCA NON CORED LOG 7600-BORES.GPJ                                                                                                                                                    |                                    |             |          | 74.0                       | -<br>-<br>-9.5<br>-                         |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br><u>-</u><br>-<br>-             |  |  |  |  |  |  |  |
| 05.GLB Log RC                                                                                                                                                                                  |                                    |             |          | 73.5                       | -                                           |                |                            |                                                                                                                                                                      |                         |                                                  | -<br>-<br>                               |  |  |  |  |  |  |  |
| ~ '                                                                                                                                                                                            |                                    |             |          |                            |                                             |                |                            | CHECKED: JE                                                                                                                                                          | DATE: 18/11/2010        |                                                  |                                          |  |  |  |  |  |  |  |



SHEET 1 OF 3

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 74.01 m AHD

COORDS: 306698.21 m E 6257440.42 m N MGA94 56

| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAT             | TON: Reserv                  | oir Road   | l, Pros    | pect                                 |                | DRILL MODEL / MOUNTING: Truck mounted |                                                                                                                                                                      |                         |                                                  |                                                                                                                                                                                                                                                 |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|------------|------------|--------------------------------------|----------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Borehole In                  | formatio   | n          |                                      |                |                                       | Field Material Info                                                                                                                                                  |                         |                                                  |                                                                                                                                                                                                                                                 |  |  |  |  |  |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATER           | FIELD                        | SAMPLE     | RL (m AHD) | DEPTH (m)                            | GRAPHIC<br>LOG | SYMBOL                                | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                              |            |            |                                      |                | _                                     | TOPSOIL, SILT,                                                                                                                                                       |                         |                                                  | TOPSOIL                                                                                                                                                                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 0.50m                        | 0.50m      | 73.5       | - 0.20 -<br>-<br>-<br>-<br>-<br>-0.5 |                |                                       | Silty CLAY, medium plasticity, mottled yellow grey, with roots                                                                                                       | MC>P                    | VSt - H                                          | RESIDUAL                                                                                                                                                                                                                                        |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | SPT<br>2, 4, 6 N=10<br>0.95m | D<br>0.95m | 73.0       | 1.0                                  |                |                                       |                                                                                                                                                                      |                         |                                                  |                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1.50m                        | 1.50m      | 72.5       | -<br>-<br>-<br>-<br>- 1.5            |                |                                       | Becoming yellow orange with some gravel/rock fragments                                                                                                               |                         |                                                  | STANDPIPE PIEZOMETER                                                                                                                                                                                                                            |  |  |  |  |  |
| AD/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | SPT<br>3, 6, 8 N=14<br>1.95m | D<br>1.95m | 72.0 -     | <br><br>2.0                          |                |                                       |                                                                                                                                                                      |                         |                                                  | INSTALLED Class 18 PVC 50mm Casing and Screw Joined Machined Slotted Screen construction as follows: Monument Type - Road Box 0.0-5.03m Drill Cuttings 5.03-5.53m Bentonite Pellets 5.53-8.53m Slotted screen in geofabric sock with 5mm gravel |  |  |  |  |  |
| dandara da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Encountered |                              |            | 71.5       | <br>-<br>2.50i -                     |                |                                       | CLAYSTONE, grey, plastic when wet                                                                                                                                    | EW                      | VL                                               | backfill<br>0.0m Water Level 19/10/2010<br>BEDROCK                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                              |            | 71.0 -     | -3.0                                 |                |                                       |                                                                                                                                                                      |                         |                                                  | Minimal Groundwater Seepage Observed                                                                                                                                                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                              |            | 70.5       | 3.50i -                              |                |                                       | CLAY, high plasticity, some carbonaceous bands                                                                                                                       |                         | EL                                               |                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _               |                              |            | 70.0 -     | -4.0                                 |                |                                       | CONTINUED AS CORED BOREHOLE                                                                                                                                          |                         |                                                  | -                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                              |            | 69.5       | -<br>-<br>-<br>-4.5                  |                |                                       | SSATINGED AS CONED BONEHOLE                                                                                                                                          |                         |                                                  | -                                                                                                                                                                                                                                               |  |  |  |  |  |
| TOTAL | OGGE            | ED: CRM                      |            |            | -<br>-<br>-                          |                | C                                     | CHECKED: JE                                                                                                                                                          | DATE:                   | 18/11/2                                          | 010                                                                                                                                                                                                                                             |  |  |  |  |  |



## CORED BOREHOLE LOG

SHEET 2 OF 3

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 74.01 m AHD

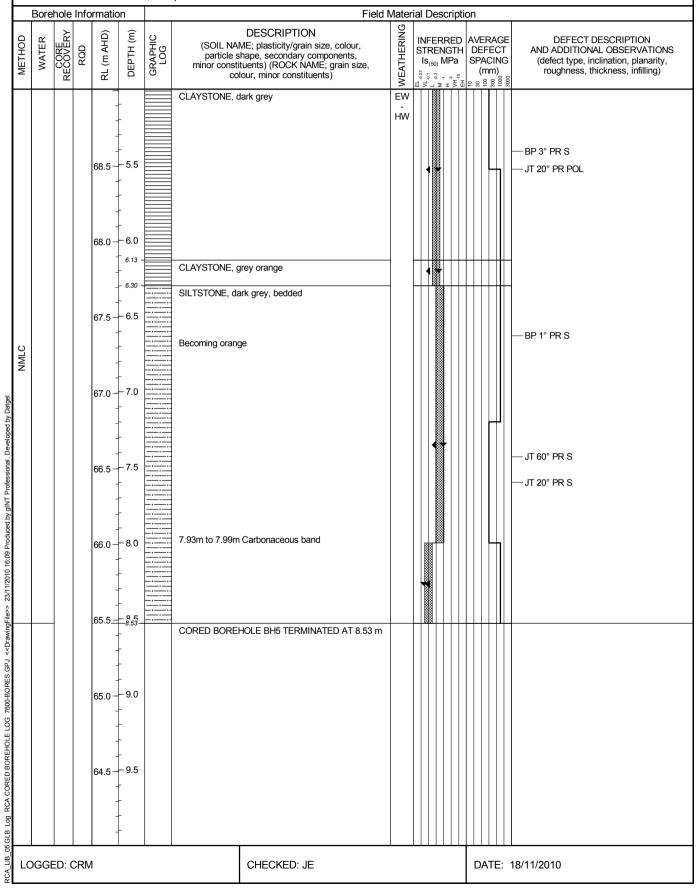
COORDS: 306698.21 m E 6257440.42 m N MGA94 56

| <u> </u>                                                                                                                                                      |      |            |     |               |                                                                                         | ad, Prospect DRILL MODEL / MOUNTING: Truck mounted  Field Material Description |                                                                      |                                                                                                                             |           |         |           |           |         |     |                   |           |         |                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----------|-----------|---------|-----|-------------------|-----------|---------|-------------------------------------------------------------------|
| METHOD                                                                                                                                                        |      | RECOVERY A |     | RL (m AHD)    | DEPTH (m)                                                                               | GRAPHIC<br>LOG                                                                 | particle s<br>minor consti                                           | DESCRIPTION ME; plasticity/grain size, color hape, secondary components tuents) (ROCK NAME; grain lour, minor constituents) | ur,<br>s, | THERING | INI<br>ST | ER<br>REN | RECIGTI | A ( | VEI<br>DEF<br>SPA | EC<br>CIN | T<br>IG | AND ADDITIONAL OBSERVATIONS (defect type, inclination, planarity. |
| KVA_LIB_BOSCEB LOG KCHCLD BUYERFULE LOG 780/JEDVRESS.GFJ < <utamingfile>&gt; 2371/2010 TB/D9 Produced by gin1 Professional, Developed by Datgel</utamingfile> |      |            |     | 73.5          | - 1.0<br>- 1.5<br>- 1.5<br>- 2.0<br>- 2.5<br>- 3.0<br>- 3.5<br>- 3.5<br>- 4.0<br>- 4.12 |                                                                                | START CORING CLAYSTONE, to 4.37m to 4.39m SILTSTONE, da CLAYSTONE, c | orown/grey Sidentic Band ark grey, carbonaceous                                                                             |           | EW HW   |           |           |         |     |                   |           |         | ]—BP 3° PR S                                                      |
| L                                                                                                                                                             | OGGE | ED: (      | CRM | - <del></del> |                                                                                         |                                                                                |                                                                      | CHECKED: JE                                                                                                                 |           |         |           |           |         |     | DA                | TE        | : -     | 18/11/2010                                                        |



SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 74.01 m AHD

COORDS: 306698.21 m E 6257440.42 m N MGA94 56





SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 83.47 m AHD

COORDS: 306662.89 m E 6257168.30 m N MGA94 56

| DESCRIPTION  DESCRIPTION  DESCRIPTION  DESCRIPTION  SUBJECTION  STRUCTURE AND | LC                   | CAI             | ION: Reserve                                                                                   |                                         |                                      | pect                                                    | 1              | Field Material Information |                                                                                                                                                                                                                                          |                         |                                                  |                                          |  |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------|-----------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------------------|----------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------|--|--|--|--|--|
| FILL, SAND/BRICK/CONCRETE/STEEL   M   FILL                                    |                      |                 | Borehole In                                                                                    | formation                               | n                                    |                                                         |                | 17                         |                                                                                                                                                                                                                                          |                         | L                                                |                                          |  |  |  |  |  |
| FILL, SAND/BRICK/CONCRETE/STEEL   M   FILL                                    | МЕТНОВ               | WATER           | FIELD                                                                                          | SAMPLE                                  | RL (m AHD)                           | DEPTH (m)                                               | GRAPHIC<br>LOG | CLASSIFICATIOI<br>SYMBOL   | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)                                                                     | MOISTURE/<br>WEATHERING | CONSISTENCY,<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |  |
|                                                                               |                      | Not Encountered | 0.50m  SPT 2, 5, 4 N=9 0.95m  1.50m  SPT 5, 6, 10 N=16 1.95m  3.00m  SPT 11, 10, 16 N=26 3.45m | 0.50m  D 0.95m  1.50m  D 3.00m  D 3.45m | 82.5 -<br>82.5 -<br>81.5 -<br>80.5 - | - 0.40 0.5 - 1.0 - 1.5 - 2.00 1.5 - 2.70 3.5 - 3.90 4.0 |                |                            | FILL, SAND/BRICK/CONCRETE/STEEL  FILL, Silty CLAY, medium plasticity, orange brown  Silty CLAY, medium plasticity, mottled red, orange, grey  Silty CLAY, medium plasticity, mottled grey red  Silty CLAY, medium plasticity, light grey | M MC~PL                 | St - VSt                                         | RESIDUAL                                 |  |  |  |  |  |
| 78.5                                                                          | TIB_US/GLB LOG RCANG | OGGE            | ED: CRM                                                                                        |                                         | 78.5 <u>-</u>                        | -<br>-<br>-<br>-<br>-<br>-                              |                |                            | CHECKED: JE                                                                                                                                                                                                                              | DATE:                   | 18/11/2                                          |                                          |  |  |  |  |  |



SHEET 1 OF 3

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 90.97 m AHD

COORDS: 306750.92 m E 6257122.22 m N MGA94 56

| LOCATION: Reservoir Road,     | Prospect                |                | DRILL MODE                                                                                                                                                                 | / MOUNTING: Truck mounted                       |
|-------------------------------|-------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Borehole Information          | 1                       |                | Field Material I                                                                                                                                                           | nformation                                      |
| WATER WATER FIELD TEST SAMPLE | RL (m AHD)<br>DEPTH (m) | GRAPHIC<br>LOG | DESCRIPTION  (SOIL NAME; plasticity/grain size, colour, particles shape, secondary components, minor constituent (ROCK NAME; grain size, colour, minor constituent states) | s) しゅき 隠り差別 ADDITIONAL OBSERVATION              |
|                               | - 0.10                  |                | FILL, SILT, brown, abundant rootlets                                                                                                                                       | FILL                                            |
| 0.50m 0.50m s                 | 90.5 - 0.5              |                | FILL, Silty CLAY, brown mottled yellow, orange and red                                                                                                                     |                                                 |
| 2, 4, 6 N=10<br>0.95m 0.95m   | 90.0 - 1.0              |                | Fine grained pink brown sand                                                                                                                                               | Concrete? Moved hole west 1.0r<br>Moved 4.0m SW |
|                               | 89.5                    |                | SAND, fine to medium grained, light brown, friable, interbedded with low strength clay bands and stron                                                                     | D VD RESIDUAL                                   |
| N=R<br>1.70m<br>D             | 89.0 - 2.0              |                | ironstone bands                                                                                                                                                            | ger                                             |
| AD/T                          | 88.5 - 2.5              |                |                                                                                                                                                                            |                                                 |
| ;                             | 88.0 - 3.0              |                |                                                                                                                                                                            |                                                 |
| ;                             | 87.5 - 3.5              |                |                                                                                                                                                                            |                                                 |
|                               | 87.0 - 4.0              |                |                                                                                                                                                                            |                                                 |
|                               | 86.5 — 4.5              |                | SHALE, brown grey                                                                                                                                                          | HW - VL - L BEDROCK                             |
| NMLC                          |                         |                | CONTINUED AS CORED BOREHOLE                                                                                                                                                |                                                 |
| LOGGED: CRM                   | 86.0 <u>–</u>           | 1              | CHECKED: JE                                                                                                                                                                | DATE: 18/11/2010                                |



SHEET 2 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 90.97 m AHD

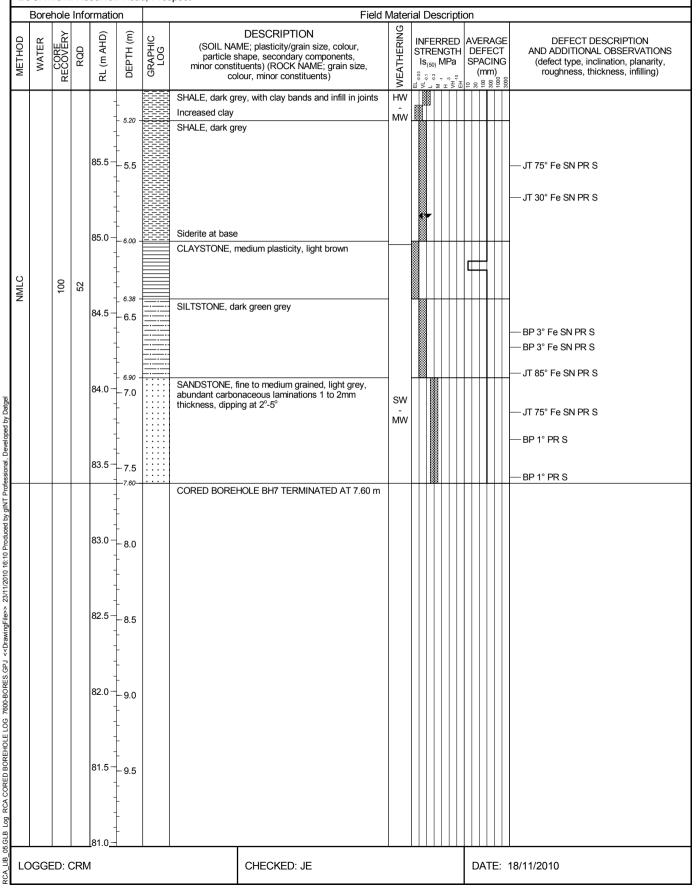
COORDS: 306750.92 m E 6257122.22 m N MGA94 56

| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |          |  | rmatio                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a, 1 100       |                             | Fi                                                                                                                                   | eld Mat          | eria | al D                                           | esc      | rint              | ion             |            |            | TOOK MOUNTOU                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|----------|--|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------------------------------------------------|----------|-------------------|-----------------|------------|------------|-------------------------------------------------------------------|
| МЕТНОБ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | RECOVERY |  | RL (m AHD)                                                                   | DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GRAPHIC<br>LOG | minor consti                | DESCRIPTION ME; plasticity/grain size, colour, hape, secondary components, tuents) (ROCK NAME; grain size, lour, minor constituents) | WEATHERING       |      | INFERRED<br>STRENGTH<br>IS <sub>(50)</sub> MPa |          | RED<br>GTH<br>IPa | AV<br>I D<br>SF | EFE<br>PAC | ECT<br>ING | AND ADDITIONAL OBSERVATIONS (defect type, inclination, planarity, |
| NMLC NOWED DOWNEROLE LOG 7000-BOTHE SOLD 3 A SOLD MINING TO THE PROPERTY AND THE PROPERTY OF T |  |          |  | 90.5 —<br>90.0 —<br>89.5 —<br>88.5 —<br>88.5 —<br>88.5 —<br>88.5 —<br>88.5 — | - 1.0 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 |                | START CORING SHALE, dark or | G AT 4.53m<br>ey, with clay bands and infill in joi                                                                                  | nts Hv           |      |                                                |          |                   |                 |            |            |                                                                   |
| 00 100 NMLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |          |  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | OI IALL, UAIN GI            | oy, war day bands and mini III juli                                                                                                  | MV               |      | •                                              | <u> </u> |                   |                 |            |            | — BP 3° Fe SN PR S  — JT 60° PR S Cemented                        |
| LOGGED: CRM CHECKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |          |  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                             | CHECKED: JE                                                                                                                          | DATE: 18/11/2010 |      |                                                |          |                   |                 |            |            |                                                                   |



SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 19/10/2010 DATE COMPLETED: 19/10/2010 SURFACE RL: 90.97 m AHD

COORDS: 306750.92 m E 6257122.22 m N MGA94 56





SHEET 1 OF 4

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 83.98 m AHD

COORDS: 306625.10 m E 6257041.21 m N MGA94 56

| LOCATION: Reservoir Road, Pro                                                                                             | ospect                | DRILL MODEL /                                                                                                                                                                                                                                                                                                                                                               | MOUNTING: Truck mounted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Borehole Information                                                                                                      |                       | Field Material Info                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| METHOD WATER FIELD TEST SAMPLE RL (m AHD)                                                                                 | DEPTH (m) GRAPHIC LOG | DESCRIPTION  (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)                                                                                                                                                                                                       | MOISTURE/ WEATHERING CONSISTENCY/ CONSISTENCY/ RELATIVE DEN STATUS ON STATUS |  |  |  |
| 0.50m 0.50m 83.5  SPT 2, 2, 3 N=5 0.95m 1.00m 83.0  U50 D 1.50m 1.45m 1.50m 82.5  SPT 3, 7, 9 N=16 1.95m 1.95m 82.0  81.5 | -0.50                 | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)  TOPSOIL, Silty CLAY, brown, organic  Silty CLAY, high plasticity, grey, some rock fragments  CLAY, high plasticity, mottled red, grey and orange  CLAY, high plasticity, mottled red, grey and orange | Concrete dug out of side of hole 0.3m down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 79.5                                                                                                                      | 4.5                   |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| LOGGED: CRM                                                                                                               | -                     | HECKED: JE DATE: 18/11/2010                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |



SHEET 2 OF 4

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 83.98 m AHD

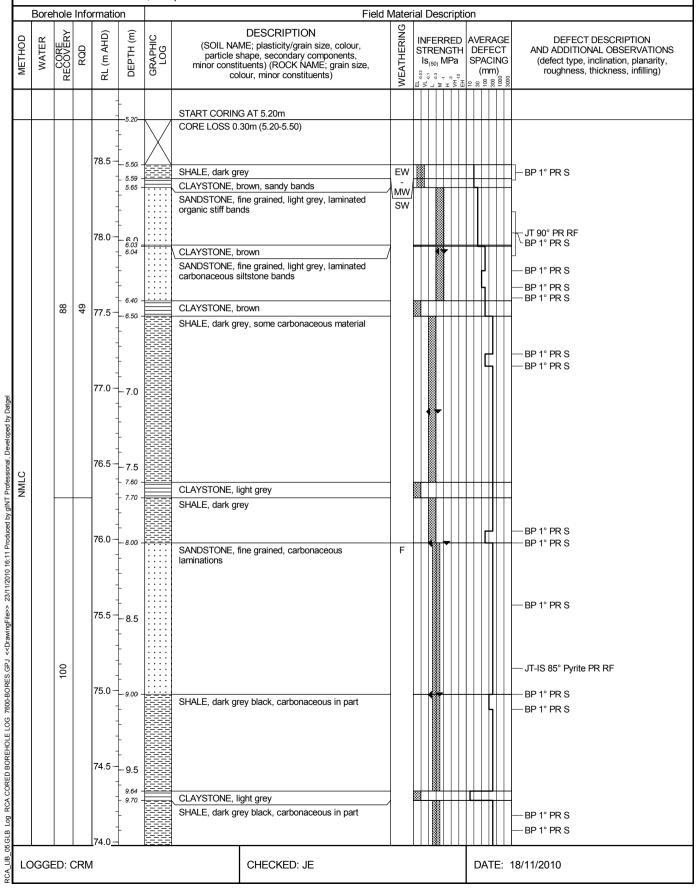
COORDS: 306625.10 m E 6257041.21 m N MGA94 56

| <u> </u> | Borehole Information |       |        |                   |           |                |                          | Field Material Information                                                                                                                                           |                         |                                                  |                                          |  |  |  |  |  |  |
|----------|----------------------|-------|--------|-------------------|-----------|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
| $\vdash$ |                      |       |        |                   |           |                |                          | Field Material Info                                                                                                                                                  | rmation                 | -                                                |                                          |  |  |  |  |  |  |
| METHOD   | WATER                | FIELD | SAMPLE | RL (m AHD)        | DEPTH (m) | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |  |  |
|          |                      |       |        | -                 | _         |                | <u> </u>                 | CLAYSTONE, brown green                                                                                                                                               | EW                      | EL                                               | BEDROCK                                  |  |  |  |  |  |  |
|          |                      |       |        | -                 |           |                |                          | CONTINUED AS CORED BOREHOLE                                                                                                                                          |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 78.5 -            | -5.5      |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | _         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 78.0 -            | -6.0      |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | _         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 77.5              | -6.5      |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 |           |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        |                   | _         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 77.0 —            | -<br>-7.0 |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | _         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
| NMLC     |                      |       |        | 76.5              | -<br>-7.5 |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
| Ź        |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 76.0 -            | -<br>-8.0 |                |                          |                                                                                                                                                                      |                         |                                                  | _                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | - 0.0     |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 75.5 <del>-</del> |           |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -0.5      |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 75.0 <del>-</del> | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | -                 | -9.0<br>- |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 74.5              | _         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        | 74.5 -            | 9.5<br>   |                |                          |                                                                                                                                                                      |                         |                                                  | -                                        |  |  |  |  |  |  |
|          |                      |       |        | -                 | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
|          |                      |       |        |                   | -         |                |                          |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |  |
| NIMIC LC | LOGGED: CRM          |       |        |                   |           |                |                          | CHECKED: JE                                                                                                                                                          | DATE: 18/11/2010        |                                                  |                                          |  |  |  |  |  |  |



SHEET 3 OF 4

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 83.98 m AHD

COORDS: 306625.10 m E 6257041.21 m N MGA94 56





SHEET 4 OF 4

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 83.98 m AHD

COORDS: 306625.10 m E 6257041.21 m N MGA94 56

| Ľ                                                                                                                                                                |             |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | d, Pros        | spect                                         |                                                                                                                                      |         |   |                        |                          |            |                  | JUN               | IIIN                                                | IG: Truck mounted                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|---|------------------------|--------------------------|------------|------------------|-------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| -                                                                                                                                                                | Bore        |          |     | rmatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n         |                |                                               |                                                                                                                                      | ield Ma |   | al D                   | esc                      | ript       | ion              |                   |                                                     |                                                                                                                       |
| METHOD                                                                                                                                                           | WATER       | RECOVERY | RQD | RL (m AHD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEPTH (m) | GRAPHIC<br>LOG | (SOIL NAI<br>particle s<br>minor consti<br>co | DESCRIPTION ME; plasticity/grain size, colour, hape, secondary components, tuents) (ROCK NAME; grain size, lour, minor constituents) |         | ᇎ | STF<br>Is <sub>(</sub> | REN(<br><sub>50)</sub> M | GTH<br> Pa | AVI<br>DE<br>SP. | FEC<br>ACII<br>mm | OT<br>NG<br>)<br>0000000000000000000000000000000000 | DEFECT DESCRIPTION AND ADDITIONAL OBSERVATIONS (defect type, inclination, planarity, roughness, thickness, infilling) |
| RCA_LIB_05.GLB_Log_RCA_CORED_BOREHOLE_LOG_7600-BORES.GPJ_< <drawing-rile>&gt; 23/11/2010_16:11 Produced by gINT Professional, Developed by Datgel</drawing-rile> |             |          |     | 73.5 — 73.5 — 73.0 — 72.5 — 72.0 — 71.5 — 70.5 — 70.5 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70.0 — 70 |           |                | CORED BOREI                                   | HOLE BH8 TERMINATED AT                                                                                                               |         |   |                        |                          |            |                  |                   |                                                     |                                                                                                                       |
| L                                                                                                                                                                | LOGGED: CRM |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                                               | CHECKED: JE                                                                                                                          |         |   | DATE: 18/11/2010       |                          |            |                  |                   |                                                     |                                                                                                                       |



SHEET 1 OF 3

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 79.98 m AHD

COORDS: 306623.65 m E 6257169.72 m N MGA94 56

| 200/                 | TION: Reserv                                                 |                                              |                                                                    | peci                                    |                                   |                          | DRILL MODEL / N                                                                                                                                                                                                                                                                                          |                         | VO. IIU                                          | CK IIIourited                                                                                                                                                                                                                                                                                                        |
|----------------------|--------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|-----------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Borehole In                                                  | formatio                                     | n                                                                  |                                         | l:                                | <del>2</del>             | Field Material Info                                                                                                                                                                                                                                                                                      |                         | _                                                |                                                                                                                                                                                                                                                                                                                      |
| METHOD               | FIELD                                                        | SAMPLE                                       | RL (m AHD)                                                         | DEPTH (m)                               | GRAPHIC<br>LOG                    | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)                                                                                                                                     | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS                                                                                                                                                                                                                                                                             |
| AD/T                 | 0.50m  SPT 2, 4, 6 N=10 0.95m  1.50m  SPT 3, 5, 6 N=11 1.95m | 0.50m  D  0.95m  1.00m  U50  1.45m  1.50m  D | 79.5                                                               | HLd30  -0.561.0 -1.301.52.0 -2.0 -1.2.5 | GRAPH  GRAPH  GRAPH  GRAPH  GRAPH | CLASSIFICA               | shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents)  TOPSOIL, Clayey SILT, brown, organic  Gravelly CLAY, high plasticity, mottled grey and orange, black iron stained angular gravel, rock fragments  Silty CLAY, high plasticity, mottled grey orange | W MC~PL                 | VSt - H                                          | RESIDUAL  STANDPIPE PIEZOMETER INSTALLED Class 18 PVC 50mm Casing and Screw Joined Machined Slotted Screen construction as follows: Monument Type - Road Box 0.0-3.59m Drill Cuttings 3.59-4.09m Bentonite Pellets 4.09-7.09m Slotted Screen in geofabric sock with 5mm gravel backfill 1.18m Water Level 20/10/2010 |
| LOGO Not Encountered |                                                              |                                              | 77.0 –<br>-<br>-<br>-<br>-<br>-<br>76.5 –<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-                   |                                   |                          | SHALE, dark grey green  CONTINUED AS CORED BOREHOLE                                                                                                                                                                                                                                                      | EW-<br>HW               | VL.                                              | BEDROCK                                                                                                                                                                                                                                                                                                              |
| LOGG                 | GED: CRM                                                     |                                              | 75.5 -<br>-<br>-<br>-<br>-<br>-                                    | -4.5                                    |                                   |                          |                                                                                                                                                                                                                                                                                                          | DATE:                   | 18/11/20                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                 |



SHEET 2 OF 3

PROJECT No: 7600

**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 79.98 m AHD

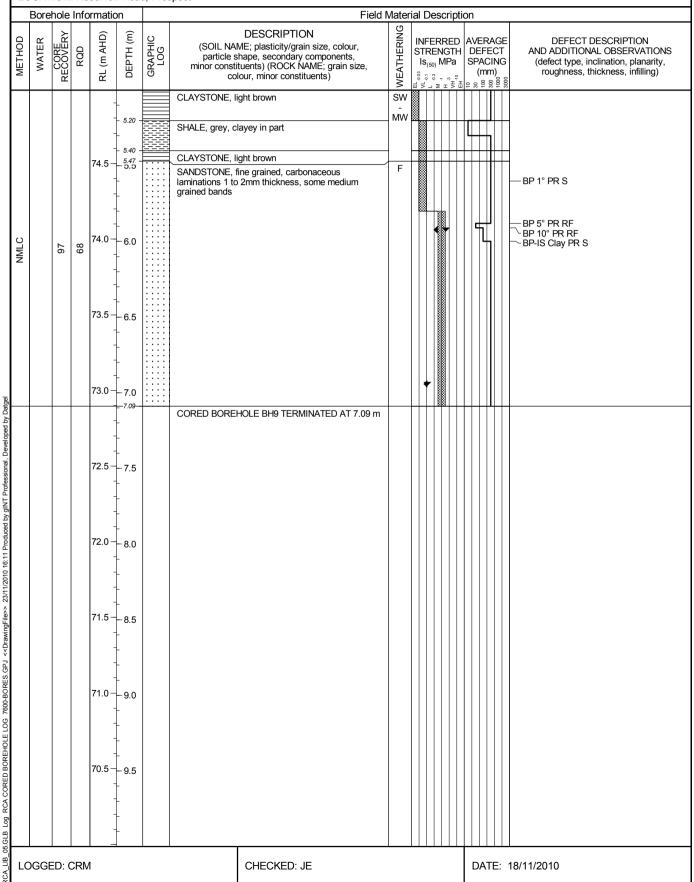
COORDS: 306623.65 m E 6257169.72 m N MGA94 56

| F                                                                                                                                       |       |          |     |                                      |                                                          | d, Pros        |                                                                                                                                                                      | Field Material Description |   |          |    |          |         |                  |            |                        |         |                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------|----------|-----|--------------------------------------|----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---|----------|----|----------|---------|------------------|------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------|
| $\vdash$                                                                                                                                |       |          |     | rmatio                               |                                                          |                |                                                                                                                                                                      |                            |   | aı ı     | )e | SCI      | ipt     | ion              |            |                        | 7       |                                                                                                                       |
| METHOD                                                                                                                                  | WATER | RECOVERY | RQD | RL (m AHD)                           | DEРТН (m)                                                | GRAPHIC<br>LOG | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | WEATHERING                 | ī | ST       | RE | NG<br>MF | TH<br>a | S                | )EF<br>PA( | RAC<br>EC<br>CIN<br>m) | T<br>IG | DEFECT DESCRIPTION AND ADDITIONAL OBSERVATIONS (defect type, inclination, planarity, roughness, thickness, infilling) |
| KOLLIB JOSEB LOG KCHOLEE LOG 7000-BORES.GFJ - SCHTAMINGFIRe> 23711/2010 16:11 Produced by gin I Professional, Developed by Datgel  NMLC |       |          |     | 79.5                                 | - 1.0<br>1.0<br>1.5<br>1.5<br>2.0<br>                    |                | START CORING AT 4.09m                                                                                                                                                |                            |   |          |    |          |         |                  | 9          |                        |         |                                                                                                                       |
| NMLC                                                                                                                                    |       | 26       | 89  | -<br>-<br>-<br>75.5 –<br>-<br>-<br>- | _ 4.18 -<br>-<br>- 4.5<br>-<br>- 4.67 -<br>-<br>- 4.90 - |                | CORE LOSS 0.09m (4.09-4.18)  SHALE, dark grey green, clayey in part  SHALE, dark grey  CLAYSTONE, light brown                                                        | SW -                       | v |          | •  | •        |         |                  |            |                        |         | — BP 1° PR S<br>— JT 90° Fe SN PR                                                                                     |
| L                                                                                                                                       | OGGE  | ED: (    | CRM | l <u> </u>                           | ı                                                        |                | CHECKED: JE                                                                                                                                                          |                            | 8 | <u> </u> |    | 1        | L       | DATE: 18/11/2010 |            |                        |         |                                                                                                                       |



SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 20/10/2010 DATE COMPLETED: 20/10/2010 SURFACE RL: 79.98 m AHD

COORDS: 306623.65 m E 6257169.72 m N MGA94 56





SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 83.62 m AHD

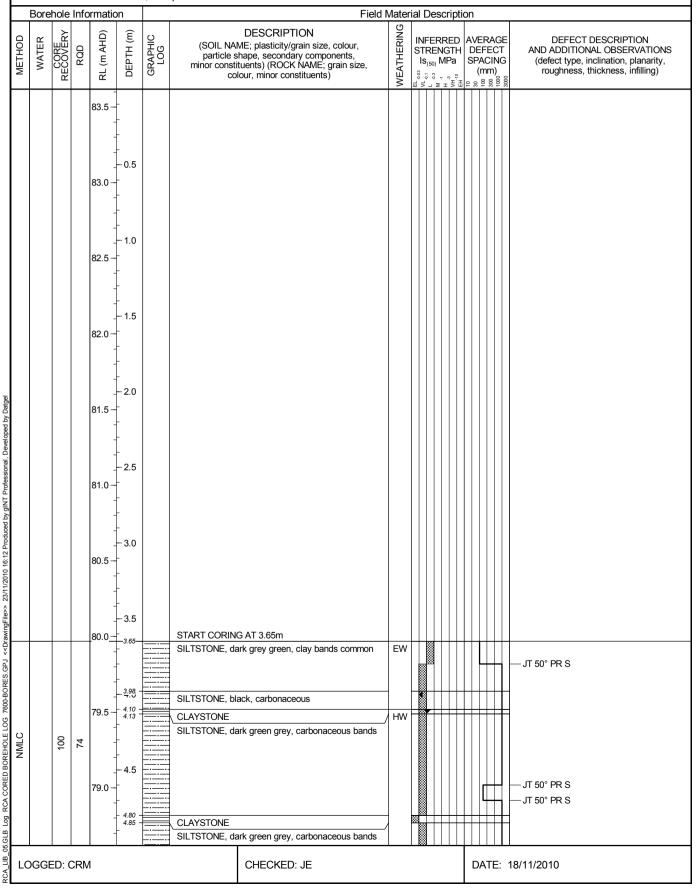
COORDS: 306476.42 m E 6257451.35 m N MGA94 56

| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCATION: Reservoir Road, Pros      | pcci               |                                 | DRILL MODEL                                                                                                                                                           |                         | 10. 110                                          | ck mounted                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole Information               |                    | 17                              | Field Material Int                                                                                                                                                    | formation               | _                                                |                                                                                                                                                                                                                                                                                                            |
| METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER FIELD TEST SAMPLE RL (m AHD) | DEPTH (m)          | GRAPHIC<br>LOG<br>CLASSIFICATIO | DESCRIPTION  (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY,<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS                                                                                                                                                                                                                                                                   |
| METHOD  AD/T  AD/T |                                    | (E) HLd30          | GRAPHIC                         |                                                                                                                                                                       | MOISTURE/<br>WEATHERING | CONSISTENCY/ FELATIVE C DENSITY S STRENGTH       | STANDPIPE PIEZOMETER INSTALLED Class 18 PVC 50mm Casing and Screw Joined Machined Slotted Screen construction as follows: Monument Type - Road Box 0.0-6.25m Drill Cuttings 6.25-6.75m Bentonite Pellets 6.75-9.75m Slotted screen in geofabric sock with 5mm gravel backfill 9.26m Water Level 21/10/2010 |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.0 -<br>                         | 4.5<br>-<br>-<br>- |                                 | CHECKED: JE                                                                                                                                                           | DATE:                   | 18/11/20                                         | 010                                                                                                                                                                                                                                                                                                        |



SHEET 2 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 83.62 m AHD

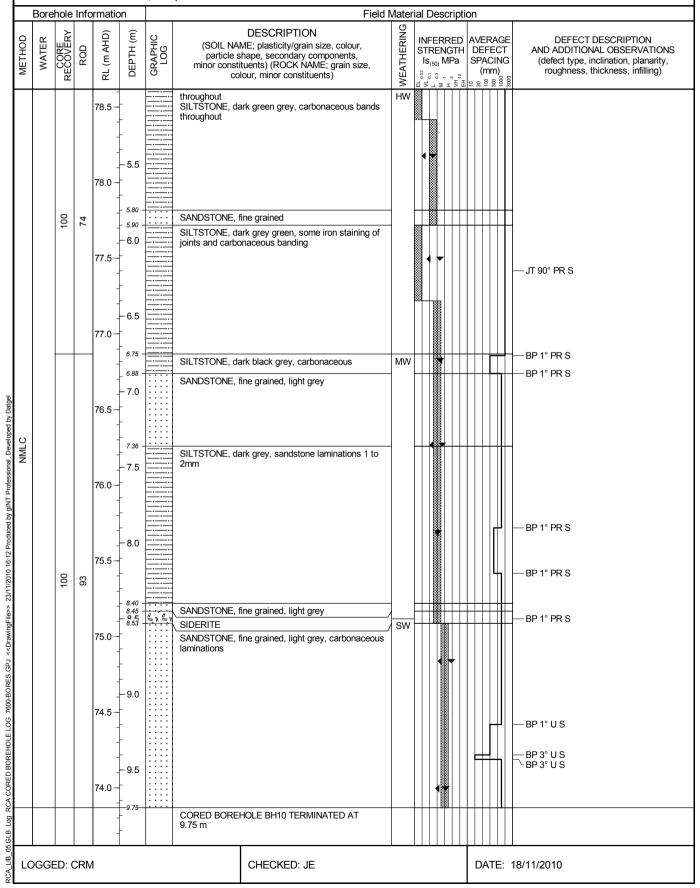
COORDS: 306476.42 m E 6257451.35 m N MGA94 56





SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 83.62 m AHD

COORDS: 306476.42 m E 6257451.35 m N MGA94 56





SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 94.72 m AHD

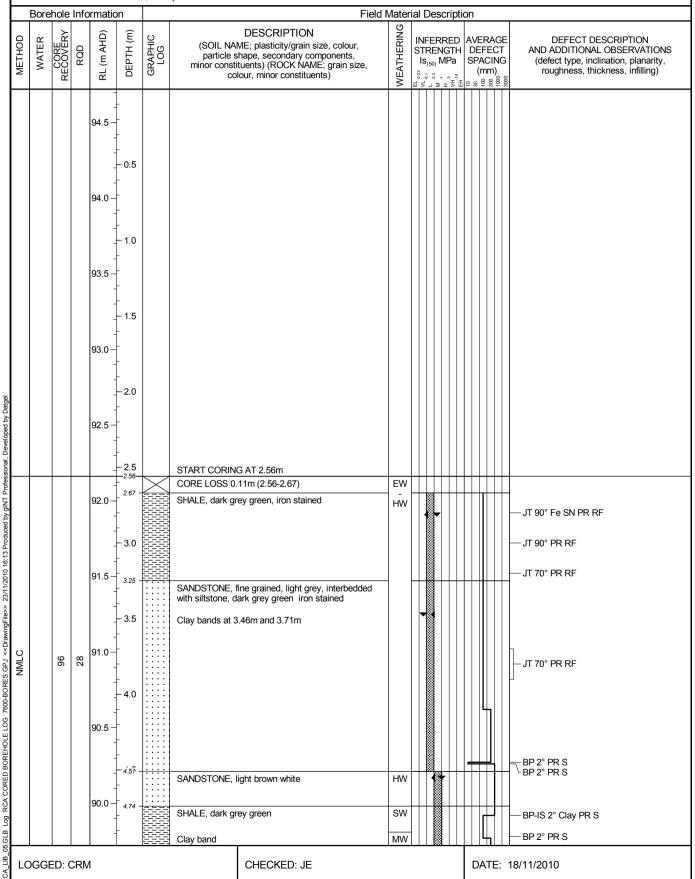
COORDS: 306456.07 m E 6257300.36 m N MGA94 56

| LOCA            | TION: Reserve |          |                       | peci                      |                |                          | DRILL MODEL / N                                                                                                                                                      |                                                         | <b>10</b> . IIu                                  | CK Modified                              |
|-----------------|---------------|----------|-----------------------|---------------------------|----------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|------------------------------------------|
|                 | Borehole In   | formatio | n                     |                           |                | z                        | Field Material Info                                                                                                                                                  | rmation                                                 | L                                                |                                          |
| METHOD          | FIELD         | SAMPLE   | RL (m AHD)            | DEPTH (m)                 | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING                                 | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |
|                 | 0.50m         | 0.50m    | 94.5                  | -0.5                      |                |                          | Silty CLAY, mottled red, grey and orange                                                                                                                             | MC <pl< td=""><td>VSt - H</td><td>RESIDUAL -</td></pl<> | VSt - H                                          | RESIDUAL -                               |
|                 | 4, 7, 11 N=18 | 0.95m    | 94.0                  | -1.0                      |                |                          | Too hard for U50                                                                                                                                                     |                                                         |                                                  | -                                        |
| AD/T            |               |          | 93.5                  | - 1.30 -<br>-<br>-<br>1.5 |                |                          | SHALE, dark grey green                                                                                                                                               | EW                                                      | VL                                               | BEDROCK -                                |
| untered         |               |          | -<br>-<br>-<br>92.5 – | -2.0                      |                |                          |                                                                                                                                                                      |                                                         |                                                  |                                          |
| Not Encountered |               |          | 92.0 -                | -2.5                      |                |                          | CONTINUED AS CORED BOREHOLE                                                                                                                                          |                                                         |                                                  |                                          |
|                 |               |          | 91.5 —<br>-<br>-<br>- | -3.5                      |                |                          |                                                                                                                                                                      |                                                         |                                                  |                                          |
|                 |               |          | 91.0 -                | -4.0                      |                |                          |                                                                                                                                                                      |                                                         |                                                  |                                          |
|                 |               |          | 90.5                  | -4.5                      |                |                          |                                                                                                                                                                      |                                                         |                                                  |                                          |
| LOGG            | LOGGED: CRM   |          |                       |                           |                |                          | CHECKED: JE                                                                                                                                                          | DATE:                                                   | 18/11/2                                          | 010                                      |



SHEET 2 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 94.72 m AHD

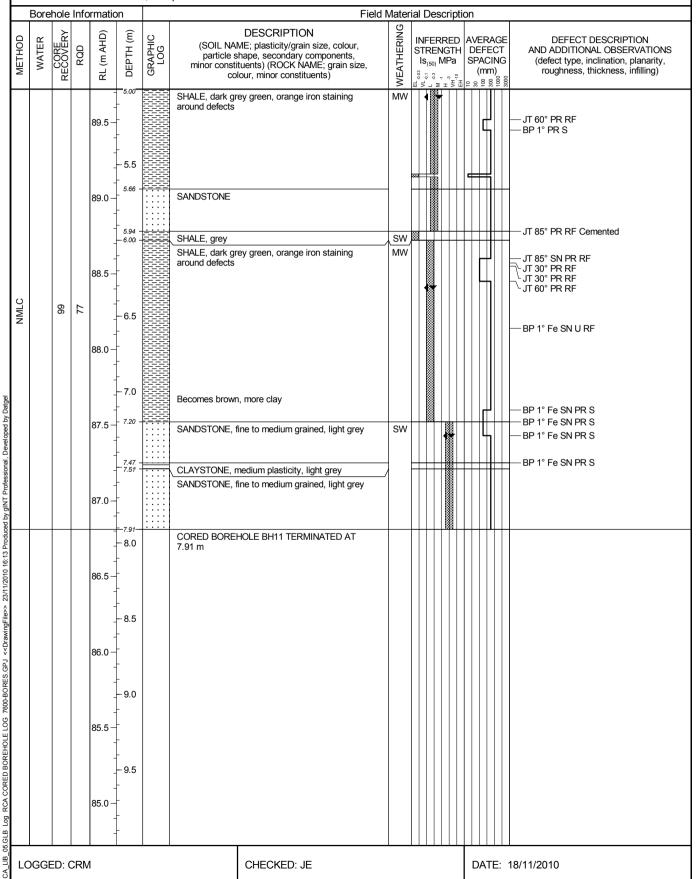
COORDS: 306456.07 m E 6257300.36 m N MGA94 56





SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 94.72 m AHD

COORDS: 306456.07 m E 6257300.36 m N MGA94 56





SHEET 1 OF 1

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 21/10/2010 DATE COMPLETED: 21/10/2010 SURFACE RL: 81.39 m AHD

COORDS: 306568.94 m E 6257199.78 m N MGA94 56

| L                                                                                                                                                         | CAT             | ION: Reserv                        |                     |             | pect                                  | ı              |                              | DRILL MODEL /                                                                                                                                                        |                                                       | NG: Iru                                          | ck mounted                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------|---------------------|-------------|---------------------------------------|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|------------------------------------------|
| -                                                                                                                                                         |                 | Borehole In                        | formatio            | on<br>T     |                                       |                | Z                            | Field Material Info                                                                                                                                                  | ormation                                              | -                                                |                                          |
| METHOD                                                                                                                                                    | WATER           | FIELD                              | SAMPLE              | RL (m AHD)  | DEPTH (m)                             | GRAPHIC<br>LOG | CLASSIFICATION               | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING                               | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |
|                                                                                                                                                           |                 | 0.50m                              | 0.50m               | 81.0 -      | <br><br><br>0.50i -                   |                |                              | TOPSOIL, Silty CLAY, brown                                                                                                                                           | M                                                     |                                                  | TOPSOIL -                                |
|                                                                                                                                                           |                 | SPT<br>1, 3, 2 N=5<br>0.95m        | D<br>0.95m          | 80.5-       | <br><br><br><br>1.0                   |                |                              | FILL, Silty CLAY, mottled grey, orange and brown                                                                                                                     | MC>PL                                                 | St                                               | FILL -                                   |
|                                                                                                                                                           |                 |                                    |                     | 80.0 -      | - 1.20 -<br>-<br>-<br>-<br>-<br>- 1.5 |                |                              | CLAY, high plasticity, grey mottled red orange                                                                                                                       | MC <pl< td=""><td>VSt - H</td><td>RESIDUAL</td></pl<> | VSt - H                                          | RESIDUAL                                 |
| by Datgel<br>AD/T                                                                                                                                         | Not Encountered |                                    |                     | 79.5 -<br>- |                                       |                |                              |                                                                                                                                                                      |                                                       |                                                  | -<br>-<br>-<br>-<br>-                    |
| by gINT Professional, Developed                                                                                                                           |                 | 3.00m                              | 3.00m               | 79.0 -      | -2.5                                  |                |                              |                                                                                                                                                                      |                                                       |                                                  | -<br>-<br>-<br>-<br>-<br>-               |
| 11/2010 16:13 Produced                                                                                                                                    |                 | SPT<br>12, 2/150mm<br>N=R<br>3.30m | D<br>3.45m          | 78.0 -      | 3.45 -                                |                |                              | Some rock fragments                                                                                                                                                  | - Fin                                                 |                                                  | -                                        |
| RCA_LIB_05.GLB Log RCA NON CORED LOG 7600-BORES.GPJ < <drawingfile>&gt; 23/11/2010 16:13 Produced by gINT Professional, Developed by Datgel</drawingfile> |                 |                                    |                     | 77.5        | 3.45 - 3.5                            |                |                              | SILTSTONE, grey green, some high plasticity clay bands                                                                                                               | EW                                                    | VL - L                                           | BEDROCK -                                |
| NON CORED LOG 7600-B                                                                                                                                      |                 |                                    | 4.30m<br>D<br>4.50m | 77.0 -      |                                       |                |                              | BOREHOLE BH12 TERMINATED AT 4.50 m                                                                                                                                   |                                                       |                                                  | -                                        |
| IB_05.GLB Log RCA                                                                                                                                         |                 |                                    |                     | 76.5        | -                                     |                |                              |                                                                                                                                                                      |                                                       |                                                  | -                                        |
| %<br> -<br>                                                                                                                                               | LOGGED: CRM     |                                    |                     |             |                                       |                | CHECKED: JE DATE: 18/11/2010 |                                                                                                                                                                      |                                                       |                                                  |                                          |



SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 87.29 m AHD

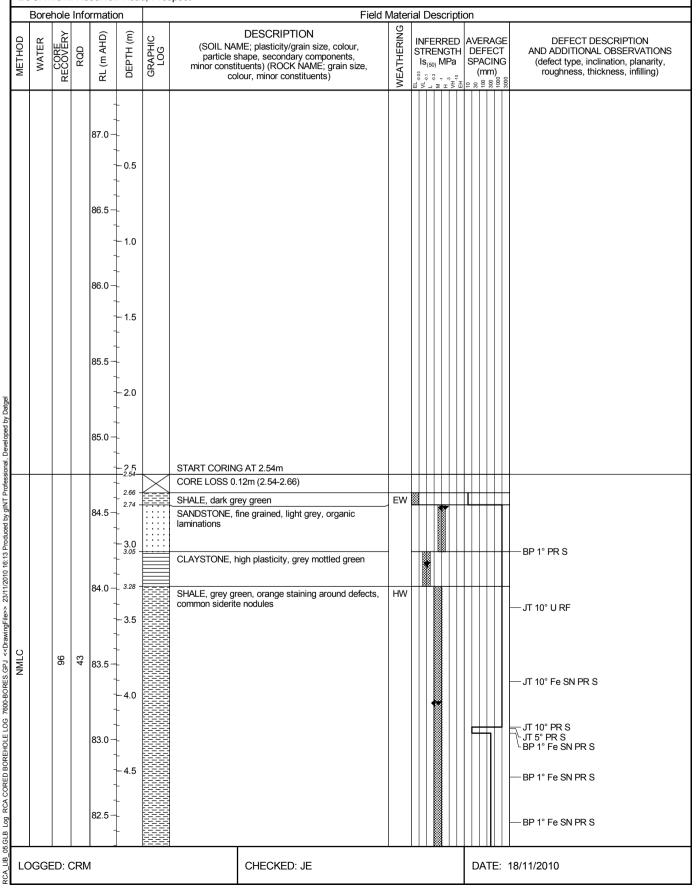
COORDS: 306477.13 m E 6257147.65 m N MGA94 56

| LOC      | OCATION: Reservoir Road, Prospect  Borehole Information |                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | Field Material Information |                                                                                                                                                                      |                         |                                                  |                                          |  |  |  |  |  |
|----------|---------------------------------------------------------|---------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|------------------------------------------|--|--|--|--|--|
| <u> </u> |                                                         | Borehole In                           | formatic                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                | 17                         | Field Material Inf                                                                                                                                                   | ormation                |                                                  |                                          |  |  |  |  |  |
| METHOD   | WATER                                                   | FIELD                                 | SAMPLE                         | RL (m AHD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEРТН (m) | GRAPHIC<br>LOG | CLASSIFICATION<br>SYMBOL   | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/<br>WEATHERING | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |  |  |  |  |  |
| AD/T     |                                                         | 0.50m<br>SPT<br>3, 6, 7 N=13<br>0.95m | 0.50m  D 0.95m 1.00m U50 1.25m | 87.0 - 86.5 - 85.5 - 85.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83.5 - 83 | - 0.10    |                | OLA CLA                    | TOPSOIL Silty CLAY, mottled grey red  SILTSTONE, dark grey green  CONTINUED AS CORED BOREHOLE                                                                        | EW EW                   | St VSt - H                                       | TOPSOIL RESIDUAL                         |  |  |  |  |  |
| LOC      | OGGED: CRM                                              |                                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                            | CHECKED: JE                                                                                                                                                          | DATE: 18/11/2010        |                                                  |                                          |  |  |  |  |  |



SHEET 2 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 87.29 m AHD

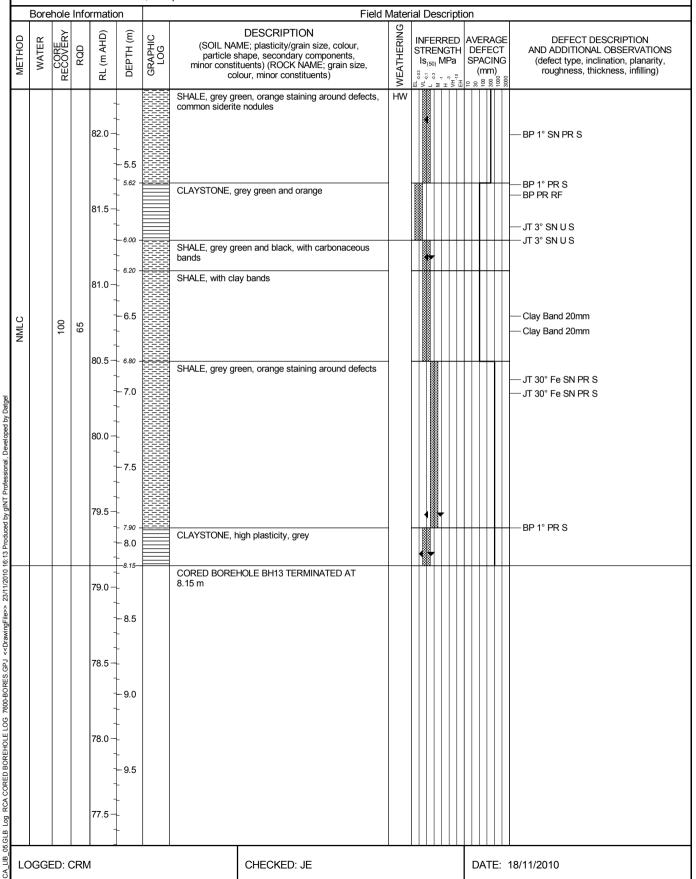
COORDS: 306477.13 m E 6257147.65 m N MGA94 56





SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 87.29 m AHD

COORDS: 306477.13 m E 6257147.65 m N MGA94 56





SHEET 1 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 83.36 m AHD

COORDS: 306587.06 m E 6257380.55 m N MGA94 56

| LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAI             | ION: Reserv            |                       |                            | pect                      | DRILL MODEL / MOUNTING: Truck mounted |                |                                                                                                                                                                      |           |                                                                      |                                                  |                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-----------------------|----------------------------|---------------------------|---------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | Borehole In            | formatio              | on<br>T                    | 1                         | 1 12                                  | z I            | Field Material Inf                                                                                                                                                   | ormati    | on                                                                   | _                                                |                                          |
| МЕТНОВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATER           | FIELD                  | SAMPLE                | RL (m AHD)                 | DEPTH (m)                 | GRAPHIC<br>LOG                        | CLASSIFICATION | DESCRIPTION (SOIL NAME; plasticity/grain size, colour, particle shape, secondary components, minor constituents) (ROCK NAME; grain size, colour, minor constituents) | MOISTURE/ | WEATHERING                                                           | CONSISTENCY/<br>RELATIVE<br>DENSITY/<br>STRENGTH | STRUCTURE AND<br>ADDITIONAL OBSERVATIONS |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                        |                       | -                          |                           |                                       |                | TOPSOIL                                                                                                                                                              |           |                                                                      |                                                  | TOPSOIL                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 0.50m<br>SPT           | <u>0.50m</u><br>D     | 83.0 -                     | 0.15 -                    |                                       |                | Silty CLAY, high plasticity, mottled grey red                                                                                                                        | MC        | >PL                                                                  | S-F                                              | RESIDUAL -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1, 2, 2 N=4            | 0.95m<br>1.00m<br>U50 | 82.5 -<br>-<br>-<br>-<br>- | -1.0                      |                                       |                | Some black rock fragments                                                                                                                                            |           |                                                                      |                                                  | -<br>-<br>-<br>-                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 1.50m                  | 1.35m<br>1.50m        | - 82.0<br>-<br>-<br>-      | - 1.5                     |                                       |                |                                                                                                                                                                      | MC        | <pl< td=""><td>St - VSt</td><td>-<br/>-<br/>-<br/>-<br/>-</td></pl<> | St - VSt                                         | -<br>-<br>-<br>-<br>-                    |
| AD/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 7, 6, 10 N=16<br>1.95m |                       | 81.5 -                     | -<br>2.0<br>-             |                                       |                |                                                                                                                                                                      |           |                                                                      |                                                  | -<br>-<br>-<br>-<br>-                    |
| costoliai, Developed by D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Encountered |                        |                       | 81.0 -                     | -<br>2.5<br>-<br>- 2.70 - |                                       |                | CUAL F. alady array array based of with light array bigh                                                                                                             | E         | M                                                                    | VL - L                                           | BEDROCK                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                        |                       | 80.5                       | -3.0                      |                                       |                | SHALE, dark grey green, banded with light grey high plasticity clay                                                                                                  |           | ,,                                                                   | VL - L                                           | -<br>-<br>-                              |
| מייייי בעי וובטיט יס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                        |                       | 80.0                       | -3.5                      |                                       |                |                                                                                                                                                                      |           |                                                                      |                                                  | -<br>-<br>-<br>-<br>-                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                        |                       | 79.5 -                     | -<br>-<br>-4.0-           |                                       |                | CONTINUED AS CORED BOREHOLE                                                                                                                                          |           |                                                                      |                                                  | -<br>-                                   |
| NOTE TO SOUTH THE TOTAL |                 |                        |                       | 79.0                       | -4.5                      |                                       |                |                                                                                                                                                                      |           |                                                                      |                                                  | -<br>-<br>-<br>-<br>-<br>-               |
| LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OGGE            | ED: CRM                |                       | -                          |                           |                                       |                | CHECKED: JE                                                                                                                                                          | DAT       | E: '                                                                 | 18/11/20                                         | 010                                      |



SHEET 2 OF 3

PROJECT No: 7600

CLIENT: Prospect Aquatic Investments

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 83.36 m AHD

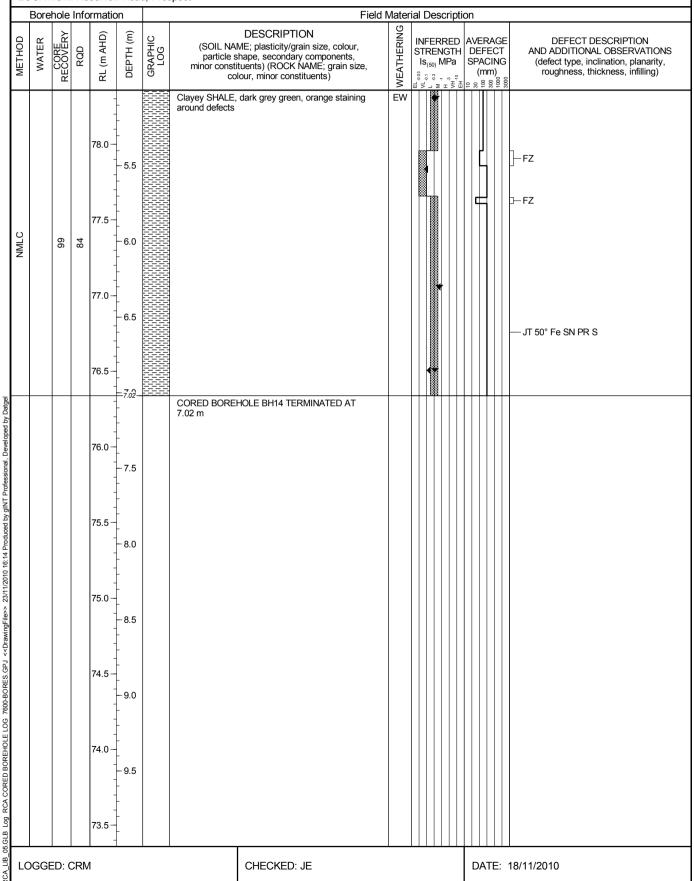
COORDS: 306587.06 m E 6257380.55 m N MGA94 56

| F                                                                                                                                                                      |      |              |     |            |                                              | Road, Prospect DRILL MODEL / MOUNTING: Truck mounted Field Material Description |                                           |                                                                                                                    |                 | ing. Truck mounted |            |           |                    |                 |                    |         |                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-----|------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|------------|-----------|--------------------|-----------------|--------------------|---------|-------------------------------------------------------------------|
| METHOD                                                                                                                                                                 |      | RECOVERY 191 | RQD | RL (m AHD) | DEPTH (m)                                    | GRAPHIC<br>LOG                                                                  | particle s<br>minor consti                | DESCRIPTION ME; plasticity/grain size, co hape, secondary compone tuents) (ROCK NAME; gra our, minor constituents) | olour,<br>ents, | THERING            | INF<br>STI | ER<br>REN | RED<br>IGTH<br>MPa | A\<br>H D<br>SI | /ER<br>)EFE<br>PAC | ECT     | AND ADDITIONAL OBSERVATIONS (defect type, inclination, planarity. |
| RCA_LIB_05/GIB_LOg_RCA CORED BOREHOLE LOG_7600-BORES.GPJ_< <drawingfile>&gt; 23/11/2010 16:14 Produced by gINT Professional, Developed by Datgel    NMLC</drawingfile> |      |              |     | 83.0 —     | -0.5<br>-1.0<br>-1.5<br>-2.0<br>-3.5<br>-3.5 |                                                                                 | START CORING SHALE, dark gr CLAYSTONE, ii | ey green                                                                                                           |                 | ASS.               |            |           |                    |                 |                    |         | —BP 1° PR S                                                       |
| SEB LOG RCA CORED BOREHOLE LOG NMLC                                                                                                                                    |      | 66           | 84  | 79.0 —     | - 4.22 -<br>-<br>-<br>4.5                    |                                                                                 |                                           | dark grey green, orange s                                                                                          | staining        |                    |            |           |                    |                 |                    |         | — BP 1° PR S<br>— BP 1° PR S                                      |
| LIB US.                                                                                                                                                                | OGGE | -<br>ΞD: (   | CRM | 1          |                                              | <u></u>                                                                         |                                           | CHECKED: JE                                                                                                        |                 |                    |            | <u> </u>  |                    |                 | TAC                | <u></u> | 18/11/2010                                                        |



SHEET 3 OF 3

PROJECT No: 7600


**CLIENT: Prospect Aquatic Investments** 

PROJECT: Wet 'n' Wild

LOCATION: Reservoir Road, Prospect

DATE COMMENCED: 22/10/2010 DATE COMPLETED: 22/10/2010 SURFACE RL: 83.36 m AHD

COORDS: 306587.06 m E 6257380.55 m N MGA94 56





#### **Explanatory Notes – Soil Description**

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer.

#### METHOD

| METHOD     |                            |
|------------|----------------------------|
| Method     | Description                |
| AS         | Auger Screwing             |
| AD/V       | Auger Drilling with V Bit  |
| AD/T       | Auger Drilling with TC bit |
| BH         | Backhoe                    |
| CT         | Cable Tool Rig             |
| N          | Natural Exposure           |
| X          | Existing Excavation        |
| E          | Excavator                  |
| EH         | Excavator with Hammer      |
| HA         | Hand Auger                 |
| HQ         | Diamond Core-63mm          |
| NMLC       | Diamond Core-52mm          |
| NQ         | Diamond Core-47mm          |
| PT         | Push Tube                  |
| RR         | Rock Roller                |
| DB         | Washbore Drag Bit          |
| WS         | Washbore                   |
| AT         | Air Track                  |
| DT         | Diatube                    |
| Percussion | Percussion Drilling        |
| Matar      |                            |

#### Water



Water level at date shown



Seepage

NOT ENCOUNTERED: The borehole/test pit was dry soon after excavation. Inflow may have been observed had the borehole/test pit been left open for a longer period.

*NOT OBSERVED*: The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

#### **SAMPLING**

| Sample | Description                 |
|--------|-----------------------------|
| В      | Bulk Disturbed Sample       |
| D      | Disturbed Sample            |
| SPT    | Standard Penetration Test   |
| U50    | Undisturbed Sample-50mm     |
| ES     | Soil Sample, Environmental  |
| EW     | Water Sample, Environmental |
| G      | Gas Sample                  |

#### **UNIFIED SOIL CLASSIFICATION**

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as sieve analysis, liquid limit and plasticity index.

| USC Symbol | Description                     |
|------------|---------------------------------|
| GW         | Well graded gravel              |
| GP         | Poorly graded gravel            |
| GM         | Silty gravel                    |
| GC         | Clayey gravel                   |
| SW         | Well graded sand                |
| SP         | Poorly graded sand              |
| SM         | Silty sand                      |
| SC         | Clayey sand                     |
| ML         | Silt of low plasticity          |
| CL         | Clay of low plasticity          |
| OL         | Organic soil of low plasticity  |
| CI         | Clay of medium plasticity       |
| MH         | Silt of high plasticity         |
| CH         | Clay of high plasticity         |
| ОН         | Organic soil of high plasticity |
| Pt         | Peaty soil                      |

#### **MOISTURE CONDITION**

| Dry   | Cohesive soils are friable or powdery      |
|-------|--------------------------------------------|
| -     | Cohesionless soil grains are free-running. |
| Moist | Soil feels cool, darkened in colour        |
|       | Cohesive soils can be moulded              |
|       | Cohesionless soil grains tend to adhere.   |
| Wet   | Cohesive soils usually weakened            |
|       | Free water forms on hands when handling.   |

For cohesive soils the following codes may also be used:

MC>PL Moisture Content greater than the Plastic Limit.
MC-PL Moisture Content near the Plastic Limit.
MC<PL Moisture Content less than the Plastic Limit.

#### **PLASTICITY**

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows.

| Description of Plasticity | LL(%)    |  |
|---------------------------|----------|--|
| Low                       | <35      |  |
| Medium                    | 35 to 50 |  |
| High                      | >50      |  |

#### **COHESIVE SOILS - CONSISTENCY**

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by hand penetrometer values and by resistance to deformation to hand moulding. A Hand Penetrometer may be used in the field or the laboratory to provide an approximate assessment of the unconfined compressive strength (UCS) of cohesive soils. Undrained shear strength Cu = 0.5xUCS. The UCS values are recorded in kPa as follows:

| Strength   | Symbol | Unconfined Compressive Strength, q <sub>u</sub> (kPa) |
|------------|--------|-------------------------------------------------------|
| Very Soft  | VS     | < 25                                                  |
| Soft       | S      | 25 to 50                                              |
| Firm       | F      | 50 to 100                                             |
| Stiff      | St     | 100 to 200                                            |
| Very Stiff | VSt    | 200 to 400                                            |
| Hard       | Н      | > 400                                                 |

#### **COHESIONLESS SOILS - RELATIVE DENSITY**

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) N values. Other condition terms, such as friable, powdery or crumbly may also be used.

| Term         | Symbol | Density<br>Index | N Value<br>(blows/0.3m) |
|--------------|--------|------------------|-------------------------|
| Very Loose   | VL     | 0 to 15          | 0 to 4                  |
| Loose        | L      | 15 to 35         | 4 to 10                 |
| Medium Dense | MD     | 35 to 65         | 10 to 30                |
| Dense        | D      | 65 to 85         | 30 to 50                |
| Very Dense   | VD     | >85              | >50                     |

#### COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

| Name     | Subdivision | Size               |
|----------|-------------|--------------------|
| Boulders |             | >200 mm            |
| Cobbles  |             | 63 mm to 200 mm    |
| Gravel   | Coarse      | 20 mm to 63 mm     |
|          | medium      | 6 mm to 20 mm      |
|          | Fine        | 2.36 mm to 6 mm    |
| Sand     | Coarse      | 0.6 mm to 2.36 mm  |
|          | medium      | 0.2 mm to 0.6 mm   |
|          | fine        | 0.075 mm to 0.2 mm |



#### **Explanatory Notes - Rock Description**

#### **METHOD**

Refer soil description sheet.

#### **WATER**

Refer soil description sheet.

#### **ROCK QUALITY**

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

TCR (%) = <u>length of core recovered</u> length of core run

RQD (%) = sum of axial lengths of core > 100mm long length of core run.

#### **ROCK MATERIAL WEATHERING**

Rock weathering is described using the abbreviations and definitions used in AS1726.

| Symbol | Term                    | Definition                                                                                                                                                                                                                                                                                                                                     |
|--------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EW     | Extremely<br>Weathered  | Rock is weathered to such an extent that it has 'soil' properties, ie, it either disintegrates or can be remoulded in water.                                                                                                                                                                                                                   |
| HW     | Highly<br>Weathered     | The rock substance is affected by weathering to the extent that limonite staining or bleaching affects the whole rock substance and other signs of chemical or physical decomposition are evident. Porosity and strength is usually decreased compared to the fresh rock. The colour and strength of the fresh rock is no longer recognisable. |
| MW     | Moderately<br>Weathered | The whole of the rock substance is discoloured. Usually by iron staining or bleaching, to the extent that the colour of the fresh rock is no longer recognisable.                                                                                                                                                                              |
| SW     | Slightly<br>weathered   | Rock is slightly discoloured but shows little or no change of strength from fresh rock.                                                                                                                                                                                                                                                        |
| F      | Fresh                   | Rock shows no sign of decomposition or staining.                                                                                                                                                                                                                                                                                               |

#### **ROCK STRENGTH**

Rock strength is described using AS1726 and ISRM – Commission on Standardisation of Laboratory and Field Tests, 'Suggested method of determining the Uniaxial Compressive Strength of Rock materials and the Point Load Index' as follows:

| Term           | Symbol | Point Load Index Is <sub>50</sub> (MPa) |
|----------------|--------|-----------------------------------------|
| Extremely Low  | EL     | <0.03                                   |
| Very Low       | VL     | 0.03 to 0.1                             |
| Low            | L      | 0.1 to 0.3                              |
| Medium         | M      | 0.3 to 1                                |
| High           | Н      | 1 to 3                                  |
| Very High      | VH     | 3 to 10                                 |
| Extremely High | EH     | >10                                     |

#### **DEFECT SPACING/BEDDING THICKNESS**

Measured at right angles to defects of same set or bedding.

| Term                     | Defect Spacing | Bedding          |
|--------------------------|----------------|------------------|
| Extremely closely spaced | <6 mm          | Thinly laminated |
|                          | 6 to 20 mm     | Laminated        |
| Very closely spaced      | 20 to 60 mm    | Very thin        |
| Closely spaced           | 0.06 to 0.2 m  | Thin             |
| Moderately widely spaced | 0.2 to 0.6 m   | Medium           |
| Widely spaced            | 0.6 to 0.2 m   | Thick            |
| Very widely spaced       | >2 m           | Very thick       |

#### **DEFECT DESCRIPTION**

| Туре | Definition      |
|------|-----------------|
| JT   | Joint           |
| BP   | Bed Parting     |
| CO   | Contact         |
| CS   | Clay Seam       |
| CZ   | Crush Zone      |
| DK   | Dyke            |
| DZ   | Decomposed Zone |
| FC   | Fracture        |
| FZ   | Fracture Zone   |
| FL   | Foliation       |
| FLT  | Fault           |
| VN   | Vein            |
| SM   | Seam            |
| IS   | Infilled Seam   |
| SZ   | Shear zone      |
|      |                 |

| Planarity      | Roughness         |
|----------------|-------------------|
| PR – Planar    | RF – Rough        |
| IR – Irregular | VR – Very Rough   |
| ST – stepped   | S – Smooth        |
| U – Undulating | SL – Slickensides |
| CU - Curved    | POL – Polished    |

| Symbol | Coating or infill |  |
|--------|-------------------|--|
| X      | Carbonaceous      |  |
| CA     | Calcite           |  |
| Fe     | Iron oxide        |  |
| KT     | Chlorite          |  |
| Clay   | Clay              |  |
| CN     | Clean             |  |
| Qz     | Quartz            |  |
| SN     | Stain             |  |
| VNR    | Veneer            |  |

The inclinations of defects are measured from perpendicular to the core axis.

•

Diametral Point Load Index test.

V

Axial Point Load Index test.

# Appendix C

**Laboratory Test Results** 





# **Environmental Division**

# **CERTIFICATE OF ANALYSIS**

| :1of6       | : Environmental Division Sydney<br>: Charlie Pierce   | 277-289 Woodpark Road Smithfield NSW Australia 2164 | : sydney.enviro.services@alsglobal.com<br>+61-2-8784 8555 | :+61-2-8784 8500  | : NEPM 1999 Schedule B(3) and ALS QCS3 requirement |              | : 27-OCT-2010         | : 03-NOV-2010 |            | : 16                    | : 16                    |
|-------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------|----------------------------------------------------|--------------|-----------------------|---------------|------------|-------------------------|-------------------------|
| Page        | Laboratory<br>Contact                                 | Address                                             | E-mail<br>Telephone                                       | Facsimile         | QC Level                                           |              | Date Samples Received | Issue Date    |            | No. of samples received | No. of samples analysed |
| : ES1021581 | : ROBERT CARR & ASSOCIATES P/L<br>: MR JEREMY EVERITT | : P O BOX 175<br>CARRINGTON NSW, AUSTRALIA 2294     | : jeremye@rca.com.au<br>+61 49029200                      | : +61 02 49029299 | . 7600                                             |              | : 129880-81           | · NH,CM       | : PROSPECT |                         | : SY/309/10             |
| Work Order  | Client                                                | Address                                             | E-mail<br>Telephone                                       | Facsimile         | Project                                            | Order number | C-O-C number          | Sampler       | Site       |                         | Quote number            |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

NATA Accredited Laboratory 825

accreditation requirements. This document is issued in accordance with NATA

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

Wisam.Marassa

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out in compliance with procedures specified in 21 CFR Part 11. Signatories

Accreditation Category Inorganics Inorganics Inorganics Senior Inorganic Chemist Inorganic Chemist Inorganic Chemist Position Sarah Millington Hoa Nguyen Ankit Joshi Signatories

Inorganics

Metals Coordinator

Part of the ALS Laboratory Group **Environmental Division Sydney** 

277-289 Woodpark Road Smithfield NSW Australia 2164
Tel. +61-2-8784 8555 Fax. +61-2-8784 8500 www.alsglobal.com

A Campbell Brothers Limited Company



ROBERT CARR & ASSOCIATES P/L : 2 of 6 : ES1021581 2600 Work Order Project Client

# General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting Key:

^ = This result is computed from individual analyte detections at or above the level of reporting





: 3 of 6 : ES1021581 : ROBERT CARR & ASSOCIATES P/L : 7600 Page Work Order Client Project

| Sub-Matrix: SOIL                                   |              | Clie        | Client sample ID            | BH6-3-3.45M       | BH8-1.5-1.95M     | BH12-3.0-3.45M    | BH14-1.5-1.95M    | BH1-1.5-1.95M     |
|----------------------------------------------------|--------------|-------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                    | Cli          | ent samplir | Client sampling date / time | 19-OCT-2010 15:00 | 20-OCT-2010 15:00 | 21-OCT-2010 15:00 | 22-OCT-2010 15:00 | 18-OCT-2010 15:00 |
| Compound                                           | CAS Number   | LOR         | Unit                        | ES1021581-001     | ES1021581-002     | ES1021581-003     | ES1021581-004     | ES1021581-005     |
| EA002 : pH (Soils)                                 |              |             |                             |                   |                   |                   |                   |                   |
| pH Value                                           |              | 0.1         | pH Unit                     | 6.7               | 6.2               | 6.4               | 5.0               | 5.0               |
| EA010: Conductivity                                |              |             |                             |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                     |              | _           | mS/cm                       | 628               | 102               | 269               | 719               | 926               |
| EA055: Moisture Content                            |              |             |                             |                   |                   |                   |                   |                   |
| ^ Moisture Content (dried @ 103°C)                 |              | 1.0         | %                           | 16.3              | 15.8              | 11.8              | 16.8              | 15.2              |
| ED040N: Sulfate - Calcium Phosphate Soluble (NEPM) | luble (NEPM) |             |                             |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                                  | 14808-79-8   | 20          | mg/kg                       | 200               | 20                | 150               | 550               | 270               |
| ED045G: Chloride Discrete analyser                 |              |             |                             |                   |                   |                   |                   |                   |
| Chloride                                           | 16887-00-6   | 10          | mg/kg                       | 790               | 340               | 320               | 890               | 1460              |





: 4 of 6 : ES1021581 : ROBERT CARR & ASSOCIATES P/L : 7600 Page Work Order Client Project

| Sub-Matrix: SOIL                                   |             | Clie        | Client sample ID            | BH1-3-3.45M       | BH2-1.5-1.95M     | BH2-3-3.45M       | BH5-1.5-1.95M     | BH6-1.5-1.95M     |
|----------------------------------------------------|-------------|-------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                    | Cli         | ent samplir | Client sampling date / time | 18-OCT-2010 15:00 | 18-OCT-2010 15:00 | 18-OCT-2010 15:00 | 19-OCT-2010 15:00 | 19-OCT-2010 15:00 |
| Compound                                           | CAS Number  | LOR         | Unit                        | ES1021581-006     | ES1021581-007     | ES1021581-008     | ES1021581-009     | ES1021581-010     |
| EA002 : pH (Soils)                                 |             |             |                             |                   |                   |                   |                   |                   |
| pH Value                                           | -           | 0.1         | pH Unit                     | 6.0               | 8.2               | 8.2               | 7.8               | 5.3               |
| EA010: Conductivity                                |             |             |                             |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                     |             | 1           | mS/cm                       | 771               | 594               | 999               | 895               | 409               |
| EA055: Moisture Content                            |             |             |                             |                   |                   |                   |                   |                   |
| ^ Moisture Content (dried @ 103°C)                 |             | 1.0         | %                           | 11.4              | 17.6              | 16.8              | 16.6              | 14.1              |
| ED040N: Sulfate - Calcium Phosphate Soluble (NEPM) | uble (NEPM) |             |                             |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                                  | 14808-79-8  | 20          | mg/kg                       | 280               | 150               | 160               | 250               | 650               |
| ED045G: Chloride Discrete analyser                 |             |             |                             |                   |                   |                   |                   |                   |
| Chloride                                           | 16887-00-6  | 10          | mg/kg                       | 1020              | 089               | 810               | 1210              | 280               |
|                                                    |             |             |                             |                   |                   |                   |                   |                   |





: 5 of 6 : ES1021581 : ROBERT CARR & ASSOCIATES P/L : 7600 Page Work Order Client Project

|                                                    |              | Č            | _ ()                        |                   |                   | , ,               |                   |                   |
|----------------------------------------------------|--------------|--------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sub-Matrix: SOIL                                   |              | Cle          | Cilent sample ID            | BH7-1.5-1.95M     | BH9-1.5-1.95M     | TP7-1.2-1.5M      | TP9-1.0-1.3M      | TP17-0.9-1.2M     |
|                                                    | Clie         | ent samplir. | Client sampling date / time | 19-OCT-2010 15:00 | 20-OCT-2010 15:00 | 18-OCT-2010 15:00 | 18-OCT-2010 15:00 | 20-OCT-2010 15:00 |
| Compound                                           | CAS Number   | LOR          | Unit                        | ES1021581-011     | ES1021581-012     | ES1021581-013     | ES1021581-014     | ES1021581-015     |
| EA002: pH (Soils)                                  |              |              |                             |                   |                   |                   |                   |                   |
| pH Value                                           | -            | 0.1          | pH Unit                     | 9.7               | 5.9               | 8.4               | 5.5               | 5.9               |
| EA010: Conductivity                                |              |              |                             |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C                     |              | -            | mS/cm                       | 486               | 712               | 345               | 287               | 92                |
| EA055: Moisture Content                            |              |              |                             |                   |                   |                   |                   |                   |
| ^ Moisture Content (dried @ 103°C)                 |              | 1.0          | %                           | 8.2               | 18.0              | 19.2              | 12.6              | 15.2              |
| ED040N: Sulfate - Calcium Phosphate Soluble (NEPM) | luble (NEPM) |              |                             |                   |                   |                   |                   |                   |
| Sulfate as SO4 2-                                  | 14808-79-8   | 20           | mg/kg                       | 290               | 200               | 330               | 410               | 190               |
| ED045G: Chloride Discrete analyser                 |              |              |                             |                   |                   |                   |                   |                   |
| Chloride                                           | 16887-00-6   | 10           | mg/kg                       | 170               | 1150              | 09                | 150               | 20                |





: 6 of 6 : ES1021581 : ROBERT CARR & ASSOCIATES P/L : 7600 Page Work Order Client

Project

| Sub-Matrix: SOIL                                   |             | Clie        | Client sample ID            | TP19-1.0-1.3M     | - | - | 1 | - |
|----------------------------------------------------|-------------|-------------|-----------------------------|-------------------|---|---|---|---|
|                                                    | Clie        | ent samplin | Client sampling date / time | 20-OCT-2010 15:00 | - |   |   | 1 |
| Compound                                           | CAS Number  | LOR         | Unit                        | ES1021581-016     | 1 | 1 | 1 | ļ |
| EA002 : pH (Soils)                                 |             |             |                             |                   |   |   |   |   |
| pH Value                                           | -           | 0.1         | pH Unit                     | 8.0               | - | 1 |   | 1 |
| EA010: Conductivity                                |             |             |                             |                   |   |   |   |   |
| Electrical Conductivity @ 25°C                     | -           | -           | mS/cm                       | 674               |   |   | - | 1 |
| EA055: Moisture Content                            |             |             |                             |                   |   |   |   |   |
| ^ Moisture Content (dried @ 103°C)                 | -           | 1.0         | %                           | 18.8              | - | - |   | 1 |
| ED040N: Sulfate - Calcium Phosphate Soluble (NEPM) | uble (NEPM) |             |                             |                   |   |   |   |   |
| Sulfate as SO4 2-                                  | 14808-79-8  | 20          | mg/kg                       | 250               | - | - | - | 1 |
| ED045G: Chloride Discrete analyser                 |             |             |                             |                   |   |   |   |   |
| Chloride                                           | 16887-00-6  | 10          | ma/ka                       | 200               |   |   |   | 1 |



92 Hill St, Carrington, Newcastle, NSW, 2294

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                | Report Number:       | 7600 - L6156-001 |
|------------------|--------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | eet South Yarra VIC 3141                       |                      |                  |
| Job Number:      | 7600                     |                                                | Report Date:         | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl  | k                                              | Order Number:        | -                |
| Location         | Prospect , Sydney        |                                                | Page 1 of 1          |                  |
| Lab No:          | L6156                    | Sample History                                 | Sample L             | ocation          |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP1        |                  |
| Date Tested:     | 04/11/2010               |                                                | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                       |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                |                      |                  |
| Material Source: | Site Won                 |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                | Lot Number:          | -                |
| Remarks:         | -                        |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
|                                  |              | IVIII III TIUTTI         |        | Maximum                  |
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 57     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 20     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 37     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No:9811 RP23-2



92 Hill St, Carrington, Newcastle, NSW, 2294

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6157-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            |                                                | Report Date:         | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6157                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP13       |                  |
| Date Tested:     | 03/11/2010                                      |                                                | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description: -  |                  |
| For Use As:      | Site Classification                             |                                                | Lot Number: -        |                  |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 54     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 18     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 36     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811

**RP23-2** 



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd    |                                                | Report Number:             | 7600 - L6158-001 |
|------------------|-------------------------|------------------------------------------------|----------------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Str | eet South Yarra VIC 3141                       |                            |                  |
| Job Number:      | 7600                    |                                                | Report Date:               | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park |                                                | Order Number:              | -                |
| Location         | Prospect , Sydney       |                                                | Page 1 of 1                |                  |
| Lab No:          | L6158                   | Sample History                                 | Sample Location            |                  |
| Date Sampled:    | 22/10/2010              | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP7              |                  |
| Date Tested:     | 03/11/2010              |                                                | Depth: 1.2-1.5m            |                  |
| Sampled By:      | СМ                      |                                                | Material: Silty CLAY, FILL |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4      |                                                |                            |                  |
| Material Source: | Site Won                |                                                | Spec Description:          | -                |
| For Use As:      | Site Classification     |                                                | Lot Number: -              |                  |
| Remarks:         | -                       |                                                | Spec Number: -             |                  |

| Plasticity Tests                 | Test Method  | Specification | Result | Specification |
|----------------------------------|--------------|---------------|--------|---------------|
|                                  |              | Minimum       |        | Maximum       |
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |               | 42     |               |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |               | 13     |               |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |               | 29     |               |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |               | -      |               |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No:9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6159-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            |                                                | Report Date:         | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6159                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP21       |                  |
| Date Tested:     | 04/11/2010                                      |                                                | Depth: 0.9-1.2m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description: -  |                  |
| For Use As:      | Site Classification                             |                                                | Lot Number: -        |                  |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification | Result | Specification |
|----------------------------------|--------------|---------------|--------|---------------|
|                                  |              | Minimum       |        | Maximum       |
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |               | 57     |               |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |               | 21     |               |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |               | 36     |               |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |               | -      |               |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                | Report Number:       | 7600 - L6160-001 |
|------------------|--------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | eet South Yarra VIC 3141                       |                      |                  |
| Job Number:      | 7600                     |                                                | Report Date:         | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park  |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney        |                                                | Page 1 of 1          |                  |
| Lab No:          | L6160                    | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP22       |                  |
| Date Tested:     | 03/11/2010               |                                                | Depth: 0.9-1.2m      |                  |
| Sampled By:      | СМ                       |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                |                      |                  |
| Material Source: | Site Won                 |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                | Lot Number:          | -                |
| Remarks:         | -                        |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 67     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 22     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 45     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

Luke New

NATA Accred No: 9811

FORM NUMBER



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6161-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            | 7600                                           |                      | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl                         | k                                              | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6161                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP17       |                  |
| Date Tested:     | 03/11/2010                                      |                                                | Depth: 0.9-1.2m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                             |                                                | Lot Number:          | -                |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification | Result | Specification |
|----------------------------------|--------------|---------------|--------|---------------|
|                                  |              | Minimum       |        | Maximum       |
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |               | 48     |               |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |               | 20     |               |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |               | 28     |               |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |               | -      |               |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6162-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            | 7600                                           |                      | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl                         | k                                              | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6162                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP15       |                  |
| Date Tested:     | 04/11/2010                                      |                                                | Depth: 1.2-1.5m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                             |                                                | Lot Number:          | -                |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 54     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 18     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 36     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

RP23-2

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6163-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            | 7600                                           |                      | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl                         | •                                              | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6163                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP11       |                  |
| Date Tested:     | 08/11/2010                                      |                                                | Depth: 1.1-1.4m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                             |                                                | Lot Number:          | -                |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 58     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 16     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 42     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

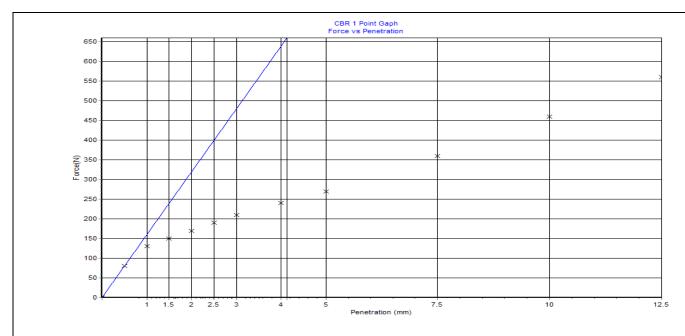
APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299


WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6156-003 Client address: Level 1, 500 Chapel Street South Yarra VIC 3141 Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Prospect , Sydney Location Page 1 of 1 L6156 Sample Location Lab No: 22/10/2010 Date Sampled: Location: TP1 09/11/2010 Date Tested: Depth: 1.0-1.3m Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Site Won AS1289.6.1.1 Material Source: Test Method: For Use As: Site Classification Lot Number: Remarks: Item Number



| Swell (%) / Surcharge (kg):                                   | 3.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 1.5                  |
| Achieved Percentage of Optimum Moisture<br>Content (%) :      | 99              | Minimum Specified CBR Value (%):                             | -                    |
| Achieved Moisture Content (%):                                | 21.1            | CBR 5.0mm (%) :                                              | 1.5                  |
| Achieved Percentage of Maximum Dry Density (%):               | 100             | CBR 2.5mm (%) :                                              | 1.5                  |
| Achieved Dry Density before Soak (t/m³) :                     | 1.625           | Optional Moisture Content (Remainder) after Penetration (%): | 22.4                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 28.7                 |
| Nominated % Maximum Dry Density<br>Compaction :               | 100             | Field Moisture Content (%):                                  | 25.0                 |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%) :                               | 97                   |
| Optimum Moisture Content - OMC (%) :                          | 21.4            | Moisture Content after Soak (%) :                            | 25                   |
| Maximum Dry Density - MDD (t/m³) :                            | 1.620           | Dry Density after Soak (t/m³) :                              | 1.571                |

Soil Description : Silty CLAY



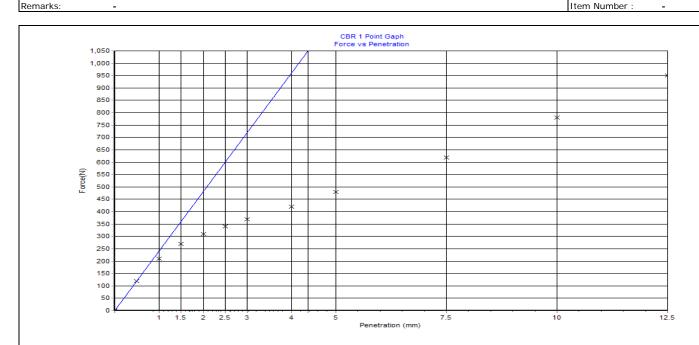
Approved Signatory

Form Number

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.



PHONE +61 2 4902 9200 FAX +61 2 4902 9299


WEB www.rca.com.au

ABN 53 063 515 711 NATA Accredited Laboratory: 9811

**Construction Materials Testing** 

### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6157-003 Client address: Level 1, 500 Chapel Street South Yarra VIC 3141 Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Location Prospect, Sydney Page 1 of 1 L6157 Sample Location Lab No: 22/10/2010 Date Sampled: Location: TP13 09/11/2010 Date Tested: Depth: 1.0-1.3m Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Material Source: Site Won AS1289.6.1.1 Test Method: For Use As: Site Classification Lot Number:



| Swell (%) / Surcharge (kg):                                   | 3.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%):                                               | 2.5                  |
| Achieved Percentage of Optimum Moisture<br>Content (%) :      | 101             | Minimum Specified CBR Value (%):                             | -                    |
| Achieved Moisture Content (%):                                | 19.5            | CBR 5.0mm (%) :                                              | 2.5                  |
| Achieved Percentage of Maximum Dry Density (%):               | 100             | CBR 2.5mm (%) :                                              | 2.5                  |
| Achieved Dry Density before Soak (t/m³) :                     | 1.701           | Optional Moisture Content (Remainder) after Penetration (%): | 22.3                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 25.2                 |
| Nominated % Maximum Dry Density Compaction :                  | 100             | Field Moisture Content (%):                                  | 23.7                 |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%) :                               | 96                   |
| Optimum Moisture Content - OMC (%) :                          | 19.3            | Moisture Content after Soak (%) :                            | 22.2                 |
| Maximum Dry Density - MDD (t/m³) :                            | 1.707           | Dry Density after Soak (t/m³) :                              | 1.646                |

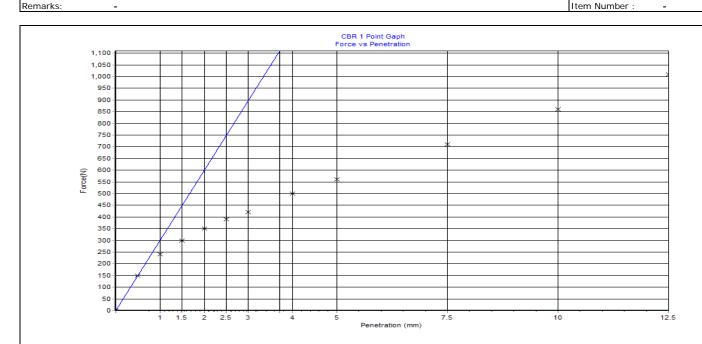
Soil Description : Silty CLAY



Approved Signatory

Form Number




PHONE +61 2 4902 9200 FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6158-003 Client address: Level 1, 500 Chapel Street South Yarra VIC 3141 Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Prospect , Sydney Location Page 1 of 1 L6158 Sample Location Lab No: Date Sampled: 22/10/2010 Location: TP7 09/11/2010 Date Tested: Depth: 1.2-1.5m Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Material Source: Site Won AS1289.6.1.1 Test Method: For Use As: Site Classification Lot Number:



| Maximum Dry Density - MDD (t/m³) :                            | 1.822           | Dry Density after Soak (t/m³) :                              | 1.781                |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Optimum Moisture Content - OMC (%) :                          | 16.1            | Moisture Content after Soak (%) :                            | 18.8                 |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%) :                               | 98                   |
| Nominated % Maximum Dry Density<br>Compaction :               | 100             | Field Moisture Content (%):                                  | 19.8                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 20.9                 |
| Achieved Dry Density before Soak (t/m³) :                     | 1.808           | Optional Moisture Content (Remainder) after Penetration (%): | 17                   |
| Achieved Percentage of Maximum Dry Density (%):               | 99              | CBR 2.5mm (%) :                                              | 3                    |
| Achieved Moisture Content (%):                                | 16.4            | CBR 5.0mm (%) :                                              | 3                    |
| Achieved Percentage of Optimum Moisture<br>Content (%) :      | 102             | Minimum Specified CBR Value (%) :                            | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 3                    |
| Swell (%) / Surcharge (kg):                                   | 1.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |



Soil Description :

Silty CLAY, FILL

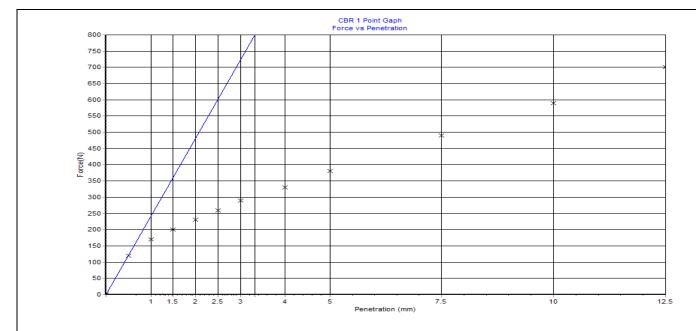
Approved Signatory

Form Number

Luke New NATA Accred No: 9811

Mi




PHONE +61 2 4902 9200 FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### California Bearing Ratio Report (1 Point)

|                  | Camornia Bearing Ratio Report (11 Onte)         |                               |  |  |  |
|------------------|-------------------------------------------------|-------------------------------|--|--|--|
| Client:          | Village Roadshow Ltd                            | Report Number: 7600 - L6159-0 |  |  |  |
| Client address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                               |  |  |  |
| Job Number:      | 7600                                            | Report Date: 10/11/2010       |  |  |  |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:                 |  |  |  |
| Location         | Prospect , Sydney                               | Page 1 of 1                   |  |  |  |
| Lab No:          | L6159                                           | Sample Location               |  |  |  |
| Date Sampled:    | 22/10/2010                                      | Location: TP21                |  |  |  |
| Date Tested:     | 09/11/2010                                      | Depth: 0.9-1.2m               |  |  |  |
| Sampled By:      | СМ                                              |                               |  |  |  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                               |  |  |  |
| Material Source: | Site Won                                        | Test Method: AS1289.6.1.1     |  |  |  |
| For Use As:      | Site Classification                             | Lot Number: -                 |  |  |  |
| Remarks:         | -                                               | Item Number : -               |  |  |  |



| Maximum Dry Density - MDD (t/m³) :                            | 1.659           | Dry Density after Soak (t/m³) :                              | 1.599                |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Optimum Moisture Content - OMC (%) :                          | 20.1            | Moisture Content after Soak (%) :                            | 24                   |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%) :                               | 96                   |
| Nominated % Maximum Dry Density Compaction :                  | 100             | Field Moisture Content (%):                                  | 19.2                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 28.2                 |
| Achieved Dry Density before Soak (t/m³) :                     | 1.658           | Optional Moisture Content (Remainder) after Penetration (%): | 22.3                 |
| Achieved Percentage of Maximum Dry Density (%):               | 100             | CBR 2.5mm (%) :                                              | 2                    |
| Achieved Moisture Content (%):                                | 20.1            | CBR 5.0mm (%) :                                              | 2                    |
| Achieved Percentage of Optimum Moisture Content (%):          | 100             | Minimum Specified CBR Value (%):                             | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 2                    |
| Swell (%) / Surcharge (kg):                                   | 3.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |



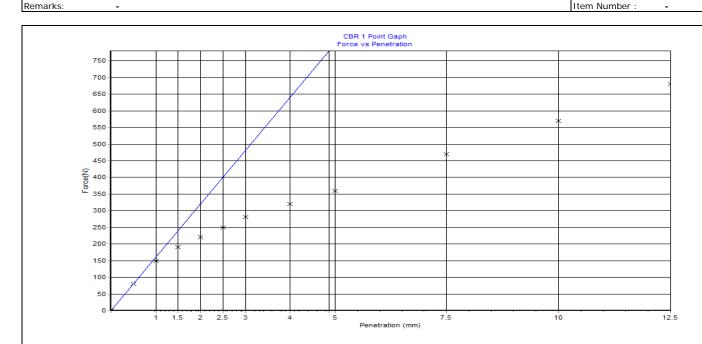
Soil Description :

Approved Signatory F

Form Number



PHONE +61 2 4902 9200 FAX +61 2 4902 9299


WEB www.rca.com.au

**ABN** 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6160-003 Client address: Level 1, 500 Chapel Street South Yarra VIC 3141 Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Prospect , Sydney Location Page 1 of 1 L6160 Sample Location Lab No: Date Sampled: 22/10/2010 Location: TP22 09/11/2010 Depth: 0.9-1.2m Date Tested: Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Site Won AS1289.6.1.1 Material Source: Test Method: For Use As: Site Classification Lot Number:



| Maximum Dry Density - MDD (t/m³) :                            | 1.601           | Dry Density after Soak (t/m³) :                              | 1.548                |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Optimum Moisture Content - OMC (%) :                          | 22.5            | Moisture Content after Soak (%) :                            | 26.2                 |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%) :                               | 97                   |
| Nominated % Maximum Dry Density<br>Compaction :               | 100             | Field Moisture Content (%):                                  | 25.2                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 29.3                 |
| Achieved Dry Density before Soak (t/m³) :                     | 1.603           | Optional Moisture Content (Remainder) after Penetration (%): | 24.4                 |
| Achieved Percentage of Maximum Dry Density (%):               | 100             | CBR 2.5mm (%) :                                              | 2                    |
| Achieved Moisture Content (%):                                | 22.6            | CBR 5.0mm (%) :                                              | 2                    |
| Achieved Percentage of Optimum Moisture  Content (%) :        | 100             | Minimum Specified CBR Value (%) :                            | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 2                    |
| Swell (%) / Surcharge (kg):                                   | 3.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |



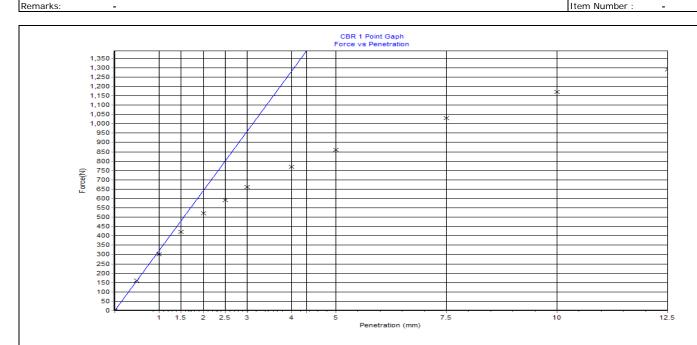
Soil Description :

Approved Signatory Fo

Form Number



PHONE +61 2 4902 9200 FAX +61 2 4902 9299


WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6161-003 Level 1, 500 Chapel Street South Yarra VIC 3141 Client address: Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Prospect , Sydney Location Page 1 of 1 L6161 Sample Location Lab No: Date Sampled: 22/10/2010 Location: TP17 09/11/2010 Depth: 0.9-1.2m Date Tested: Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Site Won AS1289.6.1.1 Material Source: Test Method: For Use As: Site Classification Lot Number:



| Maximum Dry Density - MDD (t/m³) :                         | 1.624           | Dry Density after Soak (t/m³) :                              | 1.594                |
|------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Optimum Moisture Content - OMC (%) :                       | 21.1            | Moisture Content after Soak (%):                             | 24.2                 |
| Compactive Effort :                                        | Standard        | Density Ratio after Soak (%):                                | 98                   |
| Nominated % Maximum Dry Density Compaction :               | 100             | Field Moisture Content (%):                                  | 19.9                 |
| Nominated % Optimum Moisture Content<br>Compaction :       | 100             | Moisture Content (Top) after Penetration (%):                | 25.4                 |
| Achieved Dry Density before Soak (t/m³) :                  | 1.617           | Optional Moisture Content (Remainder) after Penetration (%): | 24.2                 |
| Achieved Percentage of Maximum Dry Density (%):            | 100             | CBR 2.5mm (%) :                                              | 4.5                  |
| Achieved Moisture Content (%) :                            | 22.1            | CBR 5.0mm (%) :                                              | 4.5                  |
| Achieved Percentage of Optimum Moisture Content (%):       | 105             | Minimum Specified CBR Value (%):                             | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 4.5                  |
| Swell (%) / Surcharge (kg):                                | 1.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |

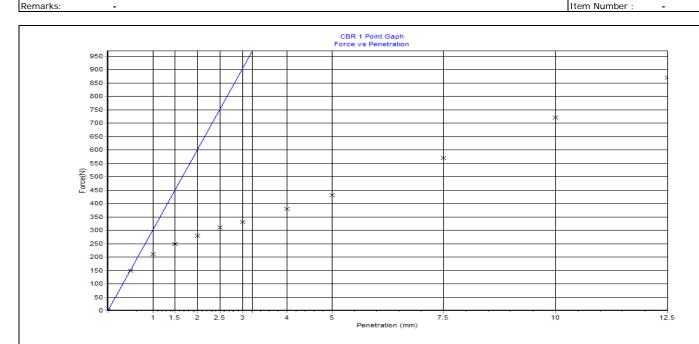
NATA
WORLD RECOGNISED
ACCREDITATION

Soil Description :

Approved Signatory

Form Number




PHONE +61 2 4902 9200 FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6162-003 Level 1, 500 Chapel Street South Yarra VIC 3141 Client address: Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Location Prospect, Sydney Page 1 of 1 L6162 Sample Location Lab No: Date Sampled: 22/10/2010 Location: TP15 09/11/2010 Date Tested: Depth: 1.2-1.5m Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Site Won AS1289.6.1.1 Material Source: Test Method: For Use As: Site Classification Lot Number:



| <u> </u>                                                   |                 |                                                              |                      |
|------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Maximum Dry Density - MDD (t/m³) :                         | 1.629           | Dry Density after Soak (t/m³) :                              | 1.600                |
| Optimum Moisture Content - OMC (%) :                       | 21.1            | Moisture Content after Soak (%):                             | 23.9                 |
| Compactive Effort :                                        | Standard        | Density Ratio after Soak (%) :                               | 98                   |
| Nominated % Maximum Dry Density<br>Compaction :            | 100             | Field Moisture Content (%):                                  | 22.1                 |
| Nominated % Optimum Moisture Content Compaction:           | 100             | Moisture Content (Top) after Penetration (%):                | 27.1                 |
| Achieved Dry Density before Soak (t/m³) :                  | 1.637           | Optional Moisture Content (Remainder) after Penetration (%): | 22.3                 |
| Achieved Percentage of Maximum Dry Density (%):            | 100             | CBR 2.5mm (%) :                                              | 2.5                  |
| Achieved Moisture Content (%):                             | 20.8            | CBR 5.0mm (%) :                                              | 2                    |
| Achieved Percentage of Optimum Moisture Content (%):       | 99              | Minimum Specified CBR Value (%) :                            | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking Period (Days) : | Soaked / 4 days | CBR Value (%):                                               | 2.5                  |
| Swell (%) / Surcharge (kg):                                | 2.5 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |



Soil Description :

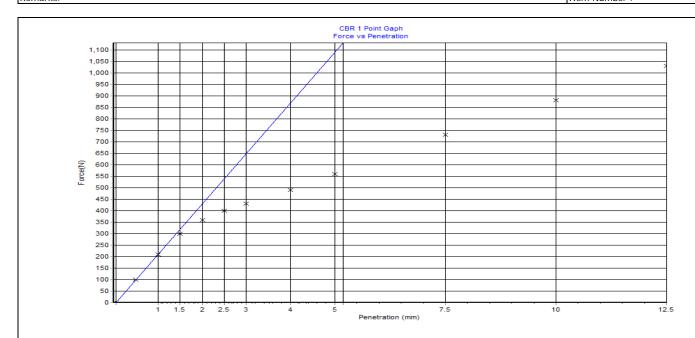
Approved Signatory

Form Number

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.



PHONE +61 2 4902 9200 FAX +61 2 4902 9299


WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### California Bearing Ratio Report (1 Point)

Client: Village Roadshow Ltd Report Number: 7600 - L6163-003 Client address: Level 1, 500 Chapel Street South Yarra VIC 3141 Job Number: 7600 Report Date: 10/11/2010 Project: Wet 'n' Wild Theme Park Order Number: Prospect , Sydney Location Page 1 of 1 L6163 Sample Location Lab No: Date Sampled: 22/10/2010 Location: TP11 09/11/2010 Date Tested: Depth: 1.1-1.4m Sampled By: СМ AS1289.1.2.1-6.5.4 Sample Method: Material Source: Site Won AS1289.6.1.1 Test Method: For Use As: Site Classification Lot Number: Remarks: Item Number



| Maximum Dry Density - MDD (t/m³) :                            | 1.592           | Dry Density after Soak (t/m³) :                              | 1.575                |
|---------------------------------------------------------------|-----------------|--------------------------------------------------------------|----------------------|
| Optimum Moisture Content - OMC (%) :                          | 20.1            | Moisture Content after Soak (%) :                            | 25.1                 |
| Compactive Effort :                                           | Standard        | Density Ratio after Soak (%):                                | 99                   |
| Nominated % Maximum Dry Density Compaction :                  | 100             | Field Moisture Content (%):                                  | 23.9                 |
| Nominated % Optimum Moisture Content<br>Compaction :          | 100             | Moisture Content (Top) after Penetration (%):                | 25.1                 |
| Achieved Dry Density before Soak (t/m³) :                     | 1.605           | Optional Moisture Content (Remainder) after Penetration (%): | 23.8                 |
| Achieved Percentage of Maximum Dry Density (%):               | 101             | CBR 2.5mm (%) :                                              | 3                    |
| Achieved Moisture Content (%):                                | 20.1            | CBR 5.0mm (%) :                                              | 3                    |
| Achieved Percentage of Optimum Moisture Content (%):          | 100             | Minimum Specified CBR Value (%) :                            | -                    |
| Test Condition (Soaked/Unsoaked) / Soaking<br>Period (Days) : | Soaked / 4 days | CBR Value (%) :                                              | 3                    |
| Swell (%) / Surcharge (kg):                                   | 2.0 / 4.5 kg    | +19mm Material (%)                                           | Oversize replacement |

Soil Description : Silty CLAY



Approved Signatory

Form Number



7600 - L6156-002

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

Order Number:

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd Report Number:

Client Address : Level 1, 500 Chapel Street South Yarra VIC 3141 Report Date: 10/11/2010

Job Number: 7600

Project: Wet 'n' Wild Theme Park Test Method: AS 1289.3.8.1

Location: Prospect, Sydney

|                            |                     | Pa | age 1 of 1 |
|----------------------------|---------------------|----|------------|
| Lab No :                   | L6156               |    |            |
| ID No :                    | L6156               |    |            |
| Lot No :                   | -                   |    |            |
| Item No:                   | -                   |    |            |
| Sampling Method :          | AS1289.1.2.1-6.5.4  |    |            |
| Date Sampled :             | 22/10/2010          |    |            |
| Date Tested :              | 4/11/2010           |    |            |
| Material Source :          | Site Won            |    |            |
| For Use As :               | Site Classification |    |            |
| Sample Location :          | Location: TP1       |    |            |
|                            | Depth: 1.0-1.3m     |    |            |
|                            |                     |    |            |
| Soil Description :         | Silty CLAY          |    |            |
| Type of Water Used :       | Distilled Water     |    |            |
| Temperature of Water (°C): | 24.000              |    |            |
| Emerson Class Number :     | Class 4             |    |            |
| Remarks :                  |                     | •  |            |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number : 7600

Project: Wet 'n' Wild Theme Park

l ocation · Prospect Sydney

Report Number: **7600 - L6157-002** 

Report Date: 10/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| ID No :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Location :                 | Prospect , Sydney   |      |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|------|-------------|
| ID No :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                     | <br> | Page 1 of 1 |
| Lot No:         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - </td <td>Lab No :</td> <td>L6157</td> <td></td> <td></td> | Lab No :                   | L6157               |      |             |
| Item No :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID No :                    | L6157               |      |             |
| Sampling Method :         AS1289.1.2.1-6.5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lot No :                   | -                   |      |             |
| Date Sampled:         22/10/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Item No :                  | -                   |      |             |
| Date Tested :         4/11/2010           Material Source :         Site Won           For Use As :         Site Classification           Sample Location :         Location: TP13           Depth: 1.0-1.3m         Depth: 1.0-1.3m    Soil Description :  Silty CLAY  Type of Water Used :  Distilled Water  Temperature of Water (°C) :  24.000  Emerson Class Number :  Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sampling Method :          | AS1289.1.2.1-6.5.4  |      |             |
| Material Source : Site Won  For Use As : Site Classification  Sample Location : Location: TP13 Depth: 1.0-1.3m  Soil Description : Silty CLAY  Type of Water Used : Distilled Water  Temperature of Water (°C) : 24.000 Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Sampled :             | 22/10/2010          |      |             |
| For Use As: Site Classification  Sample Location: Location: TP13 Depth: 1.0-1.3m  Soil Description: Silty CLAY  Type of Water Used: Distilled Water  Temperature of Water (°C): Emerson Class Number: Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date Tested :              | 4/11/2010           |      |             |
| Sample Location : Location: TP13 Depth: 1.0-1.3m  Soil Description : Silty CLAY  Type of Water Used : Distilled Water  Temperature of Water (°C) : 24.000  Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Material Source :          | Site Won            |      |             |
| Depth: 1.0-1.3m  Soil Description: Silty CLAY  Type of Water Used: Distilled Water  Temperature of Water (°C): 24.000 Emerson Class Number: Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | For Use As :               | Site Classification |      |             |
| Soil Description:  Silty CLAY  Type of Water Used:  Distilled Water  Temperature of Water (°C):  24.000  Emerson Class Number:  Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Location :          | Location: TP13      |      |             |
| Type of Water Used : Distilled Water  Temperature of Water (°C) : 24.000  Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Depth: 1.0-1.3m     |      |             |
| Type of Water Used : Distilled Water  Temperature of Water (°C) : 24.000  Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                     |      |             |
| Type of Water Used : Distilled Water  Temperature of Water (°C) : 24.000  Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                     |      |             |
| Temperature of Water (°C): 24.000 Emerson Class Number: Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil Description :         | Silty CLAY          |      |             |
| Emerson Class Number : Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type of Water Used :       | Distilled Water     |      |             |
| Class 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Temperature of Water (°C): | 24.000              |      |             |
| Remarks :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Emerson Class Number :     | Class 2             |      |             |
| internative i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks :                  |                     |      |             |

NATA WORLD RECOGNISED

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

Report Number:

Report Date:

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address : Level 1, 500 Chapel Street South Yarra VIC 3141

Prospect , Sydney

Job Number: 7600

Location:

Project: Wet 'n' Wild Theme Park

Order Number:

7600 - L6158-002

10/11/2010

Test Method: AS 1289.3.8.1

|                             |                     | Page 1 of 1 |
|-----------------------------|---------------------|-------------|
| Lab No :                    | L6158               |             |
| ID No :                     | L6158               |             |
| Lot No :                    | -                   |             |
| Item No:                    | -                   |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |             |
| Date Sampled :              | 22/10/2010          |             |
| Date Tested :               | 4/11/2010           |             |
| Material Source :           | Site Won            |             |
| For Use As :                | Site Classification |             |
| Sample Location :           | Location: TP7       |             |
|                             | Depth: 1.2-1.5m     |             |
|                             |                     |             |
| Soil Description :          | Silty CLAY, FILL    |             |
| Type of Water Used :        | Distilled Water     |             |
| Temperature of Water (°C) : | 24.000              |             |
| Emerson Class Number :      | Class 4             |             |

| <b>^</b>                        |  |
|---------------------------------|--|
| NATA                            |  |
|                                 |  |
| WORLD RECOGNISED  ACCREDITATION |  |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 760

Project: Wet 'n' Wild Theme Park

Location : Prospect , Sydney

Report Number: **7600 - L6159-002** 

Report Date: 10/11/2010

Order Number:

Test Method: AS 1289.3.8.1

|                             |                     |  | Page 1 of 1 |
|-----------------------------|---------------------|--|-------------|
| Lab No :                    | L6159               |  |             |
| ID No:                      | L6159               |  |             |
| Lot No :                    | -                   |  |             |
| Item No :                   | -                   |  |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |  |             |
| Date Sampled :              | 22/10/2010          |  |             |
| Date Tested :               | 4/11/2010           |  |             |
| Material Source :           | Site Won            |  |             |
| For Use As :                | Site Classification |  |             |
| Sample Location :           | Location: TP21      |  |             |
|                             | Depth: 0.9-1.2m     |  |             |
|                             |                     |  |             |
|                             |                     |  |             |
| Soil Description :          | Silty CLAY          |  |             |
| Type of Water Used :        | Distilled Water     |  |             |
| Temperature of Water (°C) : | 24.000              |  |             |
| Emerson Class Number :      | Class 2             |  |             |
| Remarks :                   |                     |  |             |

NATA

WORLD RECOGNISED

ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



7600 - L6160-002

**PHONE** +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au
ABN 53 063 515 711

Order Number:

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### **Emerson Class Number Report**

Client : Village Roadshow Ltd Report Number:

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141 Report Date: 10/11/2010

Job Number: 7600

Project: Wet 'n' Wild Theme Park Test Method: AS 1289.3.8.1

Location: Prospect, Sydney

|                            |                     | Page 1 of 1 |
|----------------------------|---------------------|-------------|
| Lab No :                   | L6160               |             |
| ID No :                    | L6160               |             |
| Lot No :                   | -                   |             |
| Item No :                  | -                   |             |
| Sampling Method :          | AS1289.1.2.1-6.5.4  |             |
| Date Sampled :             | 22/10/2010          |             |
| Date Tested :              | 4/11/2010           |             |
| Material Source :          | Site Won            |             |
| For Use As :               | Site Classification |             |
| Sample Location :          | Location: TP22      |             |
|                            | Depth: 0.9-1.2m     |             |
|                            |                     |             |
| Soil Description :         | Silty CLAY          |             |
| Type of Water Used :       | Distilled Water     |             |
| Temperature of Water (°C): | 23.000              |             |
| Emerson Class Number :     | Class 2             |             |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number:

Project: Wet 'n' Wild Theme Park

Report Number: 7600 - L6161-002

Report Date: 10/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                  | Prospect , Sydney   |   |             |
|-----------------------------|---------------------|---|-------------|
|                             |                     |   | Page 1 of 1 |
| Lab No :                    | L6161               |   |             |
| ID No :                     | L6161               |   |             |
| Lot No :                    | -                   |   |             |
| Item No :                   | -                   |   |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |   |             |
| Date Sampled :              | 22/10/2010          |   |             |
| Date Tested :               | 4/11/2010           |   |             |
| Material Source :           | Site Won            |   |             |
| For Use As :                | Site Classification |   |             |
| Sample Location :           | Location: TP17      |   |             |
|                             | Depth: 0.9-1.2m     |   |             |
|                             |                     |   |             |
|                             |                     |   |             |
| Soil Description :          | Silty CLAY          |   |             |
| Type of Water Used :        | Distilled Water     |   |             |
| Temperature of Water (°C) : | 23.000              |   |             |
| Emerson Class Number :      | Class 4             |   |             |
| Remarks :                   |                     | • |             |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 7600

Project: Wet 'n' Wild Theme Park

Location : Prospect , Sydney

Report Number: **7600 - L6162-002** 

Report Date: 10/11/2010

Order Number:

Test Method: AS 1289.3.8.1

|                             |                     |  | Page 1 of 1 |
|-----------------------------|---------------------|--|-------------|
| Lab No :                    | L6162               |  |             |
| ID No :                     | L6162               |  |             |
| Lot No :                    | -                   |  |             |
| Item No :                   | -                   |  |             |
| Sampling Method:            | AS1289.1.2.1-6.5.4  |  |             |
| Date Sampled :              | 22/10/2010          |  |             |
| Date Tested :               | 4/11/2010           |  |             |
| Material Source :           | Site Won            |  |             |
| For Use As :                | Site Classification |  |             |
| Sample Location :           | Location: TP15      |  |             |
|                             | Depth: 1.2-1.5m     |  |             |
| Soil Description :          | Silty CLAY          |  |             |
| Type of Water Used :        | Distilled Water     |  |             |
| Temperature of Water (°C) : | 23.000              |  |             |
| Emerson Class Number :      | Class 3             |  |             |
| Remarks :                   |                     |  |             |

NATA
WORLD RECOGNISED
ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 7600

Client Address:

Project: Wet 'n' Wild Theme Park

l ocation · Prospect Sydney

Report Number: **7600 - L6163-002** 

Report Date: 10/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                 | Prospect , Sydney   |   |   |             |
|----------------------------|---------------------|---|---|-------------|
|                            |                     |   |   | Page 1 of 1 |
| Lab No :                   | L6163               |   |   |             |
| ID No :                    | L6163               |   |   |             |
| Lot No :                   | -                   |   |   |             |
| Item No :                  | -                   |   |   |             |
| Sampling Method :          | AS1289.1.2.1-6.5.4  |   |   |             |
| Date Sampled :             | 22/10/2010          |   |   |             |
| Date Tested :              | 4/11/2010           |   |   |             |
| Material Source :          | Site Won            |   |   |             |
| For Use As :               | Site Classification |   |   |             |
| Sample Location :          | Location: TP11      |   |   |             |
|                            | Depth: 1.1-1.4m     |   |   |             |
|                            |                     |   |   |             |
|                            |                     |   |   |             |
| Soil Description :         | Silty CLAY          |   |   |             |
| Type of Water Used :       | Distilled Water     |   |   |             |
| Temperature of Water (°C): | 23.000              |   |   |             |
| Emerson Class Number :     | Class 4             |   |   |             |
| Remarks :                  |                     | - | • |             |
|                            |                     |   |   |             |

NATA
WORLD RECOGNISED
ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6164-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            |                                                | Report Date:         | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                               | ydney                                          |                      |                  |
| Lab No:          | L6164                                           | Sample History                                 | Sample Lo            | ocation          |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP3        |                  |
| Date Tested:     | 01/11/2010                                      |                                                | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                             |                                                | Lot Number:          | -                |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 64     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 22     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 42     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number :

Client Address:

Sample Location:

Location:

Project: Wet 'n' Wild Theme Park

Prospect , Sydney

Location: TP3

Depth: 1.0-1.3m

Report Number: 7600 - L6164-002

Order Number:

Report Date:

Test Method: AS 1289.3.8.1

03/11/2010

Page 1 of 1

| Lab No :          | L6164               |  |  |
|-------------------|---------------------|--|--|
| ID No :           | L6164               |  |  |
| Lot No :          | -                   |  |  |
| Item No :         | -                   |  |  |
| Sampling Method:  | AS1289.1.2.1-6.5.4  |  |  |
| Date Sampled :    | 22/10/2010          |  |  |
| Date Tested :     | 1/11/2010           |  |  |
| Material Source : | Site Won            |  |  |
| For Use As :      | Site Classification |  |  |

| Soil Description :          | Silty CLAY      |  |  |
|-----------------------------|-----------------|--|--|
| Type of Water Used :        | Distilled Water |  |  |
| Temperature of Water (°C) : | 25.000          |  |  |
| Emerson Class Number :      | Class 2         |  |  |

Remarks:

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                 | Report Number:       | 7600 - L6165-001 |
|------------------|--------------------------|-------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | Level 1, 500 Chapel Street South Yarra VIC 3141 |                      |                  |
| Job Number:      | 7600                     | 7600                                            |                      | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl  | Wet 'n' Wild Theme Park                         |                      | -                |
| Location         | Prospect , Sydney        |                                                 | Page 1 of 1          |                  |
| Lab No:          | L6165                    | Sample History                                  | Sample Location      |                  |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C)  | Location: TP5        |                  |
| Date Tested:     | 01/11/2010               |                                                 | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                       |                                                 | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                 |                      |                  |
| Material Source: | Site Won                 |                                                 | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                 | Lot Number:          | -                |
| Remarks:         | -                        |                                                 | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 61     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 21     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 40     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 7600

Project: Wet 'n' Wild Theme Park

Location: Prospect, Sydney

Report Number: **7600 - L6165-002** 

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

|                             |                     |  | Page 1 of 1 |
|-----------------------------|---------------------|--|-------------|
| Lab No :                    | L6165               |  |             |
| ID No :                     | L6165               |  |             |
| Lot No :                    | -                   |  |             |
| Item No:                    | -                   |  |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |  |             |
| Date Sampled :              | 22/10/2010          |  |             |
| Date Tested :               | 1/11/2010           |  |             |
| Material Source :           | Site Won            |  |             |
| For Use As :                | Site Classification |  |             |
| Sample Location :           | Location: TP5       |  |             |
|                             | Depth: 1.0-1.3m     |  |             |
|                             |                     |  |             |
| Soil Description :          | Silty CLAY          |  |             |
| Type of Water Used :        | Distilled Water     |  |             |
| Temperature of Water (°C) : | 25.000              |  |             |
| Emerson Class Number :      | Class 2             |  |             |
| Remarks :                   |                     |  |             |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                | Report Number:       | 7600 - L6166-001 |
|------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  |                                                                      |                                                |                      |                  |
| Job Number:      | 7600                                                                 | 7600                                           |                      | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                                              |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                                                    |                                                | Page 1 of 1          |                  |
| Lab No:          | L6166                                                                | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                                           | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP9        |                  |
| Date Tested:     | 02/11/2010                                                           |                                                | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                                                                   |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                                                   |                                                |                      |                  |
| Material Source: | Site Won                                                             |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                                                  |                                                | Lot Number:          | -                |
| Remarks:         | -                                                                    |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 66     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 22     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 44     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |
|-----------------------------------|------------------------|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |
| I <sub>P</sub> - Plasticity Index |                        |
| LS - Linear Shrinkage             |                        |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

RP23-2

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 7600

Project: Wet 'n' Wild Theme Park

Location : Prospect , Sydney

Report Number: **7600 - L6166-002** 

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                  | Prospect , Sydney   |  |             |
|-----------------------------|---------------------|--|-------------|
|                             |                     |  | Page 1 of 1 |
| Lab No :                    | L6166               |  |             |
| ID No :                     | L6166               |  |             |
| Lot No :                    | -                   |  |             |
| Item No :                   | -                   |  |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |  |             |
| Date Sampled :              | 22/10/2010          |  |             |
| Date Tested :               | 1/11/2010           |  |             |
| Material Source :           | Site Won            |  |             |
| For Use As :                | Site Classification |  |             |
| Sample Location :           | Location: TP9       |  |             |
|                             | Depth: 1.0-1.3m     |  |             |
|                             |                     |  |             |
|                             |                     |  |             |
| Soil Description :          | Silty CLAY          |  |             |
| Type of Water Used :        | Distilled Water     |  |             |
| Temperature of Water (°C) : | 25.000              |  |             |
| Emerson Class Number :      | Class 2             |  |             |
| Remarks :                   |                     |  |             |
|                             |                     |  |             |

NATA

WORLD RECOGNISED

ACCREDITATION

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                | Report Number:       | 7600 - L6167-001 |
|------------------|----------------------------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  |                                                                      |                                                |                      |                  |
| Job Number:      | 7600                                                                 | 7600                                           |                      | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                                              |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                                                    |                                                | Page 1 of 1          |                  |
| Lab No:          | L6167                                                                | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                                           | Oven dried prep (50°C), oven dried (105-110°C) | Location: TP19       |                  |
| Date Tested:     | 01/11/2010                                                           |                                                | Depth: 1.0-1.3m      |                  |
| Sampled By:      | СМ                                                                   |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                                                   |                                                |                      |                  |
| Material Source: | Site Won                                                             |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification                                                  |                                                | Lot Number:          | -                |
| Remarks:         | -                                                                    |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>I</sub>  | AS1289.3.1.1 | Williaman                | 50     | Waximum                  |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 19     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 31     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number:

Project: Wet 'n' Wild Theme Park

Location : Prospect , Sydney Report Number: 7600 - L6167-002

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                  | Prospect , Sydney   | Page 1 of 1                           |  |
|-----------------------------|---------------------|---------------------------------------|--|
| Lab No :                    | L6167               | l l l l l l l l l l l l l l l l l l l |  |
| ID No :                     | L6167               |                                       |  |
| Lot No :                    | -                   |                                       |  |
| Item No :                   | -                   |                                       |  |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |                                       |  |
| Date Sampled :              | 22/10/2010          |                                       |  |
| Date Tested :               | 1/11/2010           |                                       |  |
| Material Source :           | Site Won            |                                       |  |
| For Use As :                | Site Classification |                                       |  |
| Sample Location :           | Location: TP19      |                                       |  |
|                             | Depth: 1.0-1.3m     |                                       |  |
| Soil Description :          | Silty CLAY          |                                       |  |
| Type of Water Used :        | Distilled Water     |                                       |  |
| Temperature of Water (°C) : | 25.000              |                                       |  |
| Emerson Class Number :      | Class 4             |                                       |  |
| Remarks :                   |                     | · · · · · · · · · · · · · · · · · · · |  |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                | Report Number:       | 7600 - L6168-001 |
|------------------|--------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | eet South Yarra VIC 3141                       |                      |                  |
| Job Number:      | 7600                     |                                                | Report Date:         | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl  | k                                              | Order Number:        | -                |
| Location         | Prospect , Sydney        |                                                | Page 1 of 1          |                  |
| Lab No:          | L6168                    | Sample History                                 | Sample Lo            | ocation          |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C) | Location: BH1        |                  |
| Date Tested:     | 01/11/2010               |                                                | Depth: 0.5-0.95m     |                  |
| Sampled By:      | СМ                       |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                |                      |                  |
| Material Source: | Site Won                 |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                | Lot Number:          | -                |
| Remarks:         | -                        |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification | Result | Specification |
|----------------------------------|--------------|---------------|--------|---------------|
|                                  |              | Minimum       |        | Maximum       |
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |               | 60     |               |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |               | 19     |               |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |               | 41     |               |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |               | -      |               |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 7600

Project: Wet 'n' Wild Theme Park

l ocation · Prospect Sydney

Report Number: **7600 - L6168-002** 

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                 | Prospect , Sydney   |      |             |
|----------------------------|---------------------|------|-------------|
|                            |                     | <br> | Page 1 of 1 |
| Lab No :                   | L6168               |      |             |
| ID No :                    | L6168               |      |             |
| Lot No :                   | -                   |      |             |
| Item No :                  | -                   |      |             |
| Sampling Method :          | AS1289.1.2.1-6.5.4  |      |             |
| Date Sampled :             | 22/10/2010          |      |             |
| Date Tested :              | 1/11/2010           |      |             |
| Material Source :          | Site Won            |      |             |
| For Use As :               | Site Classification |      |             |
| Sample Location :          | Location: BH1       |      |             |
|                            | Depth: 0.5-0.95m    |      |             |
|                            |                     |      |             |
|                            |                     |      |             |
| Soil Description :         | Silty CLAY          |      |             |
| Type of Water Used :       | Distilled Water     |      |             |
| Temperature of Water (°C): | 25.000              |      |             |
| Emerson Class Number :     | Class 2             |      |             |
| Remarks :                  |                     |      |             |
|                            |                     |      |             |

NATA WORLD RECOGNISED

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

RP81-1

FORM NUMBER



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

## **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                | Report Number:       | 7600 - L6169-001 |
|------------------|--------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | eet South Yarra VIC 3141                       |                      |                  |
| Job Number:      | 7600                     |                                                | Report Date:         | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl  | k                                              | Order Number:        | -                |
| Location         | Prospect , Sydney        |                                                | Page 1 of 1          |                  |
| Lab No:          | L6169                    | Sample History                                 | Sample Lo            | ocation          |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C) | Location: BH2        |                  |
| Date Tested:     | 01/11/2010               |                                                | Depth: 0.5-0.95m     |                  |
| Sampled By:      | СМ                       |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                |                      |                  |
| Material Source: | Site Won                 |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                | Lot Number:          | -                |
| Remarks:         | -                        |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 28     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 13     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 15     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |
|-----------------------------------|------------------------|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |
| I <sub>P</sub> - Plasticity Index |                        |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

LS - Linear Shrinkage

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

RP23-2

NATA Accred No: 9811



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number:

Project: Wet 'n' Wild Theme Park

Report Number: 7600 - L6169-002

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Location :                  | Prospect , Sydney   |   |             |
|-----------------------------|---------------------|---|-------------|
|                             |                     |   | Page 1 of 1 |
| Lab No :                    | L6169               |   |             |
| ID No :                     | L6169               |   |             |
| Lot No :                    | -                   |   |             |
| Item No :                   | -                   |   |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |   |             |
| Date Sampled :              | 22/10/2010          |   |             |
| Date Tested :               | 1/11/2010           |   |             |
| Material Source :           | Site Won            |   |             |
| For Use As :                | Site Classification |   |             |
| Sample Location :           | Location: BH2       |   |             |
|                             | Depth: 0.5-0.95m    |   |             |
|                             |                     |   |             |
|                             |                     |   |             |
| Soil Description :          | Silty CLAY          |   |             |
| Type of Water Used :        | Distilled Water     |   |             |
| Temperature of Water (°C) : | 25.000              |   |             |
| Emerson Class Number :      | Class 2             |   |             |
| Remarks :                   |                     | • |             |

APPROVED SIGNATORY

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with

ISO/IEC 17025.

FORM NUMBER

Luke New NATA Accred No: 9811



LS - Linear Shrinkage

92 Hill St, Carrington, Newcastle, NSW, 2294

PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

# **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd                            |                                                | Report Number:       | 7600 - L6170-001 |
|------------------|-------------------------------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                                                |                      |                  |
| Job Number:      | 7600                                            |                                                | Report Date:         | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         |                                                | Order Number:        | -                |
| Location         | Prospect , Sydney                               |                                                | Page 1 of 1          |                  |
| Lab No:          | L6170                                           | Sample History                                 | Sample Location      |                  |
| Date Sampled:    | 22/10/2010                                      | Oven dried prep (50°C), oven dried (105-110°C) | Location: BH13       |                  |
| Date Tested:     | 01/11/2010                                      |                                                | Depth: 0.5-0.95m     |                  |
| Sampled By:      | СМ                                              |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4                              |                                                |                      |                  |
| Material Source: | Site Won                                        |                                                | Spec Description: -  |                  |
| For Use As:      | Site Classification                             |                                                | Lot Number:          | -                |
| Remarks:         | -                                               |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 50     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 21     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 29     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |
|-----------------------------------|------------------------|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |
| I <sub>P</sub> - Plasticity Index |                        |

| ^                              |                                                                                                                             | APPROVED SIGNATORY   | FORM NUMBER |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| NATA                           | This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. | Luke New             | RP23-2      |
| WORLD RECOGNISED ACCREDITATION |                                                                                                                             |                      |             |
|                                |                                                                                                                             | NATA Accred No: 9811 |             |



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

#### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Client Address: Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number: 760

Project: Wet 'n' Wild Theme Park

Location: Prospect, Sydney

Report Number: **7600 - L6170-002** 

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

|                             |                     | Page 1 of 1 |
|-----------------------------|---------------------|-------------|
| Lab No :                    | L6170               |             |
| ID No :                     | L6170               |             |
| Lot No :                    | -                   |             |
| Item No :                   | -                   |             |
| Sampling Method :           | AS1289.1.2.1-6.5.4  |             |
| Date Sampled :              | 22/10/2010          |             |
| Date Tested :               | 1/11/2010           |             |
| Material Source :           | Site Won            |             |
| For Use As :                | Site Classification |             |
| Sample Location :           | Location: BH13      |             |
|                             | Depth: 0.5-0.95m    |             |
| Soil Description :          | Silty CLAY          |             |
| Type of Water Used :        | Distilled Water     |             |
| Temperature of Water (°C) : | 25.000              |             |
| Emerson Class Number :      | Class 2             |             |
| Remarks :                   |                     |             |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811

LM.



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Atterberg Limits Report**

| Client:          | Village Roadshow Ltd     |                                                | Report Number:       | 7600 - L6171-001 |
|------------------|--------------------------|------------------------------------------------|----------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Stre | eet South Yarra VIC 3141                       |                      |                  |
| Job Number:      | 7600                     |                                                | Report Date:         | 03/11/2010       |
| Project:         | Wet 'n' Wild Theme Parl  | Wet 'n' Wild Theme Park                        |                      | -                |
| Location         | Prospect , Sydney        |                                                | Page 1 of 1          |                  |
| Lab No:          | L6171                    | Sample History                                 | Sample Lo            | ocation          |
| Date Sampled:    | 22/10/2010               | Oven dried prep (50°C), oven dried (105-110°C) | Location: BH7        |                  |
| Date Tested:     | 01/11/2010               |                                                | Depth: 0.5-0.95m     |                  |
| Sampled By:      | СМ                       |                                                | Material: Silty CLAY |                  |
| Sample Method:   | AS1289.1.2.1-6.5.4       |                                                |                      |                  |
| Material Source: | Site Won                 |                                                | Spec Description:    | -                |
| For Use As:      | Site Classification      |                                                | Lot Number:          | -                |
| Remarks:         | -                        |                                                | Spec Number:         | -                |

| Plasticity Tests                 | Test Method  | Specification<br>Minimum | Result | Specification<br>Maximum |
|----------------------------------|--------------|--------------------------|--------|--------------------------|
| Liquid Limit (%) W <sub>L</sub>  | AS1289.3.1.1 |                          | 52     |                          |
| Plastic Limit (%) W <sub>P</sub> | AS1289.3.2.1 |                          | 20     |                          |
| Plastic Index I <sub>P</sub>     | AS1289.3.3.1 |                          | 32     |                          |
| Linear Shrinkage (%) LS          | AS1289.3.4.1 |                          | -      |                          |

|                                   | Explanation of Symbols |  |
|-----------------------------------|------------------------|--|
| W <sub>L</sub> - Liquid Limit     | NO - Not Obtainable    |  |
| W <sub>P</sub> - Plastic Limit    | NP - Non Plastic       |  |
| I <sub>P</sub> - Plasticity Index |                        |  |
| LS - Linear Shrinkage             |                        |  |

| NATA                           |
|--------------------------------|
|                                |
| WORLD RECOGNISED ACCREDITATION |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New NATA Accred No: 9811 RP23-2



PHONE +61 2 4902 9200

FAX +61 2 4902 9299

WEB www.rca.com.au

ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Emerson Class Number Report**

Client: Village Roadshow Ltd

Level 1, 500 Chapel Street South Yarra VIC 3141

Job Number :

Client Address:

Project : Wet 'n' Wild Theme Park

Report Number: 7600 - L6171-002

Report Date: 03/11/2010

Order Number:

Test Method: AS 1289.3.8.1

| Project .                  | wet n wild theme Park | rest Method. | A5 1289.3.8.1 |
|----------------------------|-----------------------|--------------|---------------|
| Location :                 | Prospect , Sydney     |              |               |
|                            |                       |              | Page 1 of 1   |
| Lab No :                   | L6171                 |              |               |
| ID No :                    | L6171                 |              |               |
| Lot No :                   | -                     |              |               |
| Item No:                   | -                     |              |               |
| Sampling Method :          | AS1289.1.2.1-6.5.4    |              |               |
| Date Sampled :             | 22/10/2010            |              |               |
| Date Tested :              | 1/11/2010             |              |               |
| Material Source :          | Site Won              |              |               |
| For Use As :               | Site Classification   |              |               |
| Sample Location :          | Location: BH7         |              |               |
|                            | Depth: 0.5-0.95m      |              |               |
|                            |                       |              |               |
|                            |                       |              |               |
| 0.11.0                     | City Ol AV            |              |               |
| Soil Description :         | Silty CLAY            |              |               |
| Type of Water Used :       | Distilled Water       |              |               |
| Temperature of Water (°C): | 25.000                |              |               |
| Emerson Class Number :     | Class 4               |              |               |
| Remarks :                  | •                     | •            | •             |

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

Luke New

NATA Accred No: 9811

FORM NUMBER

**RP81-1** 



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 Construction Materials Testing

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6142-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method :    | AS1289.7.1.1     |
| Lab No:          | L6142                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH2    |                  |
| Date Tested:     | 01/11/2010                                      | Depth: 1.0-1.35m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

Page 1 of

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrir                       | kage Moisture Content (%):  | 22.43 | Swell MC Before(%): | 21.5 |
|                             | Shrinkage (%):              | 3.9   | Swell MC After(%):  | 21.6 |
|                             | Unit Weight (t/m³):         | 2.01  | PP Before (kPa):    | 250  |
|                             | Swell (%) :                 | 0.2   | PP After (kPa):     | 250  |
|                             | Shrink Swell Index (Iss %): | 2.2   |                     |      |
| Visual Classification :     | Silty CLAY                  | ·     | ·                   |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking :                  | Moderate                    |       |                     |      |
| Crumbling :                 | Nil                         |       |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Ma

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6143-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method :    | AS1289.7.1.1     |
| Lab No:          | L6143                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH12   |                  |
| Date Tested:     | 01/11/2010                                      | Depth: 1.5-1.85m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 17.67 | Swell MC Before(%): | 21.0 |
|                             | Shrinkage (%) :             | 2.1   | Swell MC After(%):  | 21.1 |
|                             | Unit Weight (t/m³) :        | 2.04  | PP Before (kPa):    | 175  |
|                             | Swell (%):                  | 0.0   | PP After (kPa):     | 175  |
|                             | Shrink Swell Index (Iss %): | 1.2   |                     |      |
| Visual Classification :     | Silty CLAY                  |       |                     |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking:                   | Moderate                    |       |                     |      |
| Crumbling :                 | Nil                         |       |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6144-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method:     | AS1289.7.1.1     |
| Lab No:          | L6144                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH8    |                  |
| Date Tested:     | 01/11/2010                                      | Depth: 1.0-1.35m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 25.73 | Swell MC Before(%): | 18.7 |
|                             | Shrinkage (%):              | 5.0   | Swell MC After(%):  | 20.7 |
|                             | Unit Weight (t/m³) :        | 2.06  | PP Before (kPa):    | 200  |
|                             | Swell (%) :                 | 0.2   | PP After (kPa):     | 325  |
|                             | Shrink Swell Index (Iss %): | 2.8   |                     |      |
| Visual Classification :     | Silty CLAY                  |       |                     |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking :                  | Mild                        |       |                     |      |
| Crumbling :                 | Nil                         | ·     | ·                   |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

Luke New

APPROVED SIGNATORY

NATA Accred No: 9811

FORM NUMBER



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6145-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method :    | AS1289.7.1.1     |
| Lab No:          | L6145                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH7    |                  |
| Date Tested:     | 01/11/2010                                      | Depth: 1.0-1.35m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 18.85 | Swell MC Before(%): | 12.1 |
|                             | Shrinkage (%):              | 1.4   | Swell MC After(%):  | 16.3 |
|                             | Unit Weight (t/m³) :        | 2.05  | PP Before (kPa):    | 450  |
|                             | Swell (%):                  | 0.2   | PP After (kPa):     | 450  |
|                             | Shrink Swell Index (Iss %): | 0.8   |                     |      |
| Visual Classification :     | Silty CLAY                  |       |                     |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking:                   | Mild                        |       |                     |      |
| Crumbling :                 | Nil                         |       |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6146-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method:     | AS1289.7.1.1     |
| Lab No:          | L6146                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH13   |                  |
| Date Tested:     | 03/11/2010                                      | Depth: 1.0-1.35m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 17.26 | Swell MC Before(%): | 22.8 |
|                             | Shrinkage (%):              | 2.6   | Swell MC After(%):  | 27.2 |
|                             | Unit Weight (t/m³) :        | 2.02  | PP Before (kPa):    | 450  |
|                             | Swell (%) :                 | 4.2   | PP After (kPa):     | 150  |
|                             | Shrink Swell Index (Iss %): | 2.6   |                     |      |
| Visual Classification :     | Silty CLAY                  |       |                     |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking:                   | Mild                        |       |                     |      |
| Crumbling :                 | Nil                         |       | ·                   |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6147-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method:     | AS1289.7.1.1     |
| Lab No:          | L6147                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH14   |                  |
| Date Tested:     | 06/11/2010                                      | Depth: 1.0-1.35m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |      | Page 1 of 1         |      |
|-----------------------------|-----------------------------|------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 20.8 | Swell MC Before(%): | 19.6 |
|                             | Shrinkage (%):              | 3.4  | Swell MC After(%):  | 20.7 |
|                             | Unit Weight (t/m³):         | 2.1  | PP Before (kPa):    | 150  |
|                             | Swell (%):                  | 1.5  | PP After (kPa):     | 325  |
|                             | Shrink Swell Index (Iss %): | 2.3  |                     |      |
| Visual Classification :     | Silty CLAY                  |      |                     |      |
| Inert Material Estimate(%): | 5                           |      |                     |      |
| Cracking:                   | Mild                        |      |                     |      |
| Crumbling :                 | Nil                         |      |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6148-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method:     | AS1289.7.1.1     |
| Lab No:          | L6148                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH1    |                  |
| Date Tested:     | 09/11/2010                                      | Depth: 2.0-2.45m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |      | Page 1 of 1         |      |
|-----------------------------|-----------------------------|------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 18.4 | Swell MC Before(%): | 19.8 |
|                             | Shrinkage (%):              | 3.9  | Swell MC After(%):  | 21.5 |
|                             | Unit Weight (t/m³) :        | 2.1  | PP Before (kPa):    | 350  |
|                             | Swell (%):                  | 4.7  | PP After (kPa):     | 200  |
|                             | Shrink Swell Index (Iss %): | 3.5  |                     |      |
| Visual Classification :     | Silty CLAY                  |      |                     |      |
| Inert Material Estimate(%): | 1                           |      |                     |      |
| Cracking:                   | Moderate                    |      |                     |      |
| Crumbling :                 | Nil                         |      |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811



PHONE +61 2 4902 9200 FAX +61 2 4902 9299 WEB www.rca.com.au ABN 53 063 515 711

NATA Accredited Laboratory: 9811 **Construction Materials Testing** 

### **Shrink Swell Index Report**

| Client:          | Village Roadshow Ltd                            | Report Number:   | 7600 - L6149-001 |
|------------------|-------------------------------------------------|------------------|------------------|
| Client Address:  | Level 1, 500 Chapel Street South Yarra VIC 3141 |                  | Page 1 of 1      |
| Job Number:      | 7600                                            | Report Date:     | 10/11/2010       |
| Project:         | Wet 'n' Wild Theme Park                         | Order Number:    |                  |
| Location         | Prospect , Sydney                               | Test Method:     | AS1289.7.1.1     |
| Lab No:          | L6149                                           | Sample Location  |                  |
| Date Sampled:    | 22/10/2010                                      | Location: BH10   |                  |
| Date Tested:     | 09/11/2010                                      | Depth: 0.5-0.85m |                  |
| Sampled By:      | CM                                              |                  |                  |
| Sample Method:   | AS1289.1.2.1-6.5.3                              |                  |                  |
| Material Source: | Site Won                                        |                  |                  |
| For Use As:      | Site Classification                             | Lot Number:      | -                |
| Remarks:         | -                                               | Item Number:     | -                |

|                             |                             |       | Page 1 of 1         |      |
|-----------------------------|-----------------------------|-------|---------------------|------|
| Shrin                       | kage Moisture Content (%):  | 22.83 | Swell MC Before(%): | 23.8 |
|                             | Shrinkage (%):              | 3.4   | Swell MC After(%):  | 25.4 |
|                             | Unit Weight (t/m³):         | 2.04  | PP Before (kPa):    | 350  |
|                             | Swell (%):                  | 2.4   | PP After (kPa):     | 150  |
|                             | Shrink Swell Index (Iss %): | 2.5   |                     |      |
| Visual Classification :     | Silty CLAY                  |       |                     |      |
| Inert Material Estimate(%): | 5                           |       |                     |      |
| Cracking :                  | Moderate                    |       |                     |      |
| Crumbling :                 | Nil                         |       |                     |      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

APPROVED SIGNATORY

FORM NUMBER

Luke New

NATA Accred No: 9811

### Appendix D

### **CSIRO Information Sheet BTF 18**

Landslide Risk Assessment – Example of Qualitative Terminology for use in Assessing Risk to Property

Guidelines for Hillside Construction

### Foundation Maintenance and Footing Performance: A Homeowner's Guide



BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

### Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

### **Causes of Movement**

### Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take
  place because of the expulsion of moisture from the soil or because
  of the soil's lack of resistance to local compressive or shear stresses.
  This will usually take place during the first few months after
  construction, but has been known to take many years in
  exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

### Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

### Saturation

This is particularly a problem in clay soils. Saturation creates a bog-like suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

### Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

### Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

|        | GENERAL DEFINITIONS OF SITE CLASSES                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class  | Foundation                                                                                                                                                                                                                                            |
| A      | Most sand and rock sites with little or no ground movement from moisture changes                                                                                                                                                                      |
| S      | Slightly reactive clay sites with only slight ground movement from moisture changes                                                                                                                                                                   |
| M      | Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes                                                                                                                                           |
| Н      | Highly reactive clay sites, which can experience high ground movement from moisture changes                                                                                                                                                           |
| E      | Extremely reactive sites, which can experience extreme ground movement from moisture changes                                                                                                                                                          |
| A to P | Filled sites                                                                                                                                                                                                                                          |
| P      | Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise |

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

### **Unevenness of Movement**

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- · Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure.

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

### **Effects of Uneven Soil Movement on Structures**

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.



As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical – i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

### Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend ro be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

### Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

### Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves erc.

- · Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of warer under the building.

### Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

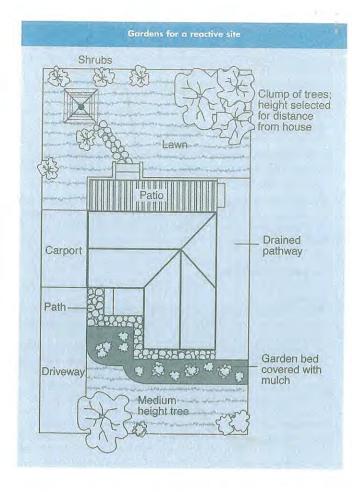
### Prevention/Cure

### Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, rhe remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to creare erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the warer will either pond or flow along the bottom of the rrench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, somerimes necessary when attempring to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plancs, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

### CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS Description of typical damage and required repair Approximate crack width Damage limit (see Note 3) category Hairline cracks <0.1 mm 0 Fine cracks which do not need repair <1 mm 1 Cracks noticeable but easily filled. Doors and windows stick slightly <5 mm 2 Cracks can be repaired and possibly a small amount of wall will need 5-15 mm (or a number of cracks 3 to be replaced. Doors and windows stick. Service pipes can fracture. 3 mm or more in one group) Weathertightness often impaired Extensive repair work involving breaking-out and replacing sections of walls, 15-25 mm but also depend 4 especially over doors and windows. Window and door frames distort. Walls lean on number of cracks or bulge noticeably, some loss of bearing in beams. Service pipes disrupted



should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

### Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

### Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

### Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

**CSIRO** PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au

Email: publishing.sales@csiro.au

### APPENDIX C: LANDSLIDE RISK ASSESSMENT

## QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY

### **QUALITATIVE MEASURES OF LIKELIHOOD**

| roximate Ar         | Approximate Annual Probability | Implied Indicative Landslide | ve Landslide  |                                                                                         |                 | -     |
|---------------------|--------------------------------|------------------------------|---------------|-----------------------------------------------------------------------------------------|-----------------|-------|
| Indicative<br>Value | Notional<br>Boundary           | Recurrence Interval          | Interval      | Description                                                                             | Descriptor      | Level |
| 10-1                | 510-2                          | 10 years                     |               | The event is expected to occur over the design life.                                    | ALMOST CERTAIN  | A     |
| 10-2                | OXIO                           | 100 years                    | 20 years      | The event will probably occur under adverse conditions over the design life.            | LIKELY          | В     |
| 10-3                | 5x10 °                         | 1000 years                   | 200 years     | The event could occur under adverse conditions over the design life.                    | POSSIBLE        | C     |
| 10-4                | 5x10 <sup>-4</sup>             | 10,000 years                 | STRUT VESTS   | The event might occur under very adverse circumstances over the design life.            | UNLIKELY        | D     |
| 10-5                | 5x10 <sup>-5</sup>             | 100,000 years                | 20,000 years  | The event is conceivable but only under exceptional circumstances over the design life. | RARE            | E     |
| 10-6                | OXIO                           | 1,000,000 years              | 200,000 years | The event is inconceivable or fanciful over the design life.                            | BARELY CREDIBLE | H     |

The table should be used from left to right; use Approximate Annual Probability or Description to assign Descriptor, not vice versa. Note:

### QUALITATIVE MEASURES OF CONSEQUENCES TO PROPERTY

| Approximate         | Approximate Cost of Damage |                                                                                                                                                                                                 |               |       |
|---------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|
| Indicative<br>Value | Notional<br>Boundary       | Description                                                                                                                                                                                     | Descriptor    | Level |
| 200%                |                            | Structure(s) completely destroyed and/or large scale damage requiring major engineering works for stabilisation. Could cause at least one adjacent property major consequence damage.           | CATASTROPHIC  | 1     |
| %09                 | %001                       | Extensive damage to most of structure, and/or extending beyond site boundaries requiring significant stabilisation works. Could cause at least one adjacent property medium consequence damage. | MAJOR         | 2     |
| 20%                 | 40%                        | Moderate damage to some of structure, and/or significant part of site requiring large stabilisation works. Could cause at least one adjacent property minor consequence damage.                 | MEDIUM        | 3     |
| 5%                  | 10%                        | Limited damage to part of structure, and/or part of site requiring some reinstatement stabilisation works.                                                                                      | MINOR         | 4     |
| 0.5%                | 0/1                        | Little damage. (Note for high probability event (Almost Certain), this category may be subdivided at a notional boundary of 0.1%. See Risk Matrix.)                                             | INSIGNIFICANT | 5     |

The Approximate Cost of Damage is expressed as a percentage of market value, being the cost of the improved value of the unaffected property which includes the land plus the (5) Notes:

The Approximate Cost is to be an estimate of the direct cost of the damage, such as the cost of reinstatement of the damaged portion of the property (land plus structures), stabilisation works required to render the site to tolerable risk level for the landslide which has occurred and professional design fees, and consequential costs such as legal fees, temporary accommodation. It does not include additional stabilisation works to address other landslides which may affect the property. (3)

The table should be used from left to right; use Approximate Cost of Damage or Description to assign Descriptor, not vice versa (4)

# APPENDIX C: - QUALITATIVE TERMINOLOGY FOR USE IN ASSESSING RISK TO PROPERTY (CONTINUED)

## **QUALITATIVE RISK ANALYSIS MATRIX – LEVEL OF RISK TO PROPERTY**

| LIKELIHOOD         | TOOD                                                     | CONSEQUI             | ENCES TO PROP   | CONSEQUENCES TO PROPERTY (With Indicative Approximate Cost of Damage) | ve Approximate Cos | of Damage)                  |
|--------------------|----------------------------------------------------------|----------------------|-----------------|-----------------------------------------------------------------------|--------------------|-----------------------------|
|                    | Indicative Value of<br>Approximate Annual<br>Probability | 1: CATASTROPHIC 200% | 2: MAJOR<br>60% | 3: MEDIUM<br>20%                                                      | 4: MINOR<br>5%     | 5:<br>INSIGNIFICANT<br>0.5% |
| A - ALMOST CERTAIN | 10-1                                                     | VĤ                   | HA              | VH                                                                    | Н                  | Mor I, (5)                  |
| 3 - LIKELY         | 10-2                                                     | ΑΛ                   | VH              | Н                                                                     | Z                  |                             |
| C - POSSIBLE       | 10-3                                                     | VH                   | 工               | ×                                                                     | M                  | N N                         |
| O - UNLIKELY       | 10-4                                                     | Н                    | M               |                                                                       | T,                 | M                           |
| 3 - RARE           | 10-5                                                     | M                    | T               |                                                                       | VI.                | M                           |
| - BARELY CREDIBLE  | 10-6                                                     | Г                    | AL              | VI.                                                                   | VI.                | N.                          |

Notes: (5) For Cell A5, may be subdivided such that a consequence of less than 0.1% is Low Risk.

(6) When considering a risk assessment it must be clearly stated whether it is for existing co

When considering a risk assessment it must be clearly stated whether it is for existing conditions or with risk control measures which may not be implemented at the current

### RISK LEVEL IMPLICATIONS

|    | Risk Level     | Example Implications (7)                                                                                                                                                                                                                                                  |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VH | VERY HIGH RISK | Unacceptable without treatment. Extensive detailed investigation and research, planning and implementation of treatment options essential to reduce risk to Low; may be too expensive and not practical. Work likely to cost more than value of the property.             |
| Н  | HIGH RISK      | Unacceptable without treatment. Detailed investigation, planning and implementation of treatment options required to reduce risk to Low. Work would cost a substantial sum in relation to the value of the property.                                                      |
| M  | MODERATE RISK  | May be tolerated in certain circumstances (subject to regulator's approval) but requires investigation, planning and implementation of treatment options to reduce the risk to Low. Treatment options to reduce to Low risk should be implemented as soon as practicable. |
| Г  | LOW RISK       | Usually acceptable to regulators. Where treatment has been required to reduce the risk to this level, ongoing maintenance is required.                                                                                                                                    |
| VL | VERY LOW RISK  | Acceptable. Manage by normal slope maintenance procedures.                                                                                                                                                                                                                |

The implications for a particular situation are to be determined by all parties to the risk assessment and may depend on the nature of the property at risk; these are only given as a general guide. 0 Note:

### APPENDIX F- EXAMPLE OF VULNERABILITY VALUES

### SUMMARY OF HONG KONG VULNERABILITY RANGES FOR PERSONS, AND RECOMMENDED VALUES FOR LOSS OF LIFE FOR LANDSLIDING IN SIMILAR SITUATIONS

The following table is adapted from P J Finlay, G R Mostyn & R Fell (1999). Landslides: Prediction of Travel Distance and Guidelines for Vulnerability of Persons. Proc 8th. Australia New Zealand Conference on Geomechanics, Hobart. Australian Geomechanics Society, ISBN 186445 0029, Vol 1, pp.105-113.

| Case                                     | Range in Data | Recommended<br>Value | Comments                                   |
|------------------------------------------|---------------|----------------------|--------------------------------------------|
| Person in Open Space                     |               |                      |                                            |
| If struck by a rockfall                  | 0.1 - 0.7     | 0.5                  | May be injured but unlikely to cause death |
| If buried by debris                      | 0.8 - 1.0     | 1.0                  | Death by asphyxia almost certain           |
| If not buried                            | 0.1 - 0.5     | 0.1                  | High chance of survival                    |
| Persons in a Vehicle                     |               |                      |                                            |
| If the vehicle is buried/crushed         | 0.9 – 1.0     | 1.0                  | Death is almost certain                    |
| If the vehicle is damaged only           | 0 - 0.3       | 0.3                  | High chance of survival                    |
| Person in a Building                     |               |                      | · <u>-</u>                                 |
| If the building collapses                | 0.9 - 1.0     | 1.0                  | Death is almost certain                    |
| If the building is inundated with debris | 0.8 – 1.0     | 1.0                  | Death is highly likely                     |
| and the person buried                    |               |                      |                                            |
| If the debris strikes the building only  | 0 - 0.1       | 0.05                 | Very high chance of survival               |

### EXAMPLE OF VULNERABILITY VALUES FOR DESTRUCTION OF PEOPLE, BUILDINGS AND ROADS

The following table is adapted from Mariou Michael-Leiba, Fred Baynes, Greg Scott & Ken Granger (2002). Quantitative Landslide Risk Assessment of Cairns. Australian Geomechanics, June 2002.

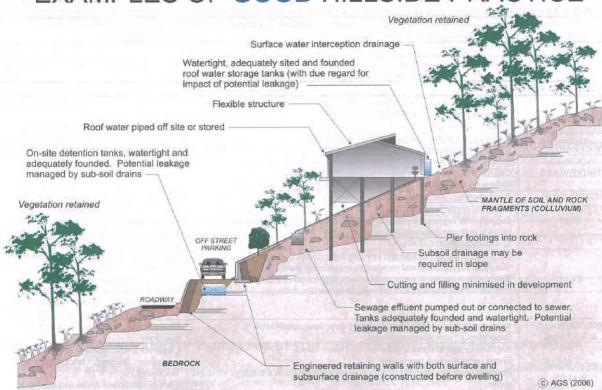
| Geomorphic Unit     |        | Vulnerability Values |       |  |  |
|---------------------|--------|----------------------|-------|--|--|
| deomorphic out      | People | Buildings            | Roads |  |  |
| Hill slopes         | 0.05   | 0.25                 | 0.3   |  |  |
| Proximal debris fan | 0.5    | 1.0                  | 1.0   |  |  |
| Distal debris fan   | 0.05   | 0.1                  | 0.3   |  |  |

### EXAMPLE OF VULNERABILITY VALUES FOR LIFE FOR ROCKFALLS AND DEBRIS FLOWS FOR LAWRENCE HARGRAVE DRIVE PROJECT, COALCLIFF TO CLIFTON AREA, AUSTRALIA

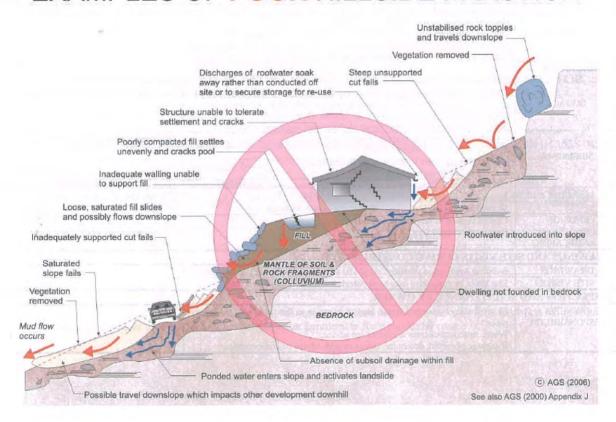
The following table is adapted from R A Wilson, A T Moon, M Hendricks & I E Stewart (2005).

Application of quantitative risk assessment to the Lawrence Hargrave Drive Project, New South Wales, Australia.

Landslide Risk Management - Hungr, Fell, Couture & Eberhardt (eds) 2005. Taylor & Francis Group, London, ISBN 041538 043X.


| Order of magnitude of landslide crossing | Rockfalls from<br>Scarborough Cliff |                    | Debris flow from<br>Northern Amphitheatre |                                              |
|------------------------------------------|-------------------------------------|--------------------|-------------------------------------------|----------------------------------------------|
| road (m³)                                | Landslide hits car                  | Car hits landslide | Landslide hits car                        | Car hits landslide                           |
| 0.03                                     | 0.05                                | 0.006              | _                                         | _                                            |
| 0.3                                      | 0.1                                 | 0.002              | _                                         | -                                            |
| 3                                        | 0.3                                 | 0.03               | 0.001                                     | <u>.                                    </u> |
| 30                                       | 0.7                                 | 0.03               | 0.01                                      | 0.001                                        |
| 300                                      | 1                                   | 0.03               | 0.1                                       | 0.003                                        |
| 3,000                                    | 1                                   | 0.03               | 1                                         | 0.003                                        |

**NOTE:** The above data should be applied with common sense, taking into account the circumstances of the landslide being studied. Judgment may indicate values other than the recommended value are appropriate for a particular case.


### APPENDIX G - SOME GUIDELINES FOR HILLSIDE CONSTRUCTION

| ADVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GOOD ENGINEERING PRACTICE                                                                                                                                                                                                                                                                                                          | POOR ENGINEERING PRACTICE                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GEOTECHNICAL<br>ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Obtain advice from a qualified, experienced geotechnical practitioner at early stage of planning and before site works.                                                                                                                                                                                                            | Prepare detailed plan and start site works before geotechnical advice.                                                                                                                                                                                                            |
| PLANNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |
| SITE PLANNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Having obtained geotechnical advice, plan the development with the risk arising from the identified hazards and consequences in mind.                                                                                                                                                                                              | Plan development without regard for the Risk.                                                                                                                                                                                                                                     |
| DESIGN AND CONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STRUCTION                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| HOUSE DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Use flexible structures which incorporate properly designed brickwork, timber or steel frames, timber or panel cladding. Consider use of split levels. Use decks for recreational areas where appropriate.                                                                                                                         | Floor plans which require extensive cutting and filling.  Movement intolerant structures.                                                                                                                                                                                         |
| SITE CLEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Retain natural vegetation wherever practicable.                                                                                                                                                                                                                                                                                    | Indiscriminately clear the site.                                                                                                                                                                                                                                                  |
| ACCESS &<br>DRIVEWAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Satisfy requirements below for cuts, fills, retaining walls and drainage. Council specifications for grades may need to be modified. Driveways and parking areas may need to be fully supported on piers.                                                                                                                          | Excavate and fill for site access before geotechnical advice.                                                                                                                                                                                                                     |
| EARTHWORKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Retain natural contours wherever possible.                                                                                                                                                                                                                                                                                         | Indiscriminatory bulk earthworks.                                                                                                                                                                                                                                                 |
| Cuts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimise depth. Support with engineered retaining walls or batter to appropriate slope. Provide drainage measures and erosion control.                                                                                                                                                                                             | Large scale cuts and benching. Unsupported cuts. Ignore drainage requirements                                                                                                                                                                                                     |
| FILLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Minimise height.  Strip vegetation and topsoil and key into natural slopes prior to filling.  Use clean fill materials and compact to engineering standards.  Batter to appropriate slope or support with engineered retaining wall.  Provide surface drainage and appropriate subsurface drainage.                                | Loose or poorly compacted fill, which if it fails, may flow a considerable distance including onto property below.  Block natural drainage lines.  Fill over existing vegetation and topsoil.  Include stumps, trees, vegetation, topsoil, boulders, building rubble etc in fill. |
| ROCK OUTCROPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remove or stabilise boulders which may have unacceptable risk.                                                                                                                                                                                                                                                                     | Disturb or undercut detached blocks or                                                                                                                                                                                                                                            |
| & BOULDERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Support rock faces where necessary.                                                                                                                                                                                                                                                                                                | boulders.                                                                                                                                                                                                                                                                         |
| RETAINING<br>WALLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Engineer design to resist applied soil and water forces. Found on rock where practicable. Provide subsurface drainage within wall backfill and surface drainage on slope above. Construct wall as soon as possible after cut/fill operation.                                                                                       | Construct a structurally inadequate wall such as sandstone flagging, brick or unreinforced blockwork.  Lack of subsurface drains and weepholes.                                                                                                                                   |
| FOOTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Found within rock where practicable. Use rows of piers or strip footings oriented up and down slope. Design for lateral creep pressures if necessary. Backfill footing excavations to exclude ingress of surface water.                                                                                                            | Found on topsoil, loose fill, detached boulders or undercut cliffs.                                                                                                                                                                                                               |
| SWIMMING POOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Engineer designed. Support on piers to rock where practicable. Provide with under-drainage and gravity drain outlet where practicable. Design for high soil pressures which may develop on uphill side whilst there may be little or no lateral support on downhill side.                                                          |                                                                                                                                                                                                                                                                                   |
| DRAINAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |
| SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Provide at tops of cut and fill slopes.  Discharge to street drainage or natural water courses.  Provide general falls to prevent blockage by siltation and incorporate silt traps.  Line to minimise infiltration and make flexible where possible.  Special structures to dissipate energy at changes of slope and/or direction. | Discharge at top of fills and cuts. Allow water to pond on bench areas.                                                                                                                                                                                                           |
| SUBSURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Provide filter around subsurface drain. Provide drain behind retaining walls. Use flexible pipelines with access for maintenance. Prevent inflow of surface water.                                                                                                                                                                 | Discharge roof runoff into absorption trenches.                                                                                                                                                                                                                                   |
| SEPTIC & SULLAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Usually requires pump-out or mains sewer systems; absorption trenches may be possible in some areas if risk is acceptable.  Storage tanks should be water-tight and adequately founded.                                                                                                                                            | Discharge sullage directly onto and into slopes.<br>Use absorption trenches without consideration<br>of landslide risk.                                                                                                                                                           |
| EROSION<br>CONTROL &<br>LANDSCAPING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control erosion as this may lead to instability. Revegetate cleared area.                                                                                                                                                                                                                                                          | Failure to observe earthworks and drainage recommendations when landscaping.                                                                                                                                                                                                      |
| DRAWINGS AND S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITE VISITS DURING CONSTRUCTION                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                   |
| DRAWINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Building Application drawings should be viewed by geotechnical consultant                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |
| SITE VISITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site Visits by consultant may be appropriate during construction/                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |
| THE RESIDENCE OF THE PARTY OF T | MAINTENANCE BY OWNER                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   |
| OWNER'S<br>RESPONSIBILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clean drainage systems; repair broken joints in drains and leaks in supply pipes. Where structural distress is evident see advice. If seepage observed, determine causes or seek advice on consequences.                                                                                                                           |                                                                                                                                                                                                                                                                                   |

### EXAMPLES OF GOOD HILLSIDE PRACTICE



### **EXAMPLES OF POOR HILLSIDE PRACTICE**

