5 Concept Stormwater Management Requirements

5.1 Objectives

On the basis of investigations and findings presented in this study, the following drainage quantity and quality objectives are recommended. These should be in addition to any of Council's standard controls and are specific to the requirements for long-term management of the SEPP26 lands.

Water Quantity Management

The following water quantity design objectives are recommended for all development:

- 1. On-site stormwater detention (OSD) shall be provided for the site to ensure that pre-development flows are maintained up to the 1 in 100 year ARI storm event.
- 2. OSD volumes shall be determined on a individual subcatchment basis and shall not be based on the aggregated total site discharge.
- 3. The following specific controls are required for each subcatchment:
 - a. A single OSD structure shall be provided at the lowest point possible in the catchment receiving urban drainage. This shall manage water from the entire sub-catchment.
 - b. Each OSD shall be provided with an outlet structure(s) that allows flows to be spread such that they mimic current undeveloped surface flows arriving at the SEPP 26 rainforest.
 - c. Each OSD shall where possible, be integrated with any endof-line water quality management structure.
 - d. Each OSD shall be provided with a temporary storage volume in addition to the OSD volume which can be directed to groundwater for recharge after treatment. Temporary storage volumes shall be sized on a subcatchment basis to ensure that surplus water (ie. increased runoff received less increased evapotranspiration lost) within

the revegetation area is passed to the groundwater system.

e. Each OSD shall be provided with variable outlet control to enable maximum temporary ponded water storage levels and therefore recharge rates to groundwater to be controlled.

Water Quality

The following water quality design objectives are recommended met for all development:

- All urban stormwater released to the SEPP 26 wetland should retain similar nutrient and suspended sediment concentrations to those being delivered under undeveloped conditions. These concentrations shall be based on representative surface and groundwater sampling prior to design of any water quality management system.
- 2. The following specific controls are recommended for each subcatchment:
 - a. All surface water used to recharge groundwater shall be treated prior to recharge occurring such that similar nutrient concentrations to existing groundwater conditions are maintained.
 - b. Any stormwater treatment device shall be designed such that it will have the capacity to receive and treat up to an additional 30 % water volume annually in the event that groundwater recharge rates need to be increased in the future in response to climate change.

5.2 Quality Management

5.2.1 Overview

The MUSIC water quality model was used to determine preliminary water treatment requirements. Whilst this is not a precise engineering design tool, it does provide a means by which pre- and post-development stormwater quality can be assessed and determine preliminary sizes of any stormwater treatment structures.

5.2.2 Set-up and Assumptions

MUSIC model set-up and assumptions are summarised in Table 20. Model layout for pre- and post-development scenarios (with treatment) are provided in Attachment B. Given that at the time of

document preparation, urban design layouts were in concept stages only, analyses were detailed to the sub-catchment level.

Table 20: MUSIC model sub-catchment areas for existing conditions (ha).

Catchment	Area (ha)	
C1 - Rural	1,213	
C1 - Vegetation Regeneration Area	0.560	
C2 - Rural	3,704	
C3 - Rural	3,285	
C3 - Vegetation Regeneration Area	0.969	
C4 - Rural	0.106	
C4 - Vegetation Regeneration Area	0.246	

Table 21: MUSIC model sub-catchment areas for existing conditions (ha).

CATCHMENTS	AREA (ha)
C1 - Vegetation Regeneration Area	0.560
C1 - 40 m Vegetation Buffer	0.566
C1 - Urban Roads	0.184
C1 - All Urban	0.463
C2 - Vegetation Regeneration Area	0.000
C2 - 40 m Vegetation Buffer	1.107
C2 - Urban Roads	0.923
C2 - All Urban	1.674
C3 - Vegetation Regeneration Area	0.926
C3 -40 m Vegetation Buffer	0.374
C3 - Urban Roads	0.858
C3 - All Urban	2.096
C4 - Vegetation Regeneration Area	0.240
C4 - 40 m Vegetation Buffer	0.100
C4 - Urban Roads	0.000
C4 - All Urban	0.011

Table 22: Preliminary water quality modelling targets based on existing groundwater quality (mg/L).

Parameter	Target
Total Nitrogen (mg/L)	< 1.0
Total Phosphorus (mg/L)	< 0.6
Suspended Solids (mg/L)	< 50

Table 23: MUSIC model event mean concentrations (EMCs) and dry weather flow concentrations (DWC) (mg/L).

Туре	Parameter	Concentration (mg/L)
Urban Roads	TN	2.100
	TP	0.260
	22	260
All Urban	TN	2.700
	TP	0.340
	SS	150
Rural	TN	2,050
	TP	0.210
	SS	105
Forest	TN	0.850
	TP	0.075
	SS	80

5.2.3 Preliminary Structure Specifications

The following comments are made in relation:

- 1. Vegetation buffer plantings were included as part of the treatment train. Areas were based on existing aerial photography and the concept development layout (Attachment A).
- 2. Bio-filtration beds were used to treat urban runoff prior to release to the SEPP 26 lands. A single bed was used as an 'end-of-the-line' treatment system. Preliminary design parameters included:

Extended detention depth	0.5 m
Seepage loss	5.0 mm/hour
Filter depth	0.9 m
Filter median particle diameter	1.1 mm
Filter K _{sat}	40 mm/hour

We note that these parameters are preliminary and subject to modification and more detailed design at the development application stage of documentation. However, the preliminary specifications enabled preliminary estimates of bio-filtration unit areas to be estimated.

Preliminary bio-filtration surface areas are provided in Table 24.

Table 24: Preliminary estimates of bio-filtration unit surface areas (m²).

Catchment	Area (m²)
C1	210
C2	560
C3	750

5.2.4 Results

Results of MUSIC modelling are provided Table 25. These indicate that water quality targets (in terms of concentration, see Table 22) and discharge load targets (post-development ≤ pre-development load) to the SEPP26 land are achieved by the proposed treatment train. We note that gross pollutants have not been included in the modelling but we will need to be included as part of any future treatment train.

Table 25: MUSIC modelling results.

Existing Sile Conditions											
	(Load								
Catchment	TSS (mg/L)	TP (mg/L)	TN (mg/L)	TSS (kg/yr)	TP (kg/yr)	TN (kg/yr)					
C1	43.6	0.07	0.86	972.0	1.7	13,9					
C2	51.5	0.10	0.91	2370.0	4.8	36.9					
C3	46.3	0.08	0.88	2500.0	4.0	37.1					
C4	33.0	0.05	0.80	133,0	0.2	1.92					
Net / Total	47.3	0.08	88,0	5970.0	10.7	89.9					
Post-developme	ent Site Conditio	ons									
C1	23.5	0,04	0.83	332,0	0.7	10.4					
C2	22.4	0.04	0.85	515.0	2,1	34,6					
C3	23.0	0.04	0.86	593.0	2.3	37.2					
C4	52.9	0.09	1.07	113.0	0.1	1.6					
Net / Total	28.7	0,06	0.92	1550.0	5.3	83,9					
Post-developme	ent Load Chang	ge (kg/year)		-4820.0	-5,4	-6,0					

5.3 Quantity Management

5.3.1 Recharge Requirements

In accordance with the water quantity management objectives, there will be some requirement to enable excess surface water to adjacent to and within the revegetation area to be pass directly to groundwater after treatment in the bio-filtration units.

Preliminary estimates of annual recharge volumes are provided in Table 26. These will need to be refined through more detailed modelling (such as daily water balance modelling) as part of development application design and documentation. On the basis that vertical K_{sat} will be of the order of 4-5 m/d for recharge pits penetrating to the basal aquifer sands, our preliminary water balance modelling indicates that between 1 - 4 recharge pits will be required for catchments C1-C3.

Table 26: Preliminary design specifications for groundwater recharge pits.

Catchment	Estimate of Annual Surplus Runoff to go to Groundwater (ML/year)	Mean Design Recharge Rate for Infiltration Systems (m³/d)	Total Recharge Well(s) Surface Area (m²)	Number of 1.5x1.5 m Recharge Pits
C1	2.50	6.8	1.4	1
C2	15.12	41.4	8.3	4
C3	13.65	37.4	7.5	3
C4	0.00	0.0	0.0	0

5.3.2 Stormwater Detention

The DRAINS model was used to provide preliminary estimates of preand post-development sub-catchment flows to the SEPP26 lands. 70 % impervious area was assumed for the developed urban area. Preliminary on-site stormwater detention (OSD) specifications were determined on the following basis:

Available head and ground levels Type Minimum Surface Area

Council survey data Dry surface depression Based on bio-filtration

DRAINS model set-up, layout and detailed results are provided in Attachment B. A summary of OSD specifications is provided in Table 27.

Table 27: Preliminary design specifications for groundwater recharge pits.

Catchment	Storage Volume (m³)	Surface Area (m²)	Outlet Number & Size (mm)	Existing 100 Year ARI (m³/s)	Developed 100 Year ARI (m³/s)
C1	126	210	6 x 225	0.434	0.420
C2	476	560	5 x 450	1.610	1.610
C3	450	750	7 X 4 50	1.840	1.820
C4	na	na	nα	0.259	0.259

5.4 Concept Designs

A concept design for the end-of-line stormwater management structures has been prepared and is provided in Attachment B. The following comments are made in respect of the concept design:

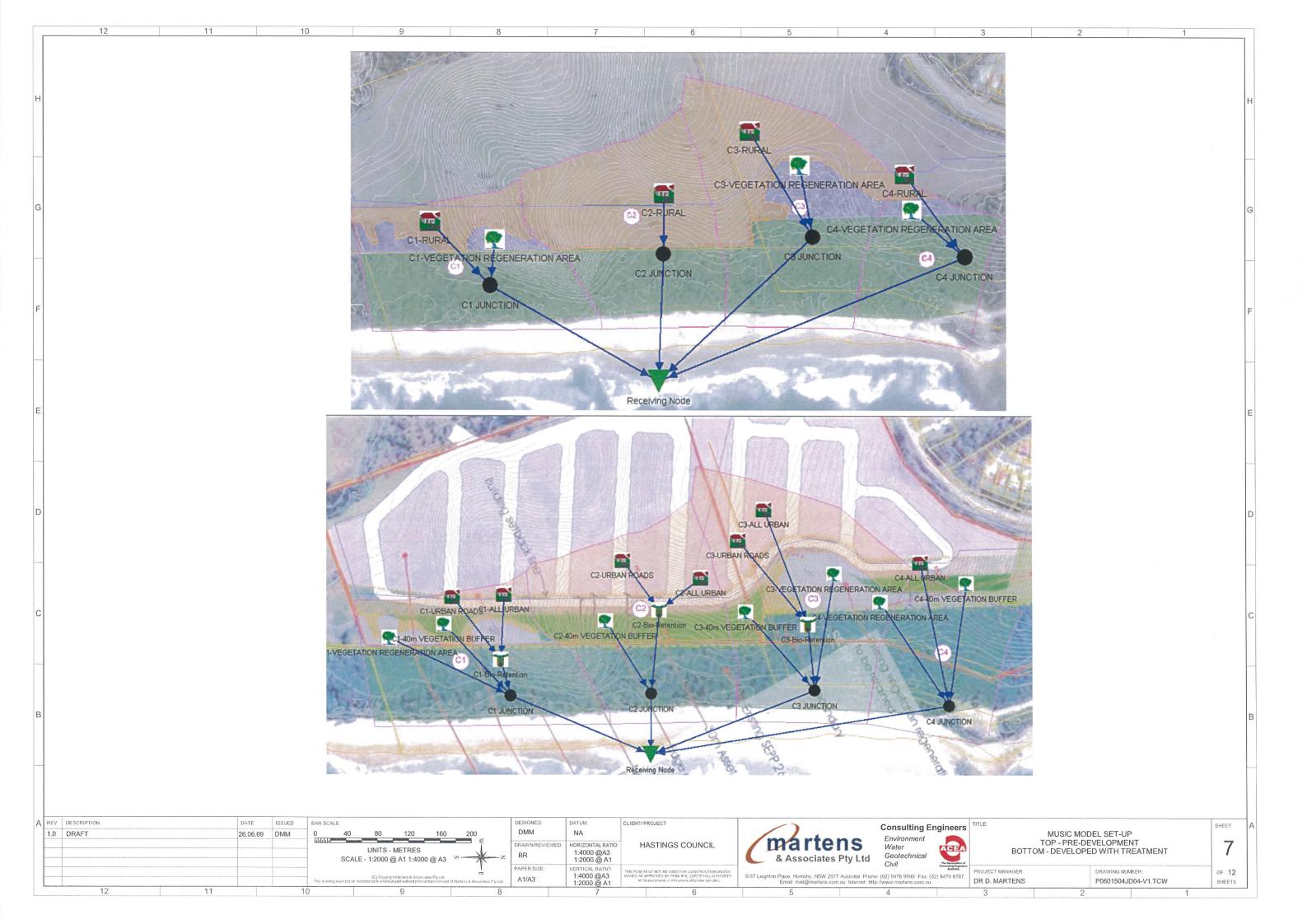
- 1. OSD and bio-filtration units are integrated into a single stormwater improvement device (SID).
- 2. SID unit locations are flexible.
- 3. Each catchment may contain one or more SIDs, although the preference is for a single unit in order to reduce maintenance requirements.
- 4. A single SID could be used to manage stormwater from 2 adjoining sub-catchments, providing that suitable fall can be achieved and the impacts on groundwater level have been fully determined.
- 5. SID outlet structures incorporate a water level control device which controls the bio-filtration unit invert and therefore the volume of water which is annually passed to groundwater.
- 6. The bio-filtration unit under-drain shall be directed to groundwater recharge. Recharge shall be undertaken by 1 or more pits in each sub-catchment. The recharge pits can be separated from the bio-filtration invert level control device. This will depend on final detailed design specifications and layout of the urban area.
- 7. SIDs will need to be provided with adequate access for ongoing maintenance. The concept design provides for a wide bund to enable access to all areas of the SID. Where steeper side batters are required, a vehicular access ramp should be provided to enable bed maintenance.

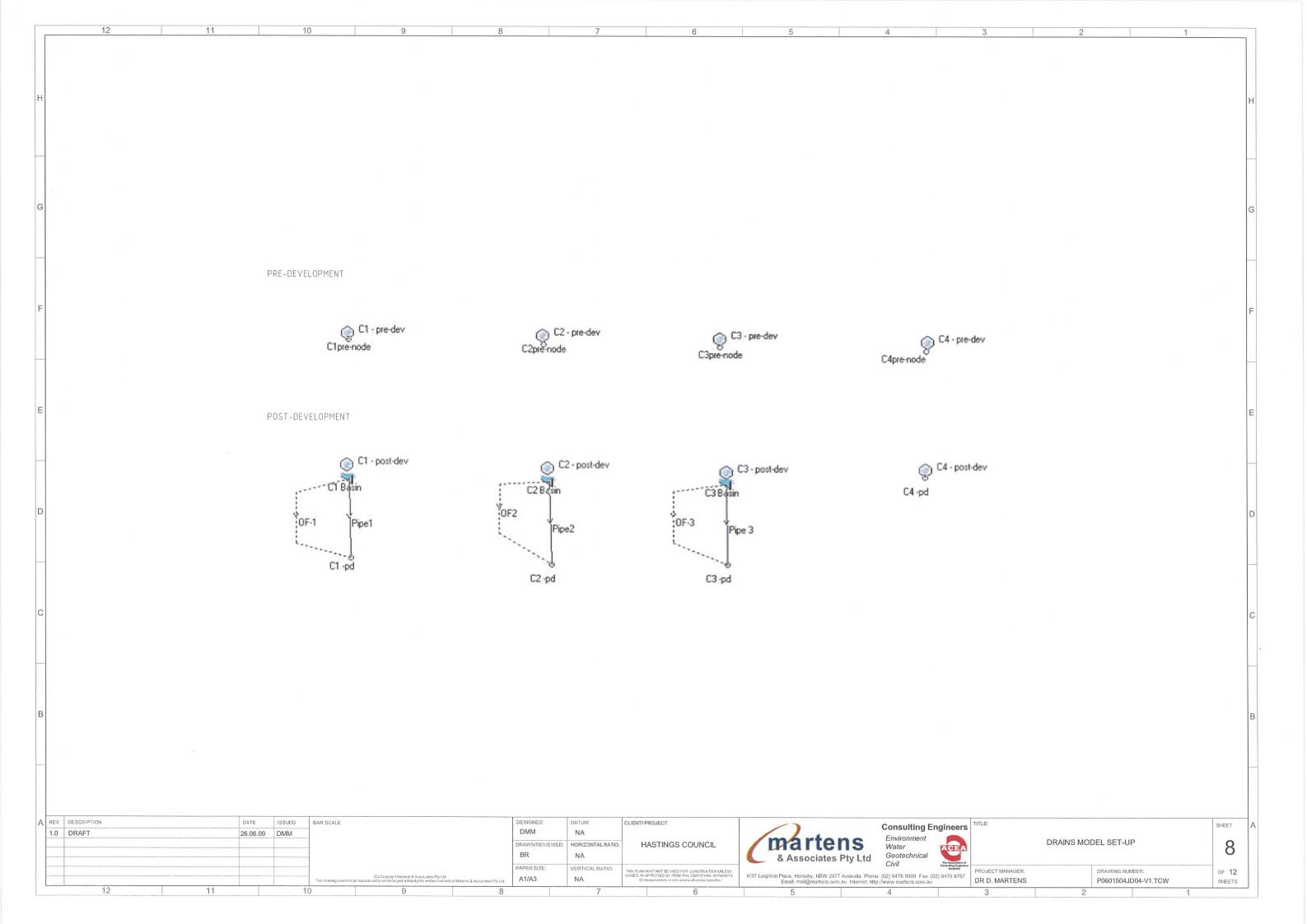
5.5 Excavation Management

The recharge pits shall be excavated to penetrate into the medium – coarse sand beds beneath the upper clayey soil horizons. Pits should generally not be excavated below the water table. This will ensure that pit excavation can be shored by standard methods without significant risk of excavation collapse.

In the event that excavation into the permanent water table is required (to reach the more permeable underlying sand layers), permanent

shoring by way of contiguous or secant piles should be investigated prior to excavation commencing.


5.6 Maintenance


We expect the following will be required in terms of SID maintenance:

- 1. Gross pollutants should not be allowed to enter the SID units. Gross pollutant traps should be installed upstream of SID units to prevent ingress of these materials into the SID.
- If the SID units are vegetated with grasses, these may need to be mown in accordance with normal maintenance regime. As an alternative, grass and other vegetative species could be selected which do not require regular mowing to reduce the need for this type of routine maintenance.
- 3. Geotextile covered litter baskets within the recharge pits should be routinely inspected to assess accumulation of fines. We do not expect any significant carry through of fines from the bio-filtration unit to the recharge pit on the basis that most fines should be removed within the upper bio-filter media layers.
- 4. The bio-filtration units should be relatively free draining with surface water ponding for no more than 1 day. Annual inspections following extended wet-weather should preferably be undertaken to confirm that the bio-filtration units continue to drain adequately.

In the event that bio-filtration units do not adequately drain, then the top 100 mm of media may need to be removed and replaced. On the basis of our experience with similar bio-filtration units, careful design and construction should ensure that 're-dressing' the bio-filtration units should not be required for at least 15 years.

12 11 10 9 8 7 6 5 4 3 2 1

DRAINS PRE-DEVELOPMENT MODEL INPUT DETAILS

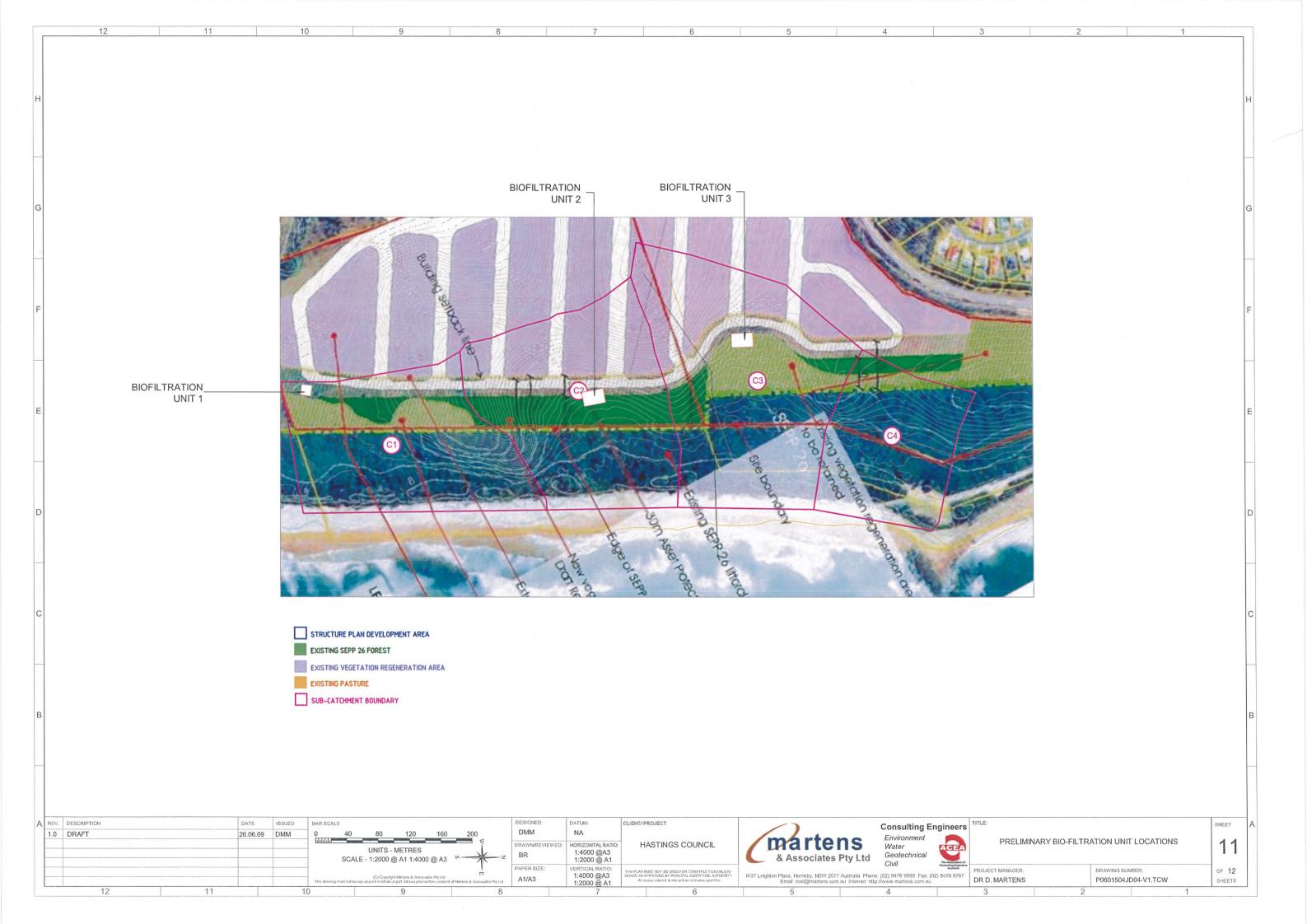
PIT / NODE DETAILS			Version 9										
Name	Type	Family	Size	Ponding	Pressure	Surface	Max Pond	Base	Blocking	X	У	Bolt-down	id
				Volume	Change	Elev (m)	Depth (m)	Inflow	Factor			lid	
				(cu.m)	Coeff. Ku			(cu.m/s)					
C1pre-node	Node					NA		0)	60.671	93.454		53061608
C2pre-node	Node					NA		0)	132.57	91.736	;	53061856
C3pre-node	Node					NA		0)	198.089	91		53061857
C4pre-node	Node					NA		0		274.405	89.527	'	53061858
DETENTION BASIN DETAILS													
Name	Elev	Surf. Area	Init Vol. (cu.m)	Outlet Type	K	Dia(mm)	Centre RL	Pit Family	Pit Type	x	у	HED	Crest RL
SUB-CATCHMENT DETAILS													
Name	Pit or	Total	Paved	Grass	Supp	Paved	Grass	Supp	Paved	Grass	Supp	Paved	Grass
	Node	Area	Area	Area	Area	Time	Time	Time	Length	Length	Length	Slope(%)	Slope
		(ha)	%	%	%	(min)	(min)	(min)	(m)	(m)	(m)	%	%
C1 - pre-dev	C1pre-no	0.647	(100	() (10	0 0)				
C2 - pre-dev	C2pre-no	2.597	C	100	() (10	0 0)				
C3 - pre-dev	C3pre-no	2.954	(100	() (10	0 0)				
C4- pre-dev	C4pre-no	0.352	(100	() () 10	0 0)				
PIPE DETAILS													
Name	From	То	Length	U/S IL	D/S IL	Slope	Туре	Dia	I.D.	Rough	Pipe Is	No. Pipes	Chg From
			(m)	(m)	(m)	(%)		(mm)	(mm)				
DETAILS of SERVICES CROSSING PIPES													
Pipe	Chg	Bottom	Height of Service	Chg	Bottom	Height of	Chg	Bottom	Height of Service	etc			
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	etc			
CHANNEL DETAILS										-			
Name	From	То	Туре	Length	U/S IL	D/S IL	Slope	Base Width	L.B. Slope	R.B. Slope	Manning	Depth	Roofed
				(m)	(m)	(m)	(%)	(m)	(1:?)	(1:?)	n	(m)	

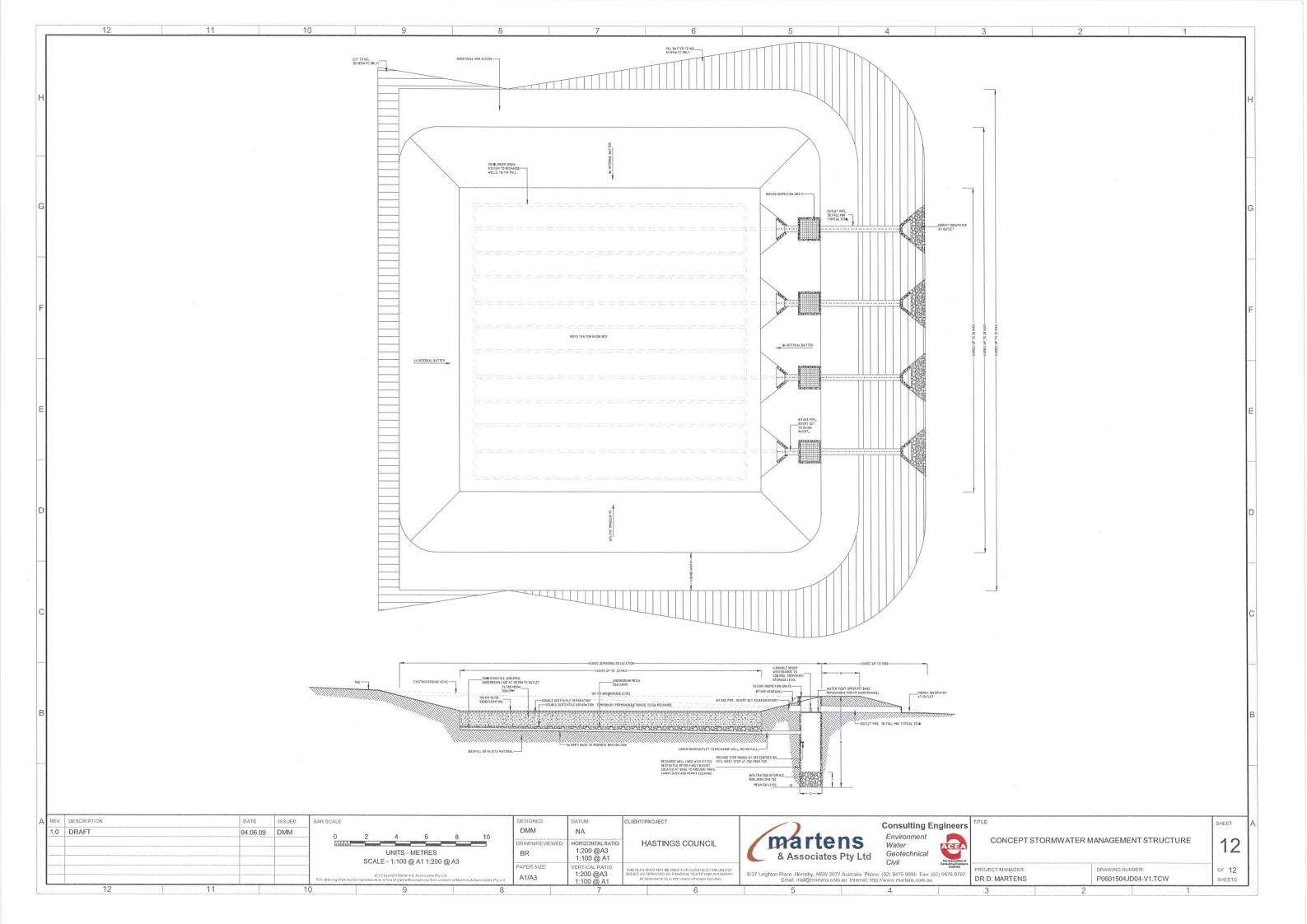
DRAINS RESULTS FOR 1 IN 100 YR ARI STORM (PRE-DEVELOPMENT)

P. Q. M. M. (c) 0.434 1.741 1.98 0.236 C.326 C.326 2.3	Paved Vlax Q cu.m/s) 0 0 0	1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff (20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1) 10) 10) 10)
P. Q. M. M. (c) 0.434 1.741 1.98 0.236 C.326 C.326 2.3	Paved Max Q cu.m/s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flow Arriving (cu.m/s) Grassed Max Q (cu.m/s) 0.434 1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Volume (cu.m) Paved Tc (min) 0 0 0 0 Pervious Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	Freeboard (m) Grassed Tc (min) 10 10 10 10 10 10	Supp. Tc (min)
P P (0.434 1.741 1.98 0.236	Paved Max Q cu.m/s) 0 0 0 0 Fotal Runoff ru.m (Runoff %) 3365.36 (87.1%) 3860.71 (87.9%)	(cu.m/s) Grassed Max Q (cu.m/s) 0.434 1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Paved Tc (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m) Grassed Tc (min) 10 10 110 110 110	Supp. Tc (min)
Q M/s) (c 0.434 1.741 1.98 0.236 Rainfall T cc 3275 2 3864.5 3 4393.96 3	Vlax Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Grassed Max Q (cu.m/s) 0.434 1.741 1.99 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Paved Tc (min) 0 0 0 0 0 Pervious Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	Grassed Tc (min) 10 10 10 110	Tc (min)
Q M/s) (c 0.434 1.741 1.98 0.236 Rainfall T cc 3275 2 3864.5 3 4393.96 3	Vlax Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Max Q (cu.m/s) 0.434 1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	Tc (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 10 10 10 10 10 10 10 10 10 10 10 10 10	Tc (min)
Q M/s) (c 0.434 1.741 1.98 0.236 Rainfall T cc 3275 2 3864.5 3 4393.96 3	Vlax Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Max Q (cu.m/s) 0.434 1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	Tc (min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 10 10 10 10 10 10 10 10 10 10 10 10 10	Tc (min)
7s) (c 0.434 1.741 1.98 0.236 Rainfall T c 3275 2 3864.5 3 4393.96 3	Cu.m/s) 0 0 0 0 Fotal Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	(cu.m/s) 0.434 1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	(min) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(min) 10 10 10 10 10 10 10 10 10 10 10 10 10	(min))))
0.434 1.741 1.98 0.236 Rainfall T c 3275 2 3864.5 3 4393.96 3	0 0 0 0 Fotal Runoff 2u.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	0.434 1.741 1.98 0.236 Impervious Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)) 10) 10) 10) 10	
1.741 1.98 0.236 Rainfall T c 3275 2 3864.5 3 4393.96 3	0 0 0 Fotal Runoff 2u.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	1.741 1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff (20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1) 10) 10) 10)
1.98 0.236 Rainfall T cc 3275 2 3864.5 3 4393.96 3	0 0 Fotal Runoff Eu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	1.98 0.236 Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	10)
0.236 Rainfall T c 3275 2 3864.5 3 4393.96 3	0 Fotal Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	0.236 Impervious Runoff %) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	10	_
Rainfall T c 3275 2 3864.5 3 4393.96 3	Total Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	Impervious Runoff cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	Pervious Runoff cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%))
3275 2 3864.5 3 4393.96 3	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)		
3275 2 3864.5 3 4393.96 3	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)		
3275 2 3864.5 3 4393.96 3	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	cu.m (Runoff %) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	cu.m (Runoff %) 2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)		
3275 2 3864.5 3 4393.96 3	2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)	0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)	2810.23 (85.8%) 3365.36 (87.1%) 3860.71 (87.9%)		
3864.5 3 4393.96 3	3365.36 (87.1%) 3860.71 (87.9%)	0.00 (0.0%)	3365.36 (87.1%) 3860.71 (87.9%)		
4393.96 3	3860.71 (87.9%)	0.00 (0.0%)			
		0.00 (0.0/0)	4279.84 (88.3%)		
2 1	Max V	Max U/S	Max D/S	Due to Storm	1
/s) (i	(m/s)	HGL (m)	HGL (m)		
2 1	Max V	Chainage	Max	Due to Storm	1
/s) ((m/s)	(m)	HGL (m)		
VL N	MaxVol	Max Q	Max Q	Max Q	
		Total	Low Level	High Level	
	- "				
		-	THE RESERVE THE PARTY OF THE PA		
			11		
					-
1334.33				-	
	1517.75	(-
v	W	w Outflow 1) (cu.m) 332.43 332.4: 1334.33 1334.3:	Total w Outflow Storage Change (cu.m) (cu.m) 332.43 1334.33 13517.75 1517.75	Total Low Level W Outflow Storage Change Difference (cu.m) (cu.m) % 1332.43 332.43 0 (1334.33 1334.33 0 (1517.75 1517.75 0 (100 Low Level	Total Low Level High Level

	12	11	10	9	R	7	6	5	Λ	3	2 1	
				(C) Copyright Martens & Associates Pty Ltd This drawing must not be reproduced in whole or part without prior written consent of Martens & Associates Pty	PAPER SIZE: A1/A3	VERTICAL RATIO:	THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY All measurements in mm unitude officiriuse specifiec.	6/37 Leighton Place, Hornsby, NSW 2077 Australia Ph Email: mail@martens.com.au Internet:	one: (02) 9476 9999 Fax: (02) 9476 8767 http://www.martens.com.au	PROJECT MANAGER: OR D. MARTENS	DRAWING NUMBER: P0601504JD04-V2.TCW	OF 1: SHEET
					BR	NA		& Associates Pty Ltd			LIVE WILLIAM OF THE COST OF	9
1.0	DRAFI	07.07.10 DN	IIVI		DRAWN/REVIE	/ED: HORIZONTAL RATIO	HASTINGS COUNCIL	/martens	Environment Water	DR PRE-DEVELOPM	AINS MODEL ENT INPUTS AND OUTPUT	0
1.0	DRAFT	07.07.10 DN	11.4		DMM	NA						
REV.	DESCRIPTION	DATE ISS	UED	BAR SCALE	DESIGNED:	DATUM:	CLIENT/ PROJECT		Consulting Engineer	TITLE:		SHEET

12 11 10 9 8 7 6 5 4 3 2 1


DRAINS POST-DEVELOPMENT MODEL INPUT DETAILS


DRAINS RESULTS FOR 1 IN 100 YR ARI STORM (POST-DEVELOPMENT)

PIT / NODE DETAILS			Version 9								
Name	Туре	Family	Size	Ponding	Pressure	Surface	Max Pond	Base	Blocking	x	У
				Volume	Change	Elev (m)	Depth (m)	Inflow	Factor		
				(cu.m)	Coeff. Ku			(cu.m/s)			
C1 -pd	Node					10			0	61.309	13.604
C3 -pd	Node					10			0	200.592	10.95
C2 -pd	Node					10)		0	135.514	10.95
DETENTION BASIN DETAILS											
Name	Elev	Surf. Area	Init Vol. (cu.m)	Outlet Ty	į K	Dia(mm)	Centre RL	Pit Family	Pit Type	x	У
C1 Basin	10	210		0 Culvert	0.5	5				60.671	42.41
	10.6	210									
C3 Basin	10	750		0 Culvert	0.5	5				200.297	40.69
	10.6	750									
C2 Basin	10	560		0 Culvert	0.5	5				134.213	43.803
	10.85	560									
SUB-CATCHMENT DETAILS											
Name	Pitor	Total	Paved	Grass	Supp	Paved	Grass	Supp	Paved	Grass	Supp
	Node	Area	Area	Area	Area	Time	Time	Time	Length	Length	Length
		(ha)	%	%	%	(min)	(min)	(min)	(m)	(m)	(m)
C1 - post-dev	C1 Basin								0	()	()
C3 - post-dev	C3 Basin								0		
C2-post-dev	C2 Basin	1							0		
PIPE DETAILS											
Name	From	То	Length	U/S IL	D/S IL	Slope	Туре	Dia	I.D.	Rough	Pipe Is
			(m)	(m)	(m)	(%)	1,60	(mm)	(mm)	поиы	i ipe is
Pipe1	C1 Basin	C1 -nd	1				Concrete, not under roads	22		0.3	NewFixed
Pipe 3	C3 Basin		1				5 Concrete, not under roads	45			NewFixed
Pipe 2	C2 Basin		1				Concrete, not under roads	45			NewFixed
Tipe 2	C2 003111	CZ Pu			, ,,,,		concrete, not under roads	45	0 430	0.5	INC WITHCO
DETAILS of SERVICES CROSSING PIPES											
Pipe	Chg	Bottom	Height of Service	Chg	Bottom	Height of	Chg	Bottom	Height of	etc	
	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	(m)	Elev (m)	(m)	etc	
CHANNEL DETAILS											
Name	From	То	Туре	Length	U/S IL	D/S IL	Slope	Base Width	L.B. Slope	R.B. Slope	Manning
				(m)	(m)	(m)	(%)	(m)	(1:?)	(1:?)	n
OVERFLOW ROUTE DETAILS											
Name	From	То	Travel	Spill	Crest	Weir	Cross	Safe Depth	SafeDept	Safe	Bed
			Time	Level	Length	Coeff. C	Section	Major Storm	s Minor Sto	DxV	Slope
			(min)	(m)	(m)			(m)	(m)	(sq.m/se	c (%)
OF-1	C1 Basin	C1 -pd		1 10.6	5 5	5 1.	7 Grassed swale with 1:4 sideslope	s 0.	5 0.4		L
OF-3	C3 Basin	C3 -pd		1 10.6	5 5	5 1.	7 Grassed swale with 1:4 sideslope	s 0.	5 0.4	1 1	L
OF-2	C2 Basin			1 10.85	. ,		7 Grassed swale with 1:4 sideslope:				ı

PIT / NODE DETAILS				Version 8			
Name	Max HGL	Max Pond		Max Pond	Min		Constrair
		HGL	Flow Arriving	Volume	Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
C1-pd	9.61		0				
C3 -pd	9.68		0.013				
C2 -pd	9.7		0				
THE CATCHAINTENT DETAILS							
SUB-CATCHMENT DETAILS		Devel	Cd	David	Connect	C	Due to St
Name	Max	Paved		Paved	Grassed		Due to St
	Flow Q	Max Q	The state of the s	Tc (min)		Tc (min)	
C4 de	(cu.m/s)	(cu.m/s)		(min)		(min)	A D 0 D 100
C1 - post-dev	0.487	0.4	0.087	5			AR&R 100
C3 - post-dev	2.224						AR&R 100
C2-post-dev	1.963	1.646	0.316	5	10	(AR&R 100
Outflow Volumes for Total Catchment (4.95 impervious + 1.25 pervious = 6.20 total ha)							
Storm	Total Rainfall	Total Runoff	Impervious Runoff	Pervious Runoff			
	cu.m	cu.m (Runoff %)		cu.m (Runoff %)			
AR&R 100 year, 15 minutes storm, average 200 mm/h, Zone 1	3099	2927.42 (94.5%)		502.72 (80.5%)			
AR&R 100 year, 20 minutes storm, average 177 mm/h, Zone 1		3472.67 (95.0%)	the same of the sa	602.62 (81.7%)			
AR&R 100 year, 25 minutes storm, average 161 mm/h, Zone 1		3960.35 (95.3%)		690.30 (82.3%)			
AR&R 100 year, 30 minutes storm, average 148 mm/h, Zone 1		4376.73 (95.4%)		764.43 (82.7%)			
DIDENTALIC							
PIPE DETAILS	Max Q	Max V	Max U/S	Max D/S	Due to Sto	orm	
Name	(cu.m/s)	(m/s)	HGL (m)	HGL (m)	Due to ste	Jilli	
Pipe1	0.373				AR&R 100	waar 25 n	ninutos ste
Pipe 3	1.872				AR&R 100		
Pipe 2	1.529				AR&R 100		
ripe 2	1.525	4.0	10.155	5.055	Andi 100	year, 251	illiaces see
CHANNEL DETAILS							
Name	Max Q	Max V	Chainage	Max	Due to St	orm	
	(cu.m/s)	(m/s)	(m)	HGL (m)			
OVERFLOW ROUTE DETAILS							
Name	Max Q U/S	Max Q D/S	Safe Q	Max D		Max Wid	
OF-1	C		1.262	. () (0
OF-3	0.013						
OF-2	C	C	1.262	() ()	0
DETENTION BASIN DETAILS	May M	MayVal	May O	May O	May: O		
Name	Max WL	MaxVol	Max Q	Max Q	Max Q	J	
CA D I	40.4	100	Total	Low Level	High Leve		
C1 Basin	10.47						
C3 Basin	10.61						
C2 Basin	10.76	429.8	1.529	1.52	9 (,	
CONTINUITY CHECK for AR&R 100 year, 25 minutes storm, average 161 mm/h, Zone 1							
Node	Inflow (cu.m)	Outflow (cu.m)	Storage Change (cu.m)	Difference %			
C1 Basin	412.83				0		
C1-pd	410.52				0		
C3 Basin	1884.84				0		
	1867.23				0		
C3 -pd C2 Basin	1662.68				0		
	1002.08	1046.//	15.9.		0		

12	11	1.	9 8		7	6	5	Δ	3	2 1	
			(C) Copyright Martens & Associates Pty Ltd This drawing must not be reproduced in whole or part without price written consert of Martens & Associates Pty Ltd	PAPER SIZE:	VERTICAL RATIO:	THIS PLAN MUST NOT BE USED FOR CONSTRUCTION UNLESS SIGNED AS APPROVED BY PRINCIPAL CERTIFYING AUTHORITY All requirements in irra unless oftieralise specifies.	6/37 Leighton Place, Hornsby, NSW 2077 Australia P Email, mall@martens.com.au Internet	hone: (02) 9476 9999 Fax: (02) 9476 8767	PROJECT MANAGER: DR D. MARTENS	DRAWING NUMBER: P0601504JD04-V2.TCW	OF 12 SHEETS
				BR	NA		& Associates Pty Lte				10
				DRAWN/REVIEWED:	HORIZONTAL RATIO	HASTINGS COUNCIL	/martens	Water ACEA		ENT INPUTS AND 100YR OUTPUT	110
1.0 DRAFT	07.07.10	DMM		DMM	NA		/ h	Environment		DRAINS MODEL	
REV DESCRIPTION	DATE	ISSUED	BAR SCALE	DESIGNED:	DATUM:	CLIENT/ PROJECT		Consulting Engineers	TITLE:		SHEET

