

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT: LOT A BURLEY ROAD, HORSLEY PARK EMPLOYMENT PRECINCT, NSW

PREPARED FOR JACFIN PTY LTD. CES DOCUMENT REFERENCE: CES100606-JBA-AF

Authorised by:Dr Michael PetrozziClient:Jacfin Pty LtdDate:25 November 2010

Jones Bay Wharf 19-21, Upper Deck Suite 55, 26-32 Pirrama Road • Pyrmont • NSW 2009 • Australia Telephone: 02 8569 2200 • Fax: 02 9552 4399 Web: www.consultingearth.com.au © Consulting Earth Scientists ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

Document Control

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT: LOT A BURLEY ROAD, HORSLEY PARK EMPLOYMENT PRECINCT, NSW

PREPARED FOR JACFIN PTY LTD.

CES DOCUMENT REFERENCE: CES100606-JBA-AF

Hard Copy	Digital copy	Recipient	Location
3	1	Jacfin Pty Ltd	Jacfin Pty Ltd
1	1	CES	Consulting Earth Scientists Pty Ltd

Distribution Register

The Distribution Register identifies the recipients of issued copies of this report.

Revision Register

Revision Number	CES Document Reference	Revision Date	Description
1	CES100606-JBA-AC	27/7/2010	INITIAL SUBMISSION:
			PRELIMINARY GEOTECHNICAL REPORT
2	CES100606-JBA-AD	30/7/2010	DRAFT:
			PRELIMINARY GEOTECHNICAL REPORT
3	CES100606-JBA-AE	16/08/2010	DRAFT: PRELIMINARY GEOTECHNICAL REPORT ADDRESSING DIRECTOR GENERAL COMMENTS
4	CES100606-JBA-AF	25/11/2010	FINAL: PRELIMINARY GEOTECHNICAL REPORT

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES. CES does not accept any liability for actions taken based upon incomplete photocopies of this document.

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT: LOT A BURLEY ROAD, HORSLEY PARK EMPLOYMENT PRECINCT, NSW. PREPARED FOR JACFIN PTY LTD.

CES DOCUMENT REFERENCE: CES100606-JBA-AF

TABLE OF	F CONTENTS
----------	-------------------

1	INTE	RODUCTION	5
2	THE	SITE	6
	2.1	SITE LOCATION	6
	2.2	SITE DESCRIPTION	6
	2.3	REGIONAL GEOLOGY	6
3	МЕТ	HOD OF INVESTIGATION	7
	3.1	Fieldwork	7
	3.2	GEOTECHNICAL LABORATORY TESTING	7
4	RES	ULTS OF THE INVESTIGATION	8
	4.1	SUBSURFACE CONDITIONS	8
	4.2	RESULTS OF FIELD SCREENING	9
	4.3	GROUNDWATER	10
5	LAB	ORATORY TEST RESULTS	11
6	DISC	CUSSION AND RECOMMENDATIONS	13
	6.1	EARTHWORKS AND SITE PREPARATION	13
	6.2	EXCAVATION CONDITIONS AND SUPPORT	13
	6.2.1	Excavatability	13
	6.2.2	Permanent and Temporary Batter Slopes	13
	6.2.3	Excavation support	14
	6.3	PAVEMENT SUBGRADE	14
	6.3.1	Lime Modification	14
	6.3.2	Subgrade Replacement	15
	6.4	GROUNDWATER ISSUES	15
	6.5	FOUNDATIONS	16
	6.5.1		16
	6.5.2	Piles	16
	6.5.3		17
		LOT CLASSIFICATION IN ACCORDANCE WITH AS2870	18
	6.7	ASSESSMENT OF SOIL SALINITY AND SODICITY	18
	6.8	SOIL DISPERSION POTENTIAL	19
	6.9	ACID SULFATE SOILS	19
	6.10	SOIL AGGRESSIVITY	19
	6.11	GEOTECHNICAL CONSTRAINTS	19
7	RESI	PONSE TO DIRECTOR GENERALS REQUIREMENTS	19
8	LIM	ITATIONS	20

LIST OF FIGURES

Figure 1: Site location map

LIST OF TABLES

Table 1: Borehole Locations and Depths

 Table 2: Summary of Subsurface Conditions at Borehole Locations and Inferred Geotechnical

 Model

Table 3: Summary and Assessment of Soil Salinity and Acid Sulfate Field Screening Tests

 Table 4: Summary of Groundwater Levels

 Table 5: Laboratory Testing Results

Table 6: Preliminary Allowable Bearing Pressures for Shallow Footings

 Table 7: Preliminary Foundation Design Parameters

LIST OF APPENDICES

Appendix A: Borehole Logs, Core Photographs and Explanatory Notes Appendix B: Laboratory Testing Results

PRELIMINARY GEOTECHNICAL INVESTIGATION REPORT: LOT A BURLEY ROAD, HORSLEY PARK EMPLOYMENT PRECINCT, NSW. PREPARED FOR JACFIN PTY LTD.

CES DOCUMENT REFERENCE: CES100606-JBA-AF

1 INTRODUCTION

Consulting Earth Scientists Pty Ltd (CES) was commissioned by Jacfin Pty Ltd, to undertake a geotechnical investigation for the site comprising Lot A Burley Road, Horsley Park Employment Precinct, New South Wales (herein referred to as 'the site'). A Preliminary Environmental Site Assessment (ESA) was also undertaken by CES and is reported separately (CES100606-01-D, 2010). Both the preliminary geotechnical report and the preliminary environmental assessment was undertaken in general accordance with our proposal dated 2 July 2010 (CES100606-JBA-AB).

It is understood by CES that the property is to be developed for industrial and employment purposes including but not limited to warehouse, storage and distribution facilities and manufacturing uses. Refer to Concept Plans "Horsley Park Employment Precinct Lot A Burley Road Part 3A Concept Plan" JBA drawings CP001 - CP017 dated 23 November 2010.

The purpose of this investigation is to obtain preliminary geotechnical information regarding subsurface ground and groundwater conditions. This includes provision of preliminary recommendations regarding earthworks and site preparation, excavation conditions and support, suitable foundation systems, pavement design parameters and construction recommendations. Preliminary geotechnical advice is also provided with regards to groundwater issues, soil erosion issues, assessment of soil salinity, sodicity, dispersion potential and soil aggressivity to buried structural elements and a preliminary assessment of geotechnical constraints identified during the baseline investigation.

2 THE SITE

2.1 SITE LOCATION

The site is located at Lot A in DP 392643 Burley Road, which is situated approximately 0.5km west of the end of Old Wallgrove Road and immediately north-west of the end of Horsley Drive, Horsley Park, NSW.

2.2 SITE DESCRIPTION

The following description of the site is based upon observations made during the fieldwork and information provided by JBA Pty Ltd.

The site covers an area of 100 hectares and is roughly an L-shape orientated north. To the east of the site is a brick pit and associated works as well as residential plots.

The site is characterised by undulating topography with a ridgeline running generally north to south-east through the north western section of the site with a second ridge extending east-west across the southern part of the site. A small dam was located in the centre of the site on a minor ephemeral drainage line that flows to Ropes Creek. The site is currently used for cattle grazing with a demountable cottage observed in the south-east corner of the site.

2.3 REGIONAL GEOLOGY

Review of the Penrith 1:100 000 Geological Series Sheet 9030 (Department of Mineral Resources, 1991) indicates that the site is underlain by the Bringelly Shale Formation of the Wianamatta Group. The Bringelly Shale Formation comprises shale, carbonaceous claystone, siltstone and fine to medium grained sandstone as well as rare coal.

3 METHOD OF INVESTIGATION

3.1 FIELDWORK

Fieldwork was undertaken between 8 and 14 July 2010 and comprised drilling five boreholes. A CES engineering geologist was present during fieldwork to locate and log boreholes, direct sampling and testing.

Boreholes were drilled using a truck mounted drilling rig utilising solid flight augers fitted with a steel 'V' shaped bit in soil. Standard Penetration Tests (SPTs) were carried out to assess soil strength and obtain samples for logging and laboratory testing. Drilling was continued into bedrock using triple tube rotary core drilling methods. The recovered cores were boxed onsite and photographed. Borehole logs and rock core photographs are enclosed in Appendix A.

Borehole locations were recorded using a handheld Global Positioning System (GPS) unit and the approximate ground levels of the borehole locations inferred from a site survey plan supplied to CES (RPS drawing reference: Lot A in DP 392643 Horsley Road, Kemps Creek – Control Plan 23-3825-CP). Borehole depths and positions are summarised in Table 1 and shown in Figure 1.

Borehole	Easting	Northing	Termina	tion depth
			(mbgl)	(mAHD)
BH1	298276	6254717	10.0	59.5
BH2	297908	6254069	11.5	56.1
BH3	298337	6253857	11.5	65.3
BH4	297793	6253293	12.7	64.1
BH5	298264	6253383	9.6	78.7

 Table 1: Borehole Locations and Depths

The depth to groundwater, where practicable, was recorded during drilling of each borehole and within 24hrs of completion of drilling. Field screening for potentially saline and acid sulfate soils was also carried out on selected samples.

3.2 GEOTECHNICAL LABORATORY TESTING

Soil samples obtained during fieldwork activities were tested by SGS Australia Pty Ltd (SGS), a NATA accredited testing laboratory, for Emersion Dispersion Classification, California Bearing Ratio (CBR) Tests, Atterberg Limit and Linear Shrinkage Tests and Soil Aggressivity. The laboratory test results are presented in Appendix B and summarised in Table 5.

4 RESULTS OF THE INVESTIGATION

4.1 SUBSURFACE CONDITIONS

The ground conditions, observed in the boreholes, typically comprised topsoil, underlain by alluvial and residual soils over shale bedrock of the Wianamatta Group. Based on the information from the boreholes, a geotechnical model has been developed and is presented in Table 2. For a detailed description of the subsurface conditions encountered at each borehole, refer to the borehole logs in Appendix A, together with the explanatory sheets describing the terms and symbols used.

Table 2:	Summary	of	Subsurface	Conditions	at	Borehole	Locations	and	Inferred
Geotechnic	al Model								

Geotechnical	Depth to	base of unit	Thickness	Description
Unit	(mbgl)	(mAHD)	(m)	
1. Topsoil	-	-	0.1 to 0.3	CLAY:Medium and high plasticity;Brown; andFirm.
2. Alluvium	0.5 to 3.0	66.1 to 76.3	0.2 to 2.8	 CLAY or sandy CLAY: Medium and high plasticity; Orange/brown mottled dark brown; and Firm to stiff.
3. Residual Soil	1.0 to 4.0	65.6 to 87.3	0.5 to 2.5	 Sandy CLAY or gravelly CLAY: Medium and high plasticity; Brown, pale grey to grey; and Stiff to hard.
4a. Weathered Shale	3.75 to 6.5	63.9 to 82.7	1.8 to 4.7	 Interbedded SHALE and SANDSTONE: Medium plasticity; Dark grey to pale grey and brown ; Extremely low strength to low strength; Extremely and highly weathered; Recovered as a hard, low plasticity gravelly CLAY or very dense clayey GRAVEL; Relict joints are widely spaced, steeply dipping.
4b. Moderately Weathered to Fresh Sandstone and Shale	Drilled to a maximum depth 12.7	Drilled to a maximum depth of 56.1	-	 Interbedded SHALE and SANDSTONE: Medium to high strength; Dark grey and pale grey; Massive to distinctly bedded at 0-5°; Joints are widely spaced, steeply dipping.

Geotechnical	Depth to	base of unit	Thickness	Description
4c. Weathered	7.4	62.1	4.4	VOLCANIC BRECCIA
Volcanic				Dark brown;
Breccia				• massive;
				• Extremely low strength to low strength;
				• Extremely and highly weathered.
4c. Moderately	Drilled to a	Drilled to a	-	VOLCANIC BRECCIA
Weathered to	maximum	maximum		• Medium to high strength;
Fresh Volcanic	depth 10	depth of		• Grey/green;
Breccia		59.5		• massive;
				• Joints are widely spaced, moderately to
				steeply dipping.

4.2 RESULTS OF FIELD SCREENING

The results of the soil salinity and acid sulfate field screening tests are summarised in Table 3.

Boroh	ehole and sample Soil Salinity Test				Acid Sulfate Test		
	epth (mbgl)	(mS)	EC _e (dS/m)	Assessed Salinity Level	рН	Assessed Acidity Level	
	0.50 - 0.95	0.10	0.86	Very slightly	7	Neutral	
BH1	1.50 - 1.95	0.30	2.58	Moderate	7	Neutral	
	3.00 - 3.45	0.20	1.72	Slightly	7	Neutral	
DUO	0.50 - 0.95	0.20	1.72	Slightly	6	Neutral	
BH2	1.50 - 1.95	0.30	2.58	Moderate	6.5	Neutral	
	0.50 - 0.95	0.20	1.72	Slightly	5	Slightly Acidic	
BH3	1.50 - 1.95	0.30	2.58	Moderate	5	Slightly Acidic	
	3.0 - 3.45	0.50	4.30	Moderate	5	Slightly Acidic	
DIIA	0.50 - 0.95	0.10	0.86	Very slightly	6	Neutral	
BH4	1.50 - 1.95	0.20	1.72	Slightly	5.5	Slightly Acidic	
	0.50 - 0.95	0.10	0.86	Very slightly	5	Slightly Acidic	
BH5	1.50 - 1.95	0.20	1.72	Slightly	5	Slightly Acidic	
	3.00 - 3.45	0.30	2.58	Moderate	6	Neutral	

 Table 3: Summary and Assessment of Soil Salinity and Acid Sulfate Field Screening Tests

4.3 GROUNDWATER

Groundwater seepage was not observed during drilling operations; however groundwater levels measured within 24hrs of the borehole completion are shown in Table 4.

Location		Observation D	Details	Groundw	ater Level
	Date	Time	Period after drilling	(mbgl)	(mAHD)
BH1	9 July 2010	8:00am	16hrs	2.4	67.1
BH2	14 July 2010	8:00am	16hrs	1.6	66.0
BH3	12 July 2010	8:00am	64hrs	1.8	75.3
BH4	13 July 2010	8:30am	16hrs	2.6	74.2
BH5	13 July 2010	8:30am	16.5hrs	3.8	84.5

 Table 4: Summary of Groundwater Levels

ılts	d	
ry Testing Resu	Plastic Limit (%)	19 & 21
Table 5: Summary of Laboratory Testing Results	Liquid Limit (%) (%)	56 & 66
Table 5: Summ	Unit	Unit 2 (Alluvium)

	,											
Onit Liquid Limit F	Plastic Limit Plasticity	Plasticity	Linear	Emerson	CBR (%)	CBR Swell	Maximum	Optimum	Hq	Chloride	Sulphate	
(%)	(%)	Index	Shrinkage	Classification	(Note 1)	After	Dry Density	Moisture		(mg/kg)	(mg/kg)	
			(%)			Soaking (%)	(Tonnes/m ³)	Content (%)				
Unit 2 56 65 66	10 6-01	21 -0 10	155 0-16		1 0- 1	1 7 6 7 1	1 66 0-1 67	10 5 6-10		001	U y	
(Alluvium) $00 \propto 00$	17 & 71	(+ X) (C	01 % C.CI	Class J	1 & 4	1.2 & 4.1	1.00 & 1.0/	61 X C.01	1 01 0	120	0.7	

Note 1: CBR tests carried out on 4 day soaked sample compacted to 100% Standard Maximum Dry Density Ratio.

5 LABORATORY TEST RESULTS

Laboratory test results are summarised in Table 5 and provided in full in Appendix B.

The laboratory test results indicate that Unit 2 (Alluvium) is a soil of medium plasticity with a moderate potential for volume change. It has a low CBR values of 1% and relatively high CBR swell values, indicating that these materials will provide a soft expansive subgrade. It is noted that within BH4 a higher CBR value of 4% was recorded, however it is believed that this is an isolated elevated value.

The results of the Emersion Dispersion testing shows that Unit 2 (Alluvium) has an Emerson Class of 5, indicating that this material is not likely to be dispersive.

The Unit 2 (Alluvium) has relatively neutral pH values and contains relatively low concentrations of chloride and sulphate.

6 DISCUSSION AND RECOMMENDATIONS

6.1 EARTHWORKS AND SITE PREPARATION

Indicative areas of bulk earthworks are shown in Concept Plan drawing CP015 entitled "Lot A Burley Road, Horsley Park Employment Precinct - Indicative Cut and Fill". The thickness of Unit 1 (Topsoil) varied from 0.1m to 0.3m at the borehole locations and will require striping and stockpiling. Use of Unit 1 should be limited to landscaping fill.

Once vegetation and Unit 1 have been removed, Units 2 (Alluvium) and 3 (Residual Soil) will be exposed. These materials are likely to have poor trafficability characteristics when wet such as after periods of heavy rainfall. Erosion and sediment controls should be implemented during earthworks in accordance with the requirements of the Landcom publication "Managing Urban Stormwater: Soils and Construction".

6.2 EXCAVATION CONDITIONS AND SUPPORT

6.2.1 Excavatability

It is understood that cuttings will be excavated at the site which are likely to encounter all of the geotechnical units outlined in the preliminary geotechnical model (Table 2). A hydraulic excavator or bulldozer blade and bucket should be adequate for excavation in Unit 2 (Alluvium), Unit 3 (Residual Soil), 4a (Weathered Rock) and Unit 4c (Weathered Volcanic Breccia). Unit 4b (Moderately Weathered Rock) is likely to require considerably more effort, such as the use of ripping and Unit 4d (Moderately Weathered Volcanic Breccia) will likely require excavators using a hydraulic breaker.

Contractors should be required to examine the engineering logs and core photographs (Appendix A) to make their own assessment of excavation plant and production rates.

6.2.2 Permanent and Temporary Batter Slopes

Excavations into Unit 2 (Alluvium) and Unit 3 (Residual Soil) should stand at temporary slopes of 1.5H (horizontal): 1V (vertical).

Permanent batter slopes in Unit 2 (Alluvium) and Unit 3 (Residual Soil) should not exceed 2.5H: 1V. Permanent batter slopes in Unit 4a (Weathered Rock) and 4c (Weathered Volcanic Breccia) should not exceed 1.5H:1V unless protected. Permanent batter slopes will begin to deteriorate if left exposed and should be protected against erosion using shotcrete, vegetation, geotextile or similar. Permanent batter slopes in Units 4b (Moderately Weathered Rock) and 4d (Moderately Weathered Volcanic Breccia) may be constructed vertically. Exposed rock faces should be assessed by a geotechnical practitioner for stability. Localised application of shotcrete and installation of rock bolts and other such stabilisation methods may be required.

CES recommends that allowance be made for laying back temporary excavations exceeding 1.5m to 1.5H:1V where workers require access. Surcharge loads should be kept well clear of the crest of cuts.

6.2.3 Excavation support

Where there is insufficient area available to form unsupported batters, Unit 2 (Alluvium) and Unit 3 (Residual Soil) will require support / retaining walls.

The design of any retaining structures should make allowance for all applicable surcharge loading including construction activities around the perimeter of the excavation and adjacent buildings. In addition to lateral earth pressures and surcharge loads, consideration should be given to the possibility of a hydrostatic pressure due to build-up of water behind the wall unless permanent subsurface drainage can be provided.

Exposed rock faces of Unit 4b (Moderately Weathered Rock) and Unit 4d (Moderately Weathered Volcanic Breccia) should be assessed by a geotechnical practitioner for excavation support. Localised application of shotcrete and installation of rock bolts and other such stabilisation measures may be required.

6.3 PAVEMENT SUBGRADE

Unit 2 (Alluvium) and Unit 3 (Residual Soil) are of variable thickness and depth across the site. Laboratory testing indicates that the materials are medium to high plasticity with a low CBR value of 1%. As a result, these units are considered a poor bearing stratum for pavements without modification. Options for subgrade improvement or replacement are outlined in sections 6.3.1 and 6.3.2. More extensive sampling and testing will be required once the requirements of the proposed development have been finalised.

6.3.1 Lime Modification

Subgrade improvement could be by lime stabilisation. The addition of 4% hydrated lime (percentage dry weight of soil) by specialist pulverising, mixing and recompacting to a maximum dry density ratio of 100% (Standard Compaction) should raise the insitu CBR value of the subgrade and a design value of 3% could be adopted. CES's previous experience of similar Unit 2 (Alluvium) and Unit 3 (Residual Soil) soil indicates that CBR values greater than this may be achievable with the addition of greater proportion of lime. The effectiveness of the lime stabilisation is dependent on many factors such as construction method, construction plant used, the degree of original soil pulverisation, the original moisture content of the soil, the type and properties of the lime and the mineralogy of the clay in the soil. The effectiveness of lime

stabilisation and the optimum percentage should be ascertained and checked by laboratory testing and field trials.

In accordance with AS3798-2007 it is recommended that Level 1 earthworks control is used during bulk earthworks and pavement construction. All pavements should be provided with long term surface and subsurface drainage to protect the subgrade from moisture ingress.

6.3.2 Subgrade Replacement

Subgrade replacement could be carried out by placing well graded, durable, non-expansive granular material of 60mm maximum size. The fill should be placed in maximum 200mm compacted layer thicknesses and compacted to 100% Standard Density Ratio at a moisture content within $\pm 2\%$ of Standard Optimum Moisture Content.

A preliminary assessment indicates that placing a 300mm thick layer of suitable fill with a remoulded CBR value of at least 20% should raise the insitu CBR value of the subgrade to at least 3%. Pavements should however be designed on the basis of the CBR value of the actual replacement material and the effectiveness of the subgrade replacement should be checked by laboratory testing and field trials.

Although not expected for this site, the importation of fill material onto site should be undertaken in such a manner that all obligations under the *Protection of the Environment and Operations Act 1997* and the *Environmental Planning Assessment Act 1979*, are met.

6.4 GROUNDWATER ISSUES

Groundwater was encountered in all boreholes between levels of 1.6mbgl and 3.8mbgl (RL 66mAHD and RL 85mAHD) at the interfaces between Units 2 (Alluvium) and 3 (Residual Soil), and Units 3 (Residual Soil) and 4 (Weathered Rock).

In consideration of the above it is expected that groundwater will be encountered in excavations below about 1mbgl (RL 65mAHD and RL 85mAHD), particularly after periods of heavy rain. Where the cuttings do not extend to significant depths below groundwater level such seepage is expected to be controllable by conventional sump pumping methods. However, in areas where the cuttings extend to a depth considerably below groundwater level, consideration to a formal dewatering system such as the installation of dewatering wells may be necessary.

Should earthworks be proposed at significant depths below the groundwater table, it is recommended that further investigation to adequately characterise the hydrological regime in areas of deep cuts be carried out. Measures should also be included as part of the development

to ensure that adequate drainage is in place to facilitate the controlled and environmentally responsible removal of surface and groundwater.

6.5 FOUNDATIONS

6.5.1 Pad and Strip Footings

The bearing capacity of the ground will be dependent on the foundation type adopted for the various structures to be constructed. The choice of foundation will depend on cost, the applied loads, loading arrangement and the resulting total and differential settlements anticipated and the sensitivity of the structures to movement. As a general design guide, the following preliminary allowable bearing pressures should be able to be adopted for pad and strip footings or the edge and internal beams of raft slabs:

Material	Preliminary Allowable Bearing Pressure (kPa)
Unit 2 (Alluvium)	100
Unit 3 (Residual Soil)	150
Unit 4a and 4c (Weathered Rock)	700

Table 6: Preliminary Allowable Bearing Pressures for Shallow Footings

Settlement of up to 1% of footing width could occur for footings designed for the above bearing pressures. Where the depth to rock exceeds 1.5m it may be necessary to adopt bored piles unless footings excavations are shored or battered. The above is a preliminary assessment and specific foundation design should be carried out once the requirements of the proposed development have been finalised.

It should be noted that Units 2 (Alluvium) and Unit 3 (Residual Soil) are assessed to have a significant potential for volume change on wetting and drying (shrink/swell). Shallow footings founded in these materials should be designed to consider this soil characteristic. Furthermore, Unit 2, Unit 3 and Unit 4a and 4c (Weathered Rock) may soften in footing excavations. The footing should be dewatered, cleaned and concreted within 12 hours of excavation or a blinding layer of concrete should be placed to protect the base. An experienced geotechnical practitioner should visually inspect the footing excavations prior to blinding to confirm that the founding material is suitable for the adopted design parameters.

6.5.2 Piles

Open bored piles or continuous flight auger piles could be adopted where the depth to rock exceeds practical excavation depths for strip and pad footings. We would expect that with appropriate capacity piling rigs, piles should be able to penetrate to Unit 4b (Moderately Weathered Rock) and Unit 4d (Moderately Weathered Volcanic Breccia). An experienced

geotechnical practitioner should observe boring of the piles in order to assess the rock levels and to confirm that the rock is suitable for the adopted design parameters. Allowable design parameters for bored piles are provided in Table 7. The use of the recommended allowable bearing pressures would be expected to result in pile settlement of about 1% of pile diameters.

Geotechnical Unit	Allowable Bearing Pressures (kPa)	Allowable Shaft Adhesion for Piles (kPa) ⁽¹⁾
Unit 4a and 4c (Weathered Rock)	700	50
Unit 4b and 4d (Moderately Weathered Rock)	3000	300

Table 7: Preliminary Foundation Design Parameters

Note 1: Shaft adhesion should only be assumed where piles have a minimum embedment of at least 3 pile diameters into the nominated stratum and a rough socket (at least grooves of depth 1mm to 4mm and width greater than 5mm spacing of 50mm to 200mm). The socket should be cleaned and roughened by a suitable scraper such as a tooth, orientated perpendicular to the auger shaft.

Open bored piles may require temporary liners through Units 2 and 3 or if groundwater seepage occurs. Piles should be cleaned, dewatered and concreted without delay to prevent softening of the pile base.

For uplift capacity, the shaft adhesion value should be multiplied by 0.6. In addition to shaft adhesion, the uplift capacity should be checked for a cone pullout failure mode assuming a cone angle of 70° considering the submerged weight of the soil or rock and adopting a factor of safety of 1.0 against pullout.

This assessment is a preliminary investigation, further boreholes should be drilled at the proposed structures to assess founding levels across the footprint of the structure. Piling contractors should undertake their own assessment of rock core to assess suitability of piling plant.

6.5.3 Slab On-Ground Construction

The potential for uplift pressures and ground movements acting on the ground floor slab of the building due to shrinkage and swelling of the Unit 2 (Alluvium) and Unit 3 (Residual Soil) should be considered. This may be done by moisture conditioning through tyning and recompaction during earthworks. A sub-base of good quality crushed rock should be placed beneath floor slabs.

6.6 LOT CLASSIFICATION IN ACCORDANCE WITH AS2870

For the design of residential structures and structures with areas and loads consistent with residential structures, classifications of individual lots should be carried out in accordance with AS2870-1996 "Residential Slabs and Footings". A limited number of tests were carried out as part of this investigation on samples from the boreholes, which were generally located in areas underlain by Unit 2 (Alluvium) and Unit 3 (Residual soils). The Atterberg limits and linear shrinkage test results infer a high shrink swell potential, which may result in an 'H' Lot classification in areas underlain by Units 2 and 3.

It should be noted that the above classification is preliminary and that further, lot specific assessments should be carried out once the requirements of the proposed development have been finalised.

6.7 ASSESSMENT OF SOIL SALINITY AND SODICITY

Field screening for salinity levels within Units 2 (Alluvium) and Unit 3 (Residual Soil) indicate that these geotechnical units are typically very slightly to moderately saline.

Saline and Sodic Soils are characterised by slow rates of water infiltration (from rain or irrigation), poor water and nutrient transport within the soil, restricted vegetation growth and severe surface crusting. When wet, these soils are boggy and soft. If saline/sodic material is exposed or brought close to the surface by the development, it may prevent or retard the establishment of vegetation and where excess water enters the site, this material may also prevent or retard water from moving vertically through the soil profile. This may result in soil erosion issues and/or problematic drainage conditions.

Typical mitigation measures for saline soils include:

- Avoiding exposure and disturbance of the sodic soil e.g. minimising cutting and filling.
- Minimise the infiltration of stormwater and provide good surface and sub-surface drainage. Establish adequate drainage measures in poorly drained areas.
- Minimise water input and maintain natural water balance.
- Use of gypsum or lime to ameliorate sodic soils.
- Retain existing vegetation and planting of suitable vegetation in areas susceptible to erosion.
- Provision of damp proof membranes under slabs and foundations, typically underlain by at least 50mm of sand to allow free drainage.

Once the requirements for the proposed development is finalised, it is recommended that further assessment of the soils in low-lying areas of the site is carried out to assess whether or not a Salinity Management Plan is necessary for the proposed development.

6.8 SOIL DISPERSION POTENTIAL

The results of the Emerson classification testing indicate that Unit 2 (Alluvium) is Class 5 and as such are not anticipated to have a tendency to be dispersive. This assessment is further supported by the electrical conductivity, pH and cation exchange capacity test results.

6.9 ACID SULFATE SOILS

The acid sulfate soil field screening (Table 3) indicates that acid sulfate soils are unlikely to be present at the site.

6.10 SOIL AGGRESSIVITY

The results of soil aggressivity testing of Unit 2 (Alluvium) and Unit 3 (Residual Soil) indicate that these soils may be considered non-aggressive to concrete and steel as determined with reference to Australian Standard AS 2159-1995 Piling –Design and Installation.

6.11 GEOTECHNICAL CONSTRAINTS

Based on the results of this preliminary geotechnical investigation, the following geotechnical constraints are assessed:

- Low CBR values for Unit 2 (Alluvium), indicating a poor foundation for roads and pavements and a potential requirement for ground improvement (Refer to Section 6.3).
- Groundwater in areas of cutting that require further investigation and may require active groundwater management measures during and following construction (Refer to Section 6.4).
- Soils (Unit 2 and Unit 3) with a high potential for significant volume change with change in moisture content i.e. Reactive Soils (Refer to Section 6.6).
- The possible presence of Saline Soils in low-lying areas (Refer to Section 6.7).

7 RESPONSE TO DIRECTOR GENERALS REQUIREMENTS

CES has reviewed the requirements stated by the Director General of the NSW Department of Planning in his letter dated 13 August 2010 and the enclosed comments from Penrith City Council and Fairfield City Council. CES's response to items applicable to our scope of work is as follows (items applicable to CES scope of work are shown in italics).

Section	Title	DGR Comment	CES Response
Key	• Soil and	Including water supply and	Erosion and sediment controls
Issues	Water	efficiency, proposed	during construction are described in
		erosion and sediment	Section 6.1 of this report.
		controls (during	
		construction); the proposed	An assessment of soil salinity is
		stormwater management	presented in Section 6.7 of this
		system for site; detailed	report.
		considerations of any	
		potential. Offsite drainage	A Stage 1 Preliminary Site
		or flooding impacts;	Investigation was carried out by
		consideration of the	CES to identify and assess likely
		potential for rainwater	contaminants or potential
		harvesting, wastewater	environmental issues, resulting
		disposal; and soil salinity	from past and/or present activities
		and contamination.	undertaken on or adjacent to the site
			which may affect the sites
			suitability for the proposed
			commercial/industrial land use.
			The results of this investigation are
			presented in CES document:
			CES100604-JBA-01-D
Fairfield	State	Soil and Water: Water	A preliminary assessment of soil
City	Government	Quality – Add "Managing	attributes described in the Draft
Council	Technical and	Urban Stormwater	October 2007 document is provided
	Policy	Environmental Targets	in Section 6.6 to 6.11 and Appendix
	Guidelines	Consultation Draft-October	B of this report.
		2007" (Dept of	
		Environment & Climate	
		Change-CMA Sydney	
		Metropolitan)	

8 LIMITATIONS

This is a preliminary geotechnical investigation report, CES recommends further investigation for detailed design and to confirm the ground conditions at the proposed building locations once the development details are finalised.

The findings within this report are the result of discrete/specific investigations methodologies used in accordance with normal practices and standards. Subsurface conditions can change over relatively short distances and the subsurface conditions revealed at the test locations may not be representative of subsurface conditions across the site. We recommend that an experienced geotechnical practitioner be engaged during construction to confirm the subsurface conditions are consistent with design assumptions.

FIGURES

APPENDIX A

BOREHOLE LOGS, CORE PHOTOGRAPHS & EXPLANTORY NOTES

Cli	oject ent: oject:			CES10 Jacfin l Horsley	Pty Lto		EAR SCIE Jones Bay Wharf 1	NTISTS 9-21, Suite 121	LOG ID: BH1			
	, catio			-		ey Road, Horsley Park, Employment Prec			26-32 Pirrama Road, Pyrmont NSW 2009 HC(2) 8569 2200 FAX: (02) 9552 4399 www.consultingearth.com.au		:	Sheet: 1 of 2
X-0	Coord	l:		298276		Date Co	ed:	8/07/2010	Logg	ged by: C. Aylott		
	Coord			625471		m AHD Hole Dia	-		8/07/2010	Chec	ked by:	M. Pickett
				(R.L) :	09.5		imeter	(mm):		TP (
Drill	ing Ir	nform ਦਿ	ation	LITHOLOGY					Samples	Tests		
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Sample ID	SPT	 Pocket Pocket Penetrometer Panetrometer 	Notes and additional observations
0_	1		1	· · · · · · ·					1			<u>0</u>
					\ <u>CH</u>	CLAY: high plasticity, brown with organic matter (roots)	/ Fm	>Wp				TOPSOIL
-	69				CL	CLAY: pale brown, medium	St		SPT0.5MGHPBH1	2,3,6	-	ALLUVIAL CLAY
1		ADV				plasticity with some fine grained gravel and plants roots				N*=9		- -
	ļ	-			CL	GRAVELLY CLAY: Low	·					RESIDUAL SOIL
	68					plasticity, brown, gravel is fine to medium angular to subangular shale	Н		SPT1.5.GHPBH1	21,17,23		
2	ļ									N*=40		2-
	1											
-	67	ADT				·						
3-		Ì				/ VOLCANIC BRECCIA: Dark brown, extremely weathered,	\					SPT Refusal
		\downarrow				(estimated very low strength)			SPT3.0MGHPBH1	30,-,- N*=R		SHALE
-	66					Begin Core Drilling						-
4-												
-												-
-	65											-
5-												5-
-												-
-	- 64											-
6-												6-
- 	ļ											
-	63											
7-	ł											7-
-	ł											
-	62											
8-	ł											
	61											
9	ł											9-
-	ļ											
-	60											
	-											-
10												10
				Macquar		ling Operator Name	:	Gler	n Garsive			Standard Sheets
Ma	chine	е Тур	e: I	Hydropo	wer					for	r details	of abbreviations

Cli	oject ient:		Ja	cfin l	0606-J Pty Ltd				NTIS TS		orehole ID: BH1
	oject: catio			-	y Park Burley	Road, Horsley Park, Employment	t Preci	Jones Bay Wharf 19 - 26 - 32 Pirrama Road, Pyrmo DEt (02) 8569 2200 FAX: (0	nt, NSW 2009 02) 9552 4399		DПI Sheet: 2 of 2
X-0 Y-0	Coord Coord	1:	2	29827 52547	76 717	Date Commer Date Complet m AHD Hole Diamete	nced: ted:	8/07/2010 8/07/2010	Logg	ged by ked b	
		Inform		((,E))	09.0	LITHOLOGY	I (IIII	j . 70	Ň	atural	Defects
Depth (mBGL)	R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa (02) s (02)	Spa % (n	cing nm)	Description
0									Į I		0
0 1 2	- 69										1
3	- 67 - 66	\frown	~ %			VOLCANIC BRECCIA: Fine to coarse grained, dark brown, massive, heavily iron	XW		→		3–
4 5	- 65		\rightarrow 0% \leftarrow 44%	-		Stained. NO CORE: Core Loss VOLCANIC BRECCIA: Fine to coarse grained, dark brown, massive, heavily iron stained.	HW		\rightarrow 0% \rightarrow 0%		4-
6	- 64	NMLC	$\left(-0\% \rightarrow \right) \left(\leftarrow -4\% -$	-		/ NO CORE: Core Loss VOLCANIC BRECCIA: Brown, massive	HW		$(-0\%) \rightarrow (-0\%) \rightarrow (-0\%)$		6-
7 8	- 62					VOLCANIC BRECCIA: fine to coarse grained, angular to subangular, green/ grey, massive	MW				7- HIGH ANGLE FRACTURE ZONE, 60 deg, Cu, Sn Fe 8-
9	61		- 0%0				Fr		97%		Jt, 40 deg, Pl, So, Sn Fe 9– Jt, 35 deg, Pl, So, Sn Fe Jt, 15 deg, Pl, So, Sn Fe
- 			\downarrow			End of borehole.					
		mpan e Type			arie Dri oower	lling Operator Name:	C	Glen Garsive			o Standard Sheets ls of abbreviations

Project ID:CES100606Client:Jacfin Pty LProject:Horsley ParLocation:Lot A, Burl					Pty Lto y Park		ployr	nent l	2 Preciti	Jones Bay Wharf 1 6-32 Pirrama Road, Pyri (92) 8569 2200 FAX:	NTISTS 9-21, Suite 121 mont NSW 2009	BH2		
	Coord			297908		Date Commenced:				13/07/2010	Logged by: C. Aylott			
	Coord face]			625406 (R.L) :				pleted 1eter (: mm):	13/07/2010 76	Chec	ked by:	M. Pickett	
		form				LITHOLOGY				Samples	Tests			
Depth (mBGL)	R.L. (m) (1	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristic: colour, moisture, secondary and mir component	s nor	Consistency / Density	Moisture	Sample ID	SPT	 Pocket Penetrometer Penetrometer (kPa) 	Notes and additional observations	
0_				,								1	0	
		\uparrow		/_/_	CL	CLAY: High plasticity, brown w organic matter (roots)	vith	Fm	>Wp				TOPSOIL	
1	68	ADV			СН	CLAY: high plasticity, dark brow orange with some organic matter (plant roots). At 0.5m with trace fine to medium, subangular to	r l	St		SPT0.5MGHPBH2	2,4,5 N*=9	-	ALLUVIAL CLAY 1–	
0	-69	\rightarrow	\bigtriangledown		CL	subrounded ironstone gravel CLAY: medium plasticity, pale grey, with some orange mottle				SPT1.5.GHPBH2	4,6,8 N*14	-	RESIDUAL SOIL	
3	— -70 — -71	$\langle \text{ADT} \rangle$				SHALE: pale brown, extremely thighly weathered (estimated very low to low strength).	to y				30,-,- N=R		SHALE V-Bit Refusal	
4 5 6 7 8 9						Begin Core Drilling							4 	
Dri	10 10 Drill Company: Macquarie Drilling Operator Name: Glen Garsive Refer to Standard Sheets for details of abbreviations													

Cli Pr	oject ient: oject catio	t :	Jac Hc	cfin I orsley	0606-JJ Pty Ltd 7 Park Burley		t Prec	EAR Jones Bay Wharf 19 - 26 - 32 Pirrama Road, Pyrmo 1984 (02) 8569 2200 FAX: (0	NTISTS 21, Suite 121 nt, NSW 2009 02) 9552 4399		Sheet: 3 of 3
X-0 Y-0	X-Coord: 297908 Y-Coord: 6254069 Surface Elevation (R.L): 67.6				18 169	m AHD Hole Diamete	nced: ted:	13/07/2010 13/07/2010	Logged by: C. Aylott Checked by: M. Pickett		
Dri	lling	Inform	ation			LITHOLOGY			N	atural	Defects
Depth (mBGL)	R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	$ \begin{array}{c c} Estimated \\ Strength \\ MPa \\ 10 \\ 10 \\ 10 \\ 11 \\ 11 \\ 11 \\ 11 \\ 1$	Space (m OO 8 9 5	nm)	Description
10											10
11	57		\downarrow			SHALE: Dark grey, distinctly bedded at 0 to 5 deg.	_				11
12	- 56					End of borehole.					12
13	- 55										13
14	- 54										14
15	- 53										15
16	- 52										16
17	- 51										17
18	- 50										18
	- 49										19
20	48										20
		ompan e Type		acqua ydrop	arie Dril ower	lling Operator Name:	(Glen Garsive			o Standard Sheets Is of abbreviations

Project ID: Client: Project: Location:				CES10 Jacfin I Horsley Lot A	Pty Lto y Park	ł	2 Precfit	EAR SCIE Jones Bay Wharf 1 6-32 Pirrama Road, Pyrr (@2) 8569 2200 FAX:	9-21, Suite 121 mont NSW 2009 (02) 9552 4399	S (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (2009 (200) (20)		
	Coord			298337		Date Co			9/07/2010	3	ed by:	C. Aylott
	Coord			625385		Date Con			9/07/2010		-	M. Pickett
Sur	face	Eleva	ation	(R.L):	76.8	m AHD Hole Dia	meter	(mm):	76			
Drill	ing Ir	lform	ation			LITHOLOGY	1		Samples	Tests		
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Sample ID	SPT	 Pocket Pocket Penetrometer (kPa) 	Notes and additional observations
0_	1					r			1	1		0
-		\uparrow			СН	HP, Brown, with organic matter (roots)	Fm	>Wp				ALLUVIAL
- - - - - -	— 76				СН	CLAY: High plasticity, dark brown/ mottled orange, with some organic material including plant roots.	St		SPT0.5MGHPBH3	2,2,3 N*=5	-	CLAY
' - -						Becoming pale grey with orange						
2	— 75	ADV —				mottle			SPT1.5.GHPBH3	3,4,6 N*=10	-	2-
3-	- 74	Ч — — — — — — — — — — — — — — — — — — —			Cl	CLAY: medium plasticity, pale grey	VSt		SPT3.0MGHPBH3	5,8,11		RESIDUAL SOIL
	— 73					with red/ orange mottle				N*=19	-	ADV Refusal
4		\wedge	-			SHALE: pale grey/ pale brown with orange mottle, highly weathered (estimated low strength)	_		-			SHALE
5-	- 72	T(SPT4.5MGHPBH3	16,30,29 N*=59		5
6	— 71	ADT										6
	-	\checkmark	-						SPT6.0MGHPBH3	25,-,- N*=R	-	SPT Refusal
7-	— 70					Begin Core Drilling						- 7
	- 69											
8												- 8
9-	- 68											9
	- 67											
10	5,										ļ	10
		mpar e Typ		Macquar Hydropo		ling Operator Name :		Gler	n Garsive			Standard Sheets of abbreviations

Project ID:CES100606-Client:Jacfin Pty LtProject:Horsley Park					Pty Ltd				ENTIS TS		orehole ID: 3H3	
	oject catio			-		Road, Horsley Park, Employmen	ad, Horsley Park, Employment Preci				Sheet: 2 of 3	
X-(Coord	d:	2	.9833	57	Date Comme	nced:	9/07/2010	ngearth.com.au Logg	Logged by: C. Aylott		
	Coord			52538		Date Comple		9/07/2010	Chec	ked b	y: M. Pickett	
		Eleva	-	(.L):	/0.8	m AHD Hole Diamete	er (mm): /0	N		Defecto	
	Drilling Information E					LITHOLOGY		Estimated		aturai	Defects	
Depth (mBGL)	R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	$[] \begin{array}{c} Strength\\ MPa\\ {}_{00}\\ S\\ S\\ S\\ S\\ I\\ I\\ S\\ I\\ I\\$	Space Space	nm)	Description	
0	н	Μ	•	-	03	su ucture, minor components	>		H 2.95	7 2 7	0	
	- 76											
2	- 75										2	
3	- 74										3	
4	- 73										4	
5	- 72										5—	
6	- 71										6	
7	— 70 — 69		<%0			SHALE: Brown, distinctly bedded at 0 to 5 degrees.	HW				7 PT ET. 0 deg, PI, Sp, VN, BROWN CLAY PT	
8 	- 68	NMLC					MW				PT PT 	
10	- 67	IN	<i>%</i>			Becoming pale grey.	SW				10	
		mpang e Type			arie Dri ower	lling Operator Name:	(Glen Garsive	R for	Refer to r detai	Standard Sheets s of abbreviations	

Project Client: Project Locatio	ject: Horsley Park				BA Road, Horsley Park, Employmen	t Preci	EAU Jones Bay Wharf 19 26 - 32 Pirrama Road, Pyrr PH4 (02) 8569 2200 FAX:	ont, NSW 2009	Corenoie BH3 BH3		
Y-Coor	X-Coord: 298337 Y-Coord: 6253857 Surface Elevation (R.L): 76.8				Date Comme Date Comple m AHD Hole Diamete	ted:	9/07/2010 9/07/2010	Logg	ed by ked b	: C. Aylott y: M. Pickett	
Drilling					LITHOLOGY		Estimated Strength	N Space		Defects	
Depth (mBGL) R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	$\begin{array}{c} \begin{array}{c} \text{Princh and } \\ \\ \text{Princh and } \\ \text{Princh and } \\ \text{Princh and } \\ \text{Princh and } \\ \\ \\ \text{Princh and } \\ \\ \\ \text{Princh and } \\ \\ \\ \\ \text{Princh and } \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	u) RQD %	nm)	Description	
		0,				Fr				10 SM, 0 deg, PL, 15mm, BROWN - CLAY PT	
11-66		\checkmark								PT, 0 deg, PL, SO, VN, GREY CLAY 11 PT	
12-65					End of borehole.					12-	
13										13	
14										14 — 	
15 - 62										15	
16										16	
17 - 60										17	
18 - 59										18	
19										19	
20										20	
Drill Co Machin				arie Dril ower	ling Operator Name:	0	Blen Garsive			o Standard Sheets ls of abbreviations	

Clio Pro	oject ent: oject: catio	:		CES10 Jacfin I Horsley Lot A,	Pty Lto 7 Park	d	yment	2 PrecîĦ	EAR SCIE Jones Bay Wharf 1 26-32 Pirrama Road, Pyr 26-32 8569 2200 FAX	NTISTS 19-21, Suite 121 mont NSW 2009	B	G ID: H4 Sheet: 1 of 3
	Coord			297793		Date Cor	12/07/2010		ed by:	C. Aylott		
	Coord			625329		Date Con	-		12/07/2010	Chec	ked by:	M. Pickett
				(R.L) :	/6.8	m AHD Hole Dia	meter	(mm):				
Drill	ing In		ation			LITHOLOGY		1	Samples	Tests		
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor component	Consistency / Density	Moisture	Sample ID	SPT	¹⁰⁰ Pocket ²⁰⁰ Penetrometer ⁴⁰⁰ (kPa)	Notes and additional observations
0												0
	-77	\uparrow			СН	CLAY: HP, Brown with organic	Fm	>Wp				TOPSOIL
				<i>[</i>]	СН	matter (roots)	1	-				ALLUVIAL CLAY
1	78				СН	CLAY: medium to high plasticity, dark orange/ dark brown, with some small angular to subangular gravel of shale and some organic matter (plant roots)	St		SPT0.5MGHPBH4	2,5,8 N*=13	-	RESIDUAL SOIL
		ADV			Cl	CLAY: high plasticity, pale grey, mottled orange and red	VSt		SPT1.5.GHPBH4	7,9,13 N*=22		
2	79		$\mathbf{\nabla}$			CLAY: medium plasticity, pale grey mottled orange and yellow with trace of fine grained sand						2
3-		\downarrow		<u> </u>								V-Bit Refusal
4	— -80 — -81					SHALE: pale grey/ green with some orange mottle, highly weathered (estimated low strength)			SPT3.0MGHPBH4	30,-,- N=R		SHALE -3.1 = SPT Refusal
5						Begin Core Drilling						5
6												6
7-	— -84											7-
•												
8	85											8
9												9_
10												 10
Dri	10 10 Drill Company: Macquarie Drilling Machine Type: Hydropower Operator Name: Glen Garsive Refer to Standard Sheets for details of abbreviations											
Cli	oject ent:		Jac	efin I	0606-J Pty Ltd	BA		EAR	NTIS TS		orehole ID: BH4	
--------------	-----------------	------------------	---------------	--------------	-------------------	---	------------	--	---------------	--------------------	--	
	oject: catio			-	y Park Burley	Road, Horsley Park, Employmen	t Preci	26 - 32 Pirrama Road, Pyrmo 마랍(02) 8569 2200 FAX: (ont, NSW 2009		Sheet: 2 of 3	
Y-0	Coord Coord	l:	2	9779 2532	93 293	Date Comme Date Comple	nced:	12/07/2010 12/07/2010	Logg	ged by ked b		
Sui	face	Eleva	tion (F	R.L):	76.8	m AHD Hole Diamete	er (mm): 76				
Dri	lling I	nform	ation			LITHOLOGY			N	atura	Defects	
Depth (mBGL)	R.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa $[0]{0}{0}{0}{0}{0}{1}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}{0}$	Q.	cing nm)	Description	
0											0	
	- 76										1-	
2	- 75										2-	
3	- 74										3	
4	- 73										4	
5	- 72		- 0%0			SHALE: pale brown/ pale grey, massive	HW				HIGHLY FRACTURED COR DUE TO DRILLING PT	
6	- 71		\rightarrow			orange mottle, distinctly bedded at 0 - 5 degrees SHALE: brown/ grey, massive.	-	-			-5.55 to -5.81 = HIGHLY FRACTURED CORE DUE TO DRILLING	
7-	— 70		- 0%0						- 100%		PT, 0 deg, PI, So, VN, GREY CLAY -7.0 to -7.10 = HIGHLY 7	
	- 69					7.1 Becoming distinctly bedded at 0-5 degrees.	MW				-7.0 to -7.10 = HIGHLY FRACTURED CORE DUE TO DRILLING	
8	- 68	NMLC				8.25m becoming pale grey					-8.0 to -8.5 = HIGHLY 8 FRACTURED CORE DUE TO PR.5J drg, PI, So, CN	
9											9	
 10	- 67		0%0			SHALE: Pale grey, distinctly bedded at 0	SW				10	
		mpan e Type			arie Dri oower	lling Operator Name:	(Glen Garsive	F fo	Refer t r detai	o Standard Sheets Is of abbreviations	

Project ID: Client: Project: Location:	Jacfin Horsle			t Prec	EAR Jones Bay Wharf 19 - 26 - 32 Pirrama Road, Pyrmo 1904 (02) 8569 2200 FAX: (0	NTISTS 21, Suite 121 nt, NSW 2009 02) 9552 4399	Corehole ID BH4 Sheet: 3 of 3	
X-Coord: Y-Coord: Surface Eleva	2977 6253	93 293	Date Comme Date Comme m AHD Hole Diamete	nced: ted:	12/07/2010 12/07/2010	Logg	ged by: C. Aylott eked by: M. Pickett	
Drilling Inform	ation		LITHOLOGY			N	atural Defects	
Depth (mBGL) R.L. (m) Method (Support)	% Coreloss Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa $[000]{100} \text{ MPa}$ $[000]{100} \text{ S}$ $[000]{100} \text{ S}$	Q.	cing nm) Description ଛୁ ତୃ ଛୁଁ	
			to 5 degrees.			100%	1	10
				Fr			1	- - - - - - - -
	\leftarrow %0 \rightarrow						1	12
13-64			End of borehole.				1	13 -
14							1	14
15							1	15
16							1	-
17 – 60							1	- - 17 - - - - -
18 - 59							1	-
19 58							1	- 19
20							2	20
Drill Compan Machine Type		arie Dri power	lling Operator Name:	(Glen Garsive		Refer to Standard Shee r details of abbreviatio	

88 CL CLAY: Medium plasticity, brown with organic matter (roots) Fm >Wp TOPSOIL TOPSOIL 1 67 CLAY: high plasticity, plast	Project ID: Client: Project: Location:	Horsley	anning ⁄ Park	g Pty Ltd	vment]	2 Precfit	Jones Bay Wharf 1 26-32 Pirrama Road, Pyrr ;(@2) 8569 2200 FAX:	NTISTS 9-21, Suite 121 mont NSW 2009	B	G ID: H5 Sheet: 1 of 2
Open Participation Open Part	Y-Coord:	6253383		Date Con	npleted	l:	12/07/2010		-	-
0			JSCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor	Consistency / Density	Moisture			Pocket Penetrometer (kPa)	additional
9 	0 		CL	component CLAY: Medium plasticity, brown with organic matter (roots) CLAY: high plasticity, pale grey with orange mottle SHALE: pale brown wih orange mottle, highly weathered (estimated low strength)	Fm		SPT0.5MGHPBH5	6,13,14 N*27 30,-,- N*=R 23,-,-		RESIDUAL SOIL

Proje Clier		(D:			0606-Л Pty Ltd	BA		EAR			orehole ID:
Proj			Но	orsley	y Park			Jones Bay Wharf 19 - 26 - 32 Pirrama Road, Pyrmo	nt, NSW 2009		BH5
Loca	ntior	ı:	Lo	tA,	Burley	Road, Horsley Park, Employmen	t Preci	net (02) 8569 2200 FAX: (0 www.consultin	2) 9552 4399 gearth.com.au		Sheet: 2 of 2
X-Co				.9826		Date Comme		9/07/2010	-	ged by	-
Y-Co				52533		Date Comple		12/07/2010	Che	cked b	y: M. Pickett
			tion (F	. L):	88.3	m AHD Hole Diamete	er (mm	i): 76	1		
Drilli	ng Ir		ation			LITHOLOGY	1			Natural	Defects
Depth (mBGL)	K.L. (m)	Method (Support)	% Coreloss	Water	Symbol	Rock Description ROCK TYPE: grain characteristics, colour structure, minor components	Weathering	Estimated Strength MPa $\begin{bmatrix} 02\\ S\\ S\\ S\\ S\\ S\\ T\\ T\\$) % (Q	ncing mm)	Description
	1								!		0
0	Γ										0
1	88 87 86										1- 2-
4	85										3- 4-
5	83		$\Rightarrow \left\langle - 5\% \rightarrow \right\rangle$			SHALE: pale brown/ pale grey, distinctly bedded at 0-5 degrees	HW				4.5 to 5.75m HIGHLY FRACTURED CORE, DRILLING INDUCED
6	82						MW				EL 0 deg, PI, So, VN, BROWN CLAY 6-
7	81		- %0			SHALE: pale grey, distinctly bedded at 0- 5 degrees	SW Fr	-	100%		7– JT, 40 deg, PL, So, Co, GREY CLAY
8	80										8- SM, 10 deg, Pl, BROWN CLAY, 20 mm.
9-1	79	\checkmark	- %0						\leftarrow 100%		9 to 9.4m HIGHLY 9– FRACTURED CORE, DRILLING INDUCED
						End of borehole.					-
10 ^{⊥1} Drill Mach					arie Dril oower	ling Operator Name:	(Glen Garsive			10 o Standard Sheets ls of abbreviations

ŝ
Ś
Ę
a
tig
SS
8
5
d)
Ť.
0
ā
<u>9</u> .
3
Q
ţe.
8
Ğ
m
ര്
6
7
26
Ň
5
S
4
5
ž
e
as
щ
$\overline{}$
S
Ш́
~
5
≍
<u> </u>
Щ
Q
ROCED
ñ
5
Δ
C
ž
G
Õ
ž
9
Y OF SOIL L
Ξ
0
S
Ľ.
≍
U
≻
ĺγ .
Ř
IAR
MAR
MMAR
JMMAR
SUMMAR
SUMMAR
SUMMAR

Coarse Material (Gravel and Sands): SOIL NAME: colour - grain size - particle shape - secondary components - minor constituents - moisture condition - relative density - origin - additional observations. Example (Coarse material): Clayey SAND: dark grey, fine to medium sand, low plasticity, trace of fine gravel, moist and loose. (Alluvial)

Fine Material (Silts and Clays): SOIL NAME: colour - plasticity - secondary components - minor constituents - moisture w.r.t. plasticity - consistency - origin - additional observations. Example (Fine Material): candy CI AY: dark orev low to medium plasticity fine orgined cand. MC > PL. firm to stiff (Alluvial).

	Guid	le to the De	Guide to the Description, Identification and	cation and Classfication of Soils	1 of Soils		,	Descriptive Terms for Material Portions	for Material Po	ortions
Major Divisions	visions					CC	COARSE GRAINED SOILS	SOILS		FINE GRAINED SOILS
>200mm	BOULDERS	uscs		Typical Names		% Fines		Term/Modifier	% Coarse	Term/Modifier
63 to 200mm	COBBLES	Symbol				< 5		Omit, or use "trace"	< 15	Omit, or use "trace"
		GW	Well-graded gravels, grave	Well-graded gravels, gravel-sand mixtures, little or no fines.		> 5, < 12		"with clay/silt" as applicab	b > 15, < 30	"with sand/gravel" as applicable
ų, ssə	an 30 Dari	GP	Poorly graded gravels and	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels.	nes, uniform gravels.	> 12	1	Prefix soil as "silty/clayey"	v" > 30	Prefix as "sandy/gravelly"
l s sen 70.0 n	> 23 coarse dre th ils	GM	Silty gravels, gravel-sand-silt mixtures	silt mixtures.						
եւ քրց գեծ է	o2 M To	GC	Clayey gravels, gravel-sand-clay mixtures	d-clay mixtures.				Moisture	Moisture Condition	
б q%(SW	Well-graded sands, gravelly sands, little or no fines.	ly sands, little or no fines.		Terminology		for non cohesive soils:	for cohesive soils:	
)ç u u	0¢ ue	SP	Poorly graded sands and g	Poorly graded sands and gravelly sands; little or no fines, uniform sands.	form sands.	Dry -		cohesionless, free running MC < PL. Typically hard and friable	3. MC < PL. Typical	Ily hard and friable.
	Sandy Soils Moreth of coarse <2.3	SM SC	Silty sands, sand-silt mixtures. Clayey sands, sand-clay mixtures.	ires. ixtures.		Moist -		Soils tend to cohere, no free water visible.	MC ~ PL. Soil can be moulded	ı be moulded
ueų	tin	ML	Inorganic silts and very fir.	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts.	ine sands or clayey silts.	Wet -		free water visible on soil suMC > PL.		Free water forms on hands during handling
ទេទាទ	й Л biı %02	СГ	Inorganic clays of low to r	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.	ndy clays, silty clays.	* The plastic Limit (PL) is d	lefined as the moisture cc	The plastic Limit (PL) is defined as the moisture content at which the soil crumbles when rolled into threads of 3mm dia	hen rolled into threads of 3	3mm dia.
0.0 men se nn yn S_ A NIA E		ПО	Organic silts and organic silty clays of low plasticity.	ilty clays of low plasticity.				Plasticity - for	Plasticity - for Clays & Silts	
» مم IIOS	ń	НМ	Inorganic silts, micaceous	Inorganic silts, micaceous or diatomaneous fine sandy or silty soils, elastic silts.	soils, elastic silts.	Low Plasticity		$LL \leq 35~\%.~A$ 3mm dia thread can barely be rolled at any water content.	ad can barely be rolled.	at any water content.
05 us	miJbi %0≷	CH	Inorganic clays of high plasticity, fat clays	sticity, fat clays.		Medium Plasticity		LL > 35 % \leq 50 %. The thread	d is easy to roll and not	LL > 35 % \leq 50 %. The thread is easy to roll and not much time is required to reach PL. Cannot be re-
րե մի			· · · · · · · · · · · · · · · · · · ·					rolled after reaching PL. LL > 50 %. It takes consider	rable time rolling and k	rolled after reaching PL. LL> 50 %. It takes considerable time rolling and kneading to reach the PL. The thread can be rerolled
M		ЮН	Organic clays of medium.	Organic clays of medium of righ plasticity, organic suits.		High Plasticity		several times after reaching the PI	he PL.	
HIGHLY ORGANIC SOILS	ANIC SOILS	Pt	Peat and other highly organic soils	nic soils.		Fidnia Fimit (FFF) is defin	ed as the moisture conter	• Liquid Limit (LLJ) is defined as the mosture content (%) at which the soil begins to flow.	10W.	
	Grain S	Sizes						Consistency - fo	- for Clays & Silts	S
Gravel	el		Sand	ero	CH	Description	SPT "N" Value	UCS or $q_u (kPa)^*$		Field guide to consistency
Coarse -	63 to 20mm	Coarse -	2.36 to 0.6mm	d '(July 1	Very Soft		<25	Exudes between the	Exudes between the fingers when squeezed in hand
Medium -	20 to 6mm	Medium -	0.6 to 0.2mm		CI	Soft		25 - 50	Can be moulded by light finger pressure	light finger pressure
- LIIIC	1111102.7 01 0	Fine -	0.2 to 0.0/2mm	20		Furm exite		00 - 100 100 - 200	Can be mourded by strong ring	Cannot be mounded by strong inger pressure Cannot be mounded by fingers
GEOLOGICAL ORIGIN:	IGIN:					TIL		007 - 00T	Can be indented by thumb	bumb
- III	- artificial soils / deposits	posits		<u> </u>		Very Stiff	1	200 - 400	Can be indented by thumbnail	humbnail
Alluvial -	- soils deposited by the action of water	the action of wi	ter		LIN	Hard	1	>400	Can be indented with	Can be indented with difficulty by thumbnail
Aeolian -	- soils deposited by the action of wind	/ the action of wi	nd	20 30	40 50 60 70	* UCS = Unconfined	Compressive Stren	ıgth. Can be estimated usii	ing a pocket penetro.	UCS = Unconfined Compressive Strength. Can be estimated using a pocket penetrometer although it may overestimate UCS by a
Topsoil -	soils supporting p	alant life contain	- soils supporting plant life containing significant organic o	7	- { [Wi] nercent	factor of 1.5 - 2.0				
Residual -	soils derived from insitu weathering of parent rock	insitu weatheri	ig of parent rock.					Relative Density for Gravels and Sands	r Gravels and S	Sands
Colluvial -	transported debris	s usually unsorte	1, loose and deposited by gr	- transported debris usually unsorted, loose and deposited by gravity towards the base of terrain of high relief	high relief	Description	SPT "N" Value	Relative Density %	Field guide (For sand)	and)
Eadd Idantification of Eina Crainad Soils - Silk ar Clay)	f Fine Creined S.	Joile - Silt or Cle	64			Very Loose	0 - 4	<15	Easily penetrated	
						Loose	4 - 10	15 - 35	Can be excavated	
Dry Strength - Allow the soil to dry completely and ther High dry strength - Clays: Very slight dry strength - Sills	e soil to dry completel Verv slight dry stren	ely and then test its neth - Silts.	Dry Strength - Allow the soil to dry completely and then test its strength by breaking and crumbling between the fingers. Hieh dry strength - Clavs: Very slieht dry strength - Silts.	ing between the fingers.		Medium Dense	10 - 30	35 - 65	Hard shoveling.	
Toughness Test - The so	il is rolled by hand in	nto a thread about 5	imm in diameter. The thread is the internation	Toughness Test - The soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled repeatedly until it has dried sufficiently to break i coordinate increasion characteristic and rough table increasion either and refers on of these diverses and remote	Toughness Test - The soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled repeatedly until it has dried sufficiently to break into lumps. In this condition increases of some set of the source o	Dense	30 - 50	65 - 85	Penetrated 300mm	п

High dry strength. Clays: Very sight dry strength - Sills. Purpheres Test - The soil is rolled by hand into a thread about 3mm in diameter. The thread is then folded and re-rolled arpeatedly until it has dried sufficiently to break into lumps. In this condition incognic clays are fairly stift and tough while incognic sills produce a weak and often soft thread which may be difficult to form and readily breaks and cumbles. Diatancy Test - Add sufficient water to the soil, held in the pain of the hand, to make it soft but not sticky. Shake horizontally, striking vigorously against the other hand several times. Dilatancy is indicated by the appearance of a shiny film on the surface of the soil. If the soil is then squeezed or pressed with the fingers, the surface becomes dull as the soil stiffens and eventually cumbles. These reactions are pronounced only for predominantly sith size material. Plastic clays give no reaction.

Penetrated only 25 - 50 mm with 13mm reinforcing rod driven

65 - 85 >85

30 - 50 >50

Very Dense Dense

SUMMARY OF ROCK LOGGING PROCEDURES

DESCRIPTION ORDER: ROCK TYPE: grain size - colour - strength - weathering - structure - defects - minor constituents - additional observations. EXAMPLE: SANDSTONE: medium to coarse grained, grey with orange streaks, medium strength, distinctly weathered, laminated, with rare quartz gravel

Rock Type

Rock Type is described on th	e basis of origin (sedimentary	v pyroclastic metamorphic a	and igneaous) C	Common rock types are listed below.
Rock Type is described on a	ie busis of offgin (seamentary	, pyroeiastie, metamorphie i	ind igneuous). c	Johnnon rock types are instea below.

Origin	Definition	Common Types
\Box Sedimentary R ocks:	Formed at the Earth's surface from the weathered and eroded fragments of pre-existing rocks (ie. clastic sedimentary rocks), from the hard parts of animals or plants (organic sedimentary rocks), or from the precipitation out of solution of dissolved minerals (chemical sedimentary rocks)	Organic - shelley limestone, coal. Chemical - limestonerock salt, gypsum, chert.
□ Pyroclastic	Fragmented (clastic(rock material) formed by a volcanic explosion or eruption from a volcanic vent	Tuff, agglomerate, volcanic breccia
Metamorphic Rocks:	Formed from the mineralogical and/or textural transformation, in the solid state, of pre-existing rocks due to the action of temperature and/or pressure. Metamorphic rocks that have been subjected to deep burial typically display a foliated texture due to the parallel alignment of some constituent minerals (as in schist) or the segregation of minerals into senarate hands of different composition (as in energy)	Slate, Gneiss, Schist, Quartzite, Phylite
Igneous rocks:	Formed by the cooling and solidification of magma, a hot molten material formed by localised melting within the Earth. If formed beneath the Earth's surface, the rock formed is an 'intrusive igneous rock. Magma extruded at the Earth's surface is known as lava which gives rise to extrusive igneous or volcanic rocks.	Intrusive - Granite, Dolerite, Porphyrite, Diorite.

* Both siltstone and claystone are also known as mudstone and commonly called shale if thinly laminated with a tendancy to split in parallel planes

Grain Size

Grain size is often only provided for conglomerate and sandstone sedimentary rocks. * It is noted that the limit of unaided vision is 0.06mm.

Conglor	merate	Sa	ndstone
Coarse -	> 20 mm	Coarse -	0.6 to 2mm
Medium -	6 to 20 mm	Medium -	0.2 to 0.6 mm
Fine -	2 to 6 mm	Fine -	0.06 [*] to 0.2 mm

Colour

Colour is usually described in the as-received moisture condition (ie. wet). Although both wet and dry colours descriptions may be appropriate if significantly different.

Strength

The strength of rock based on point load testing is presented below. Note: the field guide assessment should be confirmed by point load testing when used in earthworks and foundation ir

			Rock Strength Descriptions
Term	Letter Symbol	Point load index (Mpa) Is (50) *	Field Guide
Extremely Low	EL	≤ 0.03	Easily remoulded by hand to a material with soil properties.
Very Low	VL	0.03 - 0.1	May be crumbled in the hand. Sandstone is "sugary" and friable.
Low	L	0.1 - 0.3	A piece of core 150 mm long x 50 mm dia. may be broken by hand and easily scored with a knife. Sharp edges of core may be friable and break during handling.
Medium	М	0.3 - 1.0	A piece of core 150 mm long x 50 mm dia. can be broken by hand with considerable difficulty. Readily scored with knife.
High	н	1.0 - 3	A piece of core 150 mm long x 50 mm dia core cannot be broken by unaided hands, can be slightly scratched or scored with knife.
Very High	VH	3.0 - 10	A piece of core 150 mm long x 50 mm dia. may be broken readily with hand held hammer. Cannot be scratched with pen knife.
Extremely High	EH	≥ 10	A piece of core 150 mm long x 50 mm dia. is difficult to break with hand held hammer. Rings when struck with a hammer.

* rock strength defined by point load strength (Is 50) in direction normal to bedding

Weathering

The classification system for weathering in accordance with AS1726-1993 is provided below

		Weathering
Residual Soil		Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a change in volume but the soil has not significantly transported.
Extremely Weathered	EW	Rock is weathered to such an extent that it has "soil" properties; i.e. it either disintegrates or can be remoulded, in water.
Highly Weathered		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron-staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Slightly Weathered	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh	FR	Rock shows no sign of decomposition or staining.

Structure

The structure of the rock mass (as opposed to the rock 'material') should be describbed using the following common terms:

- □ Sed imentary Rocks:
- Bedded (ie. layers greater than 20 mm thick on average); or Laminated (ie. layers less than 20mm thick on average) Metamorphic Rocks:
- □ Igneous rocks:

Foliated, Banded or Cleaved. Massive or Flowbanded

Defects

Defects are 'natural' fractures in the rock mass and include: joints, faults, sheared planes, seams, bedding partings and veins. They do not include fractures caused by the drilling process or subsequent handling. Defects are an important feature which can have a significant bearing on the engineering behaviour of a rock mass. As such, they should be individually described including: orientation, infilling (eg. clay, Iron oxide, clean etc), shape, roughness and whether the defect is open or tight.

Defect spacing in accordance with P.J.N. Pells et al, 1998, is described below.

Defect Spacing	(P.J.N. Pells et al, 1998)*
Defect Spacing (mm)	Description
>2000	Very Widely Spaced
600 - 2000	Widely Spaced
200 - 600	Moderately Spaced
60 -200	Closely Spaced
20 - 60	Very Closely Spaced
0 - 20	Extremely Closely Spaced

Rock Quality Desi	ignation (RQD):
The fracture spacing is sh	own where applicable and the Rock Quality Designation is
	sum of unbroken core pieces 100 mm or longer
RQD (%) =	Length of Core
RQD provides info	prmation on the extent of fracturing and hence the competency of the rock mass.

Spacing relates to of all types of natural fractures, but not articficial breaks, in cored bo

Borelog Symbols and Notes

DRILLING INFORMATION:

Jones Bay Wharf 19-21• Upper Deck Suite 55• 26-32 Pirrama Road, Pyrmont NSW 2009 Telephone: 02 88569 2200 • Fax: 02 9552 4399 •

Suppor	<u>t</u>	<u>Method</u>			Water			
None	No support provided	HA HAND AUGER			\triangleright	Inflow of water		
Mud	Drilling mud used	RR ROCK ROLLER			\triangleleft	Water Loss		
NQ	NQ size drilling pipe (69.9 mm ODia)	ADV Auger 'V'-STEEL E	BIT		$\mathbf{\nabla}$	Water Level during drilling / excavation		
HQ	HQ size drilling pipe (88.9 mm ODia)	ADTC Auger 'TUNGSTEN	-CARBIDE' BIT		Ŧ	Stabilised Water Level		
		NMLC DIAMOND CORIN	G					
SAMPL	ING:							
Sample	D.		Type.	D	Small Disturbed S	Sample		
ddmmyy-		Sampler		U50	Undisturbed 50mm dia. tube sample			
				В	Bulk Disturbed Sample			
Note : Sam	ple Depth is indicated by horizontal lines which defin	e the start and end depths		PT	Geoprobe Push Tube Sample in			
				J	Environmental Sa	Environmental Sample collected in a laboratory supplied glass jar		
				SPT	SPT Split Tube S	ampler		
FIELD "	TESTS:							
Standard	l Penetration Test (SPT)		Vane Shea	<u>ır</u>				
2/3/4	2/3/4 Number of blows per 150mm over a depth of 450mm			VS=30 Vane Shear Reading of 30 kPa				
N = 7 SPT "N" number = sum of last two blow counts Pocket Penetromenter								

SYMBOLS:

Soils.				Rocks		Other	
	FILL		SAND		BASALT		ASPHALT
	TOPSOIL		CLAYEY SAND		CONGLOMERATE		BENTONITE PLUG
	CLAY		SILTY SAND		GRANITE		WELL SCREEN
	SANDY CLAY	0.0.0	GRAVELLY SAND		LIMESTONE		WELL BACKFILL SAND
	SILTY CLAY		GRAVEL		SANDSTONE		
	GRAVELLY CLAY		CLAYEY GRAVEL		SILTSTONE, MUDSTONE		
	SILT		SILTY GRAVEL		SHALE		
	CLAYEY SILT		SANDY GRAVEL		SHALEY CLAY (Extremely Weathered Shale)		
	SANDY SILT		PEAT		VOLCANIC BRECCIA		
	GRAVELLY SILT						

NATURAL ROCK DEFECTS:

Descr	iption	Ord	er:

lī

Fracture Type, Orientation, Infilling, Shape, Roaghness, Other

Fracture Ty	ре	Orientation		Infilling	
JT	Joint	VT	Vertical	CN	Clean
BP	Bedding Plane Parting	HZ (or 0o)	Horizontal	Х	Carbonaceous
SM	Seam	Хо	X' degrees from Horizontal	CLAY	Clay
FZ	Fragmented Zone			CA	Calcite
SZ	Shear Zone			FE	Iron Oxide
VN	Vein			MI	Micaceous
				QZ	Quartz
Shape		Roughness			
PLN	Planar	POL	Polished	Others	
CU	Curved	SLK	Slickensided	DIS	Discontinuous
UN	Undulose	SO	Smooth	TI	Tight
ST	Stepped	RF	Rough		
IR	Irregular	VR	Very		

APPENDIX B

LABORATORY TESTING RESULTS

htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

cortained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

EMERSON CRUMB TEST

CLIENT: Consulting Earth Scientists

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009 PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

any subject to its Ge

It is to be treated as an original within the meaning of UCP 600. Any holder any. The company's sole responsibility it to its client and this document do

Laboratory Number	: 59462					
Sample Source:	BH1 0.5m					
Sample Description	SILTY CLAY: brow	n, high plasticity, trace o	of fine to medium san	d.		
1. IMMERSIC	DN					
	Does not slake —		Class 7 swells (O	rganic Soils)		
	Slakes	YES	Class 8 does not	swell (Laterise	d)	
2. COMPLET	E DISPERSION					
	Class 1 complete Class 2 partial No Dispersion	YES				
3. REMOULD	DING					
	Class 3 disperses Does not disperse	YES				
4. CARBONA	ATE & GYPSUM (Acid	Indicator)				
	Class 4 present Absent	YES				
5. VIGOROU	S SHAKING					
	Class 5 disperses Class 6 no dispersion	YES				
EMERSION (CLASS NO.:	5				
Water used:	Distilled water at 20°C		Date Tested:	22.07.10		
Tested By:	SM		Sampled By:	Client		
Test Procedure	: AS 1289 3.8.1		Job Number:	133-084		
Approved Signatory:	^	Chris Lloyd	ΓA's accreditation require	ments	Date:	22.7.10
					T	

htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

weed that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's as to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

EMERSON CRUMB TEST

CLIENT: Consulting Earth Scientists

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009 PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

npany subject to its General C

ument is to be treated as an original within the meaning of UCP 600. Any holder of this document is advisens, if any. The company's sole responsibility it to its client and this document does not exercise parties on of the content or appearance of this document is unlawful and offenders may be presecuted to the full

Laboratory Number	: 59463					
Sample Source:	BH2 0.5m					
Sample Description	: SILTY CLAY: red-b	prown (mottled) grey, hig	gh plasticity, trace of f	ine to coarse sa	and.	
1. IMMERSIC	DN					
	Does not slake —		Class 7 swells (Or	rganic Soils)		
	Slakes	YES	Class 8 does not s	swell (Laterise	d)	
2. COMPLET	E DISPERSION					
	Class 1 complete Class 2 partial No Dispersion	YES				
3. REMOULD	DING					
	Class 3 disperses Does not disperse	YES				
4. CARBONA	TE & GYPSUM (Acid	Indicator)				
	Class 4 present Absent	YES				
5. VIGOROU	S SHAKING					
	Class 5 disperses Class 6 no dispersion	YES				
EMERSION (CLASS NO.:	<u>5</u>				
Water used:	Distilled water at 20°C		Date Tested:	22.07.10		
Tested By:	SM		Sampled By:	Client		
Test Procedure:	AS 1289 3.8.1		Job Number:	133-084		
Approved Signatory:	^	Chris Lloyd sued in accordance with NA	ΓA's accreditation require	nents	Date:	22.7.10

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

CALIFORNIA BEARING RATIO

CLIENT: Consulting Earth Scietists

ABN 44 000 964 278 ph: +61 (0)2 9597 5599 fax: +61 (0)2 9597 3442

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009

PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

Sample Source:	BH2 / 0.4-0.6m		
Sample Description:	SILTY CLAY: brown, medium plasticity, with fine to c	oarse sand.	
Job Number:	133-084		
_aboratory Number:	59464		
CBR Value @ 2.5mm	1.0	(%)	
CBR Value @ 5.0mm	1.0	(%)	
Sample Data			
Compaction Specification	100% of MDD at OMC		
Maximum Dry Density (MDD)	1.66	(t/m ³)	
Optimum Moisture Content (OMC)	19.0	(%)	
Mass of Surchages	4.5	(kg)	
Number of Days Soaked	3		
Sample Preparation			
Dry Density - Before Soaking	1.66	(t/m ³)	
Dry Density - After Soaking	1.59	(t/m ³)	
Retained on 19mm Sieve	0	(%)	
Moisture Content - Before Soaking	19.1	(%)	
_aboratory Density Ratio	100.0	(%)	
aboratory Moisture Ratio	100.0	(%)	
Moisture Content - After Soaking			
Fop 30mm of Test Sample	29.6	(%)	
Remainder of Test Sample	26.4	(%)	
Swell After Soaking	4.1	(%)	
Compactive Effort	Standard		
Number of Layers	3		
Blows per Layer	53		
Mass of Rammer	2.7	(kg)	
Drop of Rammer	300	(mm)	
Comments			
Date Tested:	18.7.10		
	etermination of the California Bearing Ratio of a soil		
Standard Laboratory Method for a remoul	ded specimen.		
Approved Signatory:	Chris Lloyd	Date:	23.7.10
This document	is issued in accordance with NATA's accreditation requirements		

File C:\Electronic Excel Reports\AS1289 6.1.1 California Bearing Ratio, Issue 2, May 2010, JL

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

CALIFORNIA BEARING RATIO

CLIENT: Consulting Earth Scietists

ABN 44 000 964 278 ph: +61 (0)2 9597 5599 fax: +61 (0)2 9597 3442

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009

PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

ample Description:	SILTY CLAY: brown, medium plasticity, with fine to c	oarse sand.	
· · ·			
ob Number: aboratory Number:	133-084 59465		
BR Value @ 2.5mm	4.0	(%)	
BR Value @ 5.0mm	4.0	(%)	
ample Data			
compaction Specification	100% of MDD at OMC		
laximum Dry Density (MDD)	1.67	(t/m ³)	
Optimum Moisture Content (OMC)	18.5	(%)	
lass of Surchages	4.5	(kg)	
lumber of Days Soaked	3		
ample Preparation			
Pry Density - Before Soaking	1.68	(t/m ³)	
Dry Density - After Soaking	1.66	(t/m ³)	
letained on 19mm Sieve	0	(%)	
loisture Content - Before Soaking	17.8	(%)	
aboratory Density Ratio	101.0	(%)	
aboratory Moisture Ratio	96.0	(%)	
loisture Content - After Soaking			
op 30mm of Test Sample	23.5	(%)	
lemainder of Test Sample	19.6	(%)	
well After Soaking	1.2	(%)	
Compactive Effort	Standard		
lumber of Layers	3		
Blows per Layer	53		
lass of Rammer	2.7	(kg)	
Prop of Rammer	300	(mm)	
comments			
Pate Tested:	19.7.10		
ested in accordance with AS1289.6.1.1	Determination of the California Bearing Ratio of a soil		
tandard Laboratory Method for a remou	lded specimen.		
Approved Signatory:	Chris Lloyd	Date:	23.7.10
and the second s	-		
This document	t is issued in accordance with NATA's accreditation requirements		

File C:\Electronic Excel Reports\AS1289 6.1.1 California Bearing Ratio, Issue 2, May 2010, JL

This document is issued by the Company adapts to its General Conditions of Service (even age) combining and conditions. Item, Attertion is date to the limitations of labelity, indemnification and juridectional losses established therein. This document is to be handed as an object of the Company fundament of the Company fundament and purposed and the limits of labelity. Indemnification and juridectional losses established therein. The document is to be handed as an object of the Company fundament of the Company fundament of the limits of labelity. Indemnification and juridectional losses established therein. The document is to be material of the Company fundament of the Company fundament of the Limits of Limits of Limits of Limits of the Limits of Limits

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

DRY DENSITY/MOISTURE CONTENT RELATION

CLIENT: Consulting Earth Scietists

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009 PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

Approved Signatory:

NAT

Chris Lloyd

Date: 23.7.10

This document is issued in accordance with NATA's accreditation requirements

The document is issued by the Company adaptic to its General Conditions of Service (evenuegas combining and conditions thm). Attention is drawn to the limitations of labelity, indemnification and juridectional issues established therein. The document is to be treated as an object with the maximal of LCP 660. Any holder of the document is advised the information contrained intervo in the limit of catalogies and the limit of labelity indemnification and juridectional issues established therein.

SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

DRY DENSITY/MOISTURE CONTENT RELATION

CLIENT: Consulting Earth Scietists

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009 PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

Approved Signatory:

Chris Lloyd

This document is issued in accordance with NATA's accreditation requirements

Date: 23.7.10

ΝΔΤ

File C:\Electronic Excel Reports\AS 1289 5.1.1, 5.2.1 Maximum Dry Density Moisture Content Relation, Issue 2 May 2010, JL

ons of liability indemnification and irrisdictional issues esta

y's findings at the time of its intervention only and within the limits of client's ons under the transaction documents. Any unauthorized alteration, forgery or SGS Australia Pty Ltd 24 Bermill Street (PO Box 2014) Rockdale DC NSW 2216 Australia

SOIL CLASSIFICATION TEST DATA

CLIENT: Consulting Earth Scietists

Suite 55 Upper Level, 26-32 Pirrama Road Pyrmont NSW 2009 PROJECT: Jacfin Pty Ltd, Horsley Park CES100606-JBA

LAB	SAMPLE	SAMPLE DESCRIPTION	MOISTURE			PLASTIC	PREPAR-	LINEAF
NO.	SOURCE		CONTENT	DENSITY	LIMIT	INDEX	ATION &	SHRINK
			(%)	(t/m ³)			HISTORY	(%)
			1		2	3	4	5
59462	BH1	SILTY CLAY: brown, high plasticity,	-	-	66	45	Ν	16.0
	0.5m	trace of fine to medium sand.					Ν	
59463	BH2	SILTY CLAY: red-brown (mottled)			56	37	Ν	15.5
55405	0.5m	grey, high plasticity, trace of fine to		_	50	57	N	15.5
	0.011	coarse sand.						
IOTES T	O TESTING		•					
1	Test Method:	AS 1289 2.1.1		Sampled	By:	Client		
2	Test Method:	AS 1289 3.1.2						
3		AS 1289 3.2.1, 3.3.1		Job Numb	per:	133-084		
4	Preparation:	DS = Dry Sieved						
		WS = Wet Sieved		Date Test	ed:	22.07.10		
		N = Natural State With No Sieving						
S	ample History:	AD = Air Dried						
		$OD = Oven Dried at 50^{\circ}C$						
5	Toot Mothed	N = Natural State As Received AS 1289 3.4.1						
5	Mould Size:							
	Dry State:							
Appro	ved Signatory:	age	Chris Lloyd				Date: 23.7.10	
molethy	11/m.		-			7		
	1 74					1		
ilac	ARA NAT	This document is issued in accordance with N	ATA's accreditation	requirements				

ANALYTICAL REPORT

23 July 2010

SGS Industrial CMT Eastern Sydney

24 Bermill Street PO Box 2014 ROCKDALE NSW 2216

Attention: Alex Bell

Your Reference: CES - HORSLEY - 133-084

 Our Reference:
 SE80048
 Samples:
 1 Soil

 Received:
 21/07/2010

 Preliminary Report Sent:
 Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of: SGS ENVIRONMENTAL SERVICES

Sample Receipt: Production Manager: Angela Mamalicos Huong Crawford AU.SampleReceipt.Sydney@sgs.com Huong.Crawford@sgs.com

Results Approved and/or Authorised by:

Dong Liang

Dong Liang Quality Manager

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 1 of 7

SGS Australia Pty Ltd ABN 44 000 964 278

.		
Anions in soil		
Our Reference:	UNITS	SE80048-1
Your Reference		BH 1 0.5m
Sample Matrix		Soil
Date Extracted		23/07/2010
Date Analysed		23/07/2010
Sulphate, SO4 1:5 soil:water	mg/kg	6.9
Chloride, Cl 1:5 soil:water	mg/kg	120

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Page 2 of 7

Inorganics		
Our Reference:	UNITS	SE80048-1
Your Reference		BH 1 0.5m
Sample Matrix		Soil
Date Extracted- (pH 1:5 soil: Water)		23/07/2010
Date Analysed (pH 1:5 Soil: Water)		23/07/2010
pH 1:5 soil:water	pH Units	8.1

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

n full. Page 3 of 7

SGS Australia Pty Ltd ABN 44 000 964 278

Moisture		
Our Reference:	UNITS	SE80048-1
Your Reference		BH 1 0.5m
Sample Matrix		Soil
Date Analysed (moisture)		22/07/2010
Moisture	%	24

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 4 of 7

SGS Australia Pty Ltd ABN 44 000 964 278

Method ID	Methodology Summary
SEI-038	Water Soluble Chloride
	After carrying out a 1:5 soil:water extraction, an aliquot of the extract is reacted with mercuric thiocyanate
	forming a mercuric chloride complex. In the presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride concentration. Reference NEPM, Schedule B(3), 401 and APHA 4500Cl-
	Water Soluble Sulphate
	After carrying out a 1:5 soil:water extraction ,sulphate in the extract is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulphate concentration in the sample. Reference NEPM, Schedule B(3), 401 and APHA 4500-SO42
AN101	pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).
AN002	Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 \pm 5°C.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

REPORT NO: SE80048

QUALITY CONTROL Anions in soil	UNITS	LOR	METHOD	Blank	Duplicate Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Matrix Spike % Recovery Duplicate + %RPD
Date Extracted				23/07/1 0	[NT]	[NT]	LCS	23/07/10
Date Analysed				23/07/1 0	[NT]	[NT]	LCS	23/07/10
Sulphate, SO4 1:5 soil:water	mg/kg	0.5	SEI-038	<0.5	[NT]	[NT]	LCS	100%
Chloride, Cl 1:5 soil:water	mg/kg	0.25	SEI-038	<0.2	[NT]	[NT]	LCS	102%

QUALITY CONTROL Inorganics	UNITS	LOR	METHOD	Blank
Date Extracted- (pH 1:5 soil: Water)				[NT]
Date Analysed (pH 1:5 Soil: Water)				[NT]
pH 1:5 soil:water	pH Units	0	AN101	0.0

QUALITY CONTROL Moisture	UNITS	LOR	METHOD	Blank
Date Analysed (moisture)				[NT]
Moisture	%	1	AN002	<1

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

> SGS Australia Pty Ltd ABN 44 000 964 278

Page 6 of 7

Result Codes

 [INS]
 :
 Insufficient Sample for this test

 [NR]
 :
 Not Requested

 [NT]
 :
 Not tested

 [LOR]
 :
 Limit of reporting

 Report
 Comments

[RPD] : Relative Percentage Difference* : Not part of NATA Accreditation

[N/A] : Not Applicable

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354 Note: Test results are not corrected for recovery (excluding Air-toxics and Dioxins/Furans*) This document is issued by the Company subject to its General Conditions of Service

(www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of liability, indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Quality Control Protocol

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

Quality Acceptance Criteria

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

Page 7 of 7

SGS Australia Pty Ltd Enviro ABN 44 000 964 278 t +61