Road Access to Bayswood Residential Development

4 May 2010

Prepared for **Stockland Corporation Limited**

Road Access to Bayswood Residential Development

1. Introduction

The Bayswood residential development was approved as a component of the Vincentia Coastal Village for which Concept Approval was issued on 25 January 2007.

The overall Concept Approval also included a shopping centre/district centre with about 32,000m² of floor space to be constructed in stages, 604 residential lots and 136 adaptable dwellings.

At the same time Project Approval was issued for the Bayswood residential component. The approval allowed development of 604 residential lots.

The Concept Approval incorporated four points of access onto the overall site with these to be provided as follows and indicated on Figure 1:

Access A - Western Precinct access on Naval College Road to be formed as a one lane roundabout

Access B - Central Precinct access on Naval College Road to be formed as a "seagull" type priority intersection

Access C - eastern site access on Naval College Road at its intersection with Moona Creek Road to be formed as a two lane roundabout

Access D - access off The Wool Road via a signalised intersection

Accesses A and B would provide access to the Bayswood residential precinct exclusively. Access D would serve the shopping centre only. Access C would serve both, but principally the retail centre because it would connect only to the eastern edge of the residential area.

The Western Precinct was approved and is proposed to have about 326 residential lots and in due course would be most directly served by Access A on Naval College Road.

The Central Precinct is proposed to have about 323 dwellings (157 standard lots/166 retirement dwellings) and would be served most directly by Access B and in due course also by Access C. An internal road network would connect the Western and Central Precincts and the District Centre.

Central Precinct is currently being developed and Access B has been constructed to provide its access. 133 lots have been developed to date.

The Statement of Commitment incorporated in the Concept and Project Approval provides for Access A to be constructed prior to release of the subdivision certificate for Stage 9 in the Western Precinct. Under the approved staging plan, Stage 9 was the first stage of the Western Precinct.

Stockland wishes to defer the balance of the Central Precinct. Part of this area is being held back to possibly be developed as a future retirement village. It therefore wishes to commence construction at the northern end of the Western Precinct. Being the northern end of the Western Precinct, this initial development thus would be awkward to provide access via Access A initially.

In order to maintain the balance between access infrastructure costs and the roll out of lots, it is proposed by Stockland to defer construction of Access A in the initial stages of the development of Western Precinct with access to be provided via Access B through Central Precinct in the interim.

This report considers the traffic implications of this deferral.

2. Traffic Forecasts

The overall Vincentia Coastal Village including the Bayswood residential precincts and the District Centre was the subject of an exhaustive traffic forecasting process prior to the achievement of Concept Approval. Forecasts were developed for ultimate development.

Appendix A provides traffic forecasts proposed for the Concept Application. Table 1 provides results of the analysis of intersection operation relating to those forecasts as presented in the traffic report for the Concept Application.

Table 1 also shows forecast total intersection traffic flows during critical (i.e. most heavily trafficked) design traffic periods. Corresponding levels of service for the intersections are also indicated.

Table 1: Concept Application Analysis of Access Intersection Operation

	•			_		
	Acce	ess A	Acce	ess B	Acces	ss C
	Traffic using	Intersection	Traffic using	Intersection	Traffic using	Intersection
	Access	LOS	Access	LOS	Access	LOS
Summer Thursday Evening	192	A	130	В	636	В
Summer Saturday Morning	192	A	129	В	620	В

The table indicates that traffic use of Access A and B at ultimate development would be low and that intersection performance levels would be very good at Levels of Service A or B. In this regard it is noted that LOS A is excellent and LOS B good with considerable spare capacity. The performance levels are for the peak summer time of the year at which time LOS D would normally be the minimum desirable LOS. LOS F represents oversaturated conditions and is at the extreme low end of performance.

3. Effects of Higher Usage of Access B

To examine the effects of the early use of Access B for access to both Central and Western Precincts, the operation of Access B on Naval College Road was reanalysed on a likely highest case situation with:

- Background traffic flows increasing to forecast 2016 year flows with the shopping centre fully operational, and
- 400 lots from the Western and Central Precincts being developed being served exclusively by Access B.

This would obviously be an extreme case. The make up of traffic usage of the intersection is provided on Figure 2.

Analysis of the operation of the Access B intersection serving 400 lots as per this severe test indicates that it would operate as follows

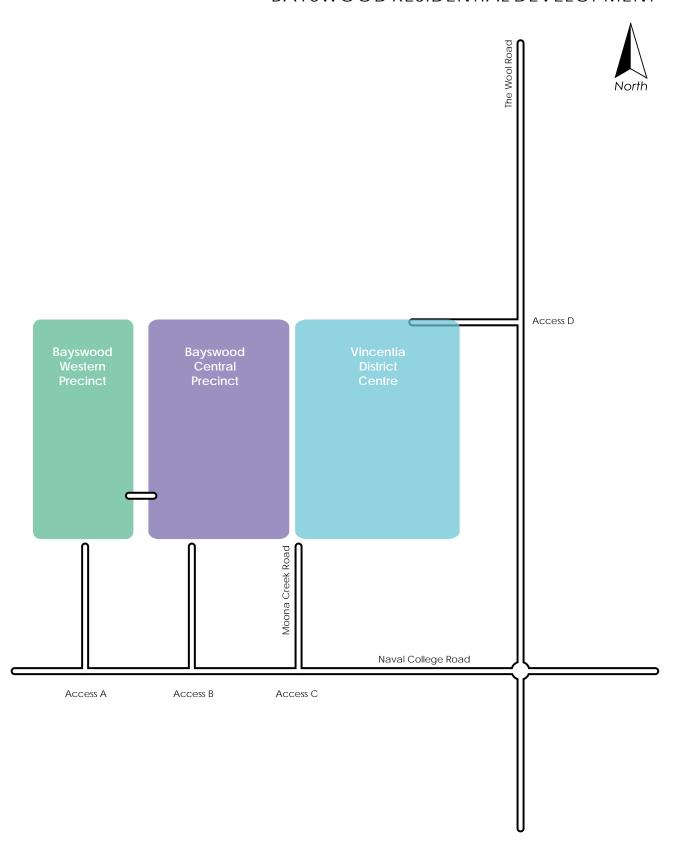
```
Thursday Evening – LoS B (Average delay-20 seconds for worst movement)
Saturday Morning – LoS B (Average delay-19 seconds for worst movement)
```

Relevant analysis files from the SIDRA traffic model are provide in Appendix A.

The analysis indicates that Access B has considerable spare capacity and could reasonably be used to provide the only point of access to the Central and Western Precincts under the modelled scenario.

In practice it is expected that the first stage of the District Centre would be completed within about two years and Access C would provide a second point of access to the Central Precinct.

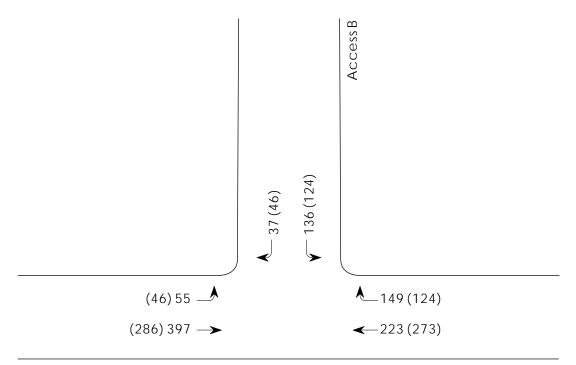
While Access B would then be able to accommodate the traffic related to further lots, it is noted that the roundabout to be provided at Access A was intended in part as a gateway point for the start of urban development along Naval College Road. From this perspective and to avoid excessive internal travel through Central Precinct it would be desirable that Access A be provided prior to the occupation of about two thirds of the proposed lots of Western and Central Precincts.


4. Conclusion

It is concluded that as designed, Access B to the Bayswood Central Precinct has considerable spare capacity and could reasonably serve up to 400 residential lots. Thereafter or earlier if appropriate Access A should be constructed.

PROPOSAL ACCESS LOCATION

BAYSWOOD RESIDENTIAL DEVELOPMENT


Date: 30 April 2010

Filename: CTLRJTdi01.ai

2016 TRAFFIC FLOWS FOR 400 LOTS USING ACCESS B

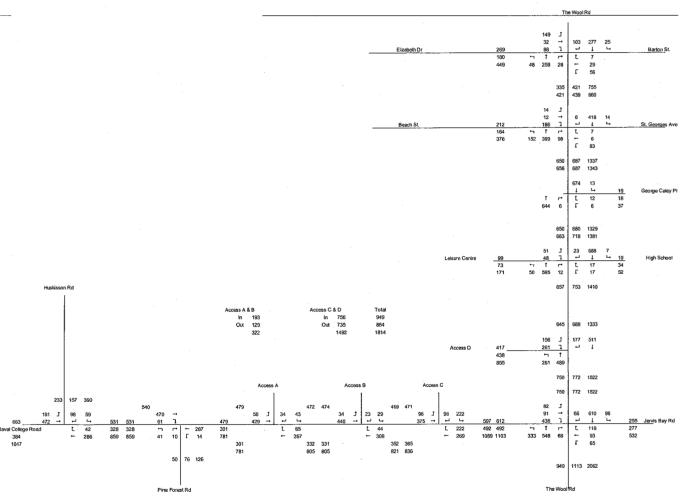
BAYSWOOD RESIDENTIAL DEVELOPMENT

Naval College Road

Key

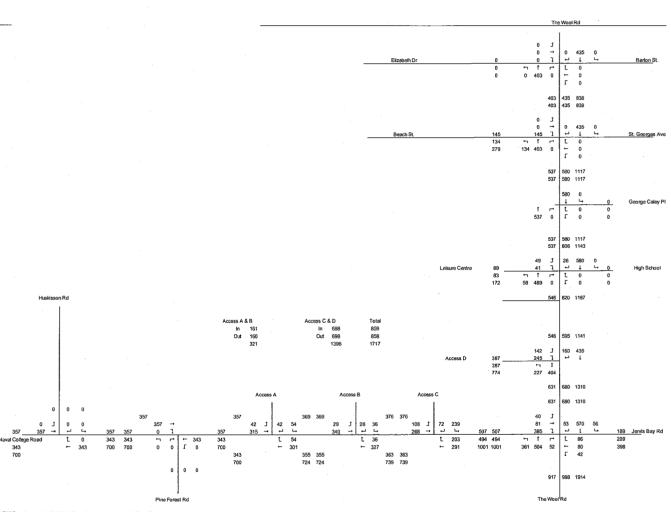
: Thursday PM Peak

(5): Saturday Midday Peak


Figure 2

Filename: CTLRJTdi02.ai Date: 30 April 2010

Appendix A – Concept Application Traffic Forecasts



			Na	iva) Co	llege	Rd/H	uskis	son R	d								Naval	College	Rd/P	ine Fo	rest R	d							Na	val Co	ollege F	Road/	Acces	ss A						
	No	เสก		Εa	st			South			Wes	it		- 1	North			East			Sou	th		Wes	t		No	rth		Ea	sst		S	South			West			
L		T R	L,	. 1		R	L	T	R	L	Т	F	R	L.	Υ	R	L	Т	R	L	т	R	Ł	T	R	L	. т		R I	. 1	r F		L	Т	R	L	т	R		
59		0 9	3 (28	6	42	0	0	0	19	472	: (0	0	0	0	14	287	0	41	0	10	0	470	61	43	3 0) 3	34 1	26	67	5	0	0	0	50	429	0		
			N.	evel C	llege	Road	⊮Acı	cess B	i								Nava	Colleg	e Ros	id/Acc	ess C						N	aval C	College	Road	d∕The \	Vool I	Roadi	/Jervi	s Bay	/Rd				
	No	erth		Εa	st			South			Wes	ıt			North			East			Soul	h		Wes	t	- 1	No	rth	- 1	Ea	st	- 1	s	South		ı	West		1	
L		r R	Ł	. 1		R	L	т	R	L	т	F	R	L	τ	R	L	т	R	L	т	R	L	т	R	l L	T		в I і	. 7	F 6	: 1	L		R	lι	т	R		
29	4	2	3 0	30	8	44	0	0	0	34	440		0	222	0	96	0	269	222	0	0	0	96	375	0	98	61	0 6	6 6	5 9	3 11	9 3	33 8	548	68	82	91	438		
				The W	ool R	oad/A	\cce:	ss D									The V	/ool Ro	ad/Le	isure (Centre	,							T	ie Woi	ol Roa	d/Hial	h Sch	lool						
	No	rfh		Ea	st			South			Wes	t			North			East			Sout	h		West			No	rth		Ea		•		outh			West			
1		r R				R		т.	B		T	` F	₽		т.	R		т.	R		т	 R		т.	R		т.		R I					т	R		T	R		
n	5	11 17	7 0				261	489	, n	156	i n	26		0	682	23	0	'n	'n	50	595		51	'n	48	7	68		0 1	7 (1	,	0 6	627	12	0	'n	o		
٠	Ĭ			•				100	·			-	•	•		-0	٠	v	•		000		-	·		·			•				•		•••	•	٠	•		
			The			/Geo		Caley F									The '		oad/B	each :		Seorge	s Ave						1		ool Ro	ad/El			Barto	n St				
	No	rth		Ea	st			South			Wes	t		- 1	Vorth			East			Sout	h		West	t		No	nh		Ea	ışt		S	outh			West			
L	1	r R	L	Т		R	L	Т	R	L	7	F	R	L	Т	R	Ł	Т	R	L	т	R	L	т	R	L	т		R L	. 1	F		L	Т	R	Ł	т	R		
		74 0				12	0	644				(418		83			152	399	98		12	186	25	5 27		03 5	6 2			48 2	259	28	149	32	88		

NOTES: Any number highlighted in red has a manual entry in the cell

		Nava	al Collec	ie Rd	'Huski:	sson Rd								Naval	College	Rd/P	ine Fo	rest Ro	•							Nava	t Colle	ae Ro	ad/Ac	cess A				
North			East	,		South			West			Norti		,,,,,,,,	East			South			West					11010	East	guito	uunu				West	
			Last	_		opium	_		west			NOIG			East			3000			west			North	•		East			South			west	
L 1	R	L,	- 1	R	Ļ	Т	R	ř.	T	R	L	Т	R	L	т	R	L	Т	R	L	т	R	L	т	R	L	Т	R	L	Т	R	L	T	R
0 0	0	0	343	0	0	0	0	0	357	0	0	0	0	0	343	0	0	0	0	0	357	0	54	0	42	0	301	54	0	0	0	42	315	0
		Nav	al Colle	ge Ro	ad/Ac	cess B								Nava	al Colleg	e Roa	d/Acc	ess C						Nav	al Coll	ege R	T\bso	he Wo	ool Ro	ad/Jen	vis Bay	/Rd		
North			East			South			West			Norti	1		East			South			West		- 1	North		ľ	East		1	South	, .	1	West	1
L T	R	L	т	R	L	т	R	L	т	R	L	т	R	1.	T	R	L	т	R	1.	т	R	1 .	7	R	Ιı	T	R	L	т	R	L	T	R
36 0	28	n	327	36	-	n	0	29	340	0	239	. 0	72		291	203	~	·		108	268	n	56	570	53	42	80	86	361	504	52	40	81	385
	2.0	·	J.	-	Ŭ	٠	Ů	20	540	·	200		12	U	231	203	٠	٠	Ü	100	200	٠	00	570	33	42	φu	010	304	304	32	40	01	303
		TH	ne Woo	Road	#Acce	ss D								The \	Naoi Ro	ad/Le	isure (Centre								The '	Wool i	Road/	High S	chool				
North			East			South			West			North	1		East			South			West			North			East		-	South	1		West	
1 Т	R	- 1	т.	R		т.	R		т.	R		т.	R		т.	R		т.	R		7	R		т.				R		~	R			R
0 400			ż		007	407					_			-	- :		-		Λ.		•					-	r	- '	-			-	- 1	
0 435	160	0	U	0	227	404	0	142	U	245	U	554	26	0	U	0	58	489	U	49	0	41	0	580	. 0	U	0	U	0	537	0	0	0	0
		The V	VoolRo	ad/G	eorge	Caley PI								The	Wool R	oad/B	each S	St/St G	eorges	s Ave						The	e Woo	(Road	d/Eliza	beth D	r/Barto	n St		
North			East			South			West			North	1		East			South			West			North			East			South	1		West	
	_		т	R	1	т	R	4	7	R ·	- 1	т	R	- 1	T	R		т	R		т	R		т.	ь.		7	D		7			т.	R
ı T																				_							•					-		
L T	R	~			-	537			.0	0	n	435	0	•		•	134	403			n	145		435		^		•		403	-		0	0

Appendix B – SIDRA Analysis Files

CTLRJT Bayswood Naval College Rd-Access B (Seagull) Thursday PM Giveway / Yield (Two-Way)

Movem	nent Pe	rformance - \	/ehicles								
Mov ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back o		Prop.	Effective	Average
טו ייטוייו	ruiii	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Foot: N	ovel Cel	veh/h	%	v/c	sec		veh	m		per veh	km/h
		lege Road (E)									
5	Т	235	0.0	0.120	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	157	0.0	0.136	10.1	LOS A	0.8	5.4	0.50	0.73	46.8
Approac	ch	392	0.0	0.136	4.1	LOS A	8.0	5.4	0.20	0.29	53.9
North: A	ccess E	3 (N)									
7	L	143	0.0	0.131	9.9	LOS A	0.7	4.7	0.46	0.72	47.0
9	R	39	0.0	0.069	12.9	LOS A	0.3	2.3	0.57	0.81	44.2
Approac	ch	182	0.0	0.131	10.5	LOS A	0.7	4.7	0.48	0.74	46.4
West: N	aval Co	llege Road (W)									
10	L	58	0.0	0.031	8.2	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	418	0.0	0.214	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	476	0.0	0.214	1.0	LOS A	0.0	0.0	0.00	0.08	58.4
All Vehi	cles	1049	0.0	0.214	3.8	NA	0.8	5.4	0.16	0.27	54.3

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Tuesday, 4 May 2010 5:13:06 PM Copyright ©2000-2010 Akcelik SIDRA INTERSECTION 4.0.18.1102 www.sidrasolutions.com

Project: X:\CTLRJT - Bayswood Vincentia\67 - Calculations\SIDRA\Bayswood-SIDRA.sip 8000324, HALCROW PACIFIC PTY LTD, FLOATING

Copyright ©2000-2010 Akcelik & Associates Pty Ltd

Site: THU PM

CTLRJT Bayswood Naval College Rd-Access B (Seagull merge) Thursday PM Giveway / Yield (Two-Way)

Movem	nent Pe	rformance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Na	aval Col	lege Road (E)									
5	Т	235	0.0	0.120	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	235	0.0	0.120	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
North E	ast: Mer	ge									
26	R	39	0.0	0.025	7.3	LOS A	0.1	0.7	0.23	0.57	49.1
Approac	ch	39	0.0	0.025	7.3	LOS A	0.1	0.7	0.23	0.57	49.1
All Vehi	cles	274	0.0	0.120	1.0	NA	0.1	0.7	0.03	0.08	58.2

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Tuesday, 4 May 2010 5:13:06 PM SIDRA INTERSECTION 4.0.18.1102 Project: X:\CTLRJT - Bayswood Vincentia\67 - Calculations\SIDRA\Bayswood-SIDRA.sip

Copyright ©2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

8000324, HALCROW PACIFIC PTY LTD, FLOATING

Site: THU PM-merge

CTLRJT Bayswood Naval College Rd-Access B (Seagull) Saturday Midday Giveway / Yield (Two-Way)

Moven	nent Pe	rformance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: N	aval Coll	ege Road (E)									
5	Т	287	0.0	0.147	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
6	R	131	0.0	0.099	9.5	LOS A	0.6	4.0	0.42	0.68	47.1
Approa	ch	418	0.0	0.147	3.0	LOS A	0.6	4.0	0.13	0.21	55.3
North: A	Access B	3 (N)									
7	L	131	0.0	0.106	9.3	LOS A	0.5	3.8	0.38	0.67	47.3
9	R	48	0.0	0.070	11.5	LOS A	0.3	2.4	0.51	0.75	45.6
Approa	ch	179	0.0	0.106	9.9	LOS A	0.5	3.8	0.42	0.69	46.8
West: N	Naval Co	llege Road (W)									
10	L	48	0.0	0.026	8.2	LOS A	0.0	0.0	0.00	0.67	49.0
11	Т	301	0.0	0.154	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	349	0.0	0.154	1.1	LOS A	0.0	0.0	0.00	0.09	58.2
All Veh	icles	946	0.0	0.154	3.6	NA	0.6	4.0	0.14	0.26	54.4

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Tuesday, 4 May 2010 5:13:06 PM Copyright ©2000-2010 Akcelik SIDRA INTERSECTION 4.0.18.1102 www.sidrasolutions.com

Project: X:\CTLRJT - Bayswood Vincentia\67 - Calculations\SIDRA\Bayswood-SIDRA.sip 8000324, HALCROW PACIFIC PTY LTD, FLOATING

Copyright ©2000-2010 Akcelik & Associates Pty Ltd

Site: SAT Midday

CTLRJT Bayswood Naval College Rd-Access B (Seagull merge) Saturday Midday Giveway / Yield (Two-Way)

Moven	nent Pe	rformance - \	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Na	aval Col	lege Road (E)									
5	Т	287	0.0	0.147	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	ch	287	0.0	0.147	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
North E	ast: Mer	ge									
26	R	48	0.0	0.032	7.4	LOS A	0.1	8.0	0.26	0.59	49.0
Approac	ch	48	0.0	0.032	7.4	LOS A	0.1	8.0	0.26	0.59	49.0
All Vehi	icles	336	0.0	0.147	1.1	NA	0.1	0.8	0.04	0.08	58.1

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS A. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Processed: Tuesday, 4 May 2010 5:13:06 PM SIDRA INTERSECTION 4.0.18.1102

Copyright ©2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Project: X:\CTLRJT - Bayswood Vincentia\67 - Calculations\SIDRA\Bayswood-SIDRA.sip 8000324, HALCROW PACIFIC PTY LTD, FLOATING

Site: SAT Midday-merge