

GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown, NSW 2148, Australia PO Box 1543, Macquarie Centre. North Ryde, NSW 2113

ABN 62 084 294 762 Tel : (02) 9679 8733 Fax : (02) 9679 8744

Report

Preliminary Geotechnical Investigation and Dam Embankment Investigation Airds and Bradbury Redevelopment Project St Johns Road, Greengate Road and Georges River Road, Airds, NSW

Prepared for JBS Environmental Pty Ltd Suite 128 O'Riordan Street MASCOT NSW 2020

Ref: JG09245A April 2009

ABN 62 084 294 762 Tel : (02) 9679 8733 Fax : (02) 9679 8744

Our Ref: JG09245A-r1

JBS Environmental Pty Ltd 128 O'Riordan Street MASCOT NSW 2020

Attention: Ms Cathy Roberts

Dear Madam

Re: Preliminary Geotechnical Investigation and Dam Embankment Investigation Airds and Bradbury Redevelopment

Please find attached our geotechnical investigation report for the project referred to as the Airds and Bradbury Redevelopment.

If there are any queries regarding this report, please contact the undersigned.

Yours faithfully, GeoEnviro Consultancy Pty Ltd

Solern Liew CPEng Director

C:\\09JOB\245\A\JG09245A-r1.DOC

Executive Summary

This report presents the results of a preliminary geotechnical and salinity investigation for the Airds and Bradbury Redevelopment Project. The investigation was commissioned by Ms Cathy Roberts of JBS Environmental Pty Ltd (JBS).

The Airds and Bradbury Redevelopment project is situated about 2.5km south west of Campbelltown and will include staged demolition of existing structures including roads and reconstruction of new houses and a town centre with open spaces. Details of type of building structures are not provided however we expect the structures will consist of low to medium rise up to three storey high with possible single level basement in the town centre. The project also includes road construction along the western side of the dam which is situated to the south west of the Community and Indoor Sports Centre. The road construction is expected to involve excavation within 10m from the toe of the dam embankment and the stability of the dam is considered critical

The aim of this investigation was to obtain information on subsurface ground conditions and based on the information obtained, to provide preliminary comments and recommendations on geotechnical and salinity issues considered relevant to the proposed redevelopment of the site.

The scope of this investigation included excavation of a total of 67 test pits across the site using a rubber tyred backhoe. Soil samples were taken from the site for laboratory analysis to assess geotechnical and salinity parameters.

The investigation revealed the site to be generally underlain by thin topsoil/fill and fill overlying residual clays overlying bedrock. The upper bedrock unit comprises of Ashfield Shale and the lower bedrock unit comprises of Hawkesbury Sandstone. The laboratory test results indicate the natural clay to be plastic and generally moderately reactive and non to slightly saline with localised moderately saline soil at lower depths. The topsoil was generally assessed to be non to slightly saline.

Soil salinity is not considered significant within the site and Section 6.1 provides recommendations on good soil and water management strategies to be adopted for the proposed redevelopment of the site. Acid sulphate soil was not encountered in the investigation and is not considered to impact on the proposed redevelopment of the site

The investigation identified no major geotechnical constraints on the site and Section 6.3 for general geotechnical comments and recommendations considered relevant. The dam embankment of interest was considered inadequate and total reconstruction of the embankment was recommended in Section 6.3.6.

TABLE OF CONTENTS

Sec	ction	<u>P</u>	<u>age</u>
<i>1</i> .	INT	RODUCTION	1
2.	SIT	E INFORMATION	2
2	2.1	Site Locality	2
2	2.2	Site Description	2
2	2.3	Soil Landscape and Topography	4
2	2.4	Regional Geology and Hydrogeology	5
<i>3</i> .	INV	ESTIGATION METHODOLOGY	6
3	3.1	Field Investigation	6
	3.2	Laboratory Testing	7
4.	SUE	BSURFACE CONDITIONS	9
4	4.1	Principle Site	9
4	1.2	Dam Site	. 12
5.	RES	SULTS OF THE INVESTIGATION	.14
5	5.1	Salinity	
	5.1.1 5.1.2		
5	5.2	Geotechnical	. 19
	5.2.1		
	5.2.2 5.2.3		
6.		SESSMENTS AND RECOMMENDATIONS	
	5.1	Salinity Issues	
	5.2	Acid Sulphate Issue	
(5.3	Geotechnical Issues	
	6.3.1		
	6.3.2		
	6.3.3		
	6.3.4 6.3.5		
	6.3.6		
7.	LIM	IITATIONS	.41

LIST OF DRAWINGS

Drawing No 1: Site Locality Plan Drawing No 2: Soil Landscape and Geological Units Drawing No 3: Test Pit Location Plan Drawing No 4: Dam Embankment and Borehole Location Plan Drawing No 5: Site Zoning Plan

LIST OF APPENDICES

- Appendix A Table A : Summary of Test Pit Profile
- Appendix B Borehole Reports Dam Investigation
- Appendix C Salinity Laboratory Test Certificates
- Appendix D Geotechnical Laboratory Test Certificates Principle Site
- Appendix E Geotechnical Laboratory Test Certificates Dam Embankment

i

- Appendix F Brief Explanation on Site Classification
- Appendix G XStabl Slope Stability Computer Printout

Appendix H: Explanatory Notes.

1. INTRODUCTION

This report presents the results of a preliminary geotechnical investigation and dam embankment investigation for the Airds and Bradbury Redevelopment project. The investigation was commissioned by Ms Cathy Roberts of JBS Environmental Pty Ltd (JBS), following our fee proposals referenced PG08920A dated 8th December 2008.

1

The Airds and Bradbury Redevelopment project is situated about 2.5km south west of Campbelltown and will include staged demolition of existing structures including roads and reconstruction of new houses and a town centre with open spaces. Details of the type of building structures are not available however we expect the structures will be low to medium rise up to three storeys high with possible single level basement in the town centre.

The project also includes road construction along the western side of the dam which is situated to the south west of the Community and Indoor Sports Centre. The road construction is expected to involve excavation within 10m from the toe of the dam embankment and the stability of the dam is considered critical.

The objective of the investigations was to obtain information on subsurface conditions across the site including the existing dam embankment and based on the information obtained, to provide the following;

- Assessment on insitu fill, natural soil and bedrock type and comments on reusability of the insitu material for future development.
- Comments and recommendations on site preparation and excavations including potential vibration impacts on existing properties.
- Recommendations on fill construction procedure and specifications.
- Comments and recommendations on retaining walls and temporary/permanent batter slopes
- Advice on indicative site classification (AS 2870) including foundation types.

• Stability assessment of the existing dam embankment at the Community/Sports Centre

2

- Advice on preliminary pavement designs.
- Assessment on potential hazards associated with soil salinity and acid sulphate soil.

2. SITE INFORMATION

2.1 Site Locality

The project (Principle Site) is situated about 2.5km south west of Campbelltown and the site is bound by Greengate Road and Dalkeith Place to the south, St Johns Road to the west and Georges River Road to the north.

The dam of interest (Dam Site) is located within the Principle Site, approximately in the middle western portion. Refer to the attached Drawing No 1 for site locality.

Geographical location of the Principle Site is between about 299000 and 301000 Easting and 6225000 and 6227000 Northing.

Georges Parkway Reserve abuts to the eastern perimeter of the site.

2.2 Site Description

Principle Site

The site is located within an existing residential area with Riverside Drive, being the collector road looping around the middle and northern portions of the site and Greengate Road running off Riverside Drive to the southern portion of the site.

Creigan Road provides access to the western portion of the site. This portion of the site is separated from the remaining major portion by a road reserve.

Briar Road is the main collector road leading into the site from the south west. The Airds Community Centre, Shopping Village and Airds High School occupy the area between Briar Road and Riverside Drive. Reiby Juvenile Justice Centre and the Briar Road Primary school are situated on the southern side of Briar Road.

Dam Site

The dam of interest is situated to the south west of the Community and Indoor Sports Centre. Refer to Drawing No 4 for dam features.

This dam has an approximate 110m long earthfill embankment with a maximum height of about 3.5m at mid-section and the height of embankment reduces to nothing at both ends. The crest of the embankment averages about 3m wide and the width increases to 4 to 5m at both ends.

At the time of our site investigation, the dam water level was at about 1.5m below crest level. Shrink cracking and some subsidence of the crest were noted on the southern section of the embankment.

The downstream embankment has an average batter slope of 1 Vertical to 2.5 Horizontal and the batter slope increases to about 1 Vertical to 2 Horizontal at the northern section. The downstream embankment on the southern end has relatively gentle batters of less than 1 Vertical to 5 Horizontal.

The upstream embankment which has a steep batter slope of about 1 Vertical to 1 Horizontal, has substantially eroded with uneven surface and some near vertical batters near the waterline possibly from previous slumping.

The spillway is situated on the southern side of the embankment and consists of an open channel diverting flows into a 375mm diameter pipe through the embankment.

2.3 Soil Landscape and Topography

The site is on gently undulating terrain. Ground surface over the major portion of the site is on elevated ground at Reduced Levels (RL) typically between 135m and 143m Australian Height Datum, with the south western portion (ie schools and community areas) at lower elevation, between RL 125m and 135m.

Ground surface along the eastern perimeter of the site generally slopes down to the east. Typical ground surface slopes within the site range from about 2 to 5 degrees.

Based on the Soil Landscape Series Sheet 9030, 1:100,000 sheet, prepared by Soil Conservation Service of NSW, the site is underlain by three main soil landscape grouping as follows (refer to Drawing No 2);

- Unit I Blacktown Soil Landscape group (Bt) of residual origin and this soil unit is wide spread across the entire site on the upper slopes. Typically this soil consists of low permeability, highly plastic and moderately reactive soil
- Unit II Hawkesbury Soil Landscape group (Ha) of colluvial origin at the lower slopes along the eastern perimeter of the site and the proposed road reserve to the north west of the school and community areas. Typical soil consists of earthy sand, yellow earths and some yellow podzolic soil on the inside of sandstone benches and along joints and fractures.
- Unit III There is a third soil landscape unit which occurs between the upper and lower slopes along the eastern fringes of the site and this unit is less prominent consisting of residual soil belonging to the Lucas Heights Landscape group (Ih). Typical soil is moderately deep and consists of low permeability yellow Podzolic Soils and Yellow Soloths on the ridges and Yellow Earths on the shoulders of ridges and Earthy Sand on the valley flats.

2.4 Regional Geology and Hydrogeology

The 1:100,000 geological map of Port Hacking – Wollongong (Reference 2) indicates soil landscape Unit I (Blacktown residual soil) to be underlain by Ashfield shale of the Wianamatta Group consisting of Dark-Grey to black claystone-Siltstone and fine sandstone and siltstone laminate.

5

Soil landscape Unit II (Hawkesbury colluvial soil) and Units III (Lucas Heights residual soil) are underlain by Hawkesbury Sandstone consisting of medium to coarse grained quartz sandstone with minor shale and laminite lenses.

The site is situated on elevated ground and permanent groundwater table is not expected to be at shallow depths (ie less than 3m).

The site is situated within the upper catchment area of the Georges River system. Regional surface runoff and near perched groundwater in the area tends to flow in a general direction to the north west into Smith Creek which flows into Bow Bowing Creek and ultimately into Georges River.

Deep groundwater tends to flow to the east into Georges River which is situated about 400m to the east of the site.

3. INVESTIGATION METHODOLOGY

3.1 Field Investigation

Fieldwork for the preliminary geotechnical investigation consisted of excavation of sixty seven test pits (TP 1 to 67) across the site over five days using a rubber tyred backhoe between 10th and 24th February 2009. The works which were carried out in conjunction with the contamination investigation by JBS, were supervised on a full-time basis by a geotechnical engineer from this company. The test pit locations as shown on the attached Drawing No 3 were nominated and located by JBS.

In general, the test pits were excavated through topsoil, fill, natural clay and into shale/sandstone to depths varying from 0.7m to 3.25m below existing ground surface. In a number of locations within Council's park, a pendulum drill rig attached to the backhoe was used to minimise ground disturbance. To assess the strength of the subsurface soil profiles, hand penetrometer tests were carried out on the test pit walls. The test pits were observed for groundwater, during and upon completion of the site investigation. Upon completion of the test pit investigation, the test pits were backfilled with excavation spoil and the backfill compacted using the backhoe bucket.

The dam embankment investigation included borehole drilling at three locations (ie BH 1 to 3) along the crest of the embankment and another 3 locations (BH 4 to 6) along the toe of the embankment on 12th February 2009. The borehole investigation was carried out using a truck mounted PD5 drill rig equipped for site investigation purposes and the investigation was supervised on a full time basis by a geotechnical engineer from GeoEnviro Consultancy Pty Ltd. Refer to Drawing No 4 for borehole locations.

The boreholes along the crest were drilled through the embankment and underlying natural clay and into shale to depths varying from 3.6m to 6.0m below crest level. The boreholes along the toe of the embankment were drilled through topsoil and natural clay and into shale to depths varying from 1.1m to 3.5m below existing ground surface.

Standard Penetration Testing (SPT) was carried out in the boreholes to assess the compaction of the fill embankment and strength of the residual soil. Hand penetrometer tests were carried out on the recovered SPT split-tube clayey samples to augment the SPT results.

7

The boreholes were observed for groundwater seepage, during and upon completion of the site investigation. A PVC standpipe was installed in BH 1 and 2 in order to enable future groundwater monitoring. The remaining boreholes were backfilled with drilling spoil after completion of the site investigation.

Details of subsurface profiles encountered in the test pits are summarised on Table A. The field test results, together with details of the subsurface profiles encountered from the dam investigation are presented on Borehole Reports attached in Appendix B. Explanatory notes and Graphic Symbols for Soil and Rock are attached in Appendix H.

3.2 Laboratory Testing

Salinity Testing

To assess the likely impact of soil salinity on the proposed development, the following laboratory tests were carried out by Envirolab Services Pty Ltd, a NATA accredited laboratory;

- pH
- Electrical Conductivity (Ec)
- Chloride (Cl)
- Sulphate (S0₄)

In addition to the above, the following tests were carried out in our NATA accredited laboratory to further assess soil salinity properties;

- Particle Size Distribution
- Emerson Dispersion Test

The laboratory test results are summarised on Laboratory Test Reports in Appendix C.

Geotechnical Testing

To assess geotechnical soil properties, disturbed and undisturbed " U_{50} " soil samples were taken from the site to our laboratory for analysis.

Shrink-Swell Index tests were carried out to assess the reactivity of soil and to enable classification to AS2870. Atterberg Limits Tests and Particle Size Distribution tests were carried out to aid classification of soil in accordance with the Unified Soil Classification System. To assess the pavement subgrade characteristics, four-days soaked California Bearing Ratio (CBR) tests were undertaken.

Laboratory test schedule for the dam investigation included following;

- Saturated Consolidated Undrained Triaxial testing with pore pressure measurement to obtain effective shear strength parameters of embankment material.
- Atterberg Limits and Particle Size Distribution to aid assessment of the material properties and classification.
- Emerson Dispersion and Pin Hole Dispersion to assess soil stability in the presence of water.

The Trixial tests were carried out by GHD Geotechnics Pty Ltd and the remaining tests were carried out in our NATA accredited laboratory.

The laboratory test results are summarised on Laboratory Test Reports in Appendix D and Appendix E.

4. SUBSURFACE CONDITIONS

4.1 Principle Site

Reference should be made to Table A Summary of Test Pit Profiles in Appendix A for details of subsurface profiles encountered in the test pits and Drawing No 3 for test pit locations. In general, the site may be divided into 6 zones (Zones A to F) as shown on Drawing No 5.

Zone A	Exploratory I	Holes – TP 30 to 40, 42 to 46, 48 to 51, 59 to 64, 67
Material	Depths	Material Description
Туре		
Fill/Topsoil	Up to 0.6m (Generally)	 Generally consisting of Clayey Silt topsoil and thin Gravelly Silty Clay fill. Natural topsoil and silt (with topsoil properties) encountered beneath fill in a number of test pits with thickness typically between 100mm to 200mm. Some building rubble and foreign inclusion (eg glass, timber, and tree roots) encountered in TP 42, 49 and 94.
	Up to 1.2 - 2.0m (TP 35, 42 and 63)	 Wet fill consisting mainly of Gravelly Silty Clay and Sandy in TP 35. Topsoil/fill consisting of Clayey Silt and Silty Clay in TP 41 and 63
Natural Soil	0.2m to 1.5m (Generally)	 Generally consisting of high plasticity Silty Clay becoming medium plasticity. Generally very stiff consistency with moisture content less than or equal to the plastic limit Natural clay not encountered in TP 36
	Up to 2.6m in TP 35, 37, 42, 46, 51, 62 and 63	 Generally consisting of high plasticity Silty Clay becoming medium plasticity and more gravelly at lower depths. Very stiff to hard consistency. Thickness of natural clay generally less than 1.5m with thick topsoil/fill on top
Bedrock	Less than 1.5m (Generally)	Mainly shale and siltstone.Sandstone encountered in TP 36 and 38
	Up to 2.6m (TP 35, 37, 42, 46, 51, 62 and 63	 Mainly shale and siltstone. Sandstone encountered in TP 51. Bedrock not encountered in TP 63 but Shaley Clay with shale bands encountered between 1.8m to 3.9m depth.

Zone B	Exploratory Holes – TP 6, 7, 19, 20, 47, 55 to 58					
Material	Depths	Material Description				
Туре						
Fill/Topsoil	0.0-0.4	Generally consisting of Clayey Silt topsoil				
	(General)	• Fill encountered in TP 47 consists of Silty Clay overlying topsoil.				
	Up to 1.05m	• Fill encountered consisting of medium to high plasticity Silty				
	(TP 55, 56 and	Clay and Gravelly Silty Clay.A lot of building rubble inclusion (eg bricks concrete, tiles and				
	58)	glass) encountered in TP 56 and 58				
Natural Soil	Up to 1.45- to	Topsoil encountered beneath fill in TP 58Generally consists of high plasticity Silty Clay at the upper				
	2.9m	stratum and medium to high plasticity Gravelly Silty				
	(Generally)	Clay/Shaley Clay at lower depths.Shale bands encountered at the lower clayey profile.				
D 1 1						
Bedrock	Greater than 1.5m	Shale encountered.Bedrock not encountered in TP 58 which was terminated at				
	and up to 2.9m	3.1m depth				
	(Generally)					
Zone C	Exploratory Holes -	TP 9 to 17, 21 to 24				
Material	Depths	Material Description				
Туре						
Fill/Topsoil	0.0-0.4 (General)	• Generally consisting of Clayey Silt topsoil and topsoil/fill				
	0.4 to 0.6m	• Fill encountered with a mixture of topsoil.				
	(TP 12, 13, 14 and	 One steel and plastic pipe encountered in the fill in TP 12 Topsoil encountered beneath fill in TP 11, 12, 14 and 21. 				
	22)	• Topson encountered beneau ini in 11 11, 12, 14 and 21.				
	Up to 2.6m	• Fill encountered consisting of medium to high plasticity				
	(TP 24)	Gravelly Silty Clay and Shaley Clay.				
Natural	Up to 1.5m to 3.2m	• Generally consists of high plasticity Silty Clay at the upper stratum and medium to high plasticity Gravelly Silty				
Natural Soil		• Generally consists of high plasticity Silty Clay at the upper stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths.				
	Up to 1.5m to 3.2m	stratum and medium to high plasticity Gravelly Silty				
	Up to 1.5m to 3.2m	stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths.				
	Up to 1.5m to 3.2m (Generally)	stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths.Shale bands encountered at the lower clayey profile.				
	Up to 1.5m to 3.2m (Generally) Less than 1.5	 stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths. Shale bands encountered at the lower clayey profile. Consists mainly of high plasticity Silty Clay. Natural clay not encountered in TP 24. 				
Soil	Up to 1.5m to 3.2m (Generally) Less than 1.5 (TP 9, 22 and 23)	 stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths. Shale bands encountered at the lower clayey profile. Consists mainly of high plasticity Silty Clay. Natural clay not encountered in TP 24. Shale encountered. Sandstone encountered in TP 24 				
Soil	Up to 1.5m to 3.2m (Generally) Less than 1.5 (TP 9, 22 and 23) Greater than 1.5m	 stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths. Shale bands encountered at the lower clayey profile. Consists mainly of high plasticity Silty Clay. Natural clay not encountered in TP 24. Shale encountered. 				
Soil	Up to 1.5m to 3.2m (Generally) Less than 1.5 (TP 9, 22 and 23) Greater than 1.5m and up to 2.1m	 stratum and medium to high plasticity Gravelly Silty Clay/Shaley Clay at lower depths. Shale bands encountered at the lower clayey profile. Consists mainly of high plasticity Silty Clay. Natural clay not encountered in TP 24. Shale encountered. Sandstone encountered in TP 24 Bedrock not encountered in TP 21 which was terminated at 				

Zone D	Exploratory H	Exploratory Holes – TP 25, 26, 52 to 54 , 65 and 66			
Material	Depths	Material Description			
Туре					
Fill/Topsoil	0.0-0.7	Generally consisting of Clayey Silt topsoil			
	(General)	• Fill consisting of Sandstone, Silty Clay, and Gravelly Silty Clay encountered in TP 25, 26, 52, 54 and 66			
		• Topsoil encountered beneath fill in TP 53 and 66 with thickness of 250mm and 150mm respectively			
Natural	Less than	• Generally consists of high plasticity Silty Clay at the upper stratum			
Soil	1.8m	and medium plasticity Sandy Clay and Gravelly Silty Clay at lower depths.			
	(Generally)	 Natural Clay not encountered in TP 54 			
Bedrock	Generally at	Generally consisting of Sandstone.			
	between 1.1	• Sandstone in TP 52 and 66 encountered at 1.9 and 1.8m respectively.			
	and 1.6m				

Zone E	Exploratory Holes – TP 8, 27 to 29						
Material	Depths	Material Description					
Туре							
Fill/Topsoil	0.0-0.35	• Generally consisting of Clayey Silt topsoil and Clayey Sand and					
	(General)	sandstone fill					
		• Fill overlying topsoil to 0.55m encountered in TP 28					
Natural	Up to 1.95m	• Consisting of high plasticity Silty Clay ovelying medium plasticity					
Soil	to 2.9m	Shaley Clay and Gravelly Sitly Clay at lower depths. Generally very stiff to hard.					
	(Generally)	still to hard.					
Bedrock	Between	Consisting of shale					
	1.95m and						
	2.9m						

Zone F	Exploratory Holes – TP 1, 2, 3, 4, 5, 18, 41			
Material	Depths	Material Description		
Туре				
Fill/Topsoil	0.0-0.25	Consisting mainly of Clayey Silt topsoil of low liquid limit		
	(General)	• A layer of silt (Possibly alluvial creek material) encountered beneath the topsoil in TP 1, 2, 4, 5, 18 and 41 with thickness up to about 300mm		
		• Thick fill up to 1.9m deep encountered in TP 3 with some sandstone boulders		
Natural	Up to 2.1m	• Generally consisting of Silty Clay, Sandy Silty Clay and Gravelly		
Soil	(Generally)	Silty Clay of very stiff consistency.		
Bedrock	Between	Generally Sandstone.		
	1.1m and 2.1	• Shallow Shale/siltstone at 0.55m encountered in TP 4		

4.2 Dam Site

Reference should be made to the Borehole Reports in Appendix B for details of the subsurface profiles encountered in our dam investigation. A summary of the interpreted subsurface profiles is as follows:

Embankment

The dam embankment consists predominantly of Silty Clay of medium to high plasticity with some gravel. The embankment material in the southern section appeared more gravelly as revealed by BH 3. A layer of crushed rock about 300mm thick was below the earthfill in BH 1 at depths between 2.2m and 2.5m below crest level.

Based on the SPT results, the earthfill embankment material was assessed to have marginal compaction

The earthfill embankment material was found to be dry to moist.

Foundation

The underlying foundation material beneath the embankment consists predominantly of high plasticity Silty Clay. The plasticity of the natural clay generally reduces at lower depths. Thickness of this clayey foundation material varies from 0.9m to 2.0m. The SPT and hand penetrometer results indicate the natural clay to be very stiff to hard. Moisture content of the natural clay was assessed to be approximately equal to less than the plastic limit.

Beneath the natural clay, shale/siltstone bedrock was encountered.

Toe of Embankment

BH 4 to BH 6 indicate the toe of the embankment to consist of 100mm to 200mm thick topsoil overlying natural clayey profile over shale/siltstone bedrock at depths varying from 0.6m to 1.6m below existing ground surface.

The natural clay was found to be very stiff to hard and dry with moisture content approximately equal to less than the plastic limit.

Groundwater

All boreholes were found to be dry except for BH 3 where groundwater was encountered within the shale stratum at a depth of 5.4m below crest level.

5. RESULTS OF THE INVESTIGATION

5.1 Salinity

5.1.1 Guidelines

Salinity refers to the presence of excess salt in the environment and occurs when salts which are naturally found in soil or groundwater mobilise, allowing capillary rise and evaporation to concentrate the salt at the upper subsurface soil profile. Such movements are caused by changes in the natural water cycle. In urban areas, the processes which cause salinity are intensified by the increased volumes of water added to the natural system from irrigation of gardens, lawn and parks and from leaking infrastructures (eg pipes, sewer, stormwater, etc) and pool.

Saline soil may have adverse impact on development such as;

- Damage to buildings and houses caused by deterioration of bricks, mortar and concrete when salt drawn up into capillaries of bricks and mortar expands resulting in spalling.
- Deterioration of concrete kerbs and gutters as a result of chemical reaction between concrete and sulphates.
- High chloride content in the soil may result in corrosion of steel reinforcement and buried metal structures.
- Damage to underground pipes and infrastructures.
- Water logging of ground surface due to sealing effect of sodic and dispersive soil.
- Loss of vegetation cover and plants due to high salt content resulting in retardation of plants.

In recognition of the potential adverse impact of salinity to development, the Western Sydney Regional Organisation of Councils Ltd has a Salinity Code of Practice (Reference 4) to address the issue of salinity. It was acknowledge in the Code that salinity problems can change substantially over time and it is difficult to predict exactly where salinity will occur and how it will respond to the changing environment conditions.

15

The fundamental criterion for assessing soil salinity is based on Electrical Conductivity (Reference 3).

Class	EC _e (ds/m)	Comments
Non-Saline	<2	Salinity effects mostly negligible
Slightly Saline	2-4	Yields of very sensitive crops may be affected
Moderately Saline	4-8	Yield of many crops affected
Very Saline	8-16	Only tolerant crops yield satisfactorily
Highly Saline	>16	Only a few

In addition to the above, the presence of Sulphate and Chloride in the soil has the potential to cause high soil aggressivity to concrete, in particular if the structures are in direct contact with the soil. The following is a measure of soil aggressivity based on the Australian Standard (Reference 6).

Sulphate	e expressed as SO ₃	pН	Chloride in	Soil conditions	Soil conditions
In Soil	In Groundwater		water (ppm)	water (ppm) A*	
(%)	(ppm)				
<0.2	<300	>6.5	<2000	Non-aggressive	Non-aggressive
0.2-0.5	300-1000	5-6	2000-6000	Mild	Non-aggressive
0.5-1.0	1000-2500	4.5-5	6000-12000	Moderate	Mild
1.0-2.0	2500-5000	4-4.5	12000-30000	Severe	Moderate
>2.0	>5000	<4	>30000	Very Severe	Severe

Approximate 100ppm of SO₄=80ppm of SO₃

* Soil condition A = High permeability soils (eg sands and gravels) which is below groundwater

Soil conditions B = Low permeability soils (eg silts and clays) and all soils above groundwater

5.1.2 Laboratory Test Results

For details of the laboratory test results, refer to the Laboratory Test Reports in Appendix C.

Sample	Depth (m)	PH	EC	EC _e	CL	SO4
TP1	0.0-0.1	6.2	0.17	1.7	<100	<25
	0.6-0.7	4.3	0.38	3.2	520	73
	1.1-1.2	4.8	0.57	4	610	220
TP8	0.0-0.1	5.6	0.075	0.8	<100	34
	0.55-0.65	5.5	0.11	0.9	<100	38
	1.5-1.6	5.5	0.39	2.7	<100	73
TP14	0.0-0.1	6.8	0.08	0.8	530	<25
	0.5-0.6	5.2	0.23	2	<100	180
	1.5-1.6	4.2	0.58	4.1	200	480
TP16	0.0-0.1	5.5	0.058	0.6	550	<25
	0.3-0.4	4.9	0.054	0.5	<100	<25
	1.0-1.1	4.8	0.11	0.8	<100	57
TP18	0.0-0.1	6	0.061	0.6	<100	<25
	0.45-0.55	5.9	0.069	0.6	<100	<25
	0.95-1.05	4.9	0.049	0.3	<100	33
TP25	0.0-0.2	5.2	0.044	0.4	<100	<25
	0.2-0.3	5.5	0.04	0.3	<100	<25
	1.2-1.3	4.4	0.12	0.8	<100	<25

The following is a summary of the laboratory test results;

EC – Electrical Conductivity (ds/m) EC_e-Electrical Conducivity (ds/m)

CEC – Cation Exchange Capacity (cmol⁺/kg) ESP – Exchangeable Sodium Percentage (%)

SAR – Sodium Absorption Ratio CL – Chloride (mg/kg) SO4- Sulphate (mg.kg)

Note:

Sample	Depth (m)	PH	EC	ECe	CL	SO4
TP26	0.0-0.1	8.5	0.041	0.4	<100	<25
	0.25-0.35	4.7	0.12	1	130	<25
	0.9-1.1	4.7	0.065	0.5	<100	47
TP28	0.0-0.05	7.2	0.12	1.2	<100	88
	0.25-0.35	7.2	0.066	0.6	<100	52
	1.4-1.5	4.5	0.48	3.4	520	270
TP29	0.0-0.1	5.4	0.23	2.3	280	57
	0.35-0.45	4.1	0.85	7.2	1300	65
	1.0-1.1	4.2	0.99	6.9	1500	140
TP31	0.0-0.1	5.3	0.041	0.4	<100	39
	0.2-0.3	5.4	0.061	0.5	<100	<25
	1.0-1.1	4.9	0.055	0.4	<100	38
TP34	0.0-0.1	5.3	0.095	1	<100	<25
	0.35-0.45	4.2	0.23	2	310	34
	1.0-1.1	4.3	0.43	3	630	25
TP37	0.0-0.1	5.8	0.04	0.4	<100	29
	0.5-0.7	5.5	0.17	1.4	<100	130
	1.5-1.6	6	0.24	1.8	240	45
	Electrical Conductivity (d					l

EC – Electrical Conductivity (ds/m) EC_e-Electrical Conducivity (ds/m) CEC – Cation Exchange Capacity (cmol⁺/kg) ESP – Exchangeable Sodium Percentage (%) SAR – Sodium Absorption Ratio CL – Chloride (mg/kg) SO4- Sulphate (mg.kg)

Sample	Depth (m)	РН	EC	ECe	CL	SO4
TP40	0.0-0.1	7	0.1	1	<100	<25
	0.3-0.4	5.4	0.035	0.3	<100	43
	1.0-1.1	4.7	0.082	0.6	110	<25
TP43	0.0-0.1	5.5	0.065	0.7	<100	<25
	0.3-0.4	4.9	0.055	0.5	<100	<25
	1.1-1.3	5.4	0.025	0.2	<100	25
TP45	0.0-0.1	5.2	0.06	0.6	<100	29
	0.3-0.4	4.7	0.1	0.9	<100	80
	1.3-1.4	4.8	0.22	1.5	220	94
TP50	0.0-0.1	4.9	0.15	1.5	<100	140
	0.3-0.4	4.4	0.09	0.8	<100	67
	1.8-1.9	4.6	0.22	1.5	220	120
TP56	0.0-0.1	7.4	1.4	14	<100	3000
	0.65-0.75	5.3	0.13	1.1	<100	240
	2.0-2.2	5.6	0.19	1.3	160	94
TP66	0.0-0.1	7.4	0.28	2.8	<100	140
	0.35-0.45	4.6	0.11	0.9	130	<25
	1.4-1.6	4.8	0.036	0.3	<100	32

EC – Electrical Conductivity (ds/m) EC_e-Electrical Conducivity (ds/m) CEC – Cation Exchange Capacity (cmol⁺/kg) ESP – Exchangeable Sodium Percentage (%) SAR – Sodium Absorption Ratio CL – Chloride (mg/kg) SO4- Sulphate (mg.kg)

5.2 Geotechnical

5.2.1 Principles of Site Classification

Most natural clay soils have sufficient bearing capacities to support typical residential loads. Most distress to residential structures occurs due to reactive soil movements rather than settlement movements.

AS2870 establishes a classification system whereby reactive sites are classified based on the reactive soil movements anticipated. Other foundation conditions such as the presence of fill material, may affect the site classification. Appendix F of this report provides a comprehensive explanation of site classification.

The purpose of the classification is to allow the design of an economical footing system that will limit cracking of footings, floor slabs and masonry walls to an extent normally considered acceptable. The performance expectations associated with the design guidelines are presented in AS 2870. It is fundamental when applying the following site classifications to residential footing design that these performance expectations are acceptable to the house owners.

5.2.2 Laboratory Test Results – Principle Site

For details of the laboratory test results, refer to the Laboratory Test Reports in Appendix D of this report.

The following is a summary of the Shrink-Swell Index test results for samples taken from the test pits;

Test Pit	Depth (m)	Swell (%)	Shrinkage (%)	Shrink-Swell
				Index (%/pF)
TP1	0.5-0.8	2.06	1.28	1.3
TP6	0.8-1.1	3.58	1.91	2.1
TP8	0.55-0.85	5.39	2.24	2.7
TP11	0.7-1.0	6.24	1.18	2.4
TP14	0.7-0.9	5.53	2.03	2.7
TP16	0.3-0.6	3.9	0.75	1.5

Test Pit	Depth (m)	Swell (%)	Shrinkage (%)	Shrink-Swell Index (%/pF)
TP18	0.45-0.75	6.2	2.25	3.0
TP23	0.1-0.3	4.76	3.11	2.2
TP28	0.55-0.85	3.47	3.21	2.7
TP29	0.35-0.65	4.42	1.89	2.3
TP31	0.2-0.5	1.66	1.38	1.2
TP34	0.35-0.55	2.85	1.64	1.7
TP37	0.5-0.8	1.85	2.21	1.7
TP38	0.35-0.55	0.7	0.74	0.6
TP45	0.3-0.6	1.15	0.89	0.8
TP52	0.6-0.85	0.65	1.95	1.3
TP55	1.1-1.4	1.39	1.89	1.4
TP56	0.65-0.9	2.8	0.62	1.1
TP60	0.25-0.55	1.39	1.3	1.1
TP61	0.4-0.7	0.49	1.4	0.9
TP65	0.25-0.55	1.24	1.0	0.8
TP66	0.35-0.65	0.82	0.56	0.6

A Shrink-swell Index for the clayey sample of between 1.2%/pF and 3.0%/pF indicates moderately reactive soil to moisture variation and a Shrink-swell Index of less than 1.2%/pF indicates the clayey soil to have a low reactivity to moisture variation.

Test Pit	Depth (m)	Liquid	Plastic	Plasticity	Linear
		Limit	Limit	Index	Shrinkage
		(%)	(%)	(%)	(%)
TP1	0.5-0.7	70	22	48	16.5
TP6	0.8-1.0	73	21	52	13
TP8	0.58-0.75	61	25	36	11.5
TP11	0.7-0.85	59	26	33	13.5
TP14	0.7-0.9	59	24	35	13.5
TP16	0.3-0.6	54	23	31	13.5
TP18	0.45-0.7	25	34	41	18.0
TP20	0.25-0.55	60	24	36	12.0
TP25	1.2-1.35	47	18	29	10.5
TP26	0.25-0.45	56	25	31	13.5
TP28	0.55-0.7	65	26	39	15.5
TP29	0.35-0.55	67	28	38	12.5
TP31	0.2-0.45	70	33	38	17.5
TP32	0.5-0.7	79	27	52	16.5
TP34	0.35-0.5	68	28	40	17.5
TP38	0.38-0.55	50	22	28	7.8
TP40	0.6-0.85	47	22	25	11.5
TP43	0.3-0.5	77	34	44	14.5
TP45	0.3-0.5	68	26	41	16.0
TP50	0.3-0.6	53	28	26	13.0

The following is a summary of the Atterberg Limits test.

LL - Liquid Limit PL – Plastic Limit Note:

PI - Plasticity Index

LS – Linear Shrinkage

Test Pit	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage
		(%)	(%)	(%)	(%)
TP56	0.65-0.85	63	28	35	13.5
TP60	0.25-0.5	68	28	40	15.0
TP61	0.4-0.6	64	26	38	13.5
TP65	0.25-0.5	52	23	29	13.0
TP66	0.35-0.6	52	22	30	14.5

22

LL - Liquid Limit

Note:

PL – Plastic Limit

PI - Plasticity Index

LS – Linear Shrinkage

The laboratory test results confirmed the insitu natural soil to be generally highly plastic (ie LL > 50%). The Linear Shrinkage correlates to soil with moderate reactivity based on empirical data.

Particle Size Distribution

Sample	Silt and Clay (%)	Sand (%)	Gravel (%)
TP8 (1.0-1.1m)	88	12	0
TP 14 (0.7-0.9m)	92	6	2
TP 18 (0.95-1.15m)	46	46	8
TP 25 (1.2-1.3m)	50	39	11
TP 26 (0.9-1.1m)	63	13	24
TP 28 (1.7-1.8m)	75	5	20
TP 34 (1.0-1.3m)	30	10	60
TP 40 (0.6-0.7m)	19	26	55
TP 43 (1.1-1.3m)	21	19	60
TP 66 (0.35-0.45m)	40	35	25

The particle size distribution confirms our visual soil classification. All near surface samples analysed indicate high clay content with higher gravel content at lower depths.

Test Pit	Depth (m)	CBR (%)
TP1	0.9-1.0	3.5
TP8	0.55-0.70	4.0
TP14	0.7-0.9	4.0
TP16	0.3-0.5	8.0
TP18	0.45-0.65	10.0
TP22	0.4-0.6	9.0
TP25	1.2-1.35	6.0
TP26	0.25-0.35	11.0
TP28	0.55-0.75	4.5
TP29	0.35-0.55	4.0
TP31	0.2-0.35	10.0
TP34	0.35-0.5	9.0
TP37	0.5-0.7	9.0
TP40	0.6-0.7	13.0
TP43	0.3-0.5	8.0
TP50	0.3-0.5	7.0
TP53	0.55-0.75	8.0
TP56	0.65-0.8	8.0
TP61	0.4-0.55	10.0
TP64	0.3-0.6	6.0
TP66	0.35-0.45	8.0

The following is a summary of CBR test results obtained;

5.2.3 Laboratory Test Results – Dam Embankment

The laboratory test results for the dam embankment are summarised as follows;

Atterberg Limits					
Test Pit	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Linear Shrinkage
		(%)	(%)	(%)	(%)
BH 1	1.0-1.5	46	19	27	13
BH 2	0.5-1.0	39	16	23	5.5
BH 2	1.5-2.0	40	16	24	8.0
BH 2	3.0-3.5	66	24	42	15
BH 3	1.5-2.0	66	24	42	14.5
BH 6	0.2-0.6	67	28	39	16.5

Note: LL - Liquid Limit

PL – Plastic Limit

PI - Plasticity Index

LS – Linear Shrinkage

The laboratory test results confirmed the embankment material to be medium to high plastic (ie LL 39 to 50%) and the underlying natural clay to be high plastic (ie LL > 50%).

Sample	Silt and Clay (%)	Sand (%)	Gravel (%)
BH 2 (0.3-0.6m)	60	20	20
BH 3 (0.2-0.6m)	72	15	13
BH 6 (0.2-0.6m)	88	7	5

Particle Size Distribution

The particle size distribution confirms our visual soil classification.

Emerson Dispersion

Sample	Material Description	Class	Description
BH 1 (0.5-1.0m)	Fill: Silty Clay, medium to to high	3	Slight
	plasticity, brown with some gravel		Dispersion
BH 1 (1.5-2.0m)	Fill: Silty Clay, medium plasticity,	2	High Dispersion
	brown		
BH 2 (0.3-0.6m)	Fill : Silty Clay, medium plasticity,	2	High Dispersion
	grey brown with ironstone gravel		
BH 2 (0.6-1.0m)	Fill: Gravelly Silty Clay: medium	2	High Dispersion
	plasticity, grey		
BH 2 (1.5-2.0m)	Fill: Silty Clay, medium to high	2	High Dispersion
	plasticity, grey and brown		
BH 2 (3.0-3.5m)	Silty Clay, high plasticity, red brown	3	Slight
			Dispersion
BH 3 (0.2-0.6m)	Fill: Silty Clay: medium to high	5	Slight
	plasticity, Red brown and grey		Dispersion
BH 3 (1.5-2.0m)	Fill: Silty Clay, medium plasticity,	5	Slight
	grey mottled yellow brown		Dispersion
BH 4 (0.5-0.95m)	Silty Clay, medium to high plasticity,	5	Slight
	orange brown		Dispersion
BH 5 (0.2-0.4m)	Silty Clay, medium to high plasticity,	2	High Dispersion
	orange brown		
BH 6 (0.2-0.6m)	Silty Clay, medium to high plasticity,	5	Slight
	red brown		Dispersion

Sample	Material Description	Class	Description
BH 1 (0.5-1.0m)	Fill: Silty Clay, medium to to high	ND1	Non Erodible
	plasticity, brown with some gravel		
BH 2 (0.3-0.6m)	Fill : Silty Clay, medium plasticity,	PD2	Partially
	grey brown with ironstone gravel		Erodible
BH 4 (0.2-0.5m)	Silty Clay, medium to high plasticity,	5	Non Erodible
	orange brown		

Pin Hole Dispersion

Triaxial Test

Sample	Cohesion (C')	Friction Angle (Ø')
	(KPa)	(degrees)
BH 1 (1.0-1.2m)	1 kPa	24 ⁰
BH 2 (1.5-1.8m)	3 kPa	24^{0}

For details of the laboratory test results, refer to the Laboratory Test Reports in Appendix E of this report.

6. ASSESSMENTS AND RECOMMENDATIONS

6.1 Salinity Issues

The laboratory test results indicate the upper 1.0m of the subsurface soil within the site to be generally non to slightly saline with Ec values ranging from 0.2 to 3.2 ds/m. In TP 1 and 14, the natural clay at below 1.0m was assessed to be moderately saline with Ec values ranging from 4.0 to 4.1ds/m. Moderately saline soil was also encountered in TP 29 at near surface with an Ec value of 7.2ds/m. The topsoil soil sample from TP 56 was found to be very saline with an Ec value of 14ds/m.

It was noted that the relatively high saline soils encountered at near surface in TP 29 and TP 56 were likely to be derived from landscaping activities (eg fertilizers) and these soils are likely to be present in localised areas. Moderately to highly saline soil may affect yields of some plants. Future landscaping of the proposed development should incorporate planting of salt-tolerant plants.

The laboratory test results confirmed that the site is underlain by a clayey soil with low permeability in the order of 0.012m/day. In view of the low permeability of the residual soil associated with the Blacktown and Lucas Heights soil landscape groups, the site was assessed to have low to moderate erodibility.

Based on the results of the investigation, we are of the opinion that soil salinity is not considered significant within the site. Not withstanding the foregoing, we recommend good soil and water management strategy be adopted for future redevelopment to minimise impact of soil degradation caused by stormwater runoff and infiltration. Future redevelopment of the site should include the following salinity management strategies;

- Avoid exposure and disturbance of dispersive soil found at lower depths. In general excavation should be kept less than 1.0m if possible. Deeper excavations in excess of 1.0m should be covered and retained by retaining walls.
- Appropriate batter slopes for excavations should be adopted to prevent erosion and scouring.

6	
Material	Recommended Minimum Batter Slopes
Insitu Fill (Poorly compacted)	3 Horizontal : 1 Vertical
Compacted Fill	2 Horizontal : 1 Vertical
Very stiff residual clay	2 Horizontal : 1 Vertical
Weathered Shale/Sandstone	0.5 Horizontal : 1 Vertical

Under good drainage conditions, the following batter slopes may be adopted;

28

- All cut and fill batters should be stabilised by planting with appropriate plant species as soon as practicable after construction. Sprayed-on mulch may be applied to protect bare ground surface.
- The subsurface natural soil was generally found to have low Sulphate and Chloride, however in an environment with a lowest pH value of 4.1, the soil was assessed to be moderately aggressive to buried concrete structure. Reference should be made to the AS 2159 guidelines (Reference 6) for recommendations on protection of buried concrete structures.

6.2 Acid Sulphate Issue

Acid sulfate soils are the common name given to sediments and soils containing iron sulfides which when exposed to oxygen generate sulfuric acid. Formation conditions which normally exist in mangroves, salt marsh vegetation or tidal areas and at the bottom of coastal rivers and lakes, require a number of elements such as;

- the presence of iron-rich sediments,
- the presence of sulfate,
- removal of reaction products (ie bicarbonate),
- the presence of sulfate reducing bacterial and
- a plentiful supply of organic matter.

The relatively specific conditions under which acid sulfate soils are formed usually limit their occurrence to low lying areas with soil horizon less than 5m AHD (Reference 9).

The site is situated on gently undulating terrain with ground surface Reduced Levels (RL) ranging from 125m to 143m Australian Height Datum (AHD).

From the geological and soil landscape maps and as confirmed by our exploratory pits, typical soil within the site consist of medium to high plasticity red brown and grey Silty Clay of residual soil origin. The site is well drained and permanent groundwater table was not encountered at shallow depths within the soil profiles.

Based on the results of our investigation and review of available information, the site is situated in an area with no known occurrence of acid sulphate soil and therefore the proposed development is not likely to be impacted by acid sulphate soil.

6.3 Geotechnical Issues

We understand that the Airds and Bradbury Redevelopment project will include staged demolition of existing structures including roads and reconstruction of new houses and a town centre with open spaces. Details of the type of building structures are not available however we expect the structures will be low to medium rise up to three storey high with possible single level basement in the town centre.

6.3.1 Site Preparation and Earthworks

The extent of site preparation and earthworks will depend on the future use of the land and the foundation system to be adopted for future buildings. It is common for land development to include some earthworks by cut and fill however as the site is an established residential area, the extent of earthworks to regrade the site for future redevelopment is not expected to be significant.

For shallow footing construction, typical site preparation and earthworks should include;

- > Stripping of topsoil and topsoil/fill from the surface.
- Excavation of all "Uncontrolled" fill and buried topsoil to expose the natural clay. Our test pits indicate buried topsoil to exist beneath the fill in TP 11, 12, 14, 21, 28, 30, 32, 33, 47, 51, 53, 55, 58, 66 and 67.
- Proof rolling of the exposed natural clay to delineate soft and heaving areas.
- Any soft and heaving areas delineated by the proof rolling should be further excavated and replaced with a select granular fill having a maximum particle size of 75mm.
- All fill required to elevate the site to proposed design platform level should be placed in layers not exceeding 250mm loose thickness and compacted to a minimum 95% Standard Maximum Dry Density (SMDD) at within 2% of Optimum Moisture Content (OMC) for residential development and 98% for commercial development.
- All earthworks should be monitored and tested by a NATA accredited laboratory.

Our general comments on suitable bearing material and reusability of onsite soil with respect to shallow foundation construction are as follows;

31

- The topsoil and topsoil/fill encountered on the surface in the majority of the test pits are not considered suitable to support permanent structures such as pavements, slabs and buildings and therefore should be excavated and removed. The topsoil and topsoil/fill may be reused in future landscaping areas (eg earth mounds).
- The Gravelly Silt (with topsoil properties) which is present beneath the topsoil in some test pits (eg TP 1, 2, 5, 18, 34, 40, 41, 43, 47 and 65) is not considered suitable for reuse as structural fill because silt is sensitive to moisture and is difficult to rework and compact. It is often possible to improve the silty soil by mixing with better quality clay.
- The insitu fill as encountered in some test pits would be classified as "Uncontrolled" fill in accordance with the definition outlined in AS 3798 (Reference 8) and is therefore not suitable to support permanent structures such as pavements, slabs and buildings with shallow footings.

• Some foreign inclusion such as bricks and concrete were encountered in the fill in some test pit (eg TP 49, 56, 58 and 61) and this fill is not considered suitable for reuse and is recommended to be disposed off site to a landfill. If this fill is to be reuse in future development, the fill should be screened of all oversized material including building rubble (eg concrete, bricks etc) greater than 75mm particle size and deleterious material (eg topsoil, timber and organic). The options of treatment of fill for reuse versus landfill disposal should be considered with care taking into consideration the potential difficulty in separating "good" from "bad" fill.

32

• The underlying natural clay, shale and sandstone are considered suitable for reuse as structural fill provided the fill is well graded with maximum particle size of not greater than 75mm.

Minimal site preparation and earthworks will be required if deep foundation system is adopted for future buildings.

6.3.2 Excavation and Vibration Issues

The test pit investigation indicates the major portion of the site to be underlain by Ashfield shale at varying depths generally less than 3.0m below existing ground surface. We note that Hawkesbury sandstone which was encountered at the lower slopes continues below the Ashfield shale, hence forming the lower bedrock unit.

Excavation of the fill and natural clayey soil may be carried out using conventional earthmoving equipment such as tracked loaders or hydraulic excavators. As the upper shale bedrock was generally assessed to be very low strength, excavation of the upper 1.0m shale may be carried out using the same equipment but equipped with rock-teeth buckets.

Deeper excavation greater than 1.0m if necessary is expected to encounter better quality shale or sandstone bedrock requiring the use of an impact hammer attached to an excavator or a dozer equipped with rippers. Information on the strength and quality of bedrock is limited from this investigation and additional investigation by drilling to obtain bedrock core samples may be carried out to obtain more accurate information of bedrock condition.

If a dozer is use, the rippability of rock will be governed by the strength, number of defects and defects orientation of the bedrock unit. We recommend trial runs be undertaken at different directions to obtain maximum production rates.

33

A hydraulic rock breaker may be required to penetrate through harder bedrock expected to present at lower depths. There is an inherent risk of damage to adjacent buildings caused by excessive vibration from excavation using impact hammers. If impact hammers are to be used in rock excavation and the excavation is situated within close proximity to nearby building (say within 15m), we recommend the following measures be adopted to mitigate such risks;

- Use of a small size hammer.
- Prior to excavation works, ground vibration criteria should be established on site by specialist vibration engineers/scientists. To monitor vibration during excavation works, geophones should be installed at strategic locations determined by the specialist and the vibration monitoring unit should be setup the alert the excavation contractor if the vibration exceeds the recommend level. Vibration monitoring should be carried out by a suitable qualified person with data loggers. Daily records of vibration (measured in Peak Particle Velocity) should be reviewed and appropriate construction measures be adopted to control vibration.
- Excavation works should be carried out by an experienced operator who is aware of factors affecting vibration and transmission of vibration such as orientation of hammer, duration of hamming, size of excavation bite and speed of vibration of the hammer.

Dilapidation reports of nearby structures are recommended prior to excavation works.

6.3.3 Retaining Wall and Batter Slopes

Cut and fill in excess of 0.9m should be adequately retained by a structural wall. If retaining walls are adopted, rigid or 'propped' walls (eg supported by floor slab) should be designed using an "at-rest" lateral earth pressure coefficient (K_o) and based on a rectangular stress block. Gravity or 'cantilever' walls should be designed using an "Active" lateral earth pressure coefficient (K_a) based on a triangular stress block.

Material	Ko	K _a	Bulk Density (kN/m ³)
Loose Fill	0.55	0.36	18.5
Very stiff natural clay/Compacted Fill	0.5	0.33	19.0
Weathered Shale/Sandstone	0.25	0.1	22.0

The following lateral earth pressure coefficients may be adopted;

Permanent subsurface drains should be provided at the back of the retaining wall, or half hydrostatic ground water pressures should be taken into account in the design. Surcharge due to adjacent structures, construction loads and sloping backfill should be taken into account in the design.

Retaining walls may not be required if the excavation and filling is battered to the following;

Material	Temporary Batter	Permanent Batter
Loose Fill	1 Vertical : 1.5 Horizontal	1 Vertical : 3 Horizontal
Very stiff natural clay/Compacted Fill	1 Vertical : 1 Horizontal	1 Vertical : 2 Horizontal
Weathered Shale/Sandstone	Near Vertical	0.5 Vertical : 1 Horizontal

6.3.4 Foundation Design and Indicative Lot Classification

Shallow footings consisting of stiffened raft slabs, waffle slabs or strip and pad footings may be adopted for future residential building buildings or light weight structures subject to site preparation and earthworks as described in the above Section 6.3.1.

Deep footings such as bored piles, grout injected piles or steel piles should be adopted if the site contains "Uncontrolled" fill or other incompetent foundation material (eg topsoil, weak soil, etc) and minimal earthworks are undertaken to improve the foundation.

For preliminary footing design, the following allowable bearing capacities may be adopted;

Foundation Material	Allowable Bearing Capacities
Controlled Fill (95% Standard)	100kPa
Controlled Fill (98% Standard)	150kPa
Natural Very Stiff Clay or better	150kPa
Weathered Shale/Sandstone	600kPa

There is limited site information to classify the site to AS 2870 "Residential Slabs and Footings". Preliminary site classification assessment may be based on the following criteria;

Site	Site Conditions
Classification	
'S' (Slight)	Topsoil or uncontrolled fill less than 400mm thick
	Stable 'Controlled' fill compacted to a minimum 95% Standard
	Natural clay to be of very stiff or better consistency
	Bedrock profiles less than 0.6m deep
	 Surface movements from reactive clay less than 20mm
'M' (Moderate)	Topsoil or uncontrolled fill less than 400mm thick
	Stable 'Controlled'' fill compacted to a minimum 95% Standard
	Natural clay to be of very stiff or better consistency
	Bedrock profiles less than 2.5m deep
	Surface movements from reactive clay between 20mm to 40mm

Site	Site Conditions
Classification	
'H' (High)	Topsoil or uncontrolled fill less than 400mm thick
	Stable 'Controlled' fill compacted to a minimum 95% Standard
	 Natural clay to be of very stiff or better consistency
	 Bedrock profiles greater than 2.5m deep
	Surface movements from reactive clay between 40mm to 70mm
'P' (Problem)	Topsoil or 'Uncontrolled' fill greater than 400mm thick
	Soft and wet natural clay

The following are our preliminary assessments of site classification based on available information obtained from the investigation. The site may be broadly categorised into six zone (Zone A to F) based on locality, topography, soil landscape and geology. Refer to Drawing no 5 for the various zones;

Zone	Indicative Site Classification
А	М
В	Н
С	Н
D	М
Е	Н
F	Р

Note that upgrading of lot classification may be possible through earthworks as follows;

- Class 'P' sites with "Uncontrolled" fill (As defined in AS 3798) may be upgraded to either Class 'M' or 'H' by excavation and removal of all uncontrolled fill. Sites with "Controlled" fill (AS 3798) may be classified as Class 'M' or 'H'.
- Class 'H' sites may be upgraded to Class 'M' by replacement of the highly reactive clays at the upper 1.0m with stable and "Controlled" fill such as ripped sandstone.

6.3.5 Subgrade Preparation and Pavement Design

Pavement subgrade preparation as described in above Section 6.3.1 is also applicable for the proposed pavements. The upper 150mm of the fill material forming the subgrade of the pavement should be compacted to a minimum 100% SMDD and within 2% OMC.

The California Bearing Ratio (CBR) tests carried out on samples taken from the site ranges from 3.5% to 13%.

For preliminary pavement design, a design CBR value of 5% may be adopted for flexible pavement design. Rigid pavement design may be based on a Modulus of Subgrade Reaction of 38kPa/mm.

6.3.6 Dam Embankment

The project also includes road construction along the western side of the dam which is situated to the south west of the Community and Indoor Sports Centre. The road construction is expected to involve excavation within 10m from the toe of the dam embankment and the stability of the dam is considered critical.

Analysis of Slopes

A stability analysis was carried out on typical cross sections of the embankment at critical locations, using the XSTAB (Version 5.202) computer program. The program was based on the Simplified Bishop and/or Janbu Method of Slip Circles.

Analysis of existing downstream batter slope was carried out based on existing configuration and subsurface soil and fill conditions encountered in the boreholes. The analysis included an assumed piezometric surface extending from the proposed permanent water level (assumed to be 0.5m below the embankment crest) to the toe of the downstream embankment.

The stability of the upstream slope was analysed for a rapid drawdown situation.

Location	Stratum	Stratum Dry Density Wet Density O		Cohesion C	Friction Angle \$	
		(t/m ³)	(t/m ³)	(kPa)	(degrees)	
BH 1	Embankment	1.7	2.0	0.0	24.0	
	Foundation	1.7	2.0	1.0	33.0	
BH 2	Embankment	1.95	2.3	0.0	24.0	
	Foundation	1.7	2.0	3.0	33.0	

The following parameters were used in the analysis;

Analysis Results and Assessment

For details of the slope stability computation, refer to Appendix G. A minimum factor of safety (FOS) of unity implies that slopes should remain intact and a drop of FOS to below unity suggests unstable slopes. The recommended minimum FOS for an embankment with steady state seepage is 1.5 and the minimum FOS against rapid draw down condition is 1.2

The following is a summary of the analysis based on information obtained for the existing embankment;

Test	Batter	Height	Slope Angle	Computed	Recommended
Location	Slopes			FOS	FOS
BH 1	Downstream	2.0m	1 Vertical :2 Horizontal	1.23	1.5
BH 2	Downstream	3.5m	1 Vertical : 2.5 Horizontal	1.29	1.5
BH 2	Upstream	3.5m	1 Vertical : 1 Horizontal	0.43	1.2

The following are our comments based on the results of the investigation and stability analysis;

• The low FOS of 0.43 calculated for the upstream embankment at BH 2 location is due to the steep nature of the embankment (ie 1 Vetrical : 1 Horizontal) and the relatively low friction angle of the earthfill material (due to poor compaction). The upstream embankment has already failed, evidenced from the slumped and near vertical batters on the lower section near the waterline.

- Relatively higher FOS of 1.23 and 1.29 were calculated for the downstream embankment at BH 1 and BH 2 locations respectively however, these FOS values are below the recommended 1.5.
- The fill embankment material was assessed to be poorly compacted with SPT values generally less than 10 blows per 300mm penetration.
- The water holding capacity of the dam embankment could not be fully assessed in this investigation as the dam water level was low (possibly below the embankment level) at the time of our investigation. Though there were no obvious signs of leakage on the downstream side of the embankment, the water holding capacity of the dam is questionable on the basis that the earthfill was considered poorly compacted and the presence of a relatively pervious crushed rock layer at the interface between the earthfill and natural clay in BH 1 location.

Recommendations

As the existing embankment stability fails to meet the minimum recommended factor of safety with poorly compacted earthfill and possible relatively porous gravel layers through the embankment, we recommend the dam embankment be reconstructed.

Our recommendations for reconstruction of the embankment are as follows;

- The new embankment should have upstream and downstream slope batters of not steeper than 1 Vertical to 3 Horizontal
- Good quality fill should be used and this may include Silty Clay or Sandy Silty Clay of low to medium plasticity having a Liquid Limit of less than 45%. The fill should be non dispersive (ie Emerson Class numbers other than 1 to 3) and non erodible.

➤ The insitu earthfill material was generally found to be highly dispersive and some parts of the embankment (eg BH 3) were found to be too gravelly. If the insitu material is to be used for the new embankment, we recommend the Silty Clay material to be placed in the middle of the dam to form a minimum 2m wide core. The Gravelly Silty Clay may be used for the construction of the outer embankment.

40

- The upper 0.5m of the fill forming the embankment should be stabilised with 5% by weight of lime. Otherwise, the embankment should be covered by a stable capping layer not less than 0.5m thick consisting of a well graded ripped sandstone having a maximum particle size of 75mm.
- All fill material forming the embankment should be compacted to a minimum 98% to 102% SMDD at–1% to +3% Optimum Moisture Content.
- Prior to placement of the earthfill, the surface should be proof rolled using a minimum 10 tonne vibrating drum roller. Any soft or heaving areas delineated by the proof rolling should be boxed out and replaced with good quality fill. In addition, the surface should be cleared of all loose material and moistened.
- A cut-off trench should be constructed below the core of the earth embankment. This cut-off trench should be keyed a minimum of 0.5m into shale. To ensure adequate compaction, the cut-off trench wall should be battered too not steeper than 1 Vertical to 1 Horizontal and the base width should be not less than 3m.
- The construction of the new embankment should be controlled by a NATA accredited laboratory..

7. LIMITATIONS

The interpretation and recommendations submitted in this report are based in part upon data obtained from a limited number of test pits and boreholes. There is no investigation which is thorough enough to determine all site conditions and anomalies, no matter how comprehensive the investigation program is as site data is derived from extrapolation of limited test locations. The nature and extent of variations between test locations may not become evident until construction.

Groundwater conditions were only briefly examined in this investigation. The groundwater conditions may vary seasonally or as a consequence of construction activities on or adjacent to the site.

The statements presented in this document are intended to advise you of what should be your realistic expectations of this report and to present you with recommendations on how to minimise the risk associated with groundworks for this project. The document is not intended to reduce the level of responsibility accepted by GeoEnviro Consultancy Pty Ltd, but rather to ensure that all parties who may rely on this report are aware of their responsibilities.

Your attention is drawn to the attached "Explanatory Notes" in Appendix H and this document should be read in conjunction with our report

REFERENCES

- 1. 1:100,000 Soil Landscape Map of Port Hacking Wollongong– Soil Conservation Service of NSW; Sheet 9029-9129
- 2. 1:100,000 Geological Map of Port Hacking Wollongong– Geological Series Sheet 9029-9129 (Edition 1) 1985
- 3. Department of Land and Water Conservation "Site Investigation for Urban Salinity".2002
- 4. Salinity Code of Practice Western Sydney Regional Organisation of Councils Ltd 2004
- 5. What do all the numbers mean? A guide for the interpretation of soil test results. Department of Conservation and Land Management, 1992
- 6. Australian Standard, AS 2159-1995 "Piling Design and Installation"
- 7. Australian Standard, AS 2870 -2000 "Residential Slabs and Footings".
- 8. Australian Standard, AS 3798 1996 "Bulk Earthworks for Commercial and Residential Site"
- 9. Acid Sulfate Soil Manual NSW Acid Sulfate Soil Management Advisory Committee August 1998

C:\\09JOB\245\A\JG09245A-r1 18/3/09 2:14 PM

Appendix A

Table A : Summary of Test Pit Profile

Sheet 1 of 12

	nvironmental Pt ls/Bradbury Rec			Job Number: JG09245A Logged By: AF
CATION: Airds/Bradbury			Date: 03/03/2009	
Test Pit	Lot	Dept	n (m)	Material Description
Number	Number	From	То	
1	Number	0.0	0.15	Topsoil: Clayey Silt: Low liquid limit, grey brown, dry
		0.15	0.30	Gravely Silt: Low liquid limit, white grey, dry
		0.30	1.00	(CH) Silty Clay: High plasticity, red and brown, MC<=PL, PP = >600kPa, hard
		1.00	1.60	(CI) Gravely Silty Clay: Medium plasticity, grey and brown, extremely to
				distincity weathered gravel, MC<=PL
		1.60	-	Sandstone: Fine grained, brown, medium strength, refusal at 1.6m
0			0.45	
2		0.0	0.15	Topsoil: Clayey Silt: Low liquid limit, grey brown, dry
		0.15	0.30	Gravely Silt: Low liquid limit, white grey, dry
		0.30	0.60	(CH) Silty Clay: High plasticity, brown, MC <pl< td=""></pl<>
		0.60	0.90	(CI) Sandy Silty Clay: Medium plasticity, brown and red and grey
		0.90	1.15	(CI) Gravely Silty Clay: Medium plasticity, grey, extremely to
				distinclty weathered gravel, MC<=PL
		1.15	-	Sandstone: Fine grained, brown, medium strength, refusal at 1.15m
3		0.0	0.25	Topsoil/Fill: Clayey Silt: Low liquid limit, grey brown, dry
		0.25	1.90	Fill: Gravely Silty Clay: Low to medium plasticity, brown, some sandstone
				cobbles, 1 boulder (0.6m Diameter), some Clayey Silt, MC<=PL,
				moderately compacted
		1.90	2.00	Gravely Silty Clay: Red an dgrey, 1 boulder, MC<=PL
		2.00	-	Sandstone: Fine grained, brown, medium strength, refusal at 2.0m
4		0.0	0.15	Topsoil: Clayey Silt: Low liquid limit, grey brown, dry
		0.15	0.40	Gravely Silt: Low liquid limit, grey, dry
		0.40	0.55	(CH) Silty Clay: High plasticity. Red and brown, MC<=PL
		0.55	0.60	Shale/Siltstone: Distinctley weathered, grey brown, medium strength
				refusal at 0.6m
5		0.0	0.02	Topsoil: Clayey Silt: Low liquid limit, grey brown, dry
-		0.20	0.40	Gravely Silt: Low liquid limit, grey brown, dry
		0.40	1.00	(CH) Silty Clay: High plasticity, brown and red, MC <pl, pp="">600kPa</pl,>
		1.00	1.10	(CI) Shaley Clay: Medium plasticity, grey, extremely to distinctley weathered
				shale, low strength, MC<=PL
		1.10	-	Sandstone: Distinctley weathered, grey, medium to high strength,
				refusal at 1.1m
6		0.0	0.15	Topsoil/Fill: Clayey Silt: Low liquid limit, grey brown, dry
0		0.0	0.13	Fill: Gravely Silty Clay: Medium plasticity, brown, moderate compaction, MC <pi< td=""></pi<>
		0.15	1.00	(CI-CH) Silty Clay: Medium to high plasticity, red brown and grey, MC <pl< td=""></pl<>
		1.00	1.00	(CI) Gravely Silty Clay: Medium plasticity, red brown and grey, MC <pl< td=""></pl<>
		1.40	2.50	(CI) Shaley Clay: Medium plasticity, grey brown, extremely weathered, MC <pl< td=""></pl<>
		2.50	-	Shale: Distinctley weathered, brown grey, medium strength, refusal at 2.5m
				Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

Sheet 2 of 12

	nvironmental Pt			Job Number: JG09245A
	ls/Bradbury Red	ieveiopment		Logged By: AF Date: 03/03/2009
	ds/Bradbury	Dant	h (ma)	
Test Pit Number	Lot Number	From	h (m) To	Material Description
7	Number	0.0	0.37	Topsoil: Clayey Silt: Low liquid limit, grey brown, dry
'		0.37	0.57	(CH) Silty Clay: High plasticity, red brown, MC <pl< td=""></pl<>
		0.55	0.80	(CH) Silty Clay: High plasticity, grey red MC <pl< td=""></pl<>
		0.80	1.45	(CI) Gravely Silty Clay: Medium plasticity, grey brown and red, MC <pl< td=""></pl<>
		1.45	1.50	Shale: Distinctly weathered, grey, medium strength, refusal at 1.45m
8		0.0	0.37	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.37	1.00	(CH) Silty Clay: High plasticity, red brown, MC <pl< td=""></pl<>
		1.00	1.40	As above, but grey brown with some gravel
		1.40	1.95	(CI) Shaley Clay: medium plasticity, grey brown with some shale bands, MC<=PL
		1.95	1.95	Shale: Distinctly weathered, grey, medium strength, refusal at 1.95m
9		0.0	0.22	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.22	0.80	(CH) Silty Clay: High plasticity, red brown, MC <pl< td=""></pl<>
		0.80	0.95	(CI) Shaley Clay: medium plasticity, grey brown, MC<=PL
		0.95	1.50	Shale: Distinctly weathered, grey, medium strength, refusal at 1.50m
10		0.0	0.40	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.40	0.90	(CH) Silty Clay: High plasticity, red brown, MC <pl< td=""></pl<>
		0.90	1.40	As above, but grey brown, MC <pl< td=""></pl<>
		1.40	1.80	(CI) Shaley Clay: medium plasticity, grey brown with some shale bands,
				MC<=PL (Backhoe refusal on hard shale band on 1.80m)
11		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, dry
		0.10	0.20	Fill: Silty Clay: brown, dry, appears loosely comapcted
		0.20	0.40	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.40	0.80	(CH) Silty Clay: High plasticity, red brown, MC <pl< td=""></pl<>
		0.80	1.30	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown
		1.30	2.80	(CI) Shaley Clay: medium plasticity, grey with shale bands
		2.80	2.90	Shale: Distinctly weathered, grey, medium strength, refusal at 2.90m
12		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, dry
		0.10	0.25	Fill: Shale/Silty Clay/topsoil mixture: with one steel and plastic pipe
		0.25	0.60	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.60	1.00	(CH) Silty Clay: high plasticity, red brown with some gravel
		1.00	1.55	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown red
		1.55	3.20	(CI) Shaley Clay: medium plasticity, grey brown with shale bands
		3.20	3.20	Shale: Distinctly weathered, grey, medium strength, refusal at 3.25m
				Notes
				Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

Sheet 3 of 12

	nvironmental Pt			Job Number: JG09245A		
	ls/Bradbury Red ds/Bradbury	levelopment		Logged By: AF Date: 03/03/2009		
est Pit	Lot	Dept	h (m)	Material Description		
lumber	Number	From	То			
13	Number	0.0	0.55	Topsoil: Clayey Silt: low liquid limit, grey brown with one concrete slab		
10		0.0	0.00	diameter up to 200mm on surface, dry		
		0.55	1.05	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>		
		1.05	2.10	(CI) Gravelly Silty Clay: medium plasticity, grey brown with shale bands		
		2.10	2.10	(CI) Shaley Clay: medium plasticity, grey brown with shale bands		
		2.50	2.80	Shale: distinctly weathered, grey, medium strength, refusal at 2.80m		
		2.00	2.00			
14		0.0	0.40	Fill: Gravelly Silty Clay: medium plasticity, appears loosely comapcted, dry		
		0.40	0.65	Topsoil: Clayey Silt: low liquid limit, grey brown, dry		
		0.65	1.00	(CH) Silty Clay: high plasticity, red brown with some gravel, MC <pl< td=""></pl<>		
		1.00	1.30	As above, but grey brown red		
		1.30	2.10	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown		
		2.10	2.50	(CI) Shaley Clay: medium plasticity, grey brown with shale bands		
		2.50	-	Shale: distinctly weathered, grey, medium strength, refusal at 2.50m		
15		0.0	0.25	Topsoil: Clayey Silt: low liquid limit, grey brown, dry		
		0.25	0.45	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>		
		0.45	0.90	As above, but red brown grey		
		0.90	1.20	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown		
	1.20	1.50	(CI) Shaley Clay: medium plasticity, grey brown with shale bands			
		1.50	1.70	Shale: distinctly weathered, grey, medium strength, refusal at 1.70m		
16		0.0	0.25	Topsoil: Clayey Silt: low liquid limit, grey brown, dry		
		0.25	0.60	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>		
		0.60	2.10	(CI) Shaley Clay: medium plasticity, grey brown with shale bands		
		2.10	-	Shale: distinctly weathered, grey, medium strength, refusal at 2.10m		
17		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, dry		
		0.30	0.55	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey		
		0.55	1.70	(CH) Silty Clay: high plasticity, red brown grey, MC <pl< td=""></pl<>		
		1.70	1.85	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown		
		1.85	2.10	(CI) Shaley Clay: medium plasticity, grey brown with shale bands		
		2.10	-	Shale: distinctly weathered, dark grey, medium strength, refusal at 2.10m		
18		0.0	0.16	Topsoil: Clayey Silt: low liquid limit, grey brown, dry		
		0.16	0.45	Gravelly Silt: low liquid limit, grey		
		0.45	0.95	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>		
		0.95	1.20	(CL) Sandy Clay: low plasticity, red grey with some sandstone gravel, MC <pl< td=""></pl<>		
		1.20	-	Sandstone: distinctly weathered, medium strength, refusal at 1.20m		
				Notes:		
				MC = Moisture Content.		
				PL = Plastic Limit.		
				PP = Pocket Penetrometer.		

Sheet 4 of 12

	nvironmental Pt	-		Job Number: JG09245A
CATION: Air	ls/Bradbury Rec ds/Bradbury	levelopment		Logged By: AF Date: 03/03/2009
Test Pit	Lot	Dont	h (m)	Material Description
Number	Number	From	То	
19	Number	0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
13		0.30	0.90	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.90	1.50	(CI) Gravelly Silty Clay: medium plasticity, red brown, MC <r l<="" td=""></r>
		1.50	2.10	(CI) Shalley Clay: medium plasticity, grey with shale bands
		1.00	2.10	(c) charcy only. medium plasticity, grey with shale bands
20		0.0	0.20	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.20	0.70	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.70	0.90	As above, but grey brown
		0.90	1.10	As above, but with some gravel
		1.10	2.10	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown
		2.10	2.80	(CI) Shaley Clay: medium plasticity, grey brown with shale bands
		2.80	2.95	Shale: distinctly weathered, dark grey, low to medium strength
21		0.0	0.05	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, dry
		0.05	0.15	Fill: Gravelly Silty Clay: medium plasticity, brown (appears loosely compacted)
		0.15	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, dry
		0.30	0.80	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.80	2.70	(CI-CH) Gravelly Silty Clay: meidum to high plasticity, grey brown, MC <pl< td=""></pl<>
		2.70	2.90	(CI) Shaley Clay: medium plasticity, grey brown with shale bands
22		0.0	0.40	Fill: Gravelly Silty Clay: medium plasticity, brown, moist (appears loosely
		0.40	1.00	compacted) (CI) Shaley Clay: medium plasticity, grey brown with shale bands
		1.00	1.00	Shale: distinctly weathered, dark grey, medium strength, refusal at 1.15m
		1.00	1.15	Chale. Listingly weathered, dark grey, medium strength, refusar at 1.10m
23		0.0	0.05	Fill: Gravelly Silty Clay: medium plasticity, brown, moist
		0.05	0.20	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.20	1.00	(CI) Shaley Clay: medium plasticity, grey brown with shale bands
		1.00	-	Shale: distinctly weathered, dark grey, medium strength, refusal at 1.00m
24		0.0	0.30	Topsoil/Fill: Clayey Silt: low liquid limit, brown with some roots and gravel
		0.30	1.10	Fill: Gravelly Silty Clay: medium to high plasticity, dry to moist (appears loosely
				to moderately comapcted)
		1.10	1.30	Fill: Shaley Clay: medium plasticity, grey brown with shale fragments
		1.30	2.60	Fill: Gravelly Silty Clay: medium plasticity, brown/black grey (appears moderately compacted) moist
		2.60	-	Sandstone: distinctly weathered, medium strength, refusal at 2.6m
		1.30		Fill: Gravelly Silty Clay: medium plasticity, brow moderately compacted), moist
				Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

Sheet 5 of 12

CLIENT: JBS E	nvironmental P	ty Ltd		Job Number: JG09245A						
PROJECT: Aird		development		Logged By: AF						
LOCATION: Air		1		Date: 03/03/2009						
Test Pit	Lot		th (m) 	Material Description						
Number	Number	From	То							
25		0.0	0.002	Topsoil/Fill: Clayey Silt: low liquid limit, dry						
		0.002	0.70	Fill: Ripped Sandstone with cobbles and boulders						
		0.70	1.20	(SC) Clayey Sand: fine to medium grained, brown with some roots						
		1.20	1.35	(CL) Sandy Clay: low plasticity, brown grey with some gravel						
		1.35	-	Sandstone: distinctly weathered, medium strength, refusal at 1.35m						
26		0.0	0.25	Fill: Crushed Sandstone						
		0.25	0.65	(CH) Silty Clay: high plasticity, brown red						
		0.65	1.10	(CH) Silty Clay: high plasticity, grey brown with some gravel, MC <pl< td=""></pl<>						
		1.10	-	Sandstone: distinctly weathered, medium strength, refusal at 1.10m						
27		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.30	0.90	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>						
		0.90	1.30	(CI) Shaley Clay: medium plasticity, grey brown with shale bands, MC <pl< td=""></pl<>						
		1.30	1.90	(CI) Gravelly Silty Clay: medium plasticity, grey brown						
		1.90	2.70	(CI) Shaley Clay: medium plasticity, grey brown with shale bands, MC <pl< td=""></pl<>						
		2.70	2.80	Shale: distinctly weathered, grey brown, low to medium strength, refusal at 2.80m						
28		0.0	0.05	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, moist						
		0.05	0.25	Fill: Gravelly Silty Clay: medium plasticity, brown grey, dry, appears loosely comapcted						
		0.25	0.35	Fill: Sandstone, appears loosely comapcted						
		0.35	0.40	Fill: Gravel						
		0.40	0.55	Topsoil: Clayey Silt: low liquid limit, grey brown, dry to moist						
		0.55	1.10	(CH) Silty Clay: high plasticity, red brown, MC<=PL						
		1.10	1.40	As above, but grey brown red						
		1.40	1.70	As above, but with some gravel						
		1.70	2.90	(CI-CH) Silty Clay: medium to high plasticity, grey brown with gravel						
		2.90	2.95	Shale: distinctly weathered, grey, medium strength, refusal at 2.9m						
29		0.0	0.35	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.35	0.55	(CH) Silty Clay: high plasticity, red brown, MC<=PL						
		0.55	1.00	As above, but grey red brown, MC <pl< td=""></pl<>						
		1.00	2.00	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown, MC=PL						
		2.00	2.45	(CI) Shaley Clay: medium plasticity, dark grey brown with shale bands						
		2.45	3.00	Shale: distinctly weathered, dark grey, medium strength, refusal at 3.0m						
				Notes:						
				MC = Moisture Content.						
				PL = Plastic Limit.						
				PP = Pocket Penetrometer.						

Sheet 6 of 12

	nvironmental Pt	-		Job Number: JG09245A
	ls/Bradbury Red	levelopment		Logged By: AF
	ds/Bradbury	Deat	()	Date: 03/03/2009
est Pit Iumber	Lot Number	Dept From	<u>n (m)</u> To	Material Description
30	Number	0.0	0.30	Fill: Gravelly Silty Clay: medium plasticity, brown with fine to coarse grained
50		0.0	0.50	gravel, dry, appears loosely compacted
		0.30	0.40	Topsoil: Clayey Silt: low liquid limit, grey brown, dry to moist
		0.30	0.40	Gravelly Sandy Silt
		0.40	0.80	(CH) Silty Clay: high plasticity, brown with some gravel
		0.80	0.70	Shale/Siltstone: distinctly weathered, dark grey brown, refusal at 0.7m
		0.70	-	Shale/Sinsione. Listincuy weathered, dark grey brown, relusar at 0.711
31		0.0	0.20	Gravelly Sandy Silt: low liquid limit, grey
		0.20	0.50	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>
		0.50	0.80	As above, but with some gravel
		0.80	1.30	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown red
		1.30	1.40	Shale: extremely to distinctly weathered, grey, low to meidum strength, refusal
				at 1.40m
32		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, moist
		0.10	0.25	Fill: Silty Clay: medium to high plasticity, brown with some gravel, appear
				loosely comapcted
		0.25	0.60	Topsoil: Clayey Silt: low liquid limit, grey brown
		0.60	1.40	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>
		1.40	1.80	Shale/Siltstone: Distinctly weathered, medium strength, refusal at 1.80m
33		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown
55		0.10	0.30	Fill: Gravelly Silty Clay: medium plasticity, brown, dry, appears loosely
				compacted
		0.30	0.45	Topsoil: Clayey Silt: low liquid limit, grey brown
		0.45	0.65	(CI) Gravelly Silty Clay: medium plasticity, grey
		0.65	0.80	(CH) Silty Clay: high plasticity, brown with some gravel
		0.80	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at 0.80m
34		0.0	0.15	Topsoil: Clayey Silt: low liquid limit, grey brown
		0.15	0.35	Gravelly Sandy Silt
		0.35	0.60	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.60	1.00	As above, but grey red brown, MC <pl< td=""></pl<>
		1.00	1.30	(GC) Clayey Gravel: grey , dry
		1.30	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at
				1.30m
				Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

Sheet 7 of 12

CLIENT: JBS E	nvironmental P	ty Ltd		Job Number: JG09245A						
PROJECT: Airc	ds/Bradbury Red	development		Logged By: AF						
LOCATION: Air	rds/Bradbury	1		Date: 03/03/2009						
Test Pit	Lot	Dept	h (m)	Material Description						
Number	Number	From	То							
35		0.0	0.05	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.05	1.20	Fill: Sandstone/Gravelly Silty Clay mixture, dry, appears loosely to moderately						
				comapcted						
		1.20	2.0	Fill: Gravelly Silty Clay: medium plasticity, grey with some sandstone						
				bounders, very wet						
		2.0	2.10	(CI) Shaley Clay: medium plasticity, grey brown with shale bands						
		2.10	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at						
				2.10m						
36		0.0	0.05	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.05	0.25	Fill: Gravelly Silty Clay: medium plasticity, brown mixture with some cobbles						
		0.25	0.45	(ML) Gravelly Sandy Silt: low liquid limit, grey, dry						
		0.45	-	Sandstone: distinctly weathered, fine grained, medium strength, refusal at						
				0.45m						
37		0.0	0.05	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.05	0.25	Fill: Gravelly Silty Clay: medium plasticity, brown, dry, appears loosely						
				comapcted						
		0.25	0.45	(ML) Gravelly Sandy Silt: low liquid limit, grey, dry						
		0.45	0.90	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>						
		0.90	1.50	As above, but red brown grey						
		1.50	1.70	(CI) Shaley Clay: medium plasticity, brown						
		1.70	1.90	As above, but grey						
		1.90	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at						
				1.90m						
38		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.30	0.65	(CL) Sandy Clay: low plasticity, brown						
		0.65	0.95	(CL) Gravelly Sandy Clay: low plasticity, grey with fine to coarse grained						
				gravel						
		0.95	-	Sandstone: distinctly weathered, fine grained, medium strength, refusal at						
				0.95m						
39		0.0	0.45	Topsoil: Clayey Silt: low liquid limit, grey brown, moist						
		0.45	0.60	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>						
		0.40	1.00	(CI-CH) Gravelly Silty Clay: medium to high plasticity, red brown, MC <pl< td=""></pl<>						
		1.00	-	Sandstone: distinctly weathered, fine grained, medium strength, refusal at						
		1.00		1.00m						
				Natara						
				Notes:						
				MC = Moisture Content.						
				PL = Plastic Limit.						
				PP = Pocket Penetrometer.						

GeoEnviro Consultancy Ptv Itd Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tel: (02) 96798733 Fax: (02) 96798744

Table A : Summary of Test Pit Profile

Sheet 8 of 12

	Environmental Pt	-		Job Number: JG09245A
	ds/Bradbury Red rds/Bradbury	levelopment		Logged By: AF Date: 03/03/2009
Test Pit	Lot	Dept	th (m)	Material Description
Number	Number	From	То	
40		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, moist
		0.30	0.45	(ML) Gravelly Sandy Silt: low liquid limit, brown, very dry
		0.45	0.75	(GC) Clayey Sandy Gravel: fine to medium grained gravel, brown red, dry
		0.75	1.10	(CL-CI) Gravelly Silty Clay: low to medium plasticity, brown with some cobbles
41		0.0	0.20	Topsoil: Clayey Silt: low liquid limit, grey brown, moist
		0.20	0.40	(ML) Gravelly Sandy Silt: low liquid limit
		0.40	1.00	(CH) Silty Clay: high plasticity, red brown with a trace of coarse gravel, MC <pl< td=""></pl<>
		1.00	1.70	As above, but grey brown red, MC <pl< td=""></pl<>
		1.70	2.10	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown red
		2.10	-	Sandstone: distinctly weathered, medium strength, refusal at 2.1m
42		0.0	0.10	Topsoil/Fill: Silty Sand: fine to medium grained, dark brown with some fine to medium grained gravel and roots, dry
		0.10	1.30	Topsoil/Fill: Clayey Silt: low liquid limit, brown with two tree roots fragments and two broken clay pipe
		1.30	1.75	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		1.75	2.20	As above, but red brown grey
		2.20	2.30	(CI) Gravelly Silty Clay: medium plasticity, grey brown
		2.30	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at 2.3m
43		0.0	0.10	Topsoil: Clayey Silt: low liquid limit, grey brown, moist
		0.10	0.30	(ML) Gravelly Sandy Silt: low liquid limit, grey brown
		0.30	0.85	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.85	1.10	As above, but grey brown red with some gravel
		1.10	1.40	(GC) Clayey Sandy Gravel: fine to medium grained, brown
		1.40	-	Shale: distinctly weathered, grey, medium to high strength, refusal at 1.40m
44		0.0	0.40	Fill: Silty Clay: medium plasticity, brown with some gravel, dry, appears
				loosely compacted
		0.40	0.65	(CI) Shaley Clay: medium plasticity, brown with shale bands
		0.65	-	Shale: distinctly weathered, grey, medium to high strength, refusal at 0.65m
45		0.0	0.30	Topsoil/Fill: Clayey Silt: low liquid limit, brown with a treace of sandstone gravel
		0.30	0.70	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.70	1.20	As above, but grey brown red
		1.20 1.35	1.35 -	(CL-CI) Gravelly Silty Clay: low to medium plasticity, grey brown red Shale: distinctly weathered, grey, medium strength, refusal at 2.30m
				Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

Sheet 9 of 12

	nvironmental Pt			Job Number: JG09245A					
	ds/Bradbury Red	levelopment		Logged By: AF Date: 03/03/2009					
	rds/Bradbury								
Fest Pit	Lot	Dept	\	Material Description					
Number	Number	From	To						
46		0.0	0.40	Topsoil: Clayey Silt: low liquid limit, grey brown, moist					
		0.40	0.70	(CH)Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.70	1.20	As above, but grey brown red, MC <pl< td=""></pl<>					
		1.20	2.60	As above, but with some gravel					
		2.60	-	Shale: distinctly weathered, grey brown, medium strengthm refusal at 2.60m					
47		0.0	0.15	Fill: Silty Clay: medium to high plasticity, red brown, dry, appears loosely comapcted					
		0.15	0.40	Topsoil: Clayey Silt: low liquid limit, grey brown, dry					
		0.40	0.70	(CH)Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.70	0.90	As above, but grey brown red					
		0.90	2.30	(CI) Shaley Clay: medium plasticity, grey brown					
		2.30	-	Shale: distinctly weathered, grey brown, medium strengthm refusal at 2.30m					
48		0.0	0.35	Topsoil: Clayey Silt: low liquid limit, grey brown, moist					
		0.35	0.55	(CH)Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.55	0.70	(CI) Shaley Clay: medium plasticity, grey brown					
		0.70	-	Shale: distinctly weathered, grey brown, medium strengthm refusal at 0.7m					
49		0.0	0.40	Fill: Gravelly Silty Clay: medium plasticity, brown with some cobble and					
		0.40	0.55	small concrete fragments and broken brick					
		0.40	0.55	(CH)Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.55	1.20	(CI) Shaley Clay: medium plasticity, grey brown with shale bands					
		1.20	1.60	Shale: distinctly weathered, grey, medium strength, refusal at 1.60m					
50		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, moist					
		0.30	0.50	(CH)Silty Clay: high plasticity, red brown with a trace of gravel, MC <pl< td=""></pl<>					
		0.50	2.80	(CI) Shaley Clay: meidum plasticity, grey brown with shale bands					
51		0.0	0.25	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, moist					
		0.25	0.35	Fill: Silty Clay: high plasticity, red brown, dry					
		0.35	0.55	Topsoil: Clayey Silt: low liquid limit, grey brown					
		0.55	0.85	(CH)Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.85	1.40	As above, but grey brown red, MC <pl< td=""></pl<>					
		1.40	2.20	(CI-CH) Silty Clay: medium to high plasticity, grey brown red with some gravel, MC <pl< td=""></pl<>					
		2.20	-	Sandstone: distinctly weathered, brown grey, medium strength, refusal at					
		2.20	-	o					
				Notes:					
				MC = Moisture Content.					
				PL = Plastic Limit.					
				PP = Pocket Penetrometer.					

c:/lab/reports/R022-A

Form No. R022-A/Ver 04/06/07

Sheet 10 of 12

	nvironmental Pt s/Bradbury Red			Job Number: JG09245A Logged By: AF					
	ds/Bradbury	•		Date: 03/03/2009					
Test Pit	Lot	Dept	h (m)	Material Description					
Number	Number	From	То						
52		0.0	0.05	Topsoil/Fill: Clayey Silt: low liquid limit, dark brown, dry					
02		0.05	0.25	Fill: Silty Clay: medium plasticity, brown					
		0.25	0.60	Fill: Clayey Silt: low liquid limit, dark grey					
		0.60	0.90	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.00	1.30	As above, medium to high plasticity, brown red with some gravel					
			1.90						
		1.30		(CI) Silty Clay: medium plasticity, grey brown red with some gravel, MC<=PL					
		1.90	-	Sandstone: distinctly weathered, grey, medium, refusal at 1.90m					
53		0.0	0.20	Fill: Silty Clay: medium to high plasticity, red brown with some gravel and roots, dry, appears loosely comapcted					
		0.20	0.55						
		0.20	0.55	Topsoil: Silty Sand: fine to medium grained, black brown with two sandstone boulders					
		0.55	0.80	(CH) Silty Clay: high plasticity, brown, MC=PL					
		0.80	-	Sandstone: distinctly weathered, grey, medium, refusal at 0.80m					
54		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, moist					
		0.10	1.00	Fill: Gravelly Silty Clay: medium to high plasticity, brown some sandstone					
				cobbles, dry to moist, appears moderately compacted					
		1.00	-	Sandstone: distinctly weathered, grey, medium, refusal at 0.80m					
55		0.0	0.20	Topsoil: Clayey Silt: low liquid limit, moist					
		0.20	0.35	Fill: Silty Clay: high plasticity, brown red, dry, appears loosely comapcted					
		0.35	0.55	Fill: Silty Clay: medium to high plasticity, brown red with some gravel, appears loosely comapcted					
		0.55	0.95	Topsoil: Clayey Silt: low liquid limit					
		0.95	1.10	(ML) Gravelly Sandy Silt: low liquid limit					
		1.10	1.50	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>					
		1.50	1.80	As above, but grey brown with some gravel					
		1.80	2.00	(CI) Shaley Clay: medium plasticity, grey brown with some shale bands					
		2.00	2.30	Shale: distinctly weathered, grey brown, low to medium strength, refusal at 2.30m					
56		0.0	0.65	Fill: Silty Clay: brown mixture with a lot of building rubbles, such as bricks, concrete, tiles and glass.					
		0.65	1.25	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		1.25	2.50	As above, but grey brown red, MC=PL					
		2.50	2.50	(CI) Shaley Clay: medium plasticity, dark grey with some shale bands					
		2.90	-	2.90m					
		2.90	-	Shale: distinctly weathered, dark grey brown, medium strength, refusal at 2.90m					
				Notes:					
				MC = Moisture Content.					
				PL = Plastic Limit.					
				PP = Pocket Penetrometer.					
/reports/R022									

Sheet 11 of 12

OJECT: Aird	nvironmental Pt ls/Bradbury Red ds/Bradbury			Job Number: JG09245A Logged By: AF Date: 03/03/2009
Test Pit	Lot	Dept	h (m)	Material Description
Number	Number	From	То	
57	Humbon	0.0	0.05	Topsoil: Clayey Silt: low liquid limit, grey, moist
0.		0.05	0.50	(CI-CH) Silty Clay: medium to high plasticity, red brown with some gravel
		0.50	1.90	(CI) Shaley Clay: medium plasticity, grey brown with shale bands, MC<=PL
		1.90	2.50	Shale: extremely to distinctly weathered, grey with clay bands, low strength,
		1.50	2.50	refusal at 2.50m
58		0.0	0.65	Fill: Gravelly Silty Clay: low to medium plasticity, brown mixture with a lot of building rubbles, such as broken bricks, small concrete fragments, broken glass, tile, plastic and timber, appears loosely comapcted
		0.65	1.05	Topsoil: Clayey Silt: low liquid limit, grey brown
		1.05	1.50	(CI-CH) Silty Clay: medium to high plasticity, brown, MC <pl< td=""></pl<>
		1.50	2.40	As above, but high plasticity, grey brown red with some gravel, MC <pl< td=""></pl<>
		2.40	3.10	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown, refsual on
				gravel at 3.10m
59		0.0	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown, dry to moist
		0.30	0.70	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.70	1.00	As above, but grey brown with some gravel
		1.00	1.10	(CI) Gravelly Silty Clay: medium plasticity, grey brown, MC <pl< td=""></pl<>
		1.10	1.20	Shale: distinctly weathered, grey, medium strength, refusal at 1.20m
60		0.0	0.25	Topsoil: Clayey Silt: low liquid limit, grey brown, dry to moist
		0.25	0.45	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.45	1.00	As above, but red brown grey, MC <pl< td=""></pl<>
		1.00	1.15	Shale: extremely to distinctly weathered, grey, low to medium strength, refusal at 1.15m
61		0.0	0.15	Fill: Gravelly Silty Clay/Gravelly Clayey Silt: low liquid limit, brown with some building rubble
		0.15	0.40	(ML) Gravelly Sandy Silt
		0.40	0.90	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>
		0.90	1.10	(CH) Gravelly Silty Clay: high plasticity, grey brown red, MC <pl< td=""></pl<>
		1.10	-	Shale: distinctly weathered, grey, medium strength, refusal at 1.10m
62		0.0	0.10	Tanaail/Eill: Clayay Silt: Jaw liquid limit day to maint
02		0.0	0.10	Topsoil/Fill: Clayey Silt: low liquid limit, dry to moist
		0.10	0.25	Fill: Gravelly Silty Clay: low to medium plasticity, brown
		0.25	0.50	Fill: Clayey Silt: low liquid limit, dark brown
		0.50	0.70	Fill: Silty Clay: high plasticity, red brown
		0.70	1.40	As above, but grey brown mixture with some topsoil and gravel
		1.40	1.55	(CH) Silty Clay: high plasticity, red brown
		1.55	2.00	(CI-CH) Silty Clay: medium to high plasticity, brown grey red with some gravel
		2.00	2.30	(CI) Shaley Clay: medium strength, grey brown with shale bands
		2.30	-	Backhoe- Auger refusal (shale ?) Notes:
				MC = Moisture Content.
				PL = Plastic Limit.
				PP = Pocket Penetrometer.

c:/lab/reports/R022-A

Form No. R022-A/Ver 04/06/07

Sheet 12 of 12

	nvironmental Pt			Job Number: JG09245A					
	s/Bradbury Red	levelopment		Logged By: AF					
	rds/Bradbury			Date: 03/03/2009					
est Pit	Lot	Dept		Material Description					
lumber	Number	From	То						
63		0.0	1.20	Fill: Topsoil: Clayey Silt/Silty Clay: grey brown mixture with some fine roots					
		1.20	1.80	(CH) Silty Clay: high plasticity, red grey, MC <pl< td=""></pl<>					
		1.80	3.90	(CI) Shaley Clay: medium plasticity, grey brown with shale bands, MC <pl (backhoe-auger="" 3.9m)<="" at="" td="" terminated=""></pl>					
64		0.0	0.20	Topsoil: Silty Sand: fine to medium grained, brown with roots, dry					
•		0.20	0.70	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.70	0.90	As above, grey brown					
		0.90	1.30	(CI) Gravelly Silty Clay: medium plasticity, grey					
		1.30	-	Shale: distinctly weathered, grey brown, medium strength					
		1.50		Backhoe-Auger refusal on shale at 1.30m					
65		0.0	0.05	Topsoil: Clayey Silt: low liquid limit, grey brown, dry to moist					
		0.05	0.25	(ML) Gravelly Sandy Silt					
		0.25	0.60	(CH) Silty Clay: high plasticity, brown, MC <pl< td=""></pl<>					
		0.60	0.90	(CI) Gravelly Silty Clay: medium plasticity, brown grey					
		0.90	1.40	As above, but low to medium plasticity, grey brown					
		1.40	1.60	Sandstone: extremely to distinctly weathered, grey, very low strength					
		1.60	-	As above, but medium to high strength, refusal at 1.60m					
66		0.0	0.05	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown, dry to moist					
		0.05	0.15	Fill: Gravelly Silty Clay: low to medium plasticity, dry, appears loosely compacted					
		0.15	0.30	Topsoil: Clayey Silt: low liquid limit, grey brown					
		0.30	0.70	(CL-CI) Gravelly Sandy Clay: low to medium plasticity, brown red					
		0.70	1.40	As above, but grey brown red					
		1.40	1.80	(CI) Shaley Clay: medium plasticity, grey brown with shale bands					
		1.80	-	Sandstone: distinctly weathered, grey, low to medium strength, refusal at 1.80m					
67		0.0	0.05	Topsoil/Fill: Clayey Silt: low liquid limit, grey brown					
		0.05	0.20	Fill: Silty Clay: medium to high plasticity, brown, MC <pl, appears="" loosely<br="">comapcted</pl,>					
		0.20	0.35	Topsoil: Clayey Silt: low liquid limit, grey brown					
		0.35	0.80	(CH) Silty Clay: high plasticity, red brown, MC <pl< td=""></pl<>					
		0.80	1.10	(CI-CH) Gravelly Silty Clay: medium to high plasticity, grey brown red					
		1.10	1.50	(CI) Shaley Clay: medium plasticity, grey brown with shale bands					
		1.50	1.70	Shale: distinctly weathered, grey, low to medium strength, refusal at 1.70m					
				Notes:					
				MC = Moisture Content.					
				PL = Plastic Limit.					
				PP = Pocket Penetrometer.					

c:/lab/reports/R022-A

Form No. R022-A/Ver 04/06/07

Appendix B

Borehole Reports - Dam Investigation

Clie					onmenta			Job			JG09245B
-	ject:						lopment - Dam Embankment	Date			24/03/2009
Loc	ation	:	Comn	nunity	/ Centre	₃/Spo	rts Centre, Airds		jged k ecked		SG SL
Drill	Mode	an and	d Mount	tina: P	2D 5		Slope: 90 degrees			а Бу. Surfac	
	e Diarr			0 mn			Bearing: -		Datu		
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Hand Penetrometer (kPa)	Structure and Additional Observations
B I T	N L	ENCOUNTERED		0.0 - 1.0			Fill: Silty Clay: meidum to high plasticity, grey red brown As above, but brown	D	Vst- H		- - - - -
- ^		2	N=17 2,6,11 N>=10			· · · · · · · · · · · · · · · · · · ·	As above, but with some fine to coarse grained gravel Fill: Crushed rock: low to medium strength				V-bit refusal at 2.2m SPT bouncing
C - B I T		NO	10/150 mm N>3	3.0		CI	Silty Clay: medium plasticity, grey brown with some ironstone gravel and shale bands Siltstone: distinctly weathered, brown,	MC <= PL	St- Vst		- - - -
			3/5mm	4.0 5.0 6.0 7.0 8.0			End of BH 1 at 3.6m				

Client:		JBS E	nvironn	nenta			Job	no:		JG09245B	
Project:						opment - Dam Embankment	Date			24/03/2009	
Location	:	Comn	nunity C	entre	/Spoi	ts Centre, Airds	Log	ged l	oy:	SG	
							Checked By: SL				
Drill Mode			-	5		Slope: 90 degrees	R.L. Surface: -				
Hole Dian	neter	: 100) mm			Bearing: -	Datum: -				
Method Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Hand Penetrometer (kPa)	Structure and Additional Observations	
			0.0	***		Fill: Silty Clay: medium plasticity, grey red	D	Vst		_	
		N=7 4,3,4	1.0			As above, but brown grey with some ironstone gravel				- - - -	
		N=8	2.0			As above, but medium to high plasticity, brown As above, but red brown mottled grey	D-M		500	- - -	
F		2,4,4	3.0		СН	Silty Clay: high plasticity, red brown		Vst-		- - -	
- B -		N=16 4,8,8	3.0		on			H		-	
			4.0		CI- CH	As above, but medium plasticity, yellow brown Silty Clay: medium to high plasticity, grey brown with some siltstone/shale bands		St	250	V-bit refusal at 4.9m	
О		N>10 3,5,5 ·		X		Siltstone/Shale: distinctly weathered, grey				SPT bouncing at 4.9m	
		3,3,3	6.0 7.0 8.0			brown, medium strength End of BH 2 at 4.9m				TC-bit refusal at 4.9m	

	JBS E	nvironr	nenta			Job	no:		JG09245B		
			-		-				24/03/2009		
	Comm	nunity C	Centre	/Spoi	rts Centre, Airds	-	-	-	SG		
and	Mount		F		·						
		-	5			R.L. Surface: -					
	100	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Deaning	1					
Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Indey	Hand Penetrometer (kPa)	Structure and Additional Observations		
		0.0				D					
			\otimes			D-M			_		
		1.0			Fill: Gravelly Silty Clay: medium to high plasticity, brown red with irosntone gravel		Vst	350	-		
	N=7	2.0			As above, but with siltstone bands: thickness=100mm		St		Natural (?)		
	N=12	3.0	X	CI		MC= PL	St		-		
		4.0			brown with clay bands, low strength				-		
					Shale: distinctly weathered, grey with ironstone bands, low stength				SPT bouncing		
		5.0							—		
•		6.0			As above, but low to medium strength				Water seepage encounetred at 5.5m (1 hour after borehole drilling)		
		7.0			End of BH 3 at 6.0m				TC-bit refusal at 6.0m		
	Aand Mater:	Airds Comment and Mount ster: 100 Nater Notes: Samples N=7 2,4,3 N=7 1,2,5 N=12 4,8,4 N>10 10/50 mm	Airds Bradbu Community C and Mounting: PD ter: 100 mm (U) tight signal	Airds Bradbury Red Community Centre	Community Centre/Spor	Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds and Mounting: PD 5 ter: 100 mm Slope: 90 degrees Bearing: - u u u <td>Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date Log: Che and Mounting: PD 5 iter: 100 mm Slope: 90 degrees iter: 100 mm Bearing:- iter: 100 mm Bearing:- iter: 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component D iter: 100 mm Topsoil/Fill: Clayey Silt: brown D iter: 100 mm Fill: Silty Clay: medium to high plasticity, brown grey D iter: 100 mm Fill: Silty Clay: medium to high plasticity, brown grey D iter: 100 mm CH Silty Clay: medium to high plasticity, plasticity, brown red with irosntone gravel D iter: 100 mm CH Silty Clay: high plasticity, red brown MC- PL iter: 100 mm CH Silty Clay: medium plasticity, brown red MC- PL iter: 100 mm CI Silty Clay: medium plasticity, brown red MC- PL iter: 100 mm Shale: distinctly weathered, grey with ironstone bands, low strength M iter: 100 mm As above, but low to medium strength M</td> <td>Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date: Logge1 and Mounting: PD 5 Slope: 90 degrees R.L. ter: 100 mm Bearing: - Date: year orgentiation Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component orgentiation year orgentiation orgentiation orgentiation orgentiation Name Fill: Silty Clay: medium to high plasticity, brown red orgentiation orgentiation Name Fill: Silty Clay: medium to high plasticity, brown red with incomponent west Name Fill: Silty Clay: medium to high plasticity, brown red west west Name CH Silty Clay: high plasticity, brown red west Name CI Silty Clay: medium plasticity, brown red west Name Siltstone: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Siltstone: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Soil Store: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Soil Store: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orge</td> <td>Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date: Logged by: Checked By: Secondary and minor component and Mounting: PD 5 ter: 100 mm Bearing: - 100 mm Bearing: - Datum: - 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component Image: Plasticity, brown red with irosntone gravel 0.0 100 mm 100 mm Topsoil/Fill: Clayey Silt: brown gravel 0.0 Topsoil/Fill: Clayey Silt; brown gravel 100 mm 0.0 Topsoil/Fill: Clayey Silt; brown gravel 0.0 Topsoil/Fill: Clayey Silt; brown gravel 100 mm 0.0 Topsoil/Fill: Clayey Silt; brown gravel 0.0 0 100 mm 100 Fill: Silty Clay: medium to high plasticity, brown grey 0.0 100 mm CH Silty Clay: medium to high plasticity, brown red with irosntone gravel st 100 mm CI Silty Clay: medium plasticity, brown red MC- st 100 mm Siltstone: extremely to distinctly weathered, brown with clay bands, low strength Image: Image: As above, but low to medium strength 100 mm Image: As above, but low to medium strength Image: Image: As above, but low to medium strength</td>	Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date Log: Che and Mounting: PD 5 iter: 100 mm Slope: 90 degrees iter: 100 mm Bearing:- iter: 100 mm Bearing:- iter: 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component D iter: 100 mm Topsoil/Fill: Clayey Silt: brown D iter: 100 mm Fill: Silty Clay: medium to high plasticity, brown grey D iter: 100 mm Fill: Silty Clay: medium to high plasticity, brown grey D iter: 100 mm CH Silty Clay: medium to high plasticity, plasticity, brown red with irosntone gravel D iter: 100 mm CH Silty Clay: high plasticity, red brown MC- PL iter: 100 mm CH Silty Clay: medium plasticity, brown red MC- PL iter: 100 mm CI Silty Clay: medium plasticity, brown red MC- PL iter: 100 mm Shale: distinctly weathered, grey with ironstone bands, low strength M iter: 100 mm As above, but low to medium strength M	Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date: Logge1 and Mounting: PD 5 Slope: 90 degrees R.L. ter: 100 mm Bearing: - Date: year orgentiation Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component orgentiation year orgentiation orgentiation orgentiation orgentiation Name Fill: Silty Clay: medium to high plasticity, brown red orgentiation orgentiation Name Fill: Silty Clay: medium to high plasticity, brown red with incomponent west Name Fill: Silty Clay: medium to high plasticity, brown red west west Name CH Silty Clay: high plasticity, brown red west Name CI Silty Clay: medium plasticity, brown red west Name Siltstone: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Siltstone: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Soil Store: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orgentiation Name Soil Store: extremely to distinctly weathered, grey with ironstone bands, low stength orgentiation orge	Airds Bradbury Redevelopment - Dam Embankment Community Centre/Sports Centre, Airds Date: Logged by: Checked By: Secondary and minor component and Mounting: PD 5 ter: 100 mm Bearing: - 100 mm Bearing: - Datum: - 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component Image: Plasticity, brown red with irosntone gravel 0.0 100 mm 100 mm Topsoil/Fill: Clayey Silt: brown gravel 0.0 Topsoil/Fill: Clayey Silt; brown gravel 100 mm 0.0 Topsoil/Fill: Clayey Silt; brown gravel 0.0 Topsoil/Fill: Clayey Silt; brown gravel 100 mm 0.0 Topsoil/Fill: Clayey Silt; brown gravel 0.0 0 100 mm 100 Fill: Silty Clay: medium to high plasticity, brown grey 0.0 100 mm CH Silty Clay: medium to high plasticity, brown red with irosntone gravel st 100 mm CI Silty Clay: medium plasticity, brown red MC- st 100 mm Siltstone: extremely to distinctly weathered, brown with clay bands, low strength Image: Image: As above, but low to medium strength 100 mm Image: As above, but low to medium strength Image: Image: As above, but low to medium strength		

Clie	nt:		JBS E	Inviron	nenta			Job	no:		JG09245B		
Proj							opment - Dam Embankment	Date			24/03/2009		
	ation	:			-		ts Centre, Airds	Log	ged b	by:	SG		
				-		-		Checked By: SL					
Drill	Mode	el and	d Mount	ting: PD	5		Slope: 90 degrees	R.L. Surface: -					
Hole	Diar	neter	: 10	0 mm	-		Bearing: -	Datum: -					
Method	Support	Water	Notes: Samples, Tests, etc	Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Hand Penetrometer (kPa)	Structure and Additional Observations		
>				0.0	13 3		Topsoil: Clayey Silt: low liquid limit, grey	D					
				_	X.	СН	Silty Clay: high plasticity, red brown	MC	Н		_		
1			N=14	—	X		Silty Clay: medium to high plasticity, grey	<pl MC<</pl 	Н				
			N=14 2,6,8	1.0	X	CH	red with some siltstone bands	MC< PL	н		_		
1				_	X		As above but medium plasticity grave				_		
1					X		As above, but medium plasticity, grey orange with a trace of gravel	MC= PL			SPT bouncing		
⊢			N>10		/ / /		Siltstone/Shale: distinctly weathered, grey				SF I bouncing		
_			10/	2.0			brown, medium strength				_		
۵			20mm				. . .				_		
				1 _						[
с													
⊢											_		
				3.0							_		
				-							_		
											_		
							End of BH 4 at 3.5m				TC-Bit refusal at 3.5m		
				4.0							_		
					-						_		
					-						_		
				-	-						_		
				5.0	-						-		
				<u> </u>							_		
					1						_		
1]								
1				_	1						_		
1				6.0	4								
1				_	4						_		
1					4						_		
1					-						_		
1				7.0	1						_		
1					1						_		
1					1						_		
1]								
1				_	1						_		
 				8.0									
1													
<u> </u>													

GeoEnviro Consultancy Pty Ltd

Borehole Report

Project: Airds Bradbury, Redevelopment - Dam Embankment Location: Community Centre/Spots Centre, Airds Contexted By: SG Checked By: SL Drill Model and Mounting: PD 5 Slope: 90 degrees R.L. Sufface: - Hele Diameter: 10 mm regime of the particular context of the particular	Client:			JBS Environmental						no:		JG09245B
Checked By: SL Drill Model and Mounting: PD 5 Slope: 30 degrees R.L. Sufface :- Datum: - Det Diameter: 100 m Bearing: - Datum: - Ide Diameter: 100 m Bearing: - Datum: - Soll Type, Plasticity or Particle Characteristic, colour, structure and Additional Observations Structure and Additional Observations Ide Diameter: 100 Topsoil: Clayey Silt: low liquid limit, grey 0 Value H Ide Diameter: 10 Siltstone: distinctly weathered, grey, medium plasticity, brown with Some fine grave! Value Value Value H Ide Diameter: 30 Ide Diameter: Siltstone: distinctly weathered, grey, medium strength Ide Diameter: Ide Diameter: Ide Diameter: <td colspan="3">Project:</td> <td colspan="6">Airds Bradbury Redevelopment - Dam Embankment</td> <td></td> <td></td> <td></td>	Project:			Airds Bradbury Redevelopment - Dam Embankment								
Doll Medual and Mounting: PD 5 Slope: 90 degrees R.L.Surface: - Hole Diameter: 100 mm Bearing: - Datum: - June Diameter: 100 mm Bearing: - Datum: - June Diameter: 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component June Diameter: Structure and Additional Observations June Diameter: 0.0 100 mm Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component D Image: Structure and Additional Observations June Diameter: 0.0 100 mm Topsoil: Clayey Silt: low liquid limit, grey D Image: Structure and Additional Observations June Diameter: 0.0 100 mm Silty Clay: medium plasticity, brown with Soil Type, Plastice Clayer, Silt: low liquid limit, grey D Image: Structure and Additional Observations June Diameter: 1.0 Soil Type, Plasticity weathered, grey, medium plasticity, brown with Soil Type, Silt: low liquid limit, grey D Image: Structure and Additional Observations June Diameter: 1.0 Siltistone: distinctly weathered, grey, medium strength Image: Structure and Additional Ad	Loca	ation	:	Com	munity (Centre	/Spo	rts Centre, Airds				
Hole Diameter: 100 mm Bearing: Datum: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												
polypoint used in secondary and minor component polypoint isoling secondary and minor component polypoint polypoint polypoint polypoint polypoint polypoint<	-							·				ace: -
> Description Topsoil: Clayey Silt: low liquid limit, grey D Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description of the gravel Image: Description	Hole Diameter: 100 mm							Bearing: -	1		m: -	
Image: Cl Sity Clay: medium plasticity, brown with some fine gravel Mc Vst. ePL H 10 Sitstone: distinctly weathered, grey, medium strength Image: Clay: medium strength 10 Sitstone: distinctly weathered, grey, medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 20 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 30 Image: Clay: medium strength Image: Clay: medium strength Image: Clay: medium strength 4.0 Image: Clay: medium strength		Support	Water	Notes: Samples, Tests, etc			Unified Soil Classification	Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component		Consistency/Density Index	Hand Penetrometer (kPa)	
Some fine gravel -PL H - 10 Siltstone: distinctly weathered, grey, medium strength I I I 20 I I I I I I 20 I I I I I I I 20 I I I I I I I I 20 I	>				0.0	131131		Topsoll: Clayey Silt: low liquid limit, grey	_			
Silistone: distinctly weathered, grey, medium strength End of BH 5 at 1.1m TC-bit refusal at 1.1m	F				-	X						-
Silistone: distinctly weathered, grey, medium strength End of BH 5 at 1.1m TC-bit refusal at 1.1m	Ч С				-	X						-
End of BH 5 at 1.1m					1.0							
					1 _							
					-			End of BH 5 at 1.1m				TC-bit refusal at 1.1m
					-							_
					2.0							-
												-
												_
												_
					L							-
					3.0	-						-
						-						-
												_
						1						_
					4.0							
					_	4						_
					_	-						-
					_	-						-
					5.0							-
					0.0							_
					_							_
					_	4						-
					6.0	-						_
					-							-
					_							—
					-	1						
					7.0							
					_	4						–
					-	-						L
					-	-						–
					8.0	1						H

GeoEnviro Consultancy Pty Ltd

Borehole Report

Borehole no: 6

Client: Project:	JBS Enviro			opment - Dam Embankment	Job Date			JG09245B 24/03/2009
Location:				ts Centre, Airds	Log	ged b		SG
							By:	SL
Drill Model an Hole Diamete				Slope: 90 degrees Bearing: -		R.L. Datu	Surfao m: -	ce: -
Method Support Water	Notes: Samples, Tests, etc Depth(m)	Classification Symbol	Unified Soil Classification	Material Description Soil Type, Plasticity or Particle Characteristic, colour, secondary and minor component	Moisture Content	Consistency/Density Index	Hand Penetrometer (kPa)	Structure and Additional Observations
V-BIT	0.0		СН	Topsoil: Clayey Silt: low liquid limit, brown Silty Clay: high plasticity, red brown	D MC= PL			_
 <td>2.0</td><td></td><td></td><td>Siltstone: distinctly weathered, grey brown with clay bands, low strength As above, but low to medium strength Siltstone/Shale: distinctly weathered, grey medium strength End of BH 6 at 1.8m</td><td></td><td></td><td></td><td>-</td>	2.0			Siltstone: distinctly weathered, grey brown with clay bands, low strength As above, but low to medium strength Siltstone/Shale: distinctly weathered, grey medium strength End of BH 6 at 1.8m				-
	3.0 4.0 5.0 6.0 7.0 8.0							

Appendix C

Salinity Laboratory Test Certificates

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 26640

JG09245A, Airds

16/02/09@6pm

54 Soils

16/02/09

Client:

Geoenviro Consultancy Pty Ltd PO Box 1543, Macquarie Centre North Ryde NSW 2113

Attention: Solern Liew

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details:

Date results requested by: 24/02/09 Date of Preliminary Report: Not Issued Issue Date: 24/02/09 NATA accreditation number 2901. This document shall not be reproduced except in full. This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

Envirolab Reference: **Revision No:**

26640 R 00

Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-1	26640-2	26640-3	26640-4	26640-5
Your Reference		TP1	TP1	TP1	TP8	TP8
Depth		0.0-0.1	0.6-0.7	1.1-1.2	0.0-0.1	0.55-0.65
Date Sampled		10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13
Type of sample		2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil
		301	301	301	3011	3011
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/200
pH 1:5 soil:water	pH Units	6.2	4.3	4.8	5.6	5.5
Electrical Conductivity 1:5 soil:water	µS/cm	170	380	570	75	110
Sulphate, SO4 1:5 soil:water	mg/kg	<25	73	220	34	38
Chloride 1:5 soil:water	mg/kg	<100	520	610	<100	<100
Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-6	26640-7	26640-8	26640-9	26640-10
Your Reference		TP8	TP14	TP14	TP14	TP16
Depth		1.5-1.6	0.0-0.1	0.5-0.6	1.5-1.6	0.0-0.1
Date Sampled		10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-1
Type of sample		2/09	2/09	2/09	2/09	2/09
		Soil	Soil	Soil	Soil	Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/200
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/200
pH 1:5 soil:water	pH Units	5.5	6.8	5.2	4.2	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	390	80	230	580	58
Sulphate, SO4 1:5 soil:water	mg/kg	73	<25	180	480	<25
Chloride 1:5 soil:water	mg/kg	530	<100	200	550	<100
		T	1			
Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-11	26640-12	26640-13	26640-14	26640-15
Your Reference		TP16	TP16	TP18	TP18	TP18
Depth Deta Gamelad		0.3-0.4	1.0-1.1	0.0-0.1	0.45-0.55	0.95-1.05
Date Sampled		10/02/09-13/0 2/09	10/02/09-13/0 2/09	10/02/09-13/0 2/09	10/02/09-13/0 2/09	10/02/09-13 2/09
Type of sample		2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/200
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/200

Electrical Conductivity 1:5 soil:water µS/cm 54 110 61 69 Sulphate, SO4 1:5 soil:water mg/kg <25 57 <25 <25 Chloride 1:5 soil:water mg/kg <100 <100 <100 <100

4.9

4.8

6.0

5.9

pH Units

Envirolab Reference: 2 Revision No: 6

pH 1:5 soil:water

26640 R 00

4.9

49

33

<100

Miscellaneous Inorg - soil Our Reference: Your Reference	UNITS	26640-16 TP25	26640-17 TP25	26640-18 TP25	26640-19 TP26	26640-20 TP26
Depth Date Sampled Type of sample		0.0-0.2 10/02/09-13/0 2/09 Soil	0.2-0.3 10/02/09-13/0 2/09 Soil	1.2-1.3 10/02/09-13/0 2/09 Soil	0.0-1.0 10/02/09-13/0 2/09 Soil	0.25-0.35 10/02/09-13 2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	5.2	5.5	4.4	8.5	4.7
Electrical Conductivity 1:5 soil:water	μS/cm	44	40	120	41	120
Sulphate, SO4 1:5 soil:water	mg/kg	<25	<25	<25	<25	<25
Chloride 1:5 soil:water	mg/kg	<100	<100	<100	<100	130
Miscellaneous Inorg - soil Our Reference:	UNITS	26640-21	26640-22	26640-23	26640-24	26640-25
Your Reference		TP26	TP28	TP28	TP28	TP29
Depth		0.9-1.1	0.0-0.05	0.25-0.35	1.4-1.5	0.0-0.1
Date Sampled Type of sample		10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13 2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	4.7	7.2	7.2	4.5	5.4
Electrical Conductivity 1:5 soil:water	µS/cm	65	120	66	480	230
Sulphate, SO4 1:5 soil:water	mg/kg	47	88	52	270	57
Chloride 1:5 soil:water	mg/kg	<100	<100	<100	520	280
Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-26	26640-27	26640-28	26640-29	26640-30
Your Reference		TP29	TP29	TP31	TP31	TP31
Depth		0.35-0.45	1.0-1.1	0.0-0.1	0.2-0.3	1.0-1.1
Date Sampled Type of sample		10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13 2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/200
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/200

pH 1:5 soil:water

Electrical Conductivity 1:5 soil:water

Sulphate, SO4 1:5 soil:water

Chloride 1:5 soil:water

26640 R 00

pH Units

µS/cm

mg/kg

mg/kg

4.1

850

65

1,300

4.2

990

140

1,500

5.3

41

39

<100

5.4

61

<25

<100

4.9

55

38

<100

Miscellaneous Inorg - soil Our Reference: Your Reference Depth	UNITS 	26640-31 TP34 0.0-0.1	26640-32 TP34 0.35-0.45	26640-33 TP34 1.0-1.1	26640-34 TP37 0.0-0.1	26640-35 TP37 0.5-0.7
Date Sampled Type of sample		10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/0 2/09 Soil	10/02/09-13/ 2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	5.3	4.2	4.3	5.8	5.5
Electrical Conductivity 1:5 soil:water	µS/cm	95	230	430	44	170
Sulphate, SO4 1:5 soil:water	mg/kg	<25	34	25	29	130
Chloride 1:5 soil:water	mg/kg	<100	310	630	<100	<100
Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-36	26640-37	26640-38	26640-39	26640-40
Your Reference		TP37	TP40	TP40	TP40	TP43
Depth		1.5-1.6	0.0-0.1	0.3-0.4	1.0-1.1	0.0-0.1
Date Sampled		10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13
Type of sample		2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	6.0	7.0	5.4	4.7	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	240	100	35	82	65
Sulphate, SO4 1:5 soil:water	mg/kg	45	<25	43	<25	<25
Chloride 1:5 soil:water	mg/kg	240	<100	<100	110	<100
Miscellaneous Inorg - soil						
Our Reference:	UNITS	26640-41	26640-42	26640-43	26640-44	26640-45
Your Reference		TP43	TP43	TP45	TP45	TP45
Depth		0.3-0.4	1.1-1.3	0.0-0.1	0.3-0.4	1.3-1.4
Date Sampled		10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13/0	10/02/09-13
Type of sample		2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil	2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	4.9	5.4	5.2	4.7	4.8

Electrical Conductivity 1:5 soil:water

Sulphate, SO4 1:5 soil:water

Chloride 1:5 soil:water

55

<25

<100

µS/cm

mg/kg

mg/kg

25

25

<100

60

29

<100

100

80

<100

220

94

220

Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	26640-46 TP50 0.0-0.1 10/02/09-13/0 2/09 Soil	26640-47 TP50 0.3-0.4 10/02/09-13/0 2/09 Soil	26640-48 TP50 1.8-1.9 10/02/09-13/0 2/09 Soil	26640-49 TP56 0.0-0.1 10/02/09-13/0 2/09 Soil	26640-50 TP56 0.65-0.75 10/02/09-13/0 2/09 Soil
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	19/02/2009
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/2009
pH 1:5 soil:water	pH Units	4.9	4.4	4.6	7.4	5.3
Electrical Conductivity 1:5 soil:water	µS/cm	150	90	220	1,400	130
Sulphate, SO4 1:5 soil:water	mg/kg	140	67	120	3,000	240
Chloride 1:5 soil:water	mg/kg	<100	<100	220	<100	<100
Miscellaneous Inorg - soil Our Reference:	UNITS	26640-51	26640-52	26640-53	26640-54	
Your Reference		TP56	TP66	TP66	TP66	
Depth Date Sampled Type of sample		2.0-2.2 10/02/09-13/0 2/09 Soil	0.0-0.1 10/02/09-13/0 2/09 Soil	0.35-0.45 10/02/09-13/0 2/09 Soil	1.4-1.6 10/02/09-13/0 2/09 Soil	_
Date prepared	-	19/02/2009	19/02/2009	19/02/2009	19/02/2009	1
Date analysed	-	23/02/2009	23/02/2009	23/02/2009	23/02/2009	
pH 1:5 soil:water	pH Units	5.6	7.4	4.6	4.8	
Electrical Conductivity 1:5 soil:water	µS/cm	190	280	110	36	

94

160

140

<100

<25

130

32

<100

mg/kg

mg/kg

Sulphate, SO4 1:5 soil:water

Chloride 1:5 soil:water

Method ID	Methodology Summary
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.

ACCREDITED FOR TECHNICAL COMPETENCE

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results		Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %R	PD		
Date prepared	-			19/2/09	26640-1	19/02/2009 19/02/20	009	LCS-1	19/2/09%
Date analysed	-			23/2/09	26640-1	23/02/2009 23/02/20	009	LCS-1	23/2/09%
pH 1:5 soil:water	pH Units		LAB.1	[NT]	26640-1	6.2 6.1 RPD: 2		LCS-1	100%
Electrical Conductivity 1:5 soil:water	µS/cm	1	LAB.2	<1.0	26640-1	170 170 RPD: 0		LCS-1	104%
Sulphate, SO4 1:5 soil:water	mg/kg	25	LAB.9	<25	26640-1	<25 <25		LCS-1	100%
Chloride 1:5 soil:water	mg/kg	100	LAB.11	<100	26640-1	<100 <100		LCS-1	104%
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
Miscellaneous Inorg - soil				Base + I	Duplicate + %RPD				
Date prepared	-		26640-11	19/02/2	009 19/02/2009	LCS-2		19/2/09%	
Date analysed	-		26640-11	23/02/2	009 23/02/2009	LCS-2		23/2/09%	
pH 1:5 soil:water	pH Unit	S S	26640-11	4.9	4.9 RPD: 0	LCS-2		100%	
Electrical Conductivity 1:5 soil:water	µS/cm		26640-11	54	52 RPD: 4	LCS-2		104%	
Sulphate, SO4 1:5 soil:water	mg/kg		26640-11		<25 <25	LCS-2		100%	
Chloride 1:5 soil:water	mg/kg		26640-11	<	100 <100	LCS-2		96%	
QUALITY CONTROL	UNITS		Dup. Sm#		Duplicate	Spike Sm#	Spik	e % Recovery	
Miscellaneous Inorg - soil				Base + I	Duplicate + %RPD				
Date prepared	-		26640-21	19/02/2	009 19/02/2009	LCS-3		19/2/09%	_
Date analysed	-		26640-21	23/02/2	009 23/02/2009	LCS-3		23/2/09%	
pH 1:5 soil:water	pH Unit	s i	26640-21	4.7	4.7 RPD: 0	LCS-3		100%	
Electrical Conductivity 1:5 soil:water	µS/cm		26640-21	65	64 RPD: 2	LCS-3		104%	
Sulphate, SO4 1:5 soil:water	mg/kg		26640-21	47	42 RPD: 11	LCS-3		96%	
Chloride 1:5 soil:water	mg/kg		26640-21	<	100 <100	LCS-3		102%	
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS		Dup. Sm#		Duplicate Duplicate + %RPD	Spike Sm#	Spik	e % Recovery	
Date prepared	-		26640-31	19/02/2	009 19/02/2009	26640-2		19/2/09%	7
Date analysed	-		26640-31		009 23/02/2009	26640-2		23/2/09%	
pH 1:5 soil:water	pH Unit		26640-31		 5.3 RPD: 0	[NR]		[NR]	
Electrical Conductivity 1:5 soil:water			26640-31		100 RPD: 5	[NR]		[NR]	
Sulphate, SO4 1:5 soil:water	mg/kg		26640-31		<25 <25	26640-2		108%	
Chloride 1:5 soil:water	mg/kg		26640-31	<	100 <100	[NR]		[NR]	
				1		1	I		<u> </u>

Envirolab Reference: 2 Revision No: F

26640 R 00

Client Reference: JG0924

JG09245A, Airds

QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	26640-41	19/02/2009 19/02/2009	26640-22	19/2/09%
Date analysed	-	26640-41	23/02/2009 23/02/2009	26640-22	23/2/09%
pH 1:5 soil:water	pH Units	26640-41	4.9 4.9 RPD: 0	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	26640-41	55 57 RPD: 4	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	26640-41	<25 <25	26640-22	100%
Chloride 1:5 soil:water	mg/kg	26640-41	<100 <100	[NR]	[NR]
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	26640-51	19/02/2009 19/02/2009	26640-42	19/2/09%
Date analysed	-	26640-51	23/02/2009 23/02/2009	26640-42	23/2/09%
pH 1:5 soil:water	pH Units	26640-51	5.6 5.4 RPD: 4	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	26640-51	190 200 RPD: 5	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	26640-51	94 94 RPD: 0	26640-42	92%
Chloride 1:5 soil:water	mg/kg	26640-51	160 150 RPD: 6	[NR]	[NR]

ACCREDITED FOR TECHNICAL COMPETENCE

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit <: Less than >: Greater than RPD: Relative Percent Difference NA: Test not required LCS: Laboratory Control Sample NR: Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank

sand or water) fortified with analytes representative of the analyte class. It is simply a check sample. **Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds

which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for SVOC and speciated phenols.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

<u>Client:</u> Geoenviro Consultancy Pty Ltd PO Box 1543, Macquarie Centre North Ryde NSW 2113	ph: 9679 8733 Fax: 9679 8744
Attention: Solern Liew	
Sample log in details: Your reference: Envirolab Reference: Date received: Date results expected to be reported:	JG09245A, Airds 26640 16/02/09 24/02/09

Samples received in appropriate condition for analysis:	YES
No. of samples provided	54 Soils
Turnaround time requested:	Standard
Temperature on receipt	Not applicable
Cooling Method:	None

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

CeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tei: (02) 96798733 Fax: (02) 96798744 Laboratory Test Request/Chain of Custody Record	GeoEnviro Consultancy Pty Ltd Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tel: (02) 96798733 Fax: (02) 96798744	D CON th Avenue B Fax: (Juest	Consultanu venue, Blacktown NS Fax: (02) 96798744 est/Chain o	ncy H NSW 214 744	<i>Ty L</i> 8, Austra 1, Austra	ta ly R	ecor	ā				-	Page 1/4					Lob NO Date rece Received Tamp: Ci	PA Job Nri: 26640 Date received: 6/2/ Received: 6 Received by: 5 Reme: EcoliAmbioptick Cacoling: Icelloppick	JOD MOL 26640 Date received: 16/2/9 Received by: 56 Time received: 6/2/9 Received by: 56 Temp: CoolAnplight Cooling: Ice/Inegrack
Job Details: Job Number: JG09245A Client:	45A	•			S a	mplec	Sample Date: 1 Sampled By: Al	10/02/	0/02/2009 - 13/02/2009 F	13/02/2	600		External Laboratory Details: Laboratory name: EnviroLab Services Pty Ltd Address: 12 Ashley Street	Laboratory Deta y name: EnviroL 12 Ashley Street	Detail: vviroLa štreet	s: b Service	es Pty I	ttd	-td	5
Project: Airds/Bradbury Redevelopment Location: Airds	ury Rede	/elopmei	ŧ		도 있	oject N ore Lo	Project Manager: Store Location:	er: SL				J	Chi Contact Tar	Chatswood, NSW, 2067 Tania Notaris	, NSW	, 2067				
Sampling Details			Sample Type	Type					Test Required (\)	uired (\				Test P	Test Performed(X)	(X)b∈				
Location	Depth	(m)	Soil	Water			ļ											-		
				- <u></u>	EC bH	20*\CF-										<u></u>	··· ····			əlqme2 qə
	From					; ·					╡							_		
-	0.00		2		-	-		┥										-+		
	0.60		BG			- -	╡							╁				-		
	1,10		2		- -	- ·		+		+							1	╉		
	0.0	1	g		-	4		+										╉	-	
ς TP8	0.55		ЪG					┥		┥			-			_	_	+		
	1.50		Ъ		-			+		-				+				-		
7 TP14	0.0		ő		-													╉		
	0.50		DG			<u> </u>		+							Ţ					
م TP14	1.50	1	g			<u> </u>		+												
(0 TP16	0.0	0.10	900		 	\					1			+				_		
	20				- - - - -	· -			T	╀				╞				+-		
(<u>)</u> TP16	00.00	0.10 ~	32			+-		+		+								+		
16 TP18	0.45	0.55	DG		/ /	<u> </u>														
رخ TP18	0.95	1.05	DG		-	~								_	\square			_		2
Ratinguished hv								<u>a</u>	Received Bv	Å	1									
l ahoratony	Name			Signatur	4		Date	T	l aboratory	2		IName			Siar	Signature		Ď	Date	
GeoFnviro	Steven Goss	Soss		MAG-			14/02/2009	600	12			5	Silver Son	1-1-2		N	$ \rangle$	1	16121	61
														v		\$				
Legend							150		1150 - Itadietuched somale S0mm tube		ļ									
	Lighter number									75.000 411			V keen Samle	elum						
DS Disturbed Sample (Smail, Plastic bag)	l, Plastic bag)							indisturo.	U/o Undisturbed sample, / ommi tut	, rataer iai	Ľ.		N discard campia	tampa						
Dig Disturbed Sample (Glass Jar)	s Jar) or Compie							'ater sam	Water sample, Allibri giass Water sample, Plastic hottle	ri yiaco ja Abritta	_									

Laboratory rest requesionant of custous record	ist Ked	uesu	Chain	of CL	isto	dy F	leco	p															
Job Details: Job Number: JG09245A	15A				» ش	Sample Date:	Date	10/02	10/02/2009 - 13/02/2009	13/02/	2009		Exter Labor	External Laboratory Details: Laboratory name: EnviroLab Services Pty Ltd	orato: ame:	ry Det: Enviro	ails: Lab Se	ervices	Ptv Lt	5			
Client:					i vi	Sampled By: AF	d By:	ΑF					Addre	Address: 12 Ashley Street	Ashley	/ Stree			i 7	I			
Project: Airds/Bradbury Redevelopment Location: Airds	Jry Redeve	slopmer	ut		ч С й	Project Manager: Store Location:	Mana	ger.	SL				Contact	궠 다 당 :	Chatswood, N Tania Notaris	od, NS taris	Chatswood, NSW, 2067 Tania Notaris	37					
Sampling Details		ľ	Sample Type	Type					Test Required (\)	juired (Test	Perfor	Test Performed(X)		ŀ				
Location	Depth (n	(E)	Soil	Water	ł			ŀ	ł			}	ļ	}	ļ	ŀ			-		-		
					Hq	2⁰⁴\ CF- EC															<u> </u>		elqma2 qee
	From To	0														_							ЭХ
16 TP25			DG		-																		
17 TP25	0.20	0.30	DG				L.,																
/ <u>S</u> TP25			DG		/	1 1															-		
			DG		/	1 1															_		-
70 TP26	0.25	0.35	ВG		/	1 1																	
2/ TP26	06.0	1.10	Ъ		/	1																	
	0.00		DG		/	1 1																	Ţ
2,3 TP28	0.25	0.35	DG		/	1 1										_				_			Ţ
			DG		/	/ /					_						_			_			
⊅∫ TP29			DG		/	1 1									_	_	_						
		0.45	DG		1	1 1													_				T
		1.10	DG		/	1 1											_		_				T
28 TP31	0.00		ЪО		-												_						
			DG											-		_					┥		Τ
<u>ζ</u> 0 TP31	1.00	- 1 1 0	g		-	+			-		-								+				
Relinguished by		1		1				Ť	Received Bv			+		+									Τ
	Name			Signature	a		Date		Laboratory	کر ا		Na	Name			S	Signature	9		Date			
i i	Steven Goss	SSC		41.05	1		14/02	600	Ľ					5			Ņ		1		6121	6	
				0					2							-		D					
Legend								1															
IDB Disturbed Sample (Bulk, Plastic bag)	Plastic bag)						USO	Undistur	U50 Undisturbed sample, 50mm tube	s, 50mm ti	ube												
DS Disturbed Sample (Small, Plastic bag)	Plastic bag)						U75	Undistur	U75 Undisturbed sample, 75mm tube	e, 75mm ti	ube		-	Y keep Sample	ample								
DG Disturbed Sample (Glass Jar)	. Jar)						WG W	Water si	fater sample, Amber glass jar	ver glass ji	¥		-	N discard sample	sample								
STP Standard Penetration Test Sample	st Sample						Μ	Water sa	Water sample, Plastic bottle	tic bottle													٦
c://Lab/worksheet/w019-2																			For	m No. V	Form No. W019-2/Ver03/06/07	/er03/06	6/07

Page 2/4

Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tel: (02) 96798733 Fax: (02) 96798744

Job Number: JG09245A Client: Project: Airds/Bradbury Redevelopment Location: Airds Sampling Details Denth (m)	ment Sample Type Soil Wat	Type Water	s P S S	mple mplec oject N ore Lo	Sample Date: 10/02/2 Sampled By: AF Project Manager: SL Store Location: Te	Sample Date: 10/02/2009 - 13/02/2009 Sampled By: AF Project Manager: SL Store Location: Test Required (\)	3/02/2009 ired (\)	External Laboratory Details Laboratory name: EnviroLab Address: 12 Ashley Street Chatswood, NSW, Contact Tania Notaris Test Performe	External Laboratory Details: Laboratory name: EnviroLab Services Pty Ltd Address: 12 Ashley Street Chatswood, NSW, 2067 Contact Tania Notaris Test Performed(X)	
			EC bH	-70 / °OS						
				- - - -						
1.00 1.10							_			
┝	1		-	<u> </u>						
50 0.70	DG 0		/ /	/						
1.50 1.60			1 1	/						
0.00 0.10			1 1	/						
0.30 0.40	o DG		1 1	/						
			-	<u> </u>						
0.00 0.10			1 1	/						
			1 1	/						
1.10 1.30			1 1	/						
0.00 0.10			/ / /	~						
				~						
1.30 1.40	20		- -	-						
				4		Received Bv				
me		Signature	e		Date	Laboratory		Name	Signature	Date
Steven Goss		11150	8		14/02/2009		J	23	Lins	612191
Dis Disturbed Sample (Bulk, Plastic bag)					USO Undi	US0 Undisturbed sample, 50mm tube	0mm tube			
DS Disturbed Sample (Small, Plastic bag)					U75 Undi	U75 Undisturbed sample, 75mm tube	5mm tube	Y keep Sample		
					WG Wate	WG Water sample, Amber glass jar	glass jar	N discard sample		
CTD Standard Denatration Test Sample					WP Wate	Water sample, Plastic bottle	pottle			

Page 3/4

- GeoEnviro Consultancy Pty Ltd

Unit 5, 39-41 Fourth Avenue, Blacktown NSW 2148, Australia Tel: (02) 96798733 Fax: (02) 96798744

Lobo Command C	Laboratory Test Request/Chain of Custody Record	ist Req	luest	/Chair) of C	usto	dy F	Recc	pro												
Important Sample Type Test Required () Test Required () Important Sample Type Test Required () Test Required () Important Sample Type Test Required () Test Required () Important Sample Type Test Required () Test Required () Important From To G G Important 0.00 0.10 DG I I I Important 0.00 0.10 DG I </th <th>Job Details: Job Number: JG092. Client: Project: Airds/Bradbi</th> <th>45A ury Redev</th> <th>elopmei</th> <th>1 E</th> <th></th> <th>ິດທີ່ແມ່</th> <th>ampl ampl roject</th> <th>e Date ed By: t Mana</th> <th>at 10/0</th> <th>2/2009 SL</th> <th>- 13/02</th> <th>/2009</th> <th></th> <th>C A L ũ</th> <th>ternal Labo boratory nam dress: 12 As Chat</th> <th>ratory De ne: Envij shley Stre swood, N</th> <th>etails: roLab Servic set ISW, 2067</th> <th>es Pty Lt</th> <th>73</th> <th></th> <th></th>	Job Details: Job Number: JG092. Client: Project: Airds/Bradbi	45A ury Redev	elopmei	1 E		ິດທີ່ແມ່	ampl ampl roject	e Date ed By: t Mana	at 10/0	2/2009 SL	- 13/02	/2009		C A L ũ	ternal Labo boratory nam dress: 12 As Chat	ratory De ne: Envij shley Stre swood, N	etails: roLab Servic set ISW, 2067	es Pty Lt	73		
Circle Depth (m) Sol Water	Sampling Details		Γ	Sample	Tvpe	ĺ		-000		Test Re	auired	0		5	5	Test Perf	ormed(X)				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Location	1		Soil	Water						-										
1 1						<u>.</u>		-70 /700					· · ·		·				<u> </u>		,
TP50 0.30 0.40 D6 // <			10	DQ		-	-					-									
TP50 1.80 1.90 DG 1.1 1	47 TP50	0.30		DG		-		F													
TP56 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.10 <th< td=""><td></td><td>1.80</td><td>î</td><td>DG</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		1.80	î	DG		-															
TP56 0.65 0.75 DC 1 <th< td=""><td></td><td>0.00</td><td></td><td>DG</td><td></td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		0.00		DG		/															
TP56 2.00 2.20 DG 1 <th< td=""><td></td><td>0.65</td><td></td><td>DG</td><td></td><td>/</td><td></td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		0.65		DG		/		/													
TP66 0.00 0.10 DC 1 <th< td=""><td></td><td>2.00</td><td></td><td>DG</td><td></td><td>/</td><td>1</td><td>/</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		2.00		DG		/	1	/													
TP66 0.35 0.45 DG // // // // // // // /// //// //// ///// ///// ///// ///// ///// ///// ///// ///// ///// ///// /////// ////// ////// ////// ////// ////// ////// ////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// /////// //////// //////// //////// ///////// //////////// ////////////////////////////////////		0.00		DC		-	_													+	
TP66 1.40 1.60 DG 1 <th< td=""><td>۲۶, TP66</td><td>0.35</td><td></td><td>0</td><td></td><td>~</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></th<>	۲۶, TP66	0.35		0		~	_						-								1
Image: Normal Statute Image: Normal Statute Image: Normal Statute Image: Normal Statute Normal Statute Normal Statute Normal Statute Normal Statute Normal Statute Normal Statute Nore Statute Normal Statute <td< td=""><td></td><td>1.40</td><td></td><td>DG</td><td></td><td>~</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td></td<>		1.40		DG		~	_													+	
Image: Normal line Image:							+	+													
Initial Section Initial Section Initial Section Initial Section Mile Signature Signature Signature Nulco Steven Goss P.M.S Name Need Sample (Bulk, Plastic bag) Name Signature Leed Sample (Bulk, Plastic bag) Us Undistubed sample, Somm tube Urbed Sample (Class Jar) Name Y keep Sample Urbed Sample (Class Jar) We Water sample, Amber glass jar N discard sample Mare Sample Mare sample, Amber glass jar N discard sample							┼┼														
Initial Statute Initial Statute Initial Statute Initial Statute Atory Name Signature Signature Atory Name Signature Signature Nviro Steven Goss P.M.S Name Noted Sample (Bulk, Plastic bag) M.M.S Name Signature Urbed Sample (Bulk, Plastic bag) Uso Undistrubed sample, 56mm tube Y keep Sample Urbed Sample (Gass Jar) Weater sample, 75mm tube Y keep Sample M discard sample Urbed Sample (Gass Jar) Weater sample, Amber glass Jar N discard sample												-									
Julished by Received By atory Name Signature atory Name Signature atory Steven Goss Art/S nviro Steven Goss Art/S nved Sample (Sualt, Plastic bag) Mame Signature nved Sample (Smalt, Plastic bag) Urfor Undistrubed sample, Somm tube Y keep Sample nved Sample (Smalt, Plastic bag) Urfor Somm tube Y keep Sample nved Sample (Smalt, Plastic bag) Urfor Somm tube Y keep Sample nved Sample (Smalt, Plastic bag) N discard sample N discard sample							$\left \right $														
Junction of all of a	Dolinguishod hv		1				-			Paraiv											
Activity Trained Onlynature Contraction Contraction<	t aboratory	Nama			Cionatur	4			Τ	ahora				Name			Signature		Date		
Index Description	CanEnviro	Steven C	2000						a		1 1 8				0				<u>'</u>	~	6
urbed Sample (Bulk, Plastic beg) urbed Sample (Small, Plastic bag) urbed Sample (Small, Plastic bag) urbed Sample (Glass Jar) Ndard Penetration Test Sample MP Water sample, Plastic bortle			2000																×		
urbed Sample (Bulk, Plastic bag) urbed Sample (Small, Plastic bag) urbed Sample (Small, Plastic bag) WG Water sample, Amber glass jar N discard sample Ndard Penetration Test Sample	l ecend								1												
U75 Undisturbed sample, 75mm tube Y keep Sample WG Water sample, Amber glass jar N discard sample WP Water sample, Plastic bottle	DB Disturbed Sample (Bulk,	Plastic bag)						U50	Undistu	rbed sam	ole, 50mm	tube									
WG Water semple, Amber glass jar N discard sample WP Water sample, Plastic bottle	DS Disturbed Sample (Small	l, Plastic bag)						U75	Undistu	rbed sam	ole, 75mm	tube			Y keep Samp	ë					
WP Water sample, Plastic bottle	DG Disturbed Sample (Glass	з Jar)						ŴĠ	Water s	ample, An	ther glass	jar			N discard sar	nple					
	STP Standard Penetration Te	sst Sample						٩N	Water s	ample, Pla	stic bottle										

Keep Sample

sr03/06/07

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS 26864

JG09245A, Airds

9 Soils

25/02/09

25/02/09

Client:

Geoenviro Consultancy Pty Ltd PO Box 1543, Macquarie Centre North Ryde NSW 2113

Attention: Solern Liew

Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by:
 4/03/09

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 2/03/09

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst Operations Manager

Envirolab Reference: 26 Revision No: R

26864 R 00

Page 1 of 5

Miscellaneous Inorg - soil						
Our Reference:	UNITS	26864-1	26864-2	26864-3	26864-4	26864-5
Your Reference		TP23	TP23	TP23	TP53	TP53
Depth		0-0.1	0.1-0.2	0.8-1.0	0-0.1	0.2-0.3
Date Sampled		23/02/2009	23/02/2009	23/02/2009	23/02/2009	23/02/200
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	27/02/2009	27/02/2009	27/02/2009	27/02/2009	27/02/200
Date analysed	-	27/02/2009	27/02/2009	27/02/2009	27/02/2009	27/02/200
pH 1:5 soil:water	pH Units	6.3	5.1	5.0	7.6	6.6
Electrical Conductivity 1:5 soil:water	μS/cm	65	66	46	180	34
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	31	[NA]	[NA]
Chloride 1:5 soil:water	mg/kg	[NA]	[NA]	<100	[NA]	[NA]
		1				
Miscellaneous Inorg - soil						

Miscellaneous Inorg - soli					
Our Reference:	UNITS	26864-6	26864-7	26864-8	26864-9
Your Reference		TP53	TP63	TP63	TP63
Depth		0.5-0.65	0-0.1	1.3-1.4	2.6-2.7
Date Sampled		23/02/2009	23/02/2009	23/02/2009	23/02/2009
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	27/02/2009	27/02/2009	27/02/2009	27/02/2009
Date analysed	-	27/02/2009	27/02/2009	27/02/2009	27/02/2009
pH 1:5 soil:water	pH Units	5.1	6.6	4.5	5.3
Electrical Conductivity 1:5 soil:water	μS/cm	120	54	200	50
Sulphate, SO4 1:5 soil:water	mg/kg	<25	[NA]	180	33
Chloride 1:5 soil:water	mg/kg	<100	[NA]	<100	<100

Envirolab Reference: 26 Revision No: R

26864 R 00

Method ID	Methodology Summary
LAB.1	pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.
LAB.2	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA2510 20th ED and Rayment & Higginson.
LAB.9	Sulphate determined turbidimetrically.
LAB.11	Chloride determined by argentometric titration.

Envirolab Reference: 26 Revision No: R

26864 R 00

Page 3 of 5

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II %RPD		
Date prepared	-			27/02/2 009	26864-3	27/02/2009 27/02/2009	LCS-1	27/02/2009
Date analysed	-			27/02/2 009	26864-3	27/02/2009 27/02/2009	LCS-1	27/02/2009
pH 1:5 soil:water	pH Units		LAB.1	[NT]	26864-3	5.0 4.9 RPD: 2	LCS-1	100%
Electrical Conductivity 1:5 soil:water	µS/cm	1	LAB.2	<1.0	26864-3	46 54 RPD: 16	LCS-1	104%
Sulphate, SO4 1:5 soil:water	mg/kg	25	LAB.9	<25	26864-3	31 <25	LCS-1	94%
Chloride 1:5 soil:water	mg/kg	100	LAB.11	<100	26864-3	<100 <100	LCS-1	104%

Envirolab Reference: 26 Revision No: R

26864 R 00

Report Comments:

Asbestos was analysed by Approved Identifier: Not applicable for this job

INS: Insufficient sample for this test	NT: Not tested	PQL: PI	ractical Quantitation Limit	<: Less	than	>: Greater than
RPD: Relative Percent Difference	NA: Test not re	quired	LCS: Laboratory Control S	Sample	NR:	Not requested

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for SVOC and speciated phenols.

Envirolab Reference: 268 Revision No: R (

26864 R 00

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

SAMPLE RECEIPT ADVICE

Client:	
Geoenviro Consultancy Pty Ltd	ph: 9679 8733
PO Box 1543, Macquarie Centre	Fax: 9679 8744
North Ryde NSW 2113	
Attention: Solern Liew	
Sample log in details: Your reference:	
Envirolab Reference:	JG09245A, Airds 26864
Date received:	25/02/09
Date results expected to be reported:	4/03/09
Dale results expected to be reported.	4/03/03
Samples received in appropriate condition for analysis:	YES
No. of samples provided	9 Soils
Turnaround time requested:	Standard
Temperature on receipt	Cool
Cooling Method:	Ice

Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

Laboratory	<i>JENVIRO CO</i> Test Reques	GEOENVIRO CONSULTANCY Pty Ltd ory Test Request/Chain of Custody	CEOENVIRO CONSULTANCY Pty Ltd Laboratory Test Request/Chain of Custody Recor	P		JOD NO: 26 86 4 JOD NO: 26 86 4 Date received: 25 1 2 19 Time received: 10
Job Number: JG09245A Client: Project: Arclo/Bradbury Re development Location Arclo	09245A Stadburg Re o	development	Sample Date: 23/2/09 Sampled By: 50 Project Manager: 51 Store Location:	23/2/09 54 Jer.S L	5	tacered Dr. C. Temp: Coellambient Cooling: Jeallopack Security: intacUBroken/Ngne
Sampling Details Location	Depth (n)	Sample Type Soil Water	in Hg	red ()	Contract Lawa N Test Performed(X)	
	From To		C/MS Scan (TPH, PH, PH, PH فاعاد الدة (Cc Cr Cu Pb Zn N Metals Sb Be Co Mn Se S	Н41 А316 РАЧ ОСР ВСО РСО ВСО РСО ВСО РСО ВСО РСО ВСО РСО ВСО РСО ВСО РСО ВСО ВСО ВСО ВСО ВСО ВСО ВСО ВСО ВСО В	_17/*05 _73 _1td	əlqms2 q
1023 1025 4025	1.0 1.0					Kes
A 2504	$\frac{1}{1}$					
1 2501	5					
7963 8 7963 9	n j					
Dolinaniahod m						
Laboratory	Name	Sinnature		Зу		
Geotevuro	steren Gen	July -		Educially EVS	Name Signature	Date
Legend DB Disturbed Sample (Bulk, Plastic bag) DS Disturbed Sample (Small, Plastic bag) DG Disturbed Sample (Glass Jan) STP Standard Penetration Test Sample	Plastic bag) Plastic bag) (, Plastic bag) s Jan st Sample		05U 100 125 100 100 100 100 100 100 100 100 100 10	Undisturbed sample, 50mrm tube Undisturbed sample, 75mm tube Water sample, Amber glass jar Water samme Diseric Amto	Y keep Sampte N discard sampte	

Form No. W019-1/Ver02/06/99

Appendix D

Geotechnical Laboratory Test Certificates – Principle Site

California Bearing Ratio Test Report

ab Referer ate Sampl ate Tested ample Iden aboratory S	Airds / INFORMATIC ence No. pled	Bradbury Redevelo Bradbury DN Test Methods -	- 1289.1 SR5205	SDE207	Date: Report No. I	13-03-09 R01A
AMPLE IN ab Referen ate Sample ate Testec ample Iden aboratory S EST RES aboratory S EST RES aboratory S EST RES aboratory S EST RES aboratory S C Of Overs eplacement alifornia B Dry Du C Densi C Densi C Numb	INFORMATIC ence No. pled ed		SR5205	0DE207	Report No. I	R01A
ab Referer ate Sampl ate Tested ample Iden aboratory S	ence No. pled ed	DN Test Methods -	SR5205	SDE007		
ate Sampl ate Testec ample Iden aboratory 3 EST RES aboratory 0 Iaximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi 3 R Moistu T Numt	pled ed			SDE007		
ate Tested ample Iden ample Iden aboratory 3 EST RES aboratory 3 aboratory 4 aboratory 5 aboratory 6 aboratory 6 aboratory 6 aboratory 6 aboratory 6 aboratory 6 aboratory 7 aboratory 6 aboratory 7 aboratory 6 aboratory 7 aboratory 7 aboratory 6 aboratory 7 aboratory 7 <t< td=""><td>ed</td><td></td><td></td><td>SR5207</td><td>SR5209</td><td>SR5210</td></t<>	ed			SR5207	SR5209	SR5210
ample Ider aboratory 3 EST RES aboratory 0 laximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi 3 R Moistu T Numt			14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09
EST RES aboratory (aboratory (laximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi 3 R Moistu T Numt	lentification		20-02-09	20-02-09	20-02-09	20-02-09
EST RES aboratory (laximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi 3 R Moistu			TP 1 (0.9-1.0m)	TP 8 (0.55-0.70m)	TP 14 (0.7-0.9m)	TP 16 (0.3-0.5m)
aboratory (laximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi 3 R Moistu	y Specimen De	escription	(CH) Silty Clay: high Plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown
laximum D ptimum M ield Moistu o Of Overs eplacemen alifornia B Dry Do C Densi C Densi R Moistu	SULTS					
ptimum M ield Moistu o Of Overs eplacement alifornia B Dry Do C Densi B R Moistu T Numt	y Compaction 8	& Moisture Content	- Test Methods AS1289	5.1.1 Mould A and AS1289	9 2.1.1	<u>г</u>
C Densi C Donsi C Numb	Dry Density	t/m ³	1.66	1.63	1.53	1.60
C Densi Moistu C Numb	Moisture Conte	ent %	22.0	22.0	24.0	22.5
eplacemei alifornia B Dry Do C Densi 3 R Moistu T Numb	sture Content	%	17.0	18.5	18.5	15.0
eplacemei alifornia B Dry Do C Densi 3 R Moistu T Numb	rsize	19mm	Nil	Nil	Nil	Nil
alifornia B Dry Du C Densi B		e(See remarks B)	Nil	Nil	Nil	Nil
C Densi 3 R Moistu T Numb		- Test Method AS		110		
C Densi 3 R Moistu T Numb	Density t/m ³	Before Soaking	1.65	1.61	1.54	1.60
3 R Moistu T Numt		After Soaking	1.62	1.58	1.51	1.58
R Moistu	sity Ratio %	Before Soaking	99.5	99.0	101.0	100.0
T Numt	-	After Soaking	97.5	97.5	99.0	99.0
T Numt	sture Content	Before Soaking	21.0	22.0	25.0	22.0
-	%		23.5	25.0	29.0	25.0
-	mber of Days S	After Soaking	4	4	4	4
			9.0	9.0	9.0	9.0
Suici	charge sture Content	kg Top 30mm	26.0	29.5	31.0	27.0
	ter Test %	Whole Sample	23.0	29.5	28.5	27.0
	ell After Soakin		2.0	2.0	2.0	1.0
	netration	mm	2.5	2.5	2.5	2.5
CBR		%	3.5	4.0	4.0	8.0

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

California Bearing Ratio Test Report

Clie	nt / Address: JBS I	Environmental (Ma	scot)		Job No.	JG09245A
Proj	ect: Airds /	Bradbury Redevelo	opment		Date:	13-03-09
Loca	ation: Airds /	Bradbury			Report No.	R02A
SAN	IPLE INFORMATIO	ON Test Methods -	- 1289.1			
Lab	Reference No.		SR5211	SR5260	SR5213	SR5214
Date	Sampled		14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09
Date	Tested		20-02-09	26-02-09	20-02-09	16-02-09
Sam	ple Identification		TP 18 (0.45-0.65m)	TP 22 (0.4-0.6m)	TP 25 (1.2-1.35m)	TP 26 (0.25-0.35m)
Labo	pratory Specimen De	escription	(CH) Silty Clay: high plasticity, red brown	(CI) Silty Clay: medium plasticity, grey brown	(CH) Silty Clay: high plasticity, brown grey	(CH) Silty Clay: high plasticity, brown red
TES	T RESULTS					
Labo	oratory Compaction a	& Moisture Content	- Test Methods AS1289	5.1.1 Mould A and AS1289	9 2.1.1	-
Maxi	imum Dry Density	t/m ³	1.42	1.77	1.78	1.63
Optii	mum Moisture Conte	ent %	32.0	16.5	16.5	22.0
Field	Moisture Content	%	24.0	13.0	11.5	16.5
	f Oversize	19mm	Nil	Nil	Nil	Nil
	acement of Oversize		Nil	Nil	Nil	Nil
	ornia Bearing Ratio	· · ·		- Nii	INII	- Nii
	Dry Density t/m ³	Before Soaking	1.43	1.76	1.78	1.62
			1.42	1.75	1.75	1.62
с	Density Ratio %	After Soaking	100.5	99.0	100.0	100.0
	Density Natio 76	Before Soaking				
В		After Soaking	100.5	98.5	98.5	99.5
R	Moisture Content	Before Soaking	32.5	16.5	16.5	22.5
-	%	After Soaking	34.0	19.0	18.5	24.0
т	Number of Days S	oaked	4	4	4	4
Е	Surcharge	kg	9.0	9.0	6.75	9.0
s	Moisture Content	Top 30mm	37.0	22.0	20.5	25.0
т	After Test %	Whole Sample	34.0	19.0	18.5	24.0
	Swell After Soakin	g %	0.5	0.5	1.5	0.5
-	Penetration	mm	2.5	2.5	5.0	2.5
	CBR Value emarks: (A) Test specim	%	10.0 target dry density of 100 percent	9.0	6.0	11.0

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

California Bearing Ratio Test Report

Clie	nt / Address: JBS I	Environmental (Ma	scot)		Job No.	JG09245A
Proj	ect: Airds /	Bradbury Redevelo	opment		Date:	13-03-09
.002	ation: Airds /	Bradbury			Report No.	R03A
SAN	IPLE INFORMATIO	ON Test Methods -	- 1289.1			
	Reference No.		SR5214	SR5215	SR5216	SR5217
Date	Sampled		14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09
Date	Tested		16-02-09	19-02-09	20-02-09	16-02-09
Sam	ple Identification		TP 26 (0.25-0.35m)	TP 28 (0.55-0.75m)	TP 29 (0.35-0.55m)	TP 31 (0.2-0.35m)
_abc	pratory Specimen De	escription	(CH) Silty Clay: high plasticity, brown red	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, brown
ΓES	T RESULTS					
abo	oratory Compaction	& Moisture Content	- Test Methods AS1289	5.1.1 Mould A and AS128	9 2.1.1	1
Иахі	mum Dry Density	t/m ³	1.63	1.53	1.61	1.38
Dptii	num Moisture Conte	ent %	22.0	26.0	22.0	33.0
Field	Moisture Content	%	16.5	21.0	17.0	25.5
	f Oversize	19mm	Nil	Nil	Nil	Nil
	acement of Oversize		Nil	Nil	Nil	Nil
	ornia Bearing Ratio	· · ·				
	Dry Density t/m ³	Before Soaking	1.63	1.54	1.63	1.39
	2.y 20.0.c, 0	After Soaking	1.62	1.52	1.59	1.38
с	Density Ratio %	Before Soaking	100.0	101.0	101.0	101.0
в			99.5	99.5	99.0	100.5
R	Moisture Content	After Soaking	22.5	25.5	22.5	32.5
``	%	Before Soaking	24.0	28.0	25.0	34.5
₋⊦		After Soaking				
т _	Number of Days S		4	4	4	4
E	Surcharge	kg	9.0	9.0	9.0	9.0
s T	Moisture Content	Top 30mm	25.0	31.0	27.0	36.5
Т	After Test %	Whole Sample	24.0	28.0	25.0	34.5
╞	Swell After Soakin		0.5	1.50	2.0	0.5
╞	Penetration CBR Value		2.5	5.0 4.5	2.5 4.0	2.5
Re	marks: (A) Test specim	en was compacted to a	target dry density of 100 percent			10.0

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

California Bearing Ratio Test Report

Clie	nt / Address: JBS E	Environmental (Ma	Job No.	JG09245A		
Proj	ect: Airds /	Bradbury Redevelo	Date:	13-03-09		
Location: Airds / Bradbury					Report No. F	R04A
SAN	IPLE INFORMATIO	ON Test Methods -	- 1289.1			
ab	Reference No.		SR5218	SR5219	SR5221	SR5222
Date	e Sampled		14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09
Date	e Tested		14-02-09	19-02-09	19-02-09	20-02-09
Sample Identification			TP 34 (0.35-0.50m)	TP 37 (0.5-0.7m)	TP 40 (0.6-0.7m)	TP 43 (0.3-0.5m)
_abo	pratory Specimen De	escription	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, brown	(CI-CH) Silty Clay: medium to high plasticity, brown red with gravel	(CH) Silty Clay: high plasticity, red brown
ΓES	ST RESULTS					
abo	oratory Compaction 8	& Moisture Content	- Test Methods AS1289	5.1.1 Mould A and AS128	39 2.1.1	
Иах	imum Dry Density	t/m ³	1.46	1.35	1.77	1.44
Opti	mum Moisture Conte	ent %	29.0	34.0	17.5	30.0
Field Moisture Content %		21.5	27.0	12.0	21.5	
% Of Oversize 19mm		Nil	Nil	Nil	Nil	
	lacement of Oversize		Nil	Nil	Nil	Nil
	fornia Bearing Ratio	· · ·		INII	INII	INII
	Dry Density t/m ³	Before Soaking	1.45	1.37	1.78	1.45
	Dry Density tim		1.44	1.36	1.78	1.43
с	Density Ratio %	After Soaking	99.5	101.0	101.0	101.0
в		Before Soaking	98.5			
-	Malatura O. A. A	After Soaking		105.0	100.5	100.0
R	Moisture Content	Before Soaking	28.5	33.0	17.5	28.5
-	%	After Soaking	31.5	35.5	18.0	31.5
Т	Number of Days S	oaked	4	4	4	4
E	Surcharge	kg	9.0	9.0	6.75	9.0
s	Moisture Content	Top 30mm	34.0	38.0	19.0	33.0
т	After Test %	Whole Sample	31.5	35.5	18.5	31.5
╞	Swell After Soaking %		0.5	1.0	0	1.0
-	Penetration	mm	2.5	2.5	2.5	2.5
	CBR Value emarks: (A) Test specim	%	9.0 arget dry density of 100 percent	9.0 standard (AS 1289 5 1 1)	13.0	8.0

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

California Bearing Ratio Test Report

Clie	nt / Address: JBS E	Environmental (Ma		Job No.	JG09245A	
Proj	ect: Airds /	Bradbury Redevel	Date:	13-03-09		
Location: Airds / Bradbury					Report No.	R05A
SAN	IPLE INFORMATIO	ON Test Methods	- 1289.1			
	Reference No.		SR5224	SR5263	SR5225	SR5227
Date	e Sampled		14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09
Date	Tested		20-02-09	26-02-09	19-02-09	16-02-09
Sample Identification			TP 50 (0.3-0.5m)	TP 53 (0.55-0.75m)	TP 56 (0.65-0.8m)	TP 61 (0.4-0.55m)
_abo	pratory Specimen De	escription	(CH) Silty Clay: high plasticity, red brown with gravel	(CH) Silty Clay: high plasticity, brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown
TES	T RESULTS					
abo	oratory Compaction &	& Moisture Content	- Test Methods AS1289 5	5.1.1 Mould A and AS128	9 2.1.1	
Max	imum Dry Density	t/m ³	1.55	1.72	1.54	1.39
Opti	mum Moisture Conte	ent %	25.5	18.5	26.5	33.0
Field	d Moisture Content	%	16.5	19.5	20.5	24.0
% Of Oversize 19mm		Nil	Nil	Nil	Nil	
	lacement of Oversize		Nil	Nil	Nil	Nil
	fornia Bearing Ratio					
	Dry Density t/m ³	Before Soaking	1.56	1.72	1.55	1.38
	Dry Density Uni	~	1.58	1.72	1.55	1.37
с	Density Ratio %	After Soaking	100.0	100.5	100.5	99.5
в		Before Soaking	100.0	100.0	100.0	99.0
-	Mojoturo Content	After Soaking				
R	Moisture Content	Before Soaking	24.0	19.0	27.0	33.0
ŀ	%	After Soaking	26.0	20.0	28.0	35.5
Т	Number of Days S	oaked	4	4	4	4
E	Surcharge	kg	9.0	9.0	9.0	9.0
s	Moisture Content	Top 30mm	28.0	22.0	30.0	37.5
Т	After Test %	Whole Sample	25.5	20.0	28.0	35.0
╞	Swell After Soaking % Penetration mm		0.5	0.5	0	0.5
-			2.5	2.5	2.5	2.5
P	CBR Value emarks: (A) Test specim	%	7.0 target dry density of 100 percent s	8.0 standard (AS 1289 5 1 1)	8.0	10.0

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

California Bearing Ratio Test Report

Clie	ent / Address: JBS	Environmental (Ma	Job No.	JG09245A			
Pro	ject: Airds /	Bradbury Redevel	opment		Date:	13-03-09	
Loc	ation: Airds /	Bradbury	Report No.	R06A			
SAI	MPLE INFORMATIO	ON Test Methods	- 1289.1				
Lab	Reference No.		SR5264	SR5229			
Dat	e Sampled		14 to 23-02-09	14 to 23-02-09			
Dat	e Tested		26-02-09	16-02-09			
San	nple Identification		TP 64 (0.3-0.6m)	TP 66 (0.35-0.45m)			
Lab	oratory Specimen D	escription	(CH) Silty Clay: high plasticity, red brown	(CI-CH) Gravelly Silty Clay: medium to high plasticity, brown red			
TES	ST RESULTS						
Lab	oratory Compaction	& Moisture Content	- Test Methods AS1289	5.1.1 Mould A and AS128	9 2.1.1	-	
Max	kimum Dry Density	t/m ³	1.51	1.65			
Opt	imum Moisture Cont	ent %	27.0	22.0			
Fiel	d Moisture Content	%	24.0	14.5			
	of Oversize	19mm	Nil	Nil			
	lacement of Oversiz		Nil	Nil			
	fornia Bearing Ratio						
	Dry Density t/m ³	Before Soaking	1.52	1.63			
		After Soaking	1.51	1.63			
с	Density Ratio %	Before Soaking	101.0	99.0			
в		After Soaking	100.0	99.0			
R	Moisture Content	Before Soaking	27.5	22.5			
	%	After Soaking	29.0	23.5			
т	Alter Soaking		4	4			
E			9.0	9.0			
s	Surcharge Moisture Content	kg Top 30mm	32.0	27.0			
т	After Test %	Whole Sample	29.0	23.5			
	Swell After Soakir		1.0	0			
	Penetration	mm	2.5	2.5			
	CBR Value	%	6.0	8.0			
R	Remarks: (A) Test specimen was compacted to a target dry density of 100 percent standard (AS 1289 5.1.1) (B) If specified the percentage of oversize retained on the 19mm may be replaced by an equal portion of -19mm to +4.75mm						

C:\\Lab\report\R003

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

Approved Signatory:

Pricinpal

Solern Liew

Date: 13/03/09

Client/Address: JBS Environmental (Mascot) Job No: JG09245A						
Project: Airds / Brad	bury Redevelopment	Date:	13/03/2009			
Location: Airds / Brad	bury	Report No:	R07A			
Test Procedure: AS 1289			•			
Sample Identification	TP 1 (0.5-0.8m)	TP 6 (0.8-1.1m)	TP 8 (0.55-0.85m)	TP 11 (0.7-1.0m)		
Sample Register No	SR5205	SR5206	SR5207	SR5208		
Sample Date	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09		
Test Date	16-02-09	12-02-09	12-02-09	17-02-09		
		Test Results				
Moisture Content						
Initial %	16.5	19.5	14.5	13.5		
Final %	22.0	27.5	19.0	20.5		
Estimated UCS						
Before Test kPa	>600	>600	>600	>600		
After Test kPa	310	580	510	>600		
Swell %	2.06	3.58	5.39	6.24		
Shrinkage %	1.28	1.91	2.24	1.18		
Shrink/Swell Index %/pF	1.3	2.1	2.7	2.4		
Material Description	(CH) Silty Clay: high plasticity, red brown	(CI-CH) Silty Clay: medium to high plasticity, red brown grey	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown		

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Principal

Solern Liew 13/03/09

Client/Address: JBS Environmental (Mascot) Job No: JG09245A						
Project: Airds / Brad	bury Redevelopment	Date:	13/03/2009			
Location: Airds / Brad	burv	Report No:	R08A			
Test Procedure: AS 1289						
Sample Identification	TP 14 (0.7-0.9m)	TP 16 (0.3-0.6m)	TP 18 (0.45-0.75m)	TP 23 (0.1-0.3m)		
Sample Register No	SR5209	SR5210	SR5211	SR5261		
Sample Date	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09		
Test Date	12-02-09	12-02-09	12-02-09	24-02-09		
	-	Test Results				
Moisture Content						
Initial %	16.5	13.5	26.0	19.5		
Final %	23.0	21.0	33.0	30.5		
Estimated UCS						
Before Test kPa	>600	>600	>600	>600		
After Test kPa	>600	>600	590	310		
Swell %	5.53	3.90	6.20	1.76		
Shrinkage %	2.03	0.75	2.25	3.11		
Shrink/Swell Index %/pF	2.7	1.5	3.0	2.2		
Material Description	(CH) Silty Clay: high plasticity, red brown					

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Principal

Solern Liew 13/03/09

Client/Address: JBS Environmental (Mascot) Job No: JG09245A						
Project: Airds / Brad	bury Redevelopment	Date:	13/03/2009			
Location: Airds / Brad	bury	Report No:	R09A			
Test Procedure: AS 1289			•			
Sample Identification	TP 28 (0.55-0.85m)	TP 29 (0.35-0.65m)	TP 31 (0.2-0.5m)	TP 34 (0.35-0.55m)		
Sample Register No	SR5215	SR5216	SR5217	SR5218		
Sample Date	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09		
Test Date	12-02-09	13-02-09	13-02-09	13-02-09		
		Test Results				
Moisture Content						
Initial %	21.0	16.5	24.0	21.5		
Final %	26.0	24.0	33.5	29.0		
Estimated UCS						
Before Test kPa	>600	>600	>600	>600		
After Test kPa	550	410	390	340		
Swell %	3.47	4.42	1.66	2.85		
Shrinkage %	3.21	1.89	1.38	1.64		
Shrink/Swell Index %/pF	2.7	2.3	1.2	1.7		
Material Description	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, brown	(CH) Silty Clay: high plasticity, red brown		

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Solern Liev

Principal

Solern Liew 13/03/09

Client/Address: JBS Environmental (Mascot) Job No: JG09245A						
Project: Airds / Brad	bury Redevelopment	Date:	13/03/2009			
Location: Airds / Brad	burv	Report No:	R10A			
Test Procedure: AS 1289				-		
Sample Identification	TP 37 (0.5-0.8m)	TP 38 (0.35-0.55m)	TP 45 (0.3-0.6m)	TP 52 (0.6-0.85m)		
Sample Register No	SR5219	SR5220	SR5223	SR5262		
Sample Date	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09		
Test Date	17-02-09	17-02-09	16-02-09	24-02-09		
		Test Results				
Moisture Content						
Initial %	18.0	10.5	16.5	25.0		
Final %	25.0	19.0	26.5	32.5		
Estimated UCS						
Before Test kPa	>600	>600	>600	290		
After Test kPa	320	450	250	-		
Swell %	1.85	0.70	1.15	0.65		
Shrinkage %	2.21	0.74	0.89	1.95		
Shrink/Swell Index %/pF	1.7	0.6	0.8	1.3		
Material Description	(CH) Silty Clay: high plasticity, brown	(CL) Sandy Clay: low plasticity, brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown		

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Solern L

Principal

Solern Liew 13/03/09

Client/Address: JBS Environmental (Mascot) Job No: JG09245A						
Project: Airds / Brad	bury Redevelopment	Date:	13/03/2009			
Location: Airds / Brad	burv	Report No:	R11A			
Test Procedure: AS 1289						
Sample Identification	TP 55 (1.1-1.4m)	TP 56 (0.65-0.9m)	TP 60 (0.25-0.55m)	TP 61 (0.4-0.7m)		
Sample Register No	-	SR5225	SR5226	SR5227		
Sample Date	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09	14 to 23-02-09		
Test Date	13-02-09	17-02-09	17-02-09	13-02-09		
		Test Results				
Moisture Content						
Initial %	13.5	20.0	23.5	22.5		
Final %	22.0	24.5	31.5	35.5		
Estimated UCS						
Before Test kPa	>600	>600	>600	>600		
After Test kPa	440	240	300	390		
Swell %	1.39	2.80	1.39	0.49		
Shrinkage %	1.89	0.62	1.30	1.40		
Shrink/Swell Index %/pF	1.4	1.1	1.1	0.9		
Material Description	(CH) Silty Clay: high plasticity, red brown					

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Principal

Solern Liew 13/03/09

Client/Address: JBS Envi	ironmental (Mascot)	Job No: JG09245A	
Project: Airds / Bradt	bury Redevelopment	Date: 13/03/2009	
Location: Airds / Brad	bury	Report No: R12A	
Test Procedure: AS 1289			
		1	
Sample Identification	TP 65 (0.25-0.55m)	Tp 66 (0.35-0.65m)	
Sample Register No	SR5228	SR5229	
Sample Date	14 to 23-02-09	14 to 23-02-09	
Test Date	13-02-09	18-02-09	
		Test Results	
Moisture Content			
Initial %	16.5	14.5	
Final %	26.0	17.0	
Estimated UCS			
Before Test kPa	>600	>600	
After Test kPa	400	>600	
Swell % Shrinkage %	1.24 0.8/2	1.00 0.56	
Shrink/Swell Index %/pF	0.8	0.6	
Material Description	(CH) Silty Clay: high plasticity, brown	(CI-CH) Gravelly Silty Clay: medium to high plasticity, brown red	

c:/lab/reports/R013

ACCREDITED FOR TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Solern Liew 13/03/09

Principal

Client / Address: JBS Er	nvironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbu	ry		Report No:	R13A
Test Procedure: AS 1289	9 2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 1 (0.5-0.7m)	TP 6 (0.8-1.0m)	TP 8 (0.55-0.75m)	TP 11 (0.7-0.85m)
Sample Register No	SR5205	SR5206	SR5207	SR5208
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	18-02-09	18-02-09	18-02-09	18-02-09
		Test Results	•	
Liquid Limit (%)	70	73	61	59
Plasitc Limit (%)	22	21	25	26
Plasticity Index (%)	48	52	36	33
Linear Shrinkage (%)	16.5	13.0	11.5	13.5
Natural Moisture Content %	-	-	-	-
Material Description	(CH) Silty Clay: high plasticity, red brown	(CI-CH) Silty Clay: meidum to high plasticity, red brown grey	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown

c:/lab/reports/R004

ACCREDITED FOR TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

R

Solern Liew Date 13 / 03 / 09

Form No. R004/Ver 07/06/07

Client / Address: JBS Er	vironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbu	ry		Report No:	R14A
Test Procedure: AS 1289	9 2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 14 (0.7-0.9m)	TP 16 (0.3-0.6m)	TP 18 (0.45-0.7m)	TP 20 (0.25-0.55m)
Sample Register No	SR5209	SR5210	SR5211	SR5212
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	25-02-09	24-02-09	18-02-09	26-02-09
		Test Results		
Liquid Limit (%)	59	54	25	60
Plasitc Limit (%)	24	23	34	24
Plasticity Index (%)	35	31	41	36
Linear Shrinkage (%)	13.5	13.5	18.0	12.0
Natural Moisture Content %	-	-	-	-
Material Description	(CH) Silty Clay: high plasticity, red brown			

c:/lab/reports/R004

Form No. R004/Ver 07/06/07

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew Date 13 / 03 / 09

Approved Signatory

Client / Address: JBS Er	vironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbu	ry		Report No:	R15A
Test Procedure: AS 1289	9 2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 25 (1.2-1.35m)	TP 26 (0.25-0.45m)	TP 28 (0.55-0.7m)	TP 29 (0.35-0.55m)
Sample Register No	SR5213	SR5214	SR5215	SR5216
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	24-02-09	25-02-09	26-02-09	18-02-09
	•	Test Results		
Liquid Limit (%)	47	56	65	67
Plasitc Limit (%)	18	25	26	28
Plasticity Index (%)	29	31	39	38
Linear Shrinkage (%)	10.5	13.5	15.5	12.5
Natural Moisture Content %	-	-	-	-
Material Description	(CH) Silty Clay: high plasticity, brown grey with some gravel	(CH) Silty Clay: high plasticity, brown red	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown

c:/lab/reports/R004

Form No. R004/Ver 07/06/07

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew Date 13 / 03 / 09

Approved Signatory

Client / Address: JBS Er	vironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbu	ry		Report No:	R16A
Test Procedure: AS 1289	2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 31 (0.2-0.45m)	TP 32 (0.5-0.7m)	TP 34 (0.35-0.5m)	TP 38 (0.35-0.55m)
Sample Register No	SR5217	SR5219	SR5218	SR5220
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	24-02-09	27-02-09	24-02-09	26-02-09
		Test Results		
Liquid Limit (%)	70	79	68	50
Plasitc Limit (%)	33	27	28	22
Plasticity Index (%)	38	52	40	28
Linear Shrinkage (%)	17.5	16.5	17.5	7.8
Natural Moisture Content %	-	-	-	-
Material Description	(CH) Silty Clay: high plasticity, brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CL) Sandy Clay: low plasticity, brown

c:/lab/reports/R004

Form No. R004/Ver 07/06/07

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Solern Liew Date 13 / 03 / 09

Client / Address: JBS Er	nvironmental (Mascot)		Job No: JG	609245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	8-09
Location: Airds / Bradbu	ry		Report No:	R17A
Test Procedure: AS 1289	9 2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 40 (0.6-0.85m)	TP 43 (0.3-0.5m)	TP 45 (0.3-0.5m)	TP 50 (0.3-0.6m)
Sample Register No	SR5221	SR5222	SR5223	SR5224
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	25-02-09	18-02-09	18-02-09	26-02-09
		Test Results		
Liquid Limit (%)	47	77	68	53
Plasitc Limit (%)	22	34	26	28
Plasticity Index (%)	25	44	41	26
Linear Shrinkage (%)	11.5	14.5	16.0	13.0
Natural Moisture Content %	-	-	-	-
Material Description	(CI-CH) Silty Clay: high plasticity, brown red with some gravel	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown with a trace of gravel

c:/lab/reports/R004

ACCREDITED FOR TECHNICAL COMPETENCE This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

Approved Signatory

NATA Accredited Laboratory Number: 14208.

Solern Liew Date 13 / 03 / 09

Form No. R004/Ver 07/06/07

Client / Address: JBS En	vironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbur	ry		Report No:	R18A
Test Procedure: AS 1289	2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 56 (0.65-0.85m)	TP 60 (0.25-0.5m)	TP 61 (0.4-0.6m)	TP 65 (0.25-0.5m)
Sample Register No	SR5225	SR5226	SR5227	SR5228
Sample Date	14 to 23-02-09	14 to 03-02-09	14 to 23-02-09	14 to 23-02-09
Test Date	18-02-09	24-02-09	24-02-09	26-02-09
		Test Results		
Liquid Limit (%)	63	68	64	52
Plasitc Limit (%)	28	28	26	23
Plasticity Index (%)	35	40	38	29
Linear Shrinkage (%)	13.5	15.0	13.5	13.0
Natural Moisture Content %	-	-	-	-
Material Description	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, red brown	(CH) Silty Clay: high plasticity, brown

c:/lab/reports/R004

Form No. R004/Ver 07/06/07

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew Date 13 / 03 / 09

Approved Signatory

Client / Address: JBS Er	nvironmental (Mascot)		Job No: JG	09245A
Project: Airds / Bradbury	Redevelopment		Date: 13-03	-09
Location: Airds / Bradbu	ry		Report No:	R19A
Test Procedure: AS 1289	9 2.1.1, 3.1.1, 3.1.2, 3.2.1,	3.3.1, 3.4.1		
Sample Identification	TP 66 (0.35-0.6m)			
Sample Register No	SR5229			
Sample Date	14 to 23-02-09			
Test Date	18-02-09			
		Test Results		
Liquid Limit (%)	52			
Plasitc Limit (%)	22			
Plasticity Index (%)	30			
Linear Shrinkage (%)	14.5			
Natural Moisture Content %	-			
Material Description	(CI-CH) Gravelly Silty Clay: medium to high plasticity brown red			

c:/lab/reports/R004

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Principal

Solern Liew Date 13 / 03 / 09

Form No. R004/Ver 07/06/07

Particle Size Distribution & Atterberg Limits Test Report

	JBS Envir	onmental (M	ascot)			Job No.	JG09245A	
Project:	Airds / Bra	adbury Rede	velopment			Date:	13-03-09	
ocation:	Airds / Bra	100 C 100				Report No.	R20A	
Lab Reference No	a company and and and and		nle Identificati	on: TP 8 (1.0-1.1r	m)	and the second se	Date: 14-02-09	/14-02-09
Laboratory Specin		the second se	and the second se				Date. 11 02 00	
Particle Size Distr						Content AS 1289	211, 311, 321,	3.3.1, 3.4.1
Sieve Size	% Pas	sing	Specification		Test	Method	Result	Spec.
Contraction of	701 45	Sing	opecification		C			opec.
150 mm				Liquid Limit		6 As 1289 3.1.		
75 mm			-	Plastic Limit		6 AS1289 3.2.	100 C	1
63mm	1		-	Plasticity Index		6 AS1289 3.3		
53mm	(°			Linear Shrinka		6 AS1289 3.4		
37.5 mm				Moisture Conte		6 AS1289 2.1.	1	
26.5 mm				Sample Histor				
19.0 mm	-			Preparation Me	ethod.			
16.0 mm	-			Crumbling / Cu	urling of linear sh	rinkage.		
13.2 mm	14		-	Linear shrinka	ge mould length.		250mm	
9.5 mm			-	ND :	= not determined	NO = not obta	inable NP = n	on plastic
6.7 mm	100	D D	-	Moisture / Dry I	Density Relation:	ship:		AS 1289 5.2.
4.75 mm	100	D I		Maximum Dry	Density.			t/m3
2.36 mm	100	D I		Optimum Mois	ture Content.			%
1.18 mm	100	0	-					
600 um	100	o l		Notes:				
425 um	100	0	1					
300 um	99	-	-					
150 um	97							
75 um	88			cron leron leron	LC LC	5 5 5 5 5 5		1
				-75micron -15micron -300micron -425micron	-00micron	-4.75mm -4.75mm -6.70mm -9.50mm -13.2mm -19.0mm		20 20 20 20 20 20 20 20 20
thon alse shown	A 100 90 80 70 60 50 40 30 20			-75micron -150micron -300micron	-00micron	-4.75mm -4.75mm -4.70mm -9.50mm -13.2mm -19.0mm		100 20 20 50 50 50 50 50 50 50
thon alse shown	100 A 90 B0 70 A 50 A 30 A			-15micron -15umicron -30micron	-000micron	-4.75mm -6.70mm -0.50mm -13.2mm		100 20 30 50 50 50
thon alse shown	100 A 90 B0 80 A 70 B 60 B 70 B 70 B 60 B 70 B							20 20 20 50 50 20 20
thon alse shown	A 100 90 60 70 60 50 40 30 20 10			-150mlcron -150mlcron -150mlcron -125mlcron -125mlcron		-4.75mm -4.75mm -6.70mm -0.50mm -13.2mm		20 20 20 50 50 20 20
thon alse shown	100 A 90 B0 80 A 70 B 60 B 70 B 70 B 60 B 70 B			0!1				200 20 20 50 50 20 20

c:\LabVeport\R002

NA'

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number 14208.

Solern Liew 13/03/09

Form No. R002/Ver03/11/04

ACCRI TECHNICAL Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

Client/Address;	JBS Envi	ronmen	tal (Mas	cot)					Job No.	JG	09245A	
Project:	Airds / Br	adbury	Redeve	lopment					Date:	13-	03-09	
Location:	Airds / Br								Report No.	R2		
Lab Reference No		adouty		e Identificatio	DO: TP 1	4 (0.7-0.9r	nì		Sample / Tes			/14-02-09
aboratory Specin		tion: (CH						gravel	out pier rec	n Doto:	11 02 00	
Particle Size Distri		_							ntent AS 128	9 2.1.1, 3.	1.1, 3.2.1,	3.3.1, 3.4.1.
Sieve Size	% Pa	ssing	So	ecification		T	est		Method		Result	Spec.
		Jung						-				opeo.
150 mm					Liquid			%	As 1289 3.			
75 mm					and the second second	c Limit		%	AS1289 3.2			
63mm	1			-	1	city Index		%	AS1289 3.3			
53mm	1 2	•		-	1	Shrinkag		%	AS1289 3.4			
37.5 mm	1 2	-			-	ure Conter		%	AS1289 2.1	1.1		
26.5 mm	1	1			1	le History:						
19.0 mm	10	00				ration Met						
16.0 mm		9				oling / Cur			kage.			
13.2 mm		9			Linear	shrinkage				1	mm	
9.5 mm	9	9			-		not deter		NO = not obt	ainable	NP = n	non plastic
6.7 mm	9	9			Moistu	re / Dry D	ensity Re	lationshi	p:			AS 1289 5.2
4.75 mm	9	9			Maxin	um Dry D	ensity.					t/m3
2.36 mm	9	8		-	Optim	um Moistu	re Conte	nt.				%
1.18 mm		6		2								
600 um	9	6		41	Notes		1.000	_				
425 um		5			1							
300 um	1.00	5		-								
150 um		4		-								
75 um		4		4								
percentage finer than size shown	100 90 80 70 60 50 40 30 20						1,18mm	-2.36mm	4.50mm 4.50mm 1.50mm 1.50mm 1.1.20mm	-26.5mm -37.5mm -37.5mm		100 90 80 70 60 50 40 30 20
							-				-	
	10							1				
	0.001		0.01	r rite	0 1		1:0		1'0		100	U
	0					izə - millimi					100	0
	0					izə - millime sand			1'a gravel		100 cobbles	

c.WLabVeport\R002

NAT

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208

Principal

Solern Liew 13/03/09

Form No R002/Ver03/11/04

CORDITED TECHNICAL Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

Client/Address:	JBS En	vironme	ental (Ma	iscot)						Job No.	JGC	9245A	
Project.	Airds / E	Bradbur	y Redev	elopment						Date:	13-0	03-09	
Location:	Airds / E	1.00								Report No.	R22		
ab Reference No				ole Identific	ation	TP 18 (0.95-1	15m)		Sample / Tes			0/14-02-09
aboratory Specin			and the second sec	the second second	and the second second				sandston		obie.	14.02.00	5/14-02-05
Particle Size Distri	-									ntent AS 1289	2.1 1, 3.1	1.1.3.2.1	3.3.1, 3.4.1.
Sieve Size	04.0	assing	6	pecification		-	-	Test		Method		Result	Spec.
Sieve Size	20.1	assing		pecification	_	_	-	rest		10.200		Result	Opec.
150 mm		2	1	÷		Liquid L			%	As 1289 3.1			
75 mm		(T)		*		Plastic L			%	AS1289 3.2			
63mm		-				Plasticit			%	AS1289 3.3	0.11		
53mm		100		1		Linear S			%	AS1289 3.4			
37.5 mm		97				Moisture			%	AS1289 2.1	1		
26.5 mm		96		-		Sample							
19.0 mm	1	96				Prepara				Adda.			
16.0 mm		95							near shrin	kage.			
13.2 mm		95		*		Linear s		ge mould			250		
9.5 mm		95		2	L		-	not dete		NO = not obta	anable	NP = r	non plastic
6.7 mm		94		4					elationshi	p:			AS 1289 5.2
4.75 mm		93						Density.					t/m3
2,36 mm		92		1	1	Optimur	n Moisi	ture Cont	ent				%
1.18 mm		91			Ļ		-	_					
600 um		91				Notes:							
425 um		90		1									
300 um	1	88		7									
150 um 75 um		59 46											
15 un		10											
					5	5	5 5	5		and the second			
		AS slev	e sizes		75mlcron	ntcre	nicre	mm	E			Ē	E
			0.9500		75m	1 50 micron	300mlcron 425mlcron	-600micron -1.18mm	-2.36mm	-6.70mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm	-75.0mm	
	100				1	1	TI		<u> </u>			1	100
											-		1.00
	90						1					-	90
							AT		-			-	
e	80					1						-	80
thon size shown	70					- 17						-	70
						17		-	-			-	
1	60					1			_				60
tho						1						-	
Jeu	50				1				-			-	50
1 92	40					_							40
ooto									-				
percentage liner	30												30
đ						-						-	
	20					-						-	20
	10				E	-			-				10
												-	
	0-				1 1	1	-	1.0	- 12			100	0
	0.001		0.01			article siz	e - millir			10		100	
			slif				sand			gravel		1.4	1
	clay	tine	silf	n coarse],	ne In	sand	coarse	fine	gravel	COQISE	cobbles	

c WLabveport/R002

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

NATA ACCRED TECHNICAL

Approved Signatory

Principal

Solern Liew 13/03/09

Form No. R002/Ver03/11/04

Particle Size Distribution & Atterberg Limits Test Report

Client/Address:	JBS Environ	mental (Mascot)		Job No.	JG09245A
Project:	Airds / Bradt	oury Redevelopme	ent	Date:	13-03-09
ocation:	Airds / Bradt	bury		Report No.	R23A
ab Reference No			ification: TP 25 (1.2-1.3m)		te: 14-02-09/14-02-09
aboratory Specin	nen Description		ow plasticity, brown with some gravel		
Particle Size Distr	ibution AS1289	1.1, 1.2.1-Clause 6.5, 3	6.1 Atterberg Limits and Moisture	e Content AS 1289 2.1	1, 3 1 1, 3 2 1, 3 3 1, 3 4 1
Sieve Size	% Passir	ng Specifica	tion Test	Method	Result Spec.
150 mm	24	-	Liquid Limit	% As 1289 3.1.2	
75 mm			Plastic Limit	% AS1289 3.2.1	
63mm	100		Plasticity Index	% AS1289 3.3.1	
53mm	94		Linear Shrinkage	% AS1289 3.4.1	
37.5 mm	94	-	Moisture Content	% AS1289 2.1.1	
26.5 mm	92		Sample History:		
19.0 mm	91		Preparation Method.		
16.0 mm	91		Crumbling / Curling of linear	shrinkage	
13.2 mm	91		Linear shrinkage mould lengt		250mm
9.5 mm	91	-		ed NO = not obtaina	
6.7 mm	90	-	Moisture / Dry Density Relation	onship:	AS 1289 5.
4.75 mm	89		Maximum Dry Density.		t/m3
2.36 mm	89		Optimum Moisture Content.		%
1.18 mm	88	-			
600 um	87	-	Notes:		
425 um	85	-			
300 um	81	-			
150 um	61	-			
75 um	51				
nwona sia no	100 90 80 70 60		- 75micron - 75micron - 150micron - 425micron - 425micron - 425micron - 5,36mm	-4.75mm -4.75mm -4.70mm -9.50mm -19.50mm -19.0mm	
percentoge liner tho	50 40 30				50 40 30
	50 40 30 20				40
	20				40 30 20
					40
	20				40 30 20 10 10 0
	20		ola ria particle size - millimetres	10	40 30 20 10
	20			gravel	
	20	0.D1	particle size - millimetres	gravel	40 30 20 10 10 0

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number, 14208

Principal

Solern Liew 13/03/09

TECHNICAL

NATA

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

Project: Location: Lab Reference No Laboratory Specim Particle Size Distri	Airds / E Airds / E		y Rede	velo	nment								1.3				40			
Location: Lab Reference No Laboratory Specim	Airds / E												- 6)ate:			13	-03-09	3	
ab Reference No aboratory Specim		Rradhur	w.												rt No			4A		
aboratory Specim	SR5214	Jiaubui		nnle l	dentific	ation	TP 2	6 (0 9	-1.1	m)	-	-	_		-	-		The second second	00/1	4-02-09
		intion (C									ome	grave		amp	ic / I	COLD	ale.	14-02	-03/1	4-02-03
								_					_	ent	AS 12	89 2	1.1, 3	1.1, 3.	2.1, 3	3.1. 3.4.1.
Cierce Ciero	0/ D	assing		Cooo	ification					est	-				Aetho		1	Res		Spec
Sieve Size	76 F	assing		Spec	incation					est				IV	nethu	u		Res	uit	opec
150 mm		•			-		Liquid								289 3					
75 mm		÷			-		Plasti						6		289 3					
63mm		-			÷ .		Plasti						10		289 3					
53mm		100			-		Linea						6		289 3					
37.5 mm		87			-		Moist				_	-	6	AS1	289 2	2.1.1			_	_
26.5 mm		84	111		-		Samp													
19.0 mm		84			-		Prepa													
16.0 mm	1	83					Crum	bling	/ Cur	ling (of line	ear sh	rinka	age.						
13.2 mm	1.1.1	82			-		Linea	r shri	nkag	e mo	uld le	ength.					250	Dmm		
9.5 mm	1.1.1	81			-		·	1	ND =	not o	letern	nined	١	= 01	not o	btain	able	NP	= no	n plastic
6.7 mm	1 3	80			21		Moistu	ire / [Dry D	ensit	y Rel	ation	ship	-						AS 1289 5
4.75 mm	3	79			3		Maxin	num l	Dry D	Densi	ty.									1/m3
2.36 mm	1 3	78			-		Optim	um N	Aoist	ure C	onter	nt.								%
1.18 mm		77										1								C
600 um		76			-		Notes	0		-					-				-	
425 um	1.13	75			-															
300 um		73			-															
150 um		69			-															
75 um		63																		
percentoge finer than size shown	100 90 80 70 60 50 40 30 20					- 75mlcton		-300micion	-425micron				-4.75mm	mm07, 4	mmC, Cl	26.5mm	-37.5mm	-76.0mm	E 09:1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
	10			-				-	1										10	0
	0		man	-1	11		1	-	-		1	1	1	11	1	-	1	I-I ,		
	0.001		o.b	1			0!1 particle	size - I	millim	1! netres				1	b			10	0	
			sli	1		1		10	nd					Q	avel			cobb	Inc	
	clay	fine	medi	um	coarse		fine	med	lum	cod	0130	n	ne	me	dium	00	oarse			

c:ILabVeportVR002

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208

Principal

Solern Liew 13/03/09

Form No. R002/Ver03/11/04

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

Client/Address:	JBS En	vironm	ental (Ma	ascot)					Job No.	JG09245A	A
Project:	Airds / E	Bradbu	ry Redev	elopment					Date:	13-03-09	
ocation:	Airds / 1			2 .					Report No.	R26A	
ab Reference No		Jiddbu		ple Identificat	ion: TP 2	8 (1.7-1.8m)		Sample / Test		9/14-02-09
aboratory Specin		iption: (and the second second second second second						Suit. I Tot t	
Particle Size Distri								-	tent AS 1289	211, 311, 32	1. 3 3 1. 3 4 1
Sieve Size	% P	assing		specification		Те	st		Method	Resul	t Spec.
150 mm	-	-			Liquid	Limit	_	%	As 1289 3.1.	2	
75 mm						c Limit		%	AS1289 3.2.		
63mm				-		city Index		%	AS1289 3.3.		
53mm	1.1	-		-		r Shrinkage		%	AS1289 3.4.		
37.5 mm	10	100		-	11.2	ure Conten		%	AS1289 2.1.		
26.5 mm		98				le History:	-				
19.0 mm		95		-		ration Meth	od.				
16.0 mm		91		1		bling / Curli		ar shrin	kage.		
13.2 mm		89				r shrinkage	A CONTRACTOR OF			250mm	
9.5 mm		85			Linco		ot detern		NO = not obta		non plastic
6.7 mm		83			Moist	ire / Dry De	-				AS 1289 5.2
4.75 mm		81				num Dry De					1/m3
2.36 mm		80				um Moistu		nt.			%
1.18 mm		78			- pin		o oomoi				10
600 um		77			Notes		-				
425 um		77									
300 um		76									
150 um		75									
75 um		75	1.11								
percentoge finer than size shown	100 90 80 70 60 50 40 30 20				- 75mlcron	-300mlcron -300mlcron -425mlcron	-1-19 emm	-2.36mm	-0.70mm -0.70mm -0.50mm -1.32mm -1.32mm -2.55mm	-37.5mm -37.5mm -76.0mm	E 22 100 90 60 70 60 60 40 30 20
	10										10
		100 C			- de		1.0		10	100	-0
	0.001		0.01		0'1 particles	ize - millime				100	
						size - millime			gravel	100	1
		fine	rd.o siit	n coorse				fine	It can all	cobble]

c.ILabveportR002

ΝΔ

TECHNICAL

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew 13/03/09

Approved Signatory

Principal

Form No. R002/Ver03/11/04

Particle Size Distribution & Atterberg Limits Test Report

Client/Address:	JBS Env	vironment	al (Mas	cot)				Job No.	JG09245A	
Project:	Airds / E	Bradbury F	Redeve	lopment				Date:	13-03-09	
ocation:	Airds / E	Bradbury		- A - A - A - A - A - A - A - A - A - A				Report No.	R27A	
ab Reference No		, add ary	Sample	e Identificatio	n: TP 3	4 (1.0-1.3m)		Sample / Test [/14-02-09
aboratory Specin	nen Descri	ption: (GC)	1	a the second					Plan Plants II	
Particle Size Distri	ibution AS	1289 1.1, 1.:	2 1-Claus	e 6.5, 3.6.1	Attert	erg Limits and M	Aoisture Cor	itent AS 1289 2	1.1, 3.1.1, 3.2.1,	3.3.1, 3.4.1
Sieve Size	% P	assing	Sp	ecification		Test		Method	Result	Spec.
150 mm			-		Liquid	I Limit	%	As 1289 3.1.2		
75 mm		4		-		c Limit	%	AS1289 3.2.1		1
63mm				-		city Index	%	AS1289 3.3.1		
53mm	1.1.1	-			Linea	r Shrinkage	%	AS1289 3.4.1		
37.5 mm	1 1	100				ure Content	%	AS1289 2.1.1		
26.5 mm	1 1	94			Samp	le History:				
19.0 mm	9	86				aration Method.				
16.0 mm	1 13	83			Crum	bling / Curling of	linear shrin	kage.		
13.2 mm		78		-	Linea	r shrinkage mou	ld length.		250mm	
9.5 mm	0.0	68		-		ND = not de	etermined	NO = not obtain	nable NP = n	on plastic
6.7 mm	1	59			Moistu	ire / Dry Density	Relationshi	p:		AS 1289 5 2
4.75 mm	1	52			Maxin	num Dry Density	í.			t/m3
2.36 mm	4	43			Optim	um Moisture Co	intent.			%
1.18 mm		37								
600 um	1	35			Notes	1				
425 um		34		-						
300 um		33								
150 um		32								
75 um		29			10					
				1	cron Icron	lcron lcron	ĘĘ			
		A5 sleve s	1205		- /omician -150micron	-425micron -425micron -600micron	-2.36mm	-6.70mm -9.50mm -13.2mm -19.0mm -26.5mm	-37.5mm -53.0mm -76.0mm	
	100	THU	m					11111	ATT	00
	90									90
	¥0									*0
	80						_			00
Ę					-					
han size shown	70				-					70
921	_						-			
5	60							1 11		50
-	50				_		1			50
fine					-		1			2
8	40				-		1			10
percentage finer										
eic	30									30
۵							_			20
	20									20
	10								-	10
	0.001		0.01		01	1.0	- 1 - 1	10	100	0.
				-		size - millimetres				
								The second se		
	clay		silt			sand	tine	Oravel	cobbles	

c.ILabveportR002

NAT

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew 13/03/09

TECHNICAL COMPETENCE

Approved Signatory

Principal

Form No. R002/Ver03/11/04

Particle Size Distribution & Atterberg Limits Test Report

	JBS Environme	ntal (Mascot)		Job No.	JG09245A	
Project:	Airds / Bradbury	Redevelopment		Date:	13-03-09	
Location:	Airds / Bradbury			Report No.	R28A	
ab Reference No			on: TP 40 (0.6-0.7m)		Date: 14-02-09/14	-02-09
			el: fine to medium grained gravel,			
		1 2.1-Clause 6.5, 3.6.1	Atterberg Limits and Moisture C		1.1, 3.1 1, 3.2.1, 3.3	.1, 3.4.1.
Sieve Size	% Passing	Specification	Test	Method	Result	Spec.
150 mm	-		Liquid Limit %	As 1289 3.1.2		
75 mm	-	-	Plastic Limit %	AS1289 3.2.1		
63mm	100	-	Plasticity Index %			
53mm	94	-	Linear Shrinkage %			
37.5 mm	86	-	Moisture Content %	AS1289 2.1.1		-
26.5 mm	78		Sample History:			
19.0 mm	74	-	Preparation Method.			
16.0 mm	72		Crumbling / Curling of linear shr	nkage		
13.2 mm	69	+	Linear shrinkage mould length.		250mm	
9.5 mm	63	4	ND = not determined	NO = not obtain	able NP = non	plastic
6.7 mm	57	-	Moisture / Dry Density Relations	nip:		AS 1289 5.2
4.75 mm	52	-	Maximum Dry Density.			t/m3
2.36 mm	47	-	Optimum Moisture Content.			%
1.18 mm	43	-			and the second	
600 um	40	-	Notes			
425 um	35	-	1.100			
300 um	29	-				
150 um	22					
75 um	19					
	AS slev		- 75mlcron - 75mlcron - 300mlcron - 425mlcron - 600mlcron - 1.18mm - 2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm -19.0mm -26.5mm	-37.5mm -37.5mm -95.0mm -160 mm	
percentoge finer than size shown	40				90 80 70 60 50 40 30 20	
	80 70 60 50 50 40 30 50				80 70 60 50 40 30	
	80 70 70 60 50 60 30 60 20 60				80 70 60 50 40 30 20	
	80 70 60 50 40 50 30 50 10 50		oli ilo porticio size - millimetros	10	80 70 60 50 40 30 20 10	
	80 70 70 60 50 60 30 60 20 60 10 60			gravel	80 70 60 50 40 30 20 10 0	

c WLabVeport/R002

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number 14208.

Pnncipal

Solern Liew 13/03/09

Form No R002/Ver03/11/04

ΝΔΤΔ ACCREDITED FOR TECHNICAL COMPETENCE

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

Client/Address:	JBS En	vironme	ental (Mas	cot)					Job No.	JG0924	5A	
Project:	Airds / I	Bradbur	y Redevel	lopment					Date:	13-03-09	9	
Location:	Airds / I		5						Report No.	R29A		
Lab Reference No	and the second sec	and and the second second		e Identificati	on: TP 4	3 (1.1-1.3	im)		Sample / Test D		-09/14-0	2-09
Laboratory Specin										0.01 0.000		
Particle Size Distri	bution AS	51289 1.1.	1.2 1-Claus	e 6.5, 3.6,1	Attert	erg Limit	s and Mois	sture Cor	itent AS 1289 2	11,311,3	21.3.3.1.	3,4.1
Sieve Size	% F	assing	Sp	ecification		3	Test		Method	Res	ult	Spec.
150 mm		8		4	Liquid	Limit		%	As 1289 3.1.2			
75 mm		-		*		c Limit		%	AS1289 3.2.1			
63mm		100		*		city Index		%	AS1289 3.3.1			
53mm	1.1	95		-	10.200	r Shrinka	- A	%	AS1289 3.4.1			
37.5 mm	1.1.1	92				ure Conte		%	AS1289 2.1.1	-		
26.5 mm	1 1	89		· ·		le History						
19.0 mm		87		÷		iration Me						
16.0 mm		84		3	11		rling of line		(age			
13.2 mm		81		*	Linea		je mould le			250mm		
9.5 mm		75		-			not deter		NO = not obtain	able NP	= non pl	
6.7 mm	1.1	67		-	Moistu	ire / Dry [Density Re	lationship):			AS 1289 5.2
4.75 mm	1.1	59		4	Maxin	num Dry	Density.				1	Vm3
2.36 mm		47		-	Optim	num Mois	ture Conte	nt.			1	%
1.18 mm	1.1.1	39			_						_	
600 um	1.1	34		-	Notes	:						
425 um	1	32		-								
300 um		31		· +								
150 um		28		-								
75 um		25		-							_	
percentage finer than size shown	100 90 80 70 60 50 40 30 20				- 75mlcron		-000micron	-2.36mm		-31.5mm -31.5mm -35.0mm	E 23 100 90 60 70 60 60 60 60 60 60 60 60 60 6	
	10						-				10	
	0		and the second sec		1 1					1-1-1-		
	0.001	_	0.01		0'1 particle	size - millio	1:0 notres		10	10	0	
		· · · · · · · · · · · · · · · · · · ·	\$111			sand			gravel		1.1	
	clay									cobb	lat	

c:ILabVeportVR002

NATA

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208

Approved Signatory

Principal

Form No R002/Ver03/11/04

Solern Liew 13/03/09

TECHNICAL

Particle Size Distribution & Atterberg Limits Test Report

Client/Address.	JBS En	vironment	al (Mas	cot)							Job Ne	D .	JGO	9245A		
Project:	Airds / E	Bradbury	Redevel	opment							Date:		13-0	03-09		
ocation:		Bradbury		-Persona -							Repor	No	R30			
ab Reference No		Jadoury	Samole	Identificat	tion' TP /	36 /0 3	5-0 4	5m)	-	_	_	_			9/14-02-0	0
aboratory Specin		ption: (CL-							city.				i Date.	4-02-03	5/14-02-0	
Particle Size Distri	A		and the second second						-	-		S 1289	211.3	1.321	3.3.1, 3.4	1.
Sieve Size		assing	1	cification			-	est				ethod		Result		Spec.
Sleve Size	70 P	assing	Spe	cincation		_	_	:51	_					Result		opec.
150 mm	1			~		d Limi				%		89 3.1				
75 mm		-		-	101000	lic Lim				%		89 3.2				
63mm		5	1	-		icity Ir				%		89 3.3				
53mm		*		10	100000	ar Shri				%		89 3.4				
37.5 mm		100		-		ture C	_	t		%	AS12	89 2.1	.1			
26.5 mm		99				ple His										
19.0 mm	10	98		+		aration										
16.0 mm	1	97		÷						shrink	age.					
13.2 mm		95		~	Linea		1	moule					250			
9.5 mm	1	93		1.0		-	-	not det		_		ot obt	ainable	NP = I	non plast	
6.7 mm		89								onship):					1289 5.2
4.75 mm	Q Q	84	*	-	Maxi	mum I	Dry D	ensity.							t/m	3
2.36 mm		76		0÷	Optin	num M	loistu	re Cor	itent.						%	
1.18 mm		71		14		-	-	1.1		-						
600 um	10	69		÷	Note	S:									_	
425 um		68		-												
300 um	6	65		+												
150 um	1.0	49		4												
75 um		40														
percentage finer than size shown	100 90 80 70 60 50 40 30 20		SI 20 5		- 75mlcion	- 300micron	-425 micron		~	mmor 2, 230mm	-6.50mm	-19.0mm	-20.5mm -37.5mm -53.0mm	-76.0mm	40 20 20	
	10		1111						_				-	-	10	
									-	-						
	0.001		0.01		0 1 particle	esize-i	nillim	1.0 sties			10			100	10	
		1000	silt			50	nd		T		gra	val		deres !	1	
	clay	fine	medium	C00/198	fine	med	Ium	coars	e	fine	med	lum	ccorse	cobbles		
		1111		a distance of			and the second					1000	222140		1	

c.W.abveportR002

NAT

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Solern Liew 13/03/09

Form No. R002/Ver03/11/04

ACCREDITED FOR TECHNICAL COMPETENCE

Approved Signatory

Appendix E

Geotechnical Laboratory Test Certificates Dam Embankment

Test Results - Atterberg Limits & Emerson Class

Client / Address: JBS Er	nvironmental (Mascot)		Job No: JG	09245B
Project: Airds / Bradbury	/ Redevelopment - Dam E	mbankment	Date: 13-03	-09
Location: Community Ce	entre/Sports Centre, Airds		Report No:	R01B
Test Procedure: AS 1289	9 1.1, 1.2.1, 2.1.1, 3.1.1, 3	.1.2, 3.2.1, 3.3.1, 3.4.1, 3	.8.1	
Sample Identification	BH 1 (1.0-1.5m)	BH 2 (0.5-1.0m)	BH 2 (1.5-2.0m)	BH 2 (3.0-3.5
Sample Register No	SR 5243	SR 5246	SR 5247	SR 5248
Sample Date	12-Feb-09	12-Feb-09	12-Feb-09	12-Feb-09
Test Date	27-Feb-09	27-Feb-09	27-Feb-09	27-Feb-09
		Test Results		
Liquid Limit (%)	46.0	39.0	40.0	66.0
Plasitc Limit (%)	19.0	16.0	16.0	24.0
Plasticity Index (%)	27.0	23.0	24.0	42.0
Linear Shrinkage (%)	13.0	5.5	8.0	15.0
Natural Moisture Content %	-	-	-	-
Material Description	Fill: Silty Clay: Medium to high plasticity, brown	Fill: Silty Clay: Medium plasticity, grey brown	Fill: Silty Clay: Medium to high plasticity, brown	CH: Silty Clay: High plasticity, red brown

c:/lab/reports/R004

Form No. R004/Ver 05/06/07

This document is issued in accordance with NATA's accreditation requirements

Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

Allan Fong Date 30/03/2009

Test Results - Atterberg Limits & Emerson Class

Client / Address: JBS Er	vironmental (Mascot)		Job No: JG09245B
Project: Airds / Bradbury	Redevelopment		Date: 13-03-09
Location: Community Ce	entre/Sports Centre, Airds	;	Report No: R02B
Test Procedure: AS 1289) 1.1, 1.2.1, 2.1.1, 3.1.1, 3	3.1.2, 3.2.1, 3.3.1, 3.4.1, 3	3.8.1
Sample Identification	BH 3 (1.5-2.0m)	BH 6 (0.2-0.6m)	
Sample Register No	SR 5250	SR 5254	
Sample Date	12-Feb-09	12-Feb-09	
Test Date	27-Feb-09	27-Feb-09	
		Test Results	
Liquid Limit (%)	66.0	64.0	
Plasitc Limit (%)	24.0	28.0	
Plasticity Index (%)	42.0	39.0	
Linear Shrinkage (%)	14.5	16.5	
Natural Moisture Content %	-	-	
Material Description	CH: Silty Clay: High plasticity, red brown	CH: Silty Clay: High plasticity, red brown	

c:/lab/reports/R004

Form No. R004/Ver 05/06/07

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

,

Allan Fong Date 30/03/2009

Approved Signatory

Laboratory Manager

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

Approved Signatory

lang

Laboratory Manager

Allan Fong Date 30/03/2009

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

llong

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

lang

Allan Fong Date 30/03/2009

Approved Signatory

c:/lab/reports/R019

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025

NATA Accredited Laboratory Number: 14208.

llong

Allan Fong Date 30/03/2009

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

lient / Ad	dress: 、	JBS Enviro	nmental	(Mascot)						Job No. JG0	9245B		
roject: A	irds Bra	adbury Red	evelopm	ent - Dam I	Embanl	kment				Date: 30/03/	2009		
ocation:	Commu	unity Centre	/Sports	Centre, Airo	ds					Report No. F	R14B		
b Referer				ample Identi		BH 2 (0.	3-0.6m)			Sample / Test		2/2009	
boratory S	Specime	n Description	n: Fill: Silt	y Clay: Medi	um plas	ticity, bro	wn grey	with som	ie ironst	one gravel			
rticle Size	e Distribu	ution AS128	9 1.1, 1.2	.1, 3.6.1		Atterberg	g Limits a	and Moist	ure Cor	tent AS 1289	2.1.1, 3.1.1	, 3.2.1, 3.	3.1, 3.4.1.
Sieve S	ize	% Passi	ng	Specificat	ion		Tes	st		Method	Re	sult	Spec.
150 m						Liquid Lir			%	As 1289 3.1.2		ID	
75 mn						Plastic Li			%	AS1289 3.2.1		ID	
63mm		100				Plasticity			%	AS1289 3.3.1		ID	
53mm		100				Linear SI	-		%	AS1289 3.4.1		ID	
37.5 m		100 95				Moisture			%	AS1289 2.1.1	N	ID	
26.5 m 19.0 m		95 91				Sample I Preparati		od					
16.0 m		91 89						ng of line	ar chrinl	200			
13.2 m		89					-	mould ler		wyc.	250mm		
9.5 mr		87					-	ot determ	-	NO = not obtai		e non pla	astic
6.7 mr		86				Moisture		nsity Rela					AS 1289 5.
4.75 m		84				Maximun							/m3
2.36 m		82						e Conten	t.				%
1.18 m		81				·							
600 ur	n	79			Ī	Notes:							
425 ur	n	79											
300 ur	n	78											
150 ur 75 ur		69 59 As sleve	sizes		Smlcron	50mlcron 00mlcron	25micron 00micron	18mm	36mm	75mm 70mm 50mm 3.2mm	5.5mm 7.5mm 3.0mm	mmo.	
150 ur 75 un [59	o sizos		- 75mlcron	-1 50micron	-425micron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		90 80
150 ur 75 un [00 90	59			- 75micron	-1 50micron	-426micron		-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90
150 ur 75 un [1	00 90 80 70	59	> sizes		- 75mlcron	-150mlcron	-425mlcron		-2.36mm	-4.75mm -6.70mm -9.60mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70
150 ur 75 um ا	00 90 80	59			- 75micron		-425micron	۳.1-1 8mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm		100 90 80
150 ur 75 um ا	00 90 80 70	59			- 75micron	-1 50mlcron	-426micron		-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70
150 ur 75 um נו ער גר גר גר גר גר גר גר גר גר גר גר גר גר	00 90 80 70 60 50	59			- 75micron	-1 50mlcron	-425mlcron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50
150 ur 75 um נו ער גר גר גר גר גר גר גר גר גר גר גר גר גר	00 90 80 70 60	59			- 75micron	-1 50micron	-426micron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60
150 ur 75 um ر	00 90 80 70 60 50	59			- 75mlcron	-1 50micron	-426micron	mmm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50
150 ur 75 um u Move size shown	00 90 80 70 60 50 40 30	59				-150micron -300micron -300micron	-426micron	mmm - 1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50 40 30
150 ur 75 um u Move size shown	00 90 80 70 60 50 40	59			- 75micron	-150micron	-425micron	mm81.1-	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50 40
150 ur 75 um Umove size shown	00 90 80 70 60 50 40 30	59			- 75micron	-1 50mlcron	-426micron	mm8 1. 1-	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50 40 30
150 ur 75 um nwown size shown	00 90 80 70 60 50 40 30 20	59			- 75micron	-1 50mlcron	-426micron		-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm		100 90 80 70 60 50 40 30 20 10
150 ur 75 ur 1 1 1	00 90 80 70 60 50 40 30 20	59			0.1			1!0	-2.36mm	-4.75mm -4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50 40 30 20
150 ur 75 um Umove size shown	00 90 80 70 60 50 40 30 20 10	59			0.1			1!0	-2.36mm		-26.5mm -37.5mm -53.0mm		100 90 80 70 60 50 40 30 20 10

TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

flo 1----

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

lient / Add	dress: 、	JBS Enviro	nmental (I	Mascot)						Job No. JG	09245B		
roject: Ai	rds Bra	adbury Red	evelopme	nt - Dam E	mbank	ment				Date: 30/03	/2009		
ocation: C	Commu	unity Centre	e/Sports C	entre, Airc	ls					Report No.	R15B		
b Referen				mple Identi						Sample / Test	Date: 17/	02/2009	
		en Descriptio											
rticle Size	Distrib	ution AS128	9 1.1, 1.2.	1, 3.6.1	ŀ	Atterberg	Limits a	nd Moist	ure Cor	itent AS 1289	2.1.1, 3.1	.1, 3.2.1, 3	.3.1, 3.4.1.
Sieve Si		% Pass	ing	Specificati			Tes	t		Method		esult	Spec.
150 mn						iquid Lin			%	As 1289 3.1.		ND	
75 mm						Plastic Lir			%	AS1289 3.2.		ND	
63mm 53mm						Plasticity			%	AS1289 3.3. AS1289 3.4.		ND ND	
37.5 mr						Aoisture (-		% %	AS1289 3.4. AS1289 2.1.		ND	
26.5 mr		100				Sample H			70	AS1209 2.1.	1	ND	
19.0 mr		99				Preparatio		bd					
16.0 mr		99				Crumbling			ar shrinl	kade			
13.2 mr		97				inear shr		-			250mm	ı	
9.5 mm		96					-	ot determ	-	NO = not obta		P = non p	astic
6.7 mm		94			Ν	loisture /							AS 1289 5
4.75 mr		92				Maximum	-	-					t/m3
2.36 mr		89				Optimum	-		t.				%
1.18 mr	n	87											
600 um	n	85			١	Notes:							
425 un	n	85											
300 un		83											
		70											
150 um 75 um		78 72 As sleve	ə sizəs		– 75mlcron	–1 50micron –300micron	-425micron -600micron	–1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm	-53.0mm -75.0mm	-150 mm
75 um		72	Ð SIZÐS		- 75micron		-425micron		-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-17.0mm	-75.0mm	100 90 80 70
75 um	00 90 <td>72</td> <td></td> <td></td> <td></td> <td>-1 50mlcron</td> <td>-400mlcron</td> <td></td> <td>-2.36mm</td> <td>-1.75mm -6.70mm -9.50mm</td> <td>-17-011111 -26.5mm -37.5mm</td> <td>-5.0mm</td> <td>100 90 80 70 60</td>	72				-1 50mlcron	-400mlcron		-2.36mm	-1.75mm -6.70mm -9.50mm	-17-011111 -26.5mm -37.5mm	-5.0mm	100 90 80 70 60
75 um	00 90	72	Ð SIZƏS			-1 50mleron	-426micron	mmal. I-	-2.36mm	-4.75mm -6.70mm -9.50mm -9.50mm	-19.0mm	-75.0mm	100 90 80 70 60
75 um	00 90 <td>72</td> <td>SIZØS</td> <td></td> <td>- 75micron</td> <td>-1 50mlcron</td> <td>-426micron</td> <td>-1.18mm</td> <td>-2.36mm</td> <td>-4.75mm -6.70mm -9.50mm -13.2mm</td> <td>-26.5mm</td> <td>-75.0mm</td> <td>100 90 80 70 60</td>	72	SIZØS		- 75micron	-1 50mlcron	-426micron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm	-75.0mm	100 90 80 70 60
percentage finer than size shown	200 200 800 800 500 400 300	72	SIZØS		- 75mlcron	-1 50mlcron	-426micron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm	-26.5mm	-75.0mm	100 90 80 70 60 50 40 30
percentage finer than size shown	200 200 200 200 200 200 200 200 200 200	72			- 75micron		-425micron	-1.18mm	-2.36mm	-4.75mm -6.70mm -9.50mm	-17.0mm	53.0mm	100 90 80 70 60 60
Dercentage finer than size shown	200 200 800 800 500 400 300	72			- 75micron	-150micron	-425mlcron			-4.75mm -6.70mm -9.50mm	-17.0000	-5.0mm	100 90 80 70 60 50 40 30
Dercentage finer than size shown	20 90 <td>72</td> <td></td> <td></td> <td>- 75micron</td> <td>-150mlcron</td> <td>-400mlcron</td> <td></td> <td>-2.36mm</td> <td>-1.75mm -6.70mm -9.50mm -13.2mm</td> <td>-17-011111 -26.5mm</td> <td>-5.0mm</td> <td>100 90 80 70 60 60 40 30 20</td>	72			- 75micron	-150mlcron	-400mlcron		-2.36mm	-1.75mm -6.70mm -9.50mm -13.2mm	-17-011111 -26.5mm	-5.0mm	100 90 80 70 60 60 40 30 20
Detcentage flner than size shown	200 200 300 300 300	72			0.1			1:0	-2.36mm	-1.75mm -2.70mm -6.70mm -9.60mm	-24.5mm	-100	100 90 80 70 60 60 40 30 20
25 um	200 200 80 50 50 50 50 50 50 50 50 50 50 50 50 50				0.1			1:0	-2.36mm		-27.5mm	100	100 90 80 70 60 60 40 30 20 10 0
75 um	200 200 200 300 300 00		0.01	Cogrse	0.1			1:0	-5.36mm	10 gravel		100	100 90 80 70 60 60 40 30 20 10 0

TECHNICAL COMPETENCE

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

flo 1

Approved Signatory

Particle Size Distribution & Atterberg Limits Test Report

lient / Au	dress:	JBS Environr	nemai (iv	ascol)					Job No. JG09	245B	
roject: A	irds Bra	adbury Redev	velopmer	nt - Dam E	mbank	ment			Date: 30/03/2	009	
ocation:	Comm	unity Centre/S	Sports Ce	entre, Aird	s				Report No. R ²	16B	
b Referer						BH 6 (0.2-0.6	m)		Sample / Test D	ate: 17/02	/2009
		en Description:									
rticle Size	e Distrib	ution AS1289	1.1, 1.2.1	, 3.6.1	A	Atterberg Limi	ts and Mois	ture Cor	tent AS 1289 2	.1.1, 3.1.1,	3.2.1, 3.3.1, 3.4
Sieve S		% Passing	g	Specificatio			Test		Method	Res	
150 m						Liquid Limit		%	As 1289 3.1.2	NE	
75 mn						Plastic Limit		%	AS1289 3.2.1	NE	
63mm 53mm						Plasticity Inde		% %	AS1289 3.3.1 AS1289 3.4.1	NE NE	
37.5 m						Moisture Cont	-	%	AS1289 3.4.1 AS1289 2.1.1	NE	
26.5 m						Sample Histor		70	7.01203 2.1.1	1.1.1	
19.0 m						Preparation M					
16.0 m	nm					Crumbling / C		ar shrin	kage.		
13.2 m	nm	100			L	inear shrinka	ige mould le	ngth.		250mm	
9.5 mr		98					= not detern		NO = not obtaina	able NP	= non plastic
6.7 mr		97				loisture / Dry		ationshi): 		AS 1289
4.75 m		97				Maximum Dry					t/m3
2.36 m 1.18 m		96 95			C	Optimum Mois	sture Conter	1t.			%
600 ur		95 94				Notes:					
		94				10165.					
425 ur											
425 ur 300 ur		94									
425 ur 300 ur 150 ur	m	94 93									
300 ur	m m		sizes		75mlcron	50mlcron 00mlcron 25mlcron	00mlcron .18mm	.3ómm	.75mm .70mm .50mm 3.2mm 9.0mm	6.5mm 7.5mm 3.0mm	5.0mm 50 mm
300 ur 150 ur 75 um ر	m m	93 88	SIZOS		- 75micron		-600micron	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -37.5mm	E E E E E E E E E E E E E E E E E E E
300 ur 150 ur 75 ur u u u u u u u u u u u u u u u u u u	m m n 00 90 80 60 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	93 88	SIZOS		- 75micron		-600micron	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm	100 90 80 70 60 50 40 30
300 ur 150 ur 75 ur 1 u u u u u u u u u u u u u u u u u u	m m n 90 80 80 60 60 60 60 60 60 60	93 88			- 75micron		-600micron	-2.36mm	-4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm	100 90 80 70 60 50 40
300 ur 150 ur 75 ur 1 1	m m n 00 90 80 60 60 60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	93 88 AS sleve s	I I <tdi< td=""> I I I</tdi<>		- 75micron	-150micron -300micron -425micron	-600mlcron	-2.36mm	-4.75mm -6.70mm -9.50mm	-26.5mm -37.5mm -53.0mm	100 90 80 70 60 50 40 30
300 ur 150 ur 75 ur 1 1	m m n	93 88 AS sleve s			- 75micron		-600mlcron	-2.36mm	-4.75mm -4.75mm -6.70mm -9.50mm -13.2mm	-26.5mm -37.5mm -53.0mm	100 90 80 70 60 60 50 40 30 20
300 ur 150 ur 75 ur 1 1	m m n 90 80 70 60 50 40 30 20	93 88 AS sleve s	I I <tdi< td=""> I I I</tdi<>		0.1	-150mlcron		-2.36mm	10 -1.75mm -1.75mm -1.250mm -1.3.2mm		100 90 80 70 60 60 40 30 20 10
300 ur 150 ur 75 ur 1 1	m m n 90 80 80 60 60 60 60 60 60 60 60 60 60 60 60 60	93 88 AS sleve s	I I <tdi< td=""> I I I</tdi<>		0.1			-2.36mm			100 90 80 70 60 50 40 30 20 10 0

This document is issued in accordance with NATA's accreditation requirements Accredited for compliance with ISO/IEC 17025 NATA Accredited Laboratory Number: 14208.

flo 1

TECHNICAL COMPETENCE Approved Signatory

Laboratory Manager

Allan Fong Date 30/03/2009

Triaxial - Report

Client: GeoEnviro Consultancy Pt	v Ltd			Job No.	: 2116066
Project: Airds / Bradbury Redevelop				Sample No.	: SYD09-3507
ocation: Community Centre, Airds				Test Hole No.	
EGT METHOD				Depth (m)	: 1.00 to 1.20
EST METHOD AS1289.6.4.	1 🗸	AS1289.6.4	4.2	Client Sample ID :	n/av
Sample History : Supplied by cli	ent		1	F	ailure Mode
SAMP	LE INFORMAT	ION			
Specimen 1		2	3	4	-1
	(%) 15.2			<u> </u>	
Dry Density Before (t/r	m ³) 1.71				1
Moisture Top (%					-13"
Content Centre (%	6) 28.5				
After Bottom (%	6) 27.4				
Sample Size (mm)	50 x 100				
'EST TYPE	- (1. 2K)		21 Y		
Consolidated Unconsolidated	Drain		the second se	pressure measurement	
Sample stage tested	Undr	rained		ore pressure measures ample for each stage	ment
ATURATION			-		
☑ Yes	CL	necked by	Pore water	pressure respose (\overline{B})	
□ No	CI	lecked by		pressure respose (B)	98
			ц.		
ide Drains MPLE DESCRIPTION / TEST C			☐ Not used		
Side Drains AMPLE DESCRIPTION / TEST Control of gravel			□ Not used		ł
Filter pape AMPLE DESCRIPTION / TEST Control ed brown CLAY, trace of gravel	OMMENTS	1	□ Not used	3	- 4
Filter pape AMPLE DESCRIPTION / TEST Constraints ed brown CLAY, trace of gravel EST DATA Back Pressure (k	OMMENTS	<u>1</u> 500	2	3	- 4
ide Drains MPLE DESCRIPTION / TEST Co ed brown CLAY, trace of gravel EST DATA Stage Back Pressure (k iffective Consolidation Stress (kPa	OMMENTS No. (Pa)			500	
ide Drains Filter paper AMPLE DESCRIPTION / TEST Constraints Filter paper Filter	OMMENTS No. Pa) a) n/min)	500	2 500		
ide Drains Filter paper AMPLE DESCRIPTION / TEST CO ed brown CLAY, trace of gravel EST DATA EST DATA Cack Pressure (k Effective Consolidation Stress (kPa Cate of Strain (mm Deviator stress at failure (kP	OMMENTS No. Pa) No. Pa) No. Pa)	500 10	2 500 20	500 50	
ide Drains Filter pape AMPLE DESCRIPTION / TEST Constraint ed brown CLAY, trace of gravel EST DATA Back Pressure Back Pressure Cate of Strain Ceviator stress at failure Core water pressure at failure	OMMENTS No. Pa) Pa) Pa	500 10 0.0061	2 500 20 0.0061	500 50 0.0061	-
ide Drains Filter paper AMPLE DESCRIPTION / TEST CO ed brown CLAY, trace of gravel EST DATA Stage Back Pressure (kPa ate of Strain (mm Deviator stress at failure (kPa ore water pressure at failure (kPa folume Change (n	OMMENTS No. Pa) No. Pa) No. Pa)	500 10 0.0061 12.3	2 500 20 0.0061 19.3	500 50 0.0061 46.3	-
ide Drains Filter paper AMPLE DESCRIPTION / TEST Co ed brown CLAY, trace of gravel EST DATA Stage Cack Pressure (kPa ate of Strain (mm eviator stress at failure (kPa ore water pressure at failure (kPa olume Change (n	OMMENTS No. Pa) Pa) Pa	500 10 0.0061 12.3 1.5	2 500 20 0.0061 19.3 10.5	500 50 0.0061 46.3 26.1	
Side Drains Image: Filter paper AMPLE DESCRIPTION / TEST Construction American Stress red brown CLAY, trace of gravel Image: Stage TEST DATA Stage Back Pressure (kPar State of Strain (mm Deviator stress at failure (kPar Pore water pressure at failure (kPar Yolume Change (mm	OMMENTS No. Pa) Pa) Pa	500 10 0.0061 12.3 1.5 nt	2 500 20 0.0061 19.3 10.5	500 50 0.0061 46.3 26.1 12.9	
Side Drains Image: Filter paper AMPLE DESCRIPTION / TEST Construction TEST Construction Test DATA Stage Back Pressure (kPar State of Strain (mm Deviator stress at failure (kPar Pore water pressure at failure (kPar Volume Change (mm	OMMENTS No. Pa) Pa) Pa	500 10 0.0061 12.3 1.5 nt	2 500 20 0.0061 19.3 10.5 2.48 -	500 50 0.0061 46.3 26.1 12.9	
Side Drains Image: Filter paper AMPLE DESCRIPTION / TEST Construction TEST Construction Test DATA Stage Back Pressure (kPar Rate of Strain (mm Deviator stress at failure (kPar Pore water pressure at failure (kPar Volume Change (mm	OMMENTS No. Pa) Pa) Pa	500 10 0.0061 12.3 1.5 nt	2 500 20 0.0061 19.3 10.5 2.48 -	500 50 0.0061 46.3 26.1 12.9	
Side Drains Filter paper AMPLE DESCRIPTION / TEST Concerned brown CLAY, trace of gravel TEST DATA Test Da	OMMENTS No. Pa) a) a) a) a) a) b)	500 10 0.0061 12.3 1.5 nt - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - -	500 50 0.0061 46.3 26.1 12.9	-
Side Drains Filter paper AMPLE DESCRIPTION / TEST Conservation ed brown CLAY, trace of gravel TEST DATA Stage Back Pressure Cate of Strain Deviator stress at failure Core water pressure at failure Volume Change Image Ima	OMMENTS No. Pa) a) a) a) a) a) b)	500 10 0.0061 12.3 1.5 nt - - - - - GEOTECH	2 500 20 0.0061 19.3 10.5 2.48 - - - - NICS	500 50 0.0061 46.3 26.1 12.9 - - -	-
Side Drains Filter paper AMPLE DESCRIPTION / TEST CO ed brown CLAY, trace of gravel TEST DATA Stage Back Pressure (k Effective Consolidation Stress Cate of Strain Core water pressure at failure Yolume Change Image: Construct of the stress Tested by: SI	OMMENTS No. Pa) A) A) A) A) A) A) A) A) A) A A A A A	500 10 0.0061 12.3 1.5 nt - - - - - - - - - - - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - - - NICS on NSW, 2064	500 50 0.0061 46.3 26.1 12.9 - - -	-
ide Drains Filter pape AMPLE DESCRIPTION / TEST Condition ed brown CLAY, trace of gravel EST DATA EST DATA Est DATA Stage Back Pressure Cate of Strain Core water pressure at failure Colume Change Image: Colume Change Fested by: SI te tested: 18.02.09	No. cPa) a) n/min) 'a) a) nl) GHD C 57 Herbor Tel: (02)	500 10 0.0061 12.3 1.5 nt - - - - - - - - - - - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - NICS on NSW, 2064 Fax: (02) 94624	500 50 0.0061 46.3 26.1 12.9 - - -	-
ide Drains Filter paper AMPLE DESCRIPTION / TEST CO ed brown CLAY, trace of gravel EST DATA EST DATA Back Pressure Cate of Strain Colume Change Colume Change (n) Fested by: SI te tested: 18.02.09 ecked by:	No. Pa) a) n/min) Pa) a) nl) GHD C 57 Herby Tel: (02) Geotech This docum Accredited	500 10 0.0061 12.3 1.5 nt - - - - - - - - - - - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - - NICS on NSW, 2064 Fax: (02) 9462- Services n accordance wite with ISO/IEC 1	500 50 0.0061 46.3 26.1 12.9 - - - - 4710	
Side Drains Filter pape AMPLE DESCRIPTION / TEST Con- red brown CLAY, trace of gravel TEST DATA Stage Back Pressure (kPar Back Pressure (kPar Back Pressure (kPar Back Pressure at failure (kPar Pore water pressure	No. EPa) a) n/min) 'a) a) nl) GHD C 57 Herbor Tel: (02) Geotech This docum Accredited Laboratory ratory certificate ma	500 10 0.0061 12.3 1.5 nt - - - - - - - - - - - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - NICS on NSW, 2064 Fax: (02) 94624 Services n accordance wite e with ISO/IEC 1 Number 679 uced except in fu	500 50 0.0061 46.3 26.1 12.9 - - - - 4710 h NATA's accreditation 7025.	- - - - - - - - - - - - - -
SAMPLE DESCRIPTION / TEST Correct brown CLAY, trace of gravel TEST DATA TEST DATA Back Pressure (k Effective Consolidation Stress (kPa Rate of Strain (mm Deviator stress at failure (kP Pore water pressure (kP Pore water	No. EPa) a) n/min) 'a) a) nl) GHD C 57 Herbor Tel: (02) Geotech This docum Accredited Laboratory ratory certificate ma	500 10 0.0061 12.3 1.5 nt - - - - - - - - - - - - -	2 500 20 0.0061 19.3 10.5 2.48 - - - NICS on NSW, 2064 Fax: (02) 94624 Services n accordance wite e with ISO/IEC 1 Number 679 uced except in fu	500 50 0.0061 46.3 26.1 - - - - - 4710 h NATA's accreditation 7025.	- - - - - - - - - - - - - - - -

Laboratory Test Methods Manual SigmaPlot Template: Triaxial Template, Template.JNT Issue Date: 07 March, 2006
Triaxial - Report

	Pty Ltd			Job No.	
Project: Airds / Bradbury Redevel	opment			Sample No.	
ocation: Community Centre, Airds	s			Test Hole No.	1
EST METHOD		1 101000		Depth (m)	
EST METHOD AS1289.6.4	4.1	AS1289.	6.4.2	Client Sample ID	: n/av
Sample History : Supplied by c	lient			F	ailure Mode
SAM	PLE INFORMA	TION			-1
Specimen		2	3	4	1
Moisture Content Before	(%) 10.3				1
	t/m ³) 1.95				
	(%) 19.7				- 1
	(%) 21.9			N	initia al
	(%) 21.5	-		L.	sible shear ne plane
Sample Size (mm)	50 x 99			Haild.	re plane
Consolidated					
Consolidated Unconsolidated		ained		e pressure measureme	
Sample stage tested	Und Und	drained		ore pressure measure	ment
- Sumpre stage tested			Separate :	sample for each stage	
SATURATION					
Yes	C	Checked by	Pore water	pressure respose (\overline{B})	97.6
No No			П	pressure respect (D)	97.0
TLTERS			-		
AMPLE DESCRIPTION / TEST (
brown mottled grey CLAY, trace of g					
TEST DATA	gravel				
T EST DATA Stag	gravel ge No.	1	2	3	4
TEST DATA Stag Back Pressure	gravel ge No. (kPa)	500	500	500	4
T EST DATA Stag Back Pressure Effective Consolidation Stress (kl	gravel ge No. (kPa) Pa)	500 10	500 20	500 50	
TEST DATA Stag Back Pressure Effective Consolidation Stress (kl Rate of Strain (m	gravel (kPa) Pa) mm/min)	500 10 0.0061	500 20 0.0089	500 50 0.00406	-
TEST DATA Stag Back Pressure Effective Consolidation Stress (kl Rate of Strain (m Deviator stress at failure (k	gravel ge No. (kPa) Pa)	500 10 0.0061 20.7	500 20 0.0089 34.9	500 50 0.00406 56.8	
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure	gravel (kPa) Pa) um/min) &Pa)	500 10 0.0061 20.7 1.8	500 20 0.0089 34.9 4.9	500 50 0.00406 56.8 17.3	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) (Pa) Pa) Pa)	500 10 0.0061 20.7	500 20 0.0089 34.9 4.9 0.03	500 50 0.00406 56.8 17.3 5.57	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) (Pa) Pa) Pa)	500 10 0.0061 20.7 1.8 nt	500 20 0.0089 34.9 4.9	500 50 0.00406 56.8 17.3	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) (Pa) Pa) Pa)	500 10 0.0061 20.7 1.8 nt	500 20 0.0089 34.9 4.9 0.03 -	500 50 0.00406 56.8 17.3 5.57	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) (Pa) Pa) Pa)	500 10 0.0061 20.7 1.8 nt -	500 20 0.0089 34.9 4.9 0.03 -	500 50 0.00406 56.8 17.3 5.57	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) (Pa) Pa) Pa)	500 10 0.0061 20.7 1.8 nt -	500 20 0.0089 34.9 4.9 0.03 -	500 50 0.00406 56.8 17.3 5.57	-
Stag Back Pressure Effective Consolidation Stress Rate of Strain Deviator stress at failure Pore water pressure at failure Volume Change	gravel (kPa) Pa) um/min) cPa) (m1) (m1) GHD	500 10 0.0061 20.7 1.8 nt - - - - GEOTEC	500 20 0.0089 34.9 4.9 0.03 - - - - HNICS	500 50 0.00406 56.8 17.3 5.57 - - -	-
Stag Stag Back Pressure Kale Effective Consolidation Stress (kl) Rate of Strain (m) Deviator stress at failure (kl) Pore water pressure at failure (kl) Volume Change (m) Image: SI Image: SI	gravel (kPa) Pa) um/min) cPa) (m1) (m1) GHD 57 Her	500 10 0.0061 20.7 1.8 nt - - - - GEOTEC bert St, Artar	500 20 0.0089 34.9 4.9 0.03 - - - - HNICS mon NSW, 2064	500 50 0.00406 56.8 17.3 5.57 - - - -	-
Stag Stag Back Pressure Kale Effective Consolidation Stress (kl Rate of Strain (m Deviator stress at failure (kl Pore water pressure at failure (kl Volume Change (m) Image: SI Image: SI Ate tested: 18.02.09	gravel (kPa) Pa) mm/min) (cPa) Pa) (ml) GHD 57 Her Tel: (0.	500 10 0.0061 20.7 1.8 nt - - - - - GEOTEC bert St, Artar 2) 9462 4860	500 20 0.0089 34.9 4.9 0.03 - - - - - - - - - - - - - - - - - - -	500 50 0.00406 56.8 17.3 5.57 - - - -	-
Stag Stag Back Pressure Stag Back Pressure (kl Effective Consolidation Stress (kl Rate of Strain (m Deviator stress at failure (kl Pore water pressure at failure (kl Volume Change (l Image: SI Image: SI ate tested: 18.02.09 ecked by: Image: SI	gravel (kPa) Pa) m/min) (Pa) (ml) Fa) (ml) GHD 57 Her Tel: (0) Geotec	500 10 0.0061 20.7 1.8 nt - - - - - - - - - - - - -	500 20 0.0089 34.9 4.9 0.03 - - - - - HNICS mon NSW, 2064 Fax: (02) 9462 ng Services	500 50 0.00406 56.8 17.3 5.57 - - - - - - - - - - - - - -	
Stag Stag Back Pressure Stag Back Pressure (kl Effective Consolidation Stress (kl) (kl Rate of Strain (m Deviator stress at failure (kl Pore water pressure at failure (kl Volume Change (gl Image: SI (gl Image: SI (gl Image: SI (gl Image: Approved (gl Approved (gl	gravel (kPa) Pa) m/min) (Pa) (ml) GHD 57 Her Tel: (0) Geotec This doc Accredita	500 10 0.0061 20.7 1.8 nt - - - - - - - - - - - - -	500 20 0.0089 34.9 4.9 0.03 - - - - - HNICS mon NSW, 2064 Fax: (02) 9462 ng Services	500 50 0.00406 56.8 17.3 5.57 - - - - - - - - - - - - - - - - - - -	
Back Pressure Effective Consolidation Stress (kl Rate of Strain (m Deviator stress at failure (k Pore water pressure at failure (k Volume Change (m) Tested by: SI Pate tested: 18.02.09 hecked by: SI Approved Signatory : ASSA	gravel (kPa) Pa) mm/min) (Pa) (ml) GPa) (ml) GPa GPB GFHD S7 Her Tel: (0) Geotec Coratory certificate n coratory certificate n	500 10 0.0061 20.7 1.8 nt - - - - - - - - - - - - -	500 20 0.0089 34.9 4.9 0.03 - - - - - - - - - - - - - - - - - - -	500 50 0.00406 56.8 17.3 5.57 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - -

Laboratory Test Methods Manual SigmaPlot Template: Triaxial Template, Template.JNT Issue Date: 07 March, 2006 Appendix F

Brief Explanation on Site Classification

GeoEnviro Consultancy Pty Ltd

A BRIEF EXPLANATION OF SITE CLASSIFICATION

1. <u>Introduction</u>

The intention of the Australian Standard 2870-1996, "Residential Slabs and Footings" is to provide guidance on footing design for residential buildings with a particular emphasis on reactive clay sites. Footing design and construction involves the following steps:

- site classification
- selection of an appropriate footing system
- structural design
- construction in accordance with the required design details and construction methods
- proper site maintenance after construction

The classification assessed in this report is the first step in providing an economical footing system for a residence which will limit cracking of footings, floor slabs and masonry walls to an extent normally considered acceptable. (Performance expectations are explained in AS 2870-1996). It is necessary that each subsequent step be diligently observed to achieve acceptable performance.

It is imperative when applying the site classifications presented in this report to residential footing design, that these performance expectations are acceptable to the home owner.

2. <u>What is a Reactive Soil?</u>

A reactive soil undergoes appreciable volume change when its moisture content changes. This causes ground surface movements which can result in fooling movements. The extent of ground movement that can occur depends on the clay mineralogy, the depth of clay in the soil profile, the depth of potential moisture variation in the soil and the change in soil suction that occurs from dry to wet soil conditions. AS2870 provides a classification system to quantify the range of ground surface movements anticipated (defined as having less than 5% chance of being exceeded in the design life of the structure).

3. <u>How are Sites Classified in the Sydney Region</u>

Experiment and observation within the Sydney Region indicates a high variability in the potential for reactive movements, which is not clearly related to soil association, terrain location or visual appearance and may not be accurately predicted by simple soil tests. Intense, complex and expensive testing is required at a site to accurately predict its potential for reactive behaviour. To avoid this, a simplified classification procedure for the Sydney region has been devised which is based on the depth of clay in the soil profile. This procedure is detailed in AS2870 - 1996.

4. <u>What is a Class P Site?</u>

Footing design may need to consider other factors beside reactive soils. Such factors include the presence of filling, the presence of compressible or collapsible soils, or the need to consider slope stability aspects. When these or other factors need to be considered the site may be classified P. The footing "solution" for Class P sites requires special engineering consideration. On many sites the "solution may the straight forward and may not necessarily incur major cost increases.

Form No. R014-1/Ver01/1198

5. <u>Filled Sites</u>

The most common "problem" associated with residential lots is the presence of fill, compacted or otherwise, overlying the natural soils. If the fill is uncompacted, or if there are no records of adequate compaction, a piered footing system is usually adopted which penetrates the fill and found on natural ground.

AS2870 - 1996 indicates that a compacted fill site may be given a less severe classification than P if assessed in accordance with engineering principles. Subdivision developments often include areas of compacted filling which will usually have been required to have been compacted to the relevant Council Specifications. Adequately compacted filling will usually provide sufficient bearing capacity for residential footing loads, but the clay in the fill will also experience reactive soil movements. Depending on the moisture content at which the fill is placed and the compaction which has been achieved, reactive soil movements may exceed those experienced by the natural soil from which the fill has been derived. As a result, classification of compacted fill sites sometimes needs to be conservative.

6. <u>Site Classifications should be Project Specific</u>

Many Councils require that all lots within a new subdivision be classified prior to subdivision approval. This practice precludes a consideration of the impact of site preparation works on the classification. Sites which are not level are often cut and filled to provide a level platform for floor slab construction. AS2870 specifies that the classification shall be reconsidered if:

- (a) the depth of cut exceeds 500mm, or
- (b) the depth of compacted fill exceeds 400mm for clay (or 800mm for sand).

Where the classification provided in this report is carried out prior to the site development details being known it is a condition of this report that plans for future development of the block be reviewed by a geotechnical engineer to assess the impact of proposed site works and also the impact of work which may have occurred on adjacent sites since the date of this classification. Altering the site classification may be required in some cases.

7. <u>Site Maintenance</u>

The classifications presented in this report have been assessed for moisture variations caused by climatic and "normal" garden conditions. More severe moisture variation can be caused by other common factors, such as removing or planting trees, leaking plumbing, irrigation systems etc. Guidelines to appropriate site maintenance are provided in CSIRO 10-91 "A Guide to Home Owners on Foundation Maintenance and Footing Performance". Most Damage to residences on reactive sites is due to poor site maintenance. Footings designed to AS2870 may not perform satisfactorily if sites are not properly maintained.

C:\\lab\forms\reports\R014-2

Form No R014-2/Ver01/1198

Appendix G

XStabl Slope Stability Computer Printout

BH1DS

********* * XSTABL * Slope Stability Analysis * * using the * Method of Slices * * Copyright (C) 1992 Ä 97 * Interactive Software Designs, Inc. * * Moscow, ID 83843, U.S.A. ٠ * All Rights Reserved × * Ver. 5.202 96 Ä 1324 * *****

Problem Description : Airds BH 1 Downstream Embank

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segme	ent x-le	eft y-left	x-righ	nt y-rigi	ht Soil Unit
No.	(m)	(m)	(m)	(m)	Below Segment
					_
1	10.0	10.0	15.0	10.0	2
2	15.0	10.0	19.0	12.0	1
3	19.0	12.0	23.0	12.0	1

2 SUBSURFACE boundary segments

Segment x-left y-left x-right y-right Soil Unit No. (m) (m) (m) Below Segment

Page 1

BH1DS

1	10.0	10.0	15.0	10.0	2
2	15.0	10.0	23.0	10.0	2

ISOTROPIC Soil Parameters

2 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface No. (kN/m3) (kN/m3) (kPa) (deg) Ru (kPa) No.

1	17.0	20.0	.0	24.00	.000	.0	1
2	17.0	20.0	1.0	33.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 9.81 (kN/m3)

Water Surface No. 1 specified by 3 coordinate points

PHREATIC SURFACE,

Point	x-water	y-water
No.	(m)	(m)
1	10.00	10.00
2	15.00	10.00
3	23.00	11.50

BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN SPECIFIED

LOWER limiting boundary of 1 segments:

Segment x-left y-left x-right y-right No. (m) (m) (m) (m) 1 10.0 9.0 23.0 9.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

100 trial surfaces will be generated and analyzed.

10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 12.0 m and x = 15.0 m

Each surface terminates between x = 19.0 mand x = 23.0 m

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = ..0 m

***** DEFAULT SEGMENT LENGTH SELECTED BY XSTABL ****

1.0 m line segments define each trial failure surface.

ANGULAR RESTRICTIONS

BH1DS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

***** SIMPLIFIED BISHOP METHOD *****

The most critical circular failure surface is specified by 8 coordinate points

Point No.	x-surf (m)	y-surf (m)
100.		
1	14.33	10.00
2	15.33	9.89
3	16.32	9.96
4	17.29	10.22
5	18.19	10.66
6	19.00	11.25
7	19.68	11.98
8	19.69	12.00

**** Simplified BISHOP FOS = 1.227 ****

The following is a summary of the TEN most critical surfaces

Problem Description : Airds BH 1 Downstream Embank

Page 4

BH1DS

()	FOS BISHOP					erminal Resisting I x-coord Moment
``		, n) (m)	•			(kN-m)
1.	1.227	15.42	15.26	5.37	14.33	19.69 1.350E+02
2.	1.276	15.34	15,79	5.95	14.00	19.89 1.714E+02
З.	1.287	15.10	15.42	5.61	13.67	19.52 1.436E+02
4 .	1.292	15.90	13.31	3.43	15.00	19.07 7.586E+01
5.	1.297	15.31	16.63	6.76	14.00	20.21 2.077E+02
6.	1.318	15. 1 2	16.83	6.98	13.67	20.15 2.131E+02
7.	1.329	14.48	16.50	6.67	13.00	19.40 1.373E+02
8.	1.341	16.05	14.43	4.56	15.00	19.87 1.448E+02
9.	1.391	15.44	14.47	4.80	13.67	19.54 1.644E+02
10.	1.396	15.72	14.51	4.82	14.00	19.81 1.817E+02

*** END OF FILE ***

BH2DS XSTABL File: BH2DS 4-02-** 20:11

* XSTABL *
* *
* Slope Stability Analysis *
* using the *
* Method of Slices *
* *
* Copyright (C) 1992 Ä 97 *
* Interactive Software Designs, Inc. *
* Moscow, ID 83843, U.S.A. *
* *
* All Rights Reserved *
* *
* Ver. 5.202 96 Ä 1324 *

Problem Description : Airds BH 2 Downstream Embank

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

Segme	ent x-le	eft y-left	x-righ	nt y-righ	nt Soil Unit
No.	(m)	(m)	(m)	(m)	Below Segment
1	10.0	10.0	15.0	10.0	2
2	15.0	10.0	23.8	13.5	1
3	23.8	13.5	26.8	13.5	1

2 SUBSURFACE boundary segments

Segment x-left y-left x-right y-right Soil Unit No. (m) (m) (m) Below Segment

Page 1

BH2DS

1	10.0	10.0	15.0	10.0	2
2	15.0	10.0	26.8	10.0	2

ISOTROPIC Soil Parameters

2 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface No. (kN/m3) (kN/m3) (kPa) (deg) Ru (kPa) No.

1	19.5	23.0	.0	24.00	.000	.0	1
2	17.0	20.0	3.0	33.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 9.81 (kN/m3)

Water Surface No. 1 specified by 3 coordinate points

PHREATIC SURFACE,

Point	x-water	y-water
No.	(m)	(m)
1	10.00	10.00
2	15.00	10.00
3	26.80	13.00

BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN SPECIFIED

LOWER limiting boundary of 1 segments:

Segment x-left y-left x-right y-right No. (m) (m) (m) (m) 1 10.0 9.0 26.8 9.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

100 trial surfaces will be generated and analyzed.

10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 12.0 m and x = 15.0 m

Each surface terminates between x = 23.8 mand x = 26.0 m

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 m

**** DEFAULT SEGMENT LENGTH SELECTED BY XSTABL ****

1.0 m line segments define each trial failure surface.

ANGULAR RESTRICTIONS

BH2DS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

***** SIMPLIFIED BISHOP METHOD *****

The most critical circular failure surface is specified by 12 coordinate points

Point	x-surf	y-surf
No.	(m)	(m)
1	14.67	10.00
2	15.66	9.89
3	16.66	9.87
4	17.66	9.95
5	18.64	10.12
6	19.61	10.39
7	20.54	10.74
8	21.44	11.18
9	22.29	11.70
10	23.09	12.30
11	23.83	12.98
12	24.31	13.50

**** Simplified BISHOP FOS = 1.294 ****

BH2DS

The following is a summary of the TEN most critical surfaces

Problem Description : Airds BH 2 Downstream Embank

(1	FOS BISHOP	Circle C x-coor				erminal Resisting x-coord Moment
(n) (m)	•		(m)	(kN-m)
1.	1.294	16.33	20.47	10.60	14.67	24.31 8.982E+02
2.	1.298	15.29	21.88	11.99	13.67	23.86 7.685E+02
3.	1.299	15,96	20.28	10.40	14.33	23.84 7.475E+02
4.	1.313	16.22	21.14	1 1.29	14.33	24.53 1.025E+03
5.	1.332	15.76	22.16	12.34	13.67	24.54 1.100E+03
6.	1.334	15.46	23.39	13.56	13.33	24.72 1.203E+03
7.	1.350	15.60	22.75	12.95	13.33	24.66 1.197E+03
8.	1.353	15.27	23.91	14.09	13.00	24.76 1.263E+03
9.	1.353	15.61	22.34	12.55	13.33	24.51 1.135E+03
10 .	1.371	15.42	24.23	14.44	13.00	25.08 1.440E+03

*** END OF FILE ***

****** * XSTABL * Slope Stability Analysis × using the * Method of Slices * ٠ Copyright (C) 1992 Ä 97 * × Interactive Software Designs, Inc. * * Moscow, ID 83843, U.S.A. * * All Rights Reserved * Ver. 5.202 96 Ä 1324 * ***

Problem Description :

SEGMENT BOUNDARY COORDINATES

3 SURFACE boundary segments

_		-	-		ht Soil Unit Below Segment
1	10.0	10.0	13.5	10.0	2
2	13.5	10.0	17.0	13.5	1
3	17.0	13.5	19.5	13.5	1

2 SUBSURFACE boundary segments

Segment x-left y-left x-right y-right Soil Unit No. (m) (m) (m) Below Segment

Page 1

1	10.0	10.0	13.5	10.0	2
2	13,5	10.0	19.5	10.0	2

ISOTROPIC Soil Parameters

2 Soil unit(s) specified

Soil Unit Weight Cohesion Friction Pore Pressure Water Unit Moist Sat. Intercept Angle Parameter Constant Surface No. (kN/m3) (kN/m3) (kPa) (deg) Ru (kPa) No.

1	19.5	23.0	.0	24.00	.000	.0	1
2	17.0	20.0	3.0	33.00	.000	.0	1

1 Water surface(s) have been specified

Unit weight of water = 9.81 (kN/m3)

Water Surface No. 1 specified by 4 coordinate points

PHREATIC SURFACE,

Point No.	(m)	y-water (m)
1	10.00	10.00
2	13.50	10.00
3	16.50	13.00
4	19.50	13.00

BOUNDARIES THAT LIMIT SURFACE GENERATION HAVE BEEN

LOWER limiting boundary of 1 segments:

 Segment
 x-left
 y-left
 x-right
 y-right

 No.
 (m)
 (m)
 (m)
 (m)

 1
 10.0
 9.0
 19.5
 9.0

A critical failure surface searching method, using a random technique for generating CIRCULAR surfaces has been specified.

100 trial surfaces will be generated and analyzed.

10 Surfaces initiate from each of 10 points equally spaced along the ground surface between x = 12.0 m and x = 13.5 m

Each surface terminates between x = 18.0 mand x = 19.0 m

Unless further limitations were imposed, the minimum elevation at which a surface extends is y = .0 m

***** DEFAULT SEGMENT LENGTH SELECTED BY XSTABL ****

1.0 m line segments define each trial failure surface.

ANGULAR RESTRICTIONS

The first segment of each failure surface will be inclined within the angular range defined by :

Lower angular limit := -45.0 degrees Upper angular limit := (slope angle - 5.0) degrees

Factors of safety have been calculated by the :

***** SIMPLIFIED BISHOP METHOD *****

The most critical circular failure surface is specified by 8 coordinate points

Point No.	x-surf (m)	y-surf (m)
1	13.50	10.00
2	14,48	10.21
3	15.40	10.59
4	16.24	11.13
5	16.98	11.81
6	17.59	12.60
7	18.05	13.49
8	18.05	13.50

**** Simplified BISHOP FOS = .429 ****

The following is a summary of the TEN most critical surfaces

Problem Description :

(E	FOS BISHOI					erminal Resisting d x-coord Moment
,		(m) (m				(kN-m)
1.	.429	12.78	15.65	5.69	13.50	18.05 1.494E+02
2.	.435	-102,62	182.78	208.1	7 13.5	0 18.54 3.196E+03
3.	.474	13.41	14.95	4.95	13.50	18.12 1.608E+02
4.	.492	12.92	16.55	6.57	13.50	18.72 2.407E+02
5.	.529	13.84	14.66	4.67	13.50	18.34 1.895E+02
6.	.544	13.86	14.95	4.96	13.50	18.58 2.177E+02
7.	.645	13.30	15.05	5.17	12.17	18.22 2.498E+02
8.	.653	13.53	14.68	4.79	12.50	18.15 2.358E+02
9.	.662	13.57	14.44	4.57	12.50	18.01 2.230E+02
10.	.668	13.39	14.74	4.90	12.17	18.11 2.458E+02

*** END OF FILE ***

Appendix H

Explanatory Notes.

GeoEnviro Consultancy Pty Ltd

EXPLANATORY NOTES

Introduction

These notes have been provided to amplify the geotechnical report with regard to investigation procedures, classification methods and certain matters relating to the Discussion and Comments sections. Not all notes are necessarily relevant to all reports.

Geotechnical reports are based on information gained from finite sub-surface probing, excavation, boring, sampling or other means of investigation, supplemented by experience and knowledge of local geology. For this reason they must be regarded as interpretative rather than factual documents, limited to some extent by the scope of information on which they rely.

Description and Classification Methods

The methods the description and classification of soils and rocks used in this report are based on Australian standard 1726, the SSA Site investigation Code, in general descriptions cover the following properties - strength or density, colour, structure, soil or rock type and inclusions. Identification and classification of soil and rock involves to a large extent, judgement within the acceptable level commonly adopted by current geotechnical practices.

Soil types are described according to the

predominating particle size, qualified by the grading or other particles present (eg sandy clay) on the following bases:

Soil Classification	Particle Size
Clay	Less than 0.002mm
Silt	0.002 to 0.6mm
Sand	0.6 to 2.00mm
Gravel	2.00m to 60.00mm

Soil Classification	Particle size
Clay	less than 0.002mm
Silt	0.002 to 0.06mm
Sand	0.06 to 2.00mm
Gravel	2.00mm to 60.00mm

Cohesive soils are classified on the basis of strength, either by laboratory testing or engineering examination. The strength terms are defined as follows:

Classification	Undrained Shear Strength kPa
Very Soft	Less than 12
Soft	12 - 25
Firm	25 - 50
Stiff	50 - 100
Very Stiff	100 - 200
Hard	Greater than 200

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer test (CPT), as below:

Relative Dense	SPT 'N' Value	CPT Cone
	(blows/300mm)	Value (qc-Mpa)
Very Loose	Less than 5	Less than 2
Loose	5 - 10	2 - 5
Medium Dense	10 - 30	5 - 15
Dense	30 - 50	15 - 25
Very Dense	> 50	> 25

Rock types are classified by their geological names, together with descriptive terms on degrees of weathering strength, defects and other minor components. Where relevant, further information regarding rock classification, is given on the following sheet.

Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provided information on plasticity, grained size, colour, type, moisture content, inclusions and depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin walled sample tube (normally know as U_{50}) into the soil and withdrawing a sample of the soil in a relatively undisturbed state. Such Samples yield information on structure and strength and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils. Details of the type and method of sampling are given in the report.

Field Investigation Methods

The following is a brief summary of investigation methods currently carried out by this company and comments on their use and application.

Hand Auger Drilling

The borehole is advanced by manually operated equipment. The diameter of the borehole ranges from 50mm to 100mm. Penetration depth of hand augered boreholes may be limited by premature refusal on a variety of materials, such as hard clay, gravels or ironstone.

Test Pits

These are excavated with a tractor-mounted backhoe or a tracked excavator, allowing close examination of the insitu soils if it is safe to descend into the pit. The depth of penetration is limited to about 3.0m for a backhoe and up to 6.0m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Care must be taken if construction is to be carried out near, or within the test pit locations, to either adequately recompact the backfill during construction, or to design the structure or accommodate the poorly compacted backfill.

Large Diameter Auger (eg Pengo)

The hole is advanced by a rotating plate or short spiral auger generally 300mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 05m) and are disturbed, but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers and is usually supplemented by occasional undisturbed tube sampling.

Continuous Spiral Flight Augers

The hole is advanced by using 90mm - 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling or insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the augers flights, but they are very disturbed and may be highly mixed with soil of other stratum.

Information from the drilling (as distinct from specific sampling by SPT or undisturbed samples) is of relatively low reliability due to remoulding, mixing or softening of samples by ground water, resulting in uncertainties of the original sample depth.

Continuous Spiral Flight Augers (continued)

The spiral augers are usually advanced by using a V - bit through the soil profile refusal, followed by Tungsten Carbide (TC) bit, to penetrate into bedrock. The quality and continuity of the bedrock may be assessed by examination of the recovered rock fragments and through observation of the drilling penetration resistance.

Non - core Rotary Drilling (Wash Boring)

The hole is advanced by a rotary bit, with water being pumped down the drill rod and returned up the annulus, carrying the cuttings, together with some information from the "feel" and rate of penetration.

Rotary Mud Stabilised Drilling

This is similar to rotary drilling, but uses drilling mud as a circulating fluid, which may consist of a range of products, from bentonite to polymers such as Revert or Biogel. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg SPT and U_{50} samples).

Continuous Core Drilling

A continuous core sample is obtained using a diamond tipped core barrel. Providing full core recovery is achieved (which is not always possible in very weak rock and granular soils) this technique provides a very reliable (but relatively expensive) method of investigation. In rocks an NMLC triple tube core barrel which gives a core of about 50mm diameter, is usually used with water flush.

Portable Proline Drilling

This is manually operated equipment and is only used in sites which require bedrock core sampling and there is restricted site access to truck mounted drill rigs. The boreholes are usually advanced initially using a tricone roller bit and water circulation to penetrate the upper soil profile. In some instances a hand auger may be used to penetrate the soil profile. Subsequent drilling into bedrock involves the use of NMLC triple tube equipment, using water as a lubricant.

Standard Penetration Tests

Standard penetration tests are used mainly in non-cohesive soils, but occasionally also in cohesive soils, as a means of determining density or strength and of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289 "Methods of testing Soils for Engineering Purpose"- Test F31.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63Kg hammer with a free fall of 769mm. It is normal for the tube to be driven in three successive 150mm increments and the "N" value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rocks, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

In a case where full penetration is obtained with successive blows counts for each 150mm of, say 4, 6, and 7 blows.

In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm.

as 15,30/40mm

The results of the tests can be related empirically to the engineering properties of the soil. Occasionally the test

methods is used to obtain samples in 50mm diameter thin walled samples tubes in clays. In these circumstances, the best results are shown on the bore logs in brackets.

Dynamic Cone Penetration Test

A modification to the SPT test is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The cone can be continuously driven into the borehole and is normally used in areas with thick layers of soft clays or loose sand. The results of this test are shown as 'N_c' on the bore logs, together with the number of blows per 150mm penetration.

Cone Penetrometer Testing and Interpretation

Cone penetrometer testing (sometimes referred to as Dutch Cone-CPT) described in this report, has been carried out using an electrical friction cone penetrometer and the test is described in Australian Standard 1289 test F5.1.

In the test, a 35mm diameter rod with cone tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig, which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130mm long sleeve, immediately behind the cone. Transducer in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20mm per second) the information is output on continuous chart recorders. The plotted results in this report have been traced from the original records. The information provided on the charts comprises:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone, expressed in Mpa.
- Sleeve friction the frictional force on the sleeve divided by the surface area, expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percentage.

There are two scales available for measurement of cone resistance. The lower "A" scale (0-5Mpa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main "B" scale (0-50Mpa) is less sensitive and is shown as a full line.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative frictions in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and very soft clays, rising to 4% to 10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:

 q_c (Mpa) = (0.4 to 0.6) N (blows per 300mm)

In clays the relationship between undrained shear strength and cone resistance is commonly in the range:

$$q_c = (12 \text{ to} 18) C_u$$

Interpretation of CPT values can also be made to allow estimate of modulus or compressibility values to allow calculation of foundation settlements. Inferred stratification, as shown on the attached report, is assessed from the cone and friction traces, from experience and information from nearby boreholes etc.

Cone Penetrometer Testing and Interpretation continued

This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties and where precise information or soil classification is required, direct drilling and sampling may be preferable.

Portable Dynamic Cone Penetrometer (AS1289)

Portable dynamic cone penetrometer tests are carried out by driving a rod in to the ground with a falling weight hammer and measuring the blows per successive 100mm increments of penetration.

There are two similar tests, Cone Penetrometer (commonly known as Scala Penetrometer) and the Perth Sand Penetrometer. Scala Penetrometer is commonly adopted by this company and consists of a 16mm rod with a 20mm diameter cone end, driven with a 9kg hammer, dropping 510mm (AS 1289 Test F3.2).

Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedures are given on the individual report forms.

Engineering Logs

The engineering logs presented herein are an engineering and/or geological interpretation of the sub-surface conditions and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, however, this is not always practicable or possible to justify economically. As it is, the boreholes represent only a small sample of the total sub-surface profile. Interpretation of the information and its application to design and construction should take into account the spacing of boreholes, frequency of sampling and the possibility of other than "straight line" variations between the boreholes.

Ground water

Where ground water levels are measured in boreholes, there are several potential problems:

- In low permeability soils, ground water although present, may enter the hole slowly, or perhaps not at all, during the investigation period.
- ➤ A localised perched water table may lead to a erroneous indication of the true water table.
- Water table levels will vary from time to time, due to the seasons or recent weather changes. They may not be the same at the time of construction as indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole if any water observations are to be made.

More reliable measurements can be made by installing stand pipes, which are read at intervals over several days, or weeks for low permeability soils. Piezometers sealed in a particular stratum may be interference from a perched water table or surface water.

Engineering Reports

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal is changed, say to a twenty storey building. If this occurs, the company will be pleased to review the report and sufficiency of the investigation work. Every care is taken with the report as it relates to interpretation of sub-surface conditions, discussions of geotechnical aspects and recommendations or suggestions for design and construction. However, the company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on bore spacing and sampling frequency.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of contractors responding to commercial pressures.

If these occur, the company will be pleased to assist with investigation or advice to resolve the matter.

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the company request immediate notification. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

Reproduction of Information for Contractual Purposes Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information trader Documents", published by the Institute of Engineers Australia. Where information obtained for this investigation is provided for tender purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or make additional copies of the report available for contract purpose, at a nominal charge.

Site Inspection

The Company will always be pleased to provide engineering inspection services for geotechnical aspect of work to which this report is related. This could range from a site visit to confirm that the conditions exposed are as expected, to full time engineering presence on site

Review of Design

Where major civil or structural developments are proposed, or where only a limited investigation has been completed, or where the geotechnical conditions are complex, it is prudent to have the design reviewed by a Senior Geotechnical Engineer.