

DRAWN BY: GRB/LD

@ A3 DATE: 17.01.2011

Proposed Macquarie Village

110 - 114 Herring Road, Macquarie Park

OFFICE: Sydney

SCALE: 1:500 (H) 1:100 (V)

AM

PERTY NDARY	F
SURFACE LEVEL	
	···· e
	6
NOTES: 1. The ground surface level is estimated;	6
however is largerly unknown over the existing building footprint.	
2. Subsurface profile is accurate at bore	
locations only and may vary significantly away from bores.	60
 For details of Section F-F' refer Drawing 1 	
GEOLOGICAL PROFILE:	
UNIT 1: Filling UNIT 2: Residual clays and extremely	
weathered rock	58
UNIT 3: Laminite and fine to medium grained sandstone (Mittagong Formati	on)
UNIT 4: Medium to coarse grained sandstone (Hawkesbury Sandstone)	
	56
NOTE: Summary logs only. Should be read in conjunction with detailed logs 160	
SITE MAP	
,4 <u>1</u> 1	
1/10	
PROJECT No: 721	38
DRAWING No: 7	
REVISION: 0	

Appendix B

Results of Field Work

Soil Descriptions

Description and Classification Methods

The methods of description and classification of soils and rocks used in this report are based on Australian Standard AS 1726, Geotechnical Site Investigations Code. In general, the descriptions include strength or density, colour, structure, soil or rock type and inclusions.

Soil Types

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)
Boulder	>200
Cobble	63 - 200
Gravel	2.36 - 63
Sand	0.075 - 2.36
Silt	0.002 - 0.075
Clay	<0.002

The sand and gravel sizes can be further subdivided as follows:

Туре	Particle size (mm)
Coarse gravel	20 - 63
Medium gravel	6 - 20
Fine gravel	2.36 - 6
Coarse sand	0.6 - 2.36
Medium sand	0.2 - 0.6
Fine sand	0.075 - 0.2

The proportions of secondary constituents of soils are described as:

Term	Proportion	Example
And	Specify	Clay (60%) and Sand (40%)
Adjective	20 - 35%	Sandy Clay
Slightly	12 - 20%	Slightly Sandy Clay
With some	5 - 12%	Clay with some sand
With a trace of	0 - 5%	Clay with a trace of sand

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes
- Poorly graded an excess or deficiency of particular sizes within the specified range
- Uniformly graded an excess of a particular particle size
- Gap graded a deficiency of a particular particle size with the range

Cohesive Soils

Cohesive soils, such as clays, are classified on the basis of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defined as follows:

Description	Abbreviation	Undrained shear strength (kPa)
Very soft	VS	<12
Soft	S	12 - 25
Firm	f	25 - 50
Stiff	st	50 - 100
Very stiff	vst	100 - 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basis of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT) or dynamic penetrometers (PSP). The relative density terms are given below:

Relative Density	Abbreviation	SPT N value	CPT qc value (MPa)
Very loose	vl	<4	<2
Loose		4 - 10	2 -5
Medium dense	md	10 - 30	5 - 15
Dense	d	30 - 50	15 - 25
Very dense	vd	>50	>25

Soil Descriptions

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site; or
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits
- Lacustrine lake deposits
- Aeolian wind deposits
- Littoral beach deposits
- Estuarine tidal river deposits
- Talus scree or coarse colluvium
- Slopewash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

Rock Descriptions

Rock Strength

Rock strength is defined by the Point Load Strength Index $(Is_{(50)})$ and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standard 4133.4.1 - 1993. The terms used to describe rock strength are as follows:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx Unconfined Compressive Strength MPa*
Extremely low	EL	<0.03	<0.6
Very low	VL	0.03 - 0.1	0.6 - 2
Low	L	0.1 - 0.3	2 - 6
Medium	М	0.3 - 1.0	6 - 20
High	Н	1 - 3	20 - 60
Very high	VH	3 - 10	60 - 200
Extremely high	EH	>10	>200

* Assumes a ratio of 20:1 for UCS to Is₍₅₀₎

Degree of Weathering

The degree of weathering of rock is classified as follows:

Term	Abbreviation	Description
Extremely weathered	EW	Rock substance has soil properties, i.e. it can be remoulded and classified as a soil but the texture of the original rock is still evident.
Highly weathered	HW	Limonite staining or bleaching affects whole of rock substance and other signs of decomposition are evident. Porosity and strength may be altered as a result of iron leaching or deposition. Colour and strength of original fresh rock is not recognisable
Moderately weathered	MW	Staining and discolouration of rock substance has taken place
Slightly weathered	SW	Rock substance is slightly discoloured but shows little or no change of strength from fresh rock
Fresh stained	Fs	Rock substance unaffected by weathering but staining visible along defects
Fresh	Fr	No signs of decomposition or staining

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20 mm
Highly Fractured	Core lengths of 20-40 mm with some fragments
Fractured	Core lengths of 40-200 mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200-1000 mm with some shorter and loner sections
Unbroken	Core lengths mostly > 1000 mm

Rock Descriptions

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation of RQD.

Stratification Spacing

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6 mm
Laminated	6 mm to 20 mm
Very thinly bedded	20 mm to 60 mm
Thinly bedded	60 mm to 0.2 m
Medium bedded	0.2 m to 0.6 m
Thickly bedded	0.6 m to 2 m
Very thickly bedded	> 2 m

Symbols & Abbreviations

Introduction

These notes summarise abbreviations commonly used on borehole logs and test pit reports.

Drilling or Excavation Methods

С	Core Drilling
R	Rotary drilling
SFA	Spiral flight augers
NMLC	Diamond core - 52 mm dia
NQ	Diamond core - 47 mm dia
HQ	Diamond core - 63 mm dia
PQ	Diamond core - 81 mm dia

Water

\triangleright	Water seep
$\overline{\bigtriangledown}$	Water level

Sampling and Testing

- Auger sample А
- В Bulk sample
- D Disturbed sample Е
- Environmental sample
- U₅₀ Undisturbed tube sample (50mm)
- W Water sample
- pocket penetrometer (kPa) pp
- PID Photo ionisation detector
- PL Point load strength Is(50) MPa
- S Standard Penetration Test V Shear vane (kPa)

Description of Defects in Rock

The abbreviated descriptions of the defects should be in the following order: Depth, Type, Orientation, Coating, Shape, Roughness and Other. Drilling and handling breaks are not usually included on the logs.

Defect Type

В	Bedding plane
Cs	Clay seam
Cv	Cleavage
Cz	Crushed zone
Ds	Decomposed seam
F	Fault
J	Joint
Lam	lamination
Pt	Parting
Sz	Sheared Zone
V	Vein

Orientation

The inclination of defects is always measured from the perpendicular to the core axis.

h horizonta

21

- vertical ٧
- sub-horizontal sh
- sub-vertical sv

Coating or Infilling Term

cln	clean
со	coating
he	healed
inf	infilled
stn	stained
ti	tight
vn	veneer

Coating Descriptor

ca	calcite
cbs	carbonaceous
cly	clay
fe	iron oxide
mn	manganese
slt	silty

Shape

cu	curved
ir	irregular
pl	planar
st	stepped
un	undulating

Roughness

ро	polished
ro	rough
sl	slickensided
sm	smooth
vr	very rough

Other

fg	fragmented
bnd	band
qtz	quartz

Symbols & Abbreviations

Graphic Symbols for Soil and Rock

General

Asphalt Road base

Concrete

Filling

Soils

Topsoil

Peat

Clay

Silty clay

Sandy clay

Gravelly clay

Shaly clay

Silt

Clayey silt

Sandy silt

Sand

Clayey sand

Silty sand

Gravel

Sandy gravel

Cobbles, boulders

Talus

Sedimentary Rocks

Limestone

Metamorphic Rocks

Slate, phyllite, schist

Quartzite

Gneiss

Igneous Rocks

Granite

Dolerite, basalt, andesite

Dacite, epidote

Tuff, breccia

Porphyry

...

July 2010

CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 101 PROJECT No: 72138 DATE: 20/12/2010 SHEET 1 OF 2

Π			Description	De	egre	ee of	Graphic Log	St	Roc ren			Fracture		Discontinuities	S	ampli	ng &	In Situ Testing
RL	Dep (m)		of			iennų	aph			IEI.	Water	Spacing (m)		B - Bedding J - Joint	e	<u>ه</u> %	0	Test Results
	(,	′	Strata	N A	Ŵ	N S S	σ	Very Low					8	S - Shear F - Fault	Type	No.	RQD %	& Comments
8		.18	CONCRETE - 180mm	<u> </u>	Π	<u>רך</u>	4.4				Ĭ					1	1	
		0.3	FILLING - poorly compacted, grey				X V V V V V											
	0	.65	CONCRETE - 350mm		ļļ	ÌÌ	XX		İİ	ÌÌ								
	- 1		FILLING - poorly compacted, yellow brown, sandstone cobbles				\bigotimes											
"			and boulders filling				\bigotimes								A/E			
ļ ļ							\mathbb{N}									-		
EE							\mathbb{X}											
ŀŀ							\mathbb{N}											
-8-	-2 :	2.0-	CONCRETE - 300mm										1	Note: Unless otherwise stated, rock is fractured				
ĒĒ	:	2.3	FILLING - poorly compacted, grey				κ.							along rough planar bedding planes dipping				
[[gravel filling				\boxtimes							between 0°- 10°				
} - -							\bigotimes											
-92	-3	2.9	SANDSTONE - high strength,	1					1-1				\uparrow					
[[moderately then highly weathered, fractured to slightly fractured, light	1														
<u></u>			grey and red-purple, medium to coarse grained sandstone												С	96	84	
FF			source graned surfactorie	1														PL(A) = 1.6
-8-	4														с	100	100	
ţŢ		1.2			Li.			11	-	Ļ	ļ			4m: J85°, pl, ro, fe 4.18m: CORE LOSS:				PL(A) = 0.6
ĒĒ	4.	36	LAMINITE - high then medium			- 	····					╶╬╡╼┓┼┼		20mm	С	100	77	FL(A) - 0.0
t t			strength, moderately weathered, slightly fractured, dark grey laminite	Ì	J.	į į		ii	ľ	ii	i	ii lii	1	4.2m: J80°, pl, ro, fe 4.34m: CORE LOSS:	С	100	92	
<u></u>		おント	SANDSTONE - high strength, fresh			┪╎			14					20mm 4.75m: Cz, 20mm				
-8-	5		and fresh stained then slightly	ij	I	jį į		İİ	ii	ii	i	li li		4.7 off. 02, 201111	с	100	94	
EE			weathered, slightly fractured and unbroken, medium to coarse					- - - 						5.23m: Cs, 10mm	-			
			grained sandstone with distinct laminations	İ	İ	i i		ij.	ii	İİ	l li							PL(A) = 1.2
															с	100	100	
-29-	6			11				İİ.			ļ							
													1					
:					Ì	i i		İİ.		ÌÌ								
															С	100	100	PL(A) = 1.1
-6-	7				ļ	11												
:					1	¦ ¦												
: [
. -					1	i il			i		li							PL(A) = 2
	•																	
8-	0			ii	i	ii			i		l							
					1										с	100	97	
					Ì	i il			i									PL(A) = 1.6
-													4					
-8-	9			ij	i	i il		i i i	i	i i l	li							
: -					1													PL(A) = 1
-				ii	i	ii		iii	i	i i	ļ							
					1										с	100	100	
Ŀ				ii	li_	i i	••••••	iii	il	iil	i	ii il			U U	100	100	

RIG: Multi-drill

DRILLER: Traccess

LOGGED: PGH

CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m

WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 68 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 101 PROJECT No: 72138 DATE: 20/12/2010 SHEET 2 OF 2

	Γ	D	Description	De	egre	e of	Graphic Loa		R Stre	ock enat	th	Ļ	F	Fract	ture		Discontinuities	Sa	ampli	ng &	In Situ Testing
뮡	!	Depth (m)	of				Log	×		Ę	틾	Vate		Spac (m			B - Bedding J - Joint	be	see.	۵.,	Test Results
-89	L		Strata	Å ₹	Ň	S S L	τU	EXLC		Ligh	اچًا	т > Х	0.01	0.05	0.50	3	S - Shear F - Fault	Type	ပိမ္မိ	RQD %	& Comments
57	<u></u>	11	SANDSTONE - high strength, fresh and fresh stained then slightly weathered, slightly fractured and unbroken, medium to coarse grained sandstone with distinct laminations (continued)															с	100	100	PL(A) = 2.5
		12 12.0-													· · · · · · · · · · · · · · · · · · ·			с	100	100	PL(A) = 2
	ŀ	- 12.0	Bore discontinued at 12.0m							11					- - " 	T					
· · · · · · · · · · · · · · · · · · ·	-1	3																			
	- 1	4																			
	- 1:	5																			
52	16	5																			
19 1 1 1 1 1 1 1 1	17	,																			
50 · · · · · · · · · · · · · · · · · · ·	18	i								Ì	1		Ì								
	19												 								
-																					

RIG: Multi-drill

DRILLER: Traccess

LOGGED: PGH

CASING: NW to 2.0m

TYPE OF BORING: Diatube 0.00-0.18m & 0.3-0.60m; Solid flight auger (TC-bit) 0.18-0.30 & 0.60-2.0m; NMLC-Coring 2.0-2.3m & 2.8-12.0m WATER OBSERVATIONS: No free groundwater observed whilst augering

REMARKS: Difficulty recovering samples in filling due to collapsing ground conditions

SURVEY DATUM:

CLIENT: Stamford Property Services Pty Ltd PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 102 PROJECT No: 72138 **DATE:** 9/12/2010 SHEET 1 OF 2

Donat	Description	Degree of Weathering .≌	Rock Strength	Fracture	Discontinuities				In Situ Testing
Depth (m)	of Strata	Degree of Weathering ∰ ∯ ≹ § ≋ ≌ ∰	High High Action	Spacing (m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results
0.05 0.46 0.66 -1 1.0 1.36	ASPHALT - 50mm thick FILLING (ROADBASE) - grey blue metal gravel filling CLAY - red brown clay with ironstone bands SANDSTONE - extremely low strength, extremely weathered, sandstone with high strength				Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping between 0°- 10° 1m: CORE LOSS: 360mm	E/A E/A E/A		77	Comments PL(A) = 0.8
-3 3.0-	SANDSTONE - medium to high strength, moderately weathered,				2.77m: J50°, pl, ro 3.07m: Cz, 20mm				PL(A) = 0.6
	fractured and slightly fractured, light grey, fine to medium grained sandstone - distinct and indistinct laminations from 3.7 to 4.6m				3.7m: Cs, 10mm	с	100	88	PL(A) = 0.7
-5	SANDSTONE - high strength, slightly and moderately weathered, slightly fractured, light grey and light orange, medium grained sandstone					с	100 1	100	PL(A) = 1.8 PL(A) = 1.3
6.2	SANDSTONE - medium to high strength, moderately weathered, slightly fractured, orange brown, medium grained sandstone SANDSTONE - high strength,				6.22m: Cs, 10mm 6.36m: Cz, pl, ro, cly				PL(A) = 0.5
	slightly weathered then fresh, slightly fractured, light orange then grey, medium grained sandstone 7.4-7.5m: distinct laminations				7.13m: Cs, 10mm	C 1	100 1	00	PL(A) = 1.1 PL(A) = 1.6 PL(A) = 1.6
Bobca PE OF BO TER OB MARKS:	ORING: Solid flight auger (TC-bit) to SERVATIONS: No free groundwate	0.90m; NMLC	-Coring to 13.05m	ED: PGH	9.78m: J70°, pl, ro, cln CASING: HW SURVE				

CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 102 PROJECT No: 72138 DATE: 9/12/2010 SHEET 2 OF 2

Depth	Description	Degree of Weathering	Rock Strength	Fracture Spacing	Discontinuities		g & In Situ Testir
(m)	of Strata	Degree of Weathering ﷺ ≩ ≸ ⊗ ღ ස	Craphic Graphic Very Low Medium Mediu	(m)	B - Bedding J - Joint S - Shear F - Fault	Type Core Rec. %	Test Resul
-11	SANDSTONE - high strength, slightly weathered then fresh, slightly fractured, light orange then grey, medium grained sandstone (continued)				11.36m: Cs, 10mm		PL(A) = 1.5 PL(A) = 1.7 PL(A) = 1.7
	12.45-13.05m: distinct laminations						
⁻¹³ 13.05	Bore discontinued at 13.05m						
-14 -15 -16							
17							
18							
19							

TYPE OF BORING: Solid flight auger (TC-bit) to 0.90m; NMLC-Coring to 13.05m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

SAMI A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample	PLIN G P U, W	G & IN SITU TESTING Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep	PID Pho PL(A) Poir PL(D) Poir pp Poor	oto ionisation detector (ppm) nt load axial test Is(50) (MPa) nt load diametral test Is(50) (MPa) cket penetrometer (kPa)
E Environmental sample	¥	Water level	V She	ndard penetration test ear vane (kPa)

SURVEY DATUM:

•

CLIENT: Stamford Property Services Pty Ltd PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.3 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 103 PROJECT No: 72138 DATE: 14/12/2010 SHEET 1 OF 2

	Donth	Description	Degree of Weathering Prock Strength B Fracture Spacing (m) Discontinuities M ± W ≤ S ≤ ± I <		Discontinuities	Sampling & In Situ Test							
R	Depth (m)	of Strata	EW MW SSW FR	Grap	ery Low	High I	Wat	(m)	B - Bedding J - Joint S - Shear F - Fault	Type	Core Rec. %	RQD %	Test Results & Comments
71 72 72		ASPHALT - 50mm FILLING (ROADBASE) - grey blue metal gravel filling SANDSTONE - extremely low strength, extremely weathered, orange and grey sandstone							Note: Unless otherwise stated, rock is fractured along rough planar bedding planes dipping between 0°- 10°	A/E A/E A/E S			11,17,22 N = 39
69	1.61 . ₂ 1.95- 2.4- ·3 3.3-	SANDSTONE - very low to low strength, highly weathered, slightly fractured, orange, medium grained sandstone SANDSTONE - medium strength, fresh and moderately weathered, slightly fractured, light grey, medium grained sandstone with distinct laminations SANDSTONE - high strength, slightly and moderately weathered then fresh, slightly fractured and unbroken, light orange and light grey, medium grained sandstone							1.5m: CORE LOSS: 110mm 2.38m: Cs, 10mm 2.52m: J70°- 85°, pl, ro, cln 2.84m: J55°, pl, ro, he 2.95m: Cs, 20mm	с	96		PL(A) = 0.6 PL(A) = 0.9
63	5	- siltstone laminations from 3.3 to 4.0m							5.85m: J70°, pl, ro, fe	С	100		PL(A) = 1.3 PL(A) = 1.8 PL(A) = 1.8
	8								7.81m: Cs, 8mm	с	100		PL(A) = 1.6 PL(A) = 1.1
RIG	TER OF	CORING: Solid flight auger (TC-bit) SERVATIONS: No free groundwat Standpipe installed to 14.0m; Gro 22/12/10 and 4.6m on 11/1/11	er observed undwater me	while	st auger	to 14 ing	.08n		CASING: HV				PL(A) = 1.5
BLK C D	Auger sam Bulk samp Block sam Core drillin Disturbed Environme	le P Piston sample ple U _x Tube sample (x mm dia.) I g W Water sample sample D Water seep S	LEGEND PID Photo ionisa PL(A) Point load a PL(D) Point load d DP Pocket pend S Standard pe / Shear vane	ixial tes liametra etromel enetrati	it Is(50) (MF al test Is(50 ter (kPa)	Pa)		$\mathbf{\Phi}$	Douglas Geotechnics I Envi	i ron	Pa	ar t 1	tners Groundwate

Stamford Property Services Pty Ltd CLIENT: PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park SURFACE LEVEL: 72.3 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 103 PROJECT No: 72138 DATE: 14/12/2010 SHEET 2 OF 2

		Description	Degree of Weathering A A A A A A A A A A A A A A A A A A A		Fracture	Discontinuities	Sampling & In Situ Testing				
L D D	epth (m)	of		Log	Strength Ex tow Low High Ex High High Ex High High Ex High	Spacing (m)	B - Bedding J - Joint	Type	Sre 2. %	RQD %	Test Results &
		Strata	H M M M H H M M M M M M M M M M M M M M	U U	EX HIGH	0.01 0.05 0.10 1.00	S - Shear F - Fault	L P	ပိမ္ဆိ	<u>я</u> "	Comments
		SANDSTONE - high strength, slightly and moderately weathered then fresh, slightly fractured and unbroken, light orange and light grey, medium grained sandstone (continued)						с	100		PL(A) = 2 PL(A) = 1.4
- 12											PL(A) = 1.5
- 13 13								с	100		PL(A) = 1.5
ГГ	14.08-	Bore discontinued at 14.08m									
-9 <u>6</u> 											
- 16											
- 17											
- 18											
- 19 											
	DT 10	0 DRILL ORING: Solid flight auger (TC-bit)	ER: SY			GED: PGH	CASING: HW	/ to 1	.50m	I	
VATE	R OE	SERVATIONS: No free groundwat SERVATIONS: No free groundwat Standpipe installed to 14.0m; Gro	er observed	while	st augering		sn.				

REMARKS: Standpipe installed to 14.0m; Groundwater measured at 4.3m on 20/12/10, 4.7 on 22/12/10 and 4.6m on 11/1/11 SAMPLING & IN SITU TESTING LEGEND

A	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample		Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)		Point load diametral test (s(50) (MPa)
C	Core drilling	Ŵ	Water sample	pp`	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	v	Shear vane (kPa)

SURVEY DATUM:

