






## CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 111 PROJECT No: 72138 DATE: 9/12/2010 SHEET 1 OF 2

| Depth<br>(m)    | Description<br>of<br>Strata                                                                                                                                                                                                                                                                               | Degree of<br>Weathering up of the second | Very Low<br>Low<br>Medium<br>Medium<br>High<br>High<br>Ex High<br>Ex High<br>Ex High<br>Ex High<br>O.01 | Fracture<br>Spacing<br>(m)                 | Discontinuities                                                                                                                               | Type |     | ing & | In Situ Testin<br>Test Result |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|-------------------------------|
| 0.15            | CONCRETE - 150mm thick<br>FILLING - brown silty clay filling,<br>with some organic matter (grass<br>cuttings) and sub-rounded gravel<br>FILLING - light brown, silty clay<br>filling with some angular gravel                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            | S - Shear F - Fault<br>Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A/E  | =   |       | Comments                      |
| - 1.1           | LAMINITE - extremely low strength<br>extremely weathered, red purple<br>laminite with some clay<br>LAMINITE - high strength with<br>extremely low strength bands,<br>highly weathered with extremely<br>weathered bands, highly fractured<br>to fractured, grey and red brown,<br>medium grained laminite |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         | ▞₽₽₽₽₽₽₽₽₽₽₽₽<br>ੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵੵ | 1.7m: Cs, 10mm<br>2.05m: Cs, 20mm<br>2.4m: Cs, 20mm<br>2.53m: J45°, pl, ro, cly<br>2.7-2.9m: F90°, pl, ro,                                    | c    |     |       | PL(A) = 1.2                   |
| -4 4.36-        | SANDSTONE - medium to high<br>then high strength, slightly<br>weathered then fresh, slightly                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            | 50mm displaced                                                                                                                                |      |     |       | PL(A) = 1.1<br>PL(A) = 1      |
| 6               | fractured, light grey then orange<br>brown, medium grained sandstone,<br>thickly bedded with indistinct and<br>distinct laminations                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            | 5.3m: J60°, pl, ro, he                                                                                                                        | С    | 100 | 34    | PL(A) = 0.9                   |
| -               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            | 6.35m: Cs, 20mm                                                                                                                               |      |     |       | PL(A) = 0.9                   |
| 8               |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            |                                                                                                                                               |      |     |       | PL(A) = 1.5                   |
|                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            |                                                                                                                                               | с    | 100 | 99    | PL(A) = 1.1                   |
| 2<br> <br> <br> | SANDSTONE - high strength,<br>slightly then moderately weathered,<br>ight grey then orange brown,<br>slightly fractured, medium grained                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            |                                                                                                                                               |      |     |       | PL(A) = 0.8<br>PL(A) = 1.2    |
|                 | sandstone, thickly bedded with<br>distinct laminations                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                         |                                            | -                                                                                                                                             | с    | 100 | 92    |                               |

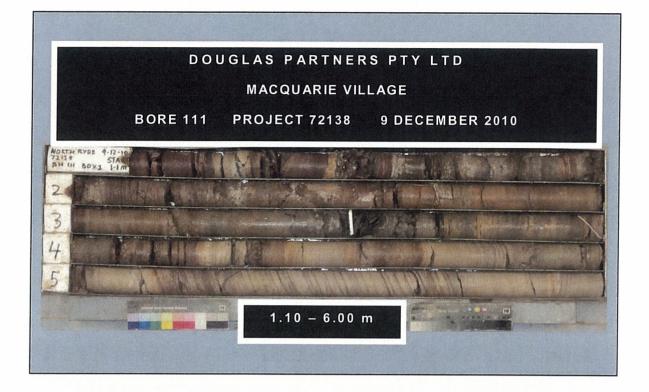
TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:

| SAMF                                                                                                                   | LING & IN SITU TESTING                                                                                           | G LEGEND                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A Auger sample<br>B Bulk sample<br>BLK Block sample<br>C Core drilling<br>D Disturbed sample<br>E Environmental sample | G Gas sample<br>P Piston sample<br>U, Tube sample (x mm dia.)<br>W Water sample<br>▷ Water seep<br>¥ Water level | PID         Photo ionisation detector (ppm)           PL(A) Point load axial test Is(50) (MPa)           PL(D) Point load diametral test Is(50) (MPa)           pp         Pocket penetrometer (kPa)           S         Standard penetration test           V         Shear vane (kPa) |



CLIENT: Stamford Property Services Pty Ltd PROJECT: Macquarie Village LOCATION: 110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72.2 AHD EASTING: **NORTHING:** DIP/AZIMUTH: 90°/--


BORE No: 111 PROJECT No: 72138 DATE: 9/12/2010 SHEET 2 OF 2

| Depth | Description                                                                                                                                                                                                    | Degree of Weathering 글 _                                   | Rock<br>Strength ត្រ                                                                                                                          | Fracture<br>Spacing | Discontinuities                              |      |                |     | In Situ Testin                                        |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|------|----------------|-----|-------------------------------------------------------|
| (m)   | of<br>Strata                                                                                                                                                                                                   | Degree of<br>Weathering<br>Jod<br>Cod<br>Cod<br>Cod<br>Cod | Strength<br>Very Low<br>Very High<br>Medium<br>Very High<br>Ex High<br>Ex High<br>Fill<br>Fill<br>Fill<br>Fill<br>Fill<br>Fill<br>Fill<br>Fil | (m)                 | B - Bedding J - Joint<br>S - Shear F - Fault | Type | Core<br>Rec. % | 00% | Test Result<br>&                                      |
| -11   | SANDSTONE - high strength,<br>slightly then moderately weathered,<br>light grey then orange brown,<br>slightly fractured, medium grained<br>sandstone, thickly bedded with<br>distinct laminations (continued) |                                                            |                                                                                                                                               |                     | 10.78m: Cs, 7mm                              | C    | 100            | 92  | Comments<br>PL(A) = 1.3<br>PL(A) = 1.2<br>PL(A) = 1.3 |
| -13   |                                                                                                                                                                                                                |                                                            |                                                                                                                                               |                     |                                              | с    | 100            | 97  | PL(A) = 1.4                                           |
| 14.2  | Bore discontinued at 14.2m                                                                                                                                                                                     |                                                            | <u>╃┽╀┽</u> ┫┽┼┤<br>╽╽╷╷╷╷╷                                                                                                                   |                     |                                              |      |                |     | PL(A) = 1                                             |
| - 15  |                                                                                                                                                                                                                |                                                            |                                                                                                                                               |                     |                                              |      |                |     |                                                       |
| ·17   | 1                                                                                                                                                                                                              |                                                            |                                                                                                                                               |                     |                                              |      |                |     |                                                       |
| 18    |                                                                                                                                                                                                                |                                                            |                                                                                                                                               |                     |                                              |      |                |     |                                                       |
|       |                                                                                                                                                                                                                |                                                            |                                                                                                                                               |                     |                                              |      |                |     |                                                       |

TYPE OF BORING: Diatube to 0.15m; Solid flight auger (TC-bit) to 1.0m; Rotary (water) to 1.10m; NMLC-Coring to 14.20m WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

SAMPLING & IN SITU TESTING LEGEND A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sam E Environmental Gas sample Piston sample Tube sample (x mm dia.) Water sample Water seep Water level LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) G P U, W Core drilling Disturbed sample ₽ Environmental sample









CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 112 PROJECT No: 72138 DATE: 20/12/2010 SHEET 1 OF 2

| Depth              | Description                                                                                                                                                            | Uegree of<br>Weathering <u>:</u> ≌ _                                                                                          | Rock<br>Strength ក្រ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fracture                     | Discontinuities                                                                                                        | s               |          |          | In Situ Testing        |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|----------|----------|------------------------|
| (m)                | of                                                                                                                                                                     | Degree of<br>Weathering<br>Hdg<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B | Strength<br>Very Low<br>Medum<br>Medum<br>Kery High<br>Reversion<br>Kery High<br>Kery Strength<br>Kery Strengt | Spacing<br>(m)               | B - Bedding J - Joint                                                                                                  | Type            | sre<br>% | RQD<br>% | Test Results           |
| ¥                  | Strata                                                                                                                                                                 | ER S W H EV                                                                                                                   | EX LOW CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.10<br>0.50<br>1.00 | S - Shear F - Fault                                                                                                    | 12              | ် ဂြ မီ  |          | Comments               |
| 0.08<br>0.1<br>0.2 | FILLING - yellow brown, sand filling<br>FILLING (ROADBASE) - grey blue<br>metal gravel filling<br>LAMINITE - extremely low strength,<br>yellow brown laminite          |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping<br>between 0°- 10° | A/E<br>A/E<br>S |          |          | 10,12/125mm<br>refusal |
| - 1.2<br>          | LAMINITE - medium and high<br>strength, highly to moderately<br>weathered, slightly fractured,<br>orange brown, grey and purple red<br>laminite                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        | с               | 100      | 98       | PL(A) = 0.8            |
| -3                 | 2.19-2.4m: fragmented zone                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 2.93m: J45°, st, ro, cln                                                                                               |                 |          |          | PL(A) = 0.6            |
| -4<br>4.6-         | 3.83-3.95m: 130mm clay band<br>SANDSTONE - high strength,<br>highly weathered to fresh, fractured<br>to slightly fractured, orange brown<br>and grey, medium to coarse |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        | С               | 100      | 96       | PL(A) = 1.4            |
| -6                 | grained sandstone                                                                                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        |                 |          |          | PL(A) = 1.6            |
| 7                  |                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        | С               | 100      | 93       | PL(A) = 1.5            |
| 8                  |                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        |                 |          |          | PL(A) = 1              |
|                    |                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        |                 |          |          | PL(A) = 1              |
| 9                  | 9.45-11.20m: distinctly laminated                                                                                                                                      | ╺ <del>╸╸╸╸</del><br>╵╘╧╧╧┨                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                                                                        | с               | 100      | 99       | PL(A) = 1              |

 RIG:
 Multi-drill
 DRILLER:
 SK
 LOGGED:
 PGH

 TYPE OF BORING:
 Diatube to 0.1m;
 Solid flight auger (TC-bit) to 1.2m;
 NMLC-Coring to 14.0m

 WATER OBSERVATIONS:
 No free groundwater observed whilst augering
 REMARKS:

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PL(A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (xmm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 C
 Core drilling
 W
 Water sample
 pp
 Pocket penetrometer (kPa)

 D
 Disturbed sample
 >
 Water seep
 S
 Standard penetration test

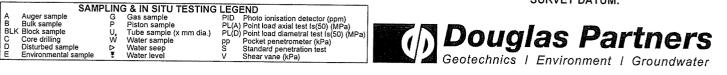
 E
 Environmental sample
 ¥
 Water level
 V
 Shear vane (kPa)



# CLIENT:Stamford Property Services Pty LtdPROJECT:Macquarie VillageLOCATION:110-114 Herring Road, Macquarie Park

SURFACE LEVEL: 72 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 112 PROJECT No: 72138 DATE: 20/12/2010 SHEET 2 OF 2

|                      | Depth   | Description                                                                                                                                                                     | Degree of<br>Weathering<br>Degree of<br>Upp<br>Upp<br>Upp<br>Upp<br>Upp | Rock<br>Strength ਰਹ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fracture<br>Spacing | Discontinuities                              | Sa   | ampli         | ng &     | In Situ Testing            |
|----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|------|---------------|----------|----------------------------|
| RL                   | (m)     | of<br>Strata                                                                                                                                                                    | Grap                                                                    | Strength<br>Kerk Low<br>Very L | (m)                 | B - Bedding J - Joint<br>S - Shear F - Fault | Type | Core<br>ec. % | RQD<br>% | Test Results               |
| 61                   | -11     | SANDSTONE - high strength,<br>highly weathered to fresh, fractured<br>to slightly fractured, orange brown<br>and grey, medium to coarse<br>grained sandstone <i>(continued)</i> |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              | c    | 100           | 99       | Comments<br>PL(A) = 1.5    |
|                      | -12     |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          | PL(A) = 1.3<br>PL(A) = 1.3 |
|                      |         |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 13.52m: Cs, 12mm                             | С    | 100           | 94       | PL(A) = 1.1                |
| - 89-                | 14 14.0 | Bore discontinued at 14.0m                                                                                                                                                      |                                                                         | <del>╶╞╼╞╶┠╺<mark>╿</mark>╸┍</del> ╶┥<br>╿╎╿╿╿╿╽╽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                              |      |               |          |                            |
| 22<br>22<br>24       | 15      |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          |                            |
|                      | 16      |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          |                            |
|                      |         |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          |                            |
| 1 - 1 - 1 - 23<br>23 |         |                                                                                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          |                            |
|                      |         |                                                                                                                                                                                 | <br>         <br>         <br>                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                              |      |               |          |                            |


RIG: Multi-drill

DRILLER: SK

LOGGED: PGH

CASING: NW to 1.2m

TYPE OF BORING: Diatube to 0.1m; Solid flight auger (TC-bit) to 1.2m; NMLC-Coring to 14.0m WATER OBSERVATIONS: No free groundwater observed whilst augering REMARKS:









SURFACE LEVEL: 68.1 AHD BORE No: 113 EASTING: NORTHING: DIP/AZIMUTH: 90°/--

PROJECT No: 72138 DATE: 17/12/2010 SHEET 1 OF 1

|                      |                                                                                                                                                                                  |                                                                  | Di               | P/AZIMUTH      | . 30 /                                                                                              | SHE     | .C I          | 10       |                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|----------------|-----------------------------------------------------------------------------------------------------|---------|---------------|----------|------------------------------|
| Denth                | Description                                                                                                                                                                      | Degree of<br>Weathering i≌                                       | Rock<br>Strength | Fracture       | Discontinuities                                                                                     | S       |               | -        | In Situ Testing              |
| Depth<br>(m)         |                                                                                                                                                                                  | Degree of<br>Weathering<br>M M M M M M M M M M M M M M M M M M M |                  | Spacing<br>(m) | B - Bedding J - Joint<br>S - Shear F - Fault                                                        | Type    | Core<br>Rec % | RQD<br>% | Test Result<br>&<br>Comments |
| 8 0.17<br>0.4<br>0.5 | CONCRETE - 170mm thick<br>SANDY CLAY - orange brown<br>sandy clay                                                                                                                |                                                                  |                  |                | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes dipping | A/E     |               |          |                              |
| 1                    | SANDSTONE - weathered<br>sandstone<br>SANDSTONE - high strength,<br>slightly weathered, fractured to<br>slightly fractured, light grey,<br>medium to coarse grained<br>sandstone |                                                                  |                  |                | between 0°- 10°<br>0.93m: Cs, 4mm                                                                   | C       |               | 100      | PL(A) = 1.4<br>PL(A) = 0.9   |
| 2 2.0                | SANDSTONE - medium strength,<br>moderately weathered to fresh,<br>slightly fractured and unbroken,<br>medium to coarse grained<br>sandstone                                      |                                                                  |                  |                | 1.66m: CORE LOSS:<br>340mm<br>2.1m: CORE LOSS:<br>400mm                                             | с       | 48            | 100      |                              |
| -3                   |                                                                                                                                                                                  |                                                                  |                  |                |                                                                                                     | C       | 100           | 100      | PL(A) = 0.8                  |
|                      |                                                                                                                                                                                  |                                                                  |                  |                |                                                                                                     |         |               |          | PL(A) = 0.8                  |
| -4                   |                                                                                                                                                                                  |                                                                  |                  |                | 3.94m: J50°, pl, ro                                                                                 | с       | 100           | 100      |                              |
| -5                   |                                                                                                                                                                                  |                                                                  |                  |                |                                                                                                     | с       | 100           | 100      | PL(A) = 0.7<br>PL(A) = 0.5   |
| 7                    |                                                                                                                                                                                  |                                                                  |                  |                |                                                                                                     | с       | 100           | 100      | PL(A) = 0.6<br>PL(A) = 0.7   |
|                      | - distinctly laminated from 8.4m to<br>9.7m                                                                                                                                      |                                                                  |                  |                | 7.92m: CORE LOSS:<br>80mm<br>8.7m: Cs, 5mm                                                          | с       | 94            | 100      |                              |
| 10 10.0              |                                                                                                                                                                                  |                                                                  |                  |                |                                                                                                     | с       | 100           | 100      | PL(A) = 0.9                  |
| : Under              | Bore discontinued at 10.0m<br>oinner DRILLE<br>ORING: Solid flight auger (TC-bit) to                                                                                             |                                                                  |                  | GED: PGH       | CASING: HW                                                                                          | / to 0. | 50m           |          |                              |

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

CLIENT:

PROJECT: Macquarie Village

Stamford Property Services Pty Ltd

LOCATION: 110-114 Herring Road, Macquarie Park

| SAN                    | PLIN | <b>3 &amp; IN SITU TESTING</b> | LEG | END                                      |
|------------------------|------|--------------------------------|-----|------------------------------------------|
| A Auger sample         | G    | Gas sample                     | PID | Photo ionisation detector (ppm)          |
| B Bulk sample          | Р    | Piston sample                  |     | ) Point load axial test Is(50) (MPa)     |
| BLK Block sample       | U,   | Tube sample (x mm dia.)        |     | ) Point load diametral test Is(50) (MPa) |
| C Core drilling        | Ŵ    | Water sample                   |     | Pocket penetrometer (kPa)                |
| D Disturbed sample     |      | Water seep                     | s   | Standard penetration test                |
| E Environmental sample | ž    | Water level                    | V   | Shear vane (kPa)                         |





