

Lewisham Estate 78-90 Old Canterbury Road Lewisham

Flood Management Report

Prepared For:

Lewisham Estates Pty Ltd

Prepared By: Cardno ITC Level 7, 33 YORK STREET SYDNEY NSW 2000 Tel: 612 9495 8100

Fax: 612 9495 8111

DOCUMENT HISTORY

Issue No.	Revision No.	Date	No. of Pages	Comment
А	0	09.05.11	25	Preliminary Issue – Draft Only
А	1	26.05.11	25	Final Issue

DOCUMENT APPROVAL:

Approved by:	S Haddad	Date:	26.05.2011
	(Cardno ITC)		

CONTENTS

1	EX	ECUTIVE SUMMARY	1
2	SIT	E LOCATION	2
3	FLO	OOD MANAGEMENT	3
	3.1 3.2 3.3 3.4 3.5 3.6	Reference Documents	
Α	ppen	dix 1	14
	Rain	ıfall Data	14
Α	ppen	dix 2	16
	Haw	rthorne Canal	16
Α	ppen	dix 3	17
	DRA	NINS Model Results	17
Α	ppen	dix 4	18
	Floo	d Extent Plan – Overland Flow	18
Α	ppen	dix 5	19
	Prop	posed Development	19
Α	ppen	dix 6	20
	DRA	NINS Model Results	20
Α	ppen	dix 7	21
	Floo	d Extent Plan – Overland Flow	21
Α	ppen	dix 8	22
	Sun	vov Plan	22

1 EXECUTIVE SUMMARY

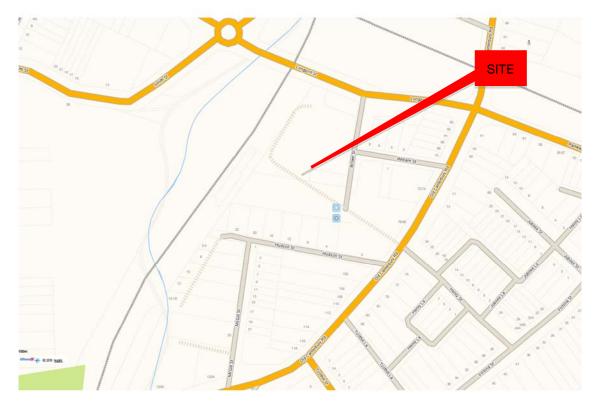
This document is a flood management report for the proposed development located at 78-90 Old Canterbury Road, Lewisham. The flooding includes:

- The Hawthorne Canal main drain; and
- The overland flow from the upstream catchment.

The site is legally described as Lot 11 in DP 774322 and Lots 6-8 in DP 977044.

Lewisham Estates P/L in conjunction with Planning Ingenuity P/L are proposing a concept plan for a Major Project comprising a mixed use development for residential, commercial and retail land uses with associated car parking facilities and public domain improvements.

The Concept Plan is for buildings ranging in height from 4 to 9 storeys. Public domain improvements include the creation of new streets, open space areas and pedestrian access points.


The proposed development is illustrated in the lower ground retail level plan below.

This report responds to Council's concerns as stipulated in Council's response letter reference P3570.750-02 to the Planning Application MP08_0195, in relation to the flooding affectation on the site, both from the Hawthorne Canal and from the localised overland flow in Old Canterbury Road.

2 SITE LOCATION

The site is a large block of land legally described as Lot 11 in DP 774322 and Lots 6-8 in DP 977044 in the suburb of Lewisham. The site falls in the Local Government Area of Marrickville Council.

The site is bounded by the Goods Railway Corridor to the West, Hudson Street to the South, Old Canterbury Road to the East and Longport Street to the North. The site is currently fully developed with old warehouses and bitumen areas.

The site has an irregular shape and is characterised by a gentle natural gradient from East to West.

The railway line separates the site from the Hawthorne Canal located further to the West. The upstream catchment area east of the site is drained into the Canal via a trunk main traversing the site from a low point in Old Canterbury Road, through the low point in Brown Street and into the Canal downstream of Lonport Street.

3 FLOOD MANAGEMENT

3.1 Reference Documents

The following documents have been reviewed and used to prepare the stormwater strategy and this section of the report:-

- 1. Architectural drawings ref. 815 Prepared by Tony Owen & Partners;
- 2. Survey drawing ref. 1593-DT01 prepared by StrataSurv revision G dated 04.06.2009;
- 3. Australian Rainfall & Runoff (AR&R) dated 1997 by the Institution of Engineers, Australia;
- 4. The Floodplain Development Manual Revision 2005 by the NSW Government;
- Marrickville Council response letter to the Planning Application ref. P3570.750-02 dated 23 December 2010;
- Hawthorne Canal Flood Assessment report by Meinhardt ref. 3473 revision B dated 29 July 2010;
- 7. Marrickville Council Stormwater and On-Site Detention Code (19 February 1999); and
- 8. Stormwater Asset plans received from Council.

3.2 Glossary

Annual Exceedance Probability (AEP)

The chance of a flood of a given or a larger size occurring in any one year, usually expressed as a percentage.

Australian Height Datum (AHD)

A common national surface level datum approximately corresponding to mean sea level.

Average Recurrence Interval (ARI)

The long term average number of years between the occurrence of a flood as big as or larger than the selected event.

Catchment

The land area draining through the main stream, as well as tributary streams, to a particular site. It always relates to an area above a specific location.

Flood

Relatively high stream flow which overtops the natural or artificial banks in any part of a stream, river, estuary, lake or dam, and/or local overland flooding associated with major drainage before entering a watercourse.

Flood Liable Land

Land susceptible to flooding by the PMF.

Flood Planning Levels (FPLs)

Are the combinations of flood levels and freeboards selected for floodplain risk management purposes.

Freeboard

Is a factor of safety typically used in relation to the setting of floor levels.

Habitable Room

In industrial or commercial situation: an area used for offices or to store valuable possessions susceptible to damage in the event of a flood.

Peak Discharge

The maximum discharge occurring during a flood event.

Probable Maximum Flood

PMF is the largest flood that could conceivably occur at a placation, usually estimated from probable maximum precipitation.

Probable Maximum Precipitation

PMP is the greatest depth of precipitation for a given duration meteorologically possible over a given size storm area at a particular location at a particular time of the year.

Runoff

The amount of rainfall which actually ends up as stream flow.

3.3 Development Description

The proposed mixed-use development comprises residential, commercial and retail uses, an underground carpark basement and public domain improvements.

3.4 Authorities Requirements

3.4.1 Sydney Water Corporation

(Extract from Sydney Water Corporation letter dated 20 December 2010)

Stormwater

Building over or under Sydney Water's stormwater assets is not permitted. For Sydney Water to support the proposal, a one metre offset is required between any new structures and Sydney Water's assets.

The developer proposes to adjust (make redundant) a section of Sydney Water's Hawthorne Canal stormwater system. For Sydney Water to support this adjustment, we require the entire section of redundant asset be removed with a new maintenance pit constructed in its place to terminate the adjustment.

The developer will need to engage a Water Servicing Coordinator to submit on their behalf an asset adjustment application with Sydney Water. Sydney Water will not consent to the termination of the existing drainage easement until all demolition/construction works required under the approved adjustment application have been completed.

3.4.2 Marrickville Council

(Extract from Marrickville Council letter P3570.750-02 dated 23 December 2010)

Key issue 15 of the of the Director-General's Requirements is an assessment of any flood risk on the site in consideration of the NSW Floodplain Development Manual (2005) including the potential effects of climate change, sea level rise and an increase in rainfall fall intensity.

The NSW Floodplain Development Manual (2005) provides a framework to ensure the sustainable use of floodplain environments. The primary objective of the policy is to reduce the impact of flooding and flood liability, to reduce private and public losses from floods and to ensure that any new development is compatible with the flood hazard of the site and does not create additional flooding problems in the area.

This key issue has not been adequately addressed. The Environment Assessment report comments that the site is not flood prone with no investigation or analysis.

Although the site is not currently zoned as flood prone land (as Council has not undertaken a flood study of the Hawthorn Canal Catchment), it is very likely that the site is at risk of flooding as the Hawthorne Canal runs adjacent to the site west of the railway line. The site is located towards the bottom of a 300 Ha catchment which has had its natural overland flow path blocked by the construction of the Longport Street Rail Bridge. The Longport Rail Bridge forms a barrier to the north of the site blocking the overland flow of stormwater in excess of the capacity of the Hawthorne Canal as it passes under Longport Street. During extreme storms the culvert under Longport Street will be susceptible to blockage further exacerbating the potential for flooding of the site.

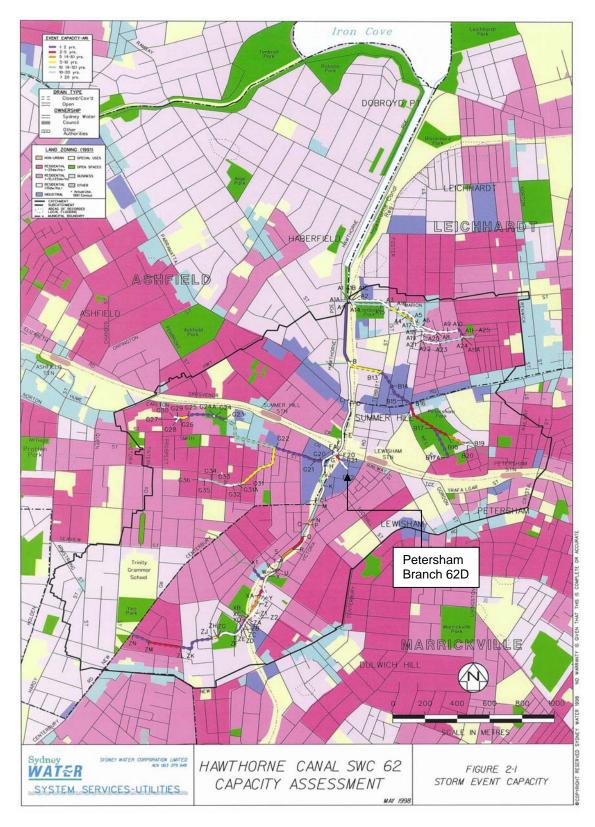
The site also is traversed by a Council 900mm stormwater pipe which enters the site at a low point in Old Canterbury Road (adjacent to the Old Canterbury Road/Henry Street intersection). The stormwater pipe continues to Brown Street where it converts to a 1200 diameter Sydney Water pipe which re-enters the site at Brown Street. The development proposes to block the existing overland flow path through site from Old Canterbury Road and to divert the pipe down the new Hudson Street. This has been proposed without any assessment of the resultant flood levels on Old Canterbury Road or the increased flood risk this may cause to residential properties opposite the site on Old Canterbury Road.

A flood study needs to be undertaken that fully investigates the potential for flooding from the Hawthorn Canal and from overland flows from the low point on Old Canterbury Road (near Henry Street);

3.5 Hawthorne Canal

The Hawthorne Canal is a main drain running west of the railway and draining a catchment area of 30ha approximately. The canal is owned and managed by Sydney Water Corporation (SWC) and is identified as SWC62.

The canal travels under the Summer Hill Four Mills site and runs under the Longport Street bridge and Longport Rail bridge, before it continues further downstream and discharges into the Iron Cove Bay.


SWC have carried out a capacity assessment on the canal, which identifies if the canal is open or covered and determines the preliminary capacity of each section of the canal.

The assessment indicates that the canal adjacent to the site is open and has a capacity that exceeds the 20-year ARI storm event.

A copy of the plan showing the details of the canal and its capacity is included below for reference.

Meinhardt Infrastructure & Environment Pty Ltd (Meinhardt) have also carried out a flood assessment on the Hawthorne Canal under a separate commission for the Flour Mills site. This assessment covered the hydrological simulations for the catchment upstream of the Flour Mills site (294.7ha) and the hydraulic simulations within and in the vicinity of the site.

The hydraulic simulations adopted in the flood study use a 1D flood model to determine the flood levels in the canal and the adjoining overbank areas.

The canal section between nodes J and FA is adjacent to the Lewisham Estate site. The flood levels within these nodes are relative to the Lewisham site and are as such of interest in assessing if the site is actually affected by flooding.

Node FA is just upstream of the Longport Bridge, which forms a barrier to the overbank flows and could potentially create a rise in flood levels. It is possible then that the railway tunnel under the bridge could convey the overland flows.

Node J is located at cross section 1-400.00 at the upstream end of the site and the flood level at that node in a 100-year ARI storm event is determined at WL:9.71m. Node FA is at cross section 1-270.00 and the flood level at that node is determined at WL:8.76m. A copy of the flood extent plan by Meinhardt is included in Appendix 2 for reference.

The Lewisham Estate levels vary between RL:11.58m at the same section with Node J and RL:9.61 at the same section with Node FA. These levels indicate that the Lewisham Estate site is approximately between 1.8m (southern boundary) to 0.8m (northern boundary adjoining Longport Street Bridge) higher than the 100-year ARI flood levels. The table below summarises these results.

Node	Section	100-yr ARI Flood Level (mAHD)	Lewisham Estate Level (mAHD)	Freeboard (m)
J	1-400.00	9.71	11.58	1.87
FA	1-270.00	8.76	9.61	0.85

Based on the flood assessment results by Meinhardt, it appears that the Lewisham site is not affected by flooding from the Hawthorne Canal up to and including the 100-year ARI storm event.

The extreme floods such as the Problable Maximum Flood (PMF) were not within the scope of the flood assessment report by Meinhardt.

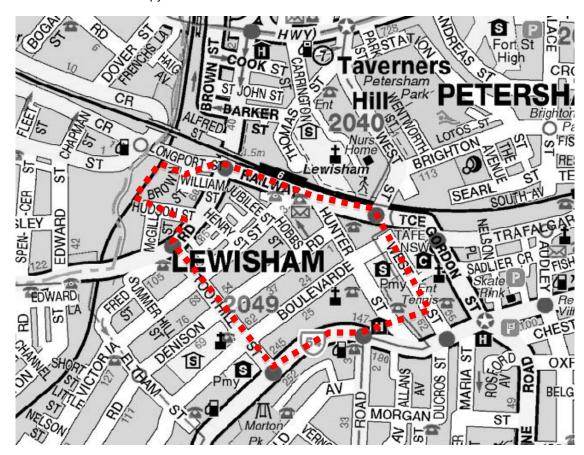
The canal section adjacent to the site and upstream of the Longport Bridge does not appear to be affected by tidal influences. The report outlines that SWC advised that the canal is affected by tidal influences up to approximately 130m downstream from the Longport Street Bridge.

The rise in sea level associated with climate change, as required by the Department of Environment and Climate Change (DECC) "Practical Consideration of Climate Change" guideline (October 2007), was not considered in the Meinhardt flood assessment report. The report concludes that because the Longport Street is the downstream control for the upstream flood waters, it is unlikely that the rise in sea levels will have any influence on the flood levels.

3.6 External Overland Flow

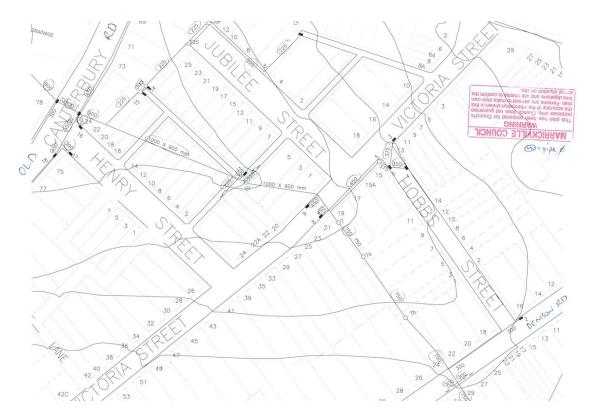
3.6.1 General

The site is located at the downhill end of the local catchment, draining into the main Hawthorne Canal through the trunk main known as the "Petersham Branch 62D"


The trunk main is a 900mm pipe owned by Marrickville Council. The pipe enters the site from the low point in Old Canterbury Road to the East (opposite Henry Street). The trunk main drains the low point in Brown Street and re-enters the site as 1200mm pipe owned by Sydney Water Corporation.

The trunk main connects to the canal downstream of the Longport Street Bridge at Node F (refer to SWC Capacity Assessment Plan above).

SWC, in the capacity assessment have identified the trunk main as covered with it capacity exceeding the 20-year ARI storm event. The section of the trunk main downstream of the site where it connects to the canal appears to have a lower capacity ranging from 2-5 years ARI.


The trunk main drains a catchment area of 19.7ha extending up to Canterbury Road to the East, Toothill Street to the South, the Goods Railway Corridor to the West, and Railway Terrace and West Street to the North. A copy of the catchment extent is included below.

The catchment is predominately residential. An impervious fraction of 80% has been assigned to the catchment surface coverage percentage.

Council has provided a copy of the in-ground drainage network servicing the catchment. A copy is included below for reference.

Details of the 900mm/1200mm pipes traversing the site have been sourced from the flood assessment done by Meinhardt. These details have been included in a "DRAINS" model, assembled to assess the capacity of the in-ground drainage network and to determine the overland flow through the site.

Two separate models were assembled. The first model replicates the existing site conditions as per the survey plan by StrataSurv. This model considers the overland flow through the site. However, from Brown Street onwards the existing warehouse building is a barrier to the overland flow. The low-lying area in Brown Street becomes inundated until water is able to escape through the bitumen driveway further to the North.

The second model is for the proposed diversion of the trunk main around the proposed mixed-use development. This model considers the blocking of the existing overland flow in Old Canterbury Road and the provision of a new overfland flowpath to the South closer to Hudson Street. However, in this scenario, the flooding in Brown Street is alleviated because the majority of the runoff from the upstream catchment is diverted around the site in a new trunk main with a larger capacity.

The DRAINS model is confined to the upstream pit in Denison Road to the East and to the downstream connection with the canal.

The 100-year ARI flood level determined by Meinhardt has been adopted as the tailwater level for the in-ground network.

3.6.2 Existing Conditions

The simulations carried out in the existing scenario indicate that the trunk main traversing the site does not have the capacity to drain the 100-year ARI flows generated by the catchment. The pipe capacity is limited to 3.3m³/s.

An additional 3.04m³/s travels overland from Old Canterbury Road towards Brown Street through the gate servicing the bitumen open space on the site. The 10m wide driveway leading into the site has a level of RL:12.61. Based on the weir flow formula, the depth of flow required for the 3m³/s to overcome the driveway is 0.36m. The low-lying area of Old Canterbury Road becomes inundated up to a calculated water level of WL:12.97m.

The existing warehouse building wraps around Brown Street and blocks the overland flow, which is exacerbated by the additional overland flows from William Street and Longport Street.

The overland flow can only escape through the driveway from Brown Street further to the North. The driveway entry is approximately 2m higher than the lower point in Brown Street. This means that Brown Street and the adjoining properties will become inundated before water can escape through the site.

The 8m wide driveway leading into the site has an average level of RL:12.80. Based on the weir flow formula, the depth of flow required for the 3.1m³/s to overcome the driveway is 0.38m. Brown Street becomes inundated up to a calculated water level of WL:13.18m. This indicates that the flooding in Brown Street is worst than the flooding in Old Canterbury Road.

Because the water level in Brown Street is higher than the water level in Old Canterbury Road, it backs up into Old Canterbury Road and increases its flood level to RL:13.18.

The extent of the inundation in the existing conditions is shown in Appendix 4. The details of the DRAINS model results are included in Appendix 3 for reference.

3.6.3 Proposed Site Conditions

In the proposed site conditions, the existing trunk main through the site is diverted around the site from the low point in Old Canterbury Road. The proposed trunk main is larger in size to increase its capacity.

Additional kerb inlet pits are provided in Old Canterbury Road to increase the capacity of the system to convey the overland flow in the trunk main.

A failsafe overland flowpath is provided at the southern end of the development to convey the overland flow when the pipe capacity is exceeded because the existing overland flow path between Old Canterbury Road and Brown Street is removed by the proposed development. Copies of the proposed lower ground floor and ground floor plans are included in Appendix 5 for reference.

In this case, the flooding in Brown Street is alleviated because the majority of the upstream catchment runoff is diverted away from Brown Street and into a purpose built overland flowpath between Hudson Street and the proposed development.

A new stormwater main is proposed to convey the runoff from the rest of the catchment draining into Brown Street. A failsafe overland flowpath is also provided within the proposed development to carry the overland flow in excess of the pipe capacity.

Another DRAINS model was assembled to reflect these changes and to determine the extent of the flooding in Old Canterbury Road.

The results of the simulations indicate that the flow through the proposed 1500mm trunk main has increased to 3.88m³/s and the overland flow is reduced to 2.49m³/s. The detailed results of the DRAINS simulations are included in Appendix 6 for details.

An 8m wide overland flow path is proposed south of the low point in Old Canterbury Road. The level in Old Canterbury Road is RL:12.73m. The depth of flow required to drain the 2.49m³/s overland flow is 0.33m. The depth of inundation in Old Canterbury Road is calculated at RL:13.06m.

This flood level is 0.12m lower than the flood level in the existing site conditions. The properties adjoining the lower point in Old Canterbury Road are higher than the flood level. Reference should be made to the survey plan included in Appendix 8 and the following photos of the adjoining properties showing the properties protected by solid fence walls and steps to the internal habitable areas.

The flooding extent in the proposed site conditions and the proposed overland flowpath are included in Appendix 7.

Photo of No.77 Old Canterbury Road

Photo of No.75 Old Canterbury Road

Photo of No.24 Henry Street

Photo of No.73 Old Canterbury Road

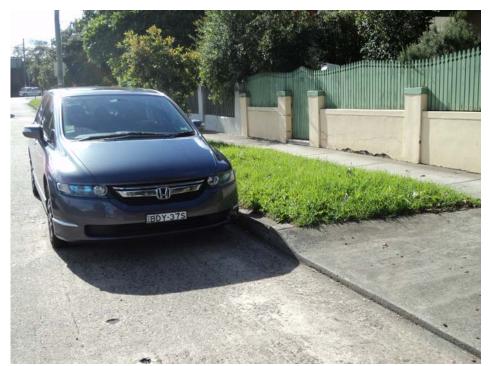


Photo of 71 Old Canterbury Road

In conclusion, the proposed development does not increase the flooding in Old Canterbury Road and in the vicinity of the site because of the following mitigation measures:

- Divert the trunk main around the site;
- Increase the size of the trunk main to 1500mm;
- Increase the number of inlet pits in Old Canterbury Road;
- Provide an overland flow route south of the proposed building; and
- Provide an overland flow route from Brown Street through the proposed development.

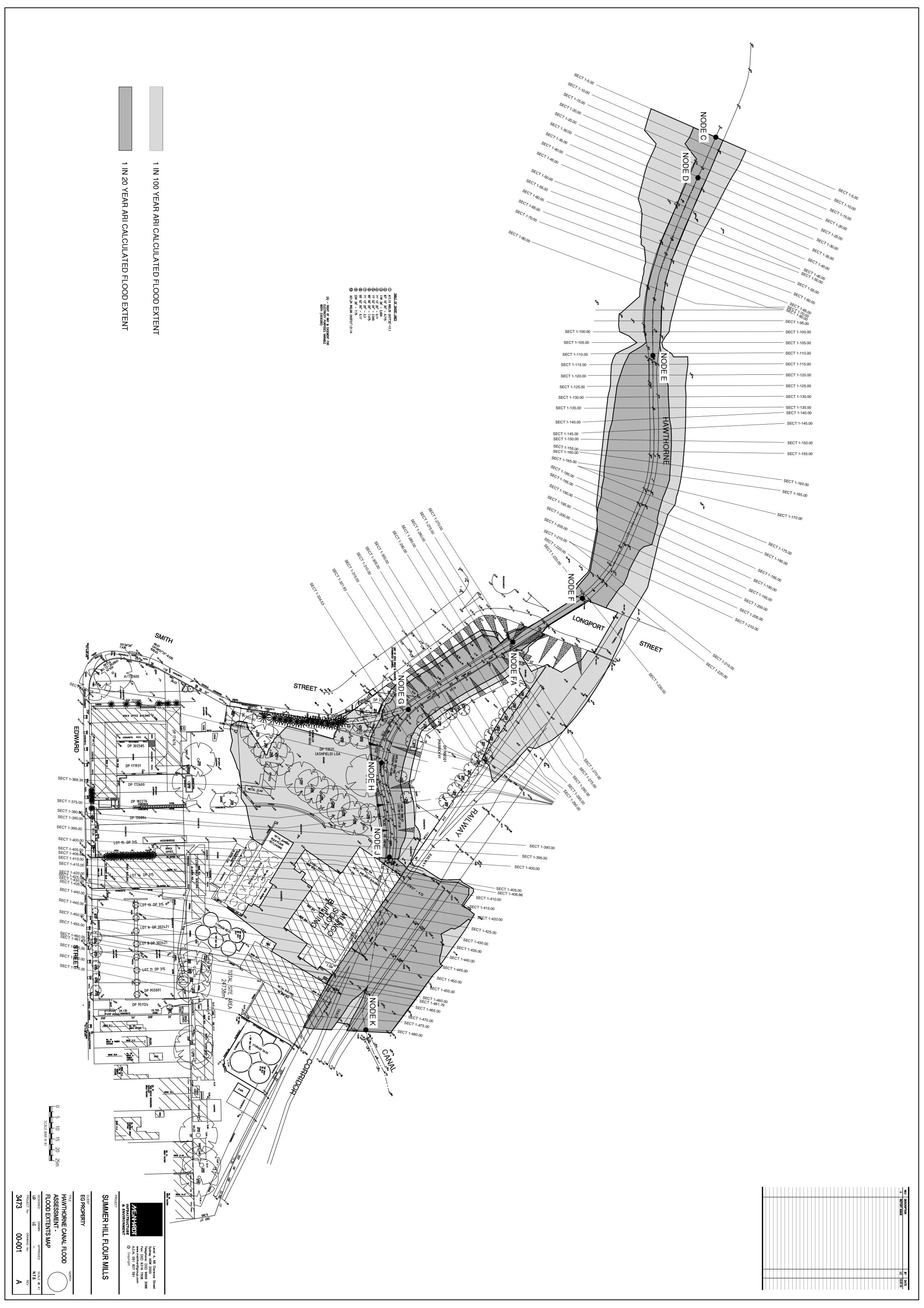
Rainfall Data

IFD Table for Marrickville Council

Intensity Frequency Duration (IFD) Rainfall Data

Marrickville

 $\begin{array}{cccc} 2 \ year & 50 \ year \\ I_1 \ hr : 40.0 & I_1 \ hr : 85.0 \\ I_{12} \ hr : 8.0 & I_{12} \ hr : 16.0 \\ I_{72} \ hr : 2.5 & I_{72} \ hr : 5.0 \end{array}$


AVE	RAGE RE	CURREN	CE INTER	RVAL (AR	l) years	
TIME	2	5	10	20 `	50	100
- .	400.5	400.0	400.4	000.0	0.40.0	000.0
5 mins	126.5	160.8	180.4	206.6	240.6	266.3
6 mins	118.7	151.3	170	194.8	227.1	251.6
7 mins	112.1	143.3	161.2	184.9	215.8	239.3
8 mins	106.6	136.4	153.6	176.4	206.1	228.7
9 mins	101.7	130.5	147.1	169	197.6	219.4
10 mins	97.5	125.2	141.3	162.5	190.1	211.2
12 mins	90.3	116.3	131.4	151.3	177.4	197.2
14 mins	84.3	109	123.3	142.1	166.8	185.6
15 mins	81.8	105.8	119.7	138.1	162.2	180.5
16 mins	79.4	102.8	116.5	134.4	157.9	175.8
18 mins	75.1	<i>97</i> .5	110.6	127.7	150.3	167.4
20 mins	71.4	92.9	105.5	121.9	143.6	160.1
25 mins	64	83.6	95.1	110.2	130	145.1
30 mins	58.3	76. <i>4</i>	87.1	101.1	119.5	133.5
40 mins	50.1	66	75.5	87.8	104.1	116.6
50 mins	44.3	<i>58.7</i>	67.3	78. <i>4</i>	93.2	104.6
1 hours	40	53.2	61.1	71.4	85	95.5
1.5 hrs	31	41	47.1	54.9	<i>65.2</i>	73.1
2 hours	<i>25.7</i>	34	38.9	<i>4</i> 5.3	53.8	60.3
3 hours	19.8	26	29.7	34.5	40.9	<i>45</i> .8
4.5 hrs	15.2	19.9	22.7	26.3	31.1	34.7
6 hours	12.6	16.4	18.7	21.7	25.6	28.5
9 hours	9.6	12.6	14.3	16.5	19.4	21.7
12 hours	8	10.4	11.8	13.6	16	17.8
15 hours	7	9.1	10.3	11.9	14	15.6
18 hours	6.2	8.1	9.2	10.6	12.5	13.9
24 hours	5.2	6.8	7.7	8.9	10.5	11.7
30 hours	4.5	5.9	6.7	7.7	9.1	10.1
36 hours	4	5.2	5.9	6.9	8.1	9
48 hours	3.3	4.3	4.9	5.7	6.7	7.4
72 hours	2.5	3.2	3.7	4.3	5	5.6

Co-efficient $G: 0.00 F_2: 4.29 F_{50}: 15.80$

Hawthorne Canal

Flood Extent Plan by Meinhardt

DRAINS Model Results

Existing Site Conditions

PIT / NODE DETAILS Version Name Type Family Size	Ponding Pressure Sur	ace Max Pond (m) Depth (m)	Base Blockin Inflow Factor (cu.m/s)	g x y	Bolt-down id lid	Part Full Shock Loss
1AA.01 Sag NSW Dept. of RM10 2	.4 m lintel 10 0.5	3.24 0.19	5 0		3.808 No	9 1 x Ku
1A.02 Node 1.04 Sag NSW Dept. of RM10 2 1.03 Sag NSW Dept. of RM10 2 1.02 OnGrade NSW Dept. of RM7 1.01 Node	.4 m lintel 20 1.5	3.47 2.42 0.19 0.37 0.19 9.8 9.6		0.5 157.558 2 0.5 108.707 5 0.2 46.711 8	5.202 24.737 No 52.294 No 19.723 Yes 16.166	60 5 1 x Ku 6 1 x Ku 7 1 x Ku 39
1A.01 OnGrade NSW Dept. of RM10 2 1B.01 Sag NSW Dept. of RM10 2 1B.02 Node 1.05 Sag NSW Dept. of RM10 2	.4 m lintel 10 0.5	3.58 3.05 0.1: 13.1 2.54 0.	0 5 0 0	0.2 145.569 - 0.5 160.728 - 163.514	6.125 No 4.368 No 0.892 20.02 No	10 1 x Ku 12 1 x Ku 74 4 1 x Ku
1BB.01 Sag NSW Dept. of RM10 2 1C.01 Sag NSW Dept. of RM10 2	.4 m lintel 10 0.5 .4 m lintel 15 0.5	2.87 0.1: 2.87 0.1: 2.74 0.1:	5 0	0.5 170.33 0.5 169.823	2.496 No 9.013 No 14.123 No	13 1 x Ku 13 1 x Ku 14 1 x Ku 16 1 x Ku
1E.02 Sag NSW Dept. of RM10 2 1E.01 Sag NSW Dept. of RM10 2 1.06 Node	.4 m lintel 10 0.5	3.35 0.19 13.3 0.19 13	5 0 0	0.5 202.614 3 0.5 201.804 3 188.758 1	85.946 No 84.496 No 4.139	19 1 x Ku 18 1 x Ku 81
		20 15.5 0.1: 15.4 0.1: 14 0.1:	5 0 5 0	0.5 302.447 -1 0.5 295.702 - 0.5 257.847 -	88.987 2.988 Yes -8.613 No -5.086 No	259 2 1 x Ku 1 1 x Ku 3 1 x Ku
DUMMY 1.09 Node		15.6	0	312.996	0.955	286
SUB-CATCHMENT DETAILS Name Pit or Total Paved Node Area Area (ha) %	Grass Supp Pav Area Area Tim % % (mir	e Time	Supp Paved Time Length (min) (m)	Grass Supp Length Length (m) (m)	Paved Grass Slope(%) Slope % %	Supp Paved Grass Supp Lag Time Slope Rough Rough Rough or Factor %
C 1AA.01 1AA.01 0.01 C 1.04 1.04 0.133 C 1.03 1.03 0.873	80 20 0 80 20 0 80 20 0	5 5 5	0 0 0 0 0 0	20 20 98 98 116 116	0.1 3 0.1 2.4 0.1 1.5	3 1 0.013 0.2 0.013 0 2.4 1 0.013 0.2 0.013 0 1.5 1 0.013 0.2 0.013 0
C 1A.01 1A.01 0.0774 C 1B.01 1B.01 0.74 C 1.05 1.05 0.191 C 1BB.01 1BB.01 0.617	80 20 0 80 20 0 80 20 0 80 20 0	5 5 5	0 0 0 0 0 0	85 85 151 151 68.8 68.8 132 132	0.1 3 0.1 5.3 0.1 4.9 0.1 5.3	3 1 0.013 0.2 0.013 0 5.3 1 0.013 0.2 0.013 0 4.9 1 0.013 0.2 0.013 0 5.3 1 0.013 0.2 0.013 0
C 1C.01 1C.01 0.057 C 1D.01 1D.01 0.34 C 1E.02 1E.02 1.04	80 20 0 80 20 0 80 20 0	5 5 5	0 0 0 0 0 0	74 74 83 83 172 172	0.1 5 0.1 5 0.1 5.2	5 1 0.013 0.2 0.013 0 5 1 0.013 0.2 0.013 0 5.2 1 0.013 0.2 0.013 0
C 1E.01 1E.01 0.2 C 1.10 1.1 8.18 C 1.08 1.08 0.035 C 1.07 1.07 0.296	80 20 0 80 20 0 80 20 0 80 20 0	5 5	0 0 0 0 0 0 0 0	71.6 71.6 340 340 53 53 56 56	0.1 5.6 0.1 5.35 0.1 2 0.1 5.35	5.6 1 0.013 0.2 0.013 0 5.35 1 0.013 0.2 0.013 0 5.35 1 0.013 0.2 0.013 0 5.35 1 0.013 0.2 0.013 0
C 1.09 DUMMY 1.09 3.98	80 20 0		0 0	238 238	0.1 5.6	5.6 1 0.013 0.2 0.013 0
PIPE DETAILS Name From To Length (m)	U/S IL D/S IL Slo (m) (m) (%)	е Туре	Dia I.D. (mm) (mm)	Rough Pipe Is	No. Pipes Chg Fron	n At Chg
1AA.01-1A.02 1AA.01 1A.02 1A.02-1.04 1A.02 1.04 1.03-1.04 1.04 1.03	4.40577 12.34 12.296 21.0704 12.266 11.52 55.6957 7.085 4.209	1 Concrete, under roads 3.54 Concrete, under roads 5.16 Concrete, under roads	300 300 900	300 0.013 Existing 300 0.013 Existing 900 0.013 Existing	1 1A.02 1	0 0 1.04 0
1.02-1.03 1.03 1.02 1.01-1.02 1.02 1.01 1A.01-1A.02 1A.01 1A.02 1B.01-1BB.01 1B.01 1B.02	71.9131 4.156 2.792 20.1 2.792 2.017 11.8603 12.68 12.296 5.96491 12 11.894	1.9 Concrete, under roads 3.86 Concrete, under roads 3.24 Concrete, under roads 1.78 Concrete, under roads	1200 1200 300 450	1200 0.013 Existing 1200 0.013 Existing 300 0.013 Existing 450 0.013 Existing	1 1 1A.01	1.03 0 1.02 0 0
1B.02-1.05 1B.02 1.05 1.04-1.05 1.05 1.04 1BB.01-1B.02 1BB.01 1B.02	19.4095 11.864 11.49 11.2473 7.677 7.115 7.61907 11.97 11.894	Concrete, under roads Concrete, under roads Concrete, under roads	450 900 300	450 0.013 Existing 900 0.013 Existing 300 0.013 Existing	1 1B.02 1 1 1BB.01	1.05 0
1C.01-1.05 1C.01 1.05 1D.01-1.05 1D.01 1.05 1E.01-1E.02 1E.02 1E.01 1E.01-1.06 1E.01 1.06	11.1029 11.84 11.64 26.1544 11.84 11.49 1.64884 12.45 12.434 23.9669 12.404 11.206	1.8 Concrete, under roads 1.34 Concrete, under roads 0.97 Concrete, under roads 5 Concrete, under roads	300 450 300 225	300 0.013 Existing 450 0.013 Existing 300 0.013 Existing 225 0.013 Existing	1 1D.01 1 1E.02	0 0 0
1.05-1.06 1.06 1.09-1.10 1.1 1.08-1.09 1.09 1.07-1.08 1.08	21.5544 8.785 7.707 94.4 18.473 13.753 7.98335 13.723 13.324 37.7541 13.294 11.406	5 Concrete, under roads 5 Concrete, under roads 5 Box Culverts 5 Box Culverts	900 750 1W x 0.9H 1W x 0.9H	900 0.013 Existing 750 0.013 Existing 0.012 Existing 0.012 Existing	1 1	1.06 0 1.1 0 1.09 0 1.08 0
1.06-1.07 1.07 1.06 DUMMY PIPE DUMMY 1.09 1.09	71.2205 11.376 7.815 10 13.953 13.753	5 Box Culverts 5 Concrete, under roads	1W x 0.9H 750	0.012 Existing 0.013 Existing	1	1.07 0
OVERFLOW ROUTE DETAILS Name From To Travel Time (min)	8	Cross ff. C Section	Safe Depth SafeDe Major Storms Minor S (m) (m)		D/S Area Contributing %	id
O 1AA.01 1AA.01 1.04 O 1.04 1.04 1.03 O 1.03 1.03 1.01	(m) (m) 2 5 5	8 m wide road (half section) Dummy used to model flow across road low points Dummy used to model flow across road low points	0.3 0.2 0.2	0.15 0.4 0.05 0.6 0.05 0.6	3.7 0 4.5 0 1.1 0	185 206 208
O 1A.01 1A.01 1AA.01 O 1B.01 1B.01 1BB.01 O 1.05 1.05 1.04 O 1BB.01 1BB.01 1C.01	1 1 1	8 m wide road (half section) 8 m wide road (half section) Dummy used to model flow across road low points Dummy used to model flow across road low points		0.15 0.4 0.15 0.4 0.05 0.6 0.05 0.6	3.9 0 1.9 0 2.7 0 2.8 0	183 192 181 195
O 1C.01 1C.01 1.05 O 1D.01 1D.01 1.05 O 1E.02 1E.02 1E.01	1 2 1	8 m wide road (half section) 8 m wide road (half section) Dummy used to model flow across road low points	0.3 0.3 0.2	0.15 0.4 0.15 0.4 0.05 0.6	1.9 0 1.5 0 13.7 0	200 157 152
O 1E.01 1E.01 1.05 O 1.09 1.09 1.08 O 1.08 1.08 1.07 O 1.07 1.07 1E.01	5 1 5 5	Dummy used to model flow across road low points Dummy used to model flow across road low points 8 m wide road (half section) 8 m wide road (half section)		0.05	2.3 0 3.4 0 2 0 1.1 0	154 146 148 150
		• ,				

			•	7111 VOIOIO11 20 1				
PIT / NO Name	DE DETAILS Max Ho		Max Pond HGL	Max Surface Flow Arriving		Min Freeboard	Overflow (cu.m/s)	Constraint
1AA.01		12.42	13.:	(cu.m/s) 26 0.00	(cu.m) 2 0.	(m) 7 0.8	2	0 Inlet Capacity
1A.02		12.37			0			
	1.04 1.03	11.27 7.31						38 Inlet Capacity 19 Inlet Capacity
	1.02	6.75			0	3.0		None
14.01	1.01	6.36		0.15		0.7	F 0.00	M Inlat Consolity
1A.01 1B.01		12.83 13.32		0.01 .2 0.15		0.7 6 -0.2		01 Inlet Capacity 47 Outlet System
1B.02		13.65			0			
1BB.01	1.05	13.68 13.1	12.0 13.0					66 Outlet System 51 Outlet System
1C.01		12.98						93 Outlet System
1D.01		13.04		0.07		-0.1		97 Outlet System
1E.02 1E.01		13.5 13.49						33 Outlet System 15 Outlet System
	1.06	14.69			0			
	1.1 1.09	30.21 17.75		1.68		0 -2.2	5	0 Outlet System
	1.08	17.32						33 Outlet System
DUMMY	1.07	16.05				9 -2.0	5 1.91	14 Outlet System
DUMMY	1.09	18.07		0.83	4			
	TCHMENT DI	ETAILS		0.44	D- '	0	O	Due to Otama
Name	Max Flow Q)	Paved Max Q	Grassed Max Q	Paved Tc	Grassed Tc	Supp. Tc	Due to Storm
	(cu.m/s	s)	(cu.m/s)	(cu.m/s)	(min)	(min)	(min)	
C 1AA.0 ⁻ C 1.04	1	0.007 0.076						07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1.03		0.481						77 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1A.01		0.046						77 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1B.01 C 1.05		0.423 0.119						07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1BB.0	1	0.358	0.3	13 0.0	5 8.1	6 16.3	1 0.0	07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1C.01 C 1D.01		0.035 0.208						07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1E.02		0.586	0.5	22 0.07	7 8.7	3 19.2	3 0.0	07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1E.01 C 1.10		0.125 4.271						77 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1.10		0.021						07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1.07		0.187					2 0.0	07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
C 1.09		2.181	1.9	73 0.26	2 9.4	3 22.8	5 0.0	7 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
PIPE DE			MaxV	May II/C	May D/C	Due to Cterm		
Name	Max Q (cu.m/s		Max V (m/s)	Max U/S HGL (m)	Max D/S HGL (m)	Due to Storm		
1AA.01-1	IA.02	0.007	0.4			•		s storm, average 145 mm/h, Zone 1
1A.02-1.0 1.03-1.04		0.051 3.327						s storm, average 145 mm/h, Zone 1 s storm, average 145 mm/h, Zone 1
1.02-1.03	3	3.443	3.	04 6.47	6 6.75	2 AR&R 100 ye	ear, 25 minutes	s storm, average 145 mm/h, Zone 1
1.01-1.02 1A.01-1 <i>A</i>		3.443 0.045				-		s storm, average 145 mm/h, Zone 1 s storm, average 145 mm/h, Zone 1
1B.01-1E		0.124				•		orm, average 45.8 mm/h, Zone 1
1B.02-1.		0.249						orm, average 45.8 mm/h, Zone 1
1.04-1.05 1BB.01-1		3.118 0.12		.9 11.60 .7 13.62				s storm, average 145 mm/h, Zone 1 orm, average 28.5 mm/h, Zone 1
1C.01-1.	05	0.12	1	.7 13.6	2 13.68	3 AR&R 100 ye	ear, 10 minutes	s storm, average 211 mm/h, Zone 1
1D.01-1. 1E.01-1E		0.163 0.083				•		s storm, average 211 mm/h, Zone 1 orm, average 45.8 mm/h, Zone 1
1E.01-1.	06	0.111	2.	79 14.6	6 14.69	3 AR&R 100 ye	ear, 10 minutes	s storm, average 211 mm/h, Zone 1
1.05-1.06 1.09-1.10		3.948 4.11		21 14.69 .3 30.20				s storm, average 145 mm/h, Zone 1 s storm, average 145 mm/h, Zone 1
1.09-1.10		6.122		.8 17.66				s storm, average 145 mm/h, Zone 1
1.07-1.08		5.272			4 16.05	3 AR&R 100 ye	ear, 25 minutes	s storm, average 145 mm/h, Zone 1
1.06-1.07 DUMMY		4.004 2.172				•		s storm, average 145 mm/h, Zone 1 s storm, average 145 mm/h, Zone 1
						,	•	, ,
Name	OW ROUTE. Max Q		_S Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V Due to Storm
O 1AA.0	1	0		0 0.74				0 0
O 1.04 O 1.03		3.038 3.119						
O 1A.01		0.001	0.0	0.72	2 0.01	9 0.0	1 0.10	16 0.69 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
O 1B.01 O 1.05		0.47 3.166						· · · · · · · · · · · · · · · · · · ·
O 1.03	1	0.851						
O 1C.01		0.93						.4 1.9 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
O 1D.01 O 1E.02		0.297 0.583						· · · · · · · · · · · · · · · · · · ·
O 1E.01		2.215	2.2	15 11.62	5 0.10	2 0.1	6 24.3	1.6 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
O 1.09 O 1.08		0 0.83		0 14.13 33 0.99				0 0 1.86 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
5 1.00		0.00	0.0		. 0.10	. 0.0	. 0.0	

1.914

1.162

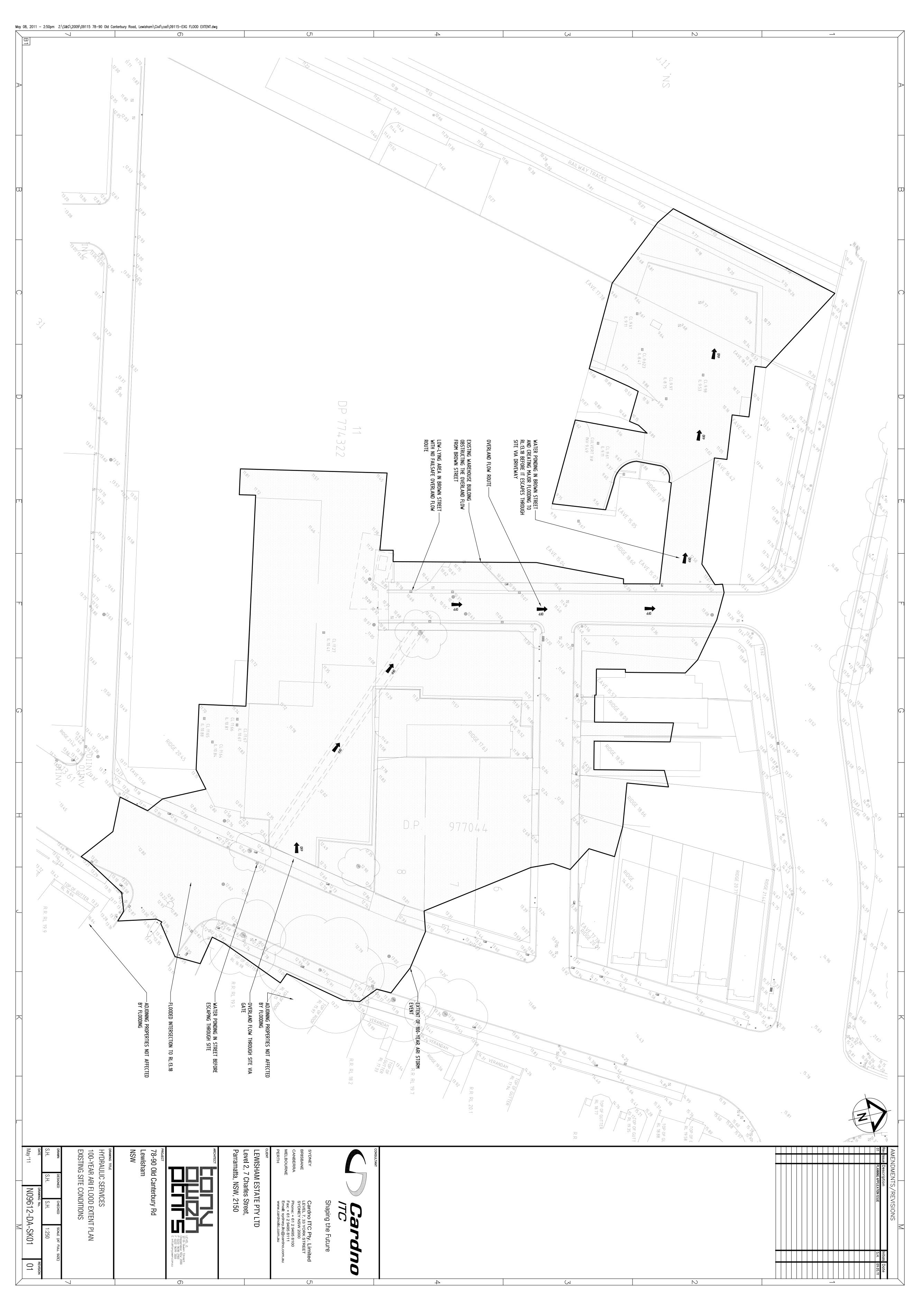
0.268

0.57

6.4

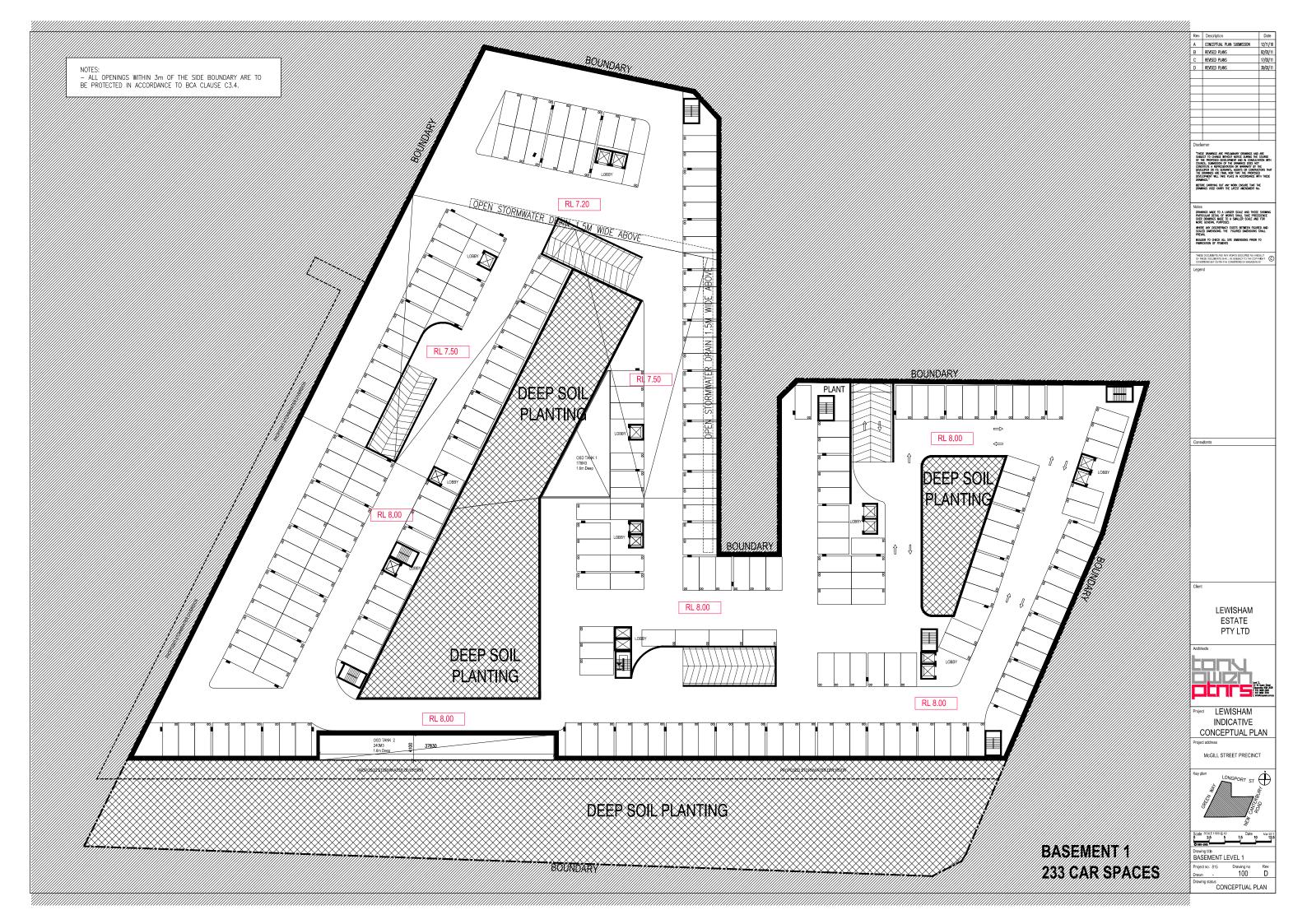
CONTINUI	TY CHECK	(for AR&R 10	0 year, 2	5 minutes stori	m, average 1	45 mm/h, Zone 1
Node	Inflow	Outflo	ow .	Storage Chan	¿ Difference	
	(cu.m)	(cu.m	1)	(cu.m)	`%	
1AA.01	, ,	5.79 [`]	5.82	Ò	-().5
1A.02		49.2	49.18	C		0
1	.04 8	3905.97	8906.09	C		0
1	.03	395.77	9396.18	C		0
1	.02 6	3120.23	6120.77	C		0
1	.01 9	396.73	9396.73	C		0
1A.01		43.52	43.53	C		0
1B.01		415.71	415.77	C		0
1B.02		120.81	120.53	C) ().2
1	.05 8	3780.64	8782.14	C		0
1BB.01		689.54	689.47	C		0
1C.01		673.76	673.58	0)	0
1D.01		191.35	190.73	C) ().3
1E.02		583.93	583.87	C		0
1E.01	2	2016.98	2017.18	0		0
1	.06 5	755.29	5742.33	0) ().2
	1.1 4	1578.49	4578.57	0		0
1	.09 6	810.35	6811.5	0		0
1	.08 6	831.19	6832.7	C)	0
1	.07 6	999.45	7004.73	0.8	-().1
DUMMY 1.	.09 2	2231.93	2231.8	0)	0

Upwelling occurred at 1E.01, 1D.01, 1C.01, 1BB.01, 1B.01, 1.05, 1.07, 1.08 Freeboard was less than 0.15m at 1E.02


The maximum flow exceeded the safe value in the following overflow routes: O 1.07

Numerical damping was applied to: 1AA.01-1A.02, 1C.01-1.05.

Flood Extent Plan - Overland Flow


Existing Site Conditions

Proposed Development

Lower Ground and Ground Floor Plans

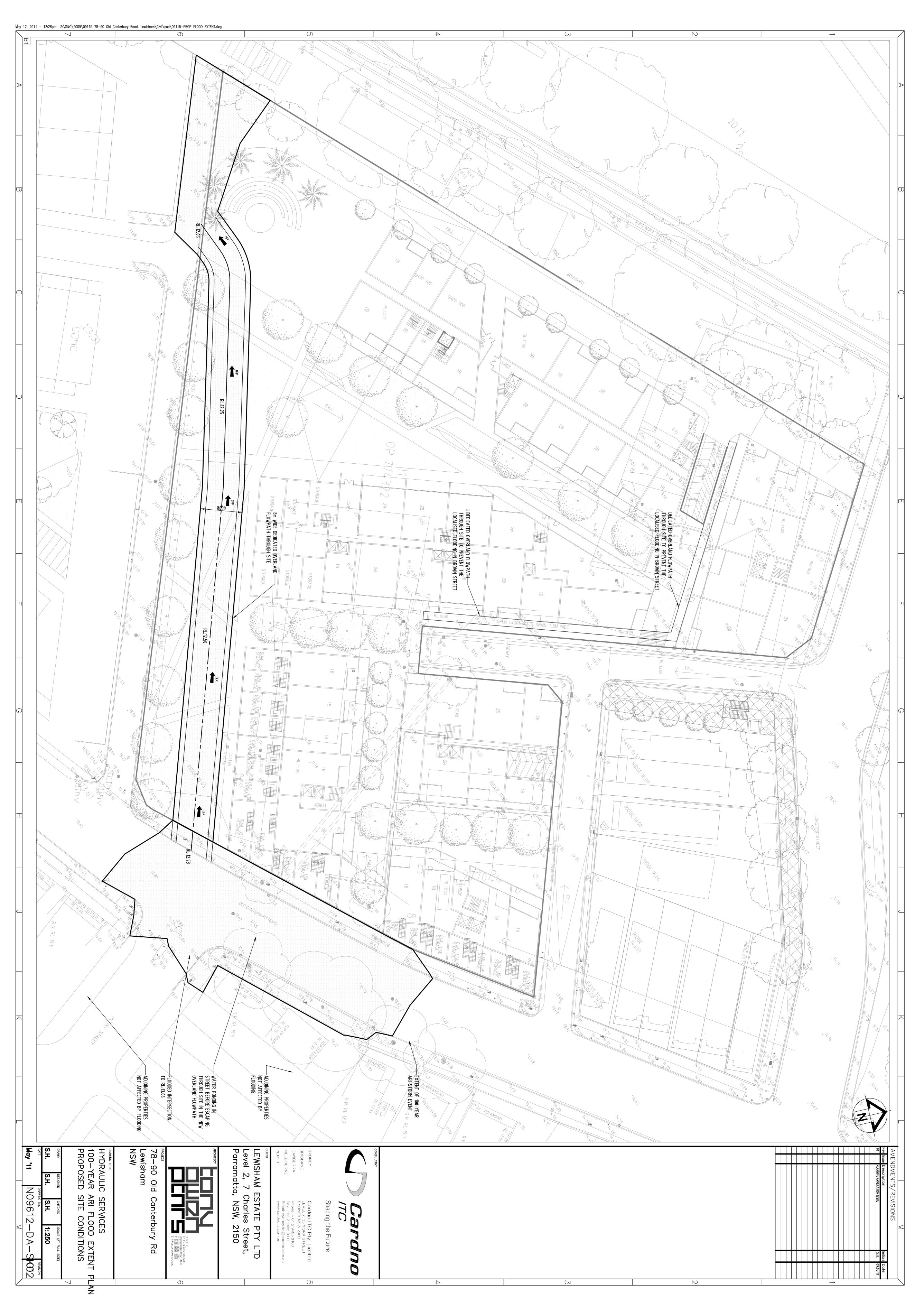
DRAINS Model Results

Proposed Site Conditions

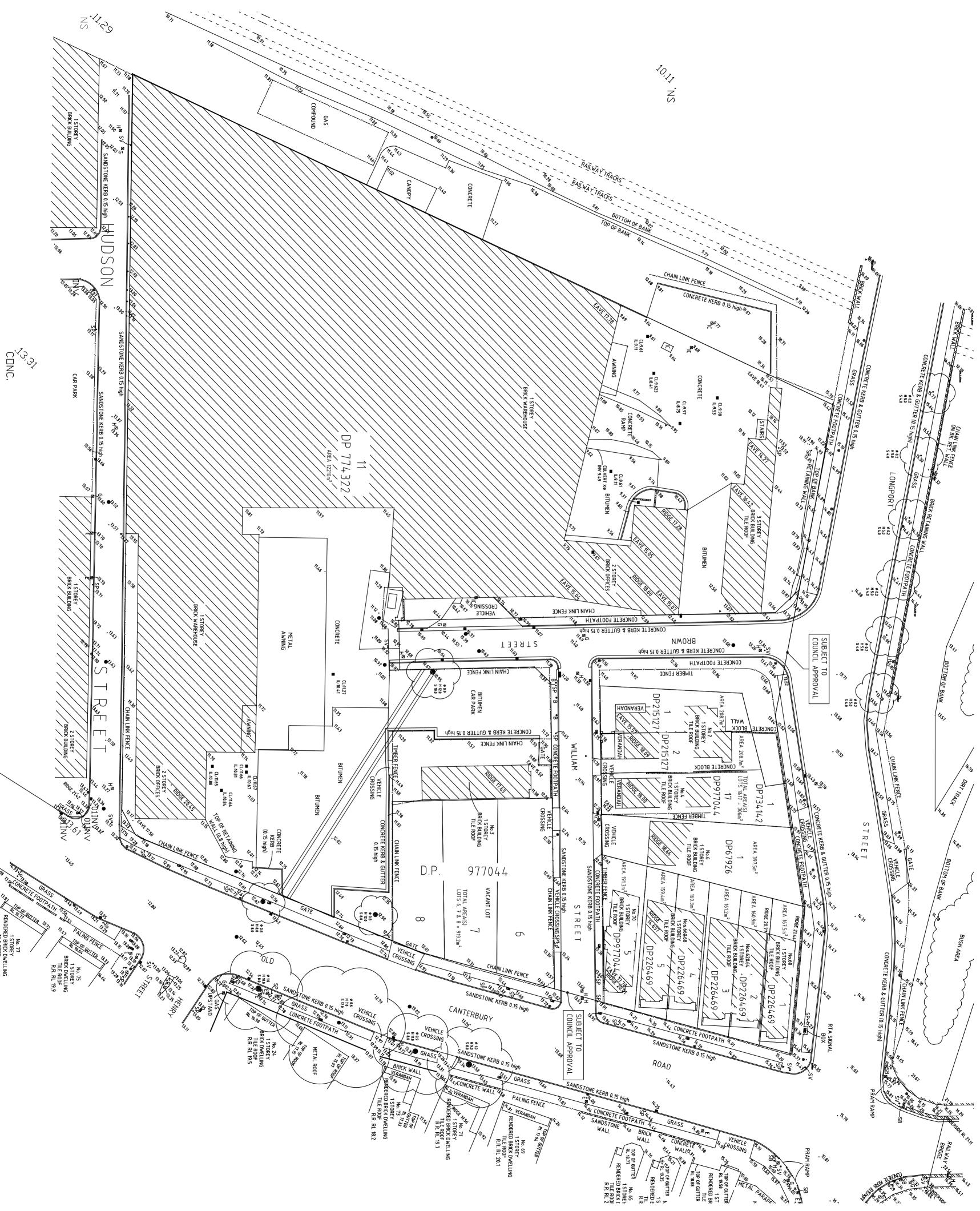
PIT / NOD Name	E DETAILS Type	Family	Version 9 Size	Ponding Volume	Pressure Surfac		Base Inflow	Blocking Factor	x	у	Bolt-down lid	id Part Ful Shock L	
		NSW Dept. of Housing RM10 Inlet,		(cu.m)	Coeff. Ku		(cu.m/s)						
1A.01	OnGrade	3% crossfall, all grades NSW Dept. of Housing RM10 Inlet,	RM10 2.4 m lintel		0.5	13.58		0	0.2	145.569	-6.125 No	10 1 x Ku	
1.04A	OnGrade	3% crossfall, all grades NSW Dept. of Housing RM7 Inlet,	RM10 2.4 m lintel		1.5	12.71		0	0.2	153.869	15.868 No	9 1 x Ku	
1.04B	OnGrade	3% crossfall, 1% grade NSW Dept. of Housing RM7 Inlet,	RM7		0.5	11.9		0	0.2	78.837	16.159 Yes	334396 1 x Ku	
1.04C	OnGrade	3% crossfall, 1% grade NSW Dept. of Housing RM7 Inlet,	RM7		2.5	11.28		0	0.2	11.269	16.314 Yes	334395 1 x Ku	
	.02 OnGrade .01 Node	3% crossfall, 1% grade	RM7		2.5	9.8 9.6		0	0.2	46.711 34.907	89.723 Yes 106.166	7 1 x Ku 39	
1B.01 1B.02	Sag Node	NSW Dept. of Housing RM10 Inlet, 3% crossfall, all grades NSW Dept. of Housing RM10 Inlet,	RM10 2.4 m lintel	1	10 0.5	13.05 13.1	0.15	0 0	0.5	160.728 163.514	-4.368 No 0.892	12 1 x Ku 74	
	.05 Sag .04 Sag	3% crossfall, all grades Manual	RM10 2.4 m lintel kerb inlet all inflows 0.5cums		15 1.7 25 2	12.54 12.42	0.1 0.21	0	0.5 0.5	167.856 157.558	20.02 No 24.737 No	4 1 x Ku 5 1 x Ku	
1BB.01	Sag	NSW Dept. of Housing RM10 Inlet, 3% crossfall, all grades	RM10 2.4 m lintel		10 0.5	12.87	0.15	0	0.5	170.33	-2.496 No	13 1 x Ku	
1C.01	Sag	NSW Dept. of Housing RM10 Inlet, 3% crossfall, all grades	RM10 2.4 m lintel	1	15 0.5	12.74	0.15	0	0.5	169.823	9.013 No	14 1 x Ku	
1D.01	OnGrade	Manual NSW Dept. of Housing RM10 Inlet,	kerb inlet all inflows 0.5cums	;	0.5	12.89		0	0.2	178.473	44.123 No	16 1 x Ku	
1E.02	Sag	3% crossfall, all grades NSW Dept. of Housing RM10 Inlet,	RM10 2.4 m lintel	1	10 0.5	13.35	0.15	0	0.5	202.614	35.946 No	19 1 x Ku	
	Sag .06 Node 1.1 Node	3% crossfall, all grades	RM10 2.4 m lintel	1	10 2.5	13.3 13 20	0.15	0 0 0	0.5	201.804 188.758 375.295	34.496 No 14.139 -88.987	18 1 x Ku 81 259	
1	.09 Sag	NSW Dept. of Housing RM10 Inlet, 3% crossfall, all grades	RM10 2.4 m lintel	1	10 0.7	15.5	0.15	0	0.5	302.447	-12.988 Yes	2 1 x Ku	
	.08 Sag	NSW Dept. of Housing RM10 Inlet, 3% crossfall, all grades	RM10 2.4 m lintel		10 0.5	15.4	0.15	0	0.5	295.702	-8.613 No	1 1 x Ku	
DUMMY 1	.07 Sag .09 Node Node	Manual	kerb inlet all inflows 0.5cums	1	15 0.5	14 15.6 10.37	0.15	0 0 0	0.5	257.847 312.996	-5.086 No 0.955 52.495	3 1 x Ku 286 334403	
Brown St	CHMENT DETAIL	9				10.37		U		108.68	52.495	334403	
Name	Pit or Node	Total Area	Paved Area	Grass Area	Supp Paved Area Time	Grass Time	Supp Time	Paved Length			upp Paved ength Slope(%)	Grass Supp Slope Slope	Paved Grass Supp Lag Time Rough Rough Rough or Factor
C 1A.01	1A.01	(ha) 0.0774	%	%	% (min)	(min)	(min)	(m) 0			n) %	% % 3 3	1 0.013 0.2 0.013 0
C 1B.01 C 1.05	1B.01	0.74	4 8	0 2	20 0	5 5	0	0	151 68.8	151 68.8	0.1 5	5.3 .9 4.9	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1.04 C 1BB.01	1.0- 1BB.01		3 8	0 2	20 0	5 5	0	0	98 132	98 132	0.1 2	.4 2.4 .3 5.3	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1C.01 C 1D.01	1C.01 1D.01	0.057 0.34	7 8	0 2	20 0	5 5	0	0	74 83	74 83	0.1	5 5 5 5	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1E.02 C 1E.01	1E.02 1E.01	1.0 ⁴ 0.2	4 8	0 2	20 0 20 0	5 5	0	0	172 71.6	172 71.6	0.1 5	.2 5.2 .6 5.6	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1.10 C 1.08	1. 1.0				20 0 20 0	5 5	0 0	0 0	340 53	340 53	0.1 5.3 0.1	35 5.35 2 2	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1.07 C 1.09	1.0° DUMMY 1.09				20 0 20 0	5 5	0 0	0 0	56 238	56 238	0.1 5.3 0.1 5	35 5.35 6.6 5.6	1 0.013 0.2 0.013 0 1 0.013 0.2 0.013 0
C 1.03 PIPE DET	Brown St	0.873	3 8	0 2	20 0	5	0	0	116	116	0.1 1	.5 1.5	1 0.013 0.2 0.013 0
Name	From	То	Length (m)	U/S IL (m)	D/S IL Slope (m) (%)	Туре	Dia (mm)	I.D. (mm)	R	lough P	ipe Is No. Pipes	Chg From At Chg	
1A.01-1.04 1.04A-1.04		1.04A 1.04B	2 8	8 12.6	8 11.773	3.24 Concrete, under roads 2 Concrete, under roads	,	300	300 1524	0.013 E		1 1A.01 1 1.04A	0
1.04B-1.04 1.04C-1.02	C 1.04B	1.04C	6	2 5.13	3.897	2 Concrete, under roads 1.07 Concrete, under roads	1	1500 1500	1524 1524	0.013 N 0.013 N	lewFixed	1 1.04B 1 1.04C	0
1.01-1.02 1B.01-1BE	1.0			1 2.79		3.86 Concrete, under roads 1.78 Concrete, under roads	1	1200 450	1200 450	0.013 E 0.013 E	xisting	1 1.02 1 1B.01	0
1B.02-1.05 1.04-1.05		1.05	5 19.409	5 11.86	34 11.49	1.93 Concrete, under roads 5 Concrete, under roads		450 900	450 900	0.013 E 0.013 E	xisting	1 1B.02 1 1.05	0
1.03-1.04		4 1.04A 1B.02	14. 7.6190	4 7.08	6.797	2 Concrete, under roads 1 Concrete, under roads	1	1500 300	1524 300	0.013 E 0.013 E	xisting	1 1.04 1 1BB.01	0
1C.01-1.09 1D.01-1.09		1.05 1.05				1.8 Concrete, under roads 1.34 Concrete, under roads		300 450	300 450	0.013 E 0.013 E	xisting	1 1C.01 1 1D.01	0 0
1E.01-1E.0 1E.01-1.06		1E.01	1.6488 23.966			0.97 Concrete, under roads5 Concrete, under roads		300 225	300 225	0.013 E 0.013 E		1 1E.02 1 1E.01	0 0
1.05-1.06 1.09-1.10	1.0 1.					5 Concrete, under roads5 Concrete, under roads		900 750	900 750	0.013 E 0.013 E		1 1.06 1 1.1	0 0
1.08-1.09 1.07-1.08	1.0 1.0	8 1.07	7 37.754	1 13.29	94 11.406	5 Box Culverts 5 Box Culverts	1W x 0.9H 1W x 0.9H	I		0.012 E 0.012 E	xisting	1 1.09 1 1.08	0 0
1.06-1.07 DUMMY P	1.0 IPE DUMMY 1.09					5 Box Culverts 2 Concrete, under roads	1W x 0.9H	750	750	0.012 E 0.013 E		1 1.07 1 DUMMY 1.09	0
	W ROUTE DETA		Terrind	0-:11	O	0	Cafa Daari	h 0-f-D#h		-t- D	D/C A	tal.	
Name	From	То	Travel Time (min)	Spill Level (m)	Crest Weir Length Coeff. (m)	Cross C Section	Safe Depti Major Stor (m)	h SafeDepth rms Minor Stori (m)	ms D		led D/S Area clope Contributing %) %	id g	
O 1A.01 O 1B.01	1A.01 1B.01	1.0 ⁴ 1BB.01	4 ` ′	(m) 1 1	(111)	8 m wide road (half see 8 m wide road (half see	ction)	0.3 0.3	0.15 0.15	o.4 0.4 0.4	3.9	0 0	183 192
O 1.05	1.0			•		Dummy used to model across road low points	flow	0.2	0.15	0.4		0	181
0 1.03	1.0			5		Dummy used to model across road low points	flow	0.2	0.05	0.6		0	206
O 1.04	1BB.01	1C.01				Dummy used to model across road low points	flow	0.2	0.05	0.6		0	195
O 1C.01 O 1D.01	1C.01 1D.01	1.05 1.05	5	•		8 m wide road (half ser 8 m wide road (half ser	ction)	0.3	0.15 0.15	0.4 0.4	1.9	0	200 157
O 1E.02	1E.02	1E.01		1		Dummy used to model across road low points	flow	0.2	0.05	0.6		0	152
O 1E.01	1E.01	1.08	5	5		Dummy used to model across road low points	flow	0.2	0.05	0.6		0	154
O 1.09	1.0					Dummy used to model across road low points		0.2	0.05	0.6	***	0	146
O 1.08 O 1.07	1.0 1.0	8 1.07 7 1E.01		5 5		8 m wide road (half see	ction)	0.3 0.3	0.15 0.15	0.4 0.4		0	148 150
O 1.03	Brown St	1.0	1	5		Dummy used to model across road low points		0.2	0.05	0.6	1.1	0	208

PIT / NODE DE Name 1A.01	ETAILS Max HGL Max P HGL 12.83	ond Max Surfa Flow Arriv (cu.m/s)		Min Freeboard (m)	Overflow (cu.m/s)	Constraint Inlet Capacity
1.04A 1.04B 1.04C 1.02 1.01	9.75 9.18 8.9 8.05 6.36		0 0 0 0 0.184	2.96 2.72 2.38 1.75	S 2 3	None None None None
1B.01 1B.02 1.05	13.26 13.3	13.2 12.64	0.159 8. 0 0.216 12.			Outlet System Outlet System
1.04 1BB.01 1C.01 1D.01 1E.02 1E.01	13.08 12.96 12.97 13.49	12.63 13.02 12.89 13.5 13.45	0.171 21. 0.176 8. 0.072 12. 0.074 0.221 8. 0.208 8.	6 -0.21 9 -0.22 -0.08 6 -0.14	0.749 0.813 0.265 0.582	Inlet Capacity Outlet System Outlet System Outlet System Outlet System Outlet System Outlet System
1.06 1.1 1.09 1.08 1.07 DUMMY 1.09		15.5 15.55 14.15	0 1.686 0 0.008 8. 0.064 12. 0.834		0.778	Outlet System Outlet System Outlet System
	ENT DETAILS Max Paved Flow Q Max Q		Paved Tc	Grassed Tc	Supp. Tc	Due to Storm
C 1A.01 C 1B.01 C 1.05 C 1.04 C 1BB.01 C 1C.01 C 1D.01 C 1E.02 C 1E.01 C 1.10 C 1.08 C 1.07 C 1.09 C 1.03	0.119 0.076 0.358 0.035 0.208 0.586 0.125 4.271 0.021 0.187 2.181	s) (cu.m/s) 0.04 0.374 0.099 0.067 0.313 0.03 0.176 0.522 0.104 3.931 0.018 0.155 1.973 0.434	(min) 0.007 7.8 0.058 8.4 0.02 7.1 0.01 8.3 0.05 8.1 0.006 7.2 0.033 7.4 0.077 8.7 0.021 7.1 0.428 10.5 0.003 7.4 0.032 6.8 0.262 9.4 0.059 9.2	3 17.68 9 11.3 6 17.3 6 16.31 8 11.73 4 12.57 3 19.23 6 11.12 7 28.7 5 12.64 9 9.72 3 22.85	3 0.07 3 0.07 3 0.07 4 0.07 5 0.07 7 0.07 6 0.07 4 0.07 2 0.07 5 0.07	AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1
	Max Q Max V		Max D/S HGL (m)	Due to Storm		
1A.01-1.04A 1.04A-1.04B 1.04B-1.04C 1.04C-1.02 1.01-1.02 1B.01-1BB.01 1B.02-1.05 1.04-1.05 1.03-1.04 1BB.01-1B.02 1C.01-1.05 1D.01-1.05 1E.01-1E.02 1E.01-1.06 1.05-1.06 1.09-1.10 1.08-1.09 1.07-1.08 1.06-1.07 DUMMY PIPE	(cu.m/s) (m/s) 0.045 3.88 3.873 3.87 0.131 0.273 3.532 3.85 0.127 0.116 0.182 0.083 0.111 4.106 4.109 6.122 5.325 4.154 2.172	HGL (m) 2.06 2.13 2.12 2.12 3.42 0.83 1.71 5.55 2.11 1.79 1.64 1.15 1.17 2.8 6.45 9.3 6.8 5.92 4.62 4.92	12.784 11.87 9.4 9.18 9.067 8.89 8.322 8.04 6.557 6.3 13.303 13.30 13.304 13.31 10.659 10.23 9.785 9.74 13.297 13.30 13.28 13.31 13.291 13.31 13.492 13.49 14.38 14.40 14.404 13.31 30.081 17.61 17.528 17.17 17.129 15.87 15.854 14.40	1 AR&R 100 year 7 AR&R 100 year 8 AR&R 100 year 8 AR&R 100 year 6 AR&R 100 year 1 AR&R 100 year	ar, 25 minutes ar, 25 minutes ar, 25 minutes ar, 25 minutes ar, 2 hours sto ar, 2 hours sto ar, 10 minutes ar, 4.5 hours s ar, 4.5 hours s ar, 4.5 hours s ar, 10 minutes ar, 25 minutes	a storm, average 145 mm/h, Zone 1 arm, average 60 mm/h, Zone 1 arm, average 60 mm/h, Zone 1 arm, average 60 mm/h, Zone 1 a storm, average 211 mm/h, Zone 1 a storm, average 34.7 mm/h, Zone 1 a storm, average 34.7 mm/h, Zone 1 a storm, average 211 mm/h, Zone 1 a storm, average 211 mm/h, Zone 1 a storm, average 211 mm/h, Zone 1 a storm, average 145 mm/h, Zone 1
	Max Q U/S Max Q 0.001 0.403 2.788 2.494 0.749 0.813 0.265 0.582 2.071 0 0.778 1.773	0.001 0.403 2.788 2.494 0.749 0.813 0.265 0.582 2.071 0 0.778 1.773 0.481	Max D 0.722 0.01 0.966 0.16 12.595 0.10 7.665 0.12 12.826 0.06 0.966 0.19 1.073 0.14 9.749 0.04 11.625 0.09 14.134 0.991 0.19 1.162 0.26 8.039 0.06	5 0.25 8 0.2 7 0.15 2 0.08 7 0.36 6 0.2 2 0.09 9 0.16 0 0 3 0.35 2 0.54	5 4.73 2 25.64 5 29.41 8 16.48 6 6.33 2 3.49 9 12.35 6 23.85 0 0 6 6.16	0.69 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 1.49 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 1.81 AR&R 100 year, 1 hour storm, average 95 mm/h, Zone 1 1.21 AR&R 100 year, 1 hour storm, average 95 mm/h, Zone 1 1.29 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 1.82 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 1.38 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 2.07 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 1.57 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 0 1.83 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1 2.05 AR&R 100 year, 25 minutes storm, average 145 mm/h, Zone 1

CONTINUITY	CHECK for A	AR&R 100 ye	ar, 25 minutes stor	m, average 145 mm/h, Zone 1
Node	Inflow	Outflow	Storage Change	Difference


	Inflow	Outflow	Storage Change	Difference	
	(cu.m)	(cu.m)	(cu.m)	%	
	43.52	43.52	0	0	
	6613.95	6614.79	0	0	
	6614.79	6615.31	0	0	
	6615.31	6615.72	0	0	
1.02	6615.72	6616.03	0	0	
1.01	9398.2	9398.2	0	0	
	415.71	415.63	0	0	
	222.96	222.78	0	0.1	
1.05	8782.46	8785.48	0	0	
1.04	8860.35	8863.05	0.92	0	
	624.62	624.54	0	0	
	571.45	571.13	0	0.1	
	191.35	190.67	0	0.4	
	583.93	584	0	0	
	1857.5	1857.71	0	0	
1.06	5929.9	5917.66	0	0.2	
1.1	4578.49	4578.8	0	0	
1.09	6810.59	6811.88	0	0	
1.08	6831.57	6833.08	0	0	
1.07	6999.83	7005.97	0.8	-0.1	
1.09	2231.93	2231.8	0	0	
t	489.7	489.7	0	0	
	1.01 1.05 1.04 1.06 1.1 1.09 1.08	(cu.m) 43.52 6613.95 6614.79 6615.31 1.02 6615.72 1.01 9398.2 415.71 222.96 1.05 8782.46 1.04 8860.35 624.62 571.45 191.35 583.93 1857.5 1.06 5929.9 1.1 4578.49 1.09 6810.59 1.08 6831.57 1.07 6999.83 1.09 2231.93	(cu.m) (cu.m) 43.52 43.52 6613.95 6614.79 6614.79 6615.31 6615.31 6615.72 1.02 6615.72 6616.03 1.01 9398.2 9398.2 415.71 415.63 222.96 222.78 1.05 8782.46 8785.48 1.04 8860.35 8863.05 624.62 624.54 571.45 571.13 191.35 190.67 583.93 584 1857.5 1857.71 1.06 5929.9 5917.66 1.1 4578.49 4578.8 1.09 6810.59 6811.88 1.08 6831.57 6833.08 1.07 6999.83 7005.97 1.09 2231.93 2231.8	(cu.m) (cu.m) (cu.m) 43.52 43.52 0 6613.95 6614.79 0 6614.79 6615.31 0 6615.31 6615.72 0 1.02 6615.72 6616.03 0 1.01 9398.2 9398.2 0 415.71 415.63 0 222.96 222.78 0 1.05 8782.46 8785.48 0 1.04 8860.35 8863.05 0.92 624.62 624.54 0 571.45 571.13 0 191.35 190.67 0 583.93 584 0 1.06 5929.9 5917.66 0 1.1 4578.49 4578.8 0 1.09 6810.59 6811.88 0 1.08 6831.57 6833.08 0 1.07 6999.83 7005.97 0.8 1.09 2231.93 2231.8 0	(cu.m) (cu.m) (cu.m) % 43.52 43.52 0 0 6613.95 6614.79 0 0 6614.79 6615.31 0 0 6615.31 6615.72 0 0 1.02 6615.72 6616.03 0 0 1.01 9398.2 9398.2 0 0 415.71 415.63 0 0 0 222.96 222.78 0 0.1 1.05 8782.46 8785.48 0 0 0 1.04 8860.35 8863.05 0.92 0 0 624.62 624.54 0 0 0 0 571.45 571.13 0 0.1 0 0 583.93 584 0 0 0 1.06 5929.9 5917.66 0 0.2 1.1 4578.49 4578.8 0 0 1.09 6810.59 6811.88 0 0 1.07 6999.83 7005.97

Upwelling occurred at 1E.01, 1D.01, 1C.01, 1BB.01, 1B.01, 1.05, 1.07, 1.08 Freeboard was less than 0.15m at 1E.02 The maximum flow exceeded the safe value in the following overflow routes: O 1.07


Flood Extent Plan - Overland Flow

Proposed Site Conditions

Survey Plan

