TECHNICAL REPORT NO 6 TRAFFIC IMPACT ASSESSMENT TRAFFIX

traffic impact assessment

proposed integrated recycling park, grand avenue, camellia prepared on behalf of REMONDIS Pty Ltd by TRAFFIX traffic & transport planners ref: 10 034 report_v10 31 august 2011

> traffix traffic & transport planners

po box 1061 potts point nsw 1335 t: +61 2 8324 8700 f: +61 2 9380 4481 w: www.trafflx.com.au abn: 66065132961

contents

1.	intro	oduction	1			
2.	loca	ation and site	3			
3. existing traffic conditions						
	3.1	road hierarchy	6			
	3.2	general description of road environment	8			
	3.3	public transport	8			
	3.4	surrounding cycle network	10			
	3.5	existing site generation	10			
	3.6	existing intersection performances	10			
4.	des	cription of proposed development	14			
5.	park	king requirements	15			
	5.1	parking requirements	15			
	5.2	disabled parking	16			
	5.3	bicycle facilities	16			
6.	traff	īc impacts	17			
	6.1	trip generation	17			
	6.1.	1 employee trips	17			
	6.1.	2 deliveries and contractor movements	12			
	6.1.	.3 combined trips	12			
	6.2	peak period Intersection performances	12			
	6.3	construction traffic	15			
	6.4	road safety impacts	16			
7.	acce	ess & internal design aspects	19			
	7.1	access	19			
	7.2	internal design	19			
8.	3. conclusions 2 ²					

list of figures

Figure 1: Location	4
Figure 2: Site	5
Figure 3: Surrounding Road Hierarchy	7
Figure 4: Public Transport Service	9
Figure 5: Accident Location & Type	17

table list

Table 1: existing intersection performance: am and pm on-street peak hour	12
Table 2: existing intersection performance: 1.30-2.30pm	12
Table 3: existing + development intersection performances	13
Table 4: intersection performance - alternative egress route	14

appendices

appendix a:	photographic record
appendix b:	cycleway maps
appendix c:	survey results
appendix d:	sidra outputs
appendix e:	reduced plans
appendix f:	accident summary reports
appendix g:	swept path analysis

1. introduction

TRAFFIX has been commissioned by REMONDIS Pty Ltd to undertake a traffic impact assessment in relation to the proposed development of an Integrated Recycling Park at Grand Avenue, Camellia. The development is located within the Parramatta City Council LGA, however it is to be assessed by the NSW Department of Planning (DoP) as a Part 3A application.

This report documents the findings of our investigations and should be read in the context of the Environmental Assessment, prepared separately by National Environmental Consulting Services (NECS). The development has been formally referred to the RTA in accordance with the provisions of SEPP (Infrastructure) 2007. The RTA subsequently recommended that, although not technically included as part of the Director General's Requirements, the original traffic report should include detailed modelling of the intersection of Grand Avenue and Grand Avenue North and undertaking a Road Safety Audit. This additional modelling has now been included as part of this assessment, however a Road Safety Audit is not considered necessary at this stage as discussed in Section 6.

A review of RTA accident data has also been included in this assessment, in addition to the *Remondis Risk Assessment - Impact of Recycling Operations at Grand Avenue on Camellia Level Crossing and Environs*, dated 25 November 2010. In summary, the moderate traffic volumes associated with the development are not expected to exacerbate any existing accident trends. A detailed Road Safety Audit can be undertaken prior to construction / occupation that can identify any low cost measures to assist in reducing existing accident trends in the locality, namely at the intersection of James Ruse Drive and Grand Avenue. In any event, the Department may impose a condition of consent prior to construction or occupation requiring this safety audit to be undertaken, the event that it is still considered necessary.

The report is structured as follows:

- Section 2: Describes the site and its location
- Section 3: Documents existing traffic conditions
- Section 4: Describes the proposed development
- Section 5: Assesses the parking requirements
- Section 6: Assesses traffic impacts
- Section 7: Discusses access and internal design aspects
- Section 8: Presents the overall study conclusions.

2. location and site

The site is located at 1 Grand Avenue, Camellia which is situated to the east of the Camellia railway station. Rosehill Racecourse is located to the south of the site, on the southern side of Grand Avenue.

The overall site is bounded by the Clyde-Carlingford railway line to the west, industrial spur rail line to the south, a neighbouring industrial premise to the east and the Parramatta River to the north. The overall site occupies an area of some 7.39 hectares, however the subject application relates to a smaller section of the site with an area of some 4.5 hectares.

It is generally a cleared site, with remnant concrete and bitumen hardstand areas, and is currently used for container storage.

All access to the site is currently provided from Grand Avenue, via a short length of the Grand Avenue North, to the east of the Camellia railway station and car park. Access to/from Grand Avenue requires the crossing of an at-grade level crossing of the industrial spur rail line immediately to the southeast of the access.

A Location Plan is presented in **figure 1**, with a Site Plan presented in **figure 2**. Reference should also be made to the Photographic Record presented in **appendix a**, which provides an appreciation of the general character of roads and other key attributes in proximity to the site.

Figure 1: Location

Figure 2: Site

3. existing traffic conditions

3.1 road hierarchy

The road hierarchy in the vicinity of the site is shown in **figure 3** with the following roads of particular interest:

0	M4 Motorway:	a major arterial road (MR 6004) that forms Sydney's major east-west transport corridor, to the south of the site. It carries in excess of 81,500 vehicles per day to the east of the site;
0	James Ruse Drive:	an RTA classified road (MR 309) that runs in a north-south direction to the west of the site. It carries in the order of 63,000 vehicles per day;
0	Victoria Road:	a classified road (MR 165) that runs in an east-west direction, to the north of the site. It carries approximately 62,500vpd;
0	Grand Avenue:	a local industrial road that runs in an east-west direction to the south of the site and provides access from James Ruse Drive to the Rosehill Business Park;
0	Grand Avenue North:	a local road that runs in a northwest-southeast direction and provides the current and future access to the site. Camellia railway station effectively splits Grand Avenue North into two sections, the southern of which provides access to the site via Grand Avenue;

It can be seen from **figure 3** that the site is conveniently located with respect to the arterial and local road systems serving the region. It is therefore able to effectively distribute traffic onto the wider road network using industrial and arterial roads, minimising traffic impacts.

Figure 3: Surrounding Road Hierarchy

3.2 general description of road environment

James Ruse Drive is constructed with a 24.5 metre carriageway and generally carries three lanes of traffic in either direction. It forms a signalised intersection with Grand Avenue and Hassall Street, to the west of the site. This includes a left turn slip lane for eastbound traffic turning north onto James Ruse Drive. Reference should also be made to the SIDRA intersection layouts in **appendix d** which provides a diagrammatic representation of this intersection in terms of lane configurations and lengths.

Hassall Street is generally constructed with a 12 metre carriageway and carries two lanes of traffic in either direction. Localised widening in the vicinity of James Ruse Drive permit additional turning lanes to be provided at this intersection.

Grand Avenue generally carries a single lane of traffic in either direction with localised widening in the vicinity of James Ruse Drive to provide sufficient turning lanes at this intersection. The width narrows to approximately 7 metres on the overpass of the Clyde-Carlingford railway line, to the west of the site. Further to the east, Grand Avenue is constructed with a divided carriageway and includes a number of at-grade railway crossings of industrial spur lines along its length. A short left turn deceleration lane and 35 metre right turn storage lane are provide on Grand Avenue at its intersection with Grand Avenue North.

Grand Avenue North is divided by the Clyde-Carlingford railway line. Access to the site is provide via the southern section of Grand Avenue North, which is accessed via Grand Avenue. Vehicle access to the site requires traversing the at-grade rail spur line crossing, immediately to the southeast of the site access.

3.3 public transport

The existing bus services that operate in the locality are shown in **figure 4**. It is evident that the site benefits from good access to the public transport system with Camellia railway station adjacent to the site access and buses travelling along James Ruse Drive.

Figure 4: Public Transport Service

Due to the hours and nature of the proposed operations discussed in the following sections, the above services are expected to be used only a minimal extent by staff. Train service frequencies from Camellia railway station vary between 30-60 minutes depending on the time of day which is likely to be used by some staff. However, as the number of staff is small, for the purpose of this assessment and to assess a worst case scenario, reliance on private cars has been assumed for 90% of all staff relating to their journey-to-work travel, as discussed in Section 6.

3.4 surrounding cycle network

Copies of the Parramatta Council and RTA Cycleway maps are provided in **appendix b**. It can be seen that Grand Avenue forms a local on-road route of moderate difficulty which is assumed to be a consequence of the relatively high proportion of heavy vehicles using this route to access surrounding industrial developments.

3.5 existing site generation

Recently the site has been used for container storage purposes on a short term basis. The traffic report included in the development application submission states that the traffic associated with the use of the site would generate in the order of 212 trips per day, comprised of 200 truck movements plus 12 staff passenger vehicle movements.

3.6 existing intersection performances

For the purposes of the assessment of traffic impacts of this development, surveys were undertaken of the most critical intersection immediate adjacent to the site, being the intersection of James Ruse Drive with Grand Avenue, to the west of the site. These were undertaken between the morning (7-9am) and afternoon (4-6pm) on-street peak periods. Surveys were also undertaken between 1.30-2.30pm as this period reflects the peak site related traffic generation, as raised by the RTA and as discussed further in Section 6.

The results of these surveys, included in **appendix c**, were analysed using the SIDRA computer program to determine the intersections performance characteristics under existing traffic conditions. The SIDRA model produces a range of outputs, the most useful of which are the Degree of Saturation (DOS) and Average Vehicle Delay per vehicle (AVD). The AVD is in turn related to a level of service (LOS) criteria. These performance measures can be interpreted using the following explanations:

DOS – the DOS is a measure of the operational performance of individual intersections. As both queue length and delay increase rapidly as DOS approaches 1, it is usual to attempt to keep DOS to less than 0.9. When DOS exceeds 0.9 residual queues can be anticipated, as occurs at many major intersections throughout the metropolitan area during peak periods. In this regard, a practical limit at 1.1 can be assumed. For intersections controlled by roundabout or give way/stop control, satisfactory intersection operation is generally indicated by a DOS of 0.8 or less.

AVD – the AVD for individual intersections provides a measure of the operational performance of an intersection. In general, levels of acceptability of AVD for individual intersections depend on the time of day (motorists generally accept higher delays during peak commuter periods) and the road system being modelled (motorists are more likely to accept longer delays on side streets than on the main road system).

LOS – this is a comparative measure which provides an indication of the operating performance of an intersection
as shown below:

this is a componential process which provides an indication of the convetient profession

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way and Stop Signs
A	less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
с	29 to 42	Satisfactory	Satisfactory but accident study required
D	43 to 56	Operating near capacity	Near capacity and accident study required
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity and requires other control mode
F	F More than 70		Unsatisfactory and requires other control mode or major treatment.

A summary of the modelled results are provided below. Reference should also be made to the SIDRA outputs provided in **appendix d** which provide detailed results for individual lanes and approaches.

Intersection Description	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
James Ruse Dr / Grand	AM	aignala	1.221	201.2	F
Ave / Hassall St	PM	signals	1.347	288.3	F
Grand Avenue / Grand Avenue North	PM	priority	0.362	30.5	С

Table 1: existing intersection performance: am and pm on-street peak hour

It is noted that queues on Grand Avenue (east) on approach James Ruse Drive extend up to its intersection with Grand Avenue North. However, it has been observed that vehicles generally do not obstruct the intersection itself such that there is the ability for vehicles exiting Grand Avenue North to join the queue. Conditions between 1.30-3.30pm are improved as shown in table 2, below.

Table 2: existing intersection performance: 1.30-2.30pm

Intersection Description	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
James Ruse Dr / Grand Ave / Hassall St	1.30-2.30pm	signals	1.0	75.8	F
Grand Avenue / Grand Avenue North	1.30-2.30pm	priority	0.105	20.7	В

It can be seen from Table 1 that this intersection James Ruse Drive and Grand Avenue fails under the existing 'base case' scenario, with a level of service F during both on-street peak periods and with significant delays. Nevertheless, it is stressed that the most relevant use of this analysis is to compare the relative change in the performance parameters as a result of the proposed development. This is discussed further in Section 6.

4. description of proposed development

A detailed description of the proposed development is provided in the Environmental Assessment, prepared separately by NECS. In summary, the development for which approval is now sought comprises the following components:

- Construction of the REMONDIS Integrated Recycling Plan (RIRP) which incorporates two waste treatment facilities:
 - Commercial & Industrial Resource Recovery Facility (CIRRF) with a total processing capacity of up to 100,000 tonnes per annum; and
 - Source Separated Organic Resource Recovery Facility (SSORRF) with a processing capacity of up to 50,000 tonnes per annum;
- Operation of the facility will be 24 hours per day, 7 days a week;
- Employment of between 15-20 operational staff plus some additional casual staff which will be divided into three (3) shifts such that the maximum on-site per shift will be 40 persons (19 for CIRRF plus 10 for SSORRF plus 10 additional admin and miscellaneous staff);
- Shift times are expected to occur:
 - Shift 1 6am 2pm;
 - Shift 2 2pm 10pm; and
 - Night Shift 10pm 6am;
- Onstruction of a site office building for administration and staff amenities;
- Provision of 12 car parking spaces in the vicinity of the office building;

The parking and traffic impacts arising from the development are discussed in Sections 5 and 6, respectively. Reference should be made to the plans submitted separately to Council which are presented at reduced scale in **appendix e**. Schedules of expected staffing numbers and delivery numbers are also included in appendix e which form the basis of this assessment.

5. parking requirements

5.1 parking requirements

The Parramatta DCP 2005 requires that industrial uses provide parking at the following rates:

- I car space per 70m² GFA; plus
- 1 loading space per 800m²;

The development schedule of areas shows a total area of 16,101.5m² which includes approximately 240m² of car parking which should be excluded. Application of the above rates to the balance of area results in a requirement for 227 parking spaces.

However, the proposed development is a highly specialised development that is purpose-built and involves sophisticated automated systems. Therefore the number of people on-site will be minimal when compared to typical industrial uses. Specifically, the facility will require a total of 40 staff during the first shift with a reduced 20 staff required during the second shift. Changeover with the night shift (5 staff) will be less critical.

It is assumed that up to 80% of staff will drive to the site (i.e. as a car driver), which results in a peak shift parking demand for 32 spaces associated with Shift 1. An allowance of say 130% of this parking demand is expected to be sufficient to cater for any overlap of parking demands associated with shift changeover periods on the assumption that these will be managed/staggered so that the parking demands of all staff (both shifts) do not need to be fully accommodated at any one time. This also provides an increased allowance for visitor parking outside of shift changeover periods.

Having regard for the above, it is considered that an on-site parking provision of 44 car spaces will be sufficient to accommodate the parking demands associated with the site and this is in accordance with the operator's expectations based on extensive experience.

The proposed development includes a number of waste delivery bays for each separate facility which are considered sufficient to meet the specific requirements of this specialised development.

5.2 disabled parking

Assuming the facility is a Class 8 building under the BCA classification system, then this results in a requirement to provide a single disabled car space per 100 spaces provided (or part thereof). This results in a requirement to provide a single accessible parking space.

Two spaces have been provided with a width of 3.8 metres in accordance with Council's DCP.

5.3 bicycle facilities

Council's DCP 2005 – Section 4.5.1 requires that bicycle parking be provided at a rate of 1 space per 20 car spaces. This results in a requirement to provide 2 spaces based on the parking demand stated above. These spaces are to be provided as Class 2 compounds as specified in AS 2890.3. Again, this can be dealt with under a suitable condition of consent.

6. traffic impacts

6.1 trip generation

6.1.1 employee trips

Having regard for existing bus and rail services and the need to promote alternate transport modes as far as practicable, 80% of employees have been assumed to drive to the site with an average car occupancy of 1.0 persons per vehicle. This represents a worst case scenario given the potential for some ride sharing. This results in a peak traffic generation of 48 vehicles per hour (with a 2:1 split in the direction of the main shift). This peak staff generation is expected to occur between 1.30-2.30pm, due to the shift changeover period, which occurs outside the on-street peak periods.

Staff traffic volumes are reduced during other periods with a total of about 104 movements per day associated with staff arrivals and departures.

The 2006 journey-to-work data indicates the following distribution of employees to/from the surrounding area:

0	North	11%	2in,	4out	0	East	66%	11in, 22out
0	South	23%	4in,	8out	0	West	0%	nil

A similar trip distribution has been assumed for employees of the proposed development.

0	North	2in, 4out	East	11in, 22out
0	South	6in, 12out	Ø West	nil

Trips to both the south, east and west are expected to be distributed to the south along James Ruse Drive due to the nature of the surrounding road network.

6.1.2 deliveries and contractor movements

A total of up to 184 truck movements per day are associated with the subject development. These deliveries are relatively evenly distributed over the course of the day, with a maximum number of trucks per hour for each shift as follows:

Shift 1	18 truck movements (9 in, 9 out);
Shift 2	22 truck movements (11 in, 11 out);
Night shift	6 truck movements (3 in, 3 out);

This assumes that separate trucks are required for inbound and outbound deliveries to various facilities which effectively doubles the number of truck deliveries indicated by the truck distribution table included in **appendix e**. The peak during Shift 2 occurs at 2.00pm with a reduced traffic generation of 12 truck movements per hour during the typical on-street PM peak.

6.1.3 combined trips

The peak traffic activity associated with the site will occur at approximately 2pm for both staff vehicles and peak truck arrivals and departures which results in a total of up to 70 vehicles per hour. As stated previously, this will occur outside the normal on-street peak periods.

Total daily traffic volumes will be in the order of 288 movements per day, the majority (184) of these being associated with truck deliveries.

6.2 peak period Intersection performances

The peak site related traffic is expected to occur outside of on-street peak periods when additional capacity is expected to be available compared to peak on-street periods.

Development related traffic during on-street peak periods will be associated with truck arrivals and departures with the following during both the morning and afternoon peak periods:

AM peak 18 truck movements (14 in, 4 out);

PM peak 12 truck movements (6 in, 6 out)

It is assumed that truck movements will be predominantly focused on the M4 Motorway to the south of the site which provides access to the wider Sydney region. This trend is evident from the existing truck movements at this intersection from Grand Avenue which demonstrate up to 75 percent of truck movements are directed to the south along James Ruse Drive.

These increases are very moderate (even assuming all trucks use this route) in the context of the high traffic volumes on surrounding roads. The performance of the critical intersection after the addition of the above trips is summarised in Table 3, below.

Intersection Description	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
James Ruse Dr / Grand Ave / Hassall St	AM	signals	1.222	203.4	F
	PM		1.348	295.4	F
	1.30-2.30pm		1.000	77.5	F
Grand Avenue / Grand Avenue North	PM	priority	0.489	41.3	С
	1.30-2.30pm		0.412	32.9	С

Table 3: existing + development intersection performances

It is evident from the modelling that the development will result in minimal change to the performance of this intersection during the on-street morning peak and site related peak traffic periods. Increased delays during the PM peak as modelled are 'disproportionate' to the increase in traffic of only 5 vehicles per hour on any one approach and is considered to be a result of the existing saturated conditions experienced by this intersection. The increase in traffic during this period is expected to be within the daily fluctuations in traffic and is not considered to warrant any remedial works to any surrounding intersections. The Level of Service at the intersection of Grand Avenue and Grand Avenue North is expected to reduced to LOS C (from B), however this still remains within acceptable performance parameters for an unsignalised intersection.

In summary, the proposed development generates only moderate traffic during on-street peak periods. Improvements to this intersection would be considered beneficial in terms of the performance of the surrounding road network, however any upgrading works are not considered warranted as a result of the subject development. In this regard, it is expected that any future works would be undertaken by the RTA and Council as a result of other considerations and these works are not relied upon by the subject development.

Furthermore, development traffic has the ability to use Colquhoun Street, Unwin Street and Wentworth Street to access Parramatta Road negating the need for traffic to use this intersection, if required. Table 4, below, demonstrates the relative intersection performances during the critical PM peak were this to be conditioned for heavy vehicles during the afternoon peak.

Intersection Description	Period	Control Type	Degree of Saturation	Intersection Delay	Level of Service
James Ruse Dr / Berry St / Parramatta Rd (existing)	РМ	signals	0.880	34.6	С
James Ruse Dr / Berry St / Parramatta Rd (proposed if traffic is required to redistribute)	РМ	signals	0.891	34.8	С
James Ruse Dr / Grand Ave / Hassal St (existing)	РМ	signals	1.347	288.3	F
James Ruse Dr / Grand Ave / Hassal St (proposed if traffic is required to redistribute)	PM	signals	1.347	288.8	F

It can be seen that delays at the intersections of James Ruse Drive with both Parramatta Road and Grand Avenue will remain relatively unchanged from the existing scenario with redistribution of site related heavy vehicle movements. In this regard, the proposed alternate route seeks to reduce delays to existing traffic at the expense of additional travel time for site related traffic. This alternate route also permits vehicles to avoid potential queuing in Grand Avenue on approach to James Ruse Drive which can extend back to the intersection of Grand Avenue North.In summary, the impacts of the development can readily be accommodated through a suitable condition of consent requiring all truck egress movements to occur via this alternate route to Parramatta Road during the PM peak (4.00-6.00pm), in the event that Council and/or the DoP were to consider the additional delays at the intersection of James Ruse Drive unacceptable. Vehicle movements from the site can be accommodated with only moderate changes to existing delays at all other times. In this regard, whilst widening of the rail over bridge could potentially improve the performance and capacity of the critical intersection (James Ruse Drive, Hassal Street and Grand Avenue), however these works are considered extremely costly and not considered justified for the purposes of the subject application.

6.3 construction traffic

It is anticipated that construction of the development will involve the following number of vehicle movements and contractors during respective work stages:

Stage 1 – Excavation for services

- 6 to 8 weeks
- 80 Trucks over 20 day period to remove contaminated soil
- 4 -5 staff

Stage 2 – Building platform

- 2 to 3 months
- 40 Truck movements on/off site per day
- 20 staff

Stage 3 – Construction of plant

- 9 to 12 months
- Up to 20 Truck movements per day
- Up to 40 Staff (average 25-30)

The number of truck movements and staff numbers in all stages are less than is expected to occur when the development is operational. Therefore, any traffic impacts are also expected to be reduced and also acceptable. This can be confirmed by a construction traffic management plan report prior to the physical commencement of works, in the event that this is required by Council.

6.4 road safety impacts

The RTA has suggested a Road Safety Audit be undertaken as part of the assessment process. It is expected that a detailed Road Safety Audit can be undertaken prior to construction or occupation through a suitable condition of consent. Nevertheless, a preliminary review of road safety in the vicinity of the site has been undertaken to ensure that there are no significant issues that would affect the proposed development. In this regard, accident data has been obtained from the RTA for the latest reporting period between 2005 and 2009.

A summary of the accident locations is provided in **Figure 5** below, with Summary Crash Reports included in **Appendix E**. It should be noted that there is duplication within the summary crash report of accidents that are recorded along all routes.

Figure 5: Accident Location & Type

It can be seen that there are a number of accidents at the major signalised intersection of James Ruse Drive with Grand Avenue. However, this should be viewed in the context of the high traffic volumes passing through this intersection which results in a reduced 'effective' crash rate when compared with other sites. The accident data demonstrates that a high proportion these accidents relate to rear end and turning movement accidents in the vicinity of the James Ruse Drive and Grand Avenue intersection. This is expected to be a result of queuing on approach to this intersection and driver frustration at delays associated with this intersection operation which encourage drivers to accept reduced gaps in opposing traffic. In this regard, additional signage warning of potential queuing may be beneficial at this intersection. Nevertheless, it should be emphasised that there were no fatality crashes during the reported period. In this regard, it is expected that the priority for any remedial works would be lower than a number of other locations throughout the State.

Only a single rear end accident occurred at the intersection of Grand Avenue and Grand Avenue North over the reported period, with no accidents at the at-grade rail crossing on Grand Avenue North. This is consistent with the findings of the *Remondis Risk Assessment - Impact of Recycling Operations at Grand Avenue on Camellia Level Crossing and Environs*, dated 25 November 2010, which concludes that the traffic associated with the site is acceptable, subject to some minor remedial measures.

In summary, the moderate traffic volumes associated with the development are not expected to exacerbate any existing accident trends. A detailed Road Safety Audit can be undertaken prior to construction / occupation that can identify any low cost measures to assist in reducing existing accident trends in the locality, namely at the intersection of James Ruse Drive and Grand Avenue.

7. access & internal design aspects

7.1 access

Access by an MRV can be achieved whilst passing a B85 vehicle, at the intersection of Grand Avenue with Grand Avenue North, which is considered acceptable. A HRV will require the full width of the road which is also considered acceptable having regard for the less frequent demand for vehicles of this size and the relatively low traffic volumes using Grand Avenue North and is also consistent with AS 2890.2. A single on-street parking space can be removed on the eastern side of Grand Avenue North in order to permit simultaneous passing of an HRV and B85 car as indicated by the swept paths in **Appendix G** in the event that Council were to consider this necessary.

Access to the site itself is proposed from Grand Avenue North, in the vicinity of the existing site access. This will provide access to a 14 metre wide internal road as discussed below. It is expected that access to the site will be required generally for 8.8 metre medium rigid vehicles, however occasional access by up to 12.5 metre rigid vehicles (HRV) and 'Truck and Dog' combination vehicles can be achieved as demonstrated by the swept paths.

Grand Avenue north traverses a rail level crossing to the south of the site. The *Remondis Risk* Assessment - Impact of Recycling Operations at Grand Avenue on Camellia Level Crossing and *Environs* concludes that the traffic associated with the development is acceptable, subject to some minor remedial measures.

7.2 internal design

The internal road system generally comprises a circulation loop road that runs in a clockwise direction around the centrally located facilities. Circulation within the site is shown in **appendix f** for a truck and dog combination, with access to loading facilities demonstrated by 12.5 metre rigid vehicles.

Substantial manoeuvring area is provided at adjacent to this circulation roadway to provide access to the recycling facilities and drop-off/pick-up locations.

Car parking areas are generally designed with a minimum space width of 2.5 metres. Spaces 5 and 10 currently do not provide sufficient width.

Finally it is expected that the proposed access and internal design would be subject to design certification prior to construction. In this regard, a general condition of consent requiring compliance with AS2890.1 and AS2890.2 is considered sufficient to deal with any minor inconsistencies.

8. conclusions

In summary:

- The surrounding road network, particularly James Ruse Drive in the vicinity of the site, currently exceeds capacity resulting in significant delays for road users during peak periods. It should be noted that the proposed development is a highly specialised and automated operation which results in a comparatively low traffic generation when considering other potential (and historic) uses of the site;
- The development will generate in the order of 288 vehicle movements per day with a peak hourly traffic generation of up to 70 vehicles per hour which does not coincide with on-street peak periods. Peak site related traffic is a result of shift changeover times which generally occur prior to on-street peak periods;
- Delays at surrounding intersections will remain relatively unchanged by the proposed development during the peak site traffic and morning on-street periods. Increased delays at the intersection of James Ruse Drive and Grand Avenue are not considered to warrant works to this intersection on behalf of the applicant for the reasons outlined in Section 6, including the ability for site traffic to redistribute to less congested intersections during this time;
- Traffic generation during on-street peak periods will be significantly reduced compared to shift changeover times and be in the order of 18 vehicles per hour and 12 vehicles per hour during the morning and afternoon peak periods, respectively. These are moderate increases in traffic and are not considered to warrant improvements to the surrounding road deficiencies;
- A total of 44 parking spaces are provided on-site for use by staff and visitors. This provides an allowance for some spare capacity to accommodate overflow parking that may occur during shift changeover periods;
- The access and internal design are considered supportable subject to the comments in Section 7 and subsequent construction design development;

It is therefore concluded that the proposed development is supportable on traffic planning grounds and the proposed development will operate satisfactorily.

appendix a

photographic record

View east towards the site access on Grand Avenue.

View north towards the Grand Avenue railway crossing.

View west towards the intersection between Grand Avenue and Grand Avenue North.

View east towards the intersection between Grand Avenue and Grand Avenue North

View East along Hassall Street towards its intersection with James Ruse Drive and Grand Avenue.

View south west toward towards the intersection between Grand Avenue and Colquhoun Street.

appendix b

cycleway maps
A set property of

Then become of the optimizer map

BANKED NOTE These are pairs for a section of the last faced with distriction of the area (section of the section of the last of the last of the last matching to the last of the last of the last matching to the last of the last matching the last of the last o £ do

CONTROLO INCLUTION

Construction of the second sec Age to the Tarmer

On read affining more

The map provides a party or the land of differing results around their in the state spirity and these results (2) more high and marker workfore an main part with ---

County Low of NULET CALLER'S RETTER Desires for an post of the Official state. The sector and solution to party an incompared the Table of provid-ted sectors and the official state of the incompared state state.

NUMBER OF COMPANY OF READ ASIAN Period in the second se

HIGHIN HIGH LEWICLEY'S DIVISION AND THE from a by effectiveness as it tool dalogit and trail of its and it operator at this War process Take make you of other is done to mar will a leg-minim of an interface. From more provide two more than the give of table is said stration.

Terretter per an for ter jogs of to your sidely, who inde for your state laws or your till and their and on your vertice in all and softs shakes

appendix c

survey results

Curtis Traffic Surveys	Turning movement count		Peak Hour Volumes		23		
Job:	100302tx	N	530	∮ ∡	↓ ► ♦		708
Day, date	Thu 4 Mar 10	↑	984			ļ	1225
Location:	James Ruse Dr, Berry St & Parramatta Rd		27	V v	≜ ∕ Í	7	23
Weather:	Fine	Į.		0	0	0	
Client:	Traffix						

	From James Ruse Dr								Parran	natta P	ld west	:		From Berry S	St (on	e way south	hbour	id)	F	rom Pa	arran	natta F	Rd eas	t		
	L	eft	٦	Through	R	light		Left		Throu	ugh I	Right		Left	Т	- hrough	n P	light	L	eft		Thro	ugh	Right		
Time Period	Li Vi	ght Heavy ehicles Vehicles	Li V	ght Heavy ehicles Vehicles	Lig Vel	ht Heav hicles Vehi	vy l cles '	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy L Vehicles V	ight Hea 'ehicles Vehi	vy icles	Light Heavy Vehicles Vehicl	/ Lig les Ve	ght Heavy ehicles Vehicle	- Lig es Ve	jht Heavy hicles Vehicle	Lig s Ve	iht He hicles Ve	eavy ehicles	Light Vehicles	Heavy Vehicles		Heavy Vehicles	Total vehicle movement s
16:00 to 16:15		84 2	2	13 (0	47	4	89	7	141	6	10	4	0	0	0	0	0	0	7	1	247	7	127	0	796
16:15 to 16:30		129 9	9	20 (0	30	4	125	9	230	13	6	0	0	0	0	0	0	0	10	0	228	17	118	3	951
16:30 to 16:45		114 4	4	5 1	1	56	12	115	3	210	7	6	0	0	0	0	0	0	0	7	0	265	12	167	5	989
16:45 to 17:00		15 2	2	14 3	3	47	7	100	6	197	6	5	1	0	0	0	0	0	0	9	0	240	19	102	5	778
17:00 to 17:15		168 3	1	14 (0	57	4	162	7	254	15	13	1	0	0	0	0	0	0	10	0	251	6	163	2	1128 Peak
17:15 to 17:30		138 2	2	4 (0	27	3	133	5	241	8	3	2	0	0	0	0	0	0	8	1	325	14	196	1	1111
17:30 to 17:45		174 3	3	2 (0	62	5	90	3	188	12	2	1	0	0	0	0	0	0	2	0	285	6	156	6	997
17:45 to 18:00		133 8	8	3 (0	54	0	126	4	259	7	3	2	0	0	0	0	0	0	2	0	326	12	184	0	1123
Hourly Summary		955 33	1	75 4	4	380	39	940	44	1720	74	48	11	0	0	0	0	0	0	55	2	2167	93	1213	22	
16:00 to 17:00		342 1	7	52 4	4	180	27	429	25	778	32	27	5	0	0	0	0	0	0	33	1	980	55	514	13	3514
16:15 to 17:15		426 16	6	53 4	4	190	27	502	25	891	41	30	2	0	0	0	0	0	0	36	0	984	54	550	15	3846
16:30 to 17:30		435 9	9	37 4	4	187	26	510	21	902	36	27	4	0	0	0	0	0	0	34	1	1081	51	628	13	4006
16:45 to 17:45		495 8	8	34 3	3	193	19	485	21	880	41	23	5	0	0	0	0	0	0	29	1	1101	45	617	14	
17:00 to 18:00		613 14	4	23 (0	200	12	511	19	942	42	21	6	0	0	0	0	0	0	22	1	1187	38	699	9	Peak 4359 Hour

Curtis Traffic Surve	Turning movement count		Peak Hour Volumes	96 1568 23	7
Job:		Ν	213	<u>♦ ◄₩~ ﴿</u>	508
Day, date	Thu 19 Aug 10	1	107		60
Location:	James Ruse Dr, Grand Av & Hassall St		174	♥ ◄♠► ♥	271
Weather:	Fine	,		128 1983 214	4
Client:	Traffix				

	From James Ruse Dr north							From H	lassall	St				From	Jame	s Ruse	Dr sou	ith		From	Granc	d Av					
	L	_eft	٦	Гhrou	gh l	Right	I	Left	-	Throug	gh	Right		Left		Thro	ugh	Right		Left		Thro	ugh	Rig	ht		
Time Period	Liç Ve	ght Heavy ehicles Vehicl	/ Li les Ve	ight He ehicles Ve	eavy L ehicles \	ight He /ehicles Ve	eavy L ehicles \	.ight H /ehicles \	łeavy L /ehicles V	ight Hea ehicles Veł	avy hicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light l Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicl	y n	Total vehicle movement s
13:30 to 13:45		94	7	380	32	30	26	29	13	33	4	23	1	1 10	1	0 235	33	33	6	42	C	20	-	2 8	8	2	1163
13:45 to 14:00		53	3	273	34	23	15	41	14	22	4	43		5 21	1	3 288	25	56	0	63	Э	3 18		L 8	4	5	1107
14:00 to 14:15		47	3	282	14	24	22	38	8	28	3	31		3 23		5 261	31	41	2	58	4	1 16	:	L 7	8	1	1024
14:15 to 14:30		55	7	402	8	20	21	45	22	21	1	32	1	0 14	1	7 367	36	61	4	77	5	5 14		L 10	3	5	1348
14:30 to 14:45		65	4	437	23	15	11	47	20	28	7	46		7 16	1	3 478	38	49	4	72	C) 22	:	L 9	4	4	1501 Peak
14:45 to 15:00		104	0	373	9	14	12	26	16	32	5	41		5 24	1	1 404	27	53	1	106	1	L 13	() 14	2	5	1424
15:00 to 15:15		27	1	319	11	17	12	35	18	21	1	36		5 18	1	2 400	41	53	0	80	1	L 13	() 15	1	8	1280
15:15 to 15:30		31	5	378	18	11	4	35	16	13	0	28		6 25		9 548	47	53	1	10	1	l 11	() 10	3	1	1354
Hourly Summary		476	30 2	2844	149	154	123	296	127	198	25	280	5	2 151	9	0 2981	278	399	18	508	15	5 127	(5 84	3	31	
13:30 to 14:30		249	20	1337	88	97	84	153	57	104	12	129	2	9 68	4	5 1151	125	191	12	240	12	2 68	ŗ	5 35	3	13	4642
13:45 to 14:45		220	17	1394	79	82	69	171	64	99	15	152	2	5 74	4	8 1394	130	207	10	270	12	2 70	4	1 35	9	15	4980
14:00 to 15:00		271	14	1494	54	73	66	156	66	109	16	150	2	5 77	4	6 1510	132	204	11	313	10) 65	3	3 41	7	15	5297
14:15 to 15:15		251	12	1531	51	66	56	153	76	102	14	155	2	7 72	5	3 1649	142	216	9	335	7	7 62	2	2 49	0	22	5553
14:30 to 15:30		227	10	1507	61	57	39	143	70	94	13	151	2	3 83	4	5 1830	153	208	6	268	З	3 59		L 49	0	18	Peak 5559 Hour

Curtis Traffic Survey	Turning movement count		Peak Hour Volumes	296 2435	52	
Job:	100302tx	Ν	351	▲₩► ﴿	ł	291
Day, date	Thu 4 Mar 10	Ť	37		Ž	58
Location:	James Ruse Dr, Grand Av & Hassall St		711	♥ ◄♠► ♥	7	445
Weather:	Fine	•		403 2599	88	
Client:	Traffic Solutions					

	F	rom Jam	ies F	Ruse D	r nort	:h		From	Hassa	ll St				Fre	om Jar	nes R	luse D	r sou	th		From G	Grand	Av				
	L	_eft	٦	Гhrou	ıgh	Right		Left		Thro	ugh	Righ	ıt	Le	eft	Т	- hrou	ıgh	Right		Left	-	Throu	Jgh	Right	t	
Time Period	Li	ight Heavy ehicles Vehicl	r Li es V	ight H ehicles V	leavy ehicles	Light Hea Vehicles Veł	icles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehi	t Hea cles Vehi	vy Lig icles Ve	ght H ehicles V	leavy ehicles	Light I Vehicles	leavy /ehicles	Light H Vehicles V	leavy L 'ehicles \	ight /ehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Total vehicle movement
16:00 to 16:15		12	5	512	19	39	6	65	4	15	1	142	2	5	66	5	632	14	14	21	77	23	17	5	39	6	1744
16:15 to 16:30		17	7	507	24	46	5	74	3	13	C) 150) .	4	74	4	623	11	12	18	68	15	14	2	41	5	1737
16:30 to 16:45		12	6	556	22	56	6	87	2	15	1	168	3	5	85	3	595	12	11	12	73	19	13	0	42	З	1804
16:45 to 17:00		7	4	604	23	79	4	103	3	10	1	188	3	0	95	2	651	13	9	14	87	16	12	3	65	e	1999
17:00 to 17:15		6	5	612	16	68	3	82	2	6	C) 175	5	2 3	105	1	678	11	8	18	128	15	15	1	91	5	2053 Peak
17:15 to 17:30		8	4	585	17	79	1	71	1	4	C) 172	2	1 :	110	2	630	9	7	9	95	12	13	1	75	4	1910
17:30 to 17:45		7	3	567	15	89	1	67	2	8	C) 159)	1	64	3	617	16	8	5	68	10	12	2	62	5	1791
17:45 to 18:00		12	2	545	11	105	0	71	0	15	2	2 117	7	3	72	2	568	14	5	5	72	7	10	0	52	3	1693
Hourly Summary		81	36	4488	147	561	26	620	17	86	5	5 1271	L 2	1 6	671	22 4	4994	100	74	102	668	117	106	14	467	37	
16:00 to 17:00		48	22	2179	88	220	21	329	12	53	З	648	3 1	4 3	320	14 2	2501	50	46	65	305	73	56	10	187	20	7284
16:15 to 17:15		42	22	2279	85	249	18	346	10	44	2	2 681	L 1	1 3	359	10 2	2547	47	40	62	356	65	54	6	239	19	
16:30 to 17:30		33	19	2357	78	282	14	343	8	35	2	2 703	3	8 3	395	8 2	2554	45	35	53	383	62	53	5	273	18	Peak 7766 Hour
16:45 to 17:45		28	16	2368	71	315	9	323	8	28	1	694	t i	4 3	374	8 2	2576	49	32	46	378	53	52	7	293	20	7753
17:00 to 18:00		33	14	2309	59	341	5	291	5	33	2	2 623	3	7 3	351	8 2	2493	50	28	37	363	44	50	4	280	17	7447

Curtis Traffic Survey	Turning movement count		Peak Hou Volume	s 193 2698 255	,
Job:	100302tx	N	425	i ∮ ፈ ₩⊾ ♦	56
Day, date	Thu 4 Mar 10	1	214		45
Location:	James Ruse Dr, Grand Av & Hassall St		449	, ♥ ◄♠► ♥	121
Weather:	Fine	·		422 2315 74	
Client:	Traffic Solutions				

	F	rom Jam	nes	Ruse D)r nor	th		From	Hassa	all St				Fr	rom Jar	mes F	Ruse D	r sou	th		Fror	n Gra	and A	v				
	L	.eft	-	Throu	ıgh	Right		Left		Thro	ugh	Rigl	ht	L	eft	٦	- hrou	ıgh	Righ	t	Lef	t	Т	hrou	ıgh	Right	Ε	
Time Period	Lig Ve	ght Heavy ehicles Vehicl	/ L les \	Light H Vehicles V	Heavy /ehicles	Light H Vehicles V	leavy /ehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Light Vehicles	Heavy Vehicles	Ligi Veh	nt Hea nicles Veh	avy Li nicles V	ght H ehicles V	leavy 'ehicles	Light Vehicles	Heavy Vehicles	Light Vehicle:	Heav Vehic	y Lig les Vel	ht H nicles V	leavy ehicles	Light Vehicles	Heavy Vehicles	Total vehicle movement s
07:00 to 07:15		47	5	624	19	40	2	95	5 3	3 29) 2	18	5	3	89	1	489	15	8	11	L	3	19	6	2	2	7	1608
07:15 to 07:30		51	6	670	21	36	1	101	. !	5 37	' 5	59	9	5	92	2	567	19	6	12	2	6	23	8	0	6	8	1786
07:30 to 07:45		61	5	652	25	42	1	110) 4	4 45	j 2	¥ 11	5	4	108	1	595	21	10	10)	5	24	12	3	4	11	1872
07:45 to 08:00		73	3	690	33	51	C	102	: !	5 61	. 5	5 12	5	3	110	2	549	20	9	9)	8	20	9	1	5	6	1899 Peak
08:00 to 08:15		52	4	585	22	62	C	92	2 (5 51	. 6	59	5	3	104	3	522	22	10	8	3 1	13	22	10	2	11	5	1710
08:15 to 08:30		40	8	451	18	86	1	. 72	: !	5 46	j 2	1 8	8	4	108	2	522	24	11	10)	9	18	11	3	7	8	1556
08:30 to 08:45		41	6	439	17	59	2	67		42	2 3	37	5	3	122	1	553	27	14		<mark>7</mark> 1	L0	22	9	1	5	10	1539
08:45 to 09:00		47	10	423	23	63	C	75	j 4	4 4 1	. 7	7 8	6	5	102	5	495	26	10	14	L 1	L0	29	4	5	11	8	1503
Hourly Summary		412	47	4534	178	439	7	714	30	5 352	. 38	3 76	83	0	835	17	4292	174	78	83	. 6	54 1	.77	69	17	51	63	
07:00 to 08:00		232	19	2636	98	169	4	408	8 17	7 172	2 18	3 42	4 1	5	399	6	2200	75	33	42	2 2	22	86	35	6	17	32	
07:15 to 08:15		237	18	2597	101	191	2	405	5 20) 194	20) 43	4 1	5	414	8	2233	82	35	39) 3	32	89	39	6	26	30	Peak 7267 Hour
07:30 to 08:30		226	20	2378	98	241	2	376	5 20	203	8 19	9 42	31	4	430	8	2188	87	40	37	/ 3	35	84	42	9	27	30	7037
07:45 to 08:45		206	21	2165	90	258	3	333	20	200) 18	3 38	31	3	444	8	2146	93	44	34	↓ ∠	10	82	39	7	28	29	6704
08:00 to 09:00		180	28	1898	80	270	3	306	5 19	9 180	20	34	4 1	5	436	11	2092	99	45	39) 2	12	91	34	11	34	31	6308

Curtis Traffic Surveys	Turning	movemen	t count		Peak Hour		47	¹⁵					
Job:	110403tx				Volumes	30	≜	* ` +	16	i			
Day, date	Thu 14 A	pr II				251	J	C	595				
Location:	Grand Av	& Grand A	v Nth				_	-					
Weather:	Fine												
Client:	Traffix												
	From Grand	Av east			From Grand	Av Nth			From Gran	d Av west			
	Through	I	Right		Left		Right		Left		Through		
Time Period	Light vehicles	Heavy vehicles		Heavy vehicles	Light vehicles	Heavy vehicles	Light vehicles	Heavy vehicles	Light vehicles	Heavy vehicles		Heavy vehicles	Total
16:00 to 16:15	115	16	2	0	3	I	5	5 ()	2 4	4 39)	198
16:15 to 16:30	130	17	5	0	5	1	1	I I	1 !	5 () 46	5 22	233
16:30 to 16:45	135	17	4	1	5	I	10) I	1 2	5 4	4 43	3 16	242
16:45 to 17:00	117	20	I.	1	1	I	13	з с) (5 () 5	I I2	223
17:00 to 17:15	142	17	4	0	1	C) 20) I	9) I	46	5 15	256 peak
17:15 to 17:30	99	10	0	1	1	C) 13	3 2	2 7	7 () 3₄	4 11	178
17:30 to 17:45	131	15	0	0	3	C) [4	4 C) 4	4 () 48	36	221
17:45 to 18:00	85	10	2	0	2	C) (5 () 4	I 5	162
Total	954	122	18	3	21	4	87	5	44	9	348	3 98	
Hourly summary													
16:00 to 17:00	497	70	12	2	14	4	29	9 2	2 18	8 8	3 179	9 61	896
16:15 to 17:15	524	71	14	2	12	3	44	4 3	3 25	5 5	5 186	65 65	
16:30 to 17:30	493	64	9	3	8	2	. 56	5 4	1 27	7 S	5 174	4 54	899
16:45 to 17:45	489	62	5	2	6	I	60) 3	3 26	5 1	1 179	9 44	878
17:00 to 18:00	457	52	6	1	7	C) 58	3 3	3 26	5 I	169	37	817

From Grand Av Nth

			Previou	is Survey	Results		
			Grand	Avenue V	olumes (
~	estbour	nd		eastbo	ound		
LV	HV	Total	LV	HV	Total	TOTAL	Difference
133	34	167	41	27	68	235	119%
123	22	145	42	25	67	212	91%
128	22	150	38	19	57	207	86%
164	25	189	26	19	45	234	105%
234	21	255	20	23	43	298	116%
183	17	200	19	13	32	232	130%
142	17	159	23	8	31	190	86%
134	10	144	32	9	41	185	114%
548	103	651	147	90	237	888	99%
649	90	739	126	86	212	951	100%
709	85	794	103	74	177	971	108%
723	80	803	88	63	151	954	109%
693	65	758	94	53	147	905	111%

FACTORED VOLUMES

From Grand Av east

From Grand Av west

	Thre	ough		Right		Left		Right		Left		Through			
Time Period	Light	vehicles	Heavy vehicles	Light vehicles	Heavy vehicles	Total	% Increase								
16:00 to 16:15		147	20		з с		1	I	6 0)	3 5	5 5	3 15	256	129%
16:15 to 16:30		128	17		5 C		5	I	i i		5 () 4.	5 22	229	98%
16:30 to 16:45		133	17	· .	4 I		1	I	9 I		5 4	4	2 15	235	97%
16:45 to 17:00		161	28		i i		I I	I I	4 C)	4 () 3	5 9	257	115%
17:00 to 17:15		228	27		6 α		i a	2	з і		6	3	2 11	337	132%
17:15 to 17:30		182	. 18		0 2		i a) I	7 3	;	5 () 24	4 8	260	146%
17:30 to 17:45		143	16		ο α	. :	3 () I	2 0)	2 () 2	3 3	207	94%
17:45 to 18:00		129	15		3 0	. :	2 () I	3 ()	5 () 3	7 4	208	129%

1250.36 158.639 22.2552 4.20127 20.7667 4.00144 93.8622 5.53605 35.7289 10.0093 297.038 86.9625

Hourly summary

Total

16:00 to 17:00	569	82	13	2	13	4	29	2	17	9	176	61	977	109%
16:15 to 17:15	651	88	17	2	П	3	46	3	20	5	156	56	1058	111%
16:30 to 17:30	704	90	12	4	8	2	62	5	20	5	135	42	1089	121%
16:45 to 17:45	713	90	8	3	6	T	66	4	18	I	121	30	1060.4	121%
17:00 to 18:00	681	77	9	2	7	0	65	4	19	I	121	26	1011.9	124%

	TRAFFIX SURVEYS
Location:	Grand Ave / Grand Ave North
Date:	9-May-11
Time:	1:45pm - 2:45pm
Weather:	Overcast
Surveyor(s):	PC

		Movement												
	Grand Avenue - East			Grand Ave	enue - West	Grand Avenue North								
	Through Right		U-Turn	Left	Left Through		Right							
Time Period														
1:45-2:00pm	101	0	0	6	99	1	5							
2:00-2:15pm	114	4	1	8	90	4	3							
2:15-2:30pm	127	1	2	6	99	5	9							
2:30-2:45pm	150	1	3	6	77	7	8							
Total Hour														
Total Hour	492	6	6	26	365	17	25							

appendix d

sidra results

appendix d1

existing scenario

Site: James Ruse Dr_Grand Ave-EX-AM

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing Period: AM (7.15-8.15am) Signals - Fixed Time Cycle Time = 150 seconds

Movement Performance - Vehicles

Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: .	James	Ruse Dr (so	uth)								
1	L	444	1.9	1.102	178.6	LOS F	124.6	892.7	1.00	1.40	10.5
2	Т	2437	3.5	1.102	169.0	LOS F	126.7	913.8	1.00	1.52	11.2
3	R	78	52.7	0.962	117.5	LOS F	8.9	90.2	1.00	1.04	14.9
Approa	ch	2959	4.6	1.102	169.1	LOS F	126.7	913.8	1.00	1.49	11.2
East: G	rand Av	ve (east)									
4	L	127	73.6	0.855	79.0	LOS F	11.0	125.2	0.87	0.93	19.4
5	Т	47	13.3	0.276	60.3	LOS E	6.2	53.1	0.92	0.72	21.6
6	R	59	53.6	0.276	69.9	LOS E	6.2	53.1	0.91	0.76	21.2
Approa	ch	234	56.3	0.855	72.9	LOS F	11.0	125.2	0.89	0.84	20.3
North: J	James F	Ruse Dr (nor	th)								
7	L	268	7.1	1.221	281.4	LOS F	171.7	1249.5	1.00	1.80	7.1
8	Т	2916	3.7	1.221	271.7	LOS F	174.9	1263.7	1.00	1.88	7.5
9	R	127	1.0	1.147	235.4	LOS F	18.4	130.1	1.00	1.26	8.2
Approa	ch	3312	3.8	1.221	271.1	LOS F	174.9	1263.7	1.00	1.85	7.5
West: H	lassall	St (west)									
10	L	415	4.7	1.000 ³	34.7	LOS C	21.1	153.5	0.77	0.81	30.9
11	Т	257	9.3	1.159	165.8	LOS F	48.2	355.3	0.97	1.23	10.5
12	R	473	3.3	1.158	140.8	LOS F	48.2	355.3	1.00	1.12	12.4
Approa	ch	1145	5.1	1.159	107.9	LOS F	48.2	355.3	0.91	1.03	15.1
All Vehi	icles	7649	5.9	1.221	201.2	LOS F	174.9	1263.7	0.98	1.56	9.6

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Movem	ent Performance -	Pedestriar	าร					
		Demand	Average	Level of	Average Bac	k of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	69.1	LOS F	0.2	0.2	0.96	0.96
P5	Across N approach	53	69.1	LOS F	0.2	0.2	0.96	0.96
P7	Across W approach	53	29.5	LOS C	0.1	0.1	0.63	0.63
All Pede	All Pedestrians		55.9				0.85	0.85

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 7:37:15 AM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: James Ruse Dr_Grand Ave-EX-PM

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing Period: PM (4.30-5.30pm) Signals - Fixed Time Cycle Time = 150 seconds

Movement Performance - Vehicles Mov ID Turn Demand HV Deg. Satn Average Delay Level of 95% Back of Queue Prop. Effective Average Flow Service Queued Stop Rate Speed veh/h per veh South: James Ruse Dr (south) 1 L 424 2.0 1.331 381.6 LOS F 196.2 1395.2 1.00 1.96 5.3 LOS F 200.3 1423.0 2 т 2736 1.7 1.331 372.2 1.00 2.17 5.7 3 R 93 60.2 1.188 278.5 LOS F 15.3 162.8 1.00 1.34 7.1 Approach 3253 3.4 1.331 370.8 LOS F 200.3 1423.0 1.00 2.12 5.7 East: Grand Ave (east) 4 225 13.9 1.0003 62.3 LOS F 14.9 117.1 0.99 0.83 22.2 L 5 т 304 8.6 1.322 376.5 LOS F 78.6 601.8 1.00 1.67 5.2 6 R 306 6.2 1.322 197.2 LOS F 78.6 601.8 0.98 1.16 9.4 10.7 1.322 226.1 LOS F 78.6 8.2 Approach 836 601.8 0.99 1.26 North: James Ruse Dr (north) 7 L 55 36.5 1.193 264.1 LOS F 145.6 1064.4 1.00 1.83 7.5 8 т 2751 3.2 1.197 253.1 LOS F 148.0 1064.5 1.00 1.82 8.0 4.7 17.9 9 R 1.144 233.9 LOS F 130.6 1.00 1.26 8.3 123 Approach 2929 1.197 252.5 LOS F 148.0 1064.5 8.0 4.0 1.00 1.79 West: Hassall St (west) 10 L 369 2.3 0.912 45.3 LOS D 21.4 153.0 0.77 0.85 27.0 0.115 55.2 11 т 39 5.4 LOS D 3.4 25.1 0.87 0.66 23.1 12 R 748 1.1 1.346 272.0 LOS F 84.1 594.6 1.00 1.33 7.1 1157 1.6 1.347 192.3 LOS F 84.1 594.6 0.92 1.15 9.6 Approach LOS F All Vehicles 8175 4.1 1.347 288.3 200.3 1423.0 0.99 1.78 7.0

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Mover	ent Performance -	Pedestria	ns					
D.4 and	May		Average		Average Bac	k of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	65.3	LOS F	0.2	0.2	0.93	0.93
P5	P5 Across N approach		66.3	LOS F	0.2	0.2	0.94	0.94
P7	Across W approach	53	34.0	LOS D	0.2	0.2	0.67	0.67
All Pede	All Pedestrians		55.2				0.85	0.85

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 7:41:07 AM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: James Ruse Dr_Grand Ave-EX-(1.30pm)

Average

Speed

23.8

25.3

21.6

24.7

23.4

14.8

16.7

18.3

16.0

17.2

21.4

17.3

36.8

21.5

20.6

25.8

20.3

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing Period: (1.30-2.30pm) Signals - Fixed Time Cycle Time = 150 seconds

Movement Performance - Vehicles Mov ID Turn Demand HV Deg. Satn Average Delay Level of 95% Back of Queue Prop. Effective Flow Service Queued Stop Rate veh/h per veh South: James Ruse Dr (south) 1 L 119 39.8 0.831 65.8 LOS E 33.6 270.3 0.99 0.94 2 т 1343 9.8 0.831 54.2 LOS D 35.5 270.3 0.99 0.93 3 R 214 5.9 0.620 69.4 LOS E 15.8 116.1 0.97 0.83 Approach 1676 11.4 0.832 57.0 LOS E 35.5 270.3 0.99 0.92 East: Grand Ave (east) 4 265 4.8 0.945 56.7 LOS E 15.9 115.7 0.94 0.86 L 5 т 77 6.8 0.978 104.9 LOS F 27.7 201.2 1.00 1.12 6 R 385 3.6 0.979 95.7 LOS F 27.7 201.2 0.99 0.99 0.979 82.4 LOS F 0.95 Approach 727 4.3 27.7 201.2 0.97 North: James Ruse Dr (north) 7 L 283 7.4 0.987 107.2 LOS F 58.0 429.5 1.00 1.13 8 т 1510 6.2 0.987 97.3 LOS F 59.5 438.8 1.00 1.19 72.2 9 R 181 46.4 1.000 LOS F 14.0 136.9 0.98 0.83 Approach 1974 1.000 LOS F 59.5 438.8 10.2 96.4 1.00 1.15 West: Hassall St (west) 10 L 221 27.1 0.546 24.1 LOS B 9.5 81.6 0.56 0.74 78.9 11 т 122 10.3 0.448 60.8 LOS E 10.1 0.93 0.74 12 R 166 18.4 0.448 70.9 LOS F 10.1 78.9 0.95 0.80 509 20.2 0.547 48.2 LOS D 10.1 81.6 0.78 0.76 Approach

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

LOS F

59.5

438.8

0.97

1.00

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

75.8

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

1.000

Mover	ent Performance -	Pedestria	ns					
		Demand	J -		Average Bac	k of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	69.1	LOS F	0.2	0.2	0.96	0.96
P5	Across N approach	53	69.1	LOS F	0.2	0.2	0.96	0.96
P7	Across W approach	53	43.3	LOS E	0.2	0.2	0.76	0.76
All Pede	All Pedestrians		60.5				0.89	0.89

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 7:47:32 AM SIDRA INTERSECTION 5.0.2.1437

4886

10.8

All Vehicles

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: Grand Ave / Grand Avenue North_PM_EX

Grand Avenue / Grand Avenue North Period: PM Scenario: Existing (Factored Volumes) Giveway / Yield (Two-Way)

Mover	nent Pe	erformance	- Vehic	cles							
Mov ID	Turn	Demand Flow	HV C	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: G	rand Ave	e (east)									
5	Т	836	11.3	0.460	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R	17	25.0	0.022	8.0	LOS A	0.1	0.8	0.35	0.58	42.1
Approa	ch	853	11.6	0.460	0.2	LOS A	0.1	0.8	0.01	0.01	49.8
North: (Grand Av	e North (nor	th)								
7	L	11	20.0	0.018	7.9	LOS A	0.1	0.4	0.31	0.58	28.6
9	R	71	7.5	0.362	30.5	LOS C	1.8	13.4	0.88	1.02	12.7
Approa	ch	81	9.1	0.362	27.6	LOS C	1.8	13.4	0.81	0.96	13.7
West: C	Grand Av	e (west)									
10	L	26	20.0	0.016	6.8	LOS A	0.0	0.0	0.00	0.61	38.9
11	Т	186	23.7	0.110	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	213	23.3	0.110	0.8	LOS A	0.0	0.0	0.00	0.08	48.3
All Vehi	icles	1146	13.6	0.460	2.2	NA	1.8	13.4	0.06	0.09	47.1

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements. Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on the worst delay for any vehicle movement.

Site: Grand Ave / Grand Avenue North_PM (site peak)_EX

Grand Avenue / Grand Avenue North Period: PM (1.30-2.30pm) Scenario: Existing Giveway / Yield (Two-Way)

Moven	nent Pe	rformance	- Vehio	cles							
Mov ID	Turn	Demand Flow		Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: G	rand Ave	e (east)									
5	Т	518	11.3	0.285	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R	13	25.0	0.018	9.6	LOS A	0.1	0.7	0.49	0.65	41.0
Approa	ch	531	11.7	0.285	0.2	LOS A	0.1	0.7	0.01	0.02	49.7
North: 0	Grand Av	e North (nor	th)								
7	L	26	20.0	0.051	9.4	LOS A	0.2	1.4	0.46	0.67	26.7
9	R	26	7.5	0.105	20.7	LOS B	0.5	3.5	0.79	0.92	16.7
Approa	ch	53	13.7	0.105	15.0	LOS B	0.5	3.5	0.62	0.79	20.5
West: G	Grand Av	e (west)									
10	L	27	20.0	0.017	6.8	LOS A	0.0	0.0	0.00	0.61	38.9
11	Т	384	23.7	0.227	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	412	23.5	0.227	0.5	LOS A	0.0	0.0	0.00	0.04	49.1
All Vehi	icles	995	16.7	0.285	1.1	NA	0.5	3.5	0.04	0.07	48.4

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS B. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Project: T:\Traffix\2010\10034\Modelling\10 034_110511 Grand Ave North.sip 8000844, TRAFFIX, SINGLE

Site: James Ruse Dr_Parramatta Rd-EX_PM

James Ruse Dr / Parramatta Rd / Berry St Scenario: Existing Period: PM (5.00-6.00pm) Signals - Fixed Time Cycle Time = 100 seconds

Movement Performance - Vehicles												
Mov ID	Turn	Demand Flow	HV D	leg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued S	Effective Stop Rate	Average Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
East: P	arramat	tta Rd (east)										
4	L	24	4.3	0.232	23.6	LOS B	6.4	46.0	0.60	0.90	28.2	
5	Т	1289	3.1	0.606	19.2	LOS B	20.9	149.9	0.76	0.67	27.8	
6	R	745	1.3	0.880	59.9	LOS E	21.5	152.5	1.00	0.99	15.9	
Approa	ch	2059	2.5	0.880	34.0	LOS C	21.5	152.5	0.84	0.79	21.6	
North:	James F	Ruse Dr (north	n)									
7	L	660	2.2	0.337	20.6	LOS B	10.7	76.4	0.59	0.76	38.6	
8	Т	24	0.0	0.337	13.2	LOS A	10.7	76.4	0.59	0.51	40.7	
9	R	223	5.7	0.246	38.6	LOS C	6.1	44.6	0.82	0.77	19.8	
Approa	ch	907	3.0	0.337	24.8	LOS B	10.7	76.4	0.64	0.76	34.0	
West: F	Parrama	tta Rd (west)										
10	L	558	3.6	0.481	38.1	LOS C	12.6	90.8	0.85	0.82	19.6	
11	Т	1036	4.3	0.853	41.7	LOS C	27.3	197.8	1.00	1.00	15.2	
12	R	28	22.2	0.295	61.1	LOS E	2.2	18.0	0.99	0.72	12.1	
Approa	ch	1622	4.3	0.853	40.8	LOS C	27.3	197.8	0.95	0.94	16.6	
All Vehi	icles	4588	3.2	0.880	34.6	LOS C	27.3	197.8	0.84	0.84	22.2	

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

Mover	Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	5		Prop. Queued	Effective Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	Across S approach	11	31.2	LOS D	0.0	0.0	0.79	0.79					
P3	Across E approach	26	44.2	LOS E	0.1	0.1	0.94	0.94					
P5	Across N approach	11	44.2	LOS E	0.0	0.0	0.94	0.94					
All Pede	estrians	48	41.2				0.91	0.91					

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 11:12:24 AM Copyright © 2000-2 SIDRA INTERSECTION 5.0.2.1437 www.sidrasolutions.

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

appendix d2

existing plus development scenario

Site: James Ruse Dr_Grand Ave-EX+Dev-AM

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing + Development Period: AM (7.15-8.15am) Signals - Fixed Time Cycle Time = 150 seconds

Moven	nent P	erformanc	e - Vehic	les							
Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: J	James	Ruse Dr (sou	uth)								
1	L	444	1.9	1.102	178.6	LOS F	124.6	892.7	1.00	1.40	10.5
2	Т	2437	3.5	1.102	169.0	LOS F	126.7	913.8	1.00	1.52	11.2
3	R	92	59.8	1.173	264.4	LOS F	14.8	156.9	1.00	1.32	7.4
Approac	ch	2973	5.0	1.173	173.4	LOS F	126.7	913.8	1.00	1.49	11.0
East: Gi	rand Av	/e (east)									
4	L	133	74.6	0.895	74.8	LOS F	10.9	125.3	0.88	0.88	20.2
5	Т	47	13.3	0.280	60.4	LOS E	6.2	53.8	0.92	0.72	21.5
6	R	60	54.4	0.280	69.9	LOS E	6.2	53.8	0.91	0.76	21.2
Approac	ch	240	57.5	0.895	70.7	LOS F	10.9	125.3	0.89	0.82	20.7
North: J	ames F	Ruse Dr (nor	th)								
7	L	271	7.8	1.223	282.7	LOS F	172.1	1253.9	1.00	1.80	7.0
8	Т	2916	3.7	1.223	273.0	LOS F	175.5	1267.9	1.00	1.89	7.5
9	R	127	1.0	1.147	235.4	LOS F	18.4	130.1	1.00	1.26	8.2
Approad	ch	3314	3.9	1.222	272.3	LOS F	175.5	1267.9	1.00	1.86	7.5
West: H	lassall	St (west)									
10	L	415	4.7	1.000 ³	34.7	LOS C	21.1	153.5	0.77	0.81	30.9
11	Т	258	9.8	1.164	169.5	LOS F	49.0	361.5	0.97	1.24	10.3
12	R	473	3.3	1.165	142.8	LOS F	49.0	361.5	1.00	1.13	12.3
Approac	ch	1146	5.1	1.165	109.7	LOS F	49.0	361.5	0.91	1.04	14.9
All Vehi	cles	7673	6.2	1.222	203.4	LOS F	175.5	1267.9	0.98	1.56	9.5

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Moverr	Novement Performance - Pedestrians												
		Demand	Average	Level of	Average Ba	ck of Queue	Prop.	Effective					
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate					
		ped/h	sec		ped	m		per ped					
P1	Across S approach	53	69.1	LOS F	0.2	0.2	0.96	0.96					
P5	Across N approach	53	69.1	LOS F	0.2	0.2	0.96	0.96					
P7	Across W approach	53	29.5	LOS C	0.1	0.1	0.63	0.63					
All Pede	All Pedestrians		55.9				0.85	0.85					

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 9:22:29 AM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing+Development Period: PM (4.30-5.30pm) Signals - Fixed Time Cycle Time = 150 seconds

wovenie	311L P	errormano	ce - Vehic	cles							
Mov ID	Turn	Demand	HV C	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Ja	imes l	Ruse Dr (so	uth)								
1	L	424	2.0	1.331	381.6	LOS F	196.2	1395.2	1.00	1.96	5.3
2	Т	2736	1.7	1.331	372.2	LOS F	200.3	1423.0	1.00	2.17	5.7
3	R	98	62.4	1.143	239.2	LOS F	14.9	160.5	1.00	1.28	8.1
Approach	ı	3258	3.6	1.331	369.4	LOS F	200.3	1423.0	1.00	2.12	5.7
East: Gra	Ind Av	/e (east)									
4	L	226	14.9	1.000 ³	61.9	LOS E	14.8	117.2	0.99	0.83	22.3
5	Т	309	8.6	1.348	399.7	LOS F	82.3	633.0	1.00	1.71	4.9
6	R	307	6.5	1.349	207.8	LOS F	82.3	633.0	0.98	1.18	9.0
Approach	ı	842	11.4	1.348	239.1	LOS F	82.3	633.0	0.99	1.28	7.9
North: Jar	mes F	Ruse Dr (no	rth)								
7	L	56	37.7	1.214	282.4	LOS F	150.4	1100.3	1.00	1.89	7.1
8	Т	2751	3.2	1.217	271.4	LOS F	153.0	1100.3	1.00	1.88	7.5
9	R	123	4.7	1.144	233.9	LOS F	17.9	130.6	1.00	1.26	8.3
Approach	ı	2931	4.0	1.217	270.0	LOS F	153.0	1100.3	1.00	1.85	7.5
West: Has	ssall \$	St (west)									
10	L	369	2.3	0.912	45.3	LOS D	21.4	153.0	0.77	0.85	27.0
11	Т	39	5.4	0.115	55.2	LOS D	3.4	25.1	0.87	0.66	23.1
12	R	748	1.1	1.346	271.9	LOS F	84.1	594.6	1.00	1.33	7.1
Approach	ı	1157	1.6	1.347	192.2	LOS F	84.1	594.6	0.92	1.15	9.6
All Vehicle	es	8187	4.3	1.348	295.4	LOS F	200.3	1423.0	0.99	1.80	6.9

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Mover	ent Performance -	Pedestria	ns					
Max	Description	Demand	. J.			ck of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	65.3	LOS F	0.2	0.2	0.93	0.93
P5	Across N approach	53	66.3	LOS F	0.2	0.2	0.94	0.94
P7	Across W approach	53	34.7	LOS D	0.2	0.2	0.68	0.68
All Pede	estrians	159	55.4				0.85	0.85

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 8:46:42 AM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: James Ruse Dr_Grand Ave-EX+Dev-(1.30pm)

James Ruse Drive / Grand Avenue / Hassall Street, CamelliaScenario: Existing+DevelopmentPeriod: (1.30-2.30pm)

Signals - Fixed Time Cycle Time = 150 seconds

Maxes	nont-P	orformore	va Vahia								
		erformanc			•		050(D 1			F <i>rr r</i> :	
Mov ID	lurn	Demand	HV D	eg. Satn	Average	Level of	95% Back		Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	James	Ruse Dr (sou									
1	L	119	39.8	0.831	65.8	LOS E	33.6	270.3	0.99	0.94	23.8
2	Т	1343	9.8	0.831	54.2	LOS D	35.5	270.3	0.99	0.93	25.3
3	R	238	8.8	0.786	77.4	LOS F	18.6	140.4	1.00	0.88	20.1
Approa	ch	1700	11.8	0.832	58.3	LOS E	35.5	270.3	0.99	0.92	24.3
East: G	irand Av	/e (east)									
4	L	276	6.9	1.000 ³	54.0	LOS D	15.6	116.0	1.00	0.85	24.2
5	Т	107	8.1	0.978	103.4	LOS F	30.8	225.2	1.00	1.11	14.9
6	R	392	4.0	0.978	93.4	LOS F	30.8	225.2	0.98	0.98	16.9
Approa	ch	775	5.6	1.000	80.8	LOS F	30.8	225.2	0.99	0.95	18.6
North:	James F	Ruse Dr (nor	th)								
7	L	287	8.1	0.994	111.0	LOS F	59.3	440.3	1.00	1.15	15.6
8	Т	1514	6.2	0.994	101.0	LOS F	61.0	449.8	1.00	1.21	16.7
9	R	176	46.4	1.000 ³	75.4	LOS F	14.0	136.9	1.00	0.83	20.8
Approa	ch	1978	10.3	1.000	100.2	LOS F	61.0	449.8	1.00	1.16	16.8
West: H	lassall	St (west)									
10	L	221	27.1	0.553	24.2	LOS B	9.5	82.1	0.57	0.74	36.7
11	Т	123	11.1	0.450	60.8	LOS E	10.1	79.4	0.93	0.74	21.5
12	R	166	18.4	0.450	71.0	LOS F	10.1	79.4	0.95	0.80	20.6
Approa	ch	511	20.4	0.553	48.3	LOS D	10.1	82.1	0.78	0.76	25.8
All Veh		4963	11.1	1.000	77.5	LOS F	61.0	449.8	0.97	1.01	19.9

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW).

Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Movem	ent Performance -	Pedestria	าร					
		Demand	Average	Level of	Average Ba	ck of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	66.3	LOS F	0.2	0.2	0.94	0.94
P5	Across N approach	53	69.1	LOS F	0.2	0.2	0.96	0.96
P7	Across W approach	53	43.3	LOS E	0.2	0.2	0.76	0.76
All Pede	estrians	159	59.6				0.89	0.89

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 9:28:59 AM SIDRA INTERSECTION 5.0.2.1437

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: Grand Ave / Grand Avenue North_PM_EX + DEV (on-street peak flows)

Grand Avenue / Grand Avenue North Period: PM Scenario: Existing (Factored Volumes) + On-Street Peak Period Flows Giveway / Yield (Two-Way)

Mover	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV C	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: G	Frand Ave	e (east)									
5	Т	836	11.3	0.460	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R	17	25.0	0.022	8.1	LOS A	0.1	0.8	0.36	0.58	42.1
Approa	ch	853	11.6	0.460	0.2	LOS A	0.1	0.8	0.01	0.01	49.8
North: (Grand Av	e North (nor	th)								
7	L	11	20.0	0.018	7.9	LOS A	0.1	0.4	0.32	0.58	28.5
9	R	77	15.1	0.489	41.3	LOS C	2.6	20.2	0.92	1.08	10.1
Approa	ch	87	15.7	0.491	37.3	LOS C	2.6	20.2	0.84	1.02	10.9
West: C	Grand Av	e (west)									
10	L	33	35.5	0.022	7.1	LOS A	0.0	0.0	0.00	0.60	38.9
11	Т	186	23.7	0.110	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	219	25.5	0.110	1.1	LOS A	0.0	0.0	0.00	0.09	47.9
All Veh	icles	1159	14.5	0.491	3.1	NA	2.6	20.2	0.07	0.10	46.0

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Project: T:\Traffix\2010\10034\Modelling\10 034_110511 Grand Ave North.sip 8000844, TRAFFIX, SINGLE

Site: Grand Ave / Grand Avenue North_PM (site peak)_EX+DEV

Grand Avenue / Grand Avenue North Period: PM (1.30-2.30pm) Scenario: Existing + Development Giveway / Yield (Two-Way)

Moven	nent Pe	rformance	e - Vehic	les							
Mov ID	Turn	Demand Flow	HVC	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: G	rand Ave	e (east)									
5	Т	518	11.3	0.285	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
6	R	13	25.0	0.019	10.0	LOS A	0.1	0.8	0.51	0.66	40.7
Approa	ch	531	11.7	0.285	0.2	LOS A	0.1	0.8	0.01	0.02	49.7
North: 0	Grand Av	e North (nor	th)								
7	L	26	20.0	0.052	9.5	LOS A	0.2	1.4	0.47	0.68	26.5
9	R	78	17.4	0.412	32.9	LOS C	2.2	17.4	0.88	1.04	12.1
Approa	ch	104	18.0	0.412	27.0	LOS C	2.2	17.4	0.78	0.95	14.0
West: G	Grand Av	e (west)									
10	L	59	28.9	0.038	7.0	LOS A	0.0	0.0	0.00	0.60	38.9
11	Т	384	23.7	0.227	0.0	LOS A	0.0	0.0	0.00	0.00	50.0
Approa	ch	443	24.4	0.227	0.9	LOS A	0.0	0.0	0.00	0.08	48.2
All Vehi	icles	1078	17.5	0.412	3.1	NA	2.2	17.4	0.08	0.13	45.5

LOS (Aver. Int. Delay): NA. The average intersection delay is not a good LOS measure for two-way sign control due to zero delays associated with major road movements.

Level of Service (Worst Movement): LOS C. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on the worst delay for any vehicle movement.

Proces Copyrig sed: ht © Wedne 2000sday, 2010 11 May Akcelik 2011 & 8:54:50 Associa PM tes Pty SIDRA Ltd INTER www.si SECTI drasolu ON tions.co 5.0.5.1 m

Project: T:\Traffix\2010\10034\Modelling\10 034_110511 Grand Ave North.sip 8000844, TRAFFIX, SINGLE

appendix d3

existing + development (with redistributed heavy vehicles)

Site: James Ruse Dr_Parramatta Rd-EX+Dev PM

James Ruse Dr / Parramatta Rd / Berry St Scenario: Existing+Development Period: PM (5.00-6.00pm) Signals - Fixed Time Cycle Time = 100 seconds

Mover	nent P	erformance	- Vehic	les							
Mov ID	Turn	Demand Flow	HV D	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued S	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
East: Pa	arrama	tta Rd (east)									
4	L	24	4.3	0.232	23.6	LOS B	6.4	46.0	0.60	0.90	28.2
5	Т	1289	3.1	0.606	19.2	LOS B	20.9	149.9	0.76	0.67	27.8
6	R	751	2.0	0.891	61.5	LOS E	22.1	157.0	1.00	1.01	15.6
Approac	ch	2064	2.7	0.891	34.6	LOS C	22.1	157.0	0.84	0.80	21.3
North: J	ames F	Ruse Dr (north	ı)								
7	L	665	3.0	0.341	20.4	LOS B	10.8	77.5	0.58	0.76	38.7
8	Т	24	0.0	0.341	12.7	LOS A	10.7	76.4	0.58	0.51	41.2
9	R	223	5.7	0.246	38.6	LOS C	6.1	44.6	0.82	0.77	19.8
Approac	ch	913	3.6	0.341	24.6	LOS B	10.8	77.5	0.64	0.76	34.1
West: P	arrama	atta Rd (west)									
10	L	558	3.6	0.481	38.1	LOS C	12.6	90.8	0.85	0.82	19.6
11	Т	1036	4.3	0.853	41.7	LOS C	27.3	197.8	1.00	1.00	15.2
12	R	28	22.2	0.295	61.1	LOS E	2.2	18.0	0.99	0.72	12.1
Approac	ch	1622	4.3	0.853	40.8	LOS C	27.3	197.8	0.95	0.94	16.6
All Vehi	cles	4599	3.5	0.891	34.8	LOS C	27.3	197.8	0.84	0.84	22.1

Level of Service (Aver. Int. Delay): LOS C. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS E. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

Mover	nent Performance -	Pedestrian	S					
		Demand	Average	Level of	Average Bac	k of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	11	31.2	LOS D	0.0	0.0	0.79	0.79
P3	Across E approach	26	44.2	LOS E	0.1	0.1	0.94	0.94
P5	Across N approach	11	44.2	LOS E	0.0	0.0	0.94	0.94
All Pede	estrians	48	41.2				0.91	0.91

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS E. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 11:14:27 AM Copyright © 200 SIDRA INTERSECTION 5.0.2.1437 www.sidrasoluti

Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

Site: James Ruse Dr_Grand Ave-EX+Dev (Redistributed)-PM

James Ruse Drive / Grand Avenue / Hassall Street, Camellia Scenario: Existing+Development (HV Redistributed) Period: PM (4.30-5.30pm) Signals - Fixed Time Cycle Time = 150 seconds

Mover	nent P	erforman	ce - Vehic	les							
Mov ID	Turn	Demand	HV D	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	James	Ruse Dr (so	uth)								
1	L	424	2.0	1.331	381.6	LOS F	196.2	1395.2	1.00	1.96	5.3
2	Т	2736	1.7	1.331	372.2	LOS F	200.3	1423.0	1.00	2.17	5.7
3	R	93	60.2	1.188	278.5	LOS F	15.3	162.8	1.00	1.34	7.1
Approa	ch	3253	3.4	1.331	370.8	LOS F	200.3	1423.0	1.00	2.12	5.7
East: G	irand Av	ve (east)									
4	L	225	13.9	1.000 ³	62.3	LOS E	14.9	117.1	0.99	0.83	22.2
5	Т	304	8.6	1.327	381.4	LOS F	79.4	608.3	1.00	1.68	5.1
6	R	307	6.5	1.328	200.3	LOS F	79.4	608.3	0.98	1.17	9.3
Approa	ch	837	10.8	1.328	228.9	LOS F	79.4	608.3	0.99	1.27	8.2
North:	James F	Ruse Dr (no	rth)								
7	L	56	37.7	1.194	264.8	LOS F	145.8	1066.6	1.00	1.83	7.5
8	Т	2751	3.2	1.197	253.8	LOS F	148.3	1066.6	1.00	1.82	8.0
9	R	123	4.7	1.144	233.9	LOS F	17.9	130.6	1.00	1.26	8.3
Approa	ch	2931	4.0	1.197	253.2	LOS F	148.3	1066.6	1.00	1.80	8.0
West: H	lassall	St (west)									
10	L	369	2.3	0.912	45.3	LOS D	21.4	153.0	0.77	0.85	27.0
11	Т	39	5.4	0.115	55.2	LOS D	3.4	25.1	0.87	0.66	23.1
12	R	748	1.1	1.346	272.0	LOS F	84.1	594.6	1.00	1.33	7.1
Approa	ch	1157	1.6	1.347	192.2	LOS F	84.1	594.6	0.92	1.15	9.6
All Vehi	icles	8177	4.1	1.347	288.8	LOS F	200.3	1423.0	0.99	1.78	7.0

Level of Service (Aver. Int. Delay): LOS F. Based on average delay for all vehicle movements. LOS Method: Delay (RTA NSW).

Level of Service (Worst Movement): LOS F. LOS Method for individual vehicle movements: Delay (RTA NSW). Approach LOS values are based on average delay for all vehicle movements.

3 x = 1.00 due to short lane. Refer to the Lane Summary report for information about excess flow and related conditions.

Mover	ent Performance -	Pedestriar	ıs					
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Bao Pedestrian	ck of Queue Distance	Prop. Queued	Effective Stop Rate
		ped/h	sec		ped	m		per ped
P1	Across S approach	53	65.3	LOS F	0.2	0.2	0.93	0.93
P5	Across N approach	53	66.3	LOS F	0.2	0.2	0.94	0.94
P7	Across W approach	53	34.0	LOS D	0.2	0.2	0.67	0.67
All Pede	estrians	159	55.2				0.85	0.85

Level of Service (Aver. Int. Delay): LOS E. Based on average delay for all pedestrian movements. LOS Method: Delay (HCM). Level of Service (Worst Movement): LOS F. LOS Method for individual pedestrian movements: Delay (HCM).

Processed: Tuesday, 7 September 2010 10:45:27 AM SIDRA INTERSECTION 5.0.2.1437 Copyright © 2000-2010 Akcelik & Associates Pty Ltd www.sidrasolutions.com

appendix e

reduced plans

appendix f

crash summary reports

										~	
# Crash Type		Contributing Factors	actors		Crash Movement		CRA	CRASHES 97	CASU	CASUALTIES	39
Car Crash	90 92.8%	Speed	2 2.1%	Intersection, adjacent approaches	cent approaches	3 13.4%	6 Fatal crash	0 0.0%	Killed	0	0.0%
Light Truck Crash	18 18.6%			Head-on (not overtaking)	rtaking)	0 0.0%	Injury crash	29 29.9%	Injured	39 100.0%	%0"
Rigid Truck Crash	7 7.2%			Opposing vehicles; turning		26 26.8%	Non-casualty crash	ish 68 70.1%	A Unrestrained	0	0.0%
Articulated Truck Crash	8 8.2%			U-turn		1 1.0%		A Belt fitted but not worn, No restraint fitted to	o position OR No helmet worn	net worn] [
'Heavy Truck Crash	(15) (15.5%)	Weather		Rear-end		34 35.1%	6 Time Group	% of Day	Crashes	Casualties	lties
Bus Crash	2 2.1%	Fine	77 79.4%	Lane change		12 12.4%	00:01 - 02:59	2 2.1% 12.5%	15	2009	~
"Heavy Vehicle Crash	(17) (17.5%)	Rain	9 9.3%	Parallel lanes; turning	ning	2 2.1%	03:00 - 04:59	1 1.0% 8.3%	18	2008	ø
Emergency Vehicle Crash	1 1.0%	Overcast	11 11.3%	Vehicle leaving driveway	riveway	2 2.1%	62:00 - 02:59	2 2.1% 4.2%	19 2	2007	5
Motorcycle Crash	2 2.1%			Overtaking;	same direction	0 0.0%	06:00 - 06:59	3 3.1% 4.2%	18 2	2006	5
Pedal Cycle Crash	0 0.0%	Other	0 0.0%	Hit parked vehicle		0 0.0%	07:00 - 07:59	5 5.2% 4.2%	27 2	2005	14
Pedestrian Crash	1 1.0%	Road Surface Condition	ndition	Hit railway train		0 0.0%	6 08:00 - 08:59	6 6.2% 4.2%			
' Rigid or Artic. Truck " Heavy Truck or Heavy Bus	ck or Heavy Bus		40 40 40	Hit pedestrian		1 1.0%	6 09:00 - 09:59	8 8.2% 4.2%			
# These categories are NOT mutually exclusive	ually exclusive			Permanent obstruction on road	uction on road	0 0.0%	6 10:00 - 10:59	14 14.4% 4.2%] [
Location Type		Dry	0	Hit animal		0 0.0%	6 11:00 - 11:59	5 5.2% 4.2%	~ School ⁻	 School Travel Time 	
*Intersection	70 72.2%	Snow or ice	0 0.0%	Off road, on straight	ght	1 1.0%	6 12:00 - 12:59	4 4.1% 4.2%	Involvement	21 21	21.6%
Non intersection	27 27.8%	Natural Lighting	tina	Off road on straig	straight, hit object	2 2.1%	6 13:00 - 13:59	4 4.1% 4.2%] [
* Up to 10 metres from an intersection	ction			Out of control on straight	straight	1 1.0%	6 14:00 - 14:59	7 7.2% 4.2%	McLean Periods		% Week
~ 07:30-09:30 or 14:30-17:00 on school days	school days	Dawn		Off road, on curve	()	0 0.0%	6 15:00 - 15:59	7 7.2% 4.2%	A 15	5.5%	17.9%
Collision Type	~	Daylight	-	Off road on curve	curve, hit object	0 0.0%	6 16:00 - 16:59	9 9.3% 4.2%	B	2.1% 7	7.1%
Single Vehicle	5 5.2%	Dusk	7 7.2%	Out of control on curve	curve	0 0.0%	6 17:00 - 17:59	6 6.2% 4.2%	C 28	28.9% 17	17.9%
Multi Vehicle	92 94.8%	Darkness	14 14.4%	Other crash type		2 2.1%	6 18:00 - 18:59	3 3.1% 4.2%	D	5.2% 3	3.5%
		1 [19:00 - 19:59	6 6.2% 4.2%	о В	9.3% 3	3.6%
Road Classification	ion	Speed Limit			~ 40km/h or less	0 0.0%	20:00 - 21:59	2 2.1% 8.3%	F 14	14.4% 10	0.7%
Freeway/Motorway	0 0.0%		0		80 km/h zone 0	%0.0	22:00 - 24:00	3 3.1% 8.3%	G	11.3% 7	7.1%
State Highway	0 0.0%	50 km/h zone		1.0% 90 km	90 km/h zone 1	1.0%			8 H	8.2% 7	7.1%
Other Classified Road	97 100.0%	60 km/h zone	11	11.3% 100 k	100 km/h zone 0	0.0%	Street Lighting Off/Nil	Off/Nil % of Dark	1	2.1% 12	12.5%
Unclassified Road	0.0%	70 km/h zone	84	86.6% 110 k	110 km/h zone 0	%0.0	0 of	14 in Dark 0.0%	ר	3.1% 10	10.7%
							1				
Day of the Week				# Holiday Periods	New Year 0	0.0%	Queen's BD	1 1.0% Ea	Easter SH	8	8.2%
Monday 16 16	16.5% Thursday	ay 14 14.4%	Sunday	12 12.4%	Aust. Day 1	1.0%	Labour Day		June/July SH		5.2%
Tuesday 15 15	15.5% Friday	17 17.5%	WEEKDAY	72 74.2%	Easter 0	0.0%	Christmas	1 1.0% Se	Sept./Oct. SH	5 5	5.2%
Wednesday 10 10	10.3% Saturday	iy 13 13.4%	WEEKEND	25 25.8%	Anzac Day 2	2.1%	January SH	6 6.2% De	December SH	2 2	2.1%

Crashid dataset 4090 - Crashes along James Ruse Dr from Parramatta River bridge to Weston St intersection. Crashes reported 2005 - 2009

Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.

Rep ID: REG01 Office: Sydney User ID: muttiu

Page 1 of 1

Summary Crash Report

												>
# Crash Type		Contributing Factors	tors		Crash Movement			CRA	CRASHES 77		CASUALTIES	38
Car Crash 7.	74 96.1%	Speed	3 3.9%	Intersection, adjacent approaches	cent approaches	17	22.1%	Fatal crash	0 0.0%	6 Killed	0	%0.0
Light Truck Crash 11	1 14.3%		0.0%	Head-on (not overtaking)	taking)	0	0.0%	Injury crash	29 37.7%	6 Injured	38 1	38 100.0%
Rigid Truck Crash	2 2.6%			Opposing vehicles; turning	s; turning	31	40.3%	Non-casualty crash	ish 48 62.3%	6 ^ Unrestrained	0	%0.0
Articulated Truck Crash	2 2.6%			U-turn		~	1.3%		A Belt fitted but not worn, No restraint fitted to	to position OR No helmet worn	lmet worn	
'Heavy Truck Crash (4	(4) (5.2%)	Weather		Rear-end		16	20.8%	Time Group	% of Day	y Crashes	Cası	Casualties
Bus Crash	2 2.6%	Fine	62 80.5%	Lane change		~	1.3%	00:01 - 02:59	1 1.3% 12.5%	10	2009	4
"Heavy Vehicle Crash (6)	(7.8%)	Rain	7 9.1%	Parallel lanes; turning	ning	e	3.9%	03:00 - 04:59	1 1.3% 8.3%	14	2008	6
Emergency Vehicle Crash	0.0%	Overcast	8 10.4%	Vehicle leaving driveway	iveway	2	2.6%	05:00 - 05:59	1 1.3% 4.2%	19	2007	1
Motorcycle Crash	0 0.0%	Fog or mist	0 0.0%	Overtaking; same	same direction	0	0.0%	06:00 - 06:59	3 3.9% 4.2%	13	2006	5
Pedal Cycle Crash	0.0%	Other	0.0%	Hit parked vehicle	_	0	0.0%	07:00 - 07:59	4 5.2% 4.2%	21	2005	6
Pedestrian Crash	3 3.9%	Road Surface Condition	dition	Hit railway train		0	0.0%	08:00 - 08:59	2 2.6% 4.2%	%		
' Rigid or Artic. Truck " Heavy Truck or Heavy Bus	۔ Heavy Bus		10,10	Hit pedestrian		С	3.9%	09:00 - 09:59	8 10.4% 4.2%	9		
# These categories are NOT mutually exclusive	exclusive			Permanent obstruction on road	ction on road	0	0.0%	10:00 - 10:59	8 10.4% 4.2%	9] [
Location Type			20	Hit animal		0	0.0%	11:00 - 11:59	5 6.5% 4.2%	1	School Travel Time	e
*Intersection 6	67 87.0%	Snow or ice	0 0.0%	Off road, on straight	iht	0	0.0%	12:00 - 12:59	3 3.9% 4.2%	6 Involvement	16	20.8%
Non intersection	10 13.0%	Natural Lighting	ō	Off road on straigh	straight, hit object	0	2.6%	13:00 - 13:59	5 6.5% 4.2%			
* Up to 10 metres from an intersection	ſ			Out of control on straight	straight	0	0.0%	14:00 - 14:59	5 6.5% 4.2%	McLean Periods		% Week
~ 07:30-09:30 or 14:30-17:00 on school days	ol days			Off road, on curve	_	0	0.0%	15:00 - 15:59	7 9.1% 4.2%	6 A 10	13.0%	17.9%
Collision Type		ght	-	Off road on curve,	curve, hit object	0	0.0%	16:00 - 16:59	3 3.9% 4.2%	6 B	1.3%	7.1%
Single Vehicle	1 1.3%	Dusk	3 3.9%	Out of control on curve	curve	0	0.0%	17:00 - 17:59	2 2.6% 4.2%	6 C 27	35.1%	17.9%
Multi Vehicle 7	76 98.7%	Darkness	19 24.7%	Other crash type		-	1.3%	18:00 - 18:59	5 6.5% 4.2%	6 D 4	5.2%	3.5%
		1 -						19:00 - 19:59	4 5.2% 4.2%	6 E 3	3.9%	3.6%
Road Classification		Speed Limit			~ 40km/h or less		0.0%	20:00 - 21:59	5 6.5% 8.3%	6 F 11	14.3%	10.7%
Freeway/Motorway	0.0%	40 km/h or less	0	0.0% 80 km	80 km/h zone 0		0.0%	22:00 - 24:00	5 6.5% 8.3%	8 0 9	10.4%	7.1%
	0.0%	50 km/h zone	15	19.5% 90 km	90 km/h zone 0		0.0%			5 	6.5%	7.1%
ed Road	73 94.8%	60 km/h zone	26	33.8% 100 kr	100 km/h zone 0		0.0%	Street Lighting Off/Nil	Off/Nil % of Dark	_	6.5%	12.5%
		70 km/h zone	36	46.8% 110 kr	110 km/h zone 0		0.0%	0 of	19 in Dark 0.0%	% J 3	3.9%	10.7%
Day of the Week				# Holiday Periods	New Year	0	0.0%	Queen's BD	0 0.0%	Easter SH	Ð	6.5%
Monday 12 15.6%	Thursday	11 14.3%	Sunday	9 11.7%	Aust. Day	0	0.0% L	Labour Day	7 0.0%	June/July SH	-	1.3%
Tuesday 13 16.9%	Friday	13 16.9% W	WEEKDAY	61 79.2%	Easter	0	0.0%	Christmas	4 5.2%	Sept./Oct. SH	4	5.2%
		1					/00 1				L	25

Crashid dataset 4090 - Crashes along Hassall St from the intersection of Arthur St to approx 250m west of the Colouhoun St intersection. Crashes reported 2005 - 2009

Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.

Rep ID: REG01 Office: Sydney User ID: muttiu

Page 1 of 1

5.2% 6.5%

4 v

5.2%Sept./Oct. SH5.2%December SH

44

1.3% January SH 0.0% Christmas

0 -

Anzac Day

20.8%

61 16

16.9% WEEKDAY WEEKEND

9.1%

13

Saturday

16.9% Friday 15.6%

13

Wednesday Tuesday

Summary Crash Report

# Crash Type		Contributing Factors	ctors		Crash Movement		CRASHES	HES 6	CASUALTIES	LTIES	7
Car Crash	6 100.0%	Speeding	0.0%	Intersection, adjacent approaches	ent approaches	33.3%	Fatal crash	0 0.0%	Killed	0	0.0%
Light Truck Crash	1 16.7%	Fatigue	0 0.0%	Head-on (not overtaking)	aking) 0	0.0%	Injury crash	2 33.3%	Injured	2 100.0%	%0.0
Rigid Truck Crash	0 0.0%)		Opposing vehicles	vehicles; turning	16.7%	Non-casualty crash	h 4 66.7%	A Unrestrained	0	0.0%
Articulated Truck Crash	1 16.7%			U-turn	0	0.0%	A Belt fitted but not worn, No restraint fitted to	n, No restraint fitted to	o position OR No helmet worn	net worn	
'Heavy Truck Crash	(1) (16.7%)	Weather		Rear-end	0	0.0%	Time Group	% of Day	Crashes	Casualties	lties
Bus Crash	0 0.0%	Fine	6 100.0%	Lane change	0	0.0%	00:01 - 02:59	1 16.7% 12.5%	2	2008	0
"Heavy Vehicle Crash	(1) (16.7%)	Rain	0.0%	Parallel lanes; turning	ing 1	16.7%	03:00 - 04:59	0 0.0% 8.3%		2006	~
Emergency Vehicle Crash	0 0.0%	Overcast	0 0.0%	Vehicle leaving driveway	veway 0	0.0%	05:00 - 05:59	0 0.0% 4.2%	1 20	2005	~
Motorcycle Crash	0 0.0%	Fog or mist	0 0.0%	Overtaking; same direction	direction 0	0.0%	06:00 - 06:59	0 0.0% 4.2%			
Pedal Cycle Crash	0 0.0%	Other	0 0.0%	Hit parked vehicle	0	0.0%	07:00 - 07:59	0 0.0% 4.2%			
Pedestrian Crash	0 0.0%	Road Surface Condition	ndition	Hit railway train	0	0.0%	08:00 - 08:59	0 0.0% 4.2%			
' Rigid or Artic. Truck " Heavy Truck or Heavy Bus	or Heavy Bus	-	1 16 70/	Hit pedestrian	0	0.0%	09:00 - 09:59	0 0.0% 4.2%			
# These categories are NOT mutually exclusive	ly exclusive	T VVet		Permanent obstruc	obstruction on road 0	0.0%	10:00 - 10:59	2 33.3% 4.2%			
Location Type		Dry	50	Hit animal	0	0.0%	11:00 - 11:59	0 0.0% 4.2%	~ School T	School Travel Time	
*Intersection	6 100.0%	Snow or ice	0 0.0%	Off road, on straight	nt 1	16.7%	12:00 - 12:59	1 16.7% 4.2%	Involvement	0	0.0%
Non intersection	0.0%	Natural Lighting	bu	Off road on straigh	straight, hit object	16.7%	13:00 - 13:59	0 0.0% 4.2%] [
* Up to 10 metres from an intersection	uc			Out of control on straight	traight 0	0.0%	14:00 - 14:59	0 0.0% 4.2%	McLean Periods		% Week
~ 07:30-09:30 or 14:30-17:00 on school days	nool days	Dawn	0 0.0%	Off road, on curve	0	0.0%	15:00 - 15:59	0 0.0% 4.2%	0 V	0.0% 17	17.9%
Collision Type		Daylight	4 66.7%	Off road on curve,	curve, hit object	0.0%	16:00 - 16:59	0 0.0% 4.2%	0 8	0.0% 7	7.1%
Single Vehicle	2 33.3%	Dusk	1 16.7%	Out of control on curve	urve 0	0.0%	17:00 - 17:59	1 16.7% 4.2%	с -	16.7% 17	17.9%
Multi Vehicle	4 66.7%	Darkness	1 16.7%	Other crash type	0	0.0%	18:00 - 18:59	0 0.0% 4.2%	0 0	0.0% 3	3.5%
							19:00 - 19:59	1 16.7% 4.2%		33.3% 3	3.6%
Road Classification	Ę	Speed Limit			n/h or less	0.0%	20:00 - 21:59	0 0.0% 8.3%	0 L	0.0% 10	10.7%
Freeway/Motorway	0 0.0%	40 km/h or less	0			0.0%	22:00 - 24:00	0 0.0% 8.3%	0 5	0.0% 7	7.1%
State Highway	0 0.0%	50 km/h zone	0	0.0% 90 km/	90 km/h zone 0	0.0%			H 2	33.3% 7	7.1%
Other Classified Road	5	60 km/h zone	0	0.0% 100 kn	100 km/h zone 0	0.0%	Street Lighting Off/Nil	f/Nil % of Dark	-	16.7% 12	12.5%
Unclassified Road	0 0.0%	70 km/h zone	9	100.0% 110 kn	110 km/h zone 0	0.0%	0 of	1 in Dark 0.0%	0 r	0.0% 10	10.7%
Day of the Week				# Holiday Periods	New Year 0	0.0%	Queen's BD	0 0.0% Ea	Easter SH	0	0.0%
Monday 0 0.0%	% Thursday	/ 1 16.7%	Sunday		Aust. Day 0	0.0% L	Labour Day	0.0%	June/July SH		0.0%
Tuesday 0 0.0%	% Friday	0 0.0%	WEEKDAY		Easter 0	0.0%	Christmas	0.0%	Sept./Oct. SH		0.0%
Wednesday 1 16.7%	% Saturday	2 33.3%	WEEKEND	4 66.7%	Anzac Day 0	n %0.0	January SH	0 0.0% De	December SH	0 0	0.0%

Crashid dataset 4090 - Crashes along Grand Ave North between Grand Ave and Clyde-Carlingford Railway. Crashes reported 2005 - 2009

Percentages are percentages of all crashes. Unknown values for each category are not shown on this report.

Rep ID: REG01 Office: Sydney User ID: muttiu

Page 1 of 1

Summary Crash Report

appendix g

swept paths

