

TRAFFIC and PARKING REPORT Port Macquarie Base Hospital Redevelopment Stage 1

for Health Infrastructure

11 January 2012

Job No: 101549.UT

Taylor Thomson Whitting (NSW) Pty Ltd Consulting Engineers ACN 113 578 377 48 Chandos Street St Leonards NSW 2065 PO Box 738 Crows Nest 1585 T 61 2 9439 7288 F 61 2 9439 3146 ttwsyd@ttw.com.au www.ttw.com.au

This document is copyright and is the property of Taylor Thomson Whitting (NSW) Pty Ltd and must not be used without authorisation

Table of Contents

				Page
1.0	INT	ROI	DUCTION	3
2.0	DEV	ÆL.	OPMENT PROPOSAL	3
3.0	ноя	SPIT	FAL CHARACTERISTICS	4
4.0	PAR	RKII	NG DEMAND AND SUPPLY	5
	4.1		EXISTING PARKING DEMAND	6
	4.2		FUTURE PARKING DEMAND	6
	4.3		PARKING REQUIREMENTS	7
	4.4		PARKING PROVISION	8
5.0	ACC	ES	S AND ROAD NETWORK	9
	5.1		ROAD SYSTEM	9
	5.2		TRAFFIC IMPACT	11
	5.3		ACCESS	12
	5.4		PEDESTRIAN AND CYCLIST ACCESS	13
	5.5		PUBLIC TRANSPORT	13
6.0	TRA	NS	PORT MANAGEMENT STRATEGY RECOMMENDATIONS	15
7.0	CON	ICL	USION	16
APPE	NDIX	Α	Survey Data	
APPE	NDIX	В	Intersection Analysis	
APPE	ENDIX	С	Bus Routes	
APPE	ENDIX	D	Vehicles Turning Paths	

1.0 INTRODUCTION

The redevelopment of Port Macquarie Base Hospital has been initiated in order to meet its future demand by the year 2021.

This report discusses traffic and parking aspects and supports a Part 3A Application for Expansion of the Hospital. It includes traffic engineering issues such as pedestrian and traffic access, parking demand and supply and the effect of the development on the surrounding street system.

2.0 DEVELOPMENT PROPOSAL

Port Macquarie Base Hospital (PMBH) is the major referral hospital for the Hastings Macleay Network and provides the clinical care hub for services and is the largest facility within the Network. The majority of specialist medical, surgical and other services within Hastings Macleay Network are provided at Port Macquarie Base Hospital. Kempsey Health Campus and Wauchope District Memorial Hospital refer patients to Port Macquarie Base Hospital.

The proposal involves the redevelopment of Port Macquarie Base Hospital in order to meet its future demand for the next decade.

In response to the capital infrastructure challenges that Port Macquarie Base Hospital faces a Master Development Plan was completed in September 2006. The Plan suggested the construction of a fourth pod in response to service expansion requirements including expanded inpatient capacity and a redeveloped/refurbished Day Surgery/Day Procedures service.

Between 2008/09 and 2021/22 it is projected that the number of hospital visits / stays (separations) provided at PMBH will increase by 22% and the bed-days by 40%. This compares with an estimated 21% increase in population projected for the Hastings LGA over the same period.

The Draft Clinical Service Plan PMBH (September 2010) identifies, the major infrastructure requirements at Port Macquarie Base Hospital. It is recommended in this plan for a redevelopment of the Emergency Department to increase capacity and functionality, expansion and relocation of the critical care unit, the proposed expansion of operating theatres and Day Surgical services, the development of increased acute medical and surgical bed capacity and expansion and reconfiguration of mental health capacity.

There will be a particular need for increased capacity in aged care and rehabilitation, both fast and slow stream, to cater for the elderly population.

The current capacity in maternity, newborn and paediatric services is expected to be adequate to meet future needs. In-centre renal dialysis is at capacity within the Hastings Macleay Network and additional chairs will need to be provided.

3.0 HOSPITAL CHARACTERISTICS

Port Macquarie Base Hospital, located on the Mid North Coast of New South Wales, provides 24 hour Emergency Services, Critical Care, Obstetrics/Gynaecology, Medicine, General and Vascular Surgery, Orthopaedic Surgery, ENT, ophthalmology, Gastroenterology, Paediatric Care and Mental Health inpatients (voluntary) and a Mental Health Community Service. It is 161 bed facility with 4 operating tables.

The NSW Department of Health, through the North Coast Area Health Service, commenced management of the facility on 31 January 2005. The location of the Hospital site is shown in Figure 1.

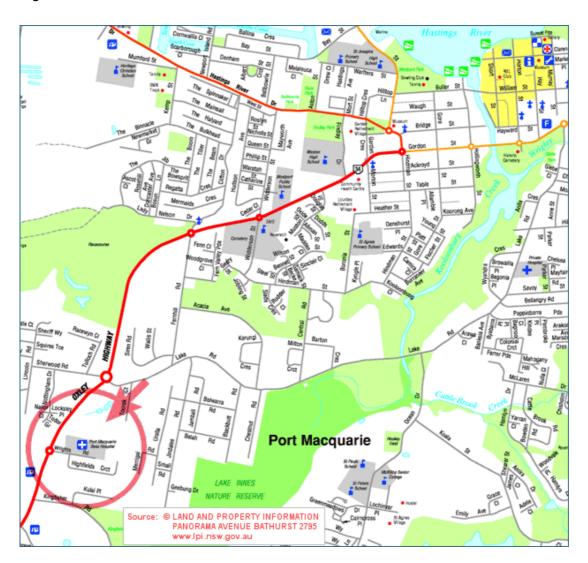


Figure 1: Site Location

The current staff population of the Hospital comprises of the some 235 admin and support staff, 350 nurses and 105 medical/specialists staff. The current number of non inpatients services (including emergency department, pathology and radiology and primary/community services) for the year 2009/10 is 74,644 while total of admissions per year is 18,693 (Clinical Services Plan PMBH September 2010).

4.0 PARKING DEMAND AND SUPPLY

The current review of the site indicates that a total of some 464 parking spaces are available plus some 64 additional temporary spaces. It is expected that these temporary parking spaces will be lost as the result of the redevelopment proposal.

Car Parking Usage

A survey of car parking usage was carried out on 22 November 2010. The results of the parking survey for the Hospital car parking areas revealed that currently there is a high demand for parking in association with the Hospital's activities. The existing car parking spaces within the Hospital is recorded at 464 (with additional 64 temporary spaces). The survey included a total of some 481 car parking spaces (out of 464+64=528) based on relativity and appropriateness of locations.

Table 4.1 Parking Occupancy - Number of Empty Spaces

Туре	830	930	1030	1130	1230	1330	1430	1530	1630	1730
Eng.	0	0	0	0	0	0	0	1	6	7
NW	0	0	0	0	0	0	2	3	12	20
SC	0	0	0	1	0	1	2	7	25	34
SE	11	6	0	0	0	1	6	6	26	55
NE	46	30	0	0	0	0	0	0	34	50
Total	57	36	0	1	0	2	10	17	103	166

Survey Date: Monday 22.11.2010 note: NW: North west corner of campus; SC: Southern Centre of Campus

Table 4.1 show that by about 10.00 AM, the car park experiences a parking occupancy of over 98% and will continue by about 3.30PM. The parking survey also observed the use of an area at the entry point to the campus (west of the roundabout) as an overflow parking accommodating some 10-15 cars.

Mode of Travel

The community profile for Port Macquarie- Hasting area based on ABS data indicates that in 2006, there were 162 people who caught public transport to work (train, bus, tram or ferry) in the area, compared with 18,434 who drove in private vehicles (car –as driver, car – as passenger, motorbike, or truck).

Analysis of the method of travel to work of the residents in Port Macquarie-Hastings Council area in 2006 compared to Mid-North Coast shows that 0.6% used public transport, while 73.0% used a private vehicle, compared with 0.7% and 70.8% respectively in Mid-North Coast.

It should also be noted that the assessment of travel patterns among staff and visitors at other Hospitals such as Wagga Wagga Hospital (URaP-TTW 2009), Hornsby Hospital (URaP-TTW, 2006 & 2011) and Concord Hospital (URaP-TTW, 2008) all showed overall a

[^] Doctor and Emergency parking areas with capacity of 20 combined experienced a high usage (90%+)

car use of about or over 80% among staff and visitors (with 100% among VMO's and doctors).

Accordingly, a similar assumption has been made for the Port Macquarie Base Hospital with consideration to its community profile with respect to travel mode of journey to work data.

4.1 Existing Parking Demand

Considering the population of the Hospital and travel patterns among the users of the Hospital (with respect to other similar facilities) the following peak daily parking demand has been evaluated based on the Draft Clinical Service Plan PMBH (September 2010).

Staff Parking (number of spaces):

Nurses: 150 nurses (out of 350) per main shift and use of 80% of car use = 120 spaces

Admin/Support: 210 staff (out of 234, 10% holidays, sick, seminar) and 80% car use = 170

Medical: 75% (out of 105) attending during the main working hours with 100% car use = 80

Total Parking Demand for Staff = 370 spaces

Visitors and Patients Parking:

Non inpatient Services: 74, 644 cases equivalent to 300 patients per day, assuming 85% car use with average stay of 1.5-2 hours during a 6 hour period = 85 spaces

Visitors: 161 bed x 2 visitor groups/bed x 50% during the day time with average stay 1.5 hours per 6 hour period = 40 spaces

Inpatients (with relative/friends) = 18,693 per year equivalent to 75 occasions per day with 50% stay during a day = 40 spaces

Other uses e.g. volunteers = 40 spaces

Total Parking Demand for Visitors/Patients: 205 spaces

<u>Total Parking Demand for the existing situation</u>: **575** spaces (i.e. 370+205)

4.2 Future Parking Demand

The Clinical Service Plan PMBH (September 2010) indicates a higher level of activity for the Hospital by the Year 2021. For example it estimates an increase of emergency outpatients from the current 31,000 to 45,000 with annual increase of some 2 to 4% inn various services. Therefore assuming a growth rate of 2.5% for the Hospital's activities the number of non inpatient services would increase from 74,644 to some 95,000 per year. The staff population however is expected to increase marginally by some 50-60 additional personnel.

It is also considered that the number of students visiting the Hospital would be in order of 30 to 120 training specialists/researcher. There would also be a demand for higher level of activities in various departments while a higher efficiency with shorter stay is also expected

among patients.

Accordingly, the parking demand for staff is expected to increase from 370 to 410 spaces with additional provision of some 40-50 spaces for educational and research activities.

The parking demand for visitors and patients would be in order of some 230-250 spaces allowing for increased number of non inpatients (i.e. an additional 25 parking spaces) and other uses (inpatients, volunteers, etc)

Therefore a total parking demand of some **700** spaces would be required (i.e. **460** for staff and educational use and **240** for visitors/patients).

Summary Future Parking Demand

Additional 60 staff: based on 80% car use = additional 48 spaces

Additional 100 outpatients/visitors per day = assuming 85% car use with average stay of 1.5-2 hours during a 6 hour period = 29 spaces

Additional some 100 students/training specialists researchers = considering 60% attendance as not all attend every day and 80% car use = 48 spaces

Total additional parking demand = 125 - 130 spaces

Future Staff Parking = 370+48 say 420 spaces

Educational and Professional Visitors Parking = **50** spaces

Future Outpatients and Visitors Parking Demand = 205 + 29 say 235 spaces

Total Future Parking Demand = 420+50+235 = 705 spaces

4.3 Parking Requirements

The Port Macquarie Council DCP 18 requires parking provision of (for hospitals):

- 1 space per 5 beds
- 1 space per 4 staff

Existing Situation:

160 beds/5 = 32 spaces

440 staff/4 = 110 spaces (based on assumed peak)

Total required = 142 spaces

The site currently provides 464 spaces + 64 "temporary" = 528

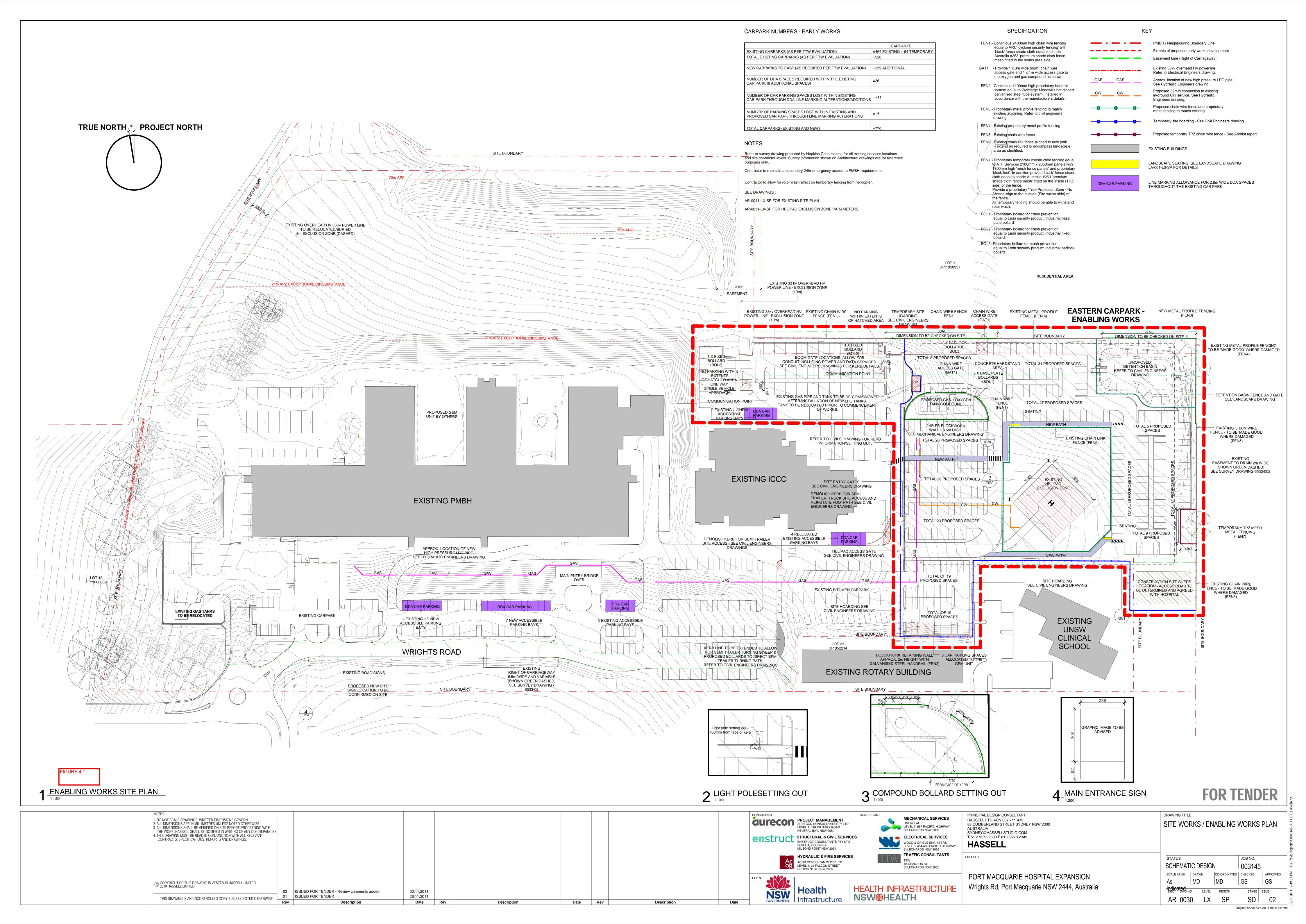
The additional parking requirements based on redevelopment of the Hospital would require the following based on Council's DCP:

106 beds/5 = 21

100 staff/4 = 25 spaces (staff and students/professional visitors per day)

Total additional required = **46** spaces

On this basis, Council's requirements are met without provision of additional parking areas. The concern is that the DCP does not totally make any consideration of parking for outpatients or reflect actual car usage which is the reason for adopting a broader demand assessment.


4.4 Parking Provision

The total future parking demand for the Hospital is on order of 700 spaces. The proposed master plan will provide some 719 parking spaces as part of the Hospital's redevelopment program.

This level of parking provision will improve the amenity for the Hospital's users, considering that generally some 10% additional parking provisions would be desirable to reduce vehicular circulation within the campus and to meet the parking demand for special/unexpected occasions.

The parking proposal for the Hospital Campus is shown in Figure 4.1.

5.0 ACCESS AND ROAD NETWORK

5.1 Road System

The main access routes to the site are via Oxley Highway and Wrights Road. The immediate vehicular access points to the site are off Wrights Road.

The main entry to the Hospital Campus is controlled with a small roundabout at intersection of Wrights Road, Highfields Circuit and entry points to the Campus. A 50 kph speed zone applies along Wrights Road and Highfields Circuit.

The intersection of Wrights Road and Oxley Highway is controlled with a major roundabout. An initial meeting with Hastings Council (12/10/2010) indicate that the existing roundabout will not need to be upgraded as a result of the proposed development considering its capacity and recent upgrade.

Data collection on vehicular traffic volumes and speed along Wrights Road and the main entry road to the Campus were carried out for a period of one week between 10 to 17 December 2010. The results of these surveys are shown in Appendix A.

The assessment of traffic volumes and speed along Wrights Road indicates an average daily vehicular traffic volume of **4622** for a 5 day period and 3858 vehicles per day (vpd) for a 7 day period. The 85 percentile speed is recorded at **47**kph for both directions along Wrights Road (between Oxley Hwy and Hospital roundabout).

Traffic volumes along the entry road to the Hospital Campus (between Hospital roundabout and car parking area) is recorded at **2931** vehicles per day (for 5 day period) and 2420 vpd for a 7 day period. The 85 percentile speed is recorded at **38**kph (36 kph for eastbound and 40kph for westbound).

Based on the above figure of 2931, the traffic generation for the Campus therefore is about 1440 vpd in each direction (in and out movements – per data as shown in the Appendix).

The results of the intersection counts (as shown in Appendix A) indicate a peak hourly (AM or PM) traffic generation of 285 vehicles per hour (vph) - to and from the Hospital (two way).

Wrights Road experiences park hourly traffic volumes of 382 vph and 365 vph (two way movements) during an AM and PM peak periods, respectively. The peak hourly traffic volume for Highfields Circuit is recorded at 64vph. Highfields Circuit currently is being used by parkers and activities associated with clinics and surgeries.

Vehicular traffic counts at intersection of Oxley Highway and Wrights Road has also been carried out on 3rd and 4th of November 2011 during AM and PM peak periods and the results are shown in Appendix A.

The above results indicate that the street system operate at a good level of service with ample capacity based on traffic engineering terms/guidelines.

Street System Operation

The term "level of service" for road capacity has been defined by AUSTROADS as:

A qualitative measure describing operational conditions within a traffic stream and their perception by motorists and or passengers.

A level of service definition generally describes these conditions in terms of factors such as speed and travel time, freedom to manoeuvre, traffic interruptions, comfort, convenience and safety. In general there are six levels of service designated from A to F, with level of service A representing the best operating conditions (ie free flow) and level of service F the worst (ie forced or breakdown flow).

One-way hourly volumes for urban roads during peak hours and recommended level of service are shown in **Table 5.1**

Table 5.1 Urban Road Peak Hour Flows per Direction

Level of Service	One Lane (veh/hr)	Two Lanes (veh/hr)
А	200	900
В	380	1400
С	600	1800
D	900	2200
E	1400	2800

Source: RTA Guidelines 1995

Intersections Operation

The adequacy of the capacity of an intersection is judged by whether it can physically and operationally cater for the traffic using it. The parameters of the performance of an intersection include the degree of saturation (DoS) and the average delay per vehicle (AD). Satisfactory operation of an intersection would normally continue up to 56 seconds as Average Delay/Vehicle. At this Level of Service (LoS), operating speeds are still reasonable and acceptable delays are experienced. The recommended criteria for evaluating capacity of intersections are shown in **Table 5.2**.

Table 5.2 Criteria for Evaluating Capacity of Intersection

Level of Service	Degree of Saturation	Ave. Delay/ Veh. (sec)
A/B good operation	less than 0.80	Less than 28
C satisfactory	0.80 to 0.85	29-42
D poor but manageable	0.85 to 0.90	43-56
E at capacity	0.90 to 1.0	57-70
F unsatisfactory, extra capacity req'd.	Over 1.0	Over 70

5.2 Traffic Impact

As discussed in Sections 4.2 and 4.3 of this report an additional of some 130 parking spaces would be required as part of the future development of the Hospital. On this basis, it is assumed that additional vehicular traffic generation for the site should not exceed 260vph during a peak hour period (as not all traffic arrive and depart at the same time while considering a conservative measure of maximum 70% of arrival/departure in one hour time, it would result a traffic generation of 180vph for in and out movements i.e. 90vph in each direction).

Therefore, in traffic engineering terms the road system will continue to operate at good level of service after the completion of the Hospital's redevelopment program based on the available road network capacity and its level of service.

The assessment of intersection operation at the entry to the Hospital (roundabout at intersection of Wrights Road and Hospital entrance) indicates that the intersection will continue to operate at a good level of service (see Table 5.3).

Similarly, the assessment of operation of Oxley Highway and Wrights Road intersection with consideration to the future traffic volumes from the Hospital and growths along the Highway indicates that the intersection will continue to operate at a good level of service.

The results of the assessment are shown in Appendix B.

Table 5.3a Performance of Access Intersection Existing and Future

AM and PM Commuter Peak Hour Traffic on a Weekday

Intersection	Traffic Controls	Degree of Saturation (DoS)	Level of Service (LoS)	Highest Delay/Veh (Sec/Veh)	Average Delay/Veh (Sec/Veh)
Wrights Rd & Hospital Entry	Roundabout				
AM Peak Hour	Existing	0.19	А	7.9	3.8
PM Peak Hour	Existing	0.16	А	8.2	3.8
AM Peak Hour	Future	0.27	А	9.0	4.6
PM Peak Hour	Future	0.29	А	9.8	4.4

Table 5.3b Performance of Oxley/Wrights Intersection Existing and Future

AM and PM Commuter Peak Hour Traffic on a Weekday

Intersection	Traffic Controls	Degree of Saturation (DoS)	Level of Service (LoS)	Highest Delay/Veh (Sec/Veh)	Average Delay/Veh (Sec/Veh)
Wrights Rd & Oxley Hwy	Roundabout				
AM Peak Hour	Existing	0.48	Α	17.0	8.8
PM Peak Hour	Existing	0.48	Α	16.9	9.0
AM Peak Hour	Future	0.60	Α	17.3	9.1
PM Peak Hour	Future	0.57	Α	18.5	9.9

5.3 Access

The access to the Hospital Campus will be from Wrights Road per existing situation. The access to the Campus off Wrights Road is controlled with a roundabout which provides a safe and efficient facility for vehicular movements to and from the site.

As part of the redevelopment process consideration is given to the temporary relocation of the existing gas cylinders during early works construction and are currently located within the north eastern part of the campus. Access to the gas cylinders has taken in consideration the truck refill area and the appropriate approach road network. All truck access will be off Wrights Road as it is preferred by Hastings Council.

A way finding signage plan for the Hospital campus would improve the existing situation for the users of the area.

A new loading dock is being provided on the western boundary of the Hospital site. The loading dock entry / exit is off Wrights Road. The entry / exit allows for access of all trucks up to 19m semi-trailers. All trucks enter and exit the loading dock area in forward direction and turn around within the site. Turning paths are shown in Appendix D.

Ambulance access is off Wrights Road into the emergency access area. West of the emergency access and East of the new loading dock is a separate entry / exit ambulance parking area which provides spaces for waiting ambulances.

As part of the Master Plan, consideration could be given to the provision of a second access to the Hospital site. A link to Toorak Court could be an option for future investigation. An initial meeting with Hastings Council indicate that it would consider the option as a secondary access to the Hospital.

5.4 Pedestrian and Cyclist Access

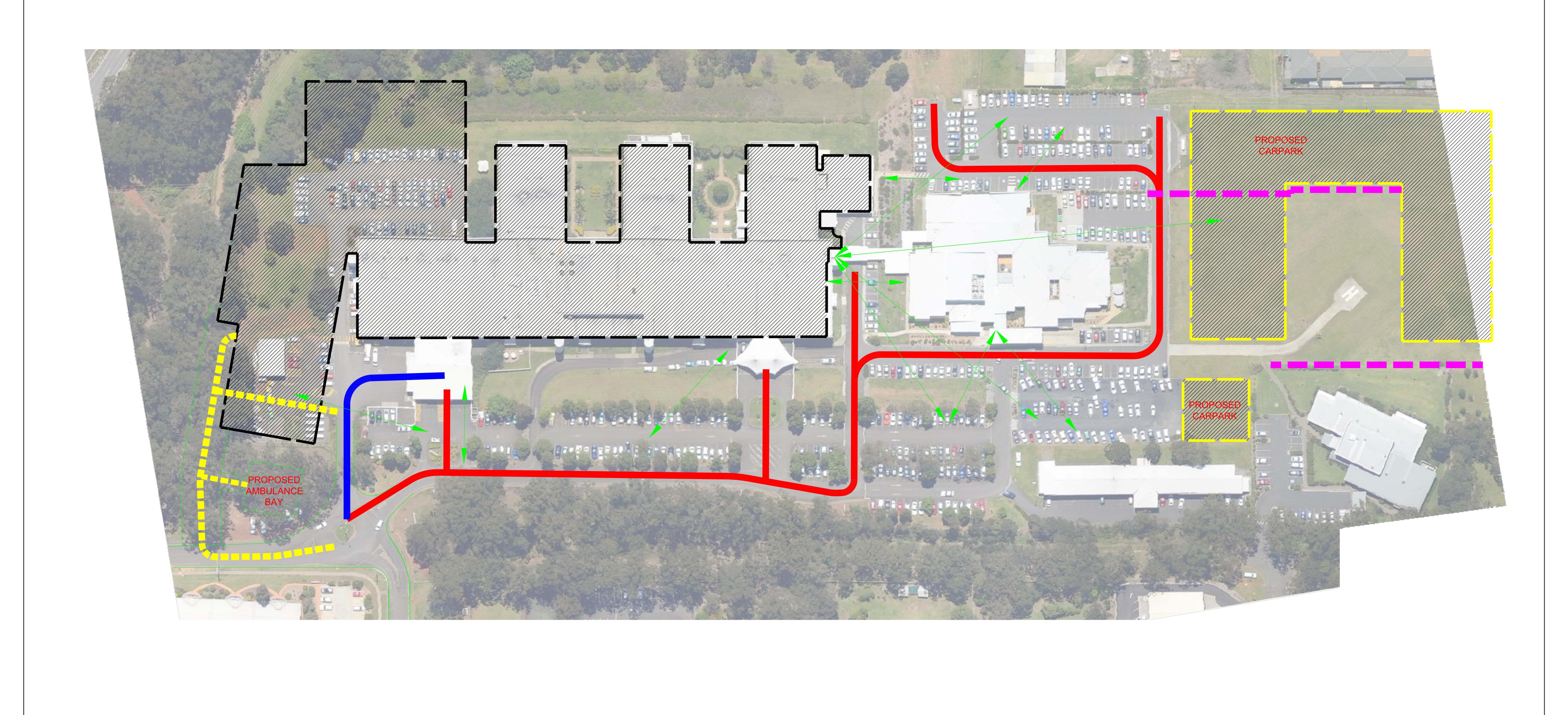
Currently the Hospital experiences some issues with pedestrian movements within the campus particularly access between the car parking areas on southern side of the campus and the main buildings.

Accordingly, as part of the master planning process pedestrian desire lines have been identified and are shown in **Figure 5.2** (next page). Appropriate pedestrian facilities will be provided as part of the future development / expansion.

Pedestrian access between the Hospital site and clinics and surgeries along Highfields Circuit is also recommended.

Introduction of bicycle parking at various locations within the Hospital Campus will also provide additional amenities for the users of the Hospital and would promote active transport particularly among Hospital's staff.

5.5 Public Transport

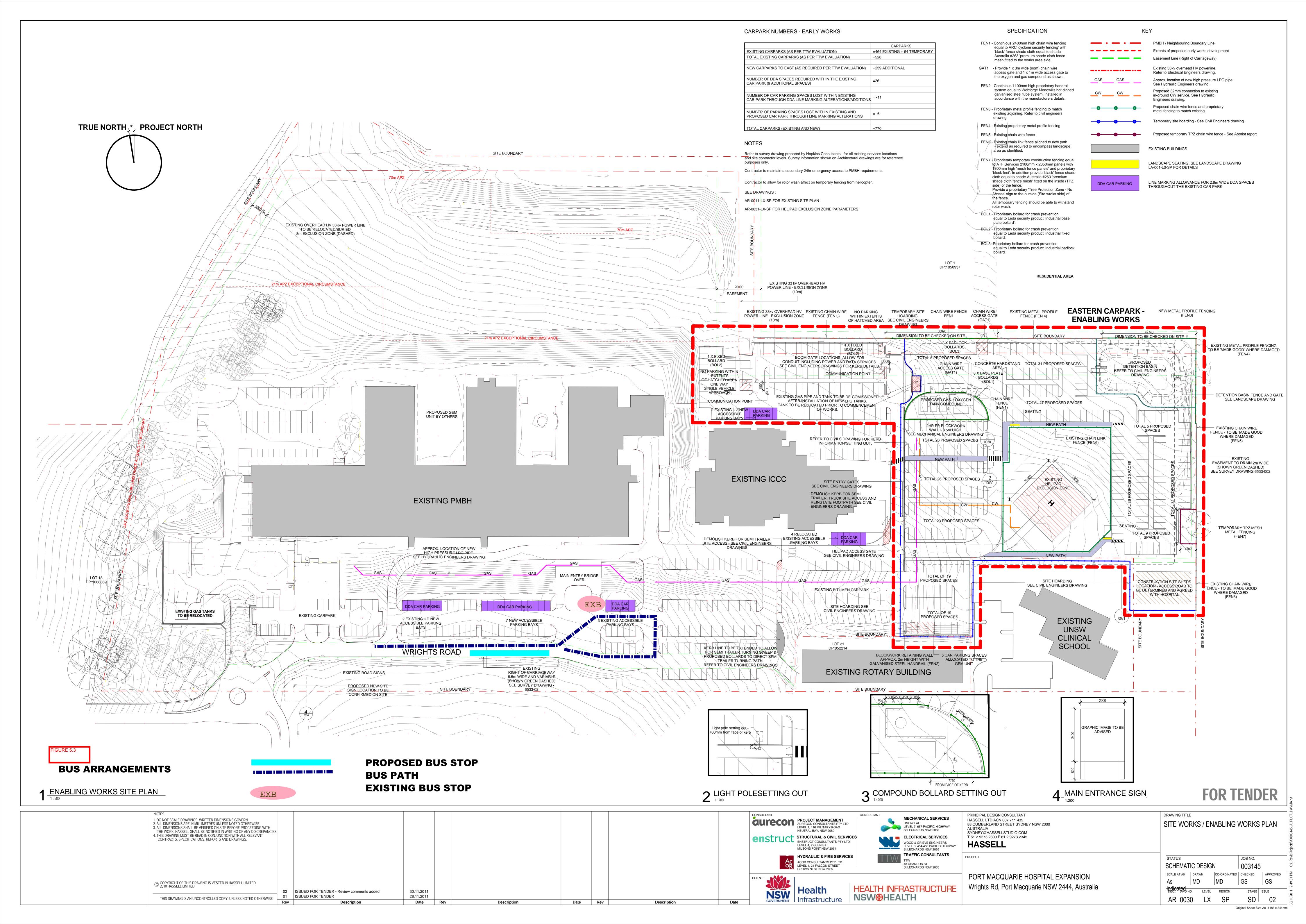

Busways provide bus services to the Hospital along: Wauchope (Bransdon St), Base Hospital, TAFE (Oxley Hwy), Settlement City, Port Macquarie Town Centre and Private Hospital. Buses run every 1 hour during the AM and PM peak hour periods and every 2 hour during a weekday with limited frequencies on weekends. A bus timetable is provided in Appendix C.

Buses access the Hospital campus and improvements to their manoeuvrability have been considered as shown in **Figure 5.3**.

Taxi on call is also available from the Hospital while patient transport and community transport provide services to their patrons.

Table 5.4	Bus Ro	outes Timetab	les	Route 335—	Wauchope-Port	Macquarie via B	Sase Hospital
Weekday		Saturday		Sunday		Public Holida	av
Timetable	Waiting	Timetable	Waiting	Timetable	Waiting	Timetable	Waiting
7:31	-	10:00	-	11:00	-	11:00	-
8:27	56 mins	12:00	2hrs	16:00	5hrs	16:00	5hrs
10:00	1.5hrs	15:00	3hrs				
12:00	2hrs	17:00	2hrs				
14:00	2hrs						
16:05	2hrs5mins						
17:15	1hr10mins						
18:15	1hr						
Route 335	Port Macquarie	- Wauchope					
Weekday		Saturday		Sunday		Public Holida	nys
Time	Waiting	time	Waiting	Time	Waiting	Time	Waiting
9:03	-	9:03	-	10:03	-	10:03	-
11:03	2hrs	11:03	2hrs	15:03	3hrs	15:03	3hrs
13:03	2hrs	14:03	3hrs				
15:03	2hrs	16:03	2hrs				
16:23	1hr20mins						
17:23	1hr						
Route 325 Po	rt Macquarie—l	Base Hospital & T	The Runs Way				
Weekday		Saturday	T.	Sunday		Public Holida	nys
Time	Waiting	Time	Waiting	Time	Waiting	Time	Waiting
7:33	-	8:31	-	8:24	-	8:24	-
8:33	1hr	9:31	1hr	10:31	2hrs7mins	10:31	2hr7m
9:33	1hr	10:31	1hr	12:42	2hr11min	12:42	3h11m
10:31	1hr	11:31	1hr	14:42	2hrs	14:42	2hrs
11:31	1hr	12:42	1hr11mins				
12:42	1hr11mins	13:42	1hr				
13:42	1hr	14:42	1hr				
14:42	1hr	15:42	1hr				
15:42	2hr	16:42	1hr				
16:44	1hr2mins						
Route 325 H	Base Hospital &	The Runs Way	Port Macquarie				
Weekday	1	Saturday		Sunday		Public Holida	ys
Time	Waiting	Time	Waiting	Time	Waiting	Time	Waiting
7:33	-	8:31	-	8:24	-	8:24	-
8:33	1H	9:31	1H	10:31	2H	10:31	2H5m
9:33	1H	10:31	1H	12:42	2H11mins	12:42	2h11m
10:31	1H	11:31	1H	14:42	2Н	14:42	2Н
11:31	1H	12:42	1H				
12:42	1H	13:42	1H			1	
13:42	1H	14:42	1H				
14:42	1H	15:42	1H				
15:42	1H	16:42	1H				

CURRENT MAIN VEHICULAR ROUTES


CURRENT MAIN VEHICULAR ROUTES NOT REQUIRED AFTER NEW WORK PEDESTRIAN DESIRE LINES (ORIGIN / DESTINATION)

CURRENT MAIN VEHICULAR ROUTES OPTIONAL VEHICULAR ROUTES PROPOSAL

PEDESTRIAN FOOTPATH/LINK TO MAIN BUILDING

FOR INFORMATION

NOTES 1. DO NOT SCALE DRAWINGS. WRITTEN DIMENSIONS GOVERN. 2. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE. 3. ALL DIMENSIONS SHALL BE VERIFIED ON SITE BEFORE PROCEEDING WITH THE WORK. HASSELL SHALL BE NOTIFIED IN WRITING OF ANY DISCREPANCIES 4. THIS DRAWING MUST BE READ IN CONJUNCTION WITH ALL RELEVANT CONTRACTS, SPECIFICATIONS, REPORTS AND DRAWINGS.							PROJECT MANAGEMENT AURECON CONSULTANTS PTY LTD LEVEL 2, 116 MILITARY ROAD NEUTRAL BAY, NSW 2089 STRUCTURAL & CIVIL SERVICES ENSTRUCT CONSULTANTS PTY LTD LEVEL 4, 2 GLEN ST MILSONS POINT NSW 2061	WOOD & GRIEVE ENGINEERS LEVEL 3, 454-456 PACIFIC HIGHWAY St LEONARDS NSW 2065	PRINCIPAL DESIGN CONSULTANT HASSELL LTD ACN 007 711 435 88 CUMBERLAND STREET SYDNEY NSW 2000 AUSTRALIA SYDNEY@HASSELLSTUDIO.COM T 61 2 9273 2300 F 61 2 9273 2345 HASSELL	PEDESTRIAN AND VEHICULAR PATHS
	05 AMENDED TITLE BLOCK	20.12.11					ACOR CONSULTANTS PTY LTD LEVEL 1, 24 FALCON STREET CROWS NEST NSW 2065	TRAFFIC CONSULTANTS TTW 48 CHANDOS ST St LEONARDS NSW 2065	ROJECT	STATUS JOB NO. 003145
	04 AMENDED TITLE BLOCK	13.12.11					CLIENT		PORT MACQUARIE HOSPITAL EXPANSION	SCALE AT A0 DRAWN CO-ORDINATED CHECKED
© COPYRIGHT OF THIS DRAWING IS VESTED IN HASSELL LIMITED 2010 HASSELL LIMITED.	03 PRELIMINARY	12.12.11								1:500 KH
2010 HASSELL LIMITED.	02 PRELIMINARY	10.02.11					Health H	EALTH INFRASTRUCTURE	Wrights Rd, Port Macquarie NSW 2444, Australia	DISC. DWG NO. LEVEL REGION STAGE
THIS DRAWING IS AN UNCONTROLLED COPY. UNLESS NOTED OTHERWISE	01 PRELIMINARY	09.02.11					NSW Health Infrastructure	SW@HEALTH		TR SKC03 LX SP SD
	Rev Description	Date Rev	Description	Date Rev	Description	Date	GOVERNMENT THITTASLI UCLUI G			IN SNOOD LA SI

6.0 TRANSPORT MANAGEMENT STRATEGY RECOMMENDATIONS

As part of the transport strategy for Port Macquarie Base Hospital, a number of strategies are suggested for implementation or further investigations. It is of paramount importance to take into account the future level of population increase within the region, and to provide solutions that are complementary to State, regional and local transport plans. Therefore, the higher use of public transport will not only create a healthier environment but will also improve the road safety and character of the built environment.

Further, decreased use of the car, particularly by staff, will reduce the need for construction of carparks and their associated costs. This means freeing funds for other activities and needs. The following measures are put forward as a guide to encouraging a reduction in car usage:

- > provision of incentive schemes among staff e.g. subsidised bus tickets
- negotiation with bus agencies for provision of frequent bus services with faster and more direct destinations e.g. shuttle bus between city centre/shopping areas and the Hospital.
- > establishment of a waiting list for parking space for new Hospital staff. This means that any new staff will not have a parking space until one becomes available.
- higher parking fees for new Hospital staff, possibly combined with provision of subsided public transport tickets.
- provision of better, safer (in terms of route alignment as well as security) bicycle and pedestrian routes. This measure should be devised in consultation with Council and other authorities.
- promotion of the merits of walking and bicycle riding in order to encourage staff living near the Hospital to leave their cars at home.
- provision of safer and higher quality bus shelters or waiting areas.

7.0 CONSTRUCTION TRAFFIC

It is envisaged that a Construction Traffic Management Plan (CTMP) will be prepared prior to commencement of major works. However, the designated heavy vehicle routes would be via Oxley Highway and Wrights Road. It is expected that 70% of trips would have an origin-destination from the north-eastern area while the remaining will come from south-western part of the area. It is anticipated that some 50 - 70 vehicular trips associated with construction staff would occur, most trips outside each AM and PM peak period.

Parking for construction staff will be provided on site as part of the Enabling Works on formalisation of car parking areas.

Provision for pedestrian and cyclist's access will be made as part of the CTMP.

8.0 CONCLUSION

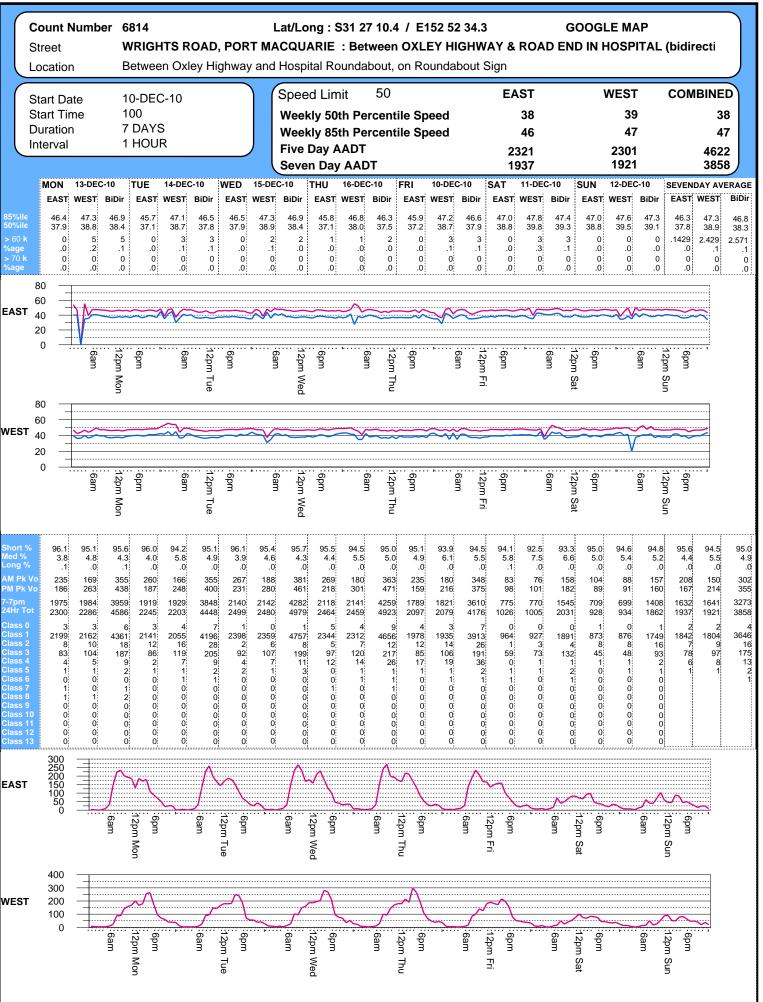
The proposed redevelopment of Hospital will provide some 719 parking spaces in order to meet the future demand of Hospital by the year 2021. However, it should be noted that the current parking provision meets the previous Hasting Council's DCP 18 for car parking requirements. The current DCP 2011 does not provide specific requirements for Hospital developments.

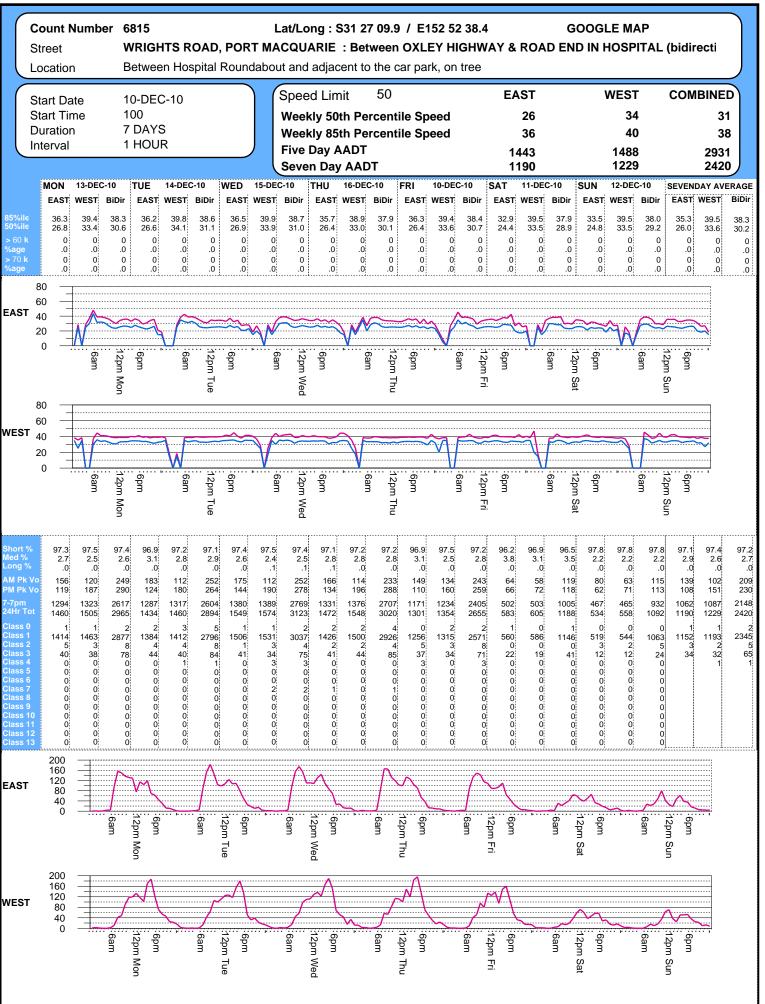
The existing road system and access arrangements operate at good level of service and will continue to operate at similar level of service once the redevelopment of the Hospital is completed.

Pedestrian desire lines have been identified and are included as part of the master plan for the campus.

Provision of a second access to the Hospital Campus could be considered as part of the future redevelopment proposal.

Adequate truck access and manoeuvring for a 19m semi trailer and fire truck have been considered within the site. The turning paths for gas truck movements within the site have examined and are shown in the Appendix.


Prepared/Authorised by:


TAYLOR THOMSON WHITTING (NSW) PTY LTD

KAM TARA Director

URaP-TTW PTY LTD

APPENDIX A

Count Number 6815 Ref : URAP Lat/Long : S31 27 09.9 / E152 52 38.4 GOOGLE MAP

Street WRIGHTS ROAD, PORT MACQUARIE: Between OXLEY HIGHWAY & ROAD END IN HOSPITAL (bidirectional):

Location Between Hospital Roundabout and adjacent to the car park, on tree Carriageway

TOTAL COUNT MATRIX

Start Date 10-DEC-10
Start Time 100
Duration 7 DAYS
Interval 1 HOUR

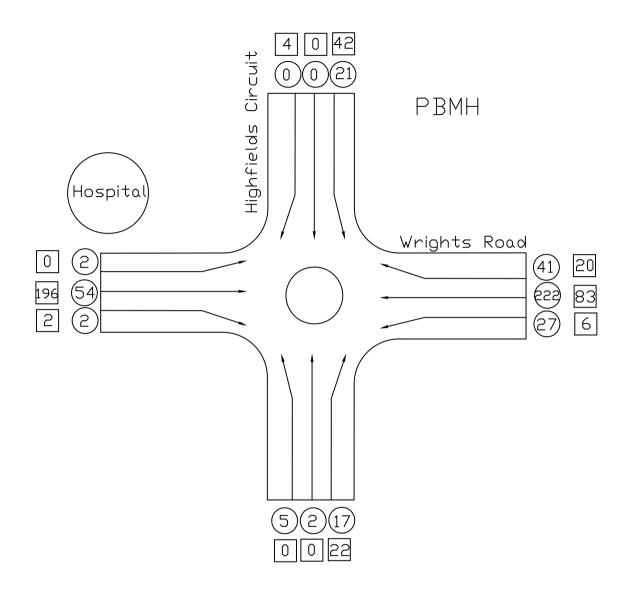
Weekly 50th Percentile Speed31Weekly 85th Percentile Speed38Five Day AADT2931Seven Day AADT2420

	MON	TUE	WED	THU	FRI	SAT	SUN	5	Dav		7 Dav
	13TH	14TH	15TH	16TH	10TH	11TH	12TH	Total	Average	Total	Average
Midnight - 1am	1	3	8	12	6	2	3	30	6	35	5
1am - 2am	4	1	2	6	2	2	7	15	3	24	3
2am - 3am	1	0	0	4	1	3	2	6	1	11	2
3am - 4am	1	2	4	1	2	1	0	10	2	11	2
4am - 5am	4	2	2	2	3	4	1	13	3	18	3
5am - 6am	6	6	9	8	4	6	3	33	7	42	6
6am - 7am	106	102	107	97	96	37	34	508	102	579	83
7am - 8am	198	196	200	223	174	40	38	991	198	1069	153
8am - 9am	198	247	232	218	201	46	39	1096	219	1181	169
9am - 10am	228	252	252	215	239	60	66	1186	237	1312	187
10am - 11am	249	203	220	233	195	100	115	1100	220	1315	188
11am - Midday	249	211	223	214	243	119	105	1140	228	1364	195
Midday - 1pm	208	232	237	201	214	118	97	1092	218	1307	187
1pm - 2pm	232	251	268	283	227	99	55	1261	252	1415	202
2pm - 3pm	206	224	267	246	190	88	73	1133	227	1294	185
3pm - 4pm	290	264	275	288	259	113	113	1376	275	1602	229
4pm - 5pm	256	260	278	287	224	90	89	1305	261	1484	212
5pm - 6pm	186	187	223	190	155	85	89	941	188	1115	159
6pm - 7pm	117	77	94	109	84	47	53	481	96	581	83
7pm - 8pm	85	50	80	62	47	46	37	324	65	407	58
8pm - 9pm	58	50	56	43	35	21	29	242	48	292	42
9pm - 10pm	36	38	26	26	21	20	15	147	29	182	26
10pm - 11pm	29	21	46	33	18	29	17	147	29	193	28
11pm - Midnight	17	15	14	19	15	12	12	80	16	104	15
Total	2965	2894	3123	3020	2655	1188	1092	14657	2931	16937	2419

Page: 1

Count Number 6814 Ref : URAP Lat/Long : S31 27 10.4 / E152 52 34.3 GOOGLE MAP

Street WRIGHTS ROAD, PORT MACQUARIE: Between OXLEY HIGHWAY & ROAD END IN HOSPITAL (bidirectional):

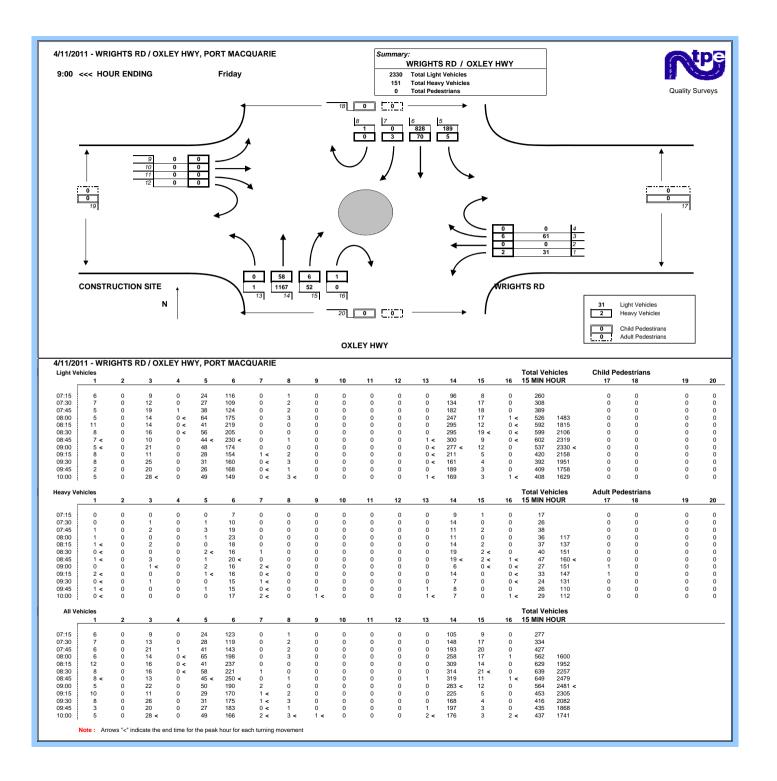

Location Between Oxley Highway and Hospital Roundabout, on Roundabout Sign Carriageway

TOTAL COUNT MATRIX

Start Date 10-DEC-10
Start Time 100
Duration 7 DAYS
Interval 1 HOUR

Weekly 50th Percentile Speed 38
Weekly 85th Percentile Speed 47
Five Day AADT 4622
Seven Day AADT 3858

	MON	TUE	WED	THU	FRI	SAT	SUN	5	Dav		7 Dav
	13TH	14TH	15TH	16TH	10TH	11TH	12TH	Total	Average	Total	Average
Midnight - 1am	12	12	13	32	11	16	21	80	16	117	17
1am - 2am	7	8	14	12	10	15	21	51	10	87	12
2am - 3am	4	5	5	10	9	23	14	33	7	70	10
3am - 4am	7	8	15	8	11	6	4	49	10	59	8
4am - 5am	14	12	15	14	15	11	19	70	14	100	14
5am - 6am	44	42	48	41	34	28	32	209	42	269	38
6am - 7am	169	159	175	182	155	88	77	840	168	1005	144
7am - 8am	312	318	335	343	274	89	91	1582	316	1762	252
8am - 9am	323	355	362	362	335	75	57	1737	347	1869	267
9am - 10am	343	344	381	343	348	109	98	1759	352	1966	281
10am - 11am	352	312	327	363	293	136	157	1647	329	1940	277
11am - Midday	355	310	367	356	346	158	147	1734	347	2039	291
Midday - 1pm	332	348	345	348	326	172	136	1699	340	2007	287
1pm - 2pm	353	366	405	432	331	141	98	1887	377	2126	304
2pm - 3pm	350	363	435	402	329	162	137	1879	376	2178	311
3pm - 4pm	438	400	461	471	375	182	160	2145	429	2487	355
4pm - 5pm	373	352	404	399	298	129	127	1826	365	2082	297
5pm - 6pm	263	257	318	277	230	113	115	1345	269	1573	225
6pm - 7pm	165	123	142	163	125	79	85	718	144	882	126
7pm - 8pm	121	89	119	101	77	68	76	507	101	651	93
8pm - 9pm	81	81	101	73	65	56	57	401	80	514	73
9pm - 10pm	65	81	70	72	67	67	43	355	71	465	66
10pm - 11pm	66	71	88	73	68	69	61	366	73	496	71
11pm - Midnight	37	32	34	46	44	39	29	193	39	261	37
Total	4586	4448	4979	4923	4176	2031	1862	23112	4622	27005	3857

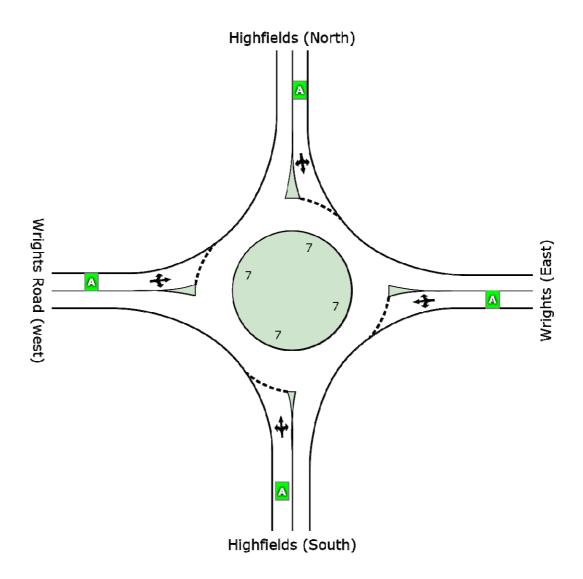

Engineering

1 : Morning : 7:40-8:40

II : 16:15 – 17:15

AFTERNOON INTERSECTION

ENTRY TI PORT MACQUARIE BASE HOSPITAL


APPENDIX B

Site: Existing AM Highfields & Wrights

Existing AM - Highfields & Wrights

Roundabout

	South	East	North	West	Intersection
LOS	Α	Α	Α	Α	Α

Level of Service (LOS) Method: Delay (RTA NSW).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model used.

MOVEMENT SUMMARY

Existing AM - Highfields & Wrights

Roundabout

Movem	ent Pe	erformance	- Vehi	icles							
Mov ID	Turn	Demand	HV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: H	Highfield	ls (South)									
1	L	5	0.0	0.024	5.3	LOS A	0.1	0.7	0.37	0.52	28.0
2	Т	2	0.0	0.024	4.1	LOS A	0.1	0.7	0.37	0.41	28.8
3	R	18	0.0	0.024	7.9	LOS A	0.1	0.7	0.37	0.64	26.1
Approac	:h	25	0.0	0.024	7.0	LOS A	0.1	0.7	0.37	0.59	26.7
East: W	rights (E	ast)									
4	L	28	0.0	0.187	4.1	LOS A	1.0	7.1	0.04	0.53	30.4
5	Т	234	0.0	0.187	3.0	LOS A	1.0	7.1	0.04	0.35	32.4
6	R	43	0.0	0.187	6.8	LOS A	1.0	7.1	0.04	0.80	27.5
Approac	:h	305	0.0	0.187	3.6	LOS A	1.0	7.1	0.04	0.43	31.4
North: H	lighfield	s (North)									
7	L	22	0.0	0.021	4.5	LOS A	0.1	0.8	0.24	0.46	29.1
8	Т	1	0.0	0.021	3.4	LOS A	0.1	0.8	0.24	0.34	30.2
9	R	1	0.0	0.021	7.2	LOS A	0.1	0.8	0.24	0.65	26.8
Approac	:h	24	0.0	0.021	4.5	LOS A	0.1	0.8	0.24	0.46	29.1
West: W	rights F	Road (west)									
10	L	2	0.0	0.050	4.4	LOS A	0.2	1.7	0.19	0.52	29.6
11	Т	57	0.0	0.050	3.3	LOS A	0.2	1.7	0.19	0.37	31.0
12	R	2	0.0	0.050	7.1	LOS A	0.2	1.7	0.19	0.77	27.3
Approac	:h	61	0.0	0.050	3.4	LOS A	0.2	1.7	0.19	0.39	30.8
All Vehic	cles	416	0.0	0.187	3.8	LOS A	1.0	7.1	0.09	0.43	30.8

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

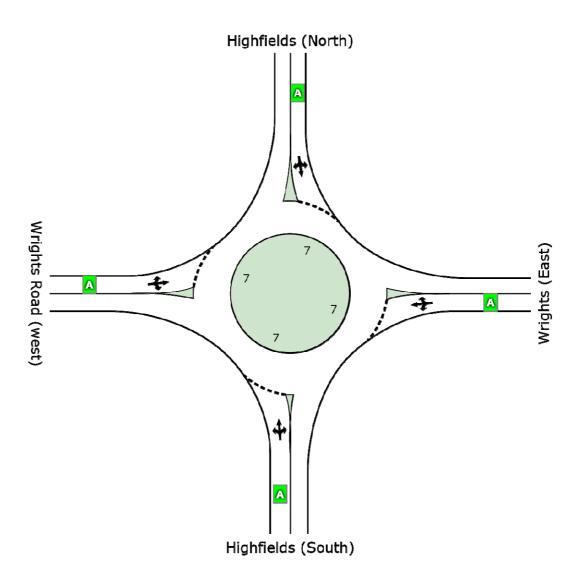
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Copyright
Thursday, © 2000December 08, 2011
2011 6:35:43 Akcelik
PM and
SIDRA Associates
INTERSECTIO Pty Ltd
N 5.1.8.2059 www.sidra
solutions.c

Project: C:\Documents and Settings\Pauld\My Documents\New Project - 2.sip 8001173, TTW PTY, SINGLE


LEVEL OF SERVICE SUMMARY

Site: Existing PM Highfields & Wrights - Copy

Existing PM - Highfields & Wrights

Roundabout

	South	East	North	West	Intersection
LOS	Α	Α	Α	Α	Α

Level of Service (LOS) Method: Delay (RTA NSW).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model used.

MOVEMENT SUMMARY

Site: Existing PM Highfields & Wrights - Copy

Existing PM - Highfields & Wrights

Roundabout

Movem	Movement Performance - Vehicles											
Mov ID	Turn	Demand	HV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average	
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed	
		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South: H	Highfield	s (South)										
1	L	1	0.0	0.021	4.6	LOS A	0.1	0.6	0.23	0.47	28.8	
2	Т	1	0.0	0.021	3.4	LOS A	0.1	0.6	0.23	0.34	30.1	
3	R	23	0.0	0.021	7.2	LOS A	0.1	0.6	0.23	0.60	26.6	
Approac	:h	25	0.0	0.021	6.9	LOS A	0.1	0.6	0.23	0.59	26.8	
East: W	rights (E	ast)										
4	L	6	0.0	0.076	4.1	LOS A	0.4	2.7	0.05	0.52	30.3	
5	Т	87	0.0	0.076	3.0	LOS A	0.4	2.7	0.05	0.34	32.3	
6	R	21	0.0	0.076	6.8	LOS A	0.4	2.7	0.05	0.79	27.5	
Approac	:h	115	0.0	0.076	3.7	LOS A	0.4	2.7	0.05	0.44	31.1	
North: H	lighfield	s (North)										
7	L	44	0.0	0.050	5.5	LOS A	0.3	1.8	0.42	0.53	27.9	
8	Т	1	0.0	0.050	4.4	LOS A	0.3	1.8	0.42	0.44	28.4	
9	R	4	0.0	0.050	8.2	LOS A	0.3	1.8	0.42	0.67	26.1	
Approac	:h	49	0.0	0.050	5.7	LOS A	0.3	1.8	0.42	0.54	27.7	
West: W	rights F	Road (west)										
10	L	1	0.0	0.155	4.3	LOS A	8.0	5.7	0.17	0.53	29.8	
11	Т	206	0.0	0.155	3.2	LOS A	0.8	5.7	0.17	0.37	31.2	
12	R	2	0.0	0.155	7.0	LOS A	0.8	5.7	0.17	0.79	27.4	
Approac	:h	209	0.0	0.155	3.2	LOS A	0.8	5.7	0.17	0.37	31.2	
All Vehic	cles	399	0.0	0.155	3.9	LOS A	0.8	5.7	0.17	0.42	30.3	

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

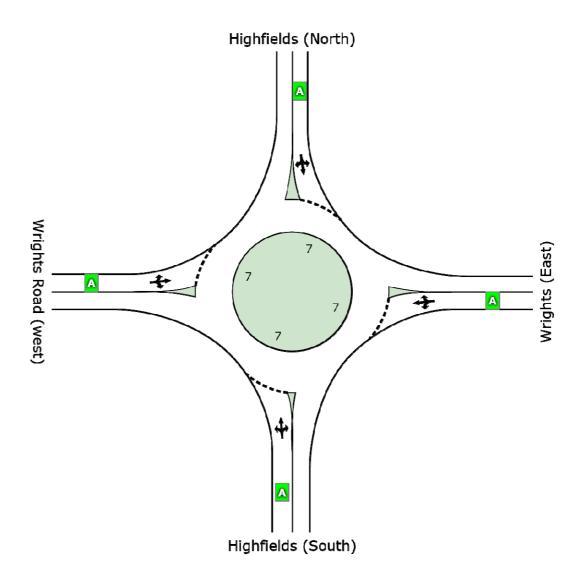
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, December 08, 2011 6:39:51 PM SIDRA INTERSECTION 5.1.8.2059 Copyright © 2000 www.sidrasolutic

Project: C:\Documents and Settings\Pauld\My Documents\New Project - 2.sip 8001173, TTW PTY, SINGLE


LEVEL OF SERVICE SUMMARY

Site: 2011 With Development -AM Highfields & Wrights -Copy

2011 With Development AM - Highfields & Wrights

Roundabout

	South	East	North	West	Intersection
LOS	Α	Α	Α	Α	Α

Level of Service (LOS) Method: Delay (RTA NSW).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model used.

MOVEMENT SUMMARY

Site: 2011 With Development -AM Highfields & Wrights -Copy

2011 With Development AM - Highfields & Wrights

Roundabout

Movement Performance - Vehicles											
Mov ID Turn Den		Demand	HV D	Deg. Satn	Average	Level of	95% Back of Queue		Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Highfield	s (South)									
1	L	35	0.0	0.175	6.4	LOS A	0.8	5.9	0.50	0.64	26.9
2	Т	14	0.0	0.175	5.2	LOS A	8.0	5.9	0.50	0.55	27.5
3	R	117	0.0	0.175	9.0	LOS A	8.0	5.9	0.50	0.73	25.1
Approac	ch	165	0.0	0.175	8.1	LOS A	8.0	5.9	0.50	0.70	25.6
East: W	/rights (E	ast)									
4	L	28	0.0	0.274	4.1	LOS A	1.7	11.8	0.04	0.53	30.4
5	Т	381	0.0	0.274	3.0	LOS A	1.7	11.8	0.04	0.35	32.4
6	R	43	0.0	0.274	6.8	LOS A	1.7	11.8	0.04	0.82	27.5
Approac	ch	453	0.0	0.274	3.4	LOS A	1.7	11.8	0.04	0.41	31.7
North: F	Highfields	s (North)									
7	L	22	0.0	0.025	5.5	LOS A	0.1	0.9	0.44	0.52	27.8
8	Т	1	0.0	0.025	4.5	LOS A	0.1	0.9	0.44	0.43	28.3
9	R	1	0.0	0.025	8.3	LOS A	0.1	0.9	0.44	0.66	26.0
Approac	ch	24	0.0	0.025	5.6	LOS A	0.1	0.9	0.44	0.52	27.8
West: V	Vrights R	Road (west)									
10	L	2	0.0	0.124	5.0	LOS A	0.7	4.6	0.37	0.57	28.8
11	Т	131	0.0	0.124	3.9	LOS A	0.7	4.6	0.37	0.45	29.5
12	R	2	0.0	0.124	7.7	LOS A	0.7	4.6	0.37	0.77	27.1
Approac	ch	135	0.0	0.124	4.0	LOS A	0.7	4.6	0.37	0.45	29.5
All Vehi	icles	777	0.0	0.274	4.6	LOS A	1.7	11.8	0.21	0.48	29.6

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

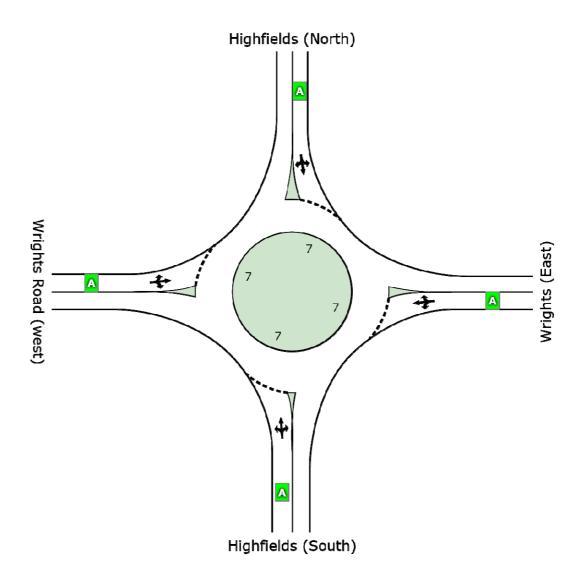
Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thur SIDRA INTERSE Copyright © 200 www.sidrasolutic

Project: C:\Documents and Settings\Pauld\My Documents\New Project - 2.sip 8001173, TTW PTY, SINGLE


LEVEL OF SERVICE SUMMARY

Site: 2011 With Development PM Highfields & Wrights -Copy - Copy

2011 With Development PM - Highfields & Wrights

Roundabout

	South	East	North	West	Intersection
LOS	Α	Α	Α	Α	Α

Level of Service (LOS) Method: Delay (RTA NSW).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model used.

MOVEMENT SUMMARY

Site: 2011 With Development PM Highfields & Wrights -Copy - Copy

2011 With Development PM - Highfields & Wrights

Roundabout

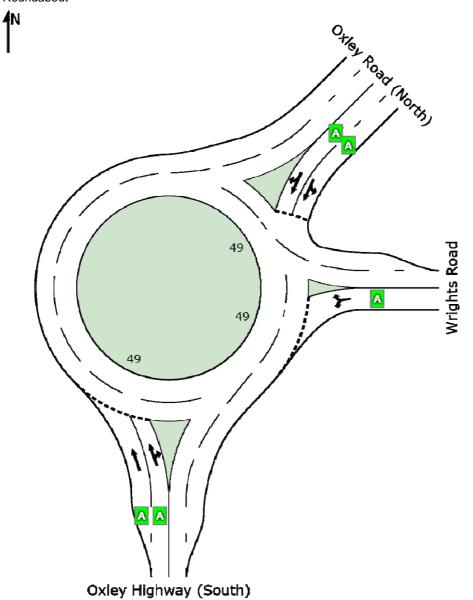
Moven	nent Pe	erformance	- Veh	icles							
Mov ID	Turn	Demand	HV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: I	Highfield	s (South)									
1	L	1	0.0	0.089	5.0	LOS A	0.4	2.7	0.31	0.51	28.2
2	Т	1	0.0	0.089	3.8	LOS A	0.4	2.7	0.31	0.39	29.2
3	R	97	0.0	0.089	7.6	LOS A	0.4	2.7	0.31	0.63	26.2
Approac	ch	99	0.0	0.089	7.5	LOS A	0.4	2.7	0.31	0.62	26.2
East: W	rights (E	ast)									
4	L	6	0.0	0.121	4.1	LOS A	0.7	4.7	0.06	0.53	30.3
5	Т	161	0.0	0.121	3.0	LOS A	0.7	4.7	0.06	0.35	32.2
6	R	21	0.0	0.121	6.8	LOS A	0.7	4.7	0.06	0.81	27.5
Approac	ch	188	0.0	0.121	3.4	LOS A	0.7	4.7	0.06	0.41	31.5
North: F	Highfield	s (North)									
7	L	44	0.0	0.062	7.0	LOS A	0.3	2.4	0.59	0.63	26.2
8	Т	1	0.0	0.062	6.0	LOS A	0.3	2.4	0.59	0.56	26.8
9	R	4	0.0	0.062	9.8	LOS A	0.3	2.4	0.59	0.73	24.5
Approac	ch	49	0.0	0.062	7.3	LOS A	0.3	2.4	0.59	0.63	26.0
West: V	Vrights F	Road (west)									
10	L	1	0.0	0.291	4.8	LOS A	1.8	12.5	0.34	0.56	28.9
11	Т	354	0.0	0.291	3.7	LOS A	1.8	12.5	0.34	0.43	29.8
12	R	2	0.0	0.291	7.5	LOS A	1.8	12.5	0.34	0.77	27.2
Approac	ch	357	0.0	0.291	3.7	LOS A	1.8	12.5	0.34	0.43	29.7
All Vehi	cles	694	0.0	0.291	4.4	LOS A	1.8	12.5	0.28	0.47	29.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.


SIDRA Standard Delay Model used.

Processed: Thursday, December 08, 2011 6:53:18 PM SIDRA INTERSECTION 5.1.8.2059 Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Project: C:\Documents and Settings\Pauld\My Documents\New Project - 2.sip 8001173, TTW PTY, SINGLE

Existing AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

	South	East	Northeast	Intersection
LOS	Α	Α	Α	Α

Level of Service (LOS) Method: Delay (RTA NSW).

Lane LOS values are based on average delay per lane.

Intersection and Approach LOS values are based on average delay for all lanes.

SIDRA Standard Delay Model used.

Site: Existing AM - Oxley **Highway & Wrights Road**

MOVEMENT SUMMARY

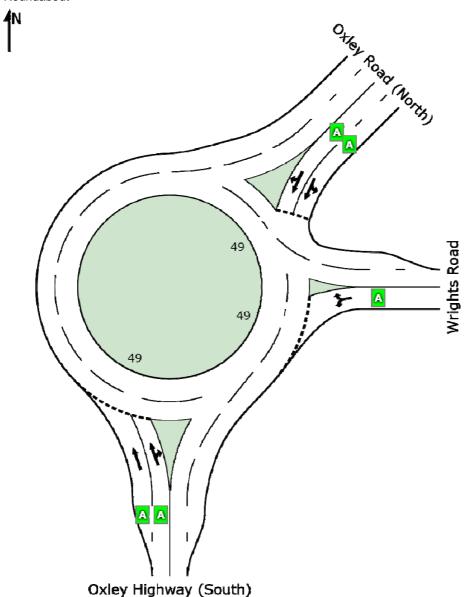
Existing AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Moven	nent Pe	rformance	- Vehi	icles							
Mov ID	Turn	Demand	HV	Deg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Oxley Hi	ghway (South	ר)								
2	Т	1291	4.7	0.464	11.6	LOS A	3.2	23.1	0.29	0.60	47.5
3	R	63	11.7	0.464	8.2	LOS A	3.2	23.1	0.25	0.54	45.8
Approa	ch	1354	5.1	0.464	11.4	LOS A	3.2	23.1	0.28	0.60	47.4
East: W	/rights R	oad									
4	L	34	3.1	0.105	6.6	LOS A	0.5	3.4	0.56	0.60	48.6
6	R	72	8.8	0.105	15.1	LOS B	0.5	3.4	0.56	0.82	44.8
Approa	ch	105	7.0	0.105	12.4	LOS A	0.5	3.4	0.56	0.75	45.8
North E	ast: Oxle	ey Road (Nor	th)								
24	L	204	2.6	0.244	6.3	LOS A	1.2	8.7	0.20	0.53	56.5
25	Т	948	8.1	0.480	5.1	LOS A	3.2	23.9	0.22	0.39	58.8
26	R	1	0.0	0.480	17.0	LOS B	3.2	23.9	0.23	1.04	49.6
Approa	ch	1154	7.1	0.480	5.3	LOS A	3.2	23.9	0.22	0.41	58.5
All Vehi	cles	2613	6.0	0.480	8.8	LOS A	3.2	23.9	0.27	0.52	51.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.


Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Copyright Thursday, December 08, © 2000-2011 2011 7:06:53 PM Akcelik and SIDRA Associates INTERSECTIO Pty Ltd N 5.1.8.2059 www.sidra solutions.c

Existing PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

	South	East	Northeast	Intersection
LOS	Α	Α	Α	Α

Site: Existing PM - Oxley Highway & Wrights Road -Copy

Existing PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Movem	nent Pe	erformance	- Vehi	icles							
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: Oxley Highway (South)											
2	Т	1160	4.4	0.446	12.0	LOS A	2.9	20.9	0.42	0.65	46.8
3	R	36	8.8	0.446	9.6	LOS A	2.9	20.9	0.45	0.63	45.0
Approac	ch	1196	4.6	0.446	12.0	LOS A	2.9	20.9	0.43	0.65	46.7
East: W	rights R	oad									
4	L	88	2.4	0.293	7.1	LOS A	1.4	9.8	0.62	0.65	48.1
6	R	212	1.0	0.293	15.4	LOS B	1.4	9.8	0.62	0.89	44.4
Approac	ch	300	1.4	0.293	13.0	LOS A	1.4	9.8	0.62	0.82	45.3
North Ea	ast: Oxle	ey Road (Nort	:h)								
24	L	140	1.5	0.244	6.2	LOS A	1.3	9.1	0.15	0.53	57.0
25	Т	1072	4.2	0.479	4.9	LOS A	3.4	24.9	0.17	0.37	59.5
26	R	1	0.0	0.479	16.9	LOS B	3.4	24.9	0.17	1.07	49.6
Approac	pproach 1		3.9	0.479	5.0	LOS A	3.4	24.9	0.17	0.39	59.2
All Vehic	cles	2708	3.9	0.479	9.0	LOS A	3.4	24.9	0.33	0.55	51.1

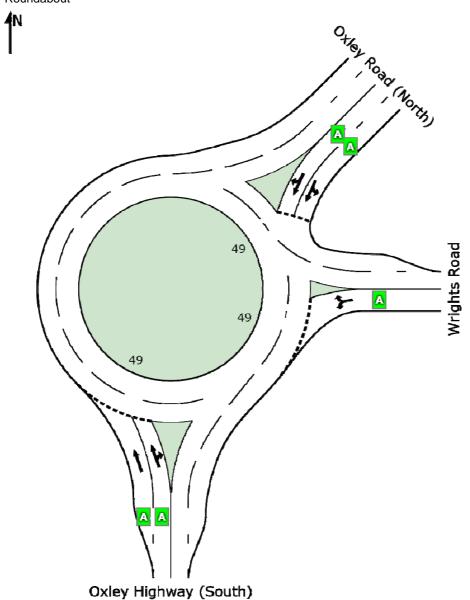
Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.


Processed: Thursday, December 08, 2011 7:09:06 PM SIDRA INTERSECTION 5.1.8.2059

Copyright © 2000 www.sidrasolutic

Site: 2011 With Development AM - Oxley Highway & Wrights Road - Copy

2011 With Development AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

	South	East	Northeast	Intersection
LOS	Α	Α	Α	Α

Site: 2011 With Development AM - Oxley Highway & Wrights Road - Copy

2011 With Development AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Moven	nent Pe	rformance	- Vehi	icles							
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: 0	South: Oxley Highway (South)										
2	Т	1291	4.7	0.493	11.7	LOS A	3.4	25.2	0.36	0.62	47.1
3	R	95	7.8	0.493	8.4	LOS A	3.4	25.2	0.36	0.57	45.2
Approac	ch	1385	4.9	0.493	11.5	LOS A	3.4	25.2	0.36	0.61	47.0
East: W	/rights R	oad									
4	L	60	1.8	0.188	7.3	LOS A	1.0	7.0	0.65	0.67	47.9
6	R	119	5.3	0.188	15.8	LOS B	1.0	7.0	0.65	0.85	44.2
Approac	ch	179	4.1	0.188	12.9	LOS A	1.0	7.0	0.65	0.79	45.3
North E	ast: Oxle	ey Road (Nortl	h)								
24	L	320	1.6	0.275	6.5	LOS A	1.4	10.3	0.26	0.51	55.8
25	Т	948	8.1	0.541	5.2	LOS A	4.0	30.3	0.31	0.41	57.9
26	R	1	0.0	0.541	17.2	LOS B	4.0	30.3	0.31	0.99	49.7
Approac	Approach 120		6.5	0.541	5.6	LOS A	4.0	30.3	0.30	0.44	57.4
All Vehi	cles	2834	5.6	0.541	8.9	LOS A	4.0	30.3	0.35	0.55	50.8

Level of Service (LOS) Method: Delay (RTA NSW).

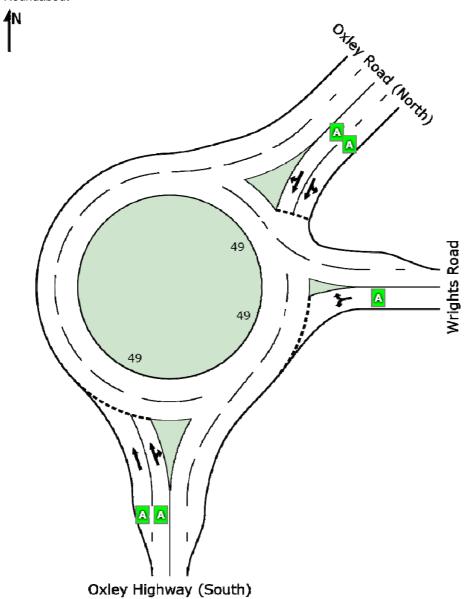
Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, December 08, 2011 7:10:30 PM SIDRA INTERSECTION 5.1.8.2059


Copyright © 2000-2011 Akcelik and Associates Pty Ltd

www.sidrasolutions.com

Site: 2011 With Development PM - Oxley Highway & Wrights Road - Copy - Copy

2011 With Development PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

	South East		Northeast	Intersection		
LOS	Α	Α	Α	Α		

Site: 2011 With Development PM - Oxley Highway & Wrights Road - Copy - Copy

2011 With Development PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Mover	nent Pe	rformance	- Vehi	icles							
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: (Oxley Hi	ghway (South)								
2	Т	1160	4.4	0.480	12.5	LOS A	3.3	23.7	0.55	0.70	46.2
3	R	52	6.1	0.480	9.8	LOS A	3.3	23.7	0.57	0.69	44.3
Approa	ch	1212	4.5	0.480	12.4	LOS A	3.3	23.7	0.55	0.70	46.1
East: W	/rights R	oad									
4	L	131	1.6	0.454	8.3	LOS A	2.8	19.4	0.71	0.80	47.4
6	R	317	0.7	0.454	16.7	LOS B	2.8	19.4	0.71	0.97	43.5
Approa	ch	447	0.9	0.454	14.2	LOS A	2.8	19.4	0.71	0.92	44.4
North E	ast: Oxle	ey Road (North	h)								
24	L	203	1.0	0.261	6.3	LOS A	1.4	10.2	0.19	0.53	56.6
25	Т	1072	4.2	0.513	4.9	LOS A	4.0	29.0	0.22	0.38	58.9
26	R	1	0.0	0.513	16.9	LOS B	4.0	29.0	0.23	1.03	49.6
Approa	ch	1276	3.7	0.513	5.2	LOS A	4.0	29.0	0.22	0.40	58.5
All Vehi	icles	2935	3.6	0.513	9.5	LOS A	4.0	29.0	0.43	0.60	50.2

Level of Service (LOS) Method: Delay (RTA NSW).

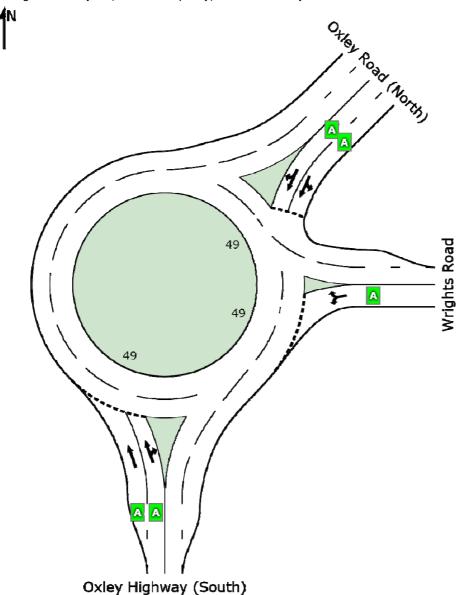
Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, December 08, 2011 7:11:54 PM SIDRA INTERSECTION 5.1.8.2059


Copyright © 2000 www.sidrasolutic

Site: 2021 With Development AM - Oxley Highway & Wrights Road - Copy - Copy

2021 With Development AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Design Life Analysis (Practical Capacity): Results for 10 years

	South	East	Northeast	Intersection		
LOS	Α	Α	Α	Α		

Site: 2021 With Development AM - Oxley Highway & Wrights Road - Copy - Copy

2021 With Development AM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Design Life Analysis (Practical Capacity): Results for 10 years

Moven	nent Pe	erformance	- Vehic	les							
Mov ID	Turn	Demand	HV C	eg. Satn	Average	Level of	95% Back	of Queue	Prop.	Effective	Average
		Flow			Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: 0	Oxley Hi	ghway (South	1)								
2	Т	1420	4.7	0.546	11.8	LOS A	4.2	30.6	0.41	0.62	46.9
3	R	104	7.8	0.546	8.5	LOS A	4.2	30.6	0.41	0.58	45.0
Approac	ch	1524	4.9	0.546	11.6	LOS A	4.2	30.6	0.41	0.62	46.7
East: W	rights R	oad									
4	L	66	1.8	0.227	8.1	LOS A	1.3	9.2	0.72	0.75	47.3
6	R	131	5.3	0.227	16.6	LOS B	1.3	9.2	0.72	0.88	43.7
Approac	ch	197	4.1	0.227	13.7	LOS A	1.3	9.2	0.72	0.84	44.7
North E	ast: Oxle	ey Road (Nort	:h)								
24	L	352	1.6	0.305	6.5	LOS A	1.7	11.9	0.28	0.51	55.5
25	Т	1044	8.1	0.600	5.3	LOS A	5.0	37.3	0.36	0.42	57.4
26	R	1	0.0	0.600	17.3	LOS B	5.0	37.3	0.37	0.96	49.7
Approac	ch	1397	6.5	0.600	5.7	LOS A	5.0	37.3	0.34	0.45	57.0
All Vehi	cles	3118	5.6	0.600	9.1	LOS A	5.0	37.3	0.40	0.55	50.4

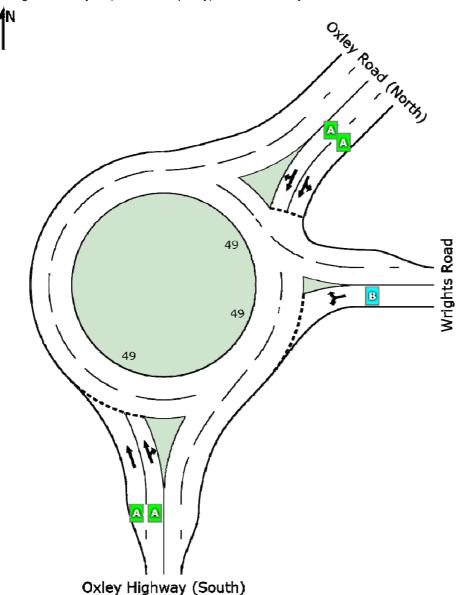
Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.


Processed: Thur SIDRA INTERSE Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Site: 2021 With Development PM - Oxley Highway & Wrights Road - Copy - Copy -Copy

2021 With Development PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Design Life Analysis (Practical Capacity): Results for 10 years

	South	East	Northeast	Intersection		
LOS	Α	В	Α	Α		

Site: 2021 With Development PM - Oxley Highway & Wrights Road - Copy - Copy -Copy

2021 With Development PM - Oxley Highway & Wright Road, Port Macquarie Roundabout

Design Life Analysis (Practical Capacity): Results for 10 years

Movement Performance - Vehicles Mov ID Turn Demand HV Deg. Satn Average Level of 95% Back of Queue Prop. Effective Average												
Turn	Demand Flow	HV D	eg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed		
	veh/h	%	v/c	sec		veh	m		per veh	km/h		
xley Hi	ghway (South)										
Т	1276	4.4	0.540	12.8	LOS A	4.0	29.2	0.62	0.73	45.9		
R	57	6.1	0.540	10.1	LOS A	4.0	29.2	0.64	0.72	44.0		
า	1333	4.5	0.540	12.7	LOS A	4.0	29.2	0.62	0.73	45.8		
ghts R	oad											
L	144	1.6	0.540	10.2	LOS A	4.0	27.9	0.79	0.95	46.0		
R	349	0.7	0.540	18.5	LOS B	4.0	27.9	0.79	1.04	42.2		
า	492	0.9	0.540	16.1	LOS B	4.0	27.9	0.79	1.01	43.1		
st: Oxle	ey Road (Nort	h)										
L	224	1.0	0.289	6.3	LOS A	1.7	11.9	0.21	0.53	56.5		
Т	1179	4.2	0.567	5.0	LOS A	4.9	35.6	0.26	0.38	58.5		
R	1	0.0	0.567	17.0	LOS B	4.9	35.6	0.27	1.01	49.7		
Approach		3.7	0.567	5.2	LOS A	4.9	35.6	0.25	0.41	58.2		
les	3229	3.6	0.567	9.9	LOS A	4.9	35.6	0.49	0.63	49.7		
וֹיִי	Turn XIey Hi T R n ghts R L R n st: Oxle L T R	Turn Demand Flow veh/h kaley Highway (South T 1276 R 57 n 1333 ghts Road L 144 R 349 n 492 st: Oxley Road (Nort L 224 T 1179 R 1 1404	Turn Demand Flow veh/h % which was provided by the state of the state	Turn Demand Flow veh/h % v/c	Turn Demand Flow veh/h % v/c sec Naley Highway (South) T 1276 4.4 0.540 12.8 R 57 6.1 0.540 10.1 n 1333 4.5 0.540 12.7 ghts Road L 144 1.6 0.540 10.2 R 349 0.7 0.540 18.5 n 492 0.9 0.540 16.1 st: Oxley Road (North) L 224 1.0 0.289 6.3 T 1179 4.2 0.567 5.0 R 1 0.0 0.567 17.0 n 1404 3.7 0.567 5.2	Turn Demand Flow veh/h % v/c sec	Turn Demand Flow veh/h % v/c sec Vehicles Service Vehicles Vehicles Vehicles Service Vehicles	Turn Demand Flow veh/h % v/c sec Delay Service Vehicles Distance veh/h % v/c sec Vehicles Distance veh/h % v/c sec Vehicles Distance veh/h m xxley Highway (South) T 1276 4.4 0.540 12.8 LOS A 4.0 29.2 R 57 6.1 0.540 10.1 LOS A 4.0 29.2 R 1333 4.5 0.540 12.7 LOS A 4.0 29.2 R 1333 4.5 0.540 12.7 LOS A 4.0 29.2 R 1344 1.6 0.540 12.7 LOS A 4.0 29.2 R 1444 1.6 0.540 10.2 LOS A 4.0 27.9 R 349 0.7 0.540 18.5 LOS B 4.0 27.9 R 1492 0.9 0.540 16.1 LOS B 4.0 27.9 R 15t: Oxley Road (North) L 224 1.0 0.289 6.3 LOS A 1.7 11.9 R 1179 4.2 0.567 5.0 LOS A 4.9 35.6 R 1 0.0 0.567 17.0 LOS B 4.9 35.6 R 1 1404 3.7 0.567 5.2 LOS A 4.9 35.6	Turn Demand Flow veh/h % v/c sec Delay Service Vehicles Distance veh m Prop. Queued Veh/h % v/c sec Vehicles Distance veh m Prop. Delay Service Vehicles Distance veh m Prop. Queued Vehicles Distance veh m Prop. Delay Distance veh Market Dista	Turn Demand Flow veh/h % v/c sec Delay Service Delay veh/loses Distance veh m Prop. Stop Rate per veh water per veh metalegy Highway (South) T 1276 4.4 0.540 12.8 LOS A 4.0 29.2 0.62 0.73 R 57 6.1 0.540 10.1 LOS A 4.0 29.2 0.64 0.72 n 1333 4.5 0.540 12.7 LOS A 4.0 29.2 0.62 0.73 register shows the second of		

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model used.

Processed: Thursday, December 08, 2011 7:17:50 PM SIDRA INTERSECTION 5.1.8.2059
Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

APPENDIX C

Wauchope to Port Macquarie via Base Hospital

Monday to Friday								
map Route number	335	335	335	335	335	335	335	335
	am	am	am	am	pm	pm	pm	pm
37 Wauchope (Bransdon St)	6.55	7.40	9.20	11.20	1.20	J3.20	4.40	5.40
39 Ellenborough PI & Fairmont Dr	6.59	7.44	9.24	11.24	1.24	J3.27	4.44	5.44
38 Colonial Cct & Homestead Dr	7.05	7.52	9.30	11.30	1.30	3.33	4.50	5.50
37 Wauchope (Bransdon St)	7.15	8.05	9.42	11.42	1.42	3.47	5.00	6.00
36 Wauchope Station (Randall St)	7.17		R	R	1.44	3.49	R	R
16 Base Hospital	7.31	8.27	10.00	12.00	2.00	4.05	5.15	6.15
11 TAFE (Oxley Hwy)	7.35	B8.32	10.05	12.05	2.05	4.10	5.20	6.20
1 Settlement City	7.40	B8.40	10.15	12.15	2.15	4.20	5.25	6.25
2 Port Macquarie Town Centre	7.50	8.50	10.25	12.25	2.25	4.30		
Rte 334 at Private Hospital		8.54	10.33	12.33	2.33	4.38		

Explanations

- B Public school days bus operates from Oxley Hwy to Settlement City via Findlay Av, Hastings River Dr, Aston St, Warlters St & Park St, omitting Widderson St, Bellbowrie St & Bay St.
- J Public school days bus diverts via Wauchope PS & St Josephs PS, omitting Young St plus Cameron St between Young St & King St.
- R Bus operates via Wauchope Station on request.
- X Change buses at Town Centre to continue journey.

Saturday				
map ref Route number	335	335	335	335
	am	am	pm	pm
37 Wauchope (Bransdon St)	9.20	11.20	2.20	4.20
39 Ellenborough PI & Fairmont Dr	9.24	11.24	2.24	4.24
38 Colonial Cct & Homestead Dr	9.30	11.30	2.30	4.30
37 Wauchope (Bransdon St)	9.42	11.42	2.42	4.42
36 Wauchope Station (Randall St)	R	R	2.44	4.44
16 Base Hospital	10.00	12.00	3.00	5.00
TAFE (Oxley Hwy)	10.05	12.05	3.05	5.05
1 Settlement City	10.15	12.15	3.15	5.15
2 Port Macquarie Town Centre	10.25	12.25	3.25	5.25
4 Rte 334 at Private Hospital	10.33	12.33	3.33	5.33

Sunday & Public Holidays		
map Route number	335	335
_	am	pm
37 Wauchope (Bransdon St)	10.20	3.20
39 Ellenborough PI & Fairmont Dr	10.24	3.24
38 Colonial Cct & Homestead Dr	10.30	3.30
37 Wauchope (Bransdon St)	10.42	3.42
36 Wauchope Station (Randall St)	10.44	3.44
16 Base Hospital	11.00	4.00
11 TAFE (Oxley Hwy)	11.05	4.05
1 Settlement City	11.15	4.15
2 Port Macquarie Town Centre	11.25	4.25
4 Rte 334 at Private Hospital	11.33	4.33

Kempsey to Port Macquarie

Monday to Friday				
map ref Route number	340	340	340	340
	am	am	pm	pm
41 Kempsey (Belgrave St, Medical Centre)	S7.30	9.10	H3.25	S3.45
40 Telegraph Point (Pacific Hwy & Moorside Rd)	S7.57	9.37	H3.52	S4.42
Port Macquarie (Tuffins La & Hastings River Dr)	S8.08	9.46	H4.01	S4.51
18 Port Macquarie Airport	S8.10	9.48	H4.03	S4.53
Port Macquarie (Settlement City)	S8.30	10.00	H4.12	S5.02
2 Port Macquarie (Town Centre)	S8.45	10.10	H4.22	S5.12

Explanations

- D Bus runs direct along Hastings River Dr omitting Boundary St & Tuffins La.
- H Bus runs public school holidays only.
- S Bus runs public school days only.
- Z Catch Route 323 & change buses at Settlement City to continue journey.

Weekends

Route 340 Kempsey services do not operate on Weekends & Public Holidays.

Port Macquarie to Wauchope via Base Hospital

Monday to Friday Route number 335 335 335 335 335 335 335 pm pm pm pm am am am 4 Rte 334 at Private Hospital 12.30 2.30 X4.30 2 Port Macquarie Town Centre 10.40 12.40 2.40 4.05 5.05 8.45 Settlement City 6.35 10.55 12.55 2.55 4.15 5.15 8.55 TAFE (Oxley Hwy) 10.58 12.58 2.58 6.38 8.58 4.18 5.18 16 Base Hospital 9.03 11.03 1.03 3.03 4.23 5.23 36 Wauchope Station (Randall St) R R R R 37 Wauchope (Bransdon St) 6.55 9.20 11.20 1.20 J3.20 4.40 5.40 39 Ellenborough PI & Fairmont Dr J3.27 6.59 9.24 11.24 1.24 4.44 5.44 38 Colonial Cct & Homestead Dr 3.33 7.05 9.30 11.30 1.30 4.50 5.50 37 Wauchope (Bransdon St) 7.15 9.42 11.42 1.42 3.47 5.00 6.00

Explanations see page 20

see page 19 for route map

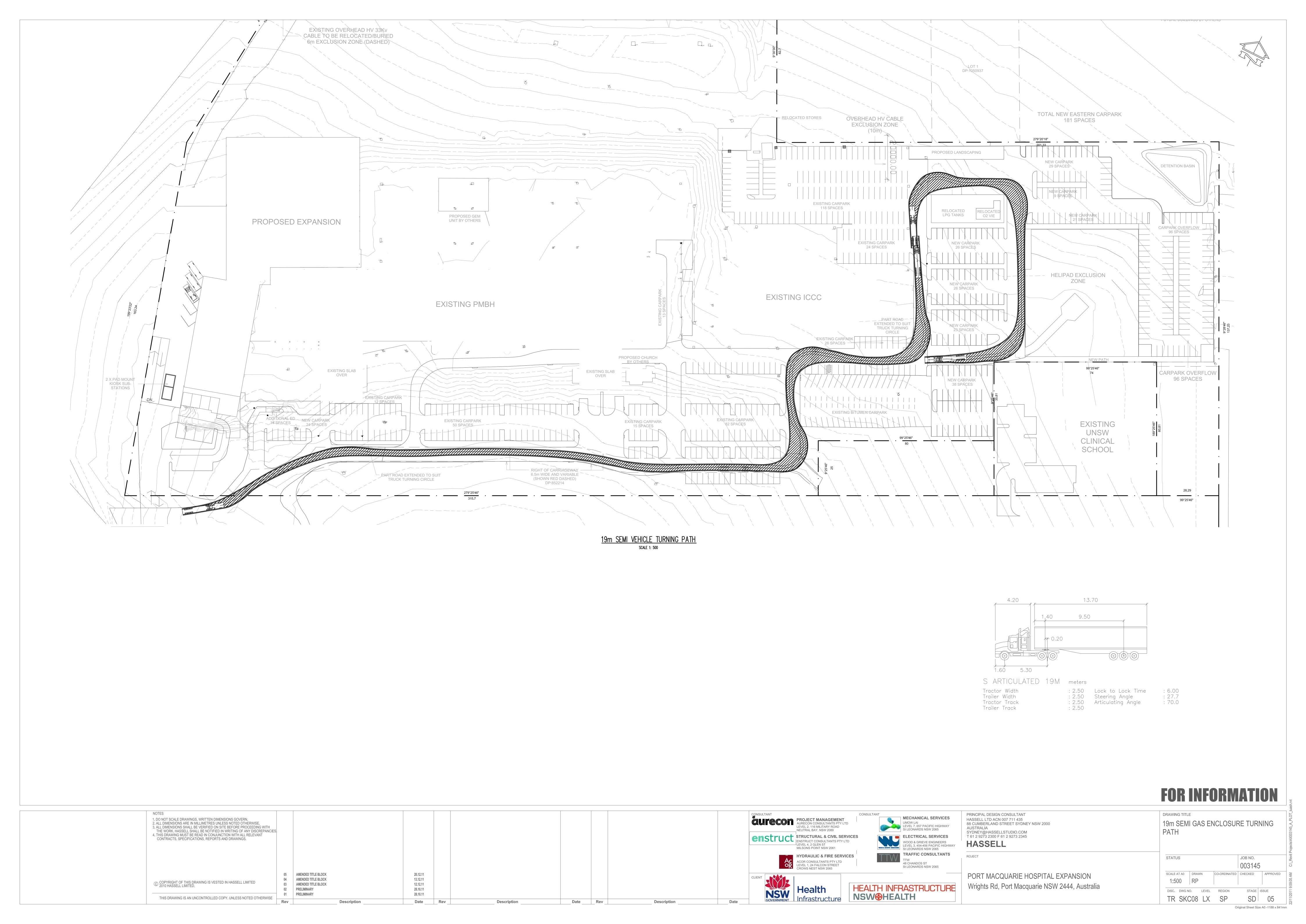
Easter Saturday buses run to Saturday timetable.

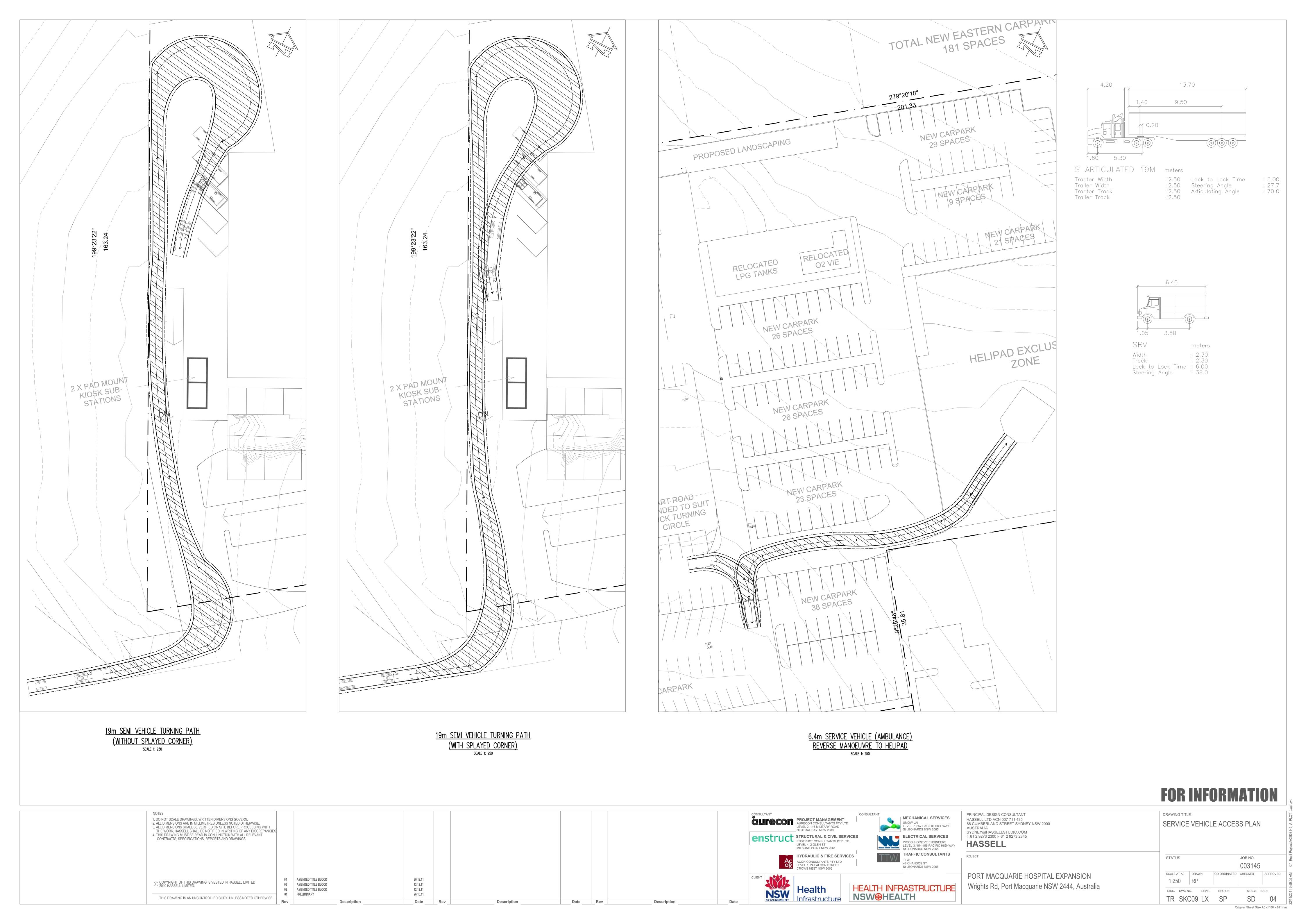
Saturday				
map Route number	335	335	335	335
	am	am	pm	pm
4 Rte 334 at Private Hospital	8.30	10.30	1.30	3.30
2 Port Macquarie Town Centre	8.40	10.40	1.40	3.40
1 Settlement City	8.55	10.55	1.55	3.55
11 TAFE (Oxley Hwy)	8.58	10.58	1.58	3.58
16 Base Hospital	9.03	11.03	2.03	4.03
36 Wauchope Station (Randall St)	R		R	
37 Wauchope (Bransdon St)	9.20	11.20	2.20	4.20
39 Ellenborough PI & Fairmont Dr	9.24	11.24	2.24	4.24
38 Colonial Cct & Homestead Dr	9.30	11.30	2.30	4.30
Wauchope (Bransdon St)	9.42	11.42	2.42	4.42

Sunday & Public Holidays					
map Route number	335	335			
	am	pm			
4 Rte 334 at Private Hospital	9.30	2.30			
2 Port Macquarie Town Centre	9.40	2.40			
1 Settlement City	9.55	2.55			
TAFE (Oxley Hwy)	9.58	2.58			
16 Base Hospital	10.03	3.03			
36 Wauchope Station (Randall St)		R			
37 Wauchope (Bransdon St)	10.20	3.20			
39 Ellenborough PI & Fairmont Dr	10.24	3.24			
38 Colonial Cct & Homestead Dr	10.30	3.30			
37 Wauchope (Bransdon St)	10.42	3.42			

Route

Port Macquarie to Kempsey


Monday to Friday				
map Route number	340	340	340	340
	am	am	pm	pm
2 Port Macquarie (Town Centre)	S7.05	H8.10	2.19	S3.13Z
1 Port Macquarie (Settlement City)	S7.15	H8.20	2.29	S3.52
18 Port Macquarie Airport	D	H8.28	2.37	S4.00
19 Port Macquarie (Tuffins La & Hastings River Dr	S7.22D	H8.30	2.39	S4.02
Telegraph Point (Pacific Hwy & Moorside Rd)	S7.30	H8.38	2.47	S4.10
Kempsey (Belgrave St, Travelscene)	S8.35	H9.05	3.14	S4.40


Explanations see page 20

see page 23 for route map

APPENDIX D

