
APPENDIX G

Air Quality Impact Assessment


AIR QUALITY IMPACT ASSESSMENT

COALPAC CONSOLIDATION PROJECT

Coalpac Pty Limited

Job No: 3351C

14 December 2011

PROJECT TITLE: COALPAC CONSOLIDATION PROJECT

JOB NUMBER: 3351C

PREPARED FOR: Dorian Walsh

HANSEN BAILEY

PREPARED BY:

Jane Barnett/Francine Triffett

QA PROCEDURES CHECKED BY: Jane Barnett

APPROVED FOR RELEASE BY: PAEHolmes

DISCLAIMER & COPYRIGHT: This report is subject to the copyright statement

located at www.paeholmes.com © Queensland Environment Pty Ltd trading as PAEHolmes ABN

86 127 101 642

DOCUMENT CONTROL					
VERSION	DATE	PREPARED BY	REVIEWED BY		
01 – Working Draft	28/01/2010	Jane Barnett/Francine Triffett	Jane Barnett		
02 – Draft	14/02/2011	Jane Barnett/Francine Triffett	Ronan Kellaghan		
03 – Draft	17/02/2011	Francine Triffett	Aleks Todoroski		
04 – Final	22/03/2011	Francine Triffett	Aleks Todoroski/Jane Barnett		
05 – Post-Adequacy	14/12/2011	Francine Triffett	Jane Barnett		

Queensland Environment Pty Ltd trading as **PAEHolmes** ABN 86 127 101 642

SYDNEY:

Suite 203, Level 2, Building D 240 Beecroft Rd, Epping NSW 2121

Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

BRISBANE:

Level 1, La Melba, 59 Melbourne Street South Brisbane Qld 4101

PO Box 3306 South Brisbane Qld 4101 Ph: +61 7 3004 6400

Fax: +61 7 3844 5858

Email: <u>info@paeholmes.com</u>
Website: <u>www.paeholmes.com</u>

TABLE OF CONTENTS

1	INTROD	1	
2	LOCAL S	SETTING AND TOPOGRAPHY	2
3	THE PRO	DJECT	4
4	AIR QUA	ALITY CRITERIA	5
	4.1	Assessment criteria - Particulate matter	5
	4.2	Assessment criteria - Dust deposition	6
	4.3	Recent Project Approval conditions	6
	4.3.1	Further Comments	6
5	APPROA	ACH TO ASSESSMENT	8
	5.1	TAPM	9
	5.2	CALMET	9
	5.3	CALPUFF	11
6	EXISTIN	NG ENVIRONMENT	12
	6.1	Dispersion Meteorology	12
	6.2	CALMET modelled weather conditions	15
	6.3	Comparison of the measured meteorological and CALMET data	18
	6.4	Analysis of meteorological conditions for the CALMET data	18
	6.5	Local Climatic Conditions	21
	6.6	Dust	22
7	ESTIMA	TES OF EMISSIONS OF PARTICULATE MATTER	25
	7.1	Introduction	25
	7.2	Estimated Emissions from Neighbouring Mines	32
	7.3	Estimated Emissions from other Sources	33
8	ASSESS	SMENT OF IMPACTS	34
	8.1	Assessment Criteria	34
	8.2	Assessment Approach	34
	8.3	Cumulative 24-hour Average PM ₁₀ concentrations	79
	8.4	Summary of Project operational impacts	84
	8.5	Assessment of Impacts on Privately Owned Land	85
9	CONSTR	RUCTION PHASE IMPACTS	86
	9.1	Overview	86
10	FUGITI\	/E DUST EMISSIONS FROM RAIL TRANSPORT	87
11	PROPOS	SED MITIGATION AND DUST MANAGEMENT MEASURES	88
	11.1	Introduction	88
	11.2	Real-Time Proactive Dust Management	88
	11.3	Summary of Dust Management and Control Measures	90
	11.4	Blasting	94
	11.5	Monitoring	95
	11.6	Spontaneous Combustion	95
12	GREENH	HOUSE GAS ASSESSMENT	98
	12.1	Introduction	98
	12.2	Greenhouse Gas Assessment Policy Summary	99
	12.2.2	Proposed Legislation - The Carbon Price Mechanism	100
	12.2.2.	1 Emissions Trading	100
	12.2.2.2	2 Support Measures	101
	12.3	Greenhouse Gas Emission Estimates	102
	12.4	109	

	12.5	Assessment of Potential Impact on Environment	110
	12.6	GHG Emission Reduction Measures	111
13	CONCLU	SIONS	112
14	REFERE	NCES	114

Appendix A: Land Ownership Details

Appendix B: PM_{10} and dust deposition monitoring data

Appendix C: Emission Calculations

Appendix D: Predicted $PM_{2.5}$ emissions from mining sources

Appendix E: Borehole Sample Data for Fugitive Emissions GHG calculations

LIST OF TABLES

Table 4.1: Air quality criteria/ standards for particulate matter concentrations	
Table 4.2: DECCW criteria for dust (insoluble solids) fallout	
Table 4.3: Air quality assessment criteria	
Table 4.4: Air quality acquisition criteria	
Table 5.1: Meteorological Parameters used for TAPM and CALMET10	
Table 6.1: Estimated stability class distribution	
Table 6.2: Climate Information for Lithgow (Braidwood St)	
Table 6.3: Annual average PM_{10} concentration at each HVAS monitoring site ($\mu g/m^3$)23	
Table 6.4: Dust deposition data (insoluble solids) – 2008 to 2010 (g/m²/month)24	
Table 7.1: Estimated emissions of TSP/y for the Project	
Table 8.1: Summary of receptors predicted to exceed the criteria in Year 2	
Table 8.2: Year 2 – predicted dust concentration and dust deposition levels due to the Project alor the Project and other sources	ne and
Table 8.3: Summary of receptors predicted to exceed the criteria in Year 846	
Table 8.4: Year 8 – predicted PM_{10} and TSP concentrations and dust deposition levels due to the F alone and the Project and other sources	^o roject
Table 8.5: Summary of receptors predicted to exceed the criteria in Year 1457	
Table 8.6: Year 14 – predicted PM_{10} and TSP concentrations and dust deposition levels due Project alone and the Project and other sources	to the
Table 8.7: Summary of receptors predicted to exceed the criteria in Year 2068	
Table 8.8: Year 20 – predicted PM_{10} and TSP concentrations and dust deposition levels due Project alone and the Project and other sources	to the
Table 8.9: Maximum 24-hour PM_{10} concentrations for representative receptors ($\mu g/m^3$)79	
Table 8.10: Number of days per year the 24-hour average PM_{10} concentration is predicted to be g than $50~\mu g/m^3$	reater
Table 8.11: Probability of Cumulative 24-hour Impacts	
Table 8.12: Summary of sensitive receptors predicted to experience an impact in any modelled	d year
Table 8.13: Percentage of privately-owned land area predicted to be impacted85	
Table 11.1: Overview of Best Practice Emission Reduction Measures Described in Katestone ((2011)
91	

Table 12.1: Estimated CO ₂ -e (tonnes) for On-site Diesel Consumption
Table 12.2: Estimated CO ₂ -e (tonnes) for On-site Electricity Use104
Table 12.3: Estimated CO ₂ -e (tonnes) for Fugitive Emissions
Table 12.4: Estimated CO ₂ -e (tonnes) for Explosive Use
Table 12.5: Estimated CO ₂ -e (tonnes) for coal transportation by rail
Table 12.6: Estimated CO ₂ -e (tonnes) for sand transportation off-site by truck107
Table 12.7: Scope 3 Emissions for Product Coal
Table 12.8: Summary of GHG Emissions (t CO ₂ -e)109
Table 12.9: Greenhouse Gas Management Measures111
Table 13.1: Summary of receptors that have the potential to experience dust impact113
LIST OF FIGURES
Figure 2.1: Project location
Figure 2.2: Pseudo 3-Dimensional Topographical Representation of the Study Area 3
Figure 5.1: Modelling methodology used in this study8
Figure 6.1: Annual and seasonal windroses for the Cullen Valley Mine and Invincible Colliery meteorological stations
Figure 6.2: Location of Cullen Valley Mine and Invincible Colliery meteorological station together with the Coalpac monitoring network14
Figure 6.3: Location of CALMET extraction points, meteorological stations and terrain15
Figure 6.4: Annual and seasonal windroses for (indicative) Hillcroft, Cullen Valley, East Tyldesley and Invincible Mine locations (2009) Stability17
Figure 6.5: Wind speed distribution for each indicative mine location (2009)19
Figure 6.6: Hourly mixing height statistics21
Figure 6.7: HVAS PM ₁₀ Concentrations23
Figure 7.1: Indicative modelling source locations – Year 226
Figure 7.2: Indicative modelling source locations – Year 827
Figure 7.3: Indicative modelling source locations – Year 1428
Figure 7.4: Indicative modelling source locations – Year 2029
Figure 8.1: Predicted 24-hour average PM ₁₀ concentrations due to emissions from the Project alone in Year 239
Figure 8.2: Predicted annual average PM ₁₀ concentrations due to emissions from the Project alone in Year 240
Figure 8.3: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 241
Figure 8.4: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 242
Figure 8.5: Predicted annual average PM ₁₀ concentrations due to emissions from the Project and other sources in Year 2
Figure 8.6: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 2
Figure 8.7: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 245

Figure 8.8: Predicted 24-hour average PM ₁₀ concentrations due to emissions from the Project alone in Year 850
Figure 8.9: Predicted annual average PM_{10} concentrations due to emissions from the Project alone in Year 851
Figure 8.10: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 852
Figure 8.11: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 853
Figure 8.12: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 8
Figure 8.13: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 8
Figure 8.14: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 856
Figure 8.15: Predicted 24-hour average PM_{10} concentrations due to emissions from the Project alone in Year 14
Figure 8.16: Predicted annual average PM_{10} concentrations due to emissions from the Project alone in Year 1462
Figure 8.17: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 14
Figure 8.18: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 1464
Figure 8.19: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 1465
Figure 8.20: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 14
Figure 8.21: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 1467
Figure 8.22: Predicted 24-hour average PM_{10} concentrations due to emissions from the Project alone in Year 2072
Figure 8.23: Predicted annual average PM_{10} concentrations due to emissions from the Project alone in Year 20
Figure 8.24: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 20
Figure 8.25: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 20
Figure 8.26: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 20
Figure 8.27: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 20
Figure 8.28: Predicted annual average dust deposition due to emissions from the Project and other sources in Year 20

1 INTRODUCTION

This report has been prepared by PAEHolmes for Hansen Bailey Environmental Consultants on behalf of Coalpac Pty Limited (Coalpac) and forms an appendix to the Environmental Assessment (EA) to support an application for Project Approval. The report assesses the likely air quality impacts of the proposed Coalpac Consolidation Project (hereafter referred to as the Project) located near Lithgow in NSW New South Wales (NSW).

Coalpac seeks to consolidate the operations and management of the Cullen Valley Mine and Invincible Colliery as well as expanding the existing operations to produce up to a total of 3.5 million tonnes per annum (Mtpa) of product coal. A portion of the coal will be transported locally to the Mount Piper Power Station (MPPS) via conveyor and (emergency supply to) Wallerawang Power Station and minor amounts to other domestic destinations, with up to 1.0 Mtpa transported to export destinations via rail.

The Project also involves the extraction of the Marangaroo Sandstone horizon in the northern coal mining area of the Cullen Valley Mine beneath but with within the coal extraction footprint.

The Project is proposed to access an additional resource of approximately 70 Mt of ROM coal over a period of 21 years and includes processing facilities, rail loading and coal stockpiling areas, waste rock emplacement areas, a conveyor system and associated infrastructure.

The air quality assessment is based on the use of a computer-based dispersion model to predict ground-level dust concentrations and deposition levels in the vicinity of the Project. To assess the effect that the dust emissions would have on existing air quality, the dispersion model predictions have been compared to relevant air quality criteria.

The assessment follows the procedures outlined by the NSW Department of Environment and Climate Change and Water (DECCW) in their document titled "Approved Methods for the Modelling and Assessment of Air Pollutants in NSW" (**NSW DEC, 2005**) (hereafter referred to as the "Approved Methods"). The Approved Methods specify how assessments based on the use of air dispersion models should be undertaken. They include guidelines for the preparation of meteorological data, emissions data and relevant air quality criteria.

In summary, the report provides information on the following:

- The way in which mining is to be undertaken, with a focus on describing those aspects that will affect air quality;
- Air quality criteria that need to be met to protect the air quality environment;
- Meteorological and climatic conditions in the area;
- A discussion as to the likely existing air quality conditions in the area;
- The methods used to estimate dust emissions and the way in which dust emissions from the Project would disperse and fallout;
- The expected dispersion and dust fallout patterns due to emissions from the Project and a comparison between the predicted dust concentration and fallout levels and the relevant air quality criteria;
- Control methods which can be used to reduce dust impacts, spontaneous combustion and odour; and
- The estimated emissions of greenhouse gases from the Project.

2 LOCAL SETTING AND TOPOGRAPHY

The Project is located adjacent to the Castlereagh Highway, approximately 25 kilometres (km) to the northwest of Lithgow and approximately 1 km from the town of Cullen Bullen, NSW.

Figure 2.1 shows the Project location including the Project Boundary, as well as the nearest sensitive receptors. Air quality impacts have been assessed at these locations and will be discussed in subsequent sections. **Appendix A** presents details of land ownership and a map with all sensitive receptors identified.

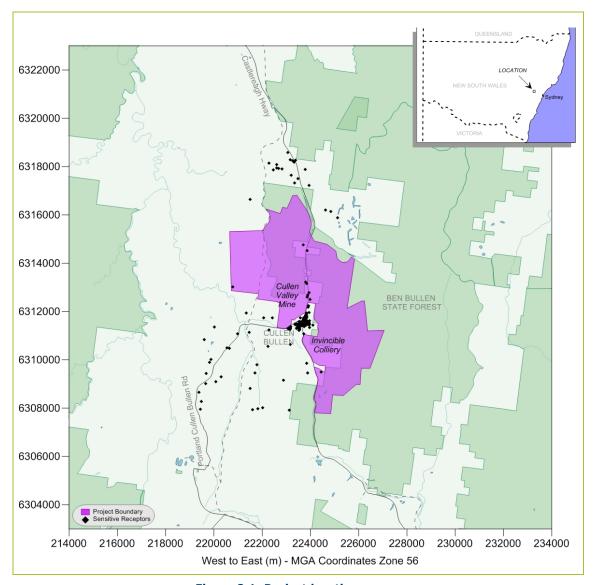


Figure 2.1: Project location

Figure 2.2 shows the topography of the area. The Project is located on the western slopes of the Great Diving Range with several steep sandstone escarpments dividing the site topographically. The topography surrounding the Project typically consists of moderately undulating terrain and includes the Ben Bullen State Forest to the east, Gardens of Stone National Park to the north and the Sunny Corner State Forest and Turon National Park to the west.

Activities within the Project Boundary are predominantly associated with existing mining operations, rural land uses and recreational activities within the Ben Bullen State Forest. Land use in the wider region includes other mining operations (e.g. Baal Bone Colliery, Ivanhoe North Colliery and the Pinedale Colliery) as well as agricultural and forestry activities. The closest residential area to the Project is the township of Cullen Bullen located on the Castlereagh Highway to the southeast of the Cullen Valley Mine and the northwest of the Invincible Colliery.

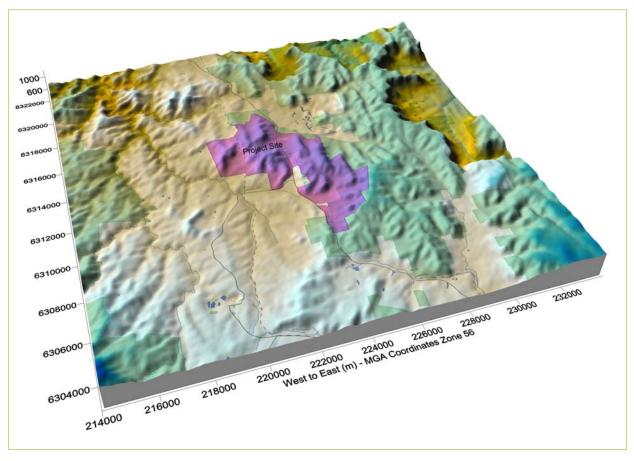


Figure 2.2: Pseudo 3-Dimensional Topographical Representation of the Study Area

3 THE PROJECT

Project Approval is sought for the following key elements:

- Consolidation and extension of the existing Cullen Valley Mine and Invincible Colliery operations to produce up to a total of 3.5 Mtpa product coal, including:
 - The continuation of mining operations at Cullen Valley Mine (the area west of the Castlereagh Highway) via both open cut and highwall mining methods to access an additional resource of approximately 25 Mt ROM; and
 - The continuation of mining operations at Invincible Colliery including an extension north into the East Tyldesley area via open cut and highwall mining methods to access an additional resource of approximately 45 Mt ROM;
- Continuation of coal supply to the local Mount Piper Power Station (MPPS) via a dedicated coal conveyor over the Castlereagh Highway (to be constructed), and (emergency supply to) Wallerawang Power Station, with flexibility for supply to additional domestic destinations and Port Kembla for export;
- Upgrades to existing administration, transport and other infrastructure;
- Construction and operation of additional Offices at Cullen Valley Mine;
- Construction and use of the previously approved Coal De-shaling preparation Plant (CDP) at Cullen Valley Mine;
- Construction and use of a bridge over the Castlereagh Highway to link operations east and west
 of the highway and the development of required access roads to the East Tyldesley area;
- Construction and operation of a bridge and haul road across the Wallerawang Gwabegar Railway line to permit access to mine the previously approved Hillcroft resource;
- The extraction of the Marangaroo Sandstone horizon from immediately below the Lithgow Coal Seam in the northern coal mining area of Cullen Valley Mine. This material will to be trucked for crushing on site prior to sale into the Sydney (and surrounds) industrial sand market;
- Construction of a rail siding and associated infrastructure to permit transport of product coal and sand products;
- Integration of the water management of both sites into a single system; and
- Integration of the management of mine rehabilitation and conceptual final landform outcomes for Cullen Valley Mine and Invincible Colliery.

4 AIR QUALITY CRITERIA

The Project will result in emissions of dust and particulate matter from the surface mining activities and associated coal handing and processing.

Emissions of carbon monoxide (CO), nitrogen dioxide (NO $_2$), and sulphur dioxide (SO $_2$) will occur from diesel-powered equipment used on-site; however these emissions are typically minor and too widely dispersed to give rise to significant off-site concentrations.

4.1 Assessment criteria - Particulate matter

Emissions of particulate matter are considered in three separate size fractions. These are described as total suspended particulate matter (TSP), particulate matter with an equivalent aerodynamic diameter of 10 μ m or less (PM₁₀) and particles with an equivalent aerodynamic diameter of 2.5 μ m and less (PM_{2.5}).

Particulate matter has the capacity to affect health and to cause nuisance effects. The extent to which health or nuisance effects occur relates to the size and/or chemical composition of the particulate matter.

This section provides information on the air quality criteria used to assess the impact of emissions. The assessment criteria provide benchmarks, which if met, are intended to protect the community against the adverse effects of air pollutants. These criteria are generally considered to reflect current Australian community standards for the protection of health and protection against nuisance effects. To assist in interpreting the significance of predicted concentration and deposition levels some background discussion on the potential harmful effects is provided below.

The human respiratory system has in-built defensive systems that prevent particles larger than approximately 10 μm from reaching the more sensitive parts of the respiratory system. Particles with aerodynamic diameters less than 10 μm are referred to as PM_{10} . Particles larger than 10 μm , while not able to affect health, can be deposited on materials and generally degrade aesthetic elements of the environment. For this reason, air quality goals make reference to measures of the total mass of all particles suspended in the air. This is referred to as TSP. In practice, particles larger than 30 to 50 μm settle out of the atmosphere too quickly to be regarded as air pollutants. The upper size range for TSP is usually taken to be 30 μm and includes PM_{10} as a subset.

The health-based assessment criteria used by DECCW have, to a large extent, been developed by reference to epidemiological studies undertaken in urban areas with large populations where the primary pollutants are the products of combustion. This means that, in contrast to dust of crustal origin, the particulate matter would be composed of smaller particles and would generally contain acidic and carcinogenic substances that are associated with combustion.

The Director-General's Requirements (DGR's) for the Project require an assessment of the potential impacts of the project, taking into consideration any relevant guidelines. The DGR's list the Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales, **NSW DEC (2005)** as applicable guidelines. **Table 4.1** and **Table 4.2** include the air quality criteria from the DECCW guideline that are relevant to this study.

 $^{^{}m 1}$ The term crustal dust is used to refer to dust generated from materials that constitute the earth's crust.

Table 4.1: Air quality criteria/ standards for particulate matter concentrations

Pollutant	Criterion/Standard	Averaging Period	Source
TSP	90 μg/m³	Annual mean	NHMRC
PM ₁₀	50 μg/m³	24-hour average	NSW DEC (2005) (impact assessment criteria) NEPM (ambient air quality standard, allows five exceedances per year, e.g. for bushfires and dust storms)
	30 μg/m³	Annual mean	NSW DEC (2005) (impact assessment criteria)

4.2 Assessment criteria - Dust deposition

In addition to health impacts, airborne dust also has the potential to cause nuisance effects by depositing on surfaces. **Table 4.2** shows the maximum acceptable increase in dust deposition over the existing dust levels from an amenity perspective. These criteria for dust fallout levels are set to protect against nuisance impacts (**NSW DEC, 2005**).

Table 4.2: DECCW criteria for dust (insoluble solids) fallout

Pollutant	Averaging period	Maximum increase in deposited dust level	Maximum total deposited dust level
Deposited dust	Annual	2 g/m ² /month*	4 g/m²/month

^{*} grams per square metre per month

4.3 Recent Project Approval conditions

Recent Department of Planning (DoP) Project Approval Conditions are relevant to managing an operating project, and it is appropriate to consider these in the overall assessment of mitigation and management options for a proposed project. Recent conditions include the criteria summarised in **Table 4.3** and **Table 4.4**.

Table 4.3: Air quality assessment criteria

Pollutant	Criterion	Averaging Period	Application
TSP	90 μg/m ³	Annual mean	Total impact
DM	50 μg/m ³	24-hour average	Total impact
PM ₁₀	30 μg/m ³	Annual mean	Total impact
Deposited dust	2 g/m ² /month	Annual mean	Incremental impact
	4 g/m ² /month	Annual mean	Total impact

Table 4.4: Air quality acquisition criteria

Pollutant	Criterion	Averaging Period	Application
TSP	90 μg/m ³	Annual mean	Total impact
	150 μg/m ³	24-hour average	Total impact
PM ₁₀	50 μg/m ³	24-hour average	Incremental impact
	30 μg/m ³	Annual mean	Total impact
Deposited dust	2 g/m ² /month	Annual mean	Incremental impact
	4 g/m ² /month	Annual mean	Total impact

The criteria for TSP and PM_{10} in recent DoP Project Approval Conditions exclude all extraordinary events such as bushfires and dust storms. Total impact includes the impact of a project and all other sources, whilst incremental impact refers to the impact of the project considered in isolation.

4.3.1 Further Comments

In May 2003, NEPC released a variation to the NEPM (**NEPC**, **2003**) to include advisory reporting standards for PM_{2.5}. The advisory reporting standards for PM_{2.5} are a maximum 24-hour average of 25 μ g/m³ and an annual average of 8 μ g/m³. However, there is no time line for compliance. The goal was to gather sufficient data nationally to facilitate the review of the Air Quality NEPM

which is currently underway. The variation includes a protocol setting out monitoring and reporting requirements for particles as $PM_{2.5}$.

At this stage, the advisory reporting $PM_{2.5}$ standards are not part of the NSW DECCW assessment criteria and while predictions have been made as to the likely contribution that emissions from the Project would make to ambient $PM_{2.5}$ concentrations, these predictions have not been used to assess impacts against the proposed advisory standard.

5 APPROACH TO ASSESSMENT

The air dispersion modelling conducted for this assessment is based on an advanced modelling system using the models TAPM and CALMET/CALPUFF (see **Figure 5.1**). This system substantially overcomes the basic limitations of the steady-state Gaussian plume models such as AUSPLUME and ISCMod.

The modelling system works as follows:

- TAPM is a prognostic meteorological model that generates gridded three-dimensional meteorological data for each hour of the model run period.
- CALMET, the meteorological pre-processor for the dispersion model CALPUFF, calculates fine resolution three-dimensional meteorological data based upon observed ground and upper level meteorological data, as well as observed or modelled upper air data generated for example by TAPM.
- CALPUFF then calculates the dispersion of plumes within this three-dimensional meteorological field.

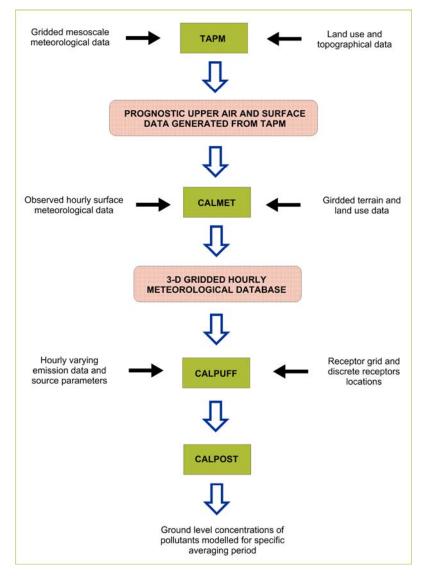


Figure 5.1: Modelling methodology used in this study

5.1 TAPM

The Air Pollution Model, or TAPM, is a three dimensional meteorological and air pollution model developed by the CSIRO Division of Atmospheric Research. Detailed description of the TAPM model and its performance is provided elsewhere. The Technical Paper by **Hurley (2005)** describes technical details of the model equations, parameterisations, and numerical methods. A summary of some verification studies using TAPM is also given in **Hurley et al. (2005)**.

TAPM solves the fundamental fluid dynamics and scalar transport equations to predict meteorology and (potentially) pollutant concentrations. It consists of coupled prognostic meteorological and air pollution concentration components. The model predicts airflow important to local scale air pollution, such as sea breezes and terrain induced flows, against a background of larger scale meteorology provided by synoptic analyses.

Upper air data were generated over the Project area using TAPM. The TAPM-generated data and observed surface meteorological data were then entered into the CALMET diagnostic meteorological model, which is discussed below.

5.2 CALMET

CALMET is a meteorological pre-processor that includes a wind field generator containing objective analysis and parameterised treatments of slope flows, terrain effects and terrain blocking effects. The pre-processor produces fields of wind components, air temperature, relative humidity, mixing height and other micro-meteorological variables to produce the three-dimensional meteorological fields that are used in the CALPUFF dispersion model.

The hourly TAPM-generated data and observed data for the period of analysis were used as input to the CALMET pre-processor to create a fine resolution, three-dimensional meteorological field for input into the dispersion model. CALMET uses the meteorological inputs in combination with land use and geophysical information for the modelling domain to predict girded meteorological fields for the region.

Terrain data has been sourced from the Shuttle Terrain Mission dataset. The spatial resolution of these data is 100 m.

Hourly surface meteorological data from the following surface meteorological stations were input into CALMET for 2009 and are as follows:

- The Cullen Valley Mine meteorological station (part of the Coalpac monitoring network);
- The Invincible Colliery meteorological station (part of the Coalpac monitoring network);
- MPPS meteorological station (approximately 5 km south of the Project);
- Bureau of Meteorology (BoM) Bathurst Airport meteorological station (approximately 38 km southwest of the Project); and
- BoM Mount Boyce meteorological station (approximately 44 km southeast of the Project).

The BoM surface stations (required for cloud cover) are up to 45 km from the site. To use these observed data for the generation of meteorological data files a large computational grid domain is required. However, due to computational limitations, a coarse resolution would then be needed which may result in neglecting local terrain effects.

To overcome this problem, CALMET was run in two stages. The first stage was to run the model over a large domain (75 km by 67.5 km) with a coarse resolution (1.5 km) using the observations from the five surface meteorological stations listed above with any gaps in the data (relative

humidity and pressure) supplied by TAPM. The second stage involved using the output from stage one as input for CALMET over a much smaller domain (20 km by 20 km) and finer resolution (100 m) with the Project at the centre. This finer resolution domain allowed any effects due to local terrain to be captured.

The finer resolution CALMET domain was then run for each mine location in each year in order to capture the specific terrain effects (e.g. pit terrain) in each proposed operational year.

Table 5.1 summarises the inputs used for both the TAPM and CALMET models.

Table 5.1: Meteorological Parameters used for TAPM and CALMET

Table 5.1: Meteorological Parameters used for TAPM and CALMET				
TAPM (v 4.0.4)				
Number of grids (spacing)	4 (30 km, 10 km, 3 km, 1 km)			
Number of grid points	25 x 25 x 25			
Year of analysis	2009			
Centre of analysis	Coalpac Project			
Certifie of allalysis	(33°16′ S, 150°2′ E)			
CALMET (v. 6.327)				
Meteorological grid domain	20 km x 20 km (fine resolution)			
Meteorological grid resolution	0.1 km (fine resolution)			
Surface meteorological stations	Cullen Valley Meteorological Station			
	- Wind speed - Wind direction			
	- wind direction - Temperature			
	- Relative humidity			
	Notative Hamilatey			
	Invincible Meteorological Station			
	- Wind speed			
	- Wind direction			
	- Temperature			
	- Relative humidity			
	Mount Piper Meteorological Station			
	- Wind speed			
	- Wind direction			
	- Temperature			
	- Relative humidity			
	Bathurst Airport AWS			
	(Bureau of Meteorology, Station No. 063291)			
	- Wind speed			
	- Wind direction - Temperature			
	- Relative humidity			
	- Cloud Amount			
	- Cloud Height			
	<u> </u>			
	Mount Boyce AWS			
	(Bureau of Meteorology, Station No. 063292)			
	- Wind speed - Wind direction			
	- Temperature			
	- Relative humidity			
	- Cloud Amount			
	- Cloud Height			
	TAPM			
	- Wind speed			
	- Wind direction			
	- Temperature			
	- Relative humidity			
	- Cloud Amount			
	- Cloud Height			
Hanou niu	- Sea Level Pressure			
Upper air	Data extracted from TAPM			

5.3 CALPUFF

CALPUFF (**Scire** *et al.*, **2000a**) is a multi-layer, multi-species, non-steady state puff dispersion model that can simulate the effects of time and space varying meteorological conditions on pollutant transport, transformation and removal. The model contains algorithms for near-source effects such as building downwash, partial plume penetration, sub-grid scale interactions as well as longer-range effects such as pollutant removal, chemical transformation, vertical wind shear and coastal interaction effects. The model employs dispersion equations based on a Gaussian distribution of pollutants across the puff and takes into account the complex arrangement of emissions from point, area, volume, and line sources.

As with any air dispersion model, CALPUFF requires inputs in three major areas:

- Meteorology;
- Emission rates and source details; and
- Terrain and geophysical data (terrain, land use), as well as specification of specific receptor locations.

CALPUFF is endorsed by the US EPA, and has been used in many studies in New South Wales, Queensland and other parts of Australia. CALPUFF is approved by the NSW DECCW where non-steady conditions can be expected (e.g. where complex terrain exists).

6 EXISTING ENVIRONMENT

This section outlines the meteorological conditions measured at two weather station locations in the Project area, and the more detailed CALMET meteorological modelling conducted to account for the variability anticipated due to the complex local terrain features in the area. A comparison of the measured and CALMET (modelled) data is also provided.

6.1 Dispersion Meteorology

6.1.1 Measured weather conditions

Figure 6.1 presents annual and seasonal windroses for the meteorological stations at Cullen Valley Mine and Invincible Colliery. The locations of these sites are shown on **Figure 6.2**.

Wind roses show the frequency of occurrence of winds by direction and strength. The bars correspond to the 16 compass points – north, north-northeast, northeast, etc. The bar at the top of each wind rose diagram represents winds blowing from the north (i.e. northerly winds), and so on. The length of the bar represents the frequency of occurrence of winds from that direction, and the widths of the bar sections correspond to wind speed categories, the narrowest representing the lightest winds.

On an annual basis, **Figure 6.1** shows a prominent westerly and easterly pattern of winds at the Cullen Valley site. Winds from the eastern quadrant are more prominent in summer and autumn and winds from the north are also more prominent in summer and spring. Winds from the western quadrant are predominant in winter and spring. On an annual basis, the percentage of calms is 41.2%. This is an unusually high level of calms especially when compared to the annual level of calms (14.3%) at the Invincible Colliery meteorological station (also shown **Figure 6.1**). An explanation for this could be the location of the Cullen Valley meteorological station in the proximity of elevated terrain to the east potentially causing winds from the east to slow down around the terrain before reaching the meteorological station.

On an annual basis **Figure 6.1** shows prominent winds from the southwest and northeast directions at the Invincible Colliery site. The summer and autumn windroses show a higher percentage of winds from the northwest sector whereas the winter windrose shows a higher percentage of winds from the southwest sector. The spring windrose shows a very similar pattern to the annual windrose. On an annual basis, the percentage of calms is 12.9%. This meteorological station is located at the southern end of a valley and is in the proximity of elevated terrain to the west. This may explain the relatively high percentage of calms on an annual basis.

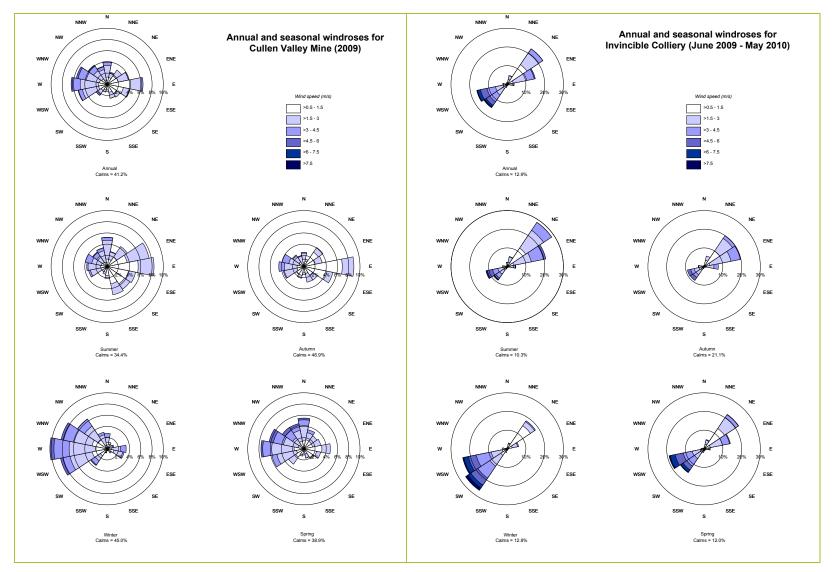


Figure 6.1: Annual and seasonal windroses for the Cullen Valley Mine and Invincible Colliery meteorological stations

Quality

Impact

Assessment

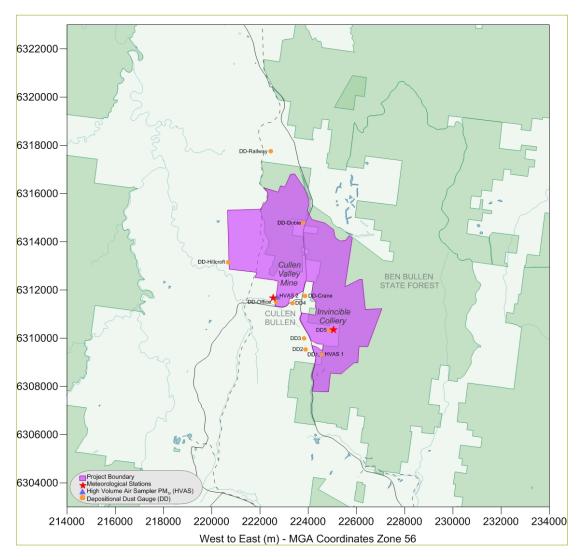


Figure 6.2: Location of Cullen Valley Mine and Invincible Colliery meteorological station together with the Coalpac monitoring network

6.2 CALMET modelled weather conditions

Figure 6.4 presents the annual and seasonal windroses made from CALMET indicative of each mining location.

CALMET was run for each mining area for the Project (i.e. Invincible Colliery, East Tyldesley, Cullen Valley and Hillcroft) and for each modelled scenario in order to account for the different terrain (due to mining) in each assessed year. Points at each mine site have been extracted for one operational scenario in order to provide an indication of wind patterns at that site and therefore, the CALMET windroses are provided for illustrative purposes (e.g. to show effects of local terrain at each point) and are not directly comparable with the meteorological data collected at the Cullen Valley and Invincible Colliery sites as shown in **Figure 6.1**.

Figure 6.3 shows the location of the mine areas extracted for CALMET (presented as windroses in **Figure 6.4**), the location of the on-site meteorological stations as well as the terrain around the site.

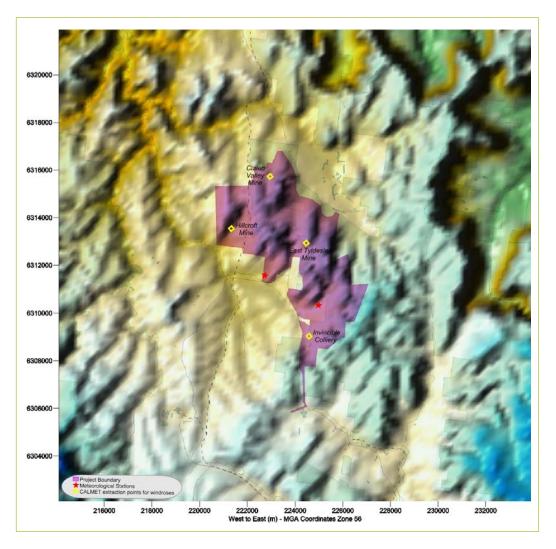


Figure 6.3: Location of CALMET extraction points, meteorological stations and terrain

Figure 6.4 shows a similar pattern of winds between the four modelled mining areas, with prominent winds from the western and eastern quadrants. Windroses for the Hillcroft, Cullen Valley and East Tyldesley mining areas are more similar to each other than the Invincible windrose in that they show a higher prominence of winds from the east in summer and autumn and a higher percentage of winds from the west in winter. For all three sites, the spring windrose is most similar to the annual windrose. The percentages of annual calms for the three sites are also similar and are 3.7% and 4%.

The CALMET windrose made for the Invincible mining area is less similar to that of the other three mine sites. On an annual basis, the prominent winds from the west and east still exist however; there are fewer winds from the north western and northern sectors. Winds from the east are still shown to be prominent in summer and autumn and winds from the west are prominent in winter. As with the other mining areas, the spring windrose is most similar to the annual windrose. The annual percentage of calms is 2.8% which is slightly less than that of the other sites.

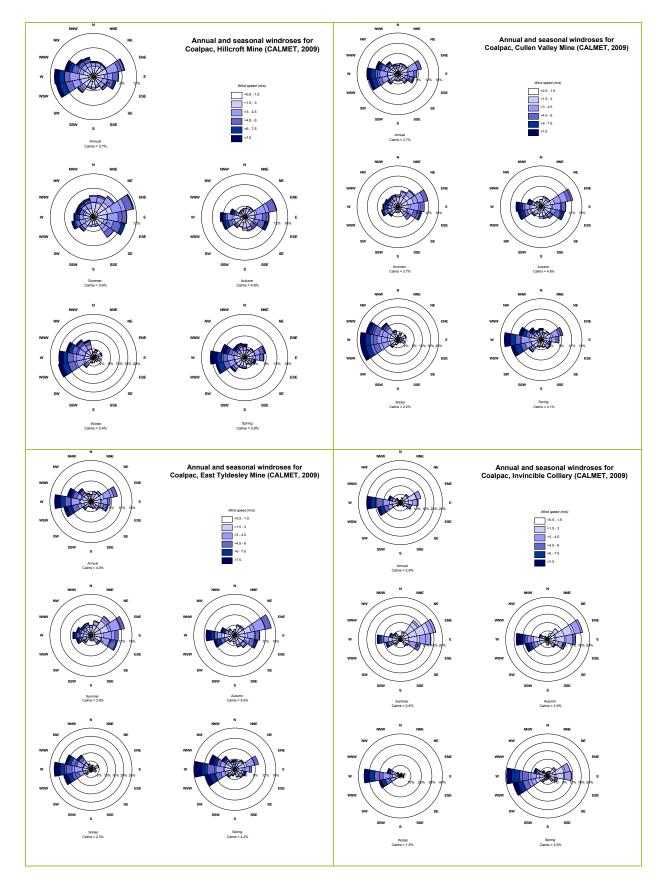


Figure 6.4: Annual and seasonal windroses for (indicative) Hillcroft, Cullen Valley, East
Tyldesley and Invincible Mine locations (2009) Stability

6.3 Comparison of the measured meteorological and CALMET data

Figure 6.1 shows that the Cullen Valley site windroses from measured meteorological data is a very similar annual pattern to the Cullen Valley CALMET windrose shown in **Figure 6.4** with prominent winds from the western and easterly quadrants. **Figure 6.4** however, shows a higher percentage of winds from the north on an annual basis. Winds from the west are also most prominent in the CALMET data. On an annual basis, the percentage of calms in the CALMET data is 3.7% compared with 41.2% in the Cullen Valley meteorological station data. A potential reason for this would be the location of the metrological station in proximity to complex terrain to the east.

The Invincible site windroses shown in Figure 6.1 have been compiled from data collected between June 2009 and May 2010 as data for all of 2009 was not available. Therefore, this windrose is presented to show the general pattern in the area only. The Invincible meteorological station windroses are less similar to the CALMET data than at the Cullen Valley location. It is clear that the Invincible meteorological station data shows more prominent winds from the west southwest and north east sectors. However, while this may be true, as these winds are still evident in the CALMET dataset, more prominent winds are seen from the west. The reason for this difference is most likely that the Invincible station is located at the southern end of a valley surrounded by elevated terrain causing higher wind flow patterns from the north east and west south-west. The CALMET windrose shown in Figure 6.4 is representative of the mine location and therefore modelled differing terrain. The general overall pattern for this mine location is similar with prominent winds from the north eastern sector in summer and autumn and prominent winds from the south western sector in winter. On an annual basis, the percentage of calms in the CALMET data is 2.8% compared with 12.9% in the Invincible Colliery meteorological station data. A potential reason for this would be the location of the meteorological station in proximity to complex terrain to the west.

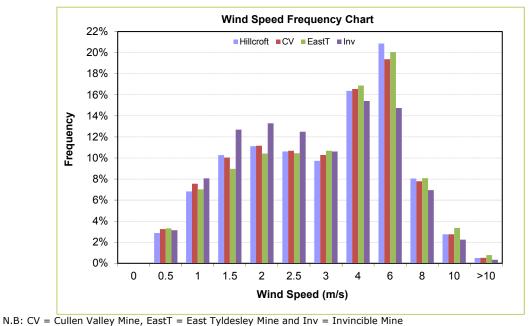
6.4 Analysis of meteorological conditions for the CALMET data

6.4.1 Wind Speed

The frequency distribution of hourly averaged wind speed values at each of the four Project mining areas is shown as a graph in **Figure 6.5**. For the purposes of this wind speed analysis, the Cullen Valley mining area was modelled as two separate locations, including the Hillcroft area to the west of the Wallerawang – Gwabegar railway line and the Cullen Valley area further north to the east of the railway line.

Figure 6.5 illustrates a typical analysis of the wind speed distributions for the four mining locations at one time. Although it is used for illustrative purposes, **Figure 6.5**, provides an indication of the relative wind speed distribution at each Project mining area. The figure indicates a similar distribution of wind speeds at each of the modelled locations, with the Invincible site showing somewhat greater occurrence of low winds between 1.5 and 2.5 m/s and somewhat lower occurrence of wind speeds around 6 m/s.

Light wind speeds (\leq 2 m/s) at the Hillcroft location occur approximately 31% of the time. At the Cullen Valley location light wind speeds occur approximately 32% of the time and at the East Tyldesley and Invincible locations light wind speeds occur approximately 30 and 37% of the time, respectively.


Stronger winds (\geq 6 m/s) at the Hillcroft and Cullen Valley locations occur approximately 11% of the time. At the East Tyldesley location strong winds occur approximately 12% of the time and at the Invincible location they occur approximately 10% of the time.

The annual average wind speed for the Hillcroft and Cullen Valley locations is estimated to be

approximately 3.3 m/s. At the East Tyldesley location the annual average wind speed is approximately 3.4 m/s and at the Invincible location the annual average wind speed is approximately 3 m/s.

On an annual basis, calm wind speeds (<0.5 m/s) occur 3.7% of the time at the Hillcroft and Cullen Valley locations. At the East Tyldesley location, calms occur 4% of the time and at the Invincible location calms occur 2.8% of the time.

v.b. CV - Cullett Valley Pilite, Last1 - Last Tyluesley Pilite and 111V - 111Vilicible Pilite

Figure 6.5: Wind speed distribution for each indicative mine location (2009)

6.4.2 Stability Class

Atmospheric turbulence is an important factor in plume dispersion. Turbulence acts to increase the cross-sectional area of the plume due to random motions, thus diluting or diffusing a plume. As turbulence increases, the rate of plume dilution or diffusion increases. Weak turbulence limits plume diffusion and is a critical factor in causing high plume concentrations downwind of a source, particularly when combined with very low wind speeds.

Turbulence is related to the vertical temperature gradient, which determines what is known as stability, or thermal stability. For traditional dispersion modelling using Gaussian plume models, categories of atmospheric stability are used in conjunction with other meteorological data to describe atmospheric conditions and thus dispersion. The most well-known stability classification is the Pasquill-Gifford scheme, which denotes stability classes from A to F.

Class A is described as highly unstable and occurs in association with strong surface heating and light winds, leading to intense convective turbulence and much enhanced plume dilution. At the other extreme, class F denotes very stable conditions associated with strong temperature inversions and light winds, which commonly occur under clear skies at night and in the early morning. Under these conditions plumes can remain relatively undiluted for considerable distances downwind and therefore concentrations at receptors can be high.

Intermediate stability classes grade from moderately unstable (B), through neutral (D) to slightly stable (E). Whilst classes A and F are strongly associated with clear skies, class D is associated with windy and/or cloudy weather.

As a general rule, unstable (or convective) conditions dominate during the daytime and stable flows are dominant at night. This diurnal pattern is most pronounced when there is relatively little cloud cover and light to moderate winds.

The frequency distribution of estimated stability classes in the meteorological files for the four indicative mining areas is presented in **Table 6.1**.

The most common stability class in the area was determined to be stable F class stability which occurs between 30% and 33.9% of the time. This represents poor dispersion for a significant proportion of the time. D class stability also occurs between 22.5% and 25.9% which would suggest that dispersion conditions would be such that dust emissions would disperse rapidly also for a significant proportion of the time.

Table 6.1: Estimated stability class distribution

Stability Class	% Frequency of Occurrence			
	Hillcroft	Cullen Valley	East Tyldesley	Invincible
Α	2.9%	3.4%	3.3%	4.1%
В	14.3%	14.4%	14.1%	15.2%
С	15.0%	14.9%	14.9%	15.0%
D	25.0%	24.6%	25.9%	22.5%
Е	11.6%	11.2%	11.7%	9.3%
F	31.1%	31.4%	30.0%	33.9%

6.4.3 Mixing Height

Mixing height is the height to which the air is mixed by turbulence and is variable in space and time. It typically increases during fair-weather daytime over land from tens to hundreds of metres around sunrise up to one to four kilometres in the mid-afternoon, depending on the location, season and day-to-day weather conditions.

The frequency of mixing heights in the meteorological datasets developed for this study is shown in **Figure 6.6**.

Average mixing heights during the night and early morning hours are generally lower than 300 m, increasing after sunrise to an average maximum of just over 3,000 m by mid-afternoon in response to convective mixing from solar heating of the earth's surface. The relatively rapid decrease in mixing height around the time of sunset can be clearly seen.

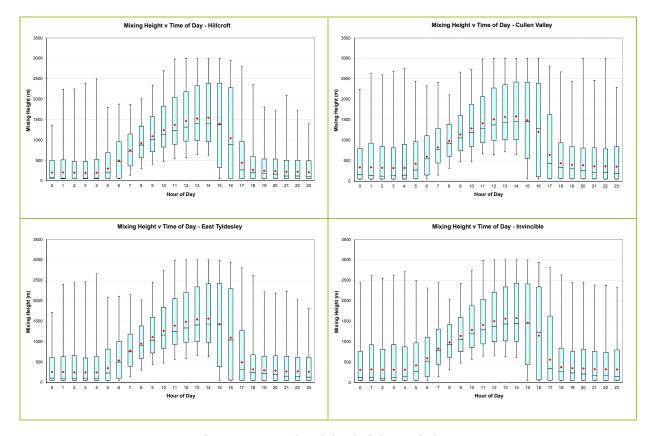


Figure 6.6: Hourly mixing height statistics

6.5 Local Climatic Conditions

The BoM collects climatic information in the vicinity of the study area. A range of climatic information collected from Lithgow (Birdwood St) (located approximately 27 km from the Project) are presented in **Table 6.2** (**BoM, 2010**). Temperature and humidity data consist of monthly averages of 9 am and 3 pm readings. Also presented are monthly averages of maximum and minimum temperatures. Rainfall data consist of mean monthly rainfall and the average number of rain days per month.

The annual average maximum and minimum temperatures experienced at Lithgow are 18.2°C and 6.4°C respectively. On average January is the hottest month, with an average maximum temperature of 25.5°C. July is the coldest month, with average minimum temperature of 0.7°C.

The annual average relative humidity reading collected at 9 am from the Lithgow site is 70% and at 3 pm the annual average is 58%. The month with the highest relative humidity on average is June with a 9 am average of 82%. The month with the lowest relative humidity is December with a 3 pm average of 50%.

Rainfall data collected at Lithgow shows that January is the wettest month, with an average rainfall of 94.3 mm over 8.3 rain days. The average annual rainfall is 858.5 mm with an average of 95.8 rain days.

Table 6.2: Climate Information for Lithgow (Braidwood St)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
9 am Mean Dry-bulb and Wet-bulb Temperatures (°C)¹ and Relative Humidity (%)													
Dry-bulb	18.7	17.8	15.8	12.4	8.5	5.6	4.7	6.4	10.0	13.5	15.7	18.1	12.3
Humidity	64	70	73	76	81	82	79	73	64	60	60	61	70
3 pm Mean Dry-bulb and Wet-bulb Temperatures (°C)¹ and Relative Humidity (%)													
Dry-bulb	23.9	22.9	20.8	17.4	13.3	10.0	9.3	10.8	13.7	17.0	19.7	22.7	16.8
Humidity	54	58	60	59	66	67	66	56	54	51	53	50	58
Mean Maximum Temperature (°C) 1													
Mean	25.5	24.7	22.4	18.4	14.3	11.1	10.4	12.0	15.4	18.7	21.5	24.5	18.2
Mean Minimum Temperature (°C)¹													
Mean	11.9	12.1	10.1	6.7	3.9	1.8	0.7	1.3	3.4	6.0	8.1	10.4	6.4
Rainfall (mm) ²													
Mean	94.3	83.8	83.9	62.7	63.0	67.6	67.6	63.4	58.9	67.7	70.0	76.1	858.5
Raindays (Number)													
Mean	8.3	7.6	8.4	7.0	7.6	8.8	8.4	8.3	7.9	8.2	7.7	7.6	95.8

Source: **BOM (2010)**¹ °C = degrees Celsius

Climate averages for Station: 063224; Commenced: 1889, Last record: 2006; Latitude: 33.49 °S; Longitude: 150.15 °E.

6.6 Dust

6.6.1 Introduction

Air quality standards and criteria refer to pollutant levels that include the contribution from specific projects and existing sources of dust. To assess impacts against all the relevant air quality standards and criteria (see **Section 4**) it is necessary to have information or estimates on existing dust concentration and deposition levels in the area in which the Project is likely to contribute to these levels. It is important to note that the existing air quality conditions (that is, background conditions) will be influenced by the existing mining operations in the area.

An air quality monitoring program was established in 2004 to monitor dust deposition and dust concentration (as PM_{10}) in the vicinity of the Project. The locations of the current monitoring sites in place for existing Coalpac operations are shown on **Figure 6.2** and include:

- Two High Volume Air Samplers (HVAS) monitoring PM₁₀ (one at Cullen Valley Mine and one at Invincible Colliery); and
- 11 dust deposition gauges (five for Cullen Valley Mine and six for Invincible Colliery).

The following sections provide an analysis and summary of the dust monitoring data. The complete data set is also shown in **Appendix B**.

6.6.2 PM₁₀ Concentrations

Figure 6.2 shows the location of the Cullen Valley HVAS and Invincible HVAS used to monitor PM_{10} concentrations in the area. Both monitors are located within the existing mining lease boundaries held by Coalpac and within close proximity to sensitive receptors. The Project Boundary is predominantly grassland, with surrounding escarpments within the Ben Bullen State Forest densely vegetated.

It is important to note that the HVAS monitor measures particulate matter from the approved mines in addition to non-mining sources. Non-mining sources of particulate matter in the area would include traffic on unsealed roads, local activities, animal grazing associated with farming activities and to a lesser extent traffic from the other local roads and other sources such as bushfires.

² mm = millimetres

 PM_{10} concentration measurements from the Cullen Valley and Invincible HVASs have been made available from February 2008 to July 2010. The 24-hour average PM_{10} concentration measurements and the rolling annual average PM_{10} concentration are shown in **Figure 6.7**.

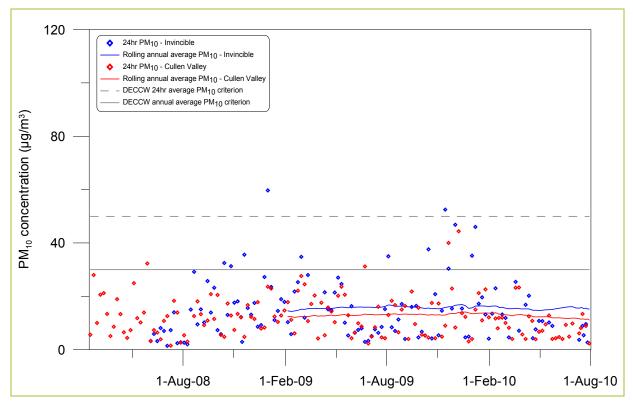


Figure 6.7: HVAS PM₁₀ Concentrations

It can be seen from **Figure 6.7** that there are two occasions where the 24-hour average PM_{10} concentration has recorded a level above the DECCW criterion of 50 $\mu g/m^3$. Both of these elevated concentrations were measured at the Invincible Mine HVAS.

It should be noted that during this monitoring period, a number of anomalous events such as severe dust storms and also bushfires occurred. These events have been removed from the dataset as per the information on the BoM website. The two values above the $50~\mu g/m^3$ as in **Figure 6.7** are not known to results from a regional event reported by BoM but may be caused by a local dust generating event. For reference, these anomalous days are included in the full dataset provided in **Appendix B**.

Table 6.3 provides a summary of the PM₁₀ concentration data presented in **Figure 6.7**.

Table 6.3: Annual average PM₁₀ concentration at each HVAS monitoring site (µg/m³)

HVAS (PM ₁₀) Site	2008	2009	2010	Average
HVAS1 (Inv)	13.0	15.2	13.3	13.8
HVAS2 (CV)	12.0	13.3	9.8	11.7
Average of all data	12.8			

Both **Figure 6.7** and **Table 6.3** show that the annual average PM_{10} concentrations at both sites are well below the DECCW criterion of 30 μ g/m³.

6.6.3 TSP Concentrations

No TSP concentration data are available in the vicinity of the Project. However, annual average total suspended particulate (TSP) concentrations can be estimated from the PM_{10} measurements

by assuming that 40% of the TSP is PM_{10} . This relationship was obtained from data collected by co-located TSP and PM_{10} monitors operated for long periods of time in the Hunter Valley (**NSW Minerals Council, 2000**).

Use of this relationship indicates that the annual average TSP concentration is approximately 32 $\mu g/m^3$ which is well below the DECCW assessment criterion of 90 $\mu g/m^3$.

6.6.4 Dust Deposition

Figure 6.2 shows the locations of the 11 dust deposition gauges that are a part of the Project's air quality monitoring network. A number of these gauges are located within the Project Boundary, or on adjoining Coalpac owned land.

Data have been made available from June 2008 to August 2010. The monthly data are presented in **Appendix B**, and the annual averages for each dust gauge summarised in **Table 6.4**.

Table 6.4: Dust deposition data (insoluble solids) – 2008 to 2010 (g/m²/month)

Dust Deposition Gauge	2008	2009	2010	Average	
DM1 (Inv)	1.2	1.5	1.4	1.4	
DM2 (Inv)	0.6	1.1	0.9	0.9	
DM3 (Inv)	0.7	1.4	0.9	1.0	
DM4 (Inv)	0.7	1.2	0.6	0.8	
DM5 (Inv)	0.8	1.5	1.2	1.2	
DM6 (Inv)	0.7	1.2	-	1.0	
DM Doble (CV)	1.1	1.1	0.5	0.9	
DM Crane (CV)	0.7	1.2	0.5	0.8	
DM Office (CV)	0.8	1.3	0.7	0.9	
DM Hillcroft (CV)	0.7	1.2	0.5	0.8	
DM Railway (CV)	1.0	1.4	0.7	1.1	
Average of all data					

These results show that, at all dust gauge monitoring locations the annual average dust deposition levels are well below the DECCW criterion of 4 $g/m^2/m$ onth.

It is interesting to note that all gauges recorded the highest annual average dust deposition level in 2009. As discussed previously, there were a number of anomalous weather events including a series of dust storms during the spring of 2009 that would have been captured by the dust deposition measurements. For example, all dust deposition gauges on the 2^{nd} of October 2009 recorded levels between 8.6 g/m²/month and 26.9 g/m²/month which on investigation, were likely due to dust storms and bushfires in the area at this time.

7 ESTIMATES OF EMISSIONS OF PARTICULATE MATTER

7.1 Introduction

This section discusses the calculation of the particulate emissions applied in the assessment. Emissions have been calculated for the open-cut operations from the Project.

7.1.1 Emissions from open cut mining operations for the Project

The operation of the Project has been analysed and estimates of dust emissions for the key dust generating activities have been made. Emission factors developed both locally and by the US EPA, have been applied to estimate the amount of dust produced by each activity. The emission factors applied are considered to be the most reliable or up-to-date methods for determining dust generation rates.

The mining plans for the Project have been analysed and detailed emissions inventories have been prepared for four key operating scenarios, being Project Years 2 (nominally 2013), 8, 14 and 20. These modelled scenarios are considered to be representative of worst-case operations; for example where coal and waste material amounts are highest, where extraction or wind erosion areas are largest or where operations are close to sensitive receptors.

Detailed calculations are provided in **Appendix C** which provides information on the equations used, the basic assumptions about material properties (e.g. moisture content, silt content etc.), information on the way in which equipment would be used to undertake different mining operations and the quantities of materials that would be handled in each operation.

Figure 7.1 to **Figure 7.4** show the Project operations represented by a series of volume sources situated according to the location of activities for the modelled scenarios.

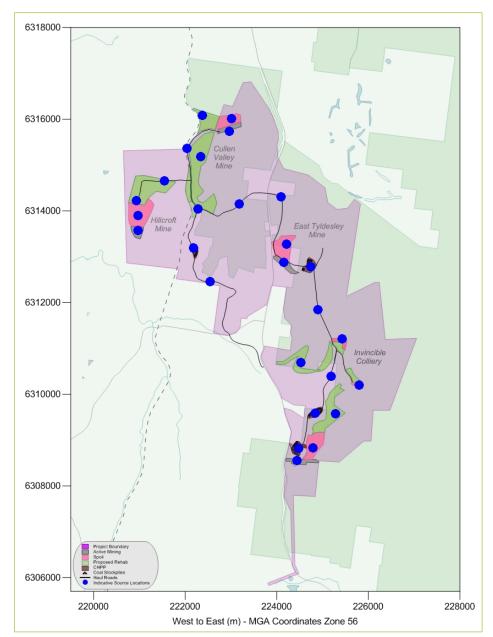


Figure 7.1: Indicative modelling source locations - Year 2

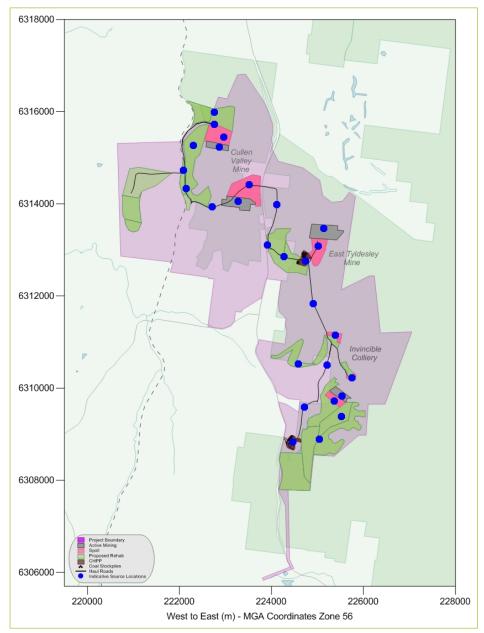


Figure 7.2: Indicative modelling source locations - Year 8

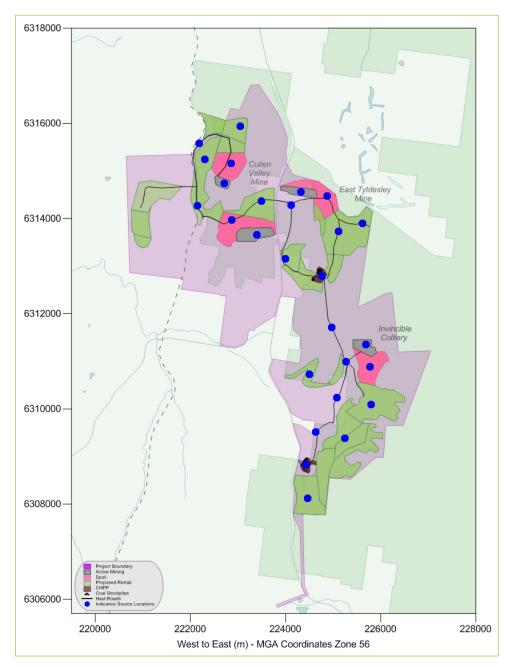


Figure 7.3: Indicative modelling source locations - Year 14

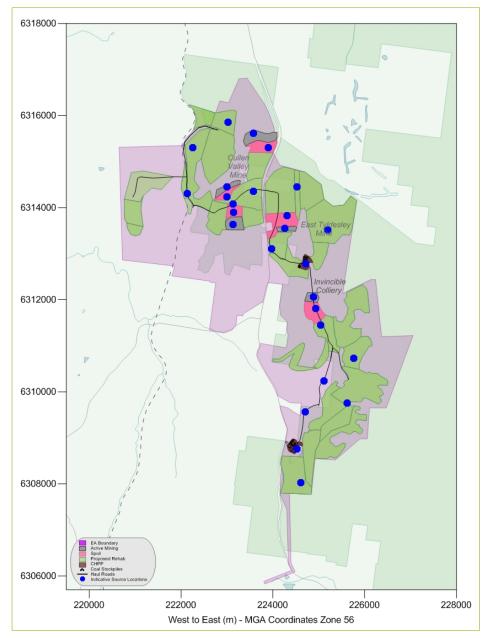


Figure 7.4: Indicative modelling source locations – Year 20

Table 7.1 presents the emission estimates for each year modelled.

It should be noted that the conveyor located to the south of the Invincible Colliery transporting coal to the MPPS was not included as a dust source in the dispersion modelling as the conveyor will be fully enclosed and will include water sprays at the loading point therefore causing negligible dust impacts.

Table 7.1: Estimated emissions of TSP/y for the Project

Table 7.1: Estimated emissions of TSP/y for the Project									
ACTIVITY	Year 2	Year 8	Year 14	Year 20					
HILLCROFT/CULLEN VALLE	/ MINE (coal) OPE	RATIONS							
CV: Topsoil Removal - Dozers/Excavators stripping topsoil	333	333	333	333					
CV: OB - Drilling Overburden	3,012	4,360	5,056	5,151					
CV: OB - Blasting Overburden	3,349	4,847	5,622	5,727					
CV: OB - Loading Overburden	18,665	27,015	31,332	31,917					
CV: CL - Hauling to dump	88,101	156,945	238,903	231,779					
CV: OB - Unloading Overburden to dump	18,665	27,015	31,332	31,917					
CV: OB - Dozers on o/b	31,329	31,329	31,329	31,329					
CV: CL - Dozers on coal	34,641	34,641	34,641	34,641					
CV: CL - Loading coal into trucks	72,722	74,945	74,945	74,945					
CV: CL - Hauling coal to ROM coal stockpiles at ET CHPP	185,083	91,341	102,087	99,400					
CV: CL - Unloading coal to ROM coal stockpiles	12,953	13,349	13,349	13,349					
CV: CL - Rehandle coal to hopper	488	503	801	801					
CV: CL - Crushing	777	801	801	801					
CV: CL - Screening	1,425	1,468	1,468	1,468					
CV: CL - Loading coal to product stockpiles	64,802	64,841	64,841	64,841					
CV: CL - Loading coal to trucks	482	483	483	483					
CV: CL - Hauling product coal from ET CHPP to MPPS	402		403	403					
conveyor	72,689	72,751	72,751	72,751					
CV: CL - Unloading product coal from trucks to MPPS conveyor	8,208	8,216	8,216	8,216					
CV: CL - Hauling product coal from ET CHPP to rail load out	35,220	35,220	35,220	35,220					
CV: CL - Unloading product coal from trucks to stockpile	3,333	3,333	3,333	3,333					
CV: CL - FEL loading product coal to trains	139	139	139	139					
CV: CL - Hauling rejects to dump	43,735	5,554	24,300	25,688					
CV: REHAB - Dozers on rehab	200,117	200,117	200,117	200,117					
	9,636	25,229		54,137					
CV: WE - Active Mining Area CV: WE - Dumps area			31,886 75,336						
	41,347	53,611		63,422					
CV: WE - Main ROM and Product stockpiles	1,233	925	925	925					
CV: Grading roads CULLEN VALLEY MINE OPERATION	13,826	13,826	13,826	13,826					
COLLEN VALLET MINE OPERATI									
			31 320						
MS: SAND - Dozer ripping/pushing sand	31,329	31,329	31,329	_					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL	31,329 1,743	31,329 1,743	842						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper	31,329 1,743 1,743	31,329 1,743 481	842 232						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing	31,329 1,743 1,743 481	31,329 1,743 481 481	842 232 232						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles	31,329 1,743 1,743 481 35,978	31,329 1,743 481 481 35,978	842 232 232 17,382						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP	31,329 1,743 1,743 481 35,978 33,128	31,329 1,743 481 481 35,978 61,026	842 232 232 17,382 31,801						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck	31,329 1,743 1,743 481 35,978 33,128 1,395	31,329 1,743 481 481 35,978 61,026 1,395	842 232 232 17,382 31,801 674	No longer					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395	31,329 1,743 481 481 35,978 61,026 1,395 1,395	842 232 232 17,382 31,801 674 674	No longer in operation					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231	842 232 232 17,382 31,801 674 674 18,954	_					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408	842 232 232 17,382 31,801 674 674 18,954 3,096	_					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683						
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826	in operation					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826	in operation					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826	333 5,151					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622	333 5,151 5,727					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332	333 5,151 5,727 31,917					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product trom trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Loading Overburden ET: OB - Hauling to ET dump	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516	333 5,151 5,727 31,917 150,656					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332	333 5,151 5,727 31,917 150,656 31,917					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Active Mining Area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Blasting Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329	333 5,151 5,727 31,917 150,656 31,917 31,329					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Loading Overburden ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b ET: CL - Dozers on coal	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641 72,722	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Loading Overburden ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b ET: CL - Dozers on coal	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Dozers on coal	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641 72,722	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641 72,722 20,854	31,329 1,743 481 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945 29,551	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945 77,908	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945 47,014					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Bilasting Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP ET: CL - Rehandle coal to hopper ET: CL - Rehandle coal to hopper	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 88,101 118,665 31,329 34,641 72,722 20,854 12,953	31,329 1,743 481 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945 29,551 13,349	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945 77,908 13,349	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945 47,014 13,349					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Bilasting Overburden ET: OB - Blasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP ET: CL - Rehandle coal to hopper ET: CL - Rehandle coal to hopper	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 31,329 34,641 72,722 20,854 12,953 488	31,329 1,743 481 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945 29,551 13,349 503	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945 77,908 13,349 503	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945 47,014 13,349 503					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Hauling sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: SAND - Unloading product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Drilling Overburden ET: OB - Blasting Overburden ET: OB - Loading Overburden ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP ET: CL - Unloading coal to ROM coal stockpiles	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 88,101 18,665 31,329 34,641 72,722 20,854 12,953 488 777	31,329 1,743 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945 29,551 13,349 503 801 1,468	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945 77,908 13,349 503 801	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945 47,014 13,349 503 801					
MS: SAND - Dozer ripping/pushing sand MS: SAND - Excavation of sand by shovel/excavator/FEL MS: SAND - Rehandle sandstone to hopper MS: SAND - Crushing MS: SAND - Loading sand to product stockpiles MS: SAND - Loading sand to raw stockpiles at the CHPP MS: SAND - Dumping sand to raw stockpile from haul truck MS: SAND - Dumping sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Loading sand to trucks MS: SAND - Hauling product to MPPS conveyor MS: SAND - Hauling product from trucks to MPPS conveyor MS: REHAB - Dozers on rehab MS: WE - Active Mining Area MS: WE - Dumps area MS: WE - Main ROM and Product stockpiles MS: Grading roads EAST TYLDESLE ET: Topsoil Removal - Dozers/Excavators stripping topsoil ET: OB - Bilasting Overburden ET: OB - Balasting Overburden ET: OB - Hauling to ET dump ET: OB - Hauling to ET dump ET: OB - Dozers on o/b ET: CL - Dozers on coal ET: CL - Loading coal into trucks ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP ET: CL - Rehandle coal to hopper ET: CL - Crushing ET: CL - Crushing ET: CL - Screening	31,329 1,743 1,743 481 35,978 33,128 1,395 1,395 13,949 6,408 200,117 8,585 20,411 1,233 13,826 Y OPERATIONS 333 3,012 3,349 18,665 88,101 18,665 88,101 18,665 31,329 34,641 72,722 20,854 12,953 488 777 1,425	31,329 1,743 481 481 481 35,978 61,026 1,395 1,395 39,231 6,408 200,117 10,582 33,989 925 13,826 333 4,360 4,847 27,015 156,945 27,015 31,329 34,641 74,945 29,551 13,349 503 801	842 232 232 17,382 31,801 674 674 18,954 3,096 200,117 19,272 116,683 925 13,826 333 5,056 5,622 31,332 136,516 31,332 31,329 34,641 74,945 77,908 13,349 503 801 1,468	333 5,151 5,727 31,917 150,656 31,917 31,329 34,641 74,945 47,014 13,349 503 801 1,468					

ACTIVITY	Year 2	Year 8	Year 14	Year 20
ET: CL - Hauling product coal from ET CHPP to MPPS	72,689	72,751	72,751	72,751
conveyor	72,009	72,731	72,731	/2,/31
ET: CL - Unloading product coal from trucks to MPPS	8,208	8,216	8,216	8,216
conveyor	·	0,210	0,210	0,210
ET: CL - Hauling product coal from ET CHPP to rail load out	35,220	35,220	35,220	35,220
ET: CL - Unloading product coal from trucks to stockpile	3,333	3,333	3,333	3,333
ET: CL - FEL loading product coal to trains	139	139	139	139
ET: CL - Hauling rejects to dump	4,928	1,433	67,405	40,675
ET - REHAB - Dozers on rehab	200,117	200,117	200,117	200,117
ET: WE - Active Mining Area	11,213	33,814	37,843	14,366
ET: WE - Dumps area	32,938	32,062	111,778	78,840
ET: WE - Main ROM and Product stockpiles	2,775	925	925	925
ET: Grading roads	13,826	13,826	13,826	13,826
INVINCIBLE COLLI	IERY OPERATIONS			
IC: Topsoil Removal - Dozers/Excavators stripping topsoil	333	333	333	333
IC: OB - Drilling Overburden	3,012	4,360	5,056	5,151
IC: OB - Blasting Overburden	3,349	4,847	5,622	5,727
IC: OB - Loading Overburden	18,665	27,015	31,332	31,917
IC: OB - Hauling from pit to IC dump	101,655	58,854	204,774	127,478
IC: OB - Unloading Overburden to dump	18,665	27,015	31,332	31,917
IC: OB - Dozers on o/b	31,329	31,329	31,329	31,329
IC: CL - Dozers on coal	34,641	34,641	34,641	34,641
IC: CL - Loading coal into trucks	72,722	74,945	74,945	74,945
IC: CL - Hauling coal to ROM coal stockpiles at IC CHPP	36,495	55,073	87,311	98,057
IC: CL - Unloading coal to ROM coal stockpiles	12,953	13,349	13,349	13,349
IC: CL - Rehandle coal to hopper	488	503	503	503
IC: CL - Crushing	777	801	801	801
IC: CL - Screening	1,425	1,468	1,468	1,468
IC: CL - Loading coal to product stockpiles	64,802	64,841	64,841	64,841
IC: CL - Loading coal to trucks	482	483	483	483
IC: CL - Hauling product coal from IC CHPP to MPPS	14.042			
conveyor	14,042	-	-	-
IC: CL - Unloading product coal from trucks to MPPS	8,208	8,216	8,216	8,216
conveyor	0,200	0,210	0,210	0,210
IC: CL - Hauling product coal from IC CHPP to rail load out	65,744	65,744	65,744	65,744
IC: CL - Unloading product coal from trucks to stockpile	3,333	3,333	3,333	3,333
IC: CL - FEL loading product coal to trains	139	139	139	139
IC: CL - Hauling rejects to dump	8,624	2,083	22,564	25,341
IC - REHAB - Dozers on rehab	200,117	200,117	200,117	200,117
IC: WE - Active Mining Area	10,862	10,687	40,296	18,221
IC: WE - Dumps area	38,719	19,447	77,438	52,560
IC: WE - Main ROM and Product stockpiles	5,859	2,467	2,467	2,467
IC: Grading roads	13,826	13,826	13,826	13,826
Total	2,867,280	2,992,218	3,643,683	2,983,044

CV = Cullen Valley, MS = Marangaroo Sandstone, ET = East Tyldesley, IC = Invincible Colliery

Air Quality Impact Assessment

7.2 Estimated Emissions from Neighbouring Mines

Other sources in addition to the Project will contribute to dust in the area. Estimating the background dust contribution for distant mines and the dust from other closer non-mining sources can be a complicated as dust levels will vary depending on local land use and the associated emission sources, as well as climate, soil type, farming practices, and so on. However where existing total measured dust levels are low these can be conservatively adopted as a background dust level, as done in this case.

The following mines have been identified in the vicinity of the Project:

- Ivanhoe North Mine;
- Pine Dale Coal Mine Yarraboldy Extension; and
- Baal Bone Colliery.

7.2.1 Ivanhoe North Mine

The Ivanhoe North Mine was granted approval in 2007 with coal mining operations not to exceed three years. Therefore, this mine would not be in operation during any of the modelled Project years and is not included in the cumulative assessment.

7.2.2 Pine Dale Coal Mine - Yarraboldy Extension

The Pine Dale Coal Mine (Yarraboldy Extension) is an extension of open cut mining to the north of the existing Pine Dale coal mine facilities. This extension would include the extraction of approximately 350,000 tonnes of ROM coal per year for three years, including six months at the end of coal extraction to finalise rehabilitation on-site. As per the Department of Planning (DoP) website (**DoP**, **2010**), this extension is predicted to be completed by 2012. However, at the time of writing of this report, the Yarraboldy Extension remains under review and is not formally approved. If approved, it is therefore unlikely that this Project will be completed by 2012. The first modelled year for this Project is Year 2 (nominally 2013).

Whilst it is recognised that the two projects may operate simultaneously prior to this time, it is unlikely that the Yarraboldy Extension could materially contribute to cumulative impacts when considered together with the Coalpac's operations. The reasons for this are as follows:

- The windroses presented in the Yarraboldy Extension air quality assessment show prominent winds from the west and east and with few winds from the southeast (in the direction of Coalpac's operations and nearest sensitive receptors) (Heggies, 2010);
- The Yarraboldy Extension is located at least six kilometres from the Coalpac Project Boundary. The worst-case contour results for 24-hour cumulative PM₁₀ show the criterion of 50 μg/m³ approximately two kilometres away from the closest sensitive receptors located to the south west of Coalpac's current operations; and
- The Yarraboldy Extension is proposed to operate over three years (including a final six months of rehabilitation) at a mining rate of 350,000t of ROM coal per year. This would mean that operations at this site are only likely to be simultaneous with Coalpac's operations in the first two years; should this project be approved. Furthermore, these two years do not represent periods of high production for Coalpac operations.

7.2.3 Baal Bone Colliery

The Baal Bone Colliery was granted approval on the 14th of January 2011 for continued underground mining operations with a maximum of 2.8 Mtpa of ROM coal extraction until December 2014. Baal Bone Colliery would therefore be in operation during Year 2 of the Project.

As this is an underground operation including coal processing and rehabilitation (e.g. washing) it is anticipated that dust emissions from this site would be low in comparison to the estimated annual dust emissions from the Coalpac Project in Year 2. Therefore, this mine has not been included in the cumulative assessment for Year 2.

7.3 Estimated Emissions from other Sources

For annual average TSP, PM_{10} and dust deposition the following constant values have been used in the annual average modelling predictions:

- 31.9 μg/m³ for annual average TSP;
- 12.8 μg/m³ for annual average PM₁₀; and
- 0.9 g/m²/month for annual average dust deposition.

The above background values were derived from HVAS PM_{10} measurements and dust deposition monitoring conducted by Coalpac between 2008 and 2009 (see **Section 6.6**). Due to the HVAS monitors proximity to the town of Cullen Bullen, an average of data from these two sites over all years was taken as the background. This is considered conservative as any dust from mining operations from the existing Coalpac operations would be included in these data.

There are 11 Coalpac depositional dust gauges located in and around the Project site (see **Figure 6.2**). As a number of these gauges are located very close to the approved mining operations at Cullen Valley Mine and Invincible Colliery, the two gauges located furthest away from the Project were selected as being most representative of ambient background levels. Dust deposition measurements from gauges Hillcroft and Railway (see **Figure 6.2**) were averaged over all years to produce the background level of 0.9 g/m²/month as above.

No monitored TSP concentration data are available in the vicinity of the Project. However, annual average total suspended particulate (TSP) concentrations can be estimated from the PM_{10} measurements by assuming that 40% of the TSP concentration is PM_{10} . This relationship was obtained from data collected by co-located TSP and PM_{10} monitors operated for reasonably long periods of time in the Hunter Valley (**NSW Minerals Council, 2000**).

8 ASSESSMENT OF IMPACTS

8.1 Assessment Criteria

The air quality criteria used for identifying which properties are likely to experience air quality impacts are those specified in the Approved Methods. These have been applied in the assessment process following the practices used in contemporary approvals for mining projects in NSW.

The criteria are:

- $= 50 \mu g/m^3$ for 24-hour average PM₁₀ for the Project and other sources (excluding natural events);
- 30 μg/m³ for annual average PM₁₀ due to the Project and other sources;
- 90 μg/m³ for annual average TSP concentrations due to the Project alone and other sources;
- 2 g/m²/month for annual average dust deposition (insoluble solids) due to the Project considered alone; and
- 4 g/m²/month for annual average predicted cumulative deposition (insoluble solids) due to the Project and other sources.

Predictions for 24-hour and annual average $PM_{2.5}$ concentrations for the Project are provided in **Appendix D**.

The following sections provide a summary of the affected sensitive receptors and at what stage the effects are predicted to occur during the life of the Project.

8.2 Assessment Approach

Dust concentrations due to mining operations have been presented as isopleth diagrams showing the following:

- 1. Predicted maximum 24-hour average PM₁₀ concentration;
- 2. Predicted annual average PM₁₀ concentration;
- 3. Predicted annual average TSP concentration; and
- 4. Predicted annual average dust deposition.

It is important to note that the isopleth figures are presented to provide a visual representation of the predicted impacts. To produce the isopleths it is necessary to make interpolations, and as a result the isopleths will not always match exactly with predicted impacts at any specific location. The actual predicted impacts at the sensitive receptors are presented in tabular form (see **Section 8**).

The following sections examine predicted 24-hour PM_{10} , Annual average PM_{10} , TSP and dust deposition impacts. A separate cumulative assessment of 24-hour average PM_{10} is provided in **Section 8.3**.

8.2.1 Year 2

Modelling results for Year 2 show results above the annual assessment criteria at sensitive receptors. **Table 8.1** provides a summary of properties predicted to exceed the relevant criteria in Year 2.

Table 8.2 presents a summary of the predicted concentrations at each of the nearby sensitive receptors during Year 2, due to the operations of the Project alone and the Project and all other sources. Predicted exceedances of the criteria at sensitive receptors locations are shown in red text.

Figure 8.1 to **Figure 8.7** show the predicted 24-hour average, annual average PM_{10} , TSP concentrations and dust deposition levels in Year 2 due to the operations of the Project alone and the Project and other sources.

Table 8.1: Summary of receptors predicted to exceed the criteria in Year 2

		-		1		1
Receptor ID	Ownership Details	24-hour PM ₁₀ Mine Alone (µg/m³)	Annual PM ₁₀ Mine & Other Sources (μg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/month)	Annual Dust Deposition Mine & Other Sources (g/m²/month)
169ª	Portland Road Pastoral Co Pty Ltd	62	-	-	-	-
171 ^a	Portland Road Pastoral Co Pty Ltd	64	-	-	-	-
195 ^b	KJ Blackley	191	49	125	3.0	-
196 ^b	Crown-owned	173	45	115	2.7	-
197 ^b	BE & CE Leisemann & IL & KID Follington	402	90	231	7.8	8.7
198 ^b	DA Tilley	199	49	125	3.2	4.1
199 ^b	DA Tilley	136	40	102	2.1	-
217b	Crown-owned	52	-	-	-	-
327	RG Wright & KL Norris	54	-	-	-	-
394	Coalpac	79	-	-	-	-
396	Coalpac	90	-	-	-	-
426	JWJ & SM Taylor	62	-	-	-	-

^a Coalpac-owned

^b Located within Project Boundary

Table 8.2: Year 2 – predicted dust concentration and dust deposition levels due to the Project alone and the Project and other sources

				roject and other	-		
			roject alone			Project and ot	
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (µg/m³)	Annual TSP (µg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (µg/m³)	Annual TSP (µg/m³)	Annual Dust deposition (g/m²/month)
				Assessment criter			
ID	50¹	N/A	N/A	2	30	90	4
0.1	0	1		sitive receptors	12	24	0.0
81 86ª	9 11	1 2	<u>3</u>	0.0 0.1	13 14	34 35	0.9 1.0
87	9	1	3	0.0	13	34	0.9
103	16	2	6	0.1	14	37	1.0
104	21	3	7	0.1	15	38	1.0
106	23	3	9	0.1	15	40	1.0
107	23	3	8	0.1	15	39	1.0
108	24	3	8	0.1	15	39	1.0
109	21	3	8	0.1	15	39	1.0
111A	9	1	3	0.0	13	34	0.9
111B	9	1	3	0.0	13	34	0.9
112	12	2	5	0.1	14	36	1.0
113 114	16 17	3 3	7 7	0.1 0.1	15 15	38 38	1.0 1.0
114	12	2	4	0.1	14	35	1.0
123	18	3	8	0.2	15	39	1.1
139	19	3	9	0.2	15	40	1.1
142	18	4	11	0.3	16	42	1.2
143	15	4	10	0.3	16	41	1.2
144	14	4	9	0.3	16	40	1.2
169 ^b	62	15	39	1.2	27	70	2.1
171 ^b	64	15	39	1.4	27	70	2.3
179 ^c	23	4	11	0.5	16	42	1.4
195 ^c 196 ^{ac}	191	37	94	3.0	49 45	125	3.9
196°°	173 402	33 78	84 200	2.7 7.8	90	115 231	3.6 8.7
197 198 ^c	199	37	94	3.2	49	125	4.1
199°	136	28	71	2.1	40	102	3.0
205	11	3	9	0.3	16	40	1.2
209	13	3	7	0.2	15	38	1.1
210	13	3	8	0.2	15	39	1.1
211	14	3	9	0.3	15	40	1.2
216	42	10	26	0.8	23	58	1.7
217a ^a	46	9	24	0.7	21	55	1.6
217b ^a	52	9	22	0.5	21	53 45	1.4
220 223	21 23	5 5	14 13	0.3 0.3	17 17	45	1.2 1.2
225	23	5	13	0.3	17	44	1.2
227	23	5	13	0.3	17	44	1.2
228	23	5	13	0.3	17	44	1.2
229	23	5	14	0.3	17	45	1.2
230	23	5	14	0.3	17	45	1.2
231	24	5	14	0.3	17	45	1.2
232	24	6	14	0.4	18	45	1.3
235	28	6	15	0.4	18	46	1.3
235 236	30 33	6 6	16 16	0.4	18 18	47 47	1.3
236	28	6	16	0.4 0.4	18	47	1.3 1.3
238	29	6	16	0.4	18	47	1.3
238	32	6	16	0.4	18	47	1.3
239	29	6	16	0.4	18	47	1.3
240	31	6	16	0.4	18	47	1.3
242	31	7	17	0.4	19	48	1.3
243	31	7	17	0.4	19	48	1.3
245	34	7	18	0.4	19	49	1.3
247	26	6	14	0.3	18	45	1.2
248	27	6	14	0.3	18	45 46	1.2
250	28	6	15	0.4	18	46	1.3

 $^{^{1}}$ 50 $\mu g/m^{3}$ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

	Year 2 - Project alone Year 2 - Project and other sources							
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	
				Assessment criter	ia			
ID	50 ¹	N/A	N/A	2	30	90	4	
251	26	6	14	0.3	18	45	1.2	
253	26	6	14	0.4	18	45	1.3	
254 254	27 29	6 6	15 15	0.4 0.4	18 18	46 46	1.3 1.3	
255	29	6	15	0.4	18	46	1.3	
256	32	6	16	0.4	18	47	1.3	
257	34	6	16	0.4	18	47	1.3	
258	49	8	20	0.5	20	51	1.4	
262ª	18	5	12	0.3	17	43	1.2	
263	19	5	12	0.3	17	43	1.2	
264	19	5 5	12	0.3	17 17	43	1.2	
267 268	20 21	5 5	12 13	0.3 0.3	17	43 44	1.2 1.2	
270	19	5	12	0.3	17	43	1.2	
270	19	5	12	0.3	17	43	1.2	
271	21	5	12	0.3	17	43	1.2	
272ª	23	5	13	0.3	17	44	1.2	
272ª	24	5	13	0.3	17	44	1.2	
272ª	24	5	13	0.3	17	44	1.2	
272 ^a 273	24 15	5 4	13 10	0.3 0.2	17 16	44 41	1.2 1.1	
273	15	4	10	0.2	16	41	1.1	
275	15	4	10	0.2	16	41	1.1	
276	16	4	11	0.3	16	42	1.2	
276	16	4	10	0.3	16	41	1.2	
277	16	4	10	0.3	16	41	1.2	
278	16	4	11	0.3	16	42	1.2	
279	17	4	11	0.3	16	42	1.2	
280 281	17 17	4 4	11 11	0.3 0.3	16 16	42 42	1.2 1.2	
283	19	5	12	0.3	17	43	1.2	
284	20	5	12	0.3	17	43	1.2	
285	21	5	12	0.3	17	43	1.2	
288	22	5	13	0.3	17	44	1.2	
289	23	5	13	0.3	17	44	1.2	
291	27	6	14	0.3	18	45	1.2	
296 297	30 30	6 6	15 15	0.3 0.3	18 18	46 46	1.2 1.2	
297	30	6	15	0.3	18	46	1.3	
301	33	6	16	0.4	18	47	1.3	
302	33	6	16	0.4	18	47	1.3	
304	33	6	16	0.4	18	47	1.3	
305	34	6	16	0.4	18	47	1.3	
306	36	6	16	0.4	18	47	1.3	
308	36	7	17	0.4	19	48	1.3	
309 311	36 42	7	17 18	0.4 0.4	19 19	48 49	1.3 1.3	
312	42	7	18	0.4	19	49	1.3	
313	41	7	18	0.4	19	49	1.3	
314	43	7	19	0.4	19	50	1.3	
315	28	6	14	0.3	18	45	1.2	
315	30	6	15	0.3	18	46	1.2	
316	27	5	14	0.3	17	45	1.2	
317 318	26 27	5 5	14 14	0.3 0.3	17 17	45 45	1.2 1.2	
318	33	6	16	0.3	18	45 47	1.2	
325	44	7	19	0.4	19	50	1.3	
326	49	8	20	0.4	20	51	1.3	
327	54	9	22	0.5	21	53	1.4	
328	14	4	9	0.2	16	40	1.1	
329	14	4	9	0.2	16	40	1.1	
330	13	3	9	0.2	15	40	1.1	
331 332	12 12	3	8 8	0.2 0.2	15 15	39 39	1.1 1.1	
332	12	3	8 8	0.2	15	39	1.1	
335	12	3	8	0.2	15	39	1.1	
342	12	3	8	0.2	15	39	1.1	

		Year 2 – Pi	roject alone		Year 2 -	- Project and other sources		
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (µg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (µg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	
				Assessment criter	ria			
ID	50 ¹	N/A	N/A	2	30	90	4	
343	12	3	8	0.2	15	39	1.1	
344	12	3	8	0.2	15	39	1.1	
345	13	3	8	0.2	15	39	1.1	
347	13	3	9	0.2	15	40	1.1	
349	19	4	10	0.2	16	41	1.1	
350	14	4	9	0.2	16	40	1.1	
350	15	4	10	0.2	16	41	1.1	
350	15	4	10	0.2	16	41	1.1	
350	16	4	10	0.2	16	41	1.1	
350	16	4	10	0.2	16	41	1.1	
352	17	4	11	0.3	16	42	1.2	
352	19	4	11	0.3	16	42	1.2	
353	17	4	10	0.2	16	41	1.1	
354	17	4	10	0.2	16	41	1.1	
355	17	4	10	0.2	16	41	1.1	
356	17	4	10	0.2	16	41	1.1	
357	16	4	10	0.2	16	41	1.1	
358	16	4	10	0.2	16	41	1.1	
360ª	28	5	14	0.3	17	45	1.2	
364	21	5	13	0.3	18	45	1.2	
367	17	3	9	0.2	16	41	1.1	
368	28	5	13	0.2	18	45	1.1	
372	14	3	8	0.2	16	40	1.1	
373	17	3	9	0.2	15	40	1.1	
383	24	4	11	0.2	17	43	1.1	
384	22	4	11	0.2	17	43	1.1	
385	22	4	11	0.2	17	43	1.1	
386	26	4	11	0.2	17	43	1.1	
388	14	3	8	0.1	15	39	1.0	
391	15	3	8	0.2	16	40	1.1	
392	22	6	14	0.3	18	45	1.2	
393 ^b	35	7	19	0.4	19	50	1.3	
394 ^b	79	13	34	0.6	25	65	1.5	
396 ^b	90	18	47	1.6	30	78	2.5	
401	22	4	11	0.2	17	43	1.1	
403	21	4	10	0.2	17	42	1.1	
404	20	4	9	0.1	16	41	1.0	
405	20	4	10	0.1	17	42	1.0	
406	15	3	8	0.1	16	40	1.0	
407	16	3	8	0.1	16	40	1.0	
408	15	3	8	0.1	16	40	1.0	
410	20	4	10	0.1	17	42	1.1	
419	24	4	10	0.1	17	42	1.0	
419	23	4	10	0.1	17	42	1.0	
421	24	4	11	0.2	17	43	1.1	
426	62	8	19	0.3	20	50	1.2	

a Crown-owned
Coalpac-owned
Located within Project Boundary

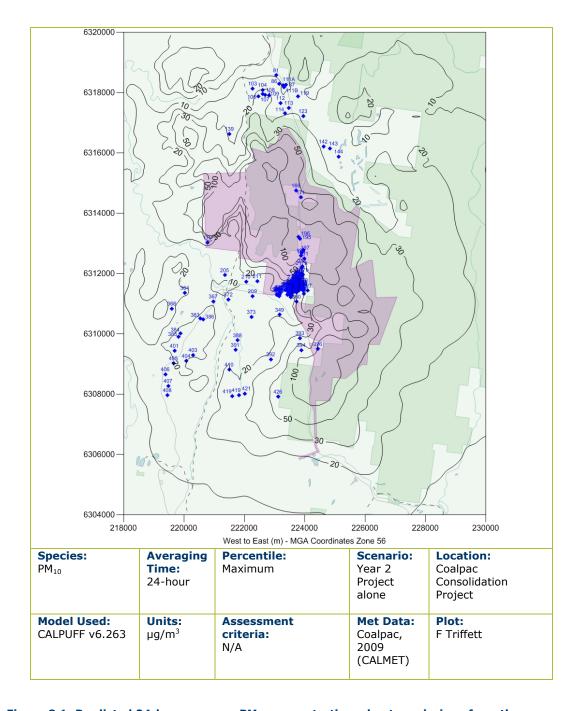


Figure 8.1: Predicted 24-hour average PM_{10} concentrations due to emissions from the Project alone in Year 2

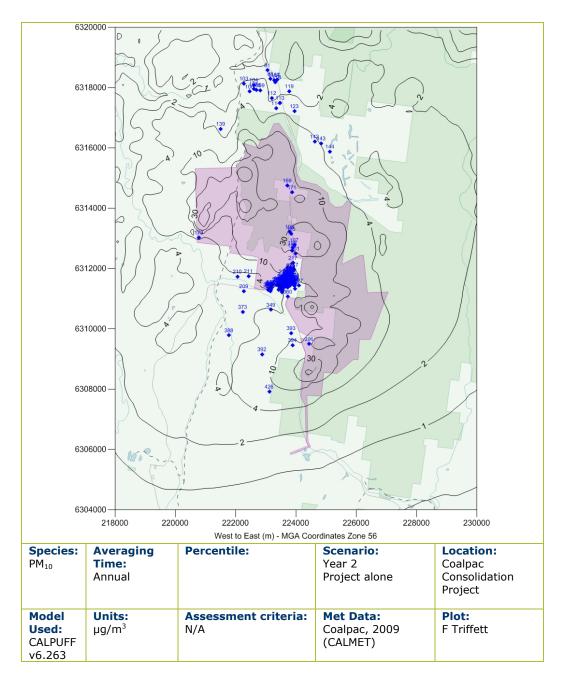


Figure 8.2: Predicted annual average PM₁₀ concentrations due to emissions from the Project alone in Year 2

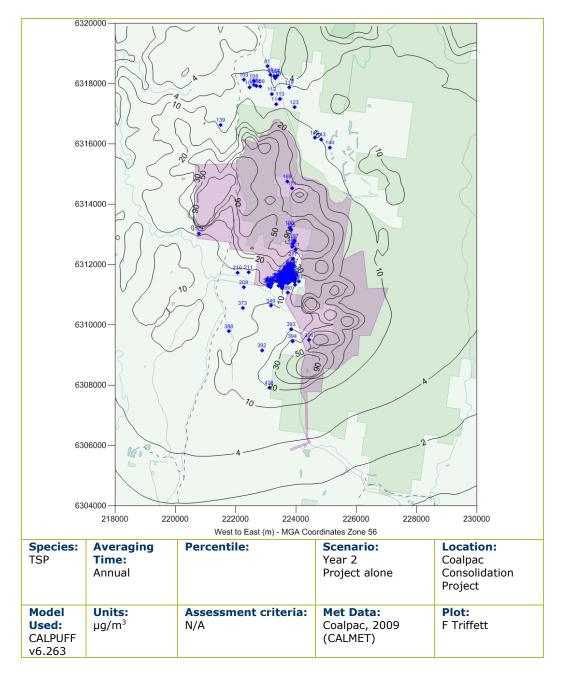


Figure 8.3: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 2

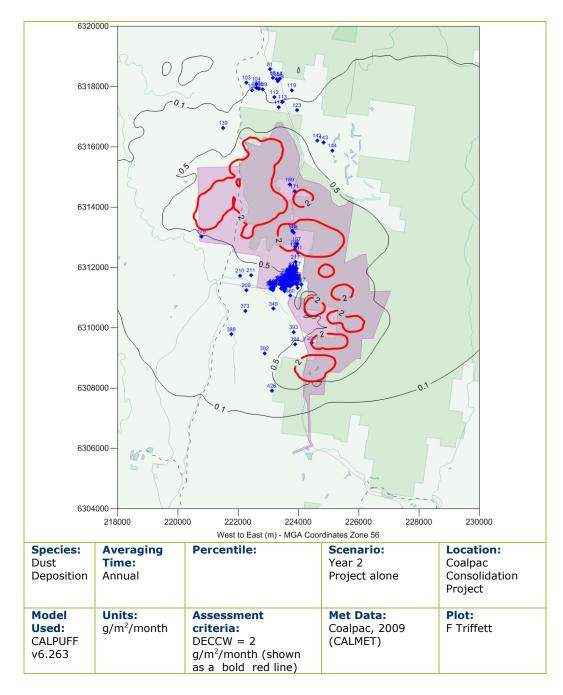


Figure 8.4: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 2

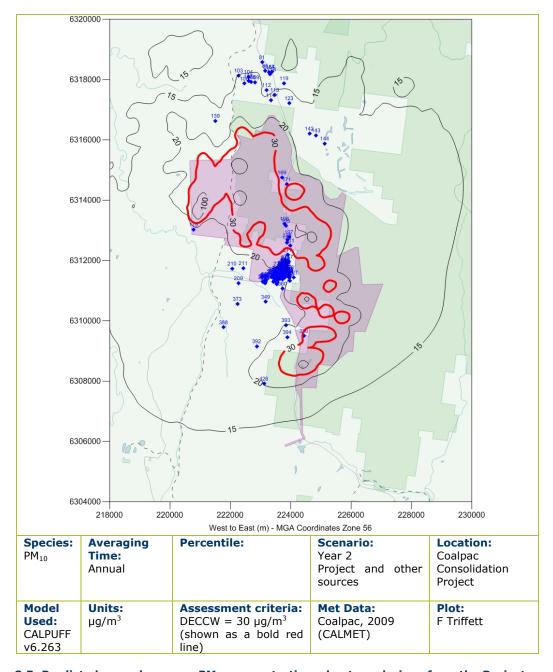


Figure 8.5: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 2

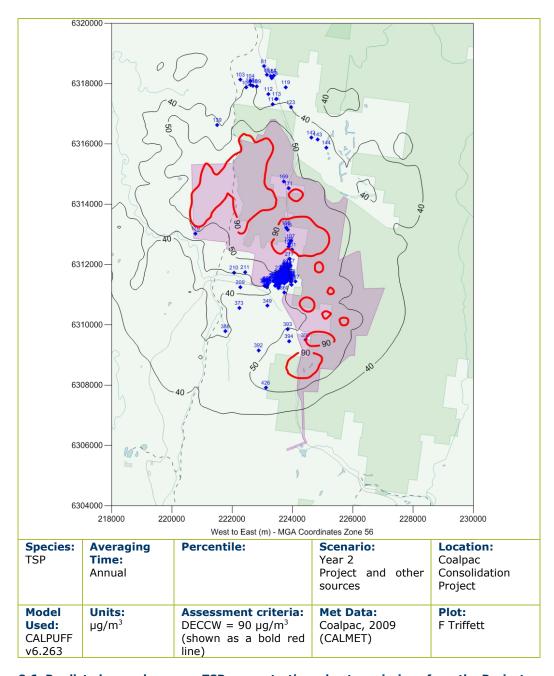


Figure 8.6: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 2

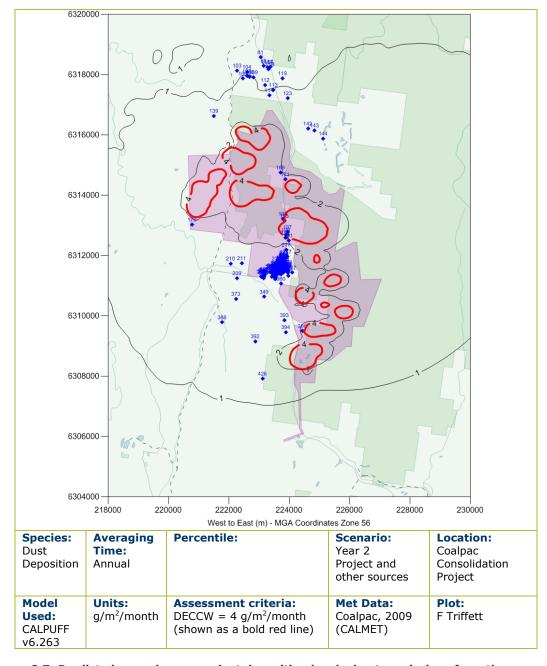


Figure 8.7: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 2

Air Quality Impact Assessment

8.2.2 Year 8

Modelling results for Year 8 show exceedances of the 24-hour PM_{10} and annual criteria at some sensitive receptors. **Table 8.3** provides a summary of the properties predicted to exceed the relevant criteria in Year 8.

Table 8.4 presents a summary of the Year 8 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources. Predicted exceedances of the criteria at sensitive receptor locations are shown in red text.

Figure 8.8 to **Figure 8.14** show the predicted 24-hour average, annual average PM₁₀, TSP concentrations and dust deposition levels in Year 8 due to the operations of the Project alone and the Project and other sources.

Table 8.3: Summary of receptors predicted to exceed the criteria in Year 8

Receptor ID	Ownership Details	24-hour PM ₁₀ Mine Alone (µg/m³)	Annual PM ₁₀ Mine & Other Sources (µg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/month)	Annual Dust Deposition Mine & Other Sources (g/m²/month)
169ª	Portland Road Pastoral Co Pty Ltd	88	33	-	-	-
171 ^a	Portland Road Pastoral Co Pty Ltd	65	33	-	3.5	4.4
195 ^b	KJ Blackley	141	48	123	3	-
196 ^b	Crown-owned	160	49	126	3	-
197 ^b	BE & CE Leisemann & IL & Kid Follington	64	31	-	-	-
198 ^b	DA Tilley	56	-	-	-	-
199 ^b	DA Tilley	53	-	-	-	-
394 ^a	Coalpac	64	-	-	-	-
396ª	Coalpac	74	-	-	-	-
426	JWJ & SM Taylor	53	-	-	-	-

^a Coalpac-owned

b Located within Project Boundary

Table 8.4: Year 8 – predicted PM_{10} and TSP concentrations and dust deposition levels due to the Project alone and the Project and other sources

	Year 8 - Project alone Year 8 - Project and other sources									
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)			
				Assessment criter						
ID	50¹	N/A	N/A	2	30	90	4			
81	10	1	3	o.0	13	34	0.9			
86ª	11	1	4	0.1	13	35	1.0			
87	9	1	3	0.0	13	34	0.9			
103	17	2	5	0.1	14	36	1.0			
104	18	2	6	0.1	14	37	1.0			
106	20	3	7	0.1	15	38	1.0			
107	19	3	7	0.1	15	38	1.0			
108	19	3	7	0.1	15	38	1.0			
109	18	3	6	0.1	15	37	1.0			
111A	10	1	3	0.0	13	34	0.9			
111B	10	1	<u>3</u> 5	0.0	13 14	34 36	0.9			
112 113	13 14	2	6	0.1 0.1	14	36	1.0			
113	15	3	6	0.1	15	37	1.0			
119	11	2	4	0.1	14	35	1.0			
123	18	3	7	0.1	15	38	1.0			
139	19	3	8	0.2	15	39	1.1			
142	19	4	11	0.3	16	42	1.2			
143	18	4	10	0.2	16	41	1.1			
144	19	4	10	0.3	16	41	1.2			
169 ^b	88	21	55	1.5	33	86	2.4			
171 ^b	65	21	54	3.5	33	85	4.4			
179°	12	3	8	0.2	15	39	1.1			
195 ^c 196 ^{ac}	141 160	36 37	92 95	3.0 3.0	48 49	123 126	3.9 3.9			
196°	64	19	48	1.8	31	79	2.7			
197 198 ^c	56	15	38	1.3	27	69	2.2			
199°	53	14	35	1.1	26	66	2.0			
205	12	3	9	0.2	16	41	1.1			
209	14	3	7	0.2	15	38	1.1			
210	13	3	8	0.2	15	39	1.1			
211	16	3	9	0.2	15	40	1.1			
216	38	8	21	0.6	21	53	1.5			
217a ^a	37	8	20	0.5	20	51	1.4			
217b ^a	35	7	17	0.4	19 17	48	1.3			
220 223	27 25	5 5	13 12	0.3 0.3	17	44 43	1.2 1.2			
225	25	5	12	0.3	17	43	1.2			
227	25	5	12	0.3	17	43	1.2			
228	25	5	12	0.3	17	43	1.2			
229	26	5	13	0.3	17	44	1.2			
230	26	5	13	0.3	17	44	1.2			
231	26	5	13	0.3	17	44	1.2			
232	26	5	13	0.3	17	44	1.2			
235	28	5	14	0.3	17	45 45	1.2			
235 236	28 29	5	14 14	0.3	17	45 45	1.2			
236	29	6 5	14	0.3 0.3	18 17	45 45	1.2 1.2			
238	28	5	14	0.3	17	45	1.2			
238	29	6	14	0.3	18	45	1.2			
239	29	6	14	0.3	18	45	1.2			
240	29	6	14	0.3	18	45	1.2			
242	29	6	15	0.3	18	46	1.2			
243	30	6	15	0.3	18	46	1.2			
245	31	6	15	0.4	18	46	1.3			
247	26	5	13	0.3	17	44	1.2			
248	26	5	13	0.3	17	44	1.2			
250	27	5	13	0.3	17	44	1.2			

 $^{^{1}}$ 50 $\mu g/m^{3}$ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

				Year 8 - Project and other so			
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)
ID	50 ¹	N/A	N/A	Assessment criter 2	30	90	4
251	26	5	13	0.3	17	44	1.2
253	27	5	13	0.3	17	44	1.2
254	27	5	13	0.3	17	44	1.2
254	27	5	13	0.3	17	44	1.2
255	27	5	13	0.3	17	44	1.2
256	29	5	14	0.3	17	45	1.2
257	29	5	14	0.3	17	45	1.2
258 262 ^a	36 23	6 4	16 11	0.4	18 16	47 42	1.3 1.1
263	23	4	11	0.2	16	42	1.1
264	23	4	11	0.2	16	42	1.1
267	24	5	12	0.2	17	43	1.1
268	24	5	12	0.2	17	43	1.1
270	23	4	11	0.2	16	42	1.1
270	23	4	11	0.2	16	42	1.1
271	24	4	11	0.2	16	42	1.1
272ª	25	5	12	0.3	17	43	1.2
272ª	25	5	12	0.3	17	43	1.2
272ª	25	5	12	0.3	17	43	1.2
272ª	25 20	5 4	12 10	0.3 0.2	17 16	43 41	1.2
273 273	20	4	10	0.2	16	41	1.1 1.1
275	20	4	10	0.2	16	41	1.1
276	21	4	10	0.2	16	41	1.1
276	21	4	10	0.2	16	41	1.1
277	21	4	10	0.2	16	41	1.1
278	21	4	10	0.2	16	41	1.1
279	21	4	10	0.2	16	41	1.1
280	21	4	10	0.2	16	41	1.1
281	21	4	10	0.2	16	41	1.1
283	22	4	11	0.2	16	42	1.1
284 285	23 23	4	11 11	0.2 0.2	16 16	42 42	1.1
288	24	4	11	0.2	16	42	1.1 1.1
289	25	5	12	0.2	17	43	1.1
291	26	5	13	0.3	17	44	1.2
296	28	5	13	0.3	17	44	1.2
297	28	5	13	0.3	17	44	1.2
298	28	5	13	0.3	17	44	1.2
301	28	5	13	0.3	17	44	1.2
302	29	5	13	0.3	17	44	1.2
304	29	5	13	0.3	17	44	1.2
305	29	5	13	0.3	17	44	1.2
306	30 30	5 5	14 14	0.3	17	45 45	1.2
308 309	30	5	14	0.3	17 17	45 45	1.2 1.2
311	33	6	15	0.3 0.3	18	46	1.2
312	33	6	15	0.3	18	46	1.2
313	33	6	15	0.3	18	46	1.2
314	34	6	15	0.3	18	46	1.2
315	27	5	12	0.3	17	43	1.2
315	28	5	13	0.3	17	44	1.2
316	26	5	12	0.3	17	43	1.2
317	26	5	12	0.3	17	43	1.2
318	26	5	12 13	0.3	17 17	43	1.2
321 325	29 35	5 6	15	0.3 0.3	17	44 46	1.2 1.2
326	40	6	16	0.4	18	47	1.3
327	45	7	18	0.4	19	49	1.3
328	20	4	9	0.2	16	40	1.1
329	19	4	9	0.2	16	40	1.1
330	18	3	9	0.2	15	40	1.1
	17	3	8	0.2	15	39	1.1
331			_	0.2	4.5	39	4.4
332	17	3	8	0.2	15		1.1
	17 17 16	3 3 3	8 8 8	0.2 0.2 0.2	15 15 15	39 39 39	1.1 1.1 1.1

		Year 8 – Pi	roject alone		Year 8 -	Project and ot	her sources
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (µg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)
				Assessment criter			
ID	50 ¹	N/A	N/A	2	30	90	4
343	17	3	8	0.2	15	39	1.1
344	17	3	8	0.2	15	39	1.1
345	18	3	8	0.2	15	39	1.1
347	19	3	9	0.2	15	40	1.1
349	20	4	10	0.2	16	41	1.1
350	19	4	9	0.2	16	40	1.1
350	19	4	9	0.2	16	40	1.1
350	19	4	9	0.2	16	40	1.1
350	20	4	10	0.2	16	41	1.1
350	20	4	10	0.2	16	41	1.1
352	21	4	10	0.2	16	41	1.1
352	22	4	11	0.2	16	42	1.1
353	20	4	10	0.2	16	41	1.1
354	20	4	10	0.2	16	41	1.1
355	20	4	10	0.2	16	41	1.1
356	20	4	10	0.2	16	41	1.1
357	19	4	9	0.2	16	40	1.1
358	13	4	9	0.2	16	41	1.1
360ª	12	3	8	0.2	16	40	1.1
364	16	4	10	0.2	17	42	1.1
367	13	3	7	0.2	16	39	1.1
368	14	3	9	0.2	16	41	1.1
372	15	3	8	0.1	16	40	1.0
373	15	3	9	0.1	16	41	1.0
383	15	3	9	0.2	16	41	1.1
384	19	4	9	0.2	16	40	1.1
385	26	5	12	0.2	17	43	1.2
386	17	3	8	0.3	15	39	1.1
		3	7		15		
388	12			0.1		38	1.0
391	14	3	8	0.2	16	40	1.1
392	21	5	12	0.3	17	43	1.2
393 ^b	31	7	18	0.4	19	49	1.3
394 ^b	64	13	34	0.7	25	65	1.6
396 ^b	74	18	47	1.5	30	78	2.4
401	17	4	9	0.1	17	41	1.0
403	14	3	8	0.1	16	40	1.0
404	14	3	8	0.1	16	40	1.0
405	15	3	8	0.1	16	40	1.0
406	13	3	7	0.2	16	39	1.1
407	13	3	7	0.1	16	39	1.0
408	12	3	7	0.1	16	39	1.0
410	18	4	9	0.2	17	41	1.1
419	20	3	9	0.1	16	41	1.0
419	21	3	8	0.1	16	40	1.0
421	22	4	9	0.1	17	41	1.0
426	53	5	14	0.2	17	45	1.1

a Crown-owned
Coalpac-owned
Located within Project Boundary

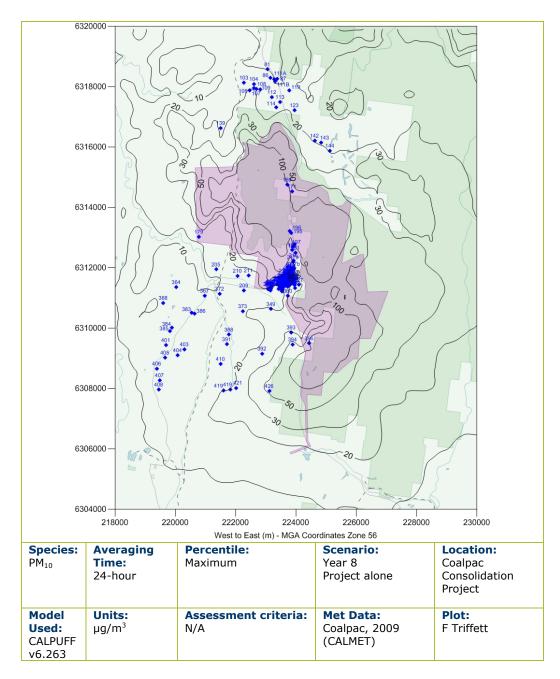


Figure 8.8: Predicted 24-hour average PM_{10} concentrations due to emissions from the Project alone in Year 8

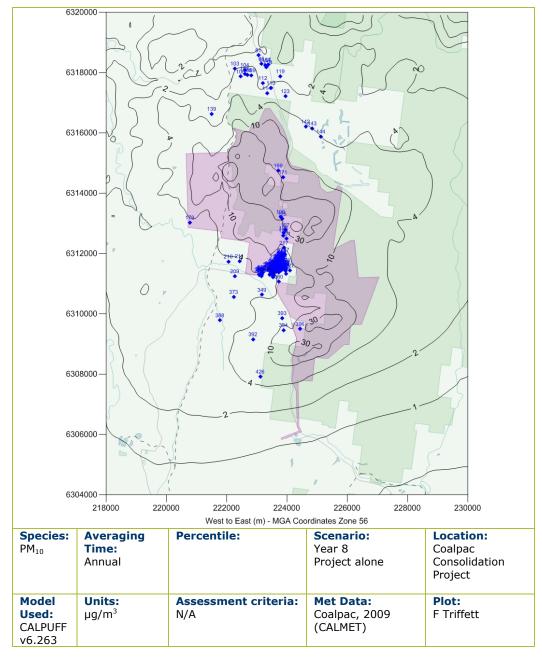


Figure 8.9: Predicted annual average PM_{10} concentrations due to emissions from the Project alone in Year 8

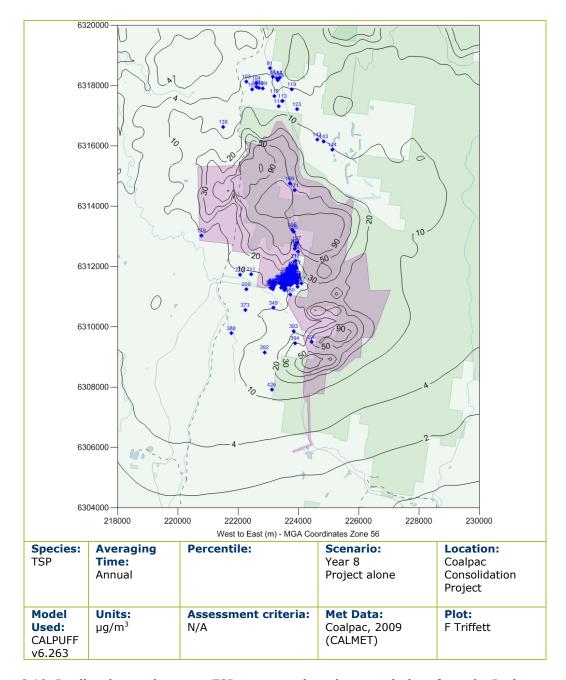


Figure 8.10: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 8

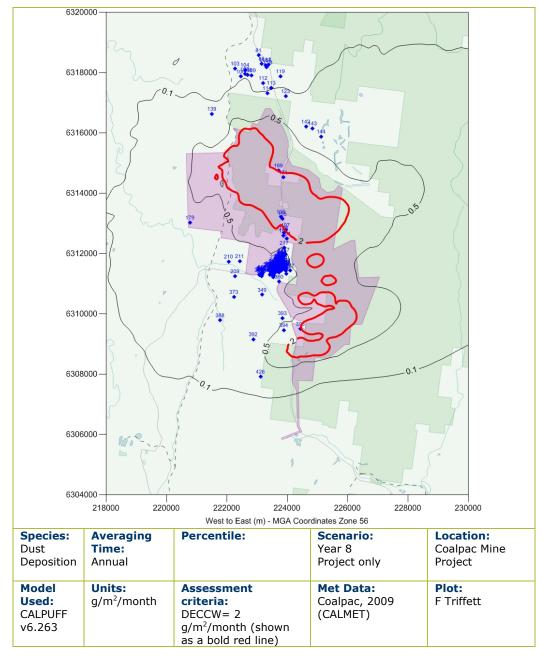


Figure 8.11: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 8

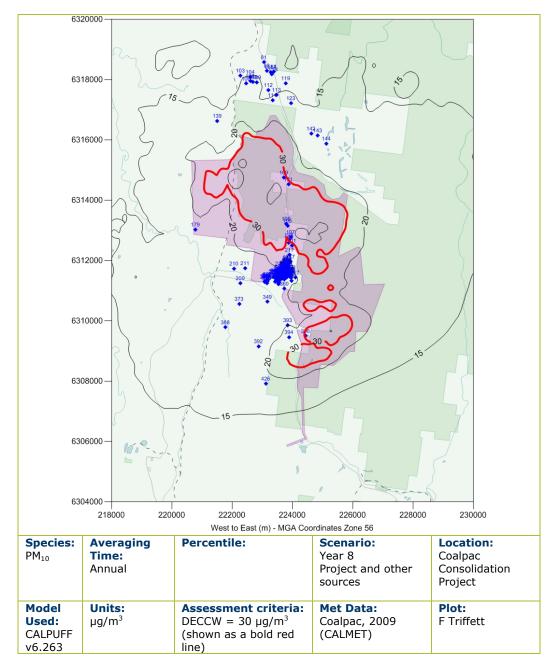


Figure 8.12: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 8

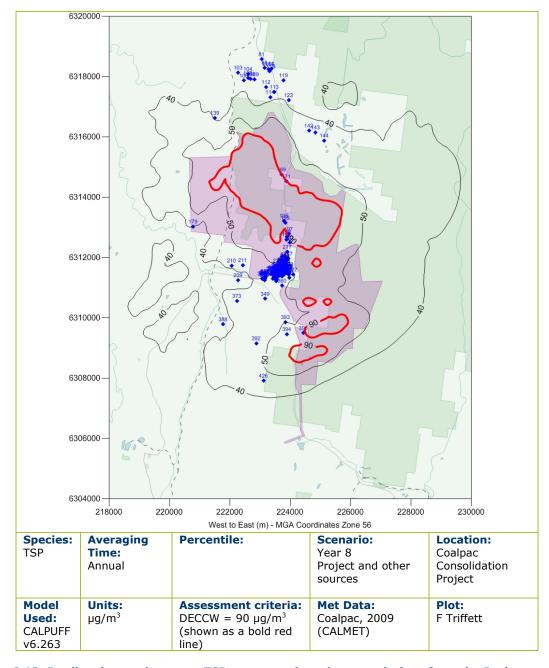


Figure 8.13: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 8

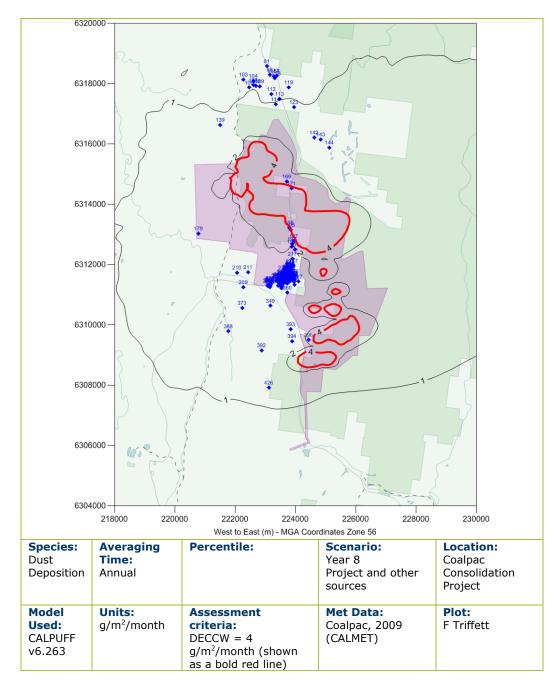


Figure 8.14: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 8

8.2.3 Year 14

Modelling results for Year 14 show exceedances of the 24-hour PM_{10} and annual criteria at some sensitive receptors. **Table 8.5** provides a summary of properties predicted to exceed the relevant criteria in Year 14.

Table 8.6 presents a summary of the Year 14 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources.

Figure 8.15 to **Figure 8.21** show the predicted 24-hour average, annual average PM_{10} , TSP concentrations and dust deposition levels in Year 14 due to the operations of the Project alone and the Project and other sources.

Table 8.5: Summary of receptors predicted to exceed the criteria in Year 14

Receptor ID	Ownership Details	24-hour PM ₁₀ Mine Alone (µg/m³)	Annual PM ₁₀ Mine & Other Sources (µg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/month)	Annual Dust Deposition Mine & Other Sources (g/m²/month)
169ª	Portland Road Pastoral Co Pty Ltd	119	42	109	2.3	
171 ^a	Portland Road Pastoral Co Pty Ltd	120	45	114	3.6	4.5
195 ^b	KJ Blackley	160	56	145	4.3	5.2
196 ^b	Crown-owned	150	52	133	3.6	4.5
197 ^b	BE & CE Leisemann & IL & Kid Follington	65	-	-	-	-
198 ^b	DA Tilley	59	-	-	-	-
199 ^b	DA Tilley	60	-	-	-	-
394ª	Coalpac	63	-	-	-	-
396ª	Coalpac	58	-	-	-	-

^a Coalpac-owned

^b Located within Project Boundary

Table 8.6: Year 14 – predicted PM₁₀ and TSP concentrations and dust deposition levels due to the Project alone and the Project and other sources

	uue		roject alone	the Project and		Project and o	ther sources
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Dust deposition (g/m²/month)
				Assessment criter			
ID	50 ¹	N/A	N/A	2	30	90	4
0.4	10	-		sitive receptors	10	25	0.0
81	12	1	4	0.0	13	35	0.9
86ª	15	2	5	0.1	14	36	1.0
87	12 21	2 2	<u>4</u> 6	0.1	14 14	35 37	1.0
103 104	23	3	7	0.1 0.1	15	38	1.0 1.0
104	26	3	8	0.1	15	39	1.0
107	25	3	8	0.1	15	39	1.0
107	25	3	8	0.1	15	39	1.0
109	23	3	8	0.1	15	39	1.0
111A	16	2	6	0.1	14	37	1.0
111B	18	3	7	0.1	15	38	1.0
1112	12	2	4	0.1	14	35	1.0
113	12	1	4	0.1	13	35	1.0
114	19	3	8	0.1	15	39	1.0
119	15	2	5	0.1	14	36	1.0
123	21	3	9	0.2	15	40	1.1
139	21	4	9	0.2	16	40	1.1
142	24	5	13	0.3	17	44	1.2
143	22	5	12	0.3	17	43	1.2
144	21	5	12	0.3	17	43	1.2
169 ^b	119	30	78	2.3	42	109	3.2
171 ^b	120	33	83	3.6	45	114	4.5
179 ^c	16	4	11	0.2	16	42	1.1
195°	160	44	114	4.3	56	145	5.2
196 ^{ac}	150	40	102	3.6	52	133	4.5
197 ^c	65	15	39	1.1	27	70	2.0
198 ^c	59	13	34	0.9	25	65	1.8
199 ^c	60	13	33	0.8	25	64	1.7
205	16	4	9	0.2	16	41	1.1
209	14	3	8	0.2	15	39	1.1
210	14	3	8	0.2	15	39	1.1
211	17	4	9	0.2	16	40	1.1
216	46	8	26	0.5	21	53	1.4
217a ^a	46	8	20	0.5	20	51	1.4
217b ^a	46	8	20	0.5	20	51	1.4
220	33	6	14	0.3	18	45	1.2
223	32	5	14	0.3	17	45	1.2
225	32	5	14	0.3	17	45	1.2
227	32	5	14	0.3	17	45	1.2
228	32	6	14	0.3	18	45	1.2
229	32	6	14	0.3	18	45	1.2
230	33	6	14	0.3	18	45	1.2
231	33	6	14	0.3	18	45	1.2
232	33	6	15	0.3	18	46	1.2
235	36	6	16	0.4	18	47	1.3
235	36	6	16	0.4	18	47	1.3
236	37	6	16	0.4	18	47	1.3
237	36	6	16	0.4	18	47	1.3
238	36	6	16	0.4	18	47 47	1.3
238	37	6	16	0.4	18		1.3
239	36	6	16	0.4	18	47	1.3
240	37	6	16	0.4	18	47	1.3
242	37	6	16	0.4	18	47	1.3
243	38	6	17	0.4	18	48	1.3
245 247	39 34	7	17 15	0.4 0.3	19 18	48 46	1.3
247	34	6 6	15	0.3	18	46	1.2
250	35	6	15	0.3	18	46	1.2 1.3
230	33	U	13	0.4	10	40	1.3

 $^{^{1}}$ 50 $\mu g/m^{3}$ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

		Year 14 - Project alone Year 14 - Project and other sour							
10				_	deposition		_	Dust deposition (g/m²/month)	
251					The state of the s				
253								¥	
254					•				
254									
255									
256									
258									
262' 28	257	37	6	16	0.4	18	47	1.3	
263 29	258	45	8	20	0.5	20	51	1.4	
264	262ª	28		12	0.3	17	43	1.2	
267 30 5 13 0.3 17 44 1.2									
268 30					•				
270					•				
270									
271									
272° 32									
272° 32									
272° 32									
1272 32									
273 25									
273 25									
276 26 4 11 0.3 16 42 1.2 276 26 4 11 0.3 16 42 1.2 277 26 4 11 0.3 16 42 1.2 278 26 4 11 0.3 16 42 1.2 280 26 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 281 29 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32	273	25	4	11	0.2	16	42	1.1	
276	275	25	4	11	0.2	16	42	1.1	
277 26 4 11 0.3 16 42 1.2 278 26 4 11 0.3 16 42 1.2 280 26 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 283 28 5 12 0.3 17 43 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 296 35 6 16 0.4 18 47 1.3 297 36		26	4	11	0.3	16	42	1.2	
278 26 4 11 0.3 16 42 1.2 279 26 4 11 0.3 16 42 1.2 280 26 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 283 28 5 12 0.3 17 43 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 296 35 6 16 0.4 18 47 1.3 297 36	276	26	4	11	0.3	16	42	1.2	
279 26 4 11 0.3 16 42 1.2 280 26 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 283 28 5 12 0.3 17 43 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 44 1.2 2991 34 6 15 0.3 18 46 1.2 2996 35 6 16 0.4 18 47 1.3 2997 36 6 16 0.4 18 47 1.3 299 36									
280 26 5 12 0.3 17 43 1.2 281 27 5 12 0.3 17 43 1.2 283 28 5 12 0.3 17 43 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 291 34 6 15 0.3 18 46 1.2 291 34 6 16 0.4 18 47 1.3 292 35 6 16 0.4 18 47 1.3 301 37									
281 27 5 12 0.3 17 43 1.2 283 28 5 12 0.3 17 44 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37									
283 28 5 12 0.3 17 43 1.2 284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 44 1.2 299 32 5 14 0.3 17 45 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 305 37									
284 29 5 13 0.3 17 44 1.2 285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37									
285 30 5 13 0.3 17 44 1.2 288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 16 0.4 18 47 1.3 305 37									
288 31 5 13 0.3 17 44 1.2 289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 16 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38									
289 32 5 14 0.3 17 45 1.2 291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 19 48 1.3 306 38 7 17 0.4 19 48 1.3 309 38									
291 34 6 15 0.3 18 46 1.2 296 35 6 16 0.4 18 47 1.3 297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 47 1.3 305 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 311 42									
297 36 6 16 0.4 18 47 1.3 298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 310 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42									
298 36 6 16 0.4 18 47 1.3 301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 312 42	296	35	6	16	0.4	18	47	1.3	
301 37 6 16 0.4 18 47 1.3 302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 50 1.4 314 42	297	36	6	16	0.4	18	47	1.3	
302 37 6 16 0.4 18 47 1.3 304 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 50 1.4 314 42 7 19 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34	298	36	6	16	0.4	18	47	1.3	
304 37 6 16 0.4 18 47 1.3 305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 314 42									
305 37 6 17 0.4 18 48 1.3 306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 50 1.4 314 42 7 19 0.5 19 50 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34									
306 38 7 17 0.4 19 48 1.3 308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33		37		16	0.4	18			
308 38 7 17 0.4 19 48 1.3 309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 46 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 46 1.2 318 34 6 15 0.3 18 46 1.2 318 34			6	1/	0.4	18			
309 38 7 17 0.4 19 48 1.3 311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 45 1.2 318 34 6 15 0.3 18 47 1.3 321 37									
311 42 7 19 0.5 19 50 1.4 312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 312 37 6 16 0.4 18 47 1.3 321 37 6 16 0.4 18 47 1.3 325 43		30 38		17	0.4 0.4	19			
312 42 7 19 0.5 19 50 1.4 313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 46 1.2 318 34 6 15 0.3 18 46 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47									
313 41 7 18 0.5 19 49 1.4 314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23		42		19	0.5	19			
314 42 7 19 0.5 19 50 1.4 315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 330 21					0.5				
315 34 6 15 0.4 18 46 1.3 315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20	314	42		19	0.5	19			
315 36 6 16 0.4 18 47 1.3 316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 333 20					0.4				
316 34 6 15 0.3 18 46 1.2 317 33 6 14 0.3 18 45 1.2 318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20	315	36	6	16	0.4	18	47	1.3	
318 34 6 15 0.3 18 46 1.2 321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1	316	34		15	0.3	18	46	1.2	
321 37 6 16 0.4 18 47 1.3 325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1				14	0.3	18		1.2	
325 43 8 19 0.5 20 50 1.4 326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1					0.3				
326 47 8 21 0.5 20 52 1.4 327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1					0.4				
327 50 9 23 0.6 21 54 1.5 328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1		43		19					
328 23 4 10 0.2 16 41 1.1 329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1									
329 22 4 10 0.2 16 41 1.1 330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1		50			0.6				
330 21 4 10 0.2 16 41 1.1 331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1					0.2				
331 20 4 9 0.2 16 40 1.1 332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1		24			0.2	16			
332 20 4 9 0.2 16 40 1.1 333 20 4 9 0.2 16 40 1.1		20							
333 20 4 9 0.2 16 40 1.1									
335 20 4 9 0.2 16 40 1.1				9					

		Year 14 – P	roject alone	Year 14 - Project and other sources								
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Dust deposition (g/m²/month)					
	Assessment criteria											
ID	50 ¹	N/A	N/A	2	30	90	4					
342	19	4	9	0.2	16	40	1.1					
343	19	4	9	0.2	16	40	1.1					
344	20	4	9	0.2	16	40	1.1					
345	21	4	9	0.2	16	40	1.1					
347	22	4	10	0.2	16	41	1.1					
349	25	4	11	0.2	16	42	1.1					
350	23	4	10	0.2	16	41	1.1					
350	23	4	11	0.2	16	42	1.1					
350	24	4	11	0.3	16	42	1.2					
350	24	4	11	0.3	16	42	1.2					
350	25	4	11	0.3	16	42	1.2					
352	26	5	12	0.3	17	43	1.2					
352	28	5	12	0.3	17	43	1.2					
353	25	4	11	0.3	16	42	1.2					
354	25	4	11	0.3	16	42	1.2					
355	25	4	11	0.3	16	42	1.2					
356	25	4	11	0.3	16	42	1.2					
357	24	4	11	0.3	16	42	1.2					
358	24	4	11	0.3	16	42	1.2					
360°	33	6	15	0.4	18	46	1.3					
364	19	4	13	0.2	17	42	1.1					
367	15	3	9	0.2	16	40	1.1					
368	20	4	13	0.2	17	42	1.1					
372	13	3	8	0.2	16	40	1.1					
373	19	4	9	0.2	16	40	1.1					
383	17	4	11	0.2	17	41	1.1					
384	17	4	11	0.1	17	41	1.0					
385	18	4	11	0.1	17	41	1.0					
386	17	4	11	0.2	17	41	1.1					
388	14	3	7	0.1	15	38	1.0					
391	16	3	8	0.2	16	40	1.1					
392	24	5	12	0.2	17	43	1.1					
393 ^b	35	7	17	0.4	19	48	1.3					
394 ^b	63	11	28	0.5	23	59	1.4					
396 ^b	58	15	38	1.7	27	69	2.6					
401	22	4	11	0.1	17	42	1.0					
403	16	3	10	0.1	16	41	1.0					
404	15	3	9	0.1	16	40	1.0					
405	17	3	10	0.1	16	41	1.0					
406	14	3	8	0.1	16	39	1.0					
407	14	3	8	0.1	16	39	1.0					
408	14	3	8	0.1	16	39	1.0					
410	18	4	10	0.1	17	41	1.0					
419	19	3	10	0.1	16	41	1.0					
419	18	3	10	0.1	16	40	1.0					
421	19	3	11	0.1	16	41	1.0					
426	45	6	14	0.2	18	45	1.1					

a Crown-owned
Coalpac-owned
Located within Project Boundary

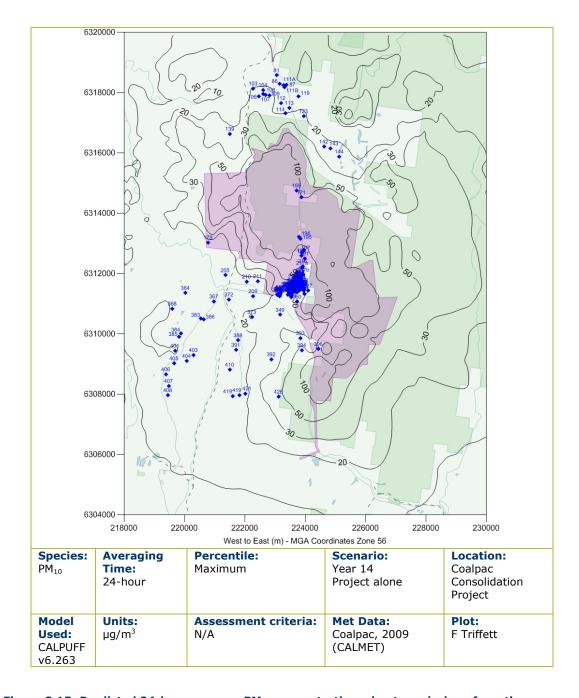


Figure 8.15: Predicted 24-hour average PM_{10} concentrations due to emissions from the Project alone in Year 14

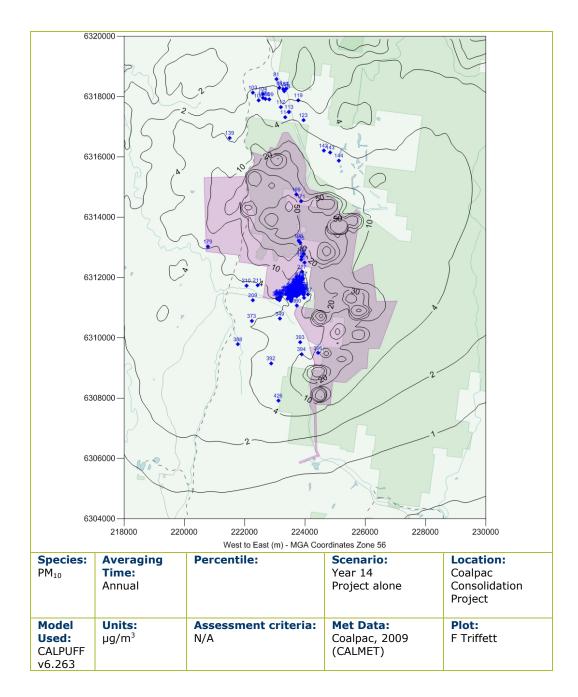


Figure 8.16: Predicted annual average PM₁₀ concentrations due to emissions from the Project alone in Year 14

Figure 8.17: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 14

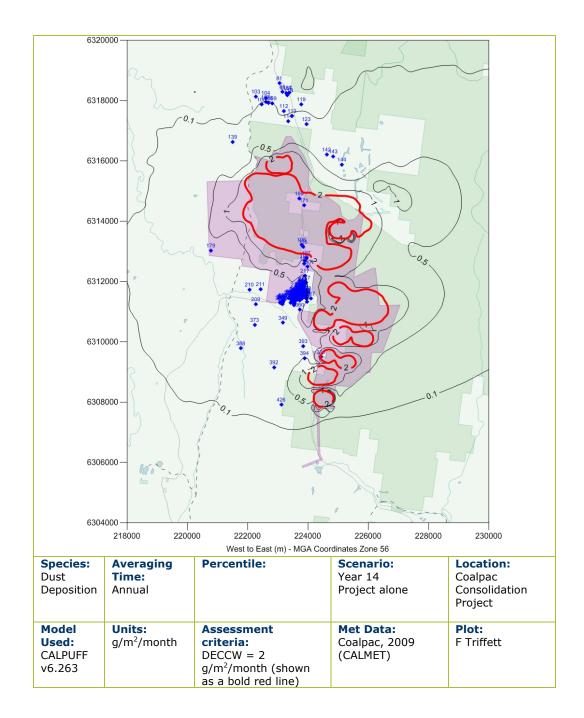


Figure 8.18: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 14

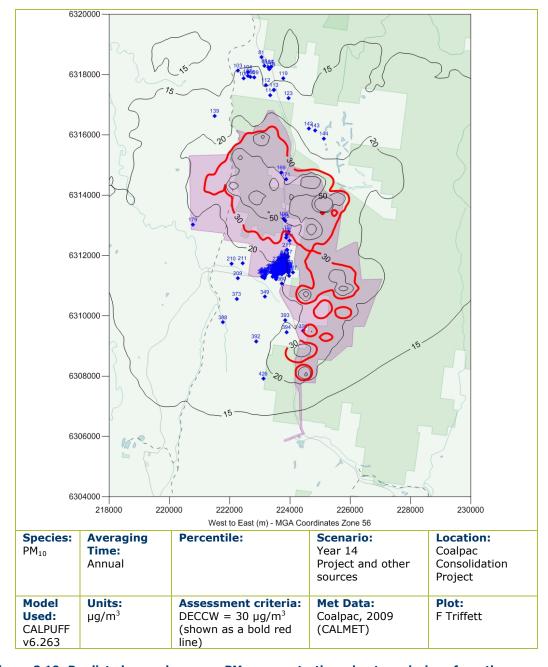


Figure 8.19: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 14

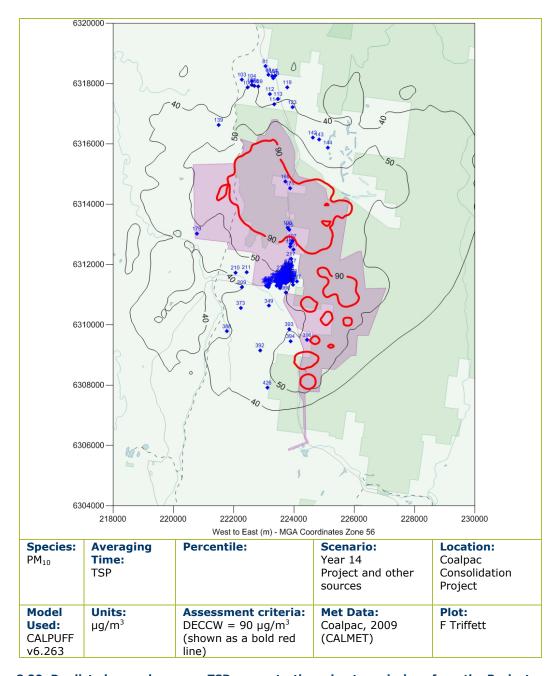


Figure 8.20: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 14

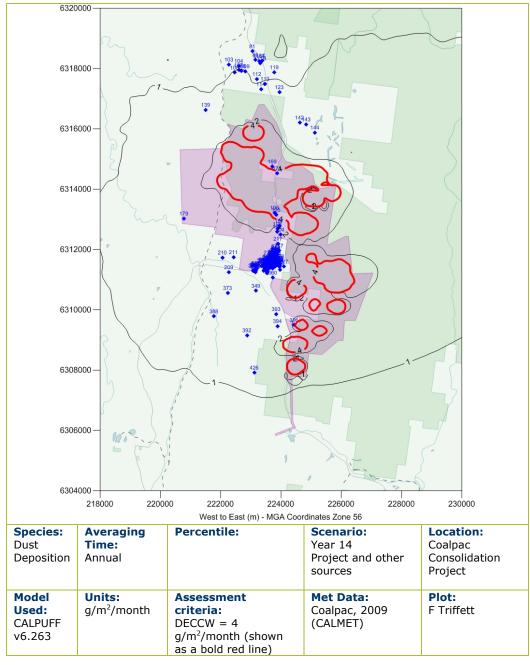


Figure 8.21: Predicted annual average dust deposition levels due to emissions from the Project and other sources in Year 14

8.2.4 Year 20

Modelling results for Year 20 show exceedances of the 24-hour PM_{10} and annual criteria at some sensitive receptors. **Table 8.7** provides a summary of properties predicted to exceed relevant the criteria in Year 20.

Table 8.8 presents a summary of the Year 20 predicted concentrations at each of the nearby sensitive receptors, due to the operations of the Project alone and the Project and other sources.

Figure 8.22 to **Figure 8.28** show the predicted 24-hour average, annual average PM_{10} , TSP concentrations and dust deposition levels in Year 20 due to the operations of the Project alone and the Project and other sources.

Table 8.7: Summary of receptors predicted to exceed the criteria in Year 20

Receptor ID	Ownership Details	24-hour PM ₁₀ Mine Alone (µg/m³)	Annual PM ₁₀ Mine & Other Sources (μg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/month)	Annual Dust Deposition Mine & Other Sources (g/m²/month)
169ª	Portland Road Pastoral Co Pty Ltd	127	39	100	-	-
171 ^a	Portland Road Pastoral Co Pty Ltd	90	35	90	-	-
195 ^b	KJ Blackley	667	157	400	14.5	15.4
196 ^b	Crown-owned	366	99	251	7.5	8.4
197 ^b	BE & CE Leisemann & IL & Kid Follington	118	34	-	-	-
198 ^b	DA Tilley	90	-	-	-	-
199 ^b	DA Tilley	89	-	-	-	-
216	BM Emmott	56	-	-	-	-
217a	Crown-owned	57	-	-	-	-
217b	Crown-owned	58	-	-	-	-
258	S & H Filla	56	-	-	-	-
325	SP & SA Duggan	51	-	-	-	-
326	The Minister for Energy & Utilities	54	-	-	-	-
327	J Playford	58	-	-	-	-
394 ^a	Coalpac	53	-	-	-	-

^a Coalpac-owned

^b Located within Project Boundary

Table 8.8: Year 20 – predicted PM_{10} and TSP concentrations and dust deposition levels due to the Project alone and the Project and other sources

	aue			the Project and			they convece
			roject alone			· Project and o	tner sources
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (µg/m³)	Annual TSP (µg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (µg/m³)	Annual TSP (µg/m³)	Dust deposition (g/m²/month)
				l Assessment criter	ia		
ID	50 ¹	N/A	N/A	2	30	90	4
		,	Sen	sitive receptors			
81	10	1	3	0.0	14	35	0.9
86ª	11	1	3	0.0	14	35	0.9
87	10	1	3	0.0	14	35	0.9
103	17	2	4	0.1	15	36	1.0
104	18	2	5	0.1	15	37	1.0
106	20	2	6	0.1	15	38	1.0
107	19	2	6	0.1	15	38	1.0
108	20	2	6	0.1	15	38	1.0
109	18	2	6	0.1	15	37	1.0
111A	10	1	3	0.0	14	35	0.9
111B	10 13	1	3	0.0	14 14	35 36	0.9
112 113	14	2	4 5	0.1 0.1	15	36	1.0 1.0
113	15	2	6	0.1	15	38	1.0
119	11	1	4	0.1	14	36	1.0
123	17	3	6	0.1	15	38	1.0
139	19	3	7	0.1	15	39	1.0
142	22	4	9	0.2	16	41	1.1
143	20	3	8	0.2	16	40	1.1
144	19	3	9	0.2	16	41	1.1
169 ^b	127	27	68	1.7	39	100	2.6
171 ^b	90	23	58	2.3	35	90	3.2
179 ^c	15	4	9	0.2	16	41	1.1
195°	667	144	368	14.5	157	400	15.4
196 ^{ac}	366	86	219	7.5	99	251	8.4
197 ^c	118	21	54	1.4	34	86	2.3
198°	90	17	43	1.1	30	75	2.0
199°	89	16	41	1.0	29	73	1.9
205	12	3	8 7	0.2	16	40	1.1
209 210	13 13	3	8	0.2 0.2	16 16	39 40	1.1
210	15	3	9	0.2	16	41	1.1 1.1
216	56	10	25	0.7	23	57	1.6
217a ^a	57	9	24	0.7	22	56	1.6
217b ^a	58	9	23	0.7	22	55	1.6
220	31	6	15	0.4	18	46	1.3
223	33	6	15	0.4	19	47	1.3
225	33	6	15	0.4	19	47	1.3
227	33	6	15	0.4	19	47	1.3
228	33	6	15	0.4	19	47	1.3
229	33	6	15	0.4	19	47	1.3
230	34	6	15	0.4	19	47	1.3
231	34	6	15	0.4	19	47	1.3
232	35	6	16	0.4	19	48	1.3
235	39	7	17	0.5	19	49	1.4
235	41	7	17	0.5	20	49	1.4
236	43	7	18	0.5	20	50	1.4
237	39	7	17	0.5	20	49	1.4
238	40	7	17	0.5	20	49 50	1.4
238	43	7	18	0.5	20	50 50	1.4
239	41	7	18 18	0.5 0.5	20	50 50	1.4
240 242	42 42	7 7	18	0.5	20 20	50	1.4 1.4
242	42	7	18	0.5	20	50	1.4
245	45	8	19	0.6	20	51	1.5
247	36	6	15	0.4	19	47	1.3
248	37	6	16	0.4	19	48	1.3
250	38	6	16	0.5	19	48	1.4
230	30	J	10	0.0		.0	417

 $^{^{1}}$ 50 $\mu g/m^{3}$ refers to the cumulative criterion and should not be applied to Project alone results. This is shown here for reference only.

PAEHolmes Job 3351C

		Year 20 - P	roject alone		Year 20 -	- Project and o	ther sources
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Dust deposition (g/m²/month)
	1			Assessment criter		1	
251	50 ¹	<i>N/A</i> 6	N/A 16	2 0.4	30 19	90 48	4 1.3
253	37	6	16	0.5	19	48	1.4
254	37	6	16	0.5	19	48	1.4
254	39	7	17	0.5	19	49	1.4
255	39	7	17	0.5	19	49	1.4
256	42	7	18	0.5	20	50	1.4
257	43	7	18	0.5	20	50	1.4
258	56	9	22	0.7	21	54	1.6
262ª	26	5	12	0.3	18	44	1.2
263 264	27 27	5 5	13 13	0.3 0.3	18 18	45 45	1.2 1.2
267	29	5	13	0.4	18	45	1.3
268	30	5	13	0.4	18	45	1.3
270	27	5	12	0.3	18	44	1.2
270	28	5	12	0.3	18	44	1.2
271	30	5	13	0.3	18	45	1.2
272ª	32	5	14	0.4	18	46	1.3
272ª	33	5	14	0.4	18	46	1.3
272ª	33	6	14	0.4	18	46	1.3
272ª	33	6	14	0.4	18	46	1.3
273 273	21 21	4 4	10 11	0.3 0.3	17 17	42 42	1.2 1.2
275	22	4	11	0.3	17	43	1.2
276	23	4	11	0.3	17	43	1.2
276	23	4	11	0.3	17	43	1.2
277	23	4	11	0.3	17	43	1.2
278	23	4	11	0.3	17	43	1.2
279	24	4	11	0.3	17	43	1.2
280	24	4	11	0.3	17	43	1.2
281	25	4	11	0.3	17	43	1.2
283	27	5	12	0.3	18	44	1.2
284 285	28 29	5 5	13 13	0.3 0.3	18 18	44 45	1.2 1.2
288	31	5	13	0.3	18	45	1.2
289	32	5	14	0.4	18	45	1.3
291	36	6	15	0.4	19	47	1.3
296	39	6	16	0.4	19	48	1.3
297	40	6	16	0.5	19	48	1.4
298	40	6	16	0.5	19	48	1.4
301	42	7	17	0.5	19	49	1.4
302	41	7	17	0.5	19	49	1.4
304	42	7	17	0.5	19	49	1.4
305 306	42 44	7 7	17 17	0.5 0.5	19 20	49 49	1.4
308	44	7	17	0.5	20	50	1.4 1.4
309	45	7	18	0.5	20	50	1.4
311	50	8	20	0.6	20	52	1.5
312	49	8	19	0.6	20	51	1.5
313	48	7	19	0.5	20	51	1.4
314	50	8	19	0.6	20	51	1.5
315	37	6	15	0.4	19	47	1.3
315	39	6	16	0.4	19	48	1.3
316	35	6	14	0.4	18	46	1.3
317	35 35	6 6	14	0.4 0.4	18	46 46	1.3
318 321	35 41	6	14 16	0.4	18 19	46	1.3 1.3
325	51	8	19	0.4	20	51	1.4
326	54	8	20	0.5	21	52	1.4
327	58	9	23	0.7	22	55	1.6
328	20	4	10	0.2	17	42	1.1
329	19	4	9	0.2	16	41	1.1
330	19	4	9	0.2	16	41	1.1
331	18	3	9	0.2	16	41	1.1
332	17	3	9	0.2	16	41	1.1
333	17	3	9	0.2	16	40	1.1
335	17	3	8	0.2	16	40	1.1

		Year 20 – P	roject alone		Year 20 -	Project and o	ther sources
	24-hour PM ₁₀ (μg/m³)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Annual Dust deposition (g/m²/month)	Annual PM ₁₀ (μg/m³)	Annual TSP (μg/m³)	Dust deposition (g/m²/month)
				Assessment criter	ia		
ID	50 ¹	N/A	N/A	2	30	90	4
342	17	3	8	0.2	16	40	1.1
343	17	3	8	0.2	16	40	1.1
344	17	3	9	0.2	16	41	1.1
345	18	3	9	0.2	16	41	1.1
347	19	4	9	0.2	16	41	1.1
349	23	3	9	0.2	16	41	1.1
350	21	4	10	0.3	17	42	1.2
350	21	4	10	0.3	17	42	1.2
350	22	4	10	0.3	17	42	1.2
350	22	4	10	0.3	17	42	1.2
350	23	4	11	0.3	17	42	1.2
352	25	4	11	0.3	17	43	1.2
352	27	5	12	0.3	17	44	1.2
353	24	4	11	0.3	17	43	1.2
354	24	4	10	0.3	17	42	1.2
355	23	4	10	0.3	17	42	1.2
356	23	4	10	0.3	17	42	1.2
357	23	4	10	0.3	17	42	1.2
358	23	4	10	0.3	17	42	1.2
360ª	34	5	13	0.3	18	44	1.2
364	16	4	9	0.2	17	41	1.1
367	14	3	7	0.2	16	39	1.1
368	18	4	9	0.2	17	41	1.1
372	12	3	7	0.2	16	39	1.1
373	16	3	8	0.2	16	40	1.1
383	17	3	9	0.2	16	41	1.1
384	17	3	8	0.1	16	40	1.0
385	17	3	8	0.1	16	40	1.0
386	17	3	9	0.2	16	41	1.1
388	12	2	6	0.1	15	38	1.0
391	13	3	7	0.1	16	39	1.0
392	22	4	10	0.2	17	42	1.1
393 ^b	32	5	14	0.3	18	45	1.2
394 ^b	53	9	24	0.5	22	56	1.4
396 ^b	47	13	32	1.4	25	64	2.3
401	20	4	9	0.1	17	41	1.0
403	16	3	7	0.1	16	39	1.0
404	15	3	7	0.1	16	39	1.0
405	17	3	8	0.1	16	40	1.0
406	14	2	6	0.1	15	38	1.0
407	14	2	6	0.1	15	38	1.0
408	14	2	6	0.1	15	38	1.0
410	15	3	7	0.1	16	39	1.0
419	16	3	8	0.1	16	40	1.0
419	16	3	7	0.1	16	39	1.0
421	17	3	8	0.1	16	40	1.0
426	41	6	14	0.3	18	46	1.2

^a Crown-owned
^b Coalpac-owned
^c Located within Project Boundary

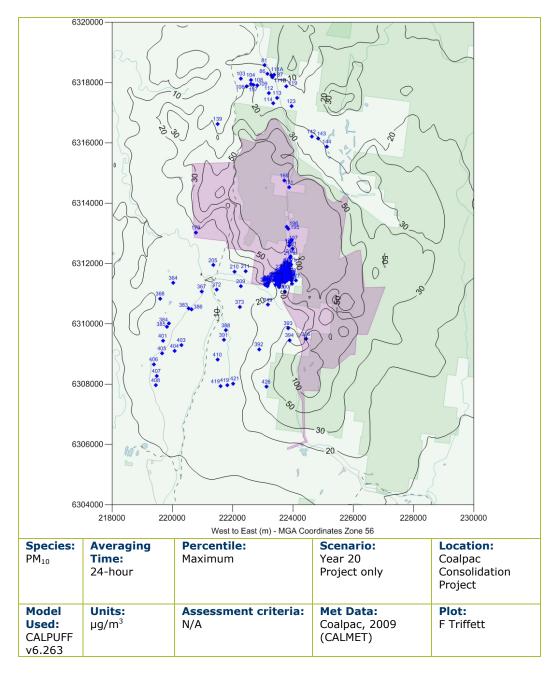


Figure 8.22: Predicted 24-hour average PM₁₀ concentrations due to emissions from the Project alone in Year 20

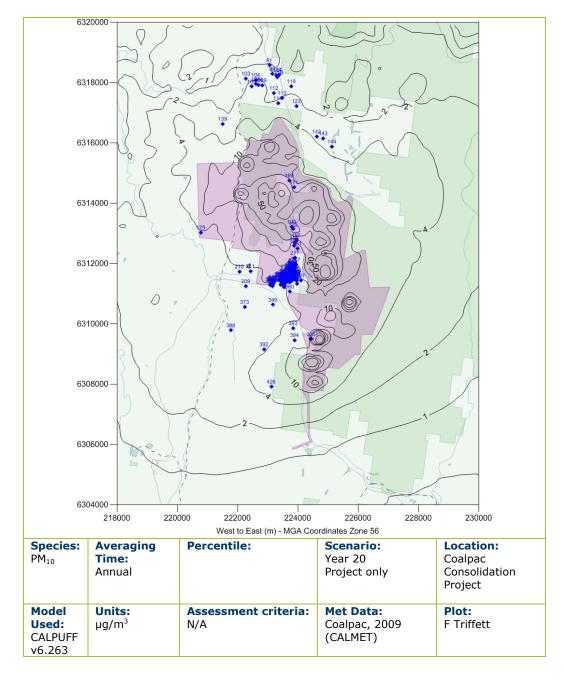


Figure 8.23: Predicted annual average PM₁₀ concentrations due to emissions from the Project alone in Year 20

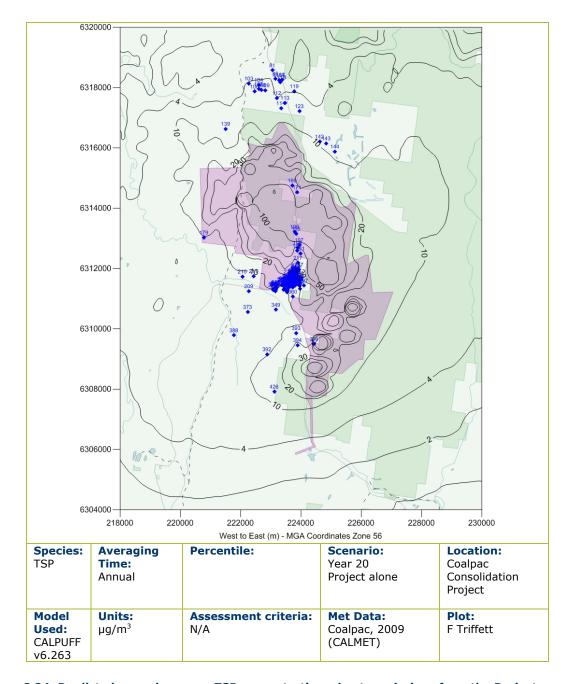


Figure 8.24: Predicted annual average TSP concentrations due to emissions from the Project alone in Year 20

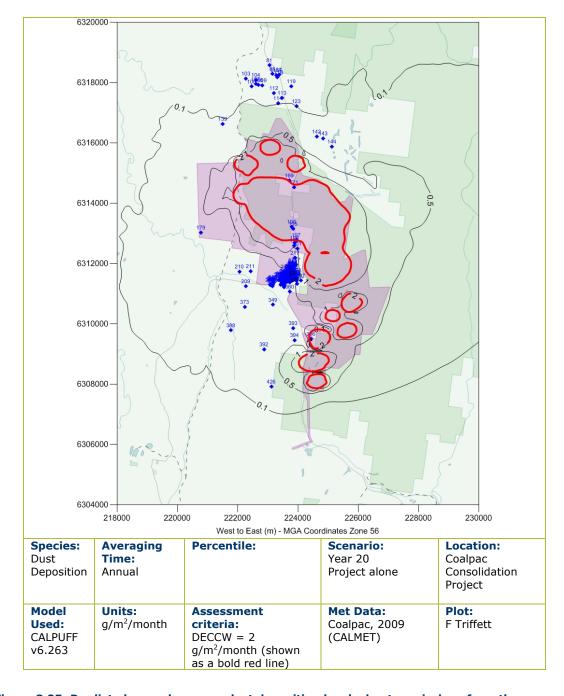


Figure 8.25: Predicted annual average dust deposition levels due to emissions from the Project alone in Year 20



Figure 8.26: Predicted annual average PM_{10} concentrations due to emissions from the Project and other sources in Year 20

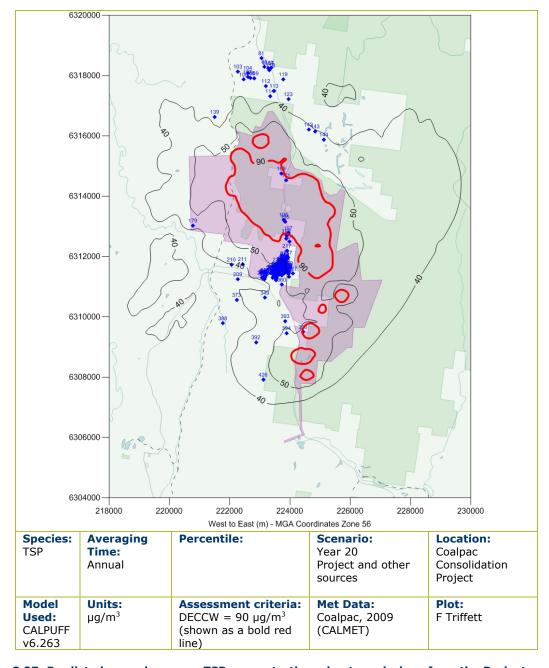


Figure 8.27: Predicted annual average TSP concentrations due to emissions from the Project and other sources in Year 20

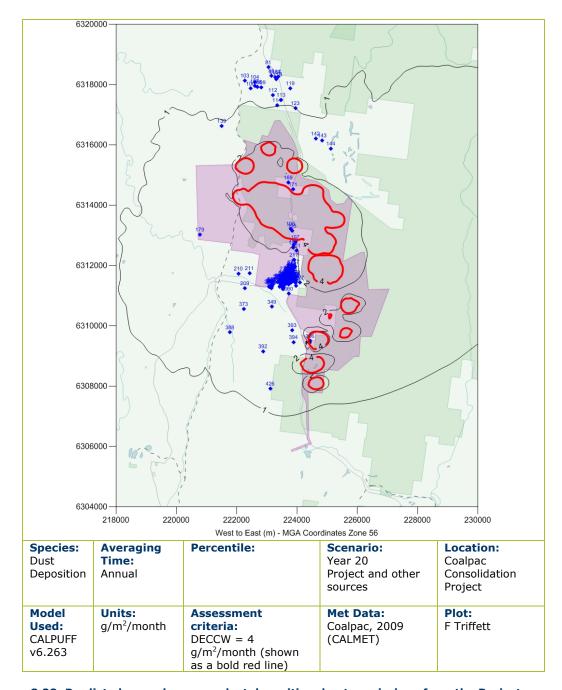


Figure 8.28: Predicted annual average dust deposition due to emissions from the Project and other sources in Year 20

8.3 Cumulative 24-hour Average PM₁₀ concentrations

8.3.1 Introduction

Table 8.9 presents a summary of sensitive receptors and their corresponding maximum 24-hour PM_{10} concentrations for each modelled year.

Due to the large number of receptors, a select number of receptors were chosen for this cumulative assessment, representative of key areas in vicinity of the mine. For example, receptors in the town of Cullen Bullen have been selected around the perimeter of the town to represent receptor clusters or impacts at the town. It can be assumed that receptors behind (or further from the Project sources) selected receptors will experience less impacts.

Table 8.9: Maximum 24-hour PM₁₀ concentrations for representative receptors (µg/m³)

Receptor ID	Year 2	Year 8	Year 14	Year 20
81	9	10	12	10
106	23	20	26	20
114	17	15	19	15
123	18	18	21	17
139	19	19	21	19
142	18	19	24	22
143	15	18	22	20
144	14	19	21	19
169°	62	88	119	127
171 ^a	64	65	120	90
179 ^b	23	12	16	15
195 ^b	191	141	160	667
196 ^b	173	160	150	366
197 ^b	402	64	65	118
198 ^b	199	56	59	90
199 ^b	136	53	60	89
205	11	12	16	12
209	13	14	14	13
210	13	13	14	13
211	14	16	17	15
216	42	38	46	56
217 ^c	46	37	46	57
217 ^c	52	35	46	58
220	21	27	33	31
238	29	29	36	40
239	29	29	36	41
254	27	27	34	37
258	49	36	45	56
276	16	21	26	23
326	49	40	47	54
325	44	35	43	51
327	54	45	50	58
328	14	20	23	20
349	19	20	25	23
350	14	19	23	21
360°	28	26	33	34
364	21	13	19	16
367	17	12	15	14
368	28	16	20	18
372	14	13	13	12
373	17	17	19	16
383	24	14	17	17
384	22	15	17	17
385	22	15	18	17
386	26	15	17	17
388	14	12	14	12
391	15	14	16	13
392	22	21	24	22
393 ^a	35	31	35	32

Receptor ID	Year 2	Year 8	Year 14	Year 20
394ª	79	64	63	53
396 ^{ab}	90	74	58	47
401	22	17	22	20
403	21	14	16	16
404	20	14	15	15
405	20	15	17	17
406	15	13	14	14
407	16	13	14	14
408	15	12	14	14
410	20	18	18	15
419	24	20	19	16
419	23	21	18	16
421	24	22	19	17
426	62	53	45	41

a Coalpac-owned

Further analysis was conducted for each residence that is predicted to experience maximum 24-hour average PM_{10} concentrations above 50 $\mu g/m^3$ by identifying the number of days that this is likely to occur.

Table 8.10 summarises the number of days on which the 24-hour average PM_{10} concentration at each receptor is predicted to be above 50 μ g/m³.

Table 8.10: Number of days per year the 24-hour average PM_{10} concentration is predicted to be greater than 50 μ g/m³

Receptor ID	Year 2	Year 8	Year 14	Year 20
169ª	7	38	71	62
171 ^a	4	14	60	23
195ª	105	102	142	246
196ª	81	106	124	218
197ª	189	6	8	35
198ª	115	3	2	14
199ª	71	2	2	11
216	-	-	-	2
217a ^b	-	-	-	1
217b ^b	1	-	-	1
258	-	-	-	1
325	-	-	-	1
326	-	-	-	1
327	1	-	-	1
394°	12	6	2	1
396 ^{ac}	24	20	3	-
426	3	1	-	-

^a Located within Project Boundary

It can be seen from **Table 8.10** that there are nine receptors that are predicted to experience potentially significant impacts, with maximum 24-hour average PM_{10} concentrations above 50 $\mu g/m^3$ for more than five days during any of the years modelled for the Project. However, it should be noted that of these nine receptors, seven receptors (Receptors 169 to Receptor 199) are located within the Project Boundary, and receptors 394 and 396 are Coalpac owned.

Therefore, there are no privately owned receptors located outside of the Project Boundary that are predicted to experience significant 24-average PM_{10} impacts above criteria (on more than 5 days annually) from the Project alone.

^b Located within Project Boundary

^c Crown-owned

^b Crown-owned

^c Coalpac-owned

8.3.1.1 Cumulative 24-hour Average PM10 analysis

It is difficult to accurately predict the cumulative 24-hour PM_{10} concentrations using dispersion modelling due to the difficulties in resolving (on a day to day basis) the varying intensity, duration and precise locations of activities at mine sites, the weather conditions at the time of the activity, or combination of activities. With weather conditions for each hour of a year it is possible to provide more accurate annual average predictions than 24-hour average prediction.

The difficulties in predicting cumulative 24-hour impacts are compounded by the day to day variability in ambient dust levels and the spatial and temporal variation in any other anthropogenic activity, including mining in the future. Experience shows that the worst-case 24-hour PM_{10} concentrations are strongly influenced by other sources in the area, such as bushfires and dust storms, which are essentially unpredictable. The variability in 24-hour average PM_{10} concentrations can be clearly seen in the data collected at the two HVAS monitors located at the Cullen Valley Mine and the Invincible Colliery (see **Figure 6.2**).

The DECCW Approved Methods describe two methods for assessing cumulative air quality impacts (see Section 11.2 of the Approved Methods).

The Level 1 assessment (suitable for a screening assessment) requires that the highest predicted concentration from a proposal is added to the highest observed concentration in a data set which provides measurements of PM_{10} concentrations representative of conditions at the site being assessed.

The second method, a Level 2 assessment, provides a more rigorous approach and requires that the highest observed 24-hour PM_{10} concentrations are added to the predicted concentrations at the same days and also that the highest predicted 24-hour PM_{10} concentrations are added to the observed concentrations for the same days.

Both methods assume that a data set exists that can provide information on 24-hour PM_{10} concentrations representative of the sites being assessed. Some 24-hour PM_{10} monitoring data (collected every sixth day) for the area are available from Coalpac's monitoring program.

There are no continuous measurements of PM_{10} available in the Project area that could be considered "background" (i.e. the ambient concentration due to all other sources). As noted in **Section 6.6.2,** the HVAS monitor located at Cullen Valley Mine (HVAS) is located in closer proximity to the town of Cullen Bullen than the HVAS monitor in place for Invincible Colliery. The Cullen Valley Mine HVAS monitor also recorded a higher percentage of data as compared with HVAS1 located at the Invincible Colliery. Therefore data from the Cullen Valley Mine HVAS have been used in the following 24-hour PM_{10} cumulative assessment.

There are also no monitoring data that would characterise background in the absence of these other mining operations as the data collected at the Coalpac is already influenced by existing mining operations.

However the approach taken for this assessment is to use the monitoring data collected at HVAS1 to characterise background 24-hour PM_{10} , including the contributions of current mining operations at all Coalpac mining operations. These monitoring data would provide a conservatively high indication of background for the receptors most influenced by the Project, given the monitor's proximity to mining operations and the Project Boundary.

The approach for the cumulative 24-hour PM₁₀ assessment is to consider the probability that the dust contribution from the Project will occur when background concentrations are sufficiently high to result in cumulative dust concentrations greater than $50 \mu g/m^3$. The analysis was completed for the following scenarios, chosen to reflect 4 different scenarios where increment and background

levels combined would result in concentrations greater than 50 $\mu g/m^3$:

- Probability that the background is greater than or equal to 40 μ g/m³ AND the predicted impact from modelling is greater than 10 μ g/m³;
- Probability that the background is greater than or equal to 30 μ g/m³ AND the predicted impact from modelling is greater than 20 μ g/m³;
- Probability that the background is greater than or equal to 20 μ g/m³ AND the predicted impact from modelling is greater than 30 μ g/m³; and
- Probability that the background is greater than or equal to 10 μ g/m³ AND the predicted impact from modelling is greater than 40 μ g/m³.

Results are shown for predicted 24-hour PM_{10} concentrations at each residence for only the worst case year of impact, for that receptor.

Table 8.11 presents an estimation of the statistical probability that the cumulative impacts would result in a 24-hour average PM₁₀ concentration greater than 50 μ g/m³. The results are presented only where the cumulative probability of the 24-hour concentration exceeding 50 μ g/m³ is 1% or greater. The analysis indicates that the residences most likely to experience cumulative 24-hour PM₁₀ impacts are those already predicted to be impacted from the Project alone (see **Table 8.9**).

Table 8.11: Probability of Cumulative 24-hour Impacts

ID	Year	Background probability >40	Increment probability >10	Total Cumulative Probability	Background probability >30	Increment probability >20	Total Cumulative Probability	Background probability >20	Increment probability >30	Total Cumulative Probability	Background probability >10	Increment probability >40	Total Cumulative Probability
169ª	21	0.7%	68.4%	0.5%	2.7%	50.0%	1.3%	16.7%	35.2%	5.9%	54.7%	26.4%	14.4%
171 ^a	15	0.7%	89.8%	0.6%	2.7%	68.4%	1.8%	16.7%	49.7%	8.3%	54.7%	31.6%	17.3%
195 ^b	21	0.7%	82.7%	0.6%	2.7%	75.3%	2.0%	16.7%	72.0%	12.0%	54.7%	69.2%	37.8%
196 ^b	15	0.7%	82.4%	0.5%	2.7%	71.4%	1.9%	16.7%	55.8%	9.3%	54.7%	44.2%	24.2%
197 ^b	3	0.7%	69.5%	0.5%	2.7%	60.7%	1.6%	16.7%	56.6%	9.4%	54.7%	55.2%	30.2%
198 ^b	3	0.7%	63.5%	0.4%	2.7%	55.5%	1.5%	16.7%	45.9%	7.6%	54.7%	38.7%	21.2%
199 ^b	3	0.7%	62.6%	0.4%	2.7%	51.9%	1.4%	16.7%	38.2%	6.4%	54.7%	29.9%	16.4%
394 ^b	3	0.7%	47.3%	0.3%	2.7%	20.6%	0.5%	16.7%	13.7%	2.3%	54.7%	6.3%	3.5%
396 ^{ab}	3	0.7%	57.4%	0.4%	2.7%	39.3%	1.0%	16.7%	23.4%	3.9%	54.7%	12.1%	6.6%
426	3	0.7%	24.5%	0.2%	2.7%	11.5%	0.3%	16.7%	6.0%	1.0%	54.7%	2.5%	1.4%

Quality

Impact Assessment

^a Coalpac-owned ^b Located within Coalpac Mining Lease

8.4 Summary of Project operational impacts

Table 8.2 below presents a summary of sensitive receptors that may experience an impact in any modelled year of the Project. Results are only shown where an impact may occur.

Table 8.12: Summary of sensitive receptors predicted to experience an impact in any modelled year

	modelled year											
Receptor ID	Ownership Details	Max 24- hour PM ₁₀ Mine Alone (μg/m³)	Number of days over 50 µg/m³	Annual PM ₁₀ Mine & Other Sources (µg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/mo nth)	Annual Dust Deposition Mine & Other Sources (g/m²/month)					
			Yea	r 2								
169ª	Portland Road Pastoral Co Pty Ltd	62	7	-	-	-	-					
171ª	Portland Road Pastoral Co Pty Ltd	64	4	-	-	-	-					
195 ^b	KJ Blackley	191	105	49	125	3	-					
196 ^b	Crown-owned	173	81	45	115	2.7	-					
197 ^b	BE & CE Leisemann & IL & Kid Follington	402	189	90	231	7.8	8.7					
198 ^b	DA Tilley	199	115	49	125	3.2	4.1					
199 ^b	DA Tilley	136	71	40	102	2.1	-					
217b	Crown-owned	52	1	-	-	-	-					
327	RG Wright & KL Norris	54	1	-	-	-	-					
394ª	Coalpac	79	12	-	-	-	-					
396ª	Coalpac	90	24	-	-	-	-					
426	JWJ & SM Taylor	62	3	-	-	-	-					
120	3113 & 311 Tuylor	02	Yea									
169ª	Portland Road Pastoral Co Pty Ltd	88	38	33	-	-	-					
171ª	Portland Road Pastoral Co Pty Ltd	65	14	33	-	3.5	4.4					
195 ^b	KJ Blackley	141	102	48	123	3	-					
196 ^b	Crown-owned	160	106	49	126	3	-					
197 ^b	BE & CE Leisemann & IL & Kid Follington	64	6	31	-	-	-					
198 ^b	DA Tilley	56	3	-	-	-	-					
199 ^b	DA Tilley	53	2	-	-	-	-					
394ª	Coalpac	64	6	-	-	-	-					
396ª	Coalpac	74	20	_	-	-	-					
426	JWJ & SM Taylor	53	1	-	-	-	-					
				14								
			Year									
169ª	Portland Road Pastoral Co Ptv Ltd	119	Year 71	42	109	2.3						
169 ^a	Co Pty Ltd Portland Road Pastoral	119 120			109 114	2.3 3.6	4.5					
171ª	Co Pty Ltd Portland Road Pastoral Co Pty Ltd	120	71 60	42 45	114	3.6						
171ª 195 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley	120 160	71 60 142	42 45 56	114 145	3.6 4.3	5.2					
171ª	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann &	120	71 60	42 45	114	3.6						
171 ^a 195 ^b 196 ^b 197 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington	120 160 150 65	71 60 142 124 8	42 45 56 52	114 145 133	3.6 4.3 3.6	5.2 4.5					
171 ^a 195 ^b 196 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann &	120 160 150	71 60 142 124	42 45 56 52 -	114 145 133 -	3.6 4.3 3.6	5.2 4.5 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley	120 160 150 65 59 60	71 60 142 124 8 2	42 45 56 52 -	114 145 133 -	3.6 4.3 3.6 -	5.2 4.5 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley	120 160 150 65	71 60 142 124 8	42 45 56 52 -	114 145 133 -	3.6 4.3 3.6 -	5.2 4.5 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac	120 160 150 65 59 60 63	71 60 142 124 8 2 2 2 2	42 45 56 52 - - - -	114 145 133 -	3.6 4.3 3.6 -	5.2 4.5 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac	120 160 150 65 59 60 63	71 60 142 124 8 2 2	42 45 56 52 - - - -	114 145 133 -	3.6 4.3 3.6 -	5.2 4.5 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral	120 160 150 65 59 60 63 58	71 60 142 124 8 2 2 2 2 3 Year	42 45 56 52 - - - - - 20	114 145 133 - - - - -	3.6 4.3 3.6 - - - -	5.2 4.5 - - - -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd	120 160 150 65 59 60 63 58 127	71 60 142 124 8 2 2 2 3 Year 62	42 45 56 52 - - - - 20 39 35	114 145 133 - - - - - - 100	3.6 4.3 3.6 - - - - -	5.2 4.5 - - - - -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral	120 160 150 65 59 60 63 58 127 90 667	71 60 142 124 8 2 2 2 3 Year	42 45 56 52 - - - - - 20	114 145 133 - - - - - 100 90	3.6 4.3 3.6 - - - -	5.2 4.5 - - - - -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann &	120 160 150 65 59 60 63 58 127	71 60 142 124 8 2 2 2 2 3 Year 62 23 246	42 45 56 52 - - - - - 20 39 35 157	114 145 133 - - - - - - 100 90 400	3.6 4.3 3.6 14.5	5.2 4.5 - - - - - - 15.4					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington	120 160 150 65 59 60 63 58 127 90 667 366	71 60 142 124 8 2 2 2 3 Year 62 23 246 218	42 45 56 52 - - - - - - 20 39 35 157 99	114 145 133 - - - - - 100 90 400 251	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - - 15.4 8.4					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b 197 ^b 198 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley	120 160 150 65 59 60 63 58 127 90 667 366 118 90	71 60 142 124 8 2 2 2 3 Year 62 23 246 218 35	42 45 56 52 20 39 35 157 99 34	114 145 133 - - - - - 100 90 400 251	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - 15.4 8.4					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley DA Tilley	120 160 150 65 59 60 63 58 127 90 667 366 118 90 89	71 60 142 124 8 2 2 2 3 Year 62 23 246 218 35 14	42 45 56 52 20 39 35 157 99 34 -	114 145 133 - - - - - 100 90 400 251 -	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - 15.4 8.4 -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 216	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley DA Tilley BM Emmott	120 160 150 65 59 60 63 58 127 90 667 366 118 90 89 56	71 60 142 124 8 2 2 2 3 Year 62 23 246 218 35 14 11 2	42 45 56 52 20 39 35 157 99 34	114 145 133 100 90 400 251	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - 15.4 8.4 - -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 196 ^c 197 ^b 198 ^c 197 ^b 198 ^c 197 ^b 198 ^c 199 ^c 216 217a	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley DA Tilley BM Emmott Crown-owned	120 160 150 65 59 60 63 58 127 90 667 366 118 90 89 56 57	71 60 142 124 8 2 2 2 3 Year 62 23 246 218 35 14 11 2	42 45 56 52 20 39 35 157 99 34	114 145 133 100 90 400 251	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - 15.4 8.4 - -					
171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 394 ^a 396 ^a 169 ^a 171 ^a 195 ^b 196 ^b 197 ^b 198 ^b 199 ^b 216	Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley Coalpac Coalpac Portland Road Pastoral Co Pty Ltd Portland Road Pastoral Co Pty Ltd KJ Blackley Crown-owned BE & CE Leisemann & IL & Kid Follington DA Tilley DA Tilley DA Tilley BM Emmott	120 160 150 65 59 60 63 58 127 90 667 366 118 90 89 56	71 60 142 124 8 2 2 2 3 Year 62 23 246 218 35 14 11 2	42 45 56 52 20 39 35 157 99 34	114 145 133 100 90 400 251	3.6 4.3 3.6 14.5 7.5	5.2 4.5 - - - - - - 15.4 8.4 - - -					

Receptor ID	Ownership Details	Max 24- hour PM ₁₀ Mine Alone (μg/m³)	Number of days over 50 µg/m³	Annual PM ₁₀ Mine & Other Sources (µg/m³)	Annual TSP Mine & Other Sources (µg/m³)	Annual Dust Deposition Mine Alone (g/m²/mo nth)	Annual Dust Deposition Mine & Other Sources (g/m²/month)
326	The Minister for Energy & Utilities	54	1	-	-	-	-
327	J Playford	58	1	-	-	-	-
394ª	Coalpac	53	1	-	-	-	-

^a Coalpac-owned

8.5 Assessment of Impacts on Privately Owned Land

This section provides a summary of sensitive receptors predicted to exceed the assessment criteria on more than 25 percent of privately owned land, including vacant land.

Table 8.12 describes in detail the predicted impacts at individual residences.

An additional assessment has been conducted to identify privately-owned land, including vacant land, where more than 25% of the land is predicted to experience dust levels above the relevant DECCW criteria. Blocks of land that have the same owner and are contiguous have been considered as a single area. For reference, the block numbers associated with each owner are provided in **Appendix A**.

The privately-owned land that is predicted to be impacted by dust levels above the DECCW criteria is presented in **Table 8.13**. A '**Y**' represents land that is predicted to exceed the assessment criteria on more than 25 percent of land.

Table 8.13: Percentage of privately-owned land area predicted to be impacted

Receptor Name	Block ID	Year 2	Year 8	Year 14	Year 20
Cumulative annual average PM ₁₀ concentra	ition				
B & E Nakhle	170	Υ	Υ	Y	Υ
BE & CE Leisemann & IL & Kid Follington*	197	Υ	Υ	Y	Υ
DA Tilley	198, 199	Υ	Υ	Y	Y
Hyrock NSW Pty Ltd (Industrial)	395	Υ	Υ	N	Υ
J Knox*	194	Y	Υ	Y	Y
KD & RL Kellam	201	Υ	N	N	N
KJ Blackley	195	Υ	Υ	Y	Y
R Tilley*	200	Y	Υ	Y	Y
State of NSW (Crown)	168, 172, 377	Υ	Υ	Y	Y
Maximum 24-hour average PM ₁₀ concentra	tion				
B & E Nakhle	170	Y	Υ	Y	Y
BE & CE Leisemann & IL & Kid Follington*	197	Y	Υ	Y	Y
BM Emmott	216	Y	Υ	Y	Y
DA Tilley	198, 199	Y	Υ	Y	Y
DW & GJ McCann	240, 246	N	N	N	Y
G Muenzer*	394	Y	Υ	Y	N
Hyrock NSW Pty Ltd (Industrial)	395	Y	Υ	Y	Y
J Knox*	194	Y	Υ	Y	Y
J Playford	327	Y	Υ	Y	Y
JWJ & SM Taylor	426, 439, 440	Y	N	N	N
KD & RL Kellam	201	Y	Υ	Y	Y
KJ Blackley	195	Y	Υ	Υ	Y
KR Waters	314	N	N	N	Y
LM McDonald	312	N	N	N	Y
M Botfield	245	N	N	N	Y
R Tilley*	200	Υ	Υ	Y	Y
S & H Filla	258, 300	Υ	Υ	Y	Y
SJ Bandiera	310	N	N	N	Y

^b Located within Coalpac Mining Lease

Receptor Name	Block ID	Year 2	Year 8	Year 14	Year 20
SP & SA Duggan	325	N	N	N	Y
State of NSW (Crown)	168, 172, 377	Y	Υ	Y	Y
The Minister for Energy & Utilities (Crown)	326	N	N	N	Υ
WG Brown	311	N	N	N	Y

Note: Includes land where sensitive receptors exist and are also assessed in previous sections. *Agreement in place

It can be seen from **Table 8.13** that there are 22 properties that are predicted to experience dust impacts on more than 25% of their land area for the maximum 24-hour average PM_{10} concentration (project alone) and 9 for the cumulative annual average PM_{10} concentration.

9 CONSTRUCTION PHASE IMPACTS

9.1 Overview

As the Project is an existing operation, limited construction would be required. However, the following major construction activities would be required for the consolidation:

- Construction of the previously approved Coal De-shaling preparation Plant (CDP at the Cullen Valley Mine);
- Construction of a bridge over the Castlereagh Highway to link operations east and west of the highway and the development of required access roads to the East Tyldesley area;
- Construction of a bridge and haul road across Wallerawang Gwabegar Railway line to permit access to mine the Hillcroft area;
- Construction of the overland conveyor to MPPS;
- Construction of the East Tyldesley Coal Preparation Plant (ETCPP); and
- Construction of a rail siding with associated infrastructure to permit transport of product coal.

From an air quality perspective it is important to consider the potential emissions that would occur during construction. While dust emissions from construction activities can have impacts on local air quality, impacts are typically of a short duration (especially when compared to the life of mining operations) and relatively easy to manage through commonly applied dust control measures. Dust emissions from construction sites vary substantially from day to day, depending on the intensity and location of particular activities and it is very difficult to confidently estimate emissions on a day to day basis.

Emissions of carbon monoxide (CO), nitrogen dioxide (NO_2), and sulphur dioxide (SO_2) will occur from diesel-powered plant and equipment used on-site and vehicle movements to site. However these emissions are typically minor for projects of this scale and too widely dispersed to give rise to significant off-site concentrations.

Procedures for controlling dust impacts during construction will include, but are not necessarily be limited to the activities outlined in the following sections.

9.1.1 Clearing / Excavation

Emissions from vegetation stripping, topsoil clearing and excavation can occur, particularly during dry and windy conditions. Emissions can be effectively controlled by increasing the moisture

content of the soil / surface. Other controls that will be undertaken include:

- Modify working practices by limiting excavation during periods of high winds; and
- Limiting the extent of clearing of vegetation and topsoil to the designated footprint required for construction and appropriate staging of any clearing.

9.1.2 Bridge & Conveyor Overpass Construction

The use of earth moving equipment can be a significant source of dust, and emissions should be controlled through the use of water sprays during road construction. Where conditions are excessively dusty and windy, and fugitive dust can be seen leaving the site, work practices can be modified by limiting any scraper / grader activity.

9.1.3 Haulage and Heavy Plant and Equipment

Vehicles travelling over paved or unpaved surfaces tend to produce wheel generated dust. The following measures should be implemented during construction to minimise dust emissions from these activities:

- All vehicles on-site should be confined to designated routes with speed limits enforced;
- Trips and trip distances should be controlled and reduced where possible, for example by coordinating delivery and removal of materials to avoid unnecessary trips; and
- When conditions are excessively dusty and windy, and dust can be seen leaving the works site the use of a water truck (for water spraying of travel routes) should be used.

9.1.4 Wind Erosion

Wind erosion from exposed surfaces during construction should be controlled as part of the best practice environmental management of the site. Wind erosion from exposed ground should be limited by avoiding unnecessary vegetation clearing and ensuring rehabilitation occurs as quickly as possible. Wind erosion from temporary stockpiles can be limited by minimising the number of stockpiles on-site and minimising the number of work faces on stockpiles.

9.1.5 Rail Siding Construction

The following measures should be implemented during the construction of the rail spur and loop:

- Modify working practices by limiting clearing and excavation during periods of high winds;
- Limiting the extent of clearing of vegetation and topsoil to the designated footprint required for the rail corridor; and
- Use of water sprays during rail construction for dusty activities such as ballast dumping and compacting.

10 FUGITIVE DUST EMISSIONS FROM RAIL TRANSPORT

The Project will involve construction and operation of a rail siding and loading area. Dust emissions from train loading have been included as part of the assessment of Project mining operations. Impacts due to fugitive dust emissions from coal wagons during rail transportation are discussed below.

Fugitive dust from coal wagons is an emerging environmental and community issue, in terms of potential impacts on human health and amenity. Queensland Rail (QR) commissioned an environmental evaluation of coal dust emissions from rolling stock in the Central Queensland Coal

Industry (**Connell Hatch, 2008**). The purpose of this study was to determine the extent of the issue and identify, if possible, any potential environmental harm caused by fugitive dust from coal wagons, in the context of nuisance and health impacts and to identify the potential reasonable and feasible measures that could reduce any environmental harm.

In terms of impacts on human health, the QR study concluded that there appears to be minimal risk of adverse impacts due to fugitive coal emissions from trains throughout the network, based on results of monitoring and modelling predictions. In terms of impacts on amenity, the results of monitoring and modelling indicate that nuisance coal dust at the edge of the rail corridor are below levels that are known to cause adverse impacts on amenity.

PAEHolmes has reviewed the QR study to determine if the conclusions presented are applicable to NSW based on, for example, differences in coal volumes, loading practices, train speeds, wagon shapes, coal properties, etc., and it was concluded that many of the observations from the QR study can be applied to the NSW network.

On that basis, the potential for environmental harm caused by the increased coal train movements from the Project is likely to be low, in terms of health and amenity impacts, beyond distances of approximately 15 m from the rail lines. There are no receptors along the proposed rail spur located within 15 m of the rail line.

11 PROPOSED MITIGATION AND DUST MANAGEMENT MEASURES

11.1 Introduction

The Project has the potential to generate dust. It is therefore necessary to take reasonable and practicable measures to prevent or minimise dust impacts at sensitive receptors.

Coalpac is committed to leading practice dust management for the Project through the use of a real-time and proactive dust management system. This would enable Coalpac to pro-actively manage the short-term impacts of the Project and prevent or minimise dust impacts at sensitive receptors to the greatest practical extent. Further detail on how this can be achieved is provided in **Section 11.2**.

Other control measures (minimising disturbance, progressive rehabilitation etc.) which have not necessarily been quantified in the modelling but would be undertaken by Coalpac as part of their ongoing dust management practices are outlined in **Section 11.3**.

Full details of the dust management measures would be outlined in an Air Quality Management Plan and Air Quality Environmental Monitoring Program, which would be consolidated and updated prior to the commencement of Project mining activities.

11.2 Real-Time Proactive Dust Management

Dispersion modelling for the Project indicates that the most significant source of dust emissions, in terms of short term 24-hour impacts, results from the hauling of overburden and ROM coal. The proposed real-time dust management system is therefore discussed in specific relation to this dust source, however it is equally applicable to controlling excessive dust emissions from any Project source.

Coalpac would be able to respond to the potential for excessive dust impacts through the installation at a representative location of a real-time dust monitor to be located within the town of

Cullen Bullen. The real-time monitor would continuously log short-term dust concentrations (15min, 30min and 1-hour averages) and report the data via GPS/GRSM modem to a web based recording system. When certain short-term trigger levels are reached / exceeded, a message is delivered to the appropriate personnel, alerting them to the high dust levels. The on-site weather station could also report wind conditions at the time, allowing appropriate personnel to determine the origin of the elevated dust levels. For example, the annual windroses in **Figure 6.1** show that winds closest to the town as measured at the Cullen Valley meteorological station are predominantly from the east and west. Therefore, a response system could be implemented whereby mining activities in the vicinity of the town may be reduced or stopped in order to minimise dust impacts at Cullen Bullen when dust levels at the town reach a certain value, and dominant winds are shown from the east and/or west.

The short-term trigger levels (say 1-hour average) would be derived based on a statistical analysis of appropriate peak to mean ratios and set at a level where a few consecutive readings at these high levels risks a breach of the 24-hour impact assessment criteria. During the life of the Project, should more suitable technology become available, this system may be modified and enhanced if required.

An additional component of the dust management procedures would be to develop a meteorological and air quality forecasting system to predict, one day in advance, what the meteorological conditions and air quality impact will be. This would allow the appropriate personnel to manage the intensity of activities for that day, increase controls or limit activity to various areas of the Project. The above measures would be incorporated into the Air Quality Management Plan for the Project.

11.2.1 Opportunities for Cooperative Management Measures

The proposed real-time monitoring as discussed in **Section 11.2** as well as the current dust monitoring conducted at the Project site will monitor the cumulative emissions from all sources of dust in the area, not just from Coalpac operations. Therefore dust from all neighbouring operations (see **Section 7.2**) will be monitored at these locations.

As part of their proposed real-time management system, Coalpac will identify when certain trigger levels are breached and then investigate the likely cause of the elevated dust levels. When the investigation determines that Coalpac operations are not causing the elevated dust levels and regional dust levels are not high, Coalpac will inform its neighbouring operations of the investigation and the likely source of elevated dust levels. This will enable neighbouring operations to instigate controls as required. This practice would also be reciprocated. It is proposed that this would happen at the investigation trigger level to allow neighbouring operations to also respond to short-term elevated dust levels. Where Coalpac determine that exceedances of the impact assessment criteria at any one of their monitoring locations have resulted from sources other than their own operations, they will report the results of the compliance assessment to neighbouring operations so that cumulative impacts can be better controlled and managed.

When elevated dust results are identified, Coalpac, as well as the surrounding mines may also discuss ways in which to develop management measures together. For example, when winds are blowing from a certain direction to impacted sensitive receptors, operations at more than one operation may be reduced to limit cumulative dust effects.

11.3 Summary of Dust Management and Control Measures

The term "best practice" is frequently used in pollution control and pollution management. However, what constitutes "best practice" is difficult to define in practical situations. Environment Australia published a series of booklets in the 1990's to assist the mining industry with incorporating best practice environmental management through all phases of mineral production from exploration through construction and eventual closure. In the booklet for Dust Control (**Environment Australia, 1998**) they defined "best practice" as follows:

"Best Practice can be defined as the most practical and effective methodology that is currently in use or otherwise available. Best practice dust management can be achieved by appropriate planning in the case of new or expanding mining operations, and by identifying and controlling dust sources during the active phases of all mining operations."

This document has since been updated by the Department of Energy, Resources and Tourism (DERT) who have published the handbook *Leading Practice Sustainable Development Program for the Mining Industry* (**DERT, 2009**). This new handbook introduces the term "leading practice", in which:

"...considers the latest and most appropriate technology applied in order to seek better financial, social and environmental outcomes for present stakeholders and future generations."

The implementation of a reactive or proactive dust management system, as described above, is considered best and leading practice and would apply leading technology to achieve the best possible outcomes currently available.

Other procedures proposed for the management of dust emissions from the Project have been considered against those determined to be leading practice in the **DERT (2009)** handbook.

Specific measures should be made as to how the proposed mitigation measures align with best practice, as outlined in the NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining, 2010, prepared for DECCW by Katestone Environmental (**Katestone, 2011**). **Table 11.1** provides an overview of the best practice air quality mitigation measures to be implemented for the Project. These are targeted at the main sources of air quality emissions identified in **Katestone (2011)**.

Table 11.1: Overview of Best Practice Emission Reduction Measures Described in Katestone (2011)

Air Quality Emission Source	Emission Reduction Measure	Used for the Project?	Comments	Effectiveness of reduction in Emissions Inventory
Haul Trucks travelling on Unpaved Roads	Use of water carts to control emissions	Yes	Level 2 watering will be applied	75%
	Use of additional water application and/or surfactants	Yes	Additional/extended haul truck shifts to be undertaken.	N/A
			Coalpac would also undertake an education campaign with haul truck drivers to ensure targeted application of additional watering.	
	Use of conveyor for coal transportation instead of unpaved road	Yes	An enclosed conveyor will be used to transport coal from the Invincible Colliery to the MPPS.	The conveyor was not included as a dust source in the emissions inventory as it will be fully enclosed.
	Control of the speed of trucks	Yes	Speed controlled to approximately 40 kilometres per hour (kph).	Emission factor based on amount of material moved, so no reduction to the emissions inventory, however there would be a marginal reduction in practice.
	Largest practical truck size	Yes	Based on the amount of material being moved, Coalpac has assessed and given the largest economic and practical size haul trucks for assessment.	Emission factor partially based on size of truck. A smaller sized truck will give a higher estimate of TSP emissions per year for each hauling activity
Wind Erosion of Overburden	Progressive Rehabilitation	Yes	Minimise overburdens dump area to allow for increased rehabilitation and complete rehabilitation as soon as practical after disturbance.	Overburden areas are included in the emissions inventory in hectares. A larger area would result in higher TSP emissions per year and possibly higher predictions.
Wind Erosion of Exposed Materials and Stockpiles	Use of water carts to control emissions	Yes	Water carts to be used on dumps and pits.	50%
ROM Coal Handling	Water application	No	Not considered to be necessary by Coalpac based on operational experience. Coalpac would review the feasibility over the life of the project.	N/A
	Use of chemical Suppressants	No	Not considered to be necessary by Coalpac based on operational experience. Coalpac would review the feasibility over the life of the project.	N/A
ROM Coal Stockpile (Cont.)	Minimisation of drop heights	Yes	Coalpac would undertake an education campaign with truck drivers to minimise drop heights where possible.	Emission factor does not consider drop height, so no reduction to the emissions

holmes

Air Quality Impact

Assessment

Air Quality Emission Source	Emission Reduction Measure	Used for the Project?	Comments	Effectiveness of reduction in Emissions Inventory
				inventory, however there would be a material reduction in practice.
	Enclosure of ROM coal stockpile	No	This is not considered to be feasible by Coalpac due to the effectiveness of the existing control measures, as evidenced by operational experience and compliance with air quality criteria.	N/A
Bulldozing	Watering of trafficked areas	Yes	Application rates would be as per the unpaved roads.	Emission factor based on hours used, so no reduction to the emissions inventory, however there would be a marginal reduction in practice.
	Minimisation of travel speed and distance travelled.	Yes	Coalpac would undertake an education campaign with dozer drivers to ensure appropriate speeds and routes are used.	
Blasting	Delay of blasts if unfavourable weather prevails	Yes	Coalpac will delay blasting during unfavourable conditions, including strong winds and temperature inversions.	Emission factor does not consider weather conditions, so no reduction to the emissions inventory, however there would be a material reduction in short-term emissions practice.
	Minimisation of blast area	Yes	Appropriate blast design, including minimisation of blasting area is an objective of blasting operations.	Where required in order to reduce impacts, blasting areas will be kept to 5,040 square metres (m ²).
Drilling	Water Sprays or curtains	No	Drilling typically uses water injection.	Emission factor does not consider moisture content, so no reduction to the emissions inventory, however there would be a marginal reduction in practice.
	Air Extraction to a Bag Filter	No	This is not considered to be necessary by Coalpac due to the effectiveness of the existing control measures.	N/A
Loading and dumping of Overburden	Minimisation of drop heights	Yes	Coalpac would undertake an education campaign with truck drivers to minimise drop heights where possible.	Emission factor does not consider drop height, so no reduction to the emissions inventory, however there would be a material reduction in practice.
	Use of water sprays	No	Direct spraying of overburden is not considered to be operationally feasible by Coalpac due to	N/A

Air Quality Emission Source	Emission Reduction Measure	Used for the Project?	Comments	Effectiveness of reduction in Emissions Inventory
			the dispersed nature of potential overburden loading/unloading locations (i.e. multiple loading and unloading locations are typically used). Water carts are used on active haul roads as described above.	
Conveying	All conveyors will have transfer points enclosed. Dust curtains are to be installed at transition points from transfer station.	Yes	This conveyor will transport product coal to the MPPS.	The conveyor was not included in the emissions inventory as it will be fully enclosed and dust impacts would therefore be negligible.

COALPAC CONSOLIDATION PROJECT • ENVIRONMENTAL ASSESSMENT

11.4 Blasting

Coalpac currently blasts overburden material and will continue to blast overburden as a part of the proposed Consolidation Project.

It is important to be aware of the potential impacts associated with the gaseous emissions from blasting, often referred to as 'blast fumes'. Pollutants such as CO, SO₂, NO and particularly NO₂ can be released following a blast to varying degrees depending on different conditions including:

- Explosive formulation and quality assurance (e.g. explosive product incorrectly formulated, inadequate mixing of raw materials and explosive precursors not manufactures to specification);
- Geological conditions (e.g. dynamic water in holes/moisture in clay, inadequate confinement in soft ground and chemistry of rock type);
- Blast design (e.g. explosive desensitisation due to the blast hole depth and inappropriate priming and/or placement);
- Explosive product selection (e.g. non water-resistant explosive products loaded into wet or dewatered holes and inappropriate explosive product for application);
- On bench practices (e.g. hole condition incorrectly identified and blast not drilled/loaded as per blast plan); and
- Contamination of explosives in the blast hole (e.g. interaction of explosives product with drilling muds and rainfall on a sleeping shot) (AEISG, 2011).

There are potential risks to human health associated with exposure of blast fume. Acute and short term risks may include; coughing, shortness of breath, irritations of the mucous membranes of the eyes, nose and throat and pulmonary oedema. Medium and long term effects may include Reactive Airways Dysfunction Syndrome (RADS), in rare cases bronchiolitis obliterans and chronic respiratory insufficiency (**AEISG, 2011**).

Coalpac currently have blast management plans in place for the Cullen Valley Mine and the Invincible Colliery which include potential blast impacts, blast monitoring, management and specific mitigation measures and reporting and review (see **Coalpac 2009a** and **Coalpac 2009b**).

To limit impacts associated with blast fumes, Coalpac have already considered adopting some of the following mitigation measures:

- Blasts should be fired under favourable wind conditions when wind will transport any fume away from the nearest sensitive receptors. This may also be achieved through a real-time/predictive blast management tool which incorporates on-site meteorological data, receptor location information and potential blast locations in order to predict potential fume impacts;
- Blasts should be delayed where possible during rainfall;
- Blast size and depth to be minimised;
- Bench heights to be reduced where practicable; and
- Bench design to be constructed for effective water run-off.

Should there be concern of blast fume, the following proactive measures may be undertaken by

Coalpac:

- Residences in the potentially affected areas may be told to close windows/doors to minimise risk of inhalation;
- A complaints register will be kept to determine possible impacted areas and causes of complaints; and
- Post-blast gases should be identified and rated by blast site personnel and reported to blast site management to determine any significant events or trends to minimise the potential for ongoing generation of gases.

11.5 Monitoring

The locations of the current monitoring stations are shown on **Figure 6.2** and it is envisaged that the monitoring network would consist of one additional real-time TEOM monitor for the operation of the Project.

A review of the existing air quality monitoring network will be conducted so as to ensure that locations are representative of key locations for monitoring (e.g. near the town of Cullen Bullen). As per **Section 11.1** the findings of this review would be included as a part of an Air Quality Management Plan and Environmental Monitoring Program prior to the commencement of Project mining activities. The monitoring plan would also include the following:

- A review of baseline monitoring data collected for the Project (including both meteorological and particulate monitoring) and comparison with relevant impact assessment criteria;
- A review of the monitoring locations at the time and any recommendations for additional monitors or revised siting;
- Monitoring standards relevant to the Project; and
- Specific condition requirements as specified by the Project's Approval.

11.6 Spontaneous Combustion

Spontaneous combustion occurs when coal and other carbonaceous materials undergo natural oxidation and heat up. Under the right conditions, the heat from the oxidation reaction can build up to a point where the coal will ignite and burn. For self-heating to occur, the composition of the coal must be such that low temperature oxidation can occur. Further, the material must be confined in such a way that heat from the oxidation is trapped, allowing the temperature to build up, but not so confined as to preclude the ingress of oxygen to the combustible material at a rate sufficient to promote the combustion and release of heat energy.

Once the coal reaches a high enough temperature it will liberate smoke, steam and volatile organic compounds (VOCs), some of which are odorous and can be harmful.

11.6.1 Cullen Valley Mine Heating Response Plan

The heating in the abandoned underground workings (old Tyldesley Colliery) at the Cullen Valley Mine has been present since the 1970s. The heating was relatively dormant up until the abandoned underground workings were intersected by the open cut excavation in 2003. In addition to the heating in the old underground workings there also appear to be small pockets of carbonaceous material that are spontaneously combusting at various sites.

A study was completed in August 2010 which defined the extent and condition of the heating at

the Cullen Valley Mine. This report also recommended a response plan to address the issues identified. Coalpac Pty Ltd created a Response Plan in November 2010 to provide scope and direction to the proposed mitigation works.

The primary aim of the Response Plan is to contain and to mitigate against the impacts of the heating upon the local community and the environment. The gases and odour produced by the heating have been a source of complaints by immediate neighbours. The heating has also affected the local vegetation with die-back in areas of rehabilitation.

A thermographic survey conducted in mid-2010 revealed the extent and condition of venting around the affected area. A programme of works is proposed to progressively clear the area of dead vegetation and to excavate out the venting and to emplace clay material to cover the vents. The intention is to stabilise the situation and limit the gases and odours that have been the source of complaints.

There are four main phases of activity proposed in the Response Plan which are as follows:

1. Preparation

- Preparing permanent vehicular access to the Restricted Area (area of heating);
- Clearing any vents or heating of dead wood and other materials; and
- Convene a Risk Assessment to evaluate the hazards and controls required in conducting the proposed remediation and monitoring works. The outcome of the Risk Assessment will provide the basis for a Heating Management Plan for Cullen Valley Mine to provide procedures to manage the related health and safety, environmental and statutory compliance issues.

2. Excavation

- Progressively excavate the venting along the interface between the crest of the old open cut highwall and the backfill. The area will then be backfilled and compacted progressively in layers to restrict the ingress of oxygen and water; and
- The profile of the central area will be lifted to limit the water action. The aim is to raise and cover the whole area to provide a long-term stable profile that will incorporate drainage channels.

3. Monitoring

- A monitoring program will be developed to determine the condition of the heating, post mitigation works. This program will comprise the following:
 - Thermographic imagery (ground and aerial) to track the lateral extent of the heating and the location of vents and hotspots;
 - Monitoring of the water level in old workings of Tyldesley Colliery;
 - Regular inspection to detect and remediate any new vents. Detailed records will be kept of the condition of areas over time together with records of the prevailing weather conditions. Any areas found to produce any significant emissions indicating heating or elevated temperatures will be remediated; and

 Installation of thermal probes to monitor temperatures at depth in key locations. Research will be conducted to determine the most appropriate design configurations for the thermal probes in order to maximise operating life and reliability.

4. Rehabilitation

- The affected area will be progressively rehabilitated once it is confirmed that the earthworks have been effective via thermographic imagery; and
- The area will be rehabilitated leaving access for monitoring activities. The performance of the rehabilitation will be surveyed regularly to monitor its performance and rate of re-growth over the area.

12 GREENHOUSE GAS ASSESSMENT

The Director-General's Environmental Assessment Requirements identifies Greenhouse Gases as a key issue for the Project. The DGRs for greenhouse gas assessment require:

- Qualitative assessment of the potential scope 1, 2 and 3 greenhouse gas emissions of the Project;
- A qualitative assessment of the potential impacts of these emissions on the environment;
 and
- An assessment of all reasonable and feasible measures that could be implemented to minimise greenhouse gas emissions of the Project and ensure energy efficiency.

12.1 Introduction

Greenhouse gas emissions have been estimated based upon the methods outlined in the following documents:

- The World Resources Institute/World Business Council for Sustainable Development Greenhouse Gas Protocol (WBCSD/WRI 2004);
- National Greenhouse and Energy Reporting (Measurement) Determination 2008; and
- The Australian Government Department of Climate Change and Energy Efficiency (DCCEE) National Greenhouse Accounts Factors 2010.

The Greenhouse Gas Protocol establishes an international standard for accounting and reporting of greenhouse gas emissions. The Greenhouse Gas Protocol has been adopted by the International Standard Organisation, endorsed by greenhouse gas initiatives (such as the Carbon Disclosure Project) and is compatible with existing greenhouse gas trading schemes.

Three 'scopes' of emissions (scope 1, scope 2 and scope 3) are defined for greenhouse gas accounting and reporting purposes. This terminology has been adopted in Australian greenhouse reporting and measurement methods and has been employed in this assessment. The 'scope' of an emission is relative to the reporting entity, indirect scope 2 and scope 3 emissions will be reportable as direct scope 1 emissions from another facility.

1) Scope 1: Direct Greenhouse Gas Emissions

Direct greenhouse gas emissions are defined as those emissions that occur from sources that are owned or controlled by the reporting entity. Direct greenhouse gas emissions are those emissions that are principally the result of the following types of activities undertaken by an entity:

- Generation of electricity, heat or steam. These emissions result from combustion of fuels in stationary sources, the principal source of greenhouse emissions associated with the operation of the Project;
- Physical or chemical processing. Most of these emissions result from manufacture or processing of chemicals and materials, e.g., the manufacture of cement, aluminium, etc;
- Transportation of materials, products, waste and employees. These emissions result from the combustion of fuels in entity owned/controlled mobile combustion sources (e.g. trucks, trains, ships, aeroplanes, buses and cars); and
- Fugitive emissions. These emissions result from intentional or unintentional releases (e.g. equipment leaks from joints, seals, packing, and gaskets; methane emissions from coal

mines and venting); HFC emissions during the use of refrigeration and air conditioning equipment; and methane leakages from gas transport.

2) Scope 2: Energy Product Use Indirect Greenhouse Gas Emissions

Scope 2 emissions are a category of indirect emissions that account for greenhouse gas emissions from the generation of purchased energy products (principally, electricity, steam/heat and reduction materials used for smelting) by the entity.

Scope 2 in relation to the Project covers purchased electricity, defined as electricity that is purchased or otherwise brought into the organisational boundary of the entity. Scope 2 emissions physically occur at the facility where electricity is generated. Entities report the emissions from the generation of purchased electricity that is consumed in its owned or controlled equipment or operations as scope 2.

3) Scope 3: Other Indirect Greenhouse Gas Emissions

Scope 3 emissions are defined as those emissions that are a consequence of the activities of an entity, but which arise from sources not owned or controlled by that entity. Some examples of Scope 3 activities provided in the Greenhouse Gas Protocol are extraction and production of purchased materials, transportation of purchased fuels, and use of sold products and services.

The Greenhouse Gas Protocol provides that reporting scope 3 emissions is optional. If an organisation believes that Scope 3 emissions are a significant component of the total emissions inventory, these can be reported along with Scope 1 and Scope 2. However, the Greenhouse Gas Protocol notes that reporting Scope 3 emissions can result in double counting of emissions and can also make comparisons between organisations and/or products difficult because reporting is voluntary.

Double counting needs to be avoided when compiling national (country) inventories under the Kyoto Protocol. The Greenhouse Gas Protocol also recognises that compliance regimes are more likely to focus on the "point of release" of emissions (i.e. direct emissions) and/or indirect emissions from the purchase of electricity.

12.2 Greenhouse Gas Assessment Policy Summary

12.2.1 National Greenhouse and Energy Reporting Act

The National Greenhouse and Energy Reporting Act 2007 (NGER Act) was passed in September 2007. The NGER Act establishes a mandatory corporate reporting system for greenhouse gas emissions, energy consumption and production. The NGER scheme consolidates existing greenhouse reporting schemes. The NGER Act is underpinned by a number of legislative instruments that provide greater detail about obligations, which in conjunction with the NGER Act, form the National Greenhouse and Energy Reporting System, as follows:

- The National Greenhouse and Energy Reporting Regulations 2008; and
- The National Greenhouse and Energy Reporting (Measurement) Determination 2008.

NGER is seen as an important first step in the establishment of a domestic emissions trading scheme. Companies must register and report if they emit greenhouse emissions or produce/consume energy at or above the following trigger thresholds:

- If they own facilities that emit greater than 25 kilotonnes (kt) greenhouse emissions (expressed as CO_2 -e) or produce consume greater than 100 terajoules (TJ) of energy; and
- If the corporate group emits greater than 125 kt of greenhouse emissions (expressed as CO₂-e) or produce consume greater than 500 TJ of energy.

Scope 1 and Scope 2 greenhouse gas emissions are required to be reported under the NGER Act.

12.2.2 Proposed Legislation - The Carbon Price Mechanism

On 10 July 2011, the Australian Government released its Clean Energy Plan, which incorporates a Carbon Pricing Mechanism. Under this proposed policy, from 1 July 2012, the eligible industries in Australia will be required to pay for every tonne of carbon pollution released to the atmosphere (**Australian Government, 2011**). This mechanism is expected to replace the Carbon Pollution Reduction Scheme (CPRS) put forward by the Australian Government in 2008.

The CPRS was intended to be the principal mechanism used to reduce Australia's greenhouse gas emissions for the Kyoto period, and beyond. The centrepiece of the CPRS was a "cap and trade" emissions trading scheme to constrain greenhouse gas emissions and establish a price for greenhouse gas emissions in Australia. On 27 April 2010 the Australian Government announced the deferral of the CPRS implementation date.

Although the framework of the proposed carbon mechanism resembles that proposed in the Green and White Papers (**DCC, 2008a and DCC, 2008b**) for the CPRS, the carbon price mechanism involves the following distinguishing features:

- For the first three years, a fixed price stage will operate with the price of all carbon permits set by the government;
- Subsequent to this three year period, a flexible cap and trade emissions trading scheme will commence;
- During the fixed price stage, eligible Australian carbon credit units (ACCUs) produced from Australian projects under the Carbon Farming Initiative (CFI), will be accepted as currency as an alternative of purchasing Australian Permits.
- The Clean Energy Plan is expected to cut pollution by a minimum of 5% below 2000 levels by 2020 and by 80% below 2000 levels by 2050.
- Before the flexible price period, the Government will set annual caps on pollution for the first five years which will be extended each year to assist businesses planning their strategy for compliance.

As proposed in the CPRS, the threshold for facilities will be identical to that employed for NGER reporting (i.e. $25,000 \text{ kt } \text{CO}_2$ -e/year or more - excluding emissions from transport fuels and some synthetic greenhouse gases) and will be used to identify whether a facility will be covered by the carbon pricing mechanism.

12.2.2.1 Emissions Trading

Subsequent to the fixed price stage, a variable price as part of a "cap and trade" system will be implemented where the carbon price will be set by the market. The number of permits issued by the Government each year will be capped. In cap and trade schemes, an aggregate cap is enforced. Organisations within the cap are able to trade emission permits to meet their permitting liabilities. International carbon markets and land abatement programs will also be available to acquire permits for compliance. During the flexible price period, an unlimited amount of eligible ACCUs can be surrendered for compliance, as opposed to the 5% limit set for the fixed price period.

Carbon permits can enter the market either by auction or by administrative allocation. Companies will have an economic incentive to pay for permits if their internal costs of abatement are higher than the price of permits, and to directly reduce their emissions if their internal costs of abatement are lower than the price of permits. In theory, companies that own permits would be willing to sell them if the revenue received from selling permits exceeds the profits from using them.

These market incentives are designed to encourage the cheapest abatement to occur first.

The carbon price mechanism will cover the same emissions as proposed under the CPRS, with the exception of the definite exclusion of agricultural carbon emissions. Approximately 60 % of Australia's carbon pollution is expected to be covered by the carbon price, which encompasses the following emission sources:

- Stationary energy production (e.g., natural gas, coal, petroleum fuels, electricity);
- Some business transport;
- Industrial processes (e.g., cement or aluminium production);
- Fugitive emissions (other than from decommissioned coal mines); and
- Emissions from non-legacy waste.

The scheme will have broad economic ramifications beyond large emitters with direct obligations. Households are likely to experience increased costs associated with carbon intensive goods and services such as electricity, gas and food. However, a significant portion of the scheme is devoted to measures to ease the transition to carbon-constrained economy and assistance from the Australian Government will be provided to approximately 8 million households.

12.2.2.2 Support Measures

Assistance will be provided through allocation of permits early in each compliance period to new and existing entities undertaking an eligible emissions-intensive trade-exposed (EITE) activity prescribed in regulations. The most emissions-intensive trade-exposed activities will receive assistance to cover 94.5% of industry average carbon costs in the first year of the carbon price. Less emissions-intensive trade-exposed activities will also receive assistance to cover 66% of industry average carbon costs. Assistance will be reduced by 1.3% each year to encourage industry to cut pollution (**Australian Government, 2011**).

12.3 Greenhouse Gas Emission Estimates

Emissions of CO_2 and CH_4 will be the most significant greenhouse gases for the Project. These gases are formed and released during the combustion of fuels used on site and from fugitive emissions occurring during the mining process, due to the fracturing of coal seams.

Inventories of greenhouse gas emissions can be calculated using published emission factors. Different gases have different greenhouse warming effects (referred to as global warming potentials) and emission factors take into account the global warming potentials of the gases created during combustion. The estimated emissions are referred to in terms of carbon dioxide equivalent or CO_2 -equivalent (CO_2 -e) emissions by applying the relevant global warming potential.

The greenhouse gas assessment has been conducted using the National Greenhouse Accounts (NGA) Factors, published by the Department of Climate Change and Energy Efficiency (**DCCEE**, **2010**). Project-related greenhouse gas sources included in the assessment are as follows:

- Fuel consumption (diesel) during mining operations Scope 1;
- Release of fugitive CH₄ during mining Scope 1;
- Indirect emissions resulting from the consumption of purchased electricity Scope 2;
- Indirect emissions associated with the production and transport of fuels Scope 3;
- Indirect emissions associated with transmission and distribution losses from electricity supply – Scope 3;
- Emissions from coal transportation Scope 3; and
- Emissions from the burning of the product coal Scope 3.

Emissions from the shipping of product coal are not included in this assessment due to the difficulties in emission estimates, including uncertainty in export markets and destination of product into the future and limited data on emission factors and / or fuel consumption for ocean going vessels.

12.3.1 On-site Fuel Consumption

Greenhouse gas emissions from diesel consumption were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EF}{1000}$$

where:

 E_{CO2-e} = Emissions of GHG from diesel combustion (t CO_2 -e) Q = Estimated combustion of diesel (GJ)¹

EF = Emission factor (Scope 1 or Scope 3) for diesel combustion $(kq CO_2-e/GJ)^2$

¹ GJ = giga joules

The quantity of diesel consumed (Q) in each year is based on a derived diesel intensity rate (megalitres per million tonnes per annum of run of mine coal [ML/Mtpa ROM]) derived from the 2009 average diesel consumption (7.62 megalitres [ML]) and ROM rate of 1.5 Mtpa. The quantity of diesel consumed in GJ is then calculated using an energy content factor for diesel of 38.6 gigajoules per kilolitre (GJ/kL). Greenhouse gas emission factors and energy content for diesel were sourced from the NGA Factors (DCCCEE, 2010). The estimated annual and project total GHG emissions from diesel usage are presented in **Table 12.1**.

² kg CO₂-e/GJ = kilograms of carbon dioxide equivalents per gigajoule

Table 12.1:	Estimated	CO ₂ -e (tonnes	s) for On-site Di	esel Consumption

Year	ROM	Emission CO ₂ -	Factor (kg e/GJ	Energy Content	Emissions (t CO ₂ -e)		Total
	(Mtpa)	Scope 1	Scope 3	(GJ/kL)	Scope 1	Scope 3	
Year 1	2.400	69.9	5.3	38.6	32,735	2,482	35,217
Year 2	3.300	69.9	5.3	38.6	45,010	3,413	48,423
Year 3	4.425	69.9	5.3	38.6	60,355	4,576	64,931
Year 4	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 5	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 6	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 7	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 8	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 9	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 10	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 11	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 12	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 13	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 14	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 15	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 16	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 17	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 18	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 19	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 20	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Year 21	4.545	69.9	5.3	38.6	61,992	4,700	66,692
Total	91.9				1,253,949	95,078	1,349,026

12.3.2 Electricity

Greenhouse gas emissions from electricity usage were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EF}{1000}$$

where:

 E_{CO2-e} = Emissions of greenhouse gases from electricity usage (tCO₂-e/annum) Q = Estimated electricity usage (kWh/annum)¹ EF = Emission factor (Scope 2 or Scope 3) for electricity usage (kgCO₂-e/kWh)²

The quantity of electricity used each year is based on a derived intensity rate (kWh/Mtpa ROM) derived from the 2009 annual electricity consumption (1,483,306 kilowatt hours [kWh]) and ROM rate of 1.5 Mtpa for 2009). Greenhouse gas emission factors were sourced from the NGA Factors (**DCCEE, 2010**). The estimated annual and project total GHG emissions from electricity usage are presented in **Table 12.2**.

¹ kWh/annum = kilowatt hours per annum

² kgCO₂-e/kWh = kilograms of carbon dioxide equivalents per kilowatt hour

	rubic zaiai	Estimated CO ₂ C (to	, , , , , , , , , , , , , , , , , , ,	icci icity coc		
Year	ROM (Mtpa)	Emission Factor	(kg CO ₂ -e/kWh)	Emissions	(t CO ₂ -e)	Total
real	ком (мира)	Scope 2	Scope 3	Scope 2	Scope 3	iotai
Year 1	2.4	0.89	0.18	3,168	641	3,809
Year 2	3.3	0.89	0.18	4,356	881	5,238
Year 3	4.425	0.89	0.18	5,842	1,181	7,023
Year 4	4.545	0.89	0.18	6,000	1,213	7,214
Year 5	4.545	0.89	0.18	6,000	1,213	7,214
Year 6	4.545	0.89	0.18	6,000	1,213	7,214
Year 7	4.545	0.89	0.18	6,000	1,213	7,214
Year 8	4.545	0.89	0.18	6,000	1,213	7,214
Year 9	4.545	0.89	0.18	6,000	1,213	7,214
Year 10	4.545	0.89	0.18	6,000	1,213	7,214
Year 11	4.545	0.89	0.18	6,000	1,213	7,214
Year 12	4.545	0.89	0.18	6,000	1,213	7,214
Year 13	4.545	0.89	0.18	6,000	1,213	7,214
Year 14	4.545	0.89	0.18	6,000	1,213	7,214
Year 15	4.545	0.89	0.18	6,000	1,213	7,214
Year 16	4.545	0.89	0.18	6,000	1,213	7,214
Year 17	4.545	0.89	0.18	6,000	1,213	7,214
Year 18	4.545	0.89	0.18	6,000	1,213	7,214
Year 19	4.545	0.89	0.18	6,000	1,213	7,214
Year 20	4.545	0.89	0.18	6,000	1,213	7,214
Year 21	4.545	0.89	0.18	6,000	1,213	7,214
Total	91.9			121,367	24,546	145,913

Table 12.2: Estimated CO₂-e (tonnes) for On-site Electricity Use

12.3.3 Fugitive Emissions

Fugitive emissions were estimated based on the using the following equation:

$$E_{CO,-e} = Q \times EF$$

where:

 E_{CO2-e} = Emissions of greenhouse gases from fugitive emissions (t CO_2 -e/annum)

Q = ROM coal extracted during the year (t)

EF = Site Specific Emission Factor (t CO_2 -e/tonne)

A site specific emission factor for fugitive methane has been derived based on measurements of gas content for boreholes samples taken for each coal seam by GeoGAS and CSG Partners. These data are shown in their raw format in **Appendix E**. Measurements of less than $0.3 \text{ m}^3/\text{t}$ were below the adopted Limit of Detection (see **Geos Mining Memorandum, 2011**) and were therefore treated as $0 \text{ m}^3/\text{t}$.

The measured gas content in m^3/t was converted to t CO_2 -e / t using the measured % gas composition (reported for CH_4 and CO_2) and using the conversion factors reported in the NGERs Technical Guidelines (**DCC**, **2009**) to convert from m^3 to CO_2 -e tonnes, as follows:

- For methane $-6.784 \times 10^{-4} \times 21$
- For CO₂ 1.861 x 10⁻³

The derived site specific emission factor and estimated annual and project total GHG emissions from fugitive emissions are presented in **Table 12.3**.

	Table 12.3: Estimated CO:	2-e (toni	nes) for Fugitive	Emissions
--	---------------------------	-----------	-------------------	------------------

Year	ROM (Mtpa)	Site Specific EF (t CO ₂ -e/t)	Total Emission (t CO ₂ -e)
Year 1	2.400	0.001	1,624
Year 2	3.300	0.001	2,233
Year 3	4.425	0.001	2,994
Year 4	4.545	0.001	3,076
Year 5	4.545	0.001	3,076
Year 6	4.545	0.001	3,076
Year 7	4.545	0.001	3,076
Year 8	4.545	0.001	3,076
Year 9	4.545	0.001	3,076
Year 10	4.545	0.001	3,076
Year 11	4.545	0.001	3,076
Year 12	4.545	0.001	3,076
Year 13	4.545	0.001	3,076
Year 14	4.545	0.001	3,076
Year 15	4.545	0.001	3,076
Year 16	4.545	0.001	3,076
Year 17	4.545	0.001	3,076
Year 18	4.545	0.001	3,076
Year 19	4.545	0.001	3,076
Year 20	4.545	0.001	3,076
Year 21	4.545	0.001	3,076
Total	91.9		62,212

12.3.4 Explosives

Emissions from explosive usage were estimated based on the using the following equation:

$$E_{CO_2-e} = Q \times EF$$

where:

 E_{CO2-e} = Emissions of greenhouse gases from explosives (tCO₂-e/annum)

Q = Quantity of explosive used (assumed ANFO) (t)

EF = Scope 1 emission factor (tCO₂-e/tonne explosive)

Greenhouse gas emission factors were sourced from the Australian Greenhouse Office (AGO) Factors and Methods Workbook – December 2006. It is noted that the AGO Factors and Methods were replaced by the NGA Factors (**DCCEE, 2010**), however the emission factor for explosives was dropped from the latest version. Emissions from explosives do not have to be reported under NGERS.

The estimated annual and project total GHG emissions from explosive usage are presented in **Table 12.4**.

Table 12.4: Estimated CO₂-e (tonnes) for Explosive Use

Year	ROM (Mtpa)	Emission Factors (t CO ₂ / tonne product) ANFO	Scope 1 Emissions (t CO ₂ -e)
Year 1	2.400	0.167	329
Year 2	3.300	0.167	452
Year 3	4.425	0.167	606
Year 4	4.545	0.167	622
Year 5	4.545	0.167	622
Year 6	4.545	0.167	622
Year 7	4.545	0.167	622
Year 8	4.545	0.167	622
Year 9	4.545	0.167	622
Year 10	4.545	0.167	622
Year 11	4.545	0.167	622
Year 12	4.545	0.167	622
Year 13	4.545	0.167	622
Year 14	4.545	0.167	622
Year 15	4.545	0.167	622
Year 16	4.545	0.167	622
Year 17	4.545	0.167	622
Year 18	4.545	0.167	622
Year 19	4.545	0.167	622
Year 20	4.545	0.167	622
Year 21	4.545	0.167	622
Total	91.9		12,588

12.3.5 Other Scope 3 Emissions

12.3.5.1 Transportation

Emissions from coal transportation have been estimated based on 1 Mt product coal being transported via rail to Port Kembla for export. It has been conservatively assumed that up to 1 Mtpa coal in all Project years will be transported to that destination. Emissions associated with product coal transportation have been estimated based on an emission factor for loaded trains of 12.3 g/net tonne-km (**QR Network Access, 2002**). Emission factors were not available for unloaded trains so the factor for loaded trains is conservatively applied for the return trip. The return rail trip to Port Kembla is estimated to be 190.88 km.

The total estimated GHG emissions from rail transport are provided in Table 12.5.

It is important to note that Coalpac is seeking approval for 1Mt of product coal to be transported by rail to Port Kembla and is not seeking to increase this amount at any time in the Project's life. The AQIA assumes that much of the remaining volume of product coal will be transported via conveyor to the MPPS for each year of the Project's operation. It is recognised that although unlikely, there may be some potential for the MPPS to be unable to receive the remaining product coal from the Project at a stage in the Project's life. Should this scenario occur, the Project would need a modification to Project Approval and be re-assessed at said time.

Coalpac will also continue to transport product sand by truck off-site to the end of Year 14 of the Project. These scope 3 emissions have been estimated using the same method described in **Section 12.3.1**. The total estimated GHG emissions from off-site transport of sand are provided in **Table 12.7**.

Emissions from transporting coal by truck off-site are not included in this GHG assessment due to the minor amount of coal to be transported by truck per year. Further, the amount trucked per year will be transported to end users (e.g. power stations or other domestic suppliers) on a needs basis and therefore the amount will be variable per year. The GHG emissions from this activity are

scope 3 emissions and are likely to be minor and will not have a significant effect on the total overall GHG emissions from the Project.

Table 12.5: Estimated CO₂-e (tonnes) for coal transportation by rail

Year	Total Product coal (t)	Total Emissions (t CO₂-e)
Year 1	1,000,000	2,348
Year 2	1,000,000	2,348
Year 3	1,000,000	2,348
Year 4	1,000,000	2,348
Year 5	1,000,000	2,348
Year 6	1,000,000	2,348
Year 7	1,000,000	2,348
Year 8	1,000,000	2,348
Year 9	1,000,000	2,348
Year 10	1,000,000	2,348
Year 11	1,000,000	2,348
Year 12	1,000,000	2,348
Year 13	1,000,000	2,348
Year 14	1,000,000	2,348
Year 15	1,000,000	2,348
Year 16	1,000,000	2,348
Year 17	1,000,000	2,348
Year 18	1,000,000	2,348
Year 19	1,000,000	2,348
Year 20	1,000,000	2,348
Year 21	1,000,000	2,348
TOTAL	21,000,000	49,304

Table 12.6: Estimated CO_2 -e (tonnes) for sand transportation off-site by truck

Year	Total Product Sand (Mtpa)	Total Emissions (t CO ₂ -e)
Year 1	0.64	9,391
Year 2	0.64	9,391
Year 3	0.64	9,391
Year 4	0.64	9,391
Year 5	0.64	9,391
Year 6	0.64	9,391
Year 7	0.64	9,391
Year 8	0.64	9,391
Year 9	0.64	9,391
Year 10	0.64	9,391
Year 11	0.64	9,391
Year 12	0.64	9,391
Year 13	0.64	9,391
Year 14	0.64	9,391
Total	9.0	131,476

12.3.5.2 Burning Product Coal

Greenhouse gas emissions from the burning of product coal were estimated using the following equation:

$$E_{CO_2-e} = \frac{Q \times EC \times EF}{1000}$$

Where:

 E_{CO2-e} = Emissions of GHG from coal combustion (t CO_2-e) Q = Quantity of product coal burnt (GJ) EC = Energy Content Factor for black coal (GJ/t)¹

EF = Emission factor for coal combustion (kg CO_2 -e/GJ)

The quantity of coal burnt in Mtpa is converted to GJ using an energy content factor for coal of 23 GJ/t. The greenhouse gas emission factor was sourced from the NGA Factors (**DCCEE**, **2010**). The energy content factor was calculated and provided by Coalpac as site-specific data (**Communication with Hansen Bailey**, **2011**).

The emissions associated with burning of the product coal are presented in **Table 12.7**.

Table 12.7: Scope 3 Emissions for Product Coal

Year	Product Coal Mtpa	Energy Content GJ/t	EF kg CO2 e/GJ	Scope 3 Emissions (t CO2-e)
Year 1	2.069	23	88	4,207,712
Year 2	2.714	23	88	5,518,961
Year 3	3.498	23	88	7,113,581
Year 4	3.500	23	88	7,117,903
Year 5	3.500	23	88	7,117,903
Year 6	3.500	23	88	7,117,903
Year 7	3.500	23	88	7,117,903
Year 8	3.500	23	88	7,117,903
Year 9	3.500	23	88	7,117,903
Year 10	3.500	23	88	7,117,903
Year 11	3.500	23	88	7,117,903
Year 12	3.500	23	88	7,117,903
Year 13	3.500	23	88	7,117,903
Year 14	3.500	23	88	7,117,903
Year 15	3.500	23	88	7,117,903
Year 16	3.500	23	88	7,117,903
Year 17	3.500	23	88	7,117,903
Year 18	3.500	23	88	7,117,903
Year 19	3.500	23	88	7,117,903
Year 20	3.500	23	88	7,117,903
Year 21	3.500	23	88	7,117,903
Total	71.274			144,962,510

¹ GJ/t = gigajoules per tonne

12.4 Summary of GHG Emissions

A summary of the total GHG emissions associated with the Project are presented in **Table 12.8**. The emissions from the burning of product coal will be much larger than those associated with the extraction and processing of the coal. These are indirect emissions (Scope 3) from sources not owned or controlled by Coalpac, and therefore measures to minimise or reduce these emissions cannot be made by Coalpac.

Table 12.8: Summary of GHG Emissions (t CO₂-e)

Emission Source	Scope 1	Scope 2	Scope 3	Total
		Averag	e t CO ₂ -e/annum	
Diesel	59,712	-	4,528	64,239
Electricity	-	5,779	1,169	6,948
Explosives	599	-	-	599
Fugitive Emissions	2,962	-	-	2,962
Coal Transportation	-	-	2,348	2,348
Off-site Sand Transportation	-	-	9,391	9,391
Coal Burning	-	-	6,902,977	6,902,977
Total: Annual	63,274	5,779	6,920,412	6,989,465
Total: Year 1 - 21	1,328,748	121,367	145,262,914	146,713,030

12.5 Assessment of Potential Impact on Environment

Australia ratified the Kyoto Protocol in December 2007, an international agreement under the United Nations Framework on Climate Change (UNFCC) that was agreed in 1997. The aim of the Protocol is to reduce global greenhouse gas emissions by requiring developed countries to meet national targets for greenhouse gas emissions over the five year period from 2008 to 2012.

A comparison is therefore made with the baseline 1990 Australian emissions, which are reported under the Kyoto Protocol as 547.7 Mt CO_2 -e (**DCC, 2009a**). The baseline is used to assign Australian target under the Kyoto Protocol, which is 108% of the 1990 level. Comparing the average annual Scope 1 emissions from the Project against the 1990 baseline indicates that the Project emissions are 0.01% of the 1990 levels.

The relationship between GHG emissions and global warming is not linear and there is no accepted method to determine the contribution that a given emission of GHGs might make to global warming.

The estimated quantity of carbon dioxide stored in the atmosphere now is approximately 3,000 Gigatonnes (Gt). The International Energy Agency estimates that in 2007, global emissions of CO_2 from burning fossil fuels were 28,962 Mt, of which Australia's emissions of CO_2 from burning fossil fuels were 396.3 Mt CO_2 (i.e. approximately 1.4% of the global anthropogenic, or human-related, total) (**IEA, 2009**).

At any point in time, it would be reasonably simple to compare the estimated emission of CO_2 -e from the various activities with the 3,000 Gt of CO_2 -e currently estimated to be stored in the atmosphere. On this basis, average annual emissions over the lifetime of the proposal from the mining and burning of coal (including mining, transporting the coal to the Port Kembla and usage of the coal) are estimated to be 0.0003% of the current global CO_2 -e atmospheric load. Thus, the Project could be considered to contribute 0.0003% to the increase in global temperatures caused by the increase in GHG emissions as they are currently. This invites the question as to what temperature rise might be attributed to the GHG emissions from the proposal.

Based on the IPPC estimate that a doubling of the CO_2 -e concentration in the atmosphere would lead to a 2.5°C increase in global average temperature and that the current global CO_2 -e load is approximately 3,000 Gt, it can be estimated that the annual average emissions (Scope 1, 2 and 3) during the life of proposal (including mining, transporting the coal to Port Kembla and usage of the coal) could lead to an annual increase in global temperature of 0.00001 C (0.0009% of 2.5°C). Based on the above, there is not likely to be any measurable environmental effect due to the emissions of GHGs from the proposal, i.e. the contribution of the project to GHG emissions will be negligible. In practice, of course, the effects of global warming and associated climate change are the cumulative effect of many thousands of such sources.

12.6 GHG Emission Reduction Measures

Coalpac has plans and standards to minimize energy usage and GHG emissions from its operations, including the Coalpac Consolidation Project. Reasonable and feasible measures will be implemented on-site to minimise greenhouse gas emissions of the Project and ensure it is energy efficient. These measures include objectives, commitments, procedures and responsibilities for:

- Researching and promoting low emission coal technologies;
- Monitoring and improving energy use and efficiency and reducing GHG emissions from the mining, processing and use of coal;
- Consideration of the use of alternative fuels where economically and practically feasible;
- Review of mining practices to minimise double handling of materials and ensuring that coal and overburden haulage is undertaken using the most efficient routes;
- Ongoing scheduled and preventative maintenance to ensure that diesel and electrically powered plant operate efficiently; and
- Develop targets for greenhouse gas emissions and energy use onsite and monitor and report against these.

Coalpac has already committed to ensuring that certain GHG measures are implemented on-site. These site specific measures are listed in **Table 12.9** and will continue to be implemented during the life of the Project, along with consideration of the reasonable and feasible measures listed above.

Table 12.9: Greenhouse Gas Management Measures

Management Measure	Implementation Date
Ensuring that there is a dedicated number of trucks for each digging unit (i.e. front-end-loader and excavator) to minimise truck wait time.	On-going
Ensuring that dump trucks are fully loaded for each load prior to hauling to maximise productivity and efficiency with regard to the amount of fuel used per unit of material moved. This is measured by the number of buckets loaded into each truck.	On-going
Review haul road maintenance and materials used in main haul roads to reduce rolling resistance and decrease fuel consumption.	On-going

13 CONCLUSIONS

This assessment has investigated the potential air quality impacts of the Coalpac Consolidation Project with respect to air quality and greenhouse gas emissions.

Dispersion modelling has been used to predict off-site dust concentration and dust deposition levels due to the dust generating activities that would occur as a result the Project. Emissions inventories were developed for Year 2, Year 8, Year 14 and Year 20 of the Project. The dispersion conditions for the area were characterised based on regional and local meteorological data, generated using a diagnostic meteorological modelling system known as CALMET. The dispersion model CALPUFF was used to predict the maximum 24-hour PM_{10} , annual average PM_{10} , annual average TSP and annual average dust deposition. CALPUFF is endorsed by the US EPA, and has been used in many studies in New South Wales, Queensland and other parts of Australia. CALPUFF is approved by the NSW DECCW where non-steady conditions can be expected (e.g. where complex terrain exists).

Detailed modelling was conducted to assess whether the proposed mining operations of the Project would adversely impact any privately owned or mine-owned residences located within the vicinity of the Project. The assessment included predictions of air quality impacts from the Project in isolation as well as the potential cumulative impacts of other sources. The modelling indicates that over the proposed 21-year period of the Project there will be some sensitive receptors that have the potential to experience dust concentrations above the DECCW's air quality assessment criteria. These residences are summarised in **Table 13.1**.

Generally, the predictions presented in this report incorporate a level of conservatism due to worst case assumptions and the nature of dispersion modelling. As a result, it is expected that actual ground level concentrations would be lower than those predicted in the model during normal operation of the Project.

Notwithstanding this, it is proposed that the worst case impacts would be managed on a day to day basis with the implementation of a real-time air quality monitoring station, which will enable mine personnel to respond to high dust levels prior to their reaching critical levels and modify activities or increase controls as required.

The potential greenhouse gas emissions that are likely to occur as a result of the operation of the Project have been estimated based on an inventory for each year of the Project's life. On average, Scope 1 emissions from the Project would increase emissions by 0.01% of the 1990 baseline Australian levels.

Table 13.1: Summary of receptors that have the potential to experience dust impact

24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217ac and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	Residence ID	Potential Impact
24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from nalone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from nalone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from nalone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from nalone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from nalone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from nalone.	169ª	24-hour PM_{10} impacts above 50 μ g/m ³ occur on more than 5 days per year from mine alone.
Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 228-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	171 ^a	24-hour PM_{10} impacts above 50 μ g/m ³ occur on more than 5 days per year from mine alone.
Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217ac and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 258 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 224-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	195 ^b	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur on more than 5 days per year from mine alone. Cumulative annual average PM_{10} concentrations above 30 $\mu g/m^3$ based on conservative worst case assessment.
Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 258 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	196 ^b	
Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 24-hour PM ₁₀ impacts above 50 μg/m³ occur on more than 5 days per year from mine alor Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 258 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	197 ^b	Cumulative annual average PM_{10} concentrations above 30 $\mu g/m^3$ based on conservative worst case assessment.
Cumulative annual average PM ₁₀ concentrations above 30 μg/m³ based on conservative w case assessment. 216 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 258 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 325 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 326 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	198 ^b	Cumulative annual average PM_{10} concentrations above 30 $\mu g/m^3$ based on conservative worst case assessment.
alone. 217a ^c and 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 258	199 ^b	Cumulative annual average PM_{10} concentrations above 30 $\mu g/m^3$ based on conservative worst case assessment.
217bbc alone. 258 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 325 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 326 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	216	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.
alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.		24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.
alone. 24-hour PM ₁₀ impacts above 50 μg/m³ occur but for less than 5 days per year from n alone.	258	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.
alone. 24-hour PM-s impacts above 50 ug/m³ occur but for less than 5 days per year from mine.	325	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.
24-hour PM ₁₀ impacts above 50 μ g/m ³ occur but for less than 5 days per year from mine	326	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.
alone.	327	
394 ^a 24-hour PM ₁₀ impacts above 50 μg/m ³ occur on more than 5 days per year from mine alor	394ª	24-hour PM_{10} impacts above 50 μ g/m ³ occur on more than 5 days per year from mine alone.
396 ^a 24-hour PM ₁₀ impacts above 50 μg/m ³ occur on more than 5 days per year from mine alor	396ª	24-hour PM_{10} impacts above 50 μ g/m ³ occur on more than 5 days per year from mine alone.
426 24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from n alone.	426	24-hour PM_{10} impacts above 50 $\mu g/m^3$ occur but for less than 5 days per year from mine alone.

a Coalpac-owned
b Located within Coalpac Mining Lease
C Crown-owned

14 REFERENCES

AEISG (2011)

"Code of Practice: Prevention and Management of Blast Generated NO_x Gases in Surface Blasting. Edition 2" Prepared by the Australian Explosives Industry and Safety Group Inc. August 2011.

Australian Government Department of Climate Change and Energy Efficiency Website (2011) http://www.climatechange.gov.au/government/reduce/carbon-pricing.aspx

Bureau of Meteorology (2010) www.bom.gov.au

Coalpac (2009a)

"Cullen Valley Mine: Blast Management Plan" Prepared by Hansen Bailey. December 2009.

Coalpac (2009b)

"Invincible Open Cut Coal Mine Extension: Blast Monitoring and Management Plant" Prepared by Hansen Bailey. June 2009.

Communications with Hansen Bailey (2011)

Connell Hatch (2008)

"Environmental Evaluation of Fugitive Coal Cost Emissions from Coal Trains: Goonyella, Blackwater and Moura Rail Systems - Queensland Rail Limited" prepared by Connell Hatch, March 2008.

DCC (2008a)

"Carbon Pollution Reduction Scheme. Australia's Low Pollution Future. White Paper" December 2008. Published by the Department of Climate Change. http://www.climatechange.gov.au/

DCC (2008b)

"The Green Paper, Carbon Pollution Reduction Scheme consultation paper" July 2009. Published by the Department of Climate Change. http://www.climatechange.gov.au/

DCC (2009a)

Department of Climate Change. The Australian Government's Initial Report under the Kyoto Protocol – Report to facilitate the calculation of the assigned amount of Australia pursuant to Article 3, paragraphs 7 and 8 of the Kyoto Protocol – Revised submission to the UNFCC Secretariat.

DCCEE (2010)

"National Greenhouse Account (NGA) Factors" July 2010. Published by the Department of Climate Change and Energy Efficiency. http://www.climatechange.gov.au/

DERT (2009)

"Leading Practice Sustainable Development Program for the Mining Industry" Department of Energy, Resources and Tourism, 2009.

Department of Planning (DoP) (2010)

http://www.planning.nsw.gov.au/

Environment Australia (1998)

"Best Practice Environmental Management in Mining: Dust Control" Environment Australia, Department of the Environment, 1998. ISBN 0 642 54570 7

GEOS Mining (2011)

"Memorandium: Invincible and Cullen Valley Mines – Fugitive Gas Emissions Measurement" prepared by GEOS Mining for Coalpac Pty Ltd, 4 August 2011.

Heggies (2010)

"Pine Dale Coal Mine Yarraboldy Extension: Air Quality Assessment" prepared by Heggies for Enhance Place Pry Limited, July 2010.

Hurley, P. (2005)

The Air Pollution Model (TAPM) Version 3. Part 1, Technical Description, CSIRO Atmospheric Research Technical Paper No. 71, CSIRO Division of Atmospheric Research, Melbourne.

Hurley, P. et. al (2005)

The Air Pollution Model (TAPM) Version 3. Part 2: Summary of Some Verification Studies, CSIRO Atmospheric Research Technical Paper No. 72, CSIRO Division of Atmospheric Research, Melbourne. Hurley, P., Physick, W.L., Luhar, A.K. & Edwards M. 2005.

IEA (2009)

"CO₂ Emissions from Fuel Consumption 2009" International Energy Agency ISBN 92-64-10891-2. Available from http://www.iea.org/co2highlights/.

Katestone Environmental Pty Ltd (2011)

"NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining" Katestone Environmental Pty Ltd prepared for OEH, 2011.

NSW DEC (2005)

"Approved Methods and Guidance for the Modelling and Assessment of Air Pollutants in NSW", August 2005.

NSW Minerals Council (2000)

"Technical Paper - Particulate Matter and Mining Interim Report".

QR Network Access (2002)

"Comparison of Greenhouse Gas Emissions by Australian Intermodal Rail and Road Transport" QR Network Access, 127 Creek Street, Brisbane, Queensland 4000.

Scire, J.S. (2000a)

A User's Guide for the CALPUFF Dispersion Model (Version 5), Earth Tech, Inc., Concord, MA. Scire, J.S., Strimaitis, D.G. & Yamartino, R.J. 2000a.

SPCC (1983)

Air Pollution from Coal Mining and Related Developments, State Pollution Control Commission.

US EPA (1985)

"Compilation of Air Pollutant Emission Factors", AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711.

WBCSD/WRI (2004)

"The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard Revised Edition" March 2004. World Business Council for Sustainable Development and World Resources Institute.

Appendix A: Land Ownership Details

Table A.1: Land ownership details

			OWNER	
BLOCK ID	LOT	DP	ID	OWNER
1	120	704711	179	JR TILLEY & DG McGRATH
2	122	704711	2	CROWN
3	82	621620 748283	180	DESTANAG PTY LTD
4 5	2 84	755759	181 182	WDD & AM CLARK RJ ALLEN
6	2	1083114	182	RJ ALLEN
7	20	755759	183	BJ & LL SKEEN
8	77	755759	184	B & F KUHNER
9	26	755759	185	JK HUTCHISON
10	73	755759	185	JK HUTCHISON
11	13	755766	186	RS HUTCHISON
12	76	755795		NATIONAL PARKS & WILDLIFE SERVICE
13	107	755767		NATIONAL PARKS & WILDLIFE SERVICE
14 15	7301	1131637	2	CROWN
16	7302 38	1137845 755759	179	CROWN JR TILLEY & DG McGRATH
17	64	661880	180	DESTANAG PTY LTD
18	7300	1131637	2	CROWN
19	11	755759	180	DESTANAG PTY LTD
20	12	755759	180	DESTANAG PTY LTD
21	59	755759	180	DESTANAG PTY LTD
22	13	755759	180	DESTANAG PTY LTD
23	56	755759	180	DESTANAG PTY LTD
24	14	755759	180	DESTANAG PTY LTD
25	7	1035759	187	O'FARRELL PASTORAL COMPANY PTY LTD
26	68	755759	188	GJ & TJ MORRIS
27 28	5	1035759 1035759	187 189	O'FARRELL PASTORAL COMPANY PTY LTD PJ PERROTT
29	97	755759	190	RL KELLAM
30	98	755759	2	CROWN
31	7001	1026563	2	CROWN
32	6	1035759	187	O'FARRELL PASTORAL COMPANY PTY LTD
33	8	1035759	187	O'FARRELL PASTORAL COMPANY PTY LTD
34	100	1028251	191	RF & RA CARTER
35	18	7881	191	RF & RA CARTER
36	1	385225	5	RI & GM LARKIN
37	26 27	7881	5 192	RI & GM LARKIN
38 39	72	7881 755759	2	PMG & CE PARR CROWN
40	54	755767	193	VA , CA , SL & JA HANTOS
41	76	755759	3	PR & KA HALL
42	Α	391695	4	LARKIN PASTORAL CO PTY LTD
43	58	755759	180	DESTANAG PTY LTD
44	55	755759	180	DESTANAG PTY LTD
45	57	755759	180	DESTANAG PTY LTD
46	47	755759	2	CROWN
47	46	755759	2	CROWN
48 49	45 54	755759 755759	4	CROWN LARKIN PASTORAL CO PTY LTD
50	1	951805	4	LARKIN PASTORAL CO PTY LTD LARKIN PASTORAL CO PTY LTD
51	48	755759	2	CROWN
52	49	1094781	4	LARKIN PASTORAL CO PTY LTD
53	7	1035759	187	O'FARRELL PASTORAL COMPANY PTY LTD
54	8	1035759	187	O'FARRELL PASTORAL COMPANY PTY LTD
55	1	834137	194	CJ & MH O'FARRELL PTY LTD
56	101	1028251	195	AP & MA CONSTANTINIDES & DR GAZZARD
57	1	382576	2	CROWN (THE COUNCIL OF THE SHIRE OF BLAXLAND)
58	A	380377	196	KA & MJ KIRK
59	В	380377	196	KA & MJ KIRK
60 61	2	204931 204931	197 198	TJ & BN GILSHENAN KM PRICE
62	1	735808	2	CROWN (RTA)
63	1	633720	200	RN HARRIS
64	7	755759	3	PR & KA HALL
65	10	755759	3	PR & KA HALL
66	8	755759	3	PR & KA HALL
67	9	755759	3	PR & KA HALL

BLOCK ID	LOT	DP	OWNER ID	OWNER
68	53	755759	4	LARKIN PASTORAL CO PTY LTD
69	74	755759	4	LARKIN PASTORAL CO PTY LTD
70	11	1125934	4	LARKIN PASTORAL CO PTY LTD
71	12	1125934	4	LARKIN PASTORAL CO PTY LTD
72	1	770408	195	AP & MA CONSTANTINIDES & DR GAZZARD
73	3	755759	187	O'FARRELL PASTORAL COMPANY PTY LTD
74	94	755759	43	JC MURRAY & KL MCFARLANE
75	37	755759	43	JC MURRAY & KL MCFARLANE
76	40	755759	43	JC MURRAY & KL MCFARLANE
77	41	755759	43	JC MURRAY & KL MCFARLANE
78	112	751640		NATIONAL PARKS & WILDLIFE SERVICE
79	33	1125887	46	RI , AM & GM LARKIN
80	31	572044	44	AG DICKSON
81	32	1125887	45	THE MINISTER FOR EDUCATION & TRAINING
82	66	755759	2	CROWN
83	62	755759	2	CROWN
84	61	755759	2	CROWN
85	1	744575	48	A & L TETTE
86	60	755759	2	CROWN
87	3	737188	49	BK ABRAHAMS
88	15	755767	3	PR & KA HALL
90	100 7302	755769 1131637	2	PR & KA HALL CROWN
90	99	755769	3	PR & KA HALL
92	77	755769	3	PR & KA HALL
93	25	755769	3	PR & KA HALL
94	24	755769	3	PR & KA HALL
95	36	755759	4	LARKIN PASTORAL CO PTY LTD
96	26	755769	4	LARKIN PASTORAL CO PTY LTD
97	1	1148995	5	RI & GM LARKIN
98	87	755759	5	RI & GM LARKIN
99	88	755759	5	RI & GM LARKIN
100	99	755759	5	RI & GM LARKIN
101	4	114337	5	RI & GM LARKIN
102	5	114337	5	RI & GM LARKIN
103	10	245921	57	JR & DM CRAM
104	11	245921	47	KA THOMAS
105	9	245921	56	A & M ABOU-TOUMA
106	8	245921	56	A & M ABOU-TOUMA
107	7	245921	55	G & M GEBRAEL
108	6	245921	54	PJ & CI DI MAURO
109	5	245921	53	J, P, GG & CG PICCIONE
110	4	245921	52	J HANNOUCHE
111	23	1065421 245921	58 52	A & R SALMAN
112 113	2	245921	51	J HANNOUCHE MR & AM DINGIN
114	1	245921	50	MB & AM RINGIN PJ & EJ ISAACSON
115	24	755759	59	GA & BS JESSEP
116	44	755759	59	GA & BS JESSEP
117	34	755759	60	P & WE TILLEY
118	1	114337	59	GA & BS JESSEP
119	10	812300	61	LN GOLDSPINK
120	11	812300	59	GA & BS JESSEP
121	86	755759	59	GA & BS JESSEP
122	1	734531	62	JL MACPHEE
123	22	1103948	64	TW & JA NOLAN
124	21	1103948	63	DW MACPHEE
125	93	755759		NATIONAL PARKS & WILDLIFE SERVICE
126	39	755759		STATE FORESTS OF NSW
127	53	755767	3	PR & KA HALL
128	1	130047	3	PR & KA HALL
129	2	130047	3	PR & KA HALL
130	77	755767	199	D BARBER
131	76	755767	199	D BARBER
132	43	755767	199	D BARBER
133 134	119	755769 502588	3	PR & KA HALL PR & KA HALL
135	119	755769	3	PR & KA HALL
136	2	502588	3	PR & KA HALL
137	105	755769	4	LARKIN PASTORAL CO PTY LTD
137	103	133103	7	Budder Aprovat Collin Lib

Note Note				OWNER	
138	BLOCK ID	LOT	DP		OWNER
139					
140					
141					
144	141	41			
144 95		3			PG DESCH & KC FARRUGIA
145	143	4	734531	66	DB SPEIRS
146	144	95	755759	67	DA & DM MULDOON
148	145	29	755759	42	WALLERWANG COLLIERIES
148	146	33	664527	42	WALLERWANG COLLIERIES
149	147	1	796723	42	WALLERWANG COLLIERIES
150	148	78	755759	42	WALLERWANG COLLIERIES
151 30	149	Α	421385	42	WALLERWANG COLLIERIES
152	150	2	235194	42	WALLERWANG COLLIERIES
153 28					
154	l				WALLERWANG COLLIERIES
155					
156					
157					
158					
159	l				
160	l			_	
161					
162	l				
163 51					
164	l				
165	l			_	
166					
167					
168	l				
169	l			42	
170				27	
171					
172 96					
173 35 755769 6 RK DICKENS (PERPETUAL LEASE) 174 1 502588 6 RK DICKENS 176 261 755769 6 RK DICKENS 177 7301 1131640 2 CROWN 178 330 755769 6 RK DICKENS 179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 185 42 755769 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 2 CROWN (THE STATE OF NSW) 190				27	
174 1 502588 6 RK DICKENS 175 126 755769 6 RK DICKENS 176 261 755769 7 GE ORELLANA 177 7301 1131640 2 CROWN 178 330 755769 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD				6	
175 126 755769 6 RK DICKENS 176 261 755769 7 GE ORELLANA 177 7301 1131640 2 CROWN 178 330 755769 6 RK DICKENS 179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 7316 1142025 2 CROWN (THE STATE OF NSW) 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL C					· · · · · · · · · · · · · · · · · · ·
176 261 755769 7 GE ORELLANA 177 7301 1131640 2 CROWN 178 330 755769 6 RK DICKENS 179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD					
177 7301 1131640 2 CROWN 178 330 755769 6 RK DICKENS 179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 199 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PAS					
178 330 755769 6 RK DICKENS 179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2				_	
179 1 220269 6 RK DICKENS 180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565	l				
180 20 870537 6 RK DICKENS 181 125 755769 6 RK DICKENS 182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 4					
182 62 755769 6 RK DICKENS 183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW.) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW.) 193 7005 1026565 2 CROWN (THE STATE OF NSW.) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1		20		6	RK DICKENS
183 49 755769 6 RK DICKENS 184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 <td>181</td> <td>125</td> <td>755769</td> <td>6</td> <td>RK DICKENS</td>	181	125	755769	6	RK DICKENS
184 3 220269 6 RK DICKENS 185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON <	182	62	755769	6	RK DICKENS
185 42 755769 6 RK DICKENS 186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY <td< td=""><td>183</td><td>49</td><td>755769</td><td>6</td><td>RK DICKENS</td></td<>	183	49	755769	6	RK DICKENS
186 1 870538 6 RK DICKENS 187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 200 3 1148418 35 R TILLEY <	184	3	220269	6	RK DICKENS
187 7316 1142025 2 CROWN (THE STATE OF NSW) 188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM	185	42	755769		RK DICKENS
188 36 755769 27 PORTLAND ROAD PASTORAL CO PTY LTD 189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
189 331 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & R L KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 109348					
190 332 46518 27 PORTLAND ROAD PASTORAL CO PTY LTD 191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9					
191 1 1025909 27 PORTLAND ROAD PASTORAL CO PTY LTD 192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO &					
192 63 755769 2 CROWN (THE STATE OF NSW) 193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
193 7005 1026565 2 CROWN (THE STATE OF NSW) 194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
194 333 41170 34 J KNOX 195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
195 345 720602 33 KJ BLACKLEY 196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO				_	
196 7315 1142024 2 CROWN (THE STATE OF NSW) 197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
197 74 755769 31 BE & CE LEISEMANN & IL &KID FOLLINGTON 198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
198 57 744769 30 DA TILLEY 199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
199 1 376417 30 DA TILLEY 200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
200 3 1148418 35 R TILLEY 201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
201 1 160808 32 KD & RL KELLAM 202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO				_	
202 11 1093481 36 GJ KEIGHTLEY 203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
203 2 857736 8 JR GRACEY 204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
204 12 1093481 8 JR GRACEY 205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
205 2 870538 9 D DINO & J SERAGLIO 206 2 870538 9 D DINO & J SERAGLIO					
206 2 870538 9 D DINO & J SERAGLIO					
	207	7344	1154791	2	CROWN

	1	1	Lowner	1
BLOCK ID	LOT	DP	OWNER ID	OWNER
208	326	755769	2	CROWN
209	1	249955	68	DJ RYAN
210	2	249955	69	FC & K TILLEY
211	3	249955	70	BJ & JM FITZGERALD
212	4	249955	27	PORTLAND ROAD PASTORAL CO PTY LTD
213	5	249955	28	LITHGOW COAL CO PTY LTD
214	1	48808	28	LITHGOW COAL CO PTY LTD
215	1	528538	27	PORTLAND ROAD PASTORAL CO PTY LTD
216	348	722331	137	BM EMMOTT
217	7312	1142022	2	CROWN
218	101	1106315	98	G & BA TILLEY
219	102	1106315	99	JR TILLEY
220 221	3	528538 218896	97 45	KL BUNYON THE MINISTER FOR EDUCATION & TRAINING
222	1	973647	108	CP BAINY
223	1	315600	107	RJ WHITTAKER & SR BURROWS
224	2	315600	99	JR TILLEY
225	4	980222	99	JR TILLEY
226	1	944003	99	JR TILLEY
227	1	305258	106	RG WRIGHT & KL NORRIS
228	1	944657	105	AA WOODS , EJ NICHOLLS & LH FIELD
229	1	302241	105	AA WOODS , EJ NICHOLLS & LH FIELD
230	1	302242	104	CM & BA GILBERT
231	2	302240	103	J FULLER
232	1	302239	102	RM PYNE
233	1	958777	101	TE CADDIS & RM PYNE
234	1	1094180	100	S NAPOLI
235	1	626789	143	RK & SM LANE
236	2	626789	144	TJ & KO TILLEY
237	8	2284	142	MC CRANE
238	7	2284	141	DP ROCHESTER
239	6	2284	140	SG TWEEDIE
240	5	2284	139	DW & GJ McCANN
241	4	2284	77	WF FITZGERALD
242	2	2284 2284	77	WF FITZGERALD UNREF
244	1	2284		UNREF
245	328	755769	138	M BOTFIELD
246	25	2284	139	DW & GJ McCANN
247	20	2284	157	KO & SL ROCHESTER
248	19	2284	156	PB DRAPER
249	18	2284	155	GER YOUNG
250	17	2284	155	GER YOUNG
251	16	2284	155	GER YOUNG
252	15	2284	155	GER YOUNG
253	14	2284	154	M PASZTOR
254	13	2284	153	RW SELMES
255	12	2284	152	GE LANE
256	11	2284	152	GE LANE
257	21	2284	145	DJ TILLEY
258	21	249955	146	S & H FILLA
259	20	755769	2	CROWN
260	7014	1067906	2	CROWN
261	323	755769 755769	2	CROWN (THE COUNCIL OF THE CITY OF CREATER LITHCOW.)
262 263	142 A	382206	109	CROWN (THE COUNCIL OF THE CITY OF GREATER LITHGOW) M STONE
264	В	382206	110	RD & DJ BLACKLEY
265	144	755769	2	CROWN (THE COUNCIL OF THE SHIRE OF BLAXLAND)
266	145	755769	2	CROWN (THE COUNCIL OF THE SHIRE OF BLAXLAND)
267	150	755769	114	AW GLEESON & SA MULDOON
268	148	755769	112	EA & DM LANE
269	146	755769	111	RD BLACKLEY
270	147	755769	111	RD BLACKLEY
271	149	755769	113	CD & JD McCANN
272	82	755769	2	CROWN
273	84	755769	115	GJ & TA HUTCHISON
274	307	755769	116	JL & MB HOWDEN
275	308	755769	116	JL & MB HOWDEN
276	309	755769	33	KJ BLACKLEY (PERPETUAL LEASE)
277	310	755769	117	RJ TILLEY

			OWNER	
BLOCK ID	LOT	DP	ID	OWNER
278	311	755769	118	FS GILSON
279	312	755769	119	N & JA ANDERSON
280	313	755769	120	SR WILLIAMS
281 282	314 343	755769 42953	121 122	SJ BROOKS
283	343	755769	122	MW MERCER MW MERCER
284	318	755769	123	VN & E DEVEIGNE
285	319	755769	124	E BANKS
286	320	755769	125	MB BANKS
287	321	755769	126	KD FRIPP
288	322	755769	125	MB BANKS
289	118	755769	127	NG HARRADINE
290	1	934774	177	SW HOBBY
291	1	925015	158	A & R INZITARI
292	3	925015	159	SP MAYBURY
293	1/A	13644	159	SP MAYBURY
294 295	2/A 3/A	13644 13644	158 160	A & R INZITARI DR & JA BATTERSBY
296	3/A 4/A	13644	161	PF KENDALL
297	7	13644	162	BJ SCOTT
298	6	13644	163	PF & DM TONER
299	5/A	13644	161	PF KENDALL
300	8/A	13644	146	S & H FILLA
301	9/A	13644	164	CM O'NEILL
302	10/A	13644	165	CJ CONROY
303	11/A	13644	166	AI MILLER & BS WILSON
304	12/A	13644	166	AI MILLER & BS WILSON
305	13/A	13644	166	AI MILLER & BS WILSON
306	14/A	13644	166	AI MILLER & BS WILSON
307 308	15/A 16/A	13644 13644	166 167	AI MILLER & BS WILSON T BATES
309	17	13644	178	ME STEWART
310	18/A	13644	147	SJ BANDIERA
311	19/A	13644	148	WG BROWN
312	20/A	13644	149	LM McDONALD
313	21/A	13644	150	N VIAPHAY
314	22/A	13644	151	KR WATERS
315	1	1004175	168	KL GODDEN
316	1/B	13644	169	CE & SM DAVIS
317	2/B	13644	169	CE & SM DAVIS
318	100	1050450	170	AW HALL
319 320	5/B 6/B	13644 13644	170 170	AW HALL
321	20	1013496	171	N THORNE
322	21	1013496	172	J & DLA MARKOWSKI
323	22	1013496	172	J & DLA MARKOWSKI
324	23	1013496	173	P REDDAN
325	24	1013496	174	SP & SA DUGGAN
326	1	1047161	175	THE MINISTER FOR ENERGY & UTILITIES
327	2	1047161	176	J PLAYFORD
328	1	10141	86	RP HARRIS
329	2	10141	87	R BAILEY
330	3	10141	88	DJ ANNESLEY
331 332	5	10141 10141	89 90	GJ & VC WALSH BN ROCHESTER
333	6	10141	91	RP DOYLE
334	7	10141	92	P WARNER & YA HARRIS
335	8	10141	92	P WARNER & YA HARRIS
336	9	10141	92	P WARNER & YA HARRIS
337	10	10141	92	P WARNER & YA HARRIS
338	11	10141	93	GJ WILLIAMS
339	12	10141	93	GJ WILLIAMS
340	13	10141	93	GJ WILLIAMS
341	14	10141	93	GJ WILLIAMS
342	15	10141	93	GJ WILLIAMS
147	16	10141	94 95	AG & RL WILLIAMS
343			1 45	THE STATE OF THE PROPERTY.
344	17	10141		RT & VE DOBSON
	17 18 19	10141 10141 10141	96 89	DK & K NORTHEY GJ & VC WALSH

348 349 350	1 2	DP 1008594	71	OWNER
349 350		1000337		
350		1008594	72	RE GILMORE & MG & PJ BULKELEY RM CRANE
	7	1017620	128	TANWIND PTY LTD
351	1	171665	2	CROWN
352	8	1017620	129	RS SPEIRS
353	1	24575	130	JM ELLIS
354	2	24575	131	E FABITS
355	3	24575	132	MS IVEY
356	4	24575	133	DC & KT CLAYDON & JD GARRETT
357	5	24575	134	ST & CP WILSON
358	6	24575	135	RJ DUNCAN
359	112	755769	2	CROWN
360	7314	1142023	2	CROWN
361	344	46506	136	RR COLE
362	3	1008594	71	RE GILMORE & MG & PJ BULKELEY
363	112	877190	1	COALPAC PTY LTD
364	1	556504	8	JR GRACEY
365	2	556504	8	JR GRACEY
366	65	755769	2	CROWN
367	1	872187	8	JR GRACEY
368	2	827480	10	RA FULLER
369	2	872187	10	RA FULLER
370	1	1038480	16	JA , SE BYROM & DC HUTTON
371	18	249955	15	MA & JL TAYLOR
372	15	249955	76	RE GILMORE
373	16	249955	77	WF FITZGERALD
374	14	249955	73	MG BULKELEY
375	13	249955	73	MG BULKELEY
376	4	1008594	73	MG BULKELEY
377	16	755769	73	STATE FORESTS OF NSW
378	113	877190	1	COALPAC PTY LTD
379	104	755767	39	VL CHADWICK
380	5	816995	37	LJ WALLWORK
381	4	816995	38	SG & DR BOLZAN
382	6	816995	12	DA & KL MITCHELL
383	1	620560	11	BS BRETHERTON & B CHANDWICK
384	21	633083	13	A TABONE
385	22	633083	14	CEEDIVE PTY LTD
386	3	727017	17	TJ GRIFFITHS
387	19	249955	18	JR EMBLETON KJ KELLY
388	17	249955	78	VA McFADDEN
389	7302	1142032	2	CROWN
390	12	249955	73	MG BULKELEY
391	11	249955	73	MG BULKELEY
392	10	249955	75	IG PALMER
393	8	249955	74	B & G MUENZER
394	1	860892	84	G MUENZER
395	11	614429	83	HYROCK NSW PTY LTD
396	1	180294	1	COALPAC PTY LTD
397	11	755767	40	J MENCHIN
398	50	755767	40	J MENCHIN
399	3	816995	19	PJ & TM McFADDEN
400	2	816995	20	D HART
401	1	816995	21	KG & DA NEAVES
402	7	816995	22	KJ & DK SHAW
403	1	717021	23	BR & E BROWN
404	2	717021	23	BR & E BROWN
405	3	717021	23	BR & E BROWN
406	4	717021	24	PW GRIFFITHS
407	5	717021	25	TJ & SM GRIFFITHS
408	6	717021	26	RH GRIFFITHS
409	1	728859	78	VA McFADDEN
410	7	717021	79	PJ & SL McFADDEN
411	179	755769	82	SJ & DS TAYLOR
412	177	755769	80	V & F FAVA , C ROSITANO , F TEDESCO & E TODORELLO
413	13	755769	80	V & F FAVA , C ROSITANO , F TEDESCO & E TODORELLO
412		755769	80	V & F FAVA , C ROSITANO , F TEDESCO & E TODORELLO
	/1	/33/09		
414	71 72			
	71 72 68	755769 755769	82 82	SJ & DS TAYLOR SJ & DS TAYLOR

			OWNER	
BLOCK ID	LOT	DP	ID	OWNER
418	14	755769	81	AP & KA BROWN
419	15	755769	81	AP & KA BROWN
420	281	755769	82	SJ & DS TAYLOR
421	280	755769	82	SJ & DS TAYLOR
422	38	755769	82	SJ & DS TAYLOR
423	76	755769	82	SJ & DS TAYLOR
424	73	755769	82	SJ & DS TAYLOR
425	69	755769	82	SJ & DS TAYLOR
426	186	755769	85	JWJ & SM TAYLOR
427	121	41586	40	J MENCHIN
428	100	755767	41	KJ TAYLOR
429	6	1127747	201	DELTA ELECTRICITY
430	18	751636	201	DELTA ELECTRICITY
431	52	827626	201	DELTA ELECTRICITY
432	51	827626	201	DELTA ELECTRICITY
433	50	827626	201	DELTA ELECTRICITY
434	49	827626	201	DELTA ELECTRICITY
435	18	755769	202	GW & JL & TJ & JA CLARK
435	1	248472		STATE FORESTS OF NSW
436	22	755769	202	GW & JL & TJ & JA CLARK
437	185	755769	202	GW & JL & TJ & JA CLARK
438	64	755769	202	GW & JL & TJ & JA CLARK
439	264	755769	85	JWJ & SM TAYLOR
440	263	755769	85	JWJ & SM TAYLOR
441	1	1016508	203	GW & JL CLARK
442	1	813288	201	DELTA ELECTRICITY
443	5	1127747	204	LITHGOW DISTRICT CAR CLUB INC.
444	366	740604	201	DELTA ELECTRICITY
445	362	740604	201	DELTA ELECTRICITY
446	59	751636	201	DELTA ELECTRICITY
447	5	1092737	201	DELTA ELECTRICITY
448	191	629212	201	DELTA ELECTRICITY
449	1	803655	201	DELTA ELECTRICITY
450	1	702619	201	DELTA ELECTRICITY
451	5	804929	201	DELTA ELECTRICITY
452	7	804292	201	DELTA ELECTRICITY
453	48	827626	201	DELTA ELECTRICITY
454	1	999329	201	DELTA ELECTRICITY
455	2	999329	201	DELTA ELECTRICITY
456	5	999329	201	DELTA ELECTRICITY
457	4	999329	201	DELTA ELECTRICITY
458	3	999329	201	DELTA ELECTRICITY
459	46	827626	201	DELTA ELECTRICITY
460	47	827626	201	DELTA ELECTRICITY
461	45	827626	205	CENTENNIAL FASSIFERN PTY LIMITED
462	44	827626	205	CENTENNIAL FASSIFERN PTY LIMITED
463	16	751636	205	CENTENNIAL FASSIFERN PTY LIMITED CENTENNIAL FASSIFERN PTY LIMITED
464	343	751636	205	CENTENNIAL FASSIFERN PTY LIMITED CENTENNIAL FASSIFERN PTY LIMITED
465	12	751636 751636	205	CENTENNIAL FASSIFERN PTY LIMITED
466	342	751636	205	CENTENNIAL FASSIFERN PTY LIMITED
467	43	827626	205	CENTENNIAL FASSIFERN PTY LIMITED
468	20	877752	205	CENTENNIAL FASSIFERN PTY LIMITED
469	1	325532	201	DELTA ELECTRICITY CENTENNIAL CORINCVALE DIVILIMITED & CORINCVALE CV
470	9	804020	206	CENTENNIAL SPRINGVALE PTY LIMITED & SPRINGVALE SK
470	8	804929		KORES PTY LIMITED DELTA ELECTRICITY
		804929	201	
472	42	827626	201	DELTA ELECTRICITY
473	41	827626	201	DELTA ELECTRICITY
474 475	1	400022	201	DELTA ELECTRICITY
4 7 7 5	40	827626	201	DELTA ELECTRICITY
	20		207	EHANCE PLACE PTY LIMITED
476	38	827626		
476 477	363	740604	2	CROWN (THE COUNCIL OF THE CITY OF GREATER LITHGOW)
476				

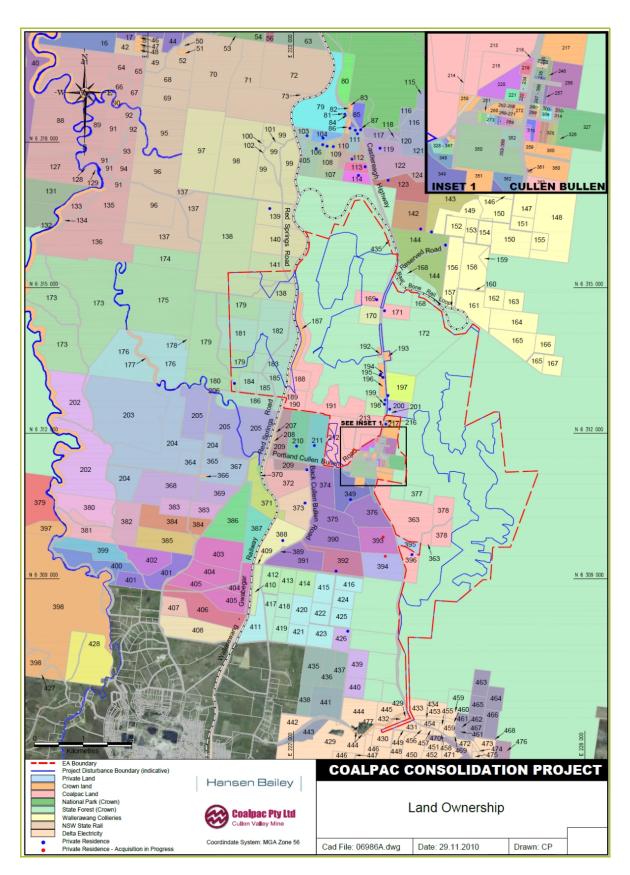


Figure A.1: Receptor location map

Appendix B: PM_{10} and dust deposition monitoring data

Table B.1: Cullen Valley HVAS PM_{10} data

Sample	Sample	Sample	Sampler	Particulate Matter 10 ug/m³	Run Time
No. 29423.01	Location Cullen Valley	Date 17-Feb-08	C Sheehan EEL		(00:00 hrs)
29423.01	Cullen Valley Cullen Valley	23-Feb-08	C Sheehan EEL	5.6 28	24:00 24:00
29545.01	Cullen Valley	29-Feb-08	C Sheehan EEL	10	24:00
29590.01	Cullen Valley	06-Mar-08	C Sheehan EEL	20.6	24:00
29684.01	Cullen Valley	12-Mar-08	C Sheehan EEL	21.2	24:00
29704.01	Cullen Valley	18-Mar-08	C Sheehan EEL	13.4	24:00
29801.01	Cullen Valley	24-Mar-08	C Sheehan EEL	5.1	24:00
29872.01	Cullen Valley	30-Mar-08	C Sheehan EEL	8.6	24:00
29876.01	Cullen Valley	05-Apr-08	C Sheehan EEL	18.9	24:00
29975.01	Cullen Valley	11-Apr-08	J Maloney EEL	13.3	24:00
30003.01	Cullen Valley	17-Apr-08	J Maloney EEL	6.5	24:00
30059.01 30150.01	Cullen Valley Cullen Valley	23-Apr-08 29-Apr-08	C Sheehan EEL C Sheehan EEL	4.4 7.3	24:00 24:00
30175.01	Cullen Valley	05-May-08	C Sheehan EEL	24.9	24:00
30263.01	Cullen Valley	11-May-08	C Sheehan EEL	11.8	24:00
30273.01	Cullen Valley	17-May-08	J Maloney EEL	10.2	24:00
30353.01	Cullen Valley	23-May-08	C Sheehan EEL	13.9	24:00
30420.01	Cullen Valley	29-May-08	C Sheehan EEL	32.3	24:00
30474.01	Cullen Valley	04-Jun-08	C Sheehan EEL	3.3	24:00
30504.01	Cullen Valley	10-Jun-08	C Sheehan EEL	7.3	24:00
30564.01	Cullen Valley	16-Jun-08	C Sheehan EEL	6.4	24:00
30642.01	Cullen Valley	22-Jun-08	C Sheehan EEL	3.9	24:00
30707.01	Cullen Valley	28-Jun-08	J Maloney EEL	10.8	24:00
30759.01 30834.01	Cullen Valley Cullen Valley	04-Jul-08 10-Jul-08	C Sheehan EEL C Sheehan EEL	12.6 1.5	23:59 24:00
30867.01	Cullen Valley	16-Jul-08	C Sheehan EEL	18.3	24:00
30942.01	Cullen Valley	22-Jul-08	C Sheehan EEL	13.9	24:00
30990.01	Cullen Valley	28-Jul-08	C Sheehan EEL	2.6	24:00
31000.01	Cullen Valley	03-Aug-08	C Sheehan EEL	5.4	24:00
31052.01	Cullen Valley	09-Aug-08	C Sheehan EEL	3	24:00
31128.01	Cullen Valley	15-Aug-08	C Sheehan EEL	<1.0	24:00
31183.01	Cullen Valley	21-Aug-08	C Sheehan EEL	12.6	24:00
31254.01	Cullen Valley	27-Aug-08	C Sheehan EEL	18.1	24:00
31309.01	Cullen Valley	02-Sep-08	C Sheehan EEL	13.3	24:00
31377.01	Cullen Valley	08-Sep-08	C Sheehan EEL	9.2 10.9	24:00 24:00
31383.01 31445.01	Cullen Valley Cullen Valley	14-Sep-08 20-Sep-08	C Sheehan EEL C Sheehan EEL	20.8	24:00
31511.01	Cullen Valley	26-Sep-08	C Sheehan EEL	11.5	24:00
31565.01	Cullen Valley	02-Oct-08	C Sheehan EEL	20.5	24:00
31616.01	Cullen Valley	08-Oct-08	C Sheehan EEL	5.5	24:00
31684.01	Cullen Valley	14-Oct-08	C Sheehan EEL	4.8	24:00
31739.01	Cullen Valley	20-Oct-08	C Sheehan EEL	17.3	24:00
31798.01	Cullen Valley	26-Oct-08	J Maloney EEL	12.8	24:00
31831.01	Cullen Valley	03-Nov-08	C Sheehan EEL	7.4	24:00
31909.01 31955.01	Cullen Valley Cullen Valley	07-Nov-08	C Sheehan EEL	13.4 12.1	24:00 24:00
31982.01	Cullen Valley	13-Nov-08 19-Nov-08	J Maloney EEL C Sheehan EEL	4.8	24:00
32038.01	Cullen Valley	25-Nov-08	J Maloney EEL	16.7	24:00
32071.01	Cullen Valley	01-Dec-08	C Sheehan EEL	12.3	24:00
32119.01	Cullen Valley	07-Dec-08	C Sheehan EEL	11.5	24:00
32230.01	Cullen Valley	13-Dec-08	J Maloney EEL	17.8	24:00
32327.01	Cullen Valley	19-Dec-08	C Sheehan EEL	7.9	24:00
32339.01	Cullen Valley	25-Dec-08	C Sheehan EEL	8.3	24:00
32369.01	Cullen Valley	31-Dec-08	C Sheehan EEL	23.6	24:00
32434.01	Cullen Valley	06-Jan-09	J Maloney EEL	22.9	24:00
32499.01	Cullen Valley Cullen Valley	12-Jan-09 18-Jan-09	C Sheehan EEL C Sheehan EEL	12.4	24:00 24:00
32503.01 32592.01	Cullen Valley Cullen Valley	18-Jan-09 24-Jan-09	C Sheehan EEL	10.4 12.8	24:00
32626.01	Cullen Valley	30-Jan-09	C Sheehan EEL	14.7	24:00
32725.01	Cullen Valley	05-Feb-09	C Sheehan EEL	17.8	24:00
32799.01	Cullen Valley	11-Feb-09	C Sheehan EEL	11.2	24:00
32865.01	Cullen Valley	17-Feb-09	C Sheehan EEL	6.1	24:00
32900.01	Cullen Valley	23-Feb-09	C Sheehan EEL	22.1	24:00
33014.01	Cullen Valley	01-Mar-09	C Sheehan EEL	27.6	24:00
33050.01	Cullen Valley	07-Mar-09	C Sheehan EEL	24.5	24:00
33093.01	Cullen Valley	13-Mar-09	C Sheehan EEL	10.7	24:00
33157.01	Cullen Valley	19-Mar-09	C Sheehan EEL	17.1	24:00
33234.01 33267.01	Cullen Valley Cullen Valley	25-Mar-09 31-Mar-09	C Sheehan EEL C Sheehan EEL	20.3 4.2	24:00 24:00
33382.01	Cullen Valley Cullen Valley	06-Apr-09	J Maloney EEL	17.6	24:00
33404.01	Cullen Valley	12-Apr-09	C Sheehan EEL	5.4	24:00
22404.01	Cunch valley	15 Whi -03	C SHECHAIL LLL	JiT	۷٦،٥٥

Sample	Sample	Sample	Sampler	Particulate Matter 10 ug/m³	Run Time
No. 33465.01	Location Cullen Valley	Date 18-Apr-09	C Sheehan EEL	15.8	(00:00 hrs) 24:00
33532.01	Cullen Valley	24-Apr-09	J Maloney EEL	14.3	24:01
33564.01	Cullen Valley	30-Apr-09	C Sheehan EEL	10.3	24:00
33633.01	Cullen Valley	06-May-09	J Maloney EEL	20.2	24:00
33695.01	Cullen Valley	12-May-09	C Sheehan EEL	23.6	24:00
33747.01	Cullen Valley	18-May-09	C Sheehan EEL	20.6	24:00
33793.01 33846.01	Cullen Valley Cullen Valley	24-May-09 30-May-09	J Maloney EEL J Maloney EEL	12.9 4.3	24:00 24:00
33889.01	Cullen Valley	05-Jun-09	C Sheehan EEL	6.3	24:00
33930.01	Cullen Valley	11-Jun-09	C Sheehan EEL	9.9	23:58
34011.01	Cullen Valley	17-Jun-09	C Sheehan EEL	8.7	24:00
34043.01	Cullen Valley	23-Jun-09	C Sheehan EEL	31.2	24:00
34113.01	Cullen Valley	29-Jun-09	C Sheehan EEL	2.3	24:00
34155.01 34222.01	Cullen Valley	05-Jul-09	C Sheehan EEL	4.9 8.4	24:00 24:00
34248.01	Cullen Valley Cullen Valley	11-Jul-09 17-Jul-09	J Maloney EEL C Sheehan EEL	16.1	24:00
34271.01	Cullen Valley	23-Jul-09	C Sheehan EEL	4.6	24:00
34333.01	Cullen Valley	29-Jul-09	C Sheehan EEL	4.3	24:00
34389.01	Cullen Valley	04-Aug-09	J Maloney EEL	13	24:00
34446.01	Cullen Valley	10-Aug-09	J Maloney EEL	18.3	24:00
34489.01	Cullen Valley	16-Aug-09	J Maloney EEL	16.7	24:00
34508.01	Cullen Valley	22-Aug-09	C Sheehan EEL	6.5	24:00
34583.01 34610.01	Cullen Valley	28-Aug-09 03-Sep-09	J Maloney EEL	15 16.4	24:00
34610.01	Cullen Valley Cullen Valley	03-Sep-09 09-Sep-09	J Maloney EEL C Sheehan EEL	16.4	24:00 24:00
34707.01	Cullen Valley	15-Sep-09	C Sheehan EEL	21.8	24:00
34759.01	Cullen Valley	21-Sep-09	C Sheehan EEL	9.6	24:00
34795.01	Cullen Valley	27-Sep-09	C Sheehan EEL	15.7	24:00
34862.01	Cullen Valley	03-Oct-09	C Sheehan EEL	5.6	24:00
34881.01	Cullen Valley	09-Oct-09	C Sheehan EEL	5.3	24:00
34954.01	Cullen Valley	15-Oct-09	C Sheehan EEL	4.5	24:00
34994.01	Cullen Valley	21-Oct-09	C Sheehan EEL	17.5	24:00
35036.01 35097.01	Cullen Valley Cullen Valley	27-Oct-09 02-Nov-09	C Sheehan EEL J Maloney EEL	4.3 17.3	24:00 24:00
35115.01	Cullen Valley	08-Nov-09	C Sheehan EEL	4.9	24:00
35211.01	Cullen Valley	14-Nov-09	J Maloney EEL	9	24:00
35249.01	Cullen Valley	20-Nov-09	J Maloney EEL	40	24:00
35326.01	Cullen Valley	26-Nov-09	J Maloney EEL	22.9	24:00
35348.01	Cullen Valley	02-Dec-09	J Maloney EEL	8.3	24:00
35401.01	Cullen Valley	08-Dec-09	C Sheehan EEL	44.4	24:00
35427.01	Cullen Valley	14-Dec-09	C Sheehan EEL	13.7	24:00
35498.01 35560.01	Cullen Valley Cullen Valley	20-Dec-09 26-Dec-09	J Maloney EEL J Maloney EEL	12.3 3.1	24:00 24:00
35582.01	Cullen Valley	01-Jan-10	C Sheehan EEL	4	24:00
35638.01	Cullen Valley	07-Jan-10	C Sheehan EEL	15	24:00
35672.01	Cullen Valley	13-Jan-10	J Maloney EEL	21.2	24:00
35736.01	Cullen Valley	19-Jan-10	J Maloney EEL	11	24:00
35783.01	Cullen Valley	25-Jan-10	C Sheehan EEL	22.6	24:00
35824.01	Cullen Valley	31-Jan-10	C Sheehan EEL	12.1	24:00
35878.01	Cullen Valley	06-Feb-10	C Sheehan EEL	Runtime outside specified limits of 24 hours ± 1 hour	20:13
35922.01	Cullen Valley	12-Feb-10	C Sheehan EEL	11.7	24:00
35956.01	Cullen Valley	16-Feb-10	C Sheehan EEL	8	24:00
35968.01	Cullen Valley	18-Feb-10	C Sheehan EEL	11.9	24:00
36022.01	Cullen Valley	24-Feb-10	C Sheehan EEL	12	24:00
36074.01	Cullen Valley	02-Mar-10	C Sheehan EEL	10	24:00
36158.01	Cullen Valley	08-Mar-10	C Sheehan EEL	8.2	24:00
36160.01 36280.01	Cullen Valley Cullen Valley	14-Mar-10 20-Mar-10	C Sheehan EEL C Sheehan EEL	4 23.2	24:00 24:00
36294.01	Cullen Valley	26-Mar-10	C Sheehan EEL	23.3	24:00
36353.01	Cullen Valley	01-Apr-10	C Sheehan EEL	5.7	24:00
36386.01	Cullen Valley	07-Apr-10	C Sheehan EEL	4	24:00
36418.01	Cullen Valley	13-Apr-10	C Sheehan EEL	12.5	24:00
36496.01	Cullen Valley	19-Apr-10	C Sheehan EEL	10.8	24:00
36531.01	Cullen Valley	25-Apr-10	C Sheehan EEL	3.9	24:00
36573.01 36580.01	Cullen Valley Cullen Valley	01-May-10 07-May-10	A Knapik EEL T Hamilton ALS	6.7 7.1	24:00 24:00
36619.01	Cullen Valley	13-May-10	T Hamilton ALS	9.5	24:00
36656.01	Cullen Valley	19-May-10	T Hamilton ALS	12.8	24:00
36708.01	Cullen Valley	25-May-10	T Hamilton ALS	4	24:00
36730.01	Cullen Valley	31-May-10	T Hamilton ALS	4.3	24:00
36746.01	Cullen Valley	06-Jun-10	T Hamilton ALS	4.7	24:00
36803.01	Cullen Valley	12-Jun-10	C Sheehan EEL	4	24:00
36852.01	Cullen Valley	18-Jun-10	C Sheehan EEL	9.3	24:00

Sample No.	Sample Location	Sample Date	Sampler	Particulate Matter 10 ug/m³	Run Time (00:00 hrs)
36889.01	Cullen Valley	24-Jun-10	T Hamilton ALS	4.9	24:00
36924.01	Cullen Valley	30-Jun-10	T Hamilton ALS	9.8	24:00
36944.01	Cullen Valley	06-Jul-10	T Hamilton ALS	Runtime outside specified limits of 24 hours ± 1 hour	13:19
36999.01	Cullen Valley	12-Jul-10	C Sheehan EEL	6.1	24:00
37025.01	Cullen Valley	15-Jul-10	C Sheehan EEL	8.1	24:00
37034.01	Cullen Valley	18-Jul-10	T Hamilton ALS	13.4	24:00
37112.01	Cullen Valley	24-Jul-10	T Hamilton ALS	8.9	24:00
37161.01	Cullen Valley	30-Jul-10	T Hamilton ALS	2.3	24:00

Table B.2: Cullen Valley HVAS dust deposition data

Sample Num	Sample Location	Sample Date	Sampler	Ash g/m² /mth	NO SAMPLE : (d)	Time: (d)	Total Insoluble Matter g/m²/mt	Volu me Collec ted
					. (4)		h	mL
29547.01	DM Doble	04-Mar-08	C Sheehan EEL		Site not installed			
29547.02	DM Cranes	04-Mar-08	C Sheehan EEL	0.3		1352	0.5	635
29547.03	DM Office	04-Mar-08	C Sheehan EEL	0.5		1306	1	1380
29547.04	DM Hillcroft	04-Mar-08	C Sheehan EEL	0.4		1252	0.6	760
29547.05	DM Railway	04-Mar-08	C Sheehan EEL	0.5		1234	0.7	740
29832.01	DM Doble	02-Apr-08	C Sheehan EEL		Site not yet installed			
29832.02	DM Cranes	02-Apr-08	C Sheehan EEL	0.4		1242	0.5	820
29832.03	DM Office	02-Apr-08	C Sheehan EEL	0.4		1235	0.5	1100
29832.04	DM Hillcroft	02-Apr-08	C Sheehan EEL	0.5		1126	1.2	940
29832.05	DM Railway	02-Apr-08	C Sheehan EEL	0.3		1111	0.5	650
30151.01	DM Doble	02-May-08	C Sheehan EEL		Site not installed			
30151.02	DM Cranes	02-May-08	C Sheehan EEL	0.7		1321	0.9	350
30151.03	DM Office	02-May-08	C Sheehan EEL	1.8		1150	2.2	440
30151.04	DM Hillcroft	02-May-08	C Sheehan EEL	1		1137	1.3	415
30151.05	DM Railway	02-May-08	C Sheehan EEL	0.7		1124	1	540
30422.01	DM Doble	03-Jun-08	C Sheehan EEL		Site not installed			
30422.02	DM Cranes	03-Jun-08	C Sheehan EEL	0.2		1312	0.3	550
30422.03	DM Office	03-Jun-08	C Sheehan EEL	0.3		1217	0.4	565
30422.04	DM Hillcroft	03-Jun-08	C Sheehan EEL	0.3		1204	0.5	155
30422.05	DM Railway	03-Jun-08	C Sheehan EEL	0.3		1139	0.7	580
30718.01	DM Railway	02-Jul-08	J Maloney EEL	0.4		1221	1.1	865
30718.02	DM Hillcroft	02-Jul-08	J Maloney EEL	0.4		1237	0.6	675
30718.03	DM Office	02-Jul-08	J Maloney EEL	0.2		1300	0.4	925
30718.04	DM Cranes	02-Jul-08	J Maloney EEL	0.2	_	1428	0.4	820
30718.05	DM Doble	02-Jul-08	J Maloney EEL		Recomm issioned 02/07/0 8	1436		
30995.01	DM Railway	01-Aug-08	C Sheehan EEL	0.6		1012	0.9	600
30995.02	DM Hillcroft	01-Aug-08	C Sheehan EEL	< 0.1		1024	0.2	555
30995.03	DM Office	01-Aug-08	C Sheehan EEL	0.4		1037	0.4	615
30995.04	DM Cranes	01-Aug-08	C Sheehan EEL	0.3		1120	0.4	590
30995.05	DM Doble	01-Aug-08	C Sheehan EEL	0.6		957	0.7	495
31259.01	DM Railway	02-Sep-08	C Sheehan EEL	2		1254	2.9	1040
31259.02	DM Hillcroft	02-Sep-08	C Sheehan EEL	0.5		1317	0.7	950
31259.03	DM Office	02-Sep-08	C Sheehan EEL	0.6		1327	0.9	1040
31259.04	DM Cranes	02-Sep-08	C Sheehan EEL	0.5		1400	0.7	890
31259.05 31544.01	DM Doble	02-Sep-08 02-Oct-08	C Sheehan EEL	1.5 0.5		1409	2.1	975 570
31544.01	DM Railway DM Hillcroft	02-Oct-08	C Sheehan EEL C Sheehan EEL	0.5		1112 1128	0.6	650
31544.02	DM Tillicroft DM Office	02-Oct-08	C Sheehan EEL	0.5		1140	0.8	795
31544.03	DM Cranes	02-Oct-08	C Sheehan EEL	0.6		1220	1	690
31544.05	DM Cranes DM Doble	02-Oct-08	C Sheehan EEL	0.7		1231	1	695
31817.01	DM Railway	03-Nov-08	C Sheehan EEL	0.7		1015	0.9	1365
31817.02	DM Hillcroft	03-Nov-08	C Sheehan EEL	0.5		1029	0.5	1410
31817.03	DM Office	03-Nov-08	C Sheehan EEL	0.6		1037	0.7	1560
31817.04	DM Cranes	03-Nov-08	C Sheehan EEL	0.7		1137	0.8	1365
31817.05	DM Doble	03-Nov-08	C Sheehan EEL	0.4		1144	0.6	1295
32074.01	DM Railway	02-Dec-08	C Sheehan EEL	0.8		1056	1	1420
32074.02	DM Hillcroft	02-Dec-08	C Sheehan EEL	0.6		1110	0.8	1330

Sample Num	Sample Location	Sample Date	Sampler	Ash g/m² /mth	NO SAMPLE : (d)	Time: (d)	Total Insoluble Matter g/m²/mt h	Volu me Collec ted mL
32074.03	DM Office	02-Dec-08	C Sheehan EEL	0.6		1122	0.9	1705
32074.04	DM Cranes	02-Dec-08	C Sheehan EEL	0.6		1135	1	1530
32074.05	DM Doble	02-Dec-08	C Sheehan EEL	0.6		1143	0.9	1675
32368.01	DM Railway	02-Jan-09	C Sheehan EEL	0.8		1055	1.2	1640
32368.02	DM Hillcroft	02-Jan-09	C Sheehan EEL	0.6		1112	1	1840
32368.03	DM Office	02-Jan-09	C Sheehan EEL	0.7		1122	1.1	1960
32368.04	DM Cranes	02-Jan-09	C Sheehan EEL	0.8		1128	1.4	1810
32368.05	DM Doble	02-Jan-09	C Sheehan EEL	0.7		1137	1.1	1835
32623.01	DM Railway	02-Feb-09	C Sheehan EEL	1.3		1107	1.5	535
32623.02	DM Hillcroft	02-Feb-09	C Sheehan EEL	0.5		1121	0.8	200
32623.03	DM Office	02-Feb-09	C Sheehan EEL	0.6		1133	0.9	385
32623.04	DM Cranes	02-Feb-09	C Sheehan EEL	0.7		1146	1.2	300
32623.05	DM Doble	02-Feb-09	C Sheehan EEL	0.6		1155	0.8	275
32940.01	DM Railway	03-Mar-09	J Maloney EEL	1		1120	1.1	2310
32940.02	DM Hillcroft	03-Mar-09	J Maloney EEL	0.5		1137	0.6	1530
32940.03	DM Office	03-Mar-09	J Maloney EEL	0.9		1149	1.1	1635
32940.04	DM Cranes	03-Mar-09	J Maloney EEL	0.8		1300	1	1605
32940.04	DM Craffes DM Doble	03-Mar-09	J Maloney EEL	0.8		1426	0.7	1525
33265.01	DM Railway	02-Apr-09	C Sheehan EEL	0.7		1044	0.7	545
33265.01	DM Hillcroft	02-Apr-09	C Sheehan EEL	0.5		1044	0.3	250
33265.02	DM Office	02-Apr-09	C Sheehan EEL	1.1		1114	1.6	780
33265.03	DM Cranes	02-Apr-09 02-Apr-09	C Sheehan EEL	0.6		1114	0.8	630
33265.05	DM Craffes DM Doble	02-Apr-09	C Sheehan EEL	0.6		1136	0.8	410
33570.01	DM Railway	04-May-09	C Sheehan EEL	0.6		1204	0.5	1045
33570.01	DM Hillcroft	04-May-09		0.4		1204	0.5	120
			C Sheehan EEL					715
33570.03	DM Office	04-May-09	C Sheehan EEL	0.8		1235 1250	1	
33570.04	DM Cranes	04-May-09	C Sheehan EEL	0.5		1250	0.6	820 860
33570.05	DM Doble	04-May-09	C Sheehan EEL	0.5			0.7	840
33828.01 33828.02	DM Railway DM Hillcroft	02-Jun-09 02-Jun-09	J Maloney EEL J Maloney EEL	0.4	Stand & bottle on ground	1123	0.7	040
33828.03	DM Office	02-Jun-09	J Maloney EEL	0.3	ground	1205	0.4	630
33828.04	DM Cranes	02-Jun-09	J Maloney EEL	0.3		1217	0.4	740
33828.05	DM Doble	02-Jun-09	J Maloney EEL	0.5		1226	0.6	870
34120.01	DM Railway	02-Jul-09	C Sheehan EEL	0.2		1109	0.4	700
34120.02	DM Hillcroft	02-Jul-09	C Sheehan EEL	0.2	Stand & bottle on ground	1127	51.	700
34120.03	DM Office	02-Jul-09	C Sheehan EEL	0.3		1146	0.5	645
34120.04	DM Cranes	02-Jul-09	C Sheehan EEL	0.3		1205	0.5	675
34120.05	DM Doble	02-Jul-09	C Sheehan EEL	0.3		1213	0.5	585
34339.01	DM Railway	03-Aug-09	J Maloney EEL	0.2		1124	0.3	780
34339.02	DM Hillcroft	03-Aug-09	J Maloney EEL	0.1		1144	0.2	640
34339.03	DM Office	03-Aug-09	J Maloney EEL	0.2		1157	0.3	740
34339.04	DM Cranes	03-Aug-09	J Maloney EEL	0.3		1211	0.4	710
34339.05	DM Doble	03-Aug-09	J Maloney EEL	0.5		1218	0.7	715
34575.01	DM Railway	02-Sep-09	J Maloney EEL	0.5		1134	0.6	695
34575.02	DM Hillcroft	02-Sep-09	J Maloney EEL	0.4		1114	0.5	590
34575.03	DM Office	02-Sep-09	J Maloney EEL	0.5		1100	0.8	705
34575.04	DM Cranes	02-Sep-09	J Maloney EEL	0.6		1036	0.8	660
34575.05	DM Doble	02-Sep-09	J Maloney EEL	0.7		1311	1	520
34829.01	DM Railway	02-Oct-09	C Sheehan EEL	32		1000	36	510
34829.02	DM Hillcroft	02-Oct-09	C Sheehan EEL	0.8		1016	1	240
34829.03	DM Office	02-Oct-09	C Sheehan EEL	10		1025	12	565
34829.04	DM Cranes	02-Oct-09	C Sheehan EEL	12		1031	13.9	540
34829.05	DM Doble	02-Oct-09	C Sheehan EEL	13		1040	14.8	545
35080.01	DM Railway	03-Nov-09	J Maloney EEL	2.5		1145	2.9	1100
35080.02	DM Hillcroft	03-Nov-09	J Maloney EEL	3		1206	3.6	740
35080.03	DM Office	03-Nov-09	J Maloney EEL	3.7		1231	3.8	815
35080.04	DM Cranes	03-Nov-09	J Maloney EEL	2.9		1243	3.6	740
35080.05	DM Doble	03-Nov-09	J Maloney EEL	2.3		1252	2.8	785
35334.01	DM Railway	02-Dec-09	C Sheehan EEL	2		938	2.5	340
35334.02	DM Hillcroft	02-Dec-09	C Sheehan EEL	1.5		952	1.8	145
35334.03	DM Office	02-Dec-09	C Sheehan EEL	2.3		1001	3.3	310
35334.04	DM Cranes	02-Dec-09	C Sheehan EEL	1.7		1008	2.4	310
35334.05	DM Doble	02-Dec-09	C Sheehan EEL	1.8		1017	2.7	370
35585.01	DM Railway	05-Jan-10	C Sheehan EEL	1		956	1.7	1800
35585.02	DM Hillcroft	05-Jan-10	C Sheehan EEL	0.8		1007	1.2	1310
35585.03	DM Office	05-Jan-10	C Sheehan EEL	0.9		1021	1.3	1450
35585.04	DM Cranes	05-Jan-10	C Sheehan EEL	0.8		1033	1.1	1455
22300101		10		0.0		1000		55

Sample Num	Sample Location	Sample Date	Sampler	Ash g/m² /mth	NO SAMPLE : (d)	Time: (d)	Total Insoluble Matter g/m²/mt h	Volu me Collec ted mL
35585.05	DM Doble	05-Jan-10	C Sheehan EEL	1.2		1043	1.6	1555
35827.01	DM Railway	02-Feb-10	C Sheehan EEL	0.8		1015	1.2	1330
35827.02	DM Hillcroft	02-Feb-10	C Sheehan EEL	0.8		1029	1.6	1575
35827.03	DM Office	02-Feb-10	C Sheehan EEL	0.9		1050	1.5	1455
35827.04	DM Cranes	02-Feb-10	C Sheehan EEL	0.9		1056	1.3	1735
35827.05	DM Doble	02-Feb-10	C Sheehan EEL	1		1107	1.4	1515
36066.01	DM Railway	02-Mar-10	C Sheehan EEL	0.4		1100	0.6	2280
36066.02	DM Hillcroft	02-Mar-10	C Sheehan EEL	0.1		1114	0.4	1605
36066.03	DM Office	02-Mar-10	C Sheehan EEL	0.3		1126	0.7	2215
36066.04	DM Cranes	02-Mar-10	C Sheehan EEL	0.2		1133	0.5	2360
36066.05	DM Doble	02-Mar-10	C Sheehan EEL	0.2		1140	0.4	2655
36320.01	DM Railway	31-Mar-10	C Sheehan EEL	0.3		1205	0.3	1180
36320.02	DM Hillcroft	31-Mar-10	C Sheehan EEL	0.2		1221	0.2	830
36320.03	DM Office	31-Mar-10	C Sheehan EEL	0.4		1235	0.4	1005
36320.04	DM Cranes	31-Mar-10	C Sheehan EEL	0.2		1242	0.2	1145
36320.05	DM Doble	31-Mar-10	C Sheehan EEL	0.1		1250	0.1	1095
36544.01	DM Railway	30-Apr-10	C Sheehan EEL	0.2		1016	0.2	1190
36544.02	DM Hillcroft	30-Apr-10	C Sheehan EEL	0.1		1029	0.1	845
36544.03	DM Office	30-Apr-10	C Sheehan EEL	0.2		1038	0.2	895
36544.04	DM Cranes	30-Apr-10	C Sheehan EEL	0.2		1045	0.2	910
36544.05	DM Doble	30-Apr-10	C Sheehan EEL	0.1		1104	0.1	955
36694.01	DM Railway	31-May-10	T Hamilton ALS	0.6		1453	1.6	1610
36694.02	DM Hillcroft	31-May-10	T Hamilton ALS	< 0.1		1515	< 0.1	1340
36694.03	DM Office	31-May-10	T Hamilton ALS	0.1		1220	0.3	1280
36694.04	DM Cranes	31-May-10	T Hamilton ALS	0.2		1231	0.2	1440
36694.05	DM Doble	31-May-10	T Hamilton ALS	< 0.1		1245	0.1	1540
36902.01	DM Railway	01-Jul-10	T Hamilton ALS	0.7		1500	1.3	650
36902.02	DM Hillcroft	01-Jul-10	T Hamilton ALS	0.1		1319	0.2	560
36902.03	DM Office	01-Jul-10	T Hamilton ALS	0.2		1233	0.5	615
36902.04	DM Cranes	01-Jul-10	T Hamilton ALS	0.2		1259	0.5	640
36902.05	DM Doble	01-Jul-10	T Hamilton ALS	0.1		1315	0.4	555
37078.01	DM Railway	02-Aug-10	T Hamilton ALS	0.2		1445	0.3	2065
37078.02	DM Hillcroft	02-Aug-10	T Hamilton ALS	0.1		1242	0.1	1735
37078.03	DM Office	02-Aug-10	T Hamilton ALS	0.2		1215	0.3	1665
37078.04	DM Cranes	02-Aug-10	T Hamilton ALS	0.2		1256	0.3	1775
37078.05	DM Doble	02-Aug-10	T Hamilton ALS	0.1		1310	0.2	1800

Table B.3: Invincible HVAS PM_{10} data

Sample No.	Sample Location	Sample Date	Sampler	NO SAMPLE: (a)	Particulate Matter 10 ug/m³	Run Time (00:00 hrs)
30561.01	Invincible	04-Jun-08	C Sheehan EEL	No filter paper in unit		
30562.01	Invincible	10-Jun-08	C Sheehan EEL		3.2	24:00
30563.01	Invincible	16-Jun-08	C Sheehan EEL		5.9	24:00
30643.01	Invincible	22-Jun-08	C Sheehan EEL		3.2	23:59
30708.01	Invincible	28-Jun-08	J Maloney EEL		8.1	23:57
30758.01	Invincible	04-Jul-08	C Sheehan EEL		7	23:59
30833.01	Invincible	10-Jul-08	C Sheehan EEL		1.4	24:00
30868.01	Invincible	16-Jul-08	C Sheehan EEL		7.3	23:59
30943.01	Invincible	22-Jul-08	C Sheehan EEL		14	23:59
30989.01	Invincible	28-Jul-08	C Sheehan EEL		2.4	23:59
30999.01	Invincible	03-Aug-08	C Sheehan EEL		2.8	23:59
31053.01	Invincible	09-Aug-08	C Sheehan EEL		2.6	23:58
31127.01	Invincible	15-Aug-08	C Sheehan EEL		2	23:59
31184.01	Invincible	21-Aug-08	C Sheehan EEL		15	24:00
31253.01	Invincible	27-Aug-08	C Sheehan EEL		29.2	23:59
31310.01	Invincible	02-Sep-08	C Sheehan EEL		9.5	23:58
31378.01	Invincible	08-Sep-08	C Sheehan EEL		15.1	23:58
31382.01	Invincible	14-Sep-08	C Sheehan EEL		10.2	23:58
31444.01	Invincible	20-Sep-08	C Sheehan EEL		25.7	24:00
31512.01	Invincible	26-Sep-08	C Sheehan EEL		13.9	23:59
31566.01	Invincible	02-Oct-08	C Sheehan EEL		23.2	23:58
31617.01	Invincible	08-Oct-08	C Sheehan EEL		7.3	23:59
31685.01	Invincible	14-Oct-08	C Sheehan EEL		5.8	23:59
31738.01	Invincible	20-Oct-08	C Sheehan EEL		32.5	23:58
31797.01	Invincible	26-Oct-08	J Maloney EEL		13	23:59

	1					_
Sample No.	Sample Location	Sample Date	Sampler	NO SAMPLE: (a)	Particulate Matter 10 ug/m³	Run Time (00:00
31815.01	Invincible	01-Nov-08	C Sheehan EEL		31.3	hrs) 23:59
31910.01	Invincible	07-Nov-08	C Sheehan EEL		17.6	23:59
31954.01	Invincible	13-Nov-08	J Maloney EEL		18.1	23:59
31957.01	Invincible	15-Nov-08	C Sheehan EEL		12.2	23:59
31983.01	Invincible	19-Nov-08	C Sheehan EEL		2.9	23:59
32037.01	Invincible	25-Nov-08	J Maloney EEL		35.6	23:59
32072.01	Invincible	01-Dec-08	C Sheehan EEL		15.6	23:58
32120.01	Invincible	07-Dec-08	C Sheehan EEL		13.1	23:59
32229.01 32328.01	Invincible	13-Dec-08 19-Dec-08	J Maloney EEL		17.5	23:59 23:59
32328.01	Invincible Invincible	25-Dec-08	C Sheehan EEL C Sheehan EEL		8.6 9.2	23:59
32370.01	Invincible	31-Dec-08	C Sheehan EEL		27.2	23:59
32430.01	Invincible	06-Jan-09	J Maloney EEL		59.7	23:59
32500.01	Invincible	12-Jan-09	C Sheehan EEL		23.5	23:59
32502.01	Invincible	18-Jan-09	C Sheehan EEL		11.1	23:59
32591.01	Invincible	24-Jan-09	C Sheehan EEL		14.5	23:59
32627.01	Invincible	30-Jan-09	C Sheehan EEL		18.9	23:59
32724.01	Invincible	05-Feb-09	C Sheehan EEL		17.9	23:59
32798.01	Invincible	11-Feb-09	C Sheehan EEL		10.3	23:59
32866.01	Invincible	17-Feb-09	C Sheehan EEL		5.8	23:59
32899.01	Invincible	23-Feb-09	C Sheehan EEL		21.8	23:56
33015.01	Invincible	01-Mar-09	C Sheehan EEL		25.3	23:59
33049.01 33092.01	Invincible	07-Mar-09	C Sheehan EEL		34.8	23:59 23:59
33156.01	Invincible Invincible	13-Mar-09 19-Mar-09	C Sheehan EEL C Sheehan EEL		12 28	23:59
33235.01	Invincible	25-Mar-09	C Sheehan EEL	Unit away for repairs	20	23:59
33266.01	Invincible	31-Mar-09	C Sheehan EEL	Unit away for repairs		
33426.01	Invincible	06-Apr-09	J Maloney EEL	Unit away for repairs		
33427.01	Invincible	12-Apr-09	J Maloney EEL	Unit away for repairs		
33466.01	Invincible	18-Apr-09	C Sheehan EEL	, , , , , , , , , , , , , , , , , , , ,	21.5	24:05
33533.01	Invincible	24-Apr-09	J Maloney EEL		15.1	24:00
33565.01	Invincible	30-Apr-09	C Sheehan EEL		14.8	23:59
33632.01	Invincible	06-May-09	J Maloney EEL		21.4	23:59
33694.01	Invincible	12-May-09	C Sheehan EEL		27	23:59
33752.01	Invincible	18-May-09	J Maloney EEL		24.6	23:59
33792.01	Invincible	24-May-09	J Maloney EEL		10.1	23:59
33845.01 33890.01	Invincible	30-May-09 05-Jun-09	J Maloney EEL		5.3 16.3	23:59 23:59
33931.01	Invincible Invincible	11-Jun-09	C Sheehan EEL C Sheehan EEL		6.4	23:59
34012.01	Invincible	17-Jun-09	C Sheehan EEL		7.4	23:59
34044.01	Invincible	23-Jun-09	C Sheehan EEL		8	23:59
34112.01	Invincible	29-Jun-09	C Sheehan EEL		2.9	24:00
34154.01	Invincible	05-Jul-09	C Sheehan EEL		3.3	23:59
34221.01	Invincible	11-Jul-09	J Maloney EEL		5.1	23:59
34249.01	Invincible	17-Jul-09	C Sheehan EEL		7.6	23:59
34270.01	Invincible	23-Jul-09	C Sheehan EEL		6.3	23:59
34332.01	Invincible	29-Jul-09	C Sheehan EEL		8.5	23:59
34388.01	Invincible	04-Aug-09	J Maloney EEL		15.2	23:59
34445.01	Invincible	10-Aug-09	J Maloney EEL		35	23:59
34488.01 34510.01	Invincible Invincible	16-Aug-09 22-Aug-09	J Maloney EEL C Sheehan EEL		8.4 7	23:59 23:58
34510.01	Invincible	28-Aug-09	J Maloney EEL		11.3	23:58
34611.01	Invincible	03-Sep-09	J Maloney EEL		17.1	23:59
34658.01	Invincible	09-Sep-09	C Sheehan EEL		4	24:00
34708.01	Invincible	15-Sep-09	C Sheehan EEL		Runtime outside specified limits of 24 hrs ± 1 hr	9:55
34760.01	Invincible	21-Sep-09	C Sheehan EEL		16	23:59
34788.01	Invincible	23-Sep-09	C Sheehan EEL		1330	23:59
34792.01	Invincible	27-Sep-09	C Sheehan EEL		16.4	23:59
34861.01	Invincible	03-Oct-09	C Sheehan EEL		4.6	23:59
34880.01	Invincible	09-Oct-09	C Sheehan EEL		6.7	23:59
34957.01	Invincible	15-Oct-09	C Sheehan EEL		5.3	23:59
34995.01	Invincible	21-Oct-09	C Sheehan EEL		37.6	23:58
35035.01	Invincible	27-Oct-09	C Sheehan EEL		4.2	23:58
35098.01	Invincible	02-Nov-09	J Maloney EEL		20.8	23:59
35116.01	Invincible	08-Nov-09	C Sheehan EEL		5.4	23:59
35212.01	Invincible	14-Nov-09	J Maloney EEL		14.6 52.5	23:59
35250.01 35327.01	Invincible Invincible	20-Nov-09 26-Nov-09	J Maloney EEL J Maloney EEL		30.4	24:00 23:59
35349.01	Invincible	02-Dec-09	J Maloney EEL		15.4	23:58
35402.01	Invincible	08-Dec-09	C Sheehan EEL		46.8	23:59

						Run
Sample No.	Sample Location	Sample Date	Sampler	NO SAMPLE: (a)	Particulate Matter 10 ug/m³	Time (00:00 hrs)
35426.01	Invincible	14-Dec-09	C Sheehan EEL		74.9	23:59
35497.01	Invincible	20-Dec-09	J Maloney EEL		15.4	23:59
35559.01	Invincible	26-Dec-09	J Maloney EEL		4.6	23:59
35583.01	Invincible	01-Jan-10	C Sheehan EEL		4.9	24:00
35639.01	Invincible	07-Jan-10	C Sheehan EEL		35.2	23:59
35673.01	Invincible	13-Jan-10	J Maloney EEL		46	23:59
35737.01	Invincible	19-Jan-10	J Maloney EEL		17.2	23:58
35782.01	Invincible	25-Jan-10	C Sheehan EEL		19.6	23:59
35823.01	Invincible	31-Jan-10	C Sheehan EEL		13.2	23:59
35893.01	Invincible	06-Feb-10	C Sheehan EEL		4.1	23:59
35941.01	Invincible	12-Feb-10	C Sheehan EEL		13.5	23:59
35969.01	Invincible	18-Feb-10	C Sheehan EEL		23	23:59
36021.01	Invincible	24-Feb-10	C Sheehan EEL		Invalid sample: Beetle on filter paper; holes in filter	23:59
36075.01	Invincible	02-Mar-10	C Sheehan EEL		13.2	23:59
36157.01	Invincible	08-Mar-10	C Sheehan EEL		11.9	23:59
36159.01	Invincible	14-Mar-10	C Sheehan EEL		4.6	23:59
36274.01	Invincible	20-Mar-10	C Sheehan EEL		Runtime outside specified limits of 24 hrs ± 1 hr	12:05
36295.01	Invincible	26-Mar-10	C Sheehan EEL		25.4	23:59
36314.01	Invincible	30-Mar-10	C Sheehan EEL		7.1	23:59
36351.01	Invincible	01-Apr-10	C Sheehan EEL	Runtime outside specified limits of 24 hrs ± 1 hr		23.33
36373.01	Invincible	07-Apr-10	C Sheehan EEL		Runtime outside specified limits of 24 hrs \pm 1 hr	12:59
36419.01	Invincible	13-Apr-10	C Sheehan EEL		16.8	23:59
36452.01	Invincible	15-Apr-10	C Sheehan EEL		20.2	23:59
36453.01	Invincible	19-Apr-10	C Sheehan EEL		Runtime outside specified limits of 24 hrs ± 1 hr	13:39
36499.01	Invincible	20-Apr-10	C Sheehan EEL		MUR for 19/04/10.Runtime outside specified limits of 24 hours ± 1 hour	12:14
36532.01	Invincible	25-Apr-10	C Sheehan EEL		4.3	23:59
36572.01	Invincible	01-May-10	T Hamilton ALS		7.6	23:59
36578.01	Invincible	07-May-10	T Hamilton ALS		10.8	23:59
36618.01	Invincible	13-May-10	T Hamilton ALS		10.7	23:59
36655.01	Invincible	19-May-10	T Hamilton ALS	No apparent reason for unit not running programmed 24:00hr period		
36710.01	Invincible	25-May-10	T Hamilton ALS		10.2	23:59
36731.01	Invincible	31-May-10	T Hamilton ALS		8.9	23:59
36824.01	Invincible	06-Jun-10	T Hamilton ALS	Faulty unit, to be repaired		
36825.01	Invincible	12-Jun-10	C Sheehan EEL	Unit away for repair	Hims DM40 control 1	
36851.01	Invincible	18-Jun-10	C Sheehan EEL		Hire PM10 unit placed at site and calibrated 18/06/10.Runtime outside specified limits of 24 hours ± 1 hour.	26:13
36890.01	Invincible	24-Jun-10	T Hamilton ALS		Runtime outside specified limits of 24 hrs \pm 1 hr	26:13
36925.01	Invincible	30-Jun-10	T Hamilton ALS		Runtime outside specified limits of 24 hrs \pm 1 hr	26:13
36943.01	Invincible	06-Jul-10	T Hamilton ALS		Runtime outside specified limits of 24 hrs \pm 1 hr	26:13
37000.01	Invincible	12-Jul-10	C Sheehan EEL	Unit re-installed 09/07/10. Runtime outside specified limit of 24hr ± 1 hr		
37035.01	Invincible	18-Jul-10	T Hamilton ALS		3.7	23:59
37094.01	Invincible	20-Jul-10	C Sheehan EEL		8.9	23:59
37113.01	Invincible	24-Jul-10	T Hamilton ALS		5.4	23:59
37134.01	Invincible	27-Jul-10	T Hamilton ALS		9.6	23:59

Sample Location	Sample Date	Sampler	NO SAMPLE: (a)	Particulate Matter 10 ug/m³	Run Time (00:00 hrs)
Invincible	30-Jul-10	T Hamilton ALS		2.7	23:10
	Location	Location Date	Location Date Sampler	Location Date Sampler NO SAMPLE: (a)	Location Date Sampler NO SAMPLE: (a) 10 ug/m ³

Table B.4: Invincible dust deposition data

Sample No.	Sample Locatio n	Sample Date	Sampler	Ash g/m² /mth	Combustible Matter g/m2/mth	NO SAMP LE: (d)	Time: (d)	Total Insoluble Matter g/m²/mth	Volume Collecte d mL
30546.01	DM1	16-Jun-08	C Sheehan EEL	0.4	0.2	(4)	1122	0.6	755
30546.02	DM2	16-Jun-08	C Sheehan EEL	0.1	0.1		1329	0.2	800
30546.03	DM3	16-Jun-08	C Sheehan EEL	0.2	0.1		1346	0.3	700
30546.04	DM4	16-Jun-08	C Sheehan EEL	0.2	0.1		1407	0.3	815
30546.05	DM5	16-Jun-08	C Sheehan EEL	0.2	0.1		1200	0.3	855
30546.06	DM6	16-Jun-08	C Sheehan EEL	0.1	0.1		1440	0.2	810
30831.01	DM1	14-Jul-08	C Sheehan EEL	0.3	0.2		1229	0.5	670
30831.02	DM2	14-Jul-08	C Sheehan EEL	0.2	<0.1		1356	0.2	670
30831.03	DM3	14-Jul-08	C Sheehan EEL	0.2	0.1		1404	0.3	680
30831.04	DM4	14-Jul-08	C Sheehan EEL	0.2	0.1		1208	0.3	670
30831.05	DM5	14-Jul-08	C Sheehan EEL	0.3	0.1		1305	0.4	710
30831.06	DM6	14-Jul-08	C Sheehan EEL	0.2	0.2		1425	0.4	700
31049.01	DM1	11-Aug-08	C Sheehan EEL	0.9	0.4		1211	1.3	715
31049.02	DM2	11-Aug-08	C Sheehan EEL	0.5	0.2		1317	0.7	650
31049.03	DM3	11-Aug-08	C Sheehan EEL	0.7	0.3		1323	1	695
31049.04	DM4	11-Aug-08	C Sheehan EEL	0.8	0.2		1113	1	600
31049.05	DM5	11-Aug-08	C Sheehan EEL	0.8	0.6		1218	1.4	665
31049.06	DM6	11-Aug-08	C Sheehan EEL	0.7	0.2		1347	0.9	655
31326.01	DM1	08-Sep-08	C Sheehan EEL	0.5	0.3		1154	0.8	920
31326.02	DM2	08-Sep-08	C Sheehan EEL	0.1	0.2		1334	0.3	820
31326.03	DM3	08-Sep-08	C Sheehan EEL	0.2	0.4		1343	0.6	835
31326.04	DM4	08-Sep-08	C Sheehan EEL	0.2	<0.1		1352	0.2	875
31326.05	DM5	08-Sep-08	C Sheehan EEL	0.2	0.1		1224	0.3	835
31326.06	DM6	08-Sep-08	C Sheehan EEL	0.2	<0.1		1413	0.2	865
31600.01	DM1	08-Oct-08	C Sheehan EEL	1.2	0.7		1125	1.9	1215
31600.02	DM2	08-Oct-08	C Sheehan EEL	0.9	0.5		1311	1.4	1090
31600.03	DM3	08-Oct-08	C Sheehan EEL	0.6	0.3		1321	0.9	1020
31600.04	DM4	08-Oct-08	C Sheehan EEL	1.1	0.4		1330	1.5	860
31600.05	DM5	08-Oct-08	C Sheehan EEL	1	0.4		1152	1.4	1055
31600.06	DM6	08-Oct-08	C Sheehan EEL	0.6	0.4		1348	1	1285
31818.01	DM1	03-Nov-08	C Sheehan	0.3	0.8		1200	1.1	730

Sample No.	Sample Locatio n	Sample Date	Sampler	Ash g/m² /mth	Combustible Matter g/m2/mth	NO SAMP LE: (d)	Time: (d)	Total Insoluble Matter g/m²/mth	Volume Collecte d mL
			EEL C Chaaban						
31818.02	DM2	03-Nov-08	C Sheehan EEL	0.4	0.3		1235	0.7	620
31818.03	DM3	03-Nov-08	C Sheehan EEL	0.3	0.3		1242	0.6	625
31818.04	DM4	03-Nov-08	C Sheehan EEL	0.5	0.2		1250	0.7	575
31818.05	DM5	03-Nov-08	C Sheehan EEL	0.5	0.3		1225	0.8	670
31818.06	DM6	03-Nov-08	C Sheehan EEL	0.4	0.5		1309	0.9	1005
32075.01	DM1	02-Dec-08	C Sheehan EEL	1.4	1		1258	2.4	1840
32075.02	DM2	02-Dec-08	C Sheehan EEL	0.5	0.4		1332	0.9	1600
32075.03	DM3	02-Dec-08	C Sheehan EEL	0.6	0.4		1340	1	1580
32075.04	DM4	02-Dec-08	C Sheehan EEL	0.5	0.5		1356	1	1385
32075.05	DM5	02-Dec-08	C Sheehan EEL	0.5	0.4		1320	0.9	1645
32075.06	DM6	02-Dec-08	C Sheehan EEL	0.7	0.6		1416	1.3	2050
32366.01	DM1	02-Jan-09	C Sheehan EEL	0.4	0.2		1301	0.6	2135
32366.02	DM2	02-Jan-09	C Sheehan EEL	0.7	0.2		1322	0.9	1940
32366.03	DM3	02-Jan-09	C Sheehan EEL	1	0.9		1333	1.9	1710
32366.04	DM4	02-Jan-09	C Sheehan EEL	1.1	0.6		1343	1.7	1490
32366.05	DM5	02-Jan-09	C Sheehan EEL	0.6	0.3		1309	0.9	1805
32366.06	DM6	02-Jan-09	C Sheehan EEL	0.6	0.4		1410	1	2040
32625.01	DM1	02-Feb-09	C Sheehan EEL	0.6	0.2		1333	0.8	660
32625.02	DM2	02-Feb-09	C Sheehan EEL	0.4	0.1		1359	0.5	395
32625.03	DM3	02-Feb-09	C Sheehan EEL	0.4	0.2		1411	0.6	280
32625.04	DM4	02-Feb-09	C Sheehan EEL	0.7	0.1		1424	0.8	<10
32625.05	DM5	02-Feb-09	C Sheehan EEL	0.6	0.1		1321	0.7	225
32625.06	DM6	02-Feb-09	C Sheehan EEL	0.8	0.9		1444	1.7	450
32939.01	DM1	03-Mar-09	J Maloney EEL	1.1	0.4		1240	1.5	1470
32939.02	DM2	03-Mar-09	J Maloney EEL	0.6	0.3		1220	0.9	1255
32939.03	DM3	03-Mar-09	J Maloney EEL	1.3	1.5		1208	2.8	1210
32939.04	DM4	03-Mar-09	J Maloney EEL	1	0.2		1157	1.2	1195
32939.05	DM5	03-Mar-09	J Maloney EEL	1.2	0.3		1249	1.5	1315
32939.06	DM6	03-Mar-09	J Maloney EEL	1	0.5		1340	1.5	1910
33263.01	DM1	02-Apr-09	C Sheehan EEL	1.3	0.8		1316	2.1	755
33263.02	DM2	02-Apr-09	C Sheehan EEL	0.7	0.2		1325	0.9	630
33263.03	DM3	02-Apr-09	C Sheehan EEL	0.9	0.2		1332	1.1	645
33263.04	DM4	02-Apr-09	C Sheehan EEL	1	0.2		1343	1.2	500
33263.05	DM5	02-Apr-09	C Sheehan EEL	1.3	0.4		1308	1.7	685
33263.06	DM6	02-Apr-09	C Sheehan EEL	0.5	0.3		1401	0.8	1035
33571.01	DM1	04-May-09	C Sheehan EEL	0.7	0.2		1509	0.9	775
33571.02	DM2	04-May-09	C Sheehan	0.4	0.1		1438	0.5	715

Sample No.	Sample Locatio n	Sample Date	Sampler	Ash g/m² /mth	Combustible Matter g/m2/mth	NO SAMP LE: (d)	Time: (d)	Total Insoluble Matter g/m²/mth	Volume Collecte d mL
			EEL C Sheehan						
33571.03	DM3	04-May-09	EEL	0.4	0.2		1444	0.6	735
33571.04	DM4	04-May-09	C Sheehan EEL	0.5	<0.1		1430	0.5	715
33571.05	DM5	04-May-09	C Sheehan EEL	0.6	0.1		1501	0.7	835
33571.06	DM6	04-May-09	C Sheehan EEL	0.4	0.2		1414	0.6	1100
33822.01	DM1	02-Jun-09	J Maloney EEL	0.8	0.3		1530	1.1	795
33822.02	DM2	02-Jun-09	J Maloney EEL	0.4	<0.1		1450	0.4	605
33822.03	DM3	02-Jun-09	J Maloney EEL	0.5	0.4		1438	0.9	635
33822.04	DM4	02-Jun-09	J Maloney EEL	0.4	0.1		1422	0.5	665
33822.05	DM5	02-Jun-09	J Maloney EEL	0.7	0.1		1519	0.8	765
33822.06	DM6	02-Jun-09	J Maloney EEL	0.3	0.2		1401	0.5	780
34118.01	DM1	02-Jul-09	C Sheehan EEL	0.4	0.1		1353	0.5	730
34118.02	DM2	02-Jul-09	C Sheehan EEL	0.2	0.4		1413	0.6	605
34118.03	DM3	02-Jul-09	C Sheehan EEL	0.3	0.1		1420	0.4	640
34118.04	DM4	02-Jul-09	C Sheehan EEL	0.3	0.2		1428	0.5	555
34118.05	DM5	02-Jul-09	C Sheehan EEL	0.4	0.1		1344	0.5	700
34118.06	DM6	02-Jul-09	C Sheehan EEL	0.2	0.1		1447	0.3	720
34340.01	DM1	03-Aug-09	J Maloney EEL	0.2	0.1		1523	0.3	685
34340.02	DM2	03-Aug-09	J Maloney EEL	0.1	0.2		1457	0.3	630
34340.03	DM3	03-Aug-09	J Maloney EEL	0.2	0.1		1445	0.3	690
34340.04	DM4	03-Aug-09	J Maloney EEL	0.2	0.1		1423	0.3	645
34340.05	DM5	03-Aug-09	J Maloney EEL	0.6	1.6		1515	2.2	630
34340.06	DM6	03-Aug-09	J Maloney EEL	0.3	0.2		1402	0.5	785
34574.01	DM1	02-Sep-09	J Maloney EEL	0.7	0.5		920	1.2	720
34574.02	DM2	02-Sep-09	J Maloney EEL	0.4	0.4		1000	0.8	710
34574.03	DM3	02-Sep-09	J Maloney EEL	0.9	0.4		1015	1.3	640
34574.04	DM4	02-Sep-09	J Maloney EEL	0.6	0.3		1042	0.9	520
34574.05	DM5	02-Sep-09	J Maloney EEL	0.5	0.3		929	0.8	575
34574.06	DM6	02-Sep-09	J Maloney EEL	0.5	0.4		1335	0.9	755
34828.01	DM1	02-Oct-09	C Sheehan EEL	8	1.2		1118	9.2	520
34828.02	DM2	02-Oct-09	C Sheehan EEL	7.3	1.3		1129	8.6	515
34828.03	DM3	02-Oct-09	C Sheehan EEL	9.8	1.5		1136	11.3	385
34828.04	DM4	02-Oct-09	C Sheehan EEL	11	1.7		1142	12.7	330
34828.05	DM5	02-Oct-09	C Sheehan EEL	22	4.6		1110	26.9	475
34828.06	DM6	02-Oct-09	C Sheehan EEL	9.2	1.6		1202	10.8	660
35081.01	DM1	03-Nov-09	J Maloney EEL	3.3	0.9		1541	4.2	830
35081.02	DM2	03-Nov-09	J Maloney EEL	3	0.5		1609	3.5	740
35081.03	DM3	03-Nov-09	J Maloney	3	1.3		1603	4.3	685

Sample No.	Sample Locatio n	Sample Date	Sampler	Ash g/m² /mth	Combustible Matter g/m2/mth	NO SAMP LE: (d)	Time: (d)	Total Insoluble Matter g/m²/mth	Volume Collecte d mL
			EEL J Maloney						
35081.04	DM4	03-Nov-09	EEL	3.1	0.6		1622	3.7	465
35081.05	DM5	03-Nov-09	J Maloney EEL	3.8	0.7		1517	4.5	665
35081.06	DM6	03-Nov-09	J Maloney EEL	3.2	1.1		1445	4.3	755
35335.01	DM1	02-Dec-09	C Sheehan EEL	2.4	1.3		1253	3.7	315
35335.02	DM2	02-Dec-09	C Sheehan EEL	1.8	0.8		1215	2.6	250
35335.03	DM3	02-Dec-09	C Sheehan EEL	1.1	0.6		1232	1.7	235
35335.04	DM4	02-Dec-09	C Sheehan EEL	1.6	0.6		1207	2.2	185
35335.05	DM5	02-Dec-09	C Sheehan EEL	1.8	0.7		1247	2.5	265
35335.06	DM6	02-Dec-09	C Sheehan EEL			No access, fallen tree	1145		
35584.01	DM1	05-Jan-10	C Sheehan EEL	1.1	0.9		1245	2	1440
35584.02	DM2	05-Jan-10	C Sheehan EEL	0.6	0.4		1309	1	1405
35584.03	DM3	05-Jan-10	C Sheehan EEL	1	0.7		1322	1.7	1390
35584.04	DM4	05-Jan-10	C Sheehan EEL	0.8	0.4		1332	1.2	1265
35584.05	DM5	05-Jan-10	C Sheehan EEL	1.1	0.4		1235	1.5	1405
35584.06	DM6	05-Jan-10	C Sheehan EEL			No access, fallen tree	1345		
35825.01	DM1	02-Feb-10	C Sheehan EEL	1.2	0.8		1308	2	2405
35825.02	DM2	02-Feb-10	C Sheehan EEL	0.9	0.6		1330	1.5	1870
35825.03	DM3	02-Feb-10	C Sheehan EEL	1.1	0.9		1342	2	1715
35825.04	DM4	02-Feb-10	C Sheehan EEL	0.8	0.3		1353	1.1	1245
35825.05	DM5	02-Feb-10	C Sheehan EEL	1.5	0.6		1255	2.1	1580
36064.01	DM1	02-Mar-10	C Sheehan EEL	0.7	2.8		1327	3.5	2140
36064.02	DM2	02-Mar-10	C Sheehan EEL	0.3	0.5		1340	0.8	2145
36064.03	DM3	02-Mar-10	C Sheehan EEL			No access	1355		
36064.04	DM4	02-Mar-10	C Sheehan EEL	0.2	0.6		1348	0.8	2260
36064.05	DM5	02-Mar-10	C Sheehan EEL	0.8	0.7		1320	1.5	2355
36319.01	DM1	31-Mar-10	C Sheehan EEL	0.7	0.4		1438	1.1	1050
36319.02	DM2	31-Mar-10	C Sheehan EEL	0.3	0.1		1510	0.4	945
36319.03	DM3	31-Mar-10	C Sheehan EEL	0.2	0.1		1527	0.3	2745
36319.04	DM4	31-Mar-10	C Sheehan EEL	0.3	0.1		1541	0.4	905
36319.05	DM5	31-Mar-10	C Sheehan EEL	1.2	0.3		1428	1.5	1080
36542.01	DM1	30-Apr-10	C Sheehan EEL	0.3	0.3		1302	0.6	895
36542.02	DM2	30-Apr-10	C Sheehan EEL	0.2	0.2		1240	0.4	815
36542.03	DM3	30-Apr-10	C Sheehan EEL	0.4	0.9		1232	1.3	900
36542.04	DM4	30-Apr-10	C Sheehan EEL	0.2	<0.1		1225	0.2	785
36542.05	DM5	30-Apr-10	C Sheehan	0.4	0.2		1253	0.6	915

Sample No.	Sample Locatio n	Sample Date	Sampler	Ash g/m² /mth	Combustible Matter g/m2/mth	NO SAMP LE: (d)	Time: (d)	Total Insoluble Matter g/m²/mth	Volume Collecte d mL
			EEL						
36693.01	DM1	31-May-10	T Hamilton ALS	0.3	0.3		1100	0.6	1260
36693.02	DM2	31-May-10	T Hamilton ALS	0.3	0.7		1137	1	1140
36693.03	DM3	31-May-10	T Hamilton ALS	0.2	0.1		1154	0.3	1180
36693.04	DM4	31-May-10	T Hamilton ALS	0.2	<0.1		1212	0.2	1320
36693.05	DM5	31-May-10	T Hamilton ALS	0.7	0.2		1114	0.9	1480
36903.01	DM1	01-Jul-10	T Hamilton ALS	0.2	0.3		1056	0.5	700
36903.02	DM2	01-Jul-10	T Hamilton ALS	0.4	0.9		1202	1.3	615
36903.03	DM3	01-Jul-10	T Hamilton ALS	0.1	0.2		1215	0.3	680
36903.04	DM4	01-Jul-10	T Hamilton ALS	0.2	0.1		1223	0.3	595
36903.05	DM5	01-Jul-10	T Hamilton ALS	0.4	0.3		1118	0.7	655
37089.01	DM1	02-Aug-10	T Hamilton ALS	0.3	0.4		1055	0.7	1665
37089.02	DM2	02-Aug-10	T Hamilton ALS	0.2	0.3		1143	0.5	1605
37089.03	DM3	02-Aug-10	T Hamilton ALS	0.1	0.1		1156	0.2	1675
37089.04	DM4	02-Aug-10	T Hamilton ALS	0.2	<0.1		1205	0.2	1725
37089.05	DM5	02-Aug-10	T Hamilton ALS	0.6	0.1		1127	0.7	1740

Appendix C: Emission Calculations

Coalpac Consolidation Project

The dust emission inventories have been prepared using the operational description of the proposed mining activities provided by Hansen Bailey on behalf of the Proponent. Estimated emissions are presented for all significant dust generating activities associated with the operations.

The relevant emission factors used for the study are described below.

Stripping topsoil

Emissions from dozers on overburden have been calculated using the US EPA emission factor equation (**US EPA, 1985 and updates**), per **Equation 1**.

Equation 1

$$E_{TSP} = 2.6 \times \frac{s^{1.2}}{M^{1.3}}$$
 kg/hour

where,

 $E_{TSP} = TSP$ emissions

s = silt content (%), and

M = moisture (%)

The silt content in the overburden was assumed to be 8%, and the moisture content 2%. This results in a emission factor of 12.8 kg/h.

Drilling overburden and coal

The emission factor used for drilling has been taken to be 0.59 kg/hole (**US EPA, 1985 and updates**).

Blasting overburden and coal

TSP emissions from blasting were estimated using the **US EPA (1985 and updates)** emission factor equation given in **Equation 2**.

Equation 2

$$E_{TSP} = 0.00022 \times A^{1.5} \qquad kg/blast$$

where,

A = area to be blasted in m²

Loading material / dumping overburden

Each tonne of material loaded will generate a quantity of TSP that will depend on the wind speed and the moisture content. **Equation 3** shows the relationship between these variables.

Equation 3

$$E_{TSP} = k \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \right)$$
 kg/h

where.

 $E_{TSP} = TSP$ emissions

k = 0.74

U = wind speed(m/s)

M = moisture content (%)

[where $0.25 \le M \le 4.8$]

Hauling material / product on unsealed surfaces

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 4**.

$$E = k (s/12)^a (W/3)^b$$

Where,

k = 1.38

s = surface material silt content (%)

a = 0.7

W = mean vehicle weight (tons)

 $^{b} = 0.45$

Dozers working on overburden

Emissions from dozers on overburden have been calculated using the US EPA emission factor **Equation 1 (US EPA, 1985 and updates**).

Dozers working on coal

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 5**.

Equation 5

$$E_{TSP} = 35.6 \times \frac{s^{1.2}}{m^{1.4}}$$
 kg/hour

Where,

s = silt content (%), and

M = moisture (%)

Loading/unloading coal

The **US EPA (1985 and updates)** emission factor equation has been used. It is given below in **Equation 6**.

Equation 6

$$E_{TSP} = \frac{0.580}{M^{1.2}}$$
 kg/t

where,

$$E_{TSP} = TSP$$
 emissions

Loading / unloading / transfer of coal

A default value of 0.01 kg/t has been used US EPA (1985 and updates).

Wind erosion

The latest wind erosion equation made available from the **US EPA (1985 and updates)** require information on the threshold frictional velocity for the surface of the exposed area.

As this information is not available the default emission factor of 0.4 kg/ha/h (SPCC, 1983) has been used to estimate TSP emissions for wind erosion.

It has been assumed that any active mining and dump areas that have not yet been rehabilitated would be reduced by 50% to account for water carts and sprays.

Grading roads

Estimates of TSP emissions from grading roads have been made using the **US EPA (1985 and updates)** emission factor equation (Equation 7).

Equation 7

$$E_{TSP} = 0.0034 \times S^{2.5} \qquad kg/VKT$$

where,

S = speed of the grader in km/h (taken to be 8 km/h)

The following tables present the calculated emissions for Year 5, year 10, Year 15 and Year 21 which correspond to the sources allocations as represented in **Section 7**.

The abbreviations used in the tables are as follows:

- OB overburden related activities
- CL coal related activities
- WE wind erosion emissions
- CV Cullen Valley
- ET East Tyldesley
- IC Invincible

PAEHolmes Job 3351C

Table C.1: Emissions estimates for Year 2

ACTIVITY	TSP emission/year for Year 2 in(kg/y)		Units	Emission factor	Units	Variable 1		Variable 2		Variable 3		Variable Units	Variable Units	Variabl e 6		Source
					ни		NE OPERATIONS		<u> </u>	<u> </u>			<u> </u>			
CV: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/y	12.8	kg/h	8	silt content in %	2	moisture content in	%						1
CV: OB - Drilling Overburden CV: OB - Blasting Overburden	3,012 3,349	43	holes/y blasts/y	78.717	kg/hole kg/blast		Area of blast in square metres	120	holes/blast							1
CV: OB - Loading Overburden	18,665	8,576,821	t/y	0.002		1.838	average of (wind speed/2.2)^1.3		moisture content in	%						2
CV: CL - Hauling to Hillcroft dump CV: OB - Unloading Overburden to dump	88,101 18,665	8,576,821 8,576,821	t/y t/v	0.0103 0.002	kg/t	1.838	t/load average of (wind speed/2.2)^1.3	200	Vehicle gross mass (moisture content in	96	km/return tri	4.74 kg/VK	5 % silt cont	e 75	% control	1
CV: OB - Dozers on o/b	31.329	1.872	h/v	16.735	ka/h	10	silt content in %	2	moisture content in	%						1
CV: CL - Dozers on coal	34,641 72,722	936 1,295,250	h/y	37.0 0.056	kg/h	10	silt content in %	7	moisture content in	%						1
CV: CL - Loading coal into trucks CV: CL - Hauling coal to ROM coal stockpiles at ET CHPP	72,722 185.083	1,295,250	t/y t/v	0.056	kg/t ka/t		moisture content in %	110	Vehicle gross mass (14.2	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
CV: CL - Unloading coal to ROM coal stockpiles	12,953	1,295,250	t/v	0.01	kg/t						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.02 .19/ 1.11				1
CV: CL - Rehandle coal to hopper CV: CL - Crushing	488 777	1,295,250 1,295,250	t/y	0.0004 0.0006	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%						2
CV: CL - Crusning CV: CL - Screening	1.425	1,295,250	t/y t/v	0.0006	kg/t kg/t											1
CV: CL - Loading coal to product stockpiles	64,802	1,154,183	t/y	0.056	kg/t	7	moisture content in %									1
CV: CL - Loading coal to trucks	482 72,689	1,154,183	t/y	0.0004		1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in	%		2.62 1.006	5 00 110 0	75	0/ 1	2
CV: CL - Hauling product coal from ET CHPP to S conveyor CV: CL - Unloading product coal from trucks to conveyor	72,689 8,208	820,850 820,850	t/y t/v	0.08855 0.01	kg/t ka/t	90	t/load	110	Vehicle gross mass (8.8	km/return tri	3.62 kg/VK	5 % silt cont	e /5	% control	1
CV: CL - Hauling product coal from ET CHPP to rail load out	35,220	333,333	t/y	0.10566	kg/t	90	t/load	110	Vehicle gross mass (10.5	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
CV: CL - Unloading product coal from trucks to stockpile	3,333	333,333	t/y	0.01	kg/t	1 020				0/		2.00				1
CV: CL - FEL loading product coal to trains CV: CL - Hauling rejects to dump	139 43,735	333,333 306,067	t/y t/v	0.0004 0.14289	kg/t kg/t	90	average of (wind speed/2.2)^1.3 t/load		moisture content in Vehicle gross mass (14.2	km/return tri	2.00 3.62 kg/VK	5 % silt cont	e 75	% control	1
CV - REHAB - Dozers on rehab	200,117	936	h/y	213.8	kg/h	10	silt content in %	2	moisture content in	%						1
CV: WE - Active Mining Area CV: WE - Dumps area	9,636 41,347	5.5 23.6	ha		kg/ha/h kg/ha/h	8760 8760	h/y	50%	control							3
CV: WE - Dumps area CV: WE - Main ROM and Product stockpiles	1,233	0.35		0.4	kg/ha/h	8760	h/v	30%	CONTROL							3
CV: Grading roads	13,826	22,464	km	1	kg/ha/h	8	speed of graders in km/h									1
CV: SAND - Dozer ripping/pushing sand	31,329	1,872	h/v	CULLEN 16.74	VALLEY M		TIONS (Sand quarry operations)	_	moisture content in	0/0						- 1
CV: SAND - Dozer ripping/pushing sand CV: SAND - Excavation of sand by shovel/excavator/FEL	1,743	801,000	t/y	0.002		1.838	average of (wind speed/2.2)^1.3	2	moisture content in moisture content (%							2
CV: SAND - Rehandle sandstone to hopper	1,743	801,000 t	t/y	0.0022	ka/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content in							2
CV: SAND - Crushing CV: SAND - Loading sand to product stockpiles	481 35,978	801,000 t 640,800 t	t/y	0.001 0.056	kg/t	7	moisture content in %									1
CV: SAND - Loading sand to product stockpiles CV: SAND - Hauling sand to raw stockpiles at the CV CHPP	35,978 33,128	640,800	t/y	0.056	kg/t	180	t/load	215	Vehicle gross mass (7.6	km/return tri	5 kg/Vk	5 % silt con	te 75	% control	1
CV: SAND - Dumping sand to raw stockpile from haul truck	1,395	640,800 t	t/y	0.0022	kg/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content (%)	,					2
CV: SAND - Loading sand to trucks CV: SAND - Hauling product to S conveyor	1,395 13,949	640,800 t	t/y	0.0022 0.02177	kg/t	1.838	average of (wind speed/2.2)^1.3		moisture content in		I (E 10/9	F 0/ -ilb	. 75	0/	2
CV: SAND - Hading product to 5 conveyor CV: SANDL - Unloading product from trucks to conveyor	6,408	640,800	t/v	0.02177	kg/t	100	t/load	213	Vehicle gross mass (3.2	km/return tri	5 kg/Vk	5 % silt con	LE /3	% control	1
CV - REHAB - Dozers on rehab	200,117	936	h/y	213.8	kg/h		silt content in %		moisture content in	%						1
CV: WE - Active Mining Area	8,585	4.9	ha	0.4	kg/ha/h kg/ha/h	8760 8760	h/y	50%	control							3
CV: WE - Dumps area CV: WE - Main ROM and Product stockpiles	20,411 1,233	11.7 0.35	ha	0.4	kg/ha/h	8760	h/y	30%	CONTROL							3
CV: Grading roads	13,826	22,464			kg/ha/h	8	speed of graders in km/h									1
ET: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/v	12.8	kg/h	LDESLEY OF	PEN CUT OPERATIONS silt content in %	2	moisture content in	9/0				_		1
ET: OB - Drilling Overburden	3,012	5,105	holes/y	0.59	kg/hole				moistare content in	1						1
ET: OB - Blasting Overburden	3,349	43	blasts/y	78.717	kg/blast	5,040	Area of blast in square metres		holes/blast							1
ET: OB - Loading Overburden ET: OB - Hauling to ET dump	18,665 88,101	8,576,821 8,576,821		0.002 0.01027	kg/t	1.838	average of (wind speed/2.2)^1.3 t/load		moisture content in Vehicle gross mass (% 1 1 3	km/return tri	4.74 kg/VK	5 % silt cont	0 75	% control	2
ET: OB - Unloading Overburden to dump	18,665	8,576,821		0.002	ka/t		average of (wind speed/2.2)^1.3		moisture content in		KIII/TCCGIII CI	4.74 kg/ vic	5 70 Sire come	. ,,	70 COTICIO	2
ET: OB - Dozers on o/b	31,329	1,872	h/y	16.735	kg/h	10	silt content in %	2	moisture content in							1
ET: CL - Dozers on coal ET: CL - Loading coal into trucks	34,641 72,722	936 1,295,250	h/y t/v	37.0 0.056	kg/h ka/t	10	silt content in % moisture content in %	7	moisture content in	%						1
ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP	20,854	1,295,250	t/y	0.01610	kg/t		t/load	110	Vehicle gross mass (1.6	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
ET: CL - Unloading coal to ROM coal stockpiles	12,953	1,295,250	t/y	0.01	kq/t											1
ET: CL - Rehandle coal to hopper ET: CL - Crushing	488 777	1,295,250 1,295,250	t/y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%						2
ET: CL - Screening	1,425	1,295,250	t/y	0.0011	kg/t											1
ET: CL - Loading coal to product stockpiles	64,802	1,154,183	t/y	0.056	kg/t	7	moisture content in %									1
ET: CL - Loading coal to trucks ET: CL - Hauling product coal from ET CHPP to S conveyor	482 72,689	1,154,183 820,850	t/y	0.0004 0.08855	kg/t kg/t	1.838	average of (wind speed/2.2)^1.3 t/load	6.5	moisture content in Vehicle gross mass (% 8.8	km/return tri	3.62 kg/VK	5 % silt cont	0 75	% control	2
ET: CL - Unloading product coal from trucks to conveyor	8.208	820,850	t/y	0.01	kg/t											1
ET: CL - Hauling product coal from ET CHPP to rail load out	35,220	333,333		0.10566		90	t/load	110	Vehicle gross mass (10.5	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
ET: CL - Unloading product coal from trucks to stockpile ET: CL - FEL loading product coal to trains	3,333 139	333,333 333,333	t/y	0.01 0.0004	kg/t kg/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in	%						2
ET: CL - Hauling rejects to dump	4,928	306,067	t/y	0.01610	kq/t	90	t/load	110	Vehicle gross mass (1.6	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
ET - REHAB - Dozers on rehab ET: WE - Active Mining Area	200,117	936 6.4	h/y	213.8	kg/h	10	silt content in %	2	moisture content in	%						1 2
ET: WE - Active Mining Area ET: WE - Dumps area	11,213 32,938	18.8	ha	0.4	kg/ha/h kg/ha/h	8760 8760	h/y		control							3
ET: WE - Main ROM and Product stockpiles	2,775	0.79	ha	0.4	ka/ha/h	8760	h/v									3
ET: Grading roads	13,826	22,464	km	1	kg/ha/h	ICTRLE COLL	speed of graders in km/h EIRY OPERATIONS									1
IC: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/y	12.8	ka/h	8	silt content in %	2	moisture content in	%						1
IC: OB - Drilling Overburden	3,012	5,105	holes/y	0.59	kg/hole kg/blast											1
IC: OB - Blasting Overburden	3,349 18,665	43 8,576,821	blasts/y	78.717 0.002	kg/blast	5,040	Area of blast in square metres	120	holes/blast moisture content in	0/						1
IC: OB - Loading Overburden IC: OB - Hauling from pit to IC dump	101.655	8,576,821		0.002		1.838	average of (wind speed/2.2)^1.3 t/load		Vehicle gross mass (km/return tri	4.74 kg/VK	5 % silt cont	e 75	% control	1
IC: OB - Unloading Overburden to dump	18,665	8,576,821	t/y	0.002	kg/t	1.838	average of (wind speed/2.2)^1.3		moisture content in	%	,					2
IC: OB - Dozers on o/b	31,329	1,872		16.735		10	silt content in %	2	moisture content in							1
IC: CL - Dozers on coal IC: CL - Loading coal into trucks	34,641 72,722	936 1,295,250	t/v	37.0 0.056	kg/n kg/t	10	silt content in % moisture content in %	7	moisture content in	70						1
IC: CL - Hauling coal to ROM coal stockpiles at CHPP	36,495	1.295.250	t/v	0.02818	kg/t		t/load	110	Vehicle gross mass (2.8	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
IC: CL - Unloading coal to ROM coal stockpiles	12,953	1,295,250	t/y	0.01	kg/t	4.5										1
IC: CL - Rehandle coal to hopper IC: CL - Crushing	488 777	1,295,250 1,295,250	t/y t/v	0.0004 0.0006	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%						2
IC: CL - Screening	1,425	1,295,250	t/y	0.0011	kg/t											1
IC: CL - Loading coal to product stockpiles	64,802	1,154,183	t/y	0.056	kg/t		moisture content in %									1
IC: CL - Loading coal to trucks IC: CL - Hauling product coal from IC CHPP to S conveyor	482 14,042	1,154,183 820,850		0.0004 0.01711		1.838	average of (wind speed/2.2)^1.3 t/load		moisture content in Vehicle gross mass (km/return tri	3.62 kg/VK	5 % silt cont	0 75	% control	2
IC: CL - Unloading product coal from trucks to conveyor	8,208	820,850	t/y	0.01	kg/t								5 % SHE CONT			1
IC: CL - Hauling product coal from IC CHPP to rail load out	8,208 65,744	820,850 333,333	t/y	0.19723	kg/t	90	t/load	110	Vehicle gross mass (19.6	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
IC: CL - Unloading product coal from trucks to stockpile IC: CL - FEL loading product coal to trains	3,333 139	333,333 333,333	t/y	0.01 0.0004	kg/t	1 920	average of (wind speed/2.2)^1.3		moisture content in	96						1 2
IC: CL - FEL loading product coal to trains IC: CL - Hauling rejects to dump	8,624	306,067		0.0004		90	t/load		Vehicle gross mass (2.8	km/return tri	3.62 kg/VK	5 % silt cont	e 75	% control	1
IC - REHAB - Dozers on rehab	200,117	936	h/y	213.8	kg/h	10	silt content in %	2	moisture content in	%						1
IC: WE - Active Mining Area IC: WE - Dumps area	10,862 38,719	6.2 22.1	ha		kg/ha/h kg/ha/h	8760 8760		50%	control							3
IC: WE - Main ROM and Product stockpiles	5,859	1.7	ha		kg/na/n kg/ha/h	8760	h/y	50%	Control							3
IC: Grading roads	13,826	22,464	km		kg/ha/h	8	speed of graders in km/h									1

Quality Impact

Assessment

ACTIVITY	TSP emission/year for Year 8 in(kg/y)	Intensity	Units	Emission factor	Units	Variable 1	Units	Variable 2	Units	Variable 3	Units	Variable 4	Units Varial	ole Units	Variable 6	Units	Source type
							EY MINE OPERATIONS										
CV: Topsoil Removal - Dozers/Excavators stripping topsoil CV: OB - Drilling Overburden	333 4,360	7.389	h/y holes/y	0.59	kg/h kg/hole	8	silt content in %	2	moisture content in 9	6							1
CV: OB - Blasting Overburden	4,847	62 12,414,072	blasts/y	78.717	kg/blast	5,040	Area of blast in square metres	120	holes/blast								1
CV: OB - Loading Overburden	27,015	12,414,072	t/y	0.002		1.838	average of (wind speed/2.2)^1.3		moisture content in 9								2
CV: CL - Hauling to CV dump	156,945	12,414,072	t/y	0.0126		150	t/load		Vehicle gross mass (1.6	km/return trip	4.74	kg/VK1	5 % silt conte	n 75	% control	1
CV: OB - Unloading Overburden to dump CV: OB - Dozers on o/b	27,015 31,329	12,414,072 1,872	h/v	0.002 16.735	kg/t	1.030	average of (wind speed/2.2)^1.3 silt content in %		moisture content in 9 moisture content in 9	6							1
CV: CL - Dozers on coal	34,641	936			kg/h		silt content in %	7	moisture content in 9	6							1
CV: CL - Loading coal into trucks	74,945	1,334,850	t/y	0.056	kg/t	7	moisture content in %										- 1
CV: CL - Hauling coal to ROM coal stockpiles at ET CHPP	91,341	1,334,850	t/y	0.06843		90	t/load	110	Vehicle gross mass (6.8	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
CV: CL - Unloading coal to ROM coal stockpiles CV: CL - Rehandle coal to hopper	13,349 503	1,334,850 1,334,850	t/y	0.01 0.0004		1 020	average of (wind speed/2.2)^1.3	-	moisture content in	0/-							1
CV: CL - Crushing	801	1,334,850	t/y	0.0006	kg/t	1.050	average or (wind speed/2.2) 1.3		moiscare concent in	70					1		1
CV: CL - Screening	1,468	1,334,850	t/y	0.0011	kg/t												1
CV: CL - Loading coal to product stockpiles	64,841 483	1,154,885	t/y	0.056	kg/t	7	moisture content in %										1
CV: CL - Loading coal to trucks CV: CL - Hauling product coal from ET CHPP to S conveyor	483 72,751	1,154,885 821,551	t/y	0.0004 0.08855		1.838	average of (wind speed/2.2)^1.3 t/load		moisture content in 9 Vehicle gross mass (6	km/return trip	2.62	kg/VK	5 % silt conte	n 75	% control	2
CV: CL - Unloading product coal from trucks to conveyor	8,216	821,551	t/v	0.00	kg/t	90	Viola	110	verlicle gross mass (0.0	Kin/recurr crip	3.02	Kg/ VK	J 70 SHC COINCE	//	76 CONCION	1
CV: CL - Hauling product coal from ET CHPP to rail load out	35,220	333,333	t/y	0.10566	kg/t	90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
CV: CL - Unloading product coal from trucks to stockpile	3,333	333,333	t/y	0.01													1
CV: CL - FEL loading product coal to trains	139	333,333		0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3 t/load	6.5	moisture content in 9	6	km/return trip	2.62	1 000	5 % silt conte	75		2
CV: CL - Hauling rejects to dump CV - REHAB - Dozers on rehab	5,554 200,117	344,966 936	b/v	0.01610 213.8	kg/t kg/h		silt content in %	110	Vehicle gross mass (moisture content in 9	6	KIII/return trip	3.62	kg/VK	5 % SIIT CONTE	75	% control	1
CV: WE - Active Mining Area	25,229	14.4	ha	0.4	kg/ha/h	8760	h/y	50%	control								3
CV: WE - Dumps area	53,611	30.6	ha	0.4	kg/ha/h	8760	h/y		control								3
CV: WE - Main ROM and Product stockpiles	925	0.3	ha	0.4	kg/ha/h	8760	h/y										3
CV: Grading roads	13,826	22,464	кm	1	kg/ha/h LEN VALLE	8 MINE OPE	speed of graders in km/h RATIONS (Sand quarry operation	nne)									1
CV: SAND - Dozer ripping/pushing sand	31,329	1.872	h/v	16.74	ka/h	10	silt content in %		moisture content in 9	6							1
CV: SAND - Excavation of sand by shovel/excavator/FEL	1,743	801,000	t/y	0.002	kg/t	1.838	average of (wind speed/2.2)^1.3		moisture content (%								2
CV: SAND - Rehandle sandstone to hopper	481	801,000	t/y	0.0022	kg/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content in	%							2
CV: SAND - Crushing	481 35,978	801,000	t/y	0.0006		-	moisture content i= 0/										1
CV: SAND - Loading sand to product stockpiles CV: SAND - Hauling sand to raw stockpiles at the ET CHPP	35,978 61,026	640,800 640,800	t/v	0.056 0.09523	ka/t		moisture content in % t/load	215	Vehicle gross mass (1.4	km/return trip	4 00	kg/VK	5 % silt conte	n 70	% control	1
CV: SAND - Hadding sand to raw stockpiles at the ET CHPP CV: SAND - Dumping sand to raw stockpile from haul truck	1,395	640,800	t/y	0.09323	kg/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content (%		iyrecarii tiib	4.90		5 70 SAC COINE	/3	, control	2
CV: SAND - Loading sand to trucks	1,395	640,800	t/y	0.0022		1.838	average of (wind speed/2.2)^1.3	2	moisture content in 9	6							2
CV: SAND - Hauling product to S conveyor	39,231	640,800		0.06122		180	t/load	215	Vehicle gross mass (9	km/return trip	4.90	kg/VK	5 % silt conte	n 75	% control	1
CV: SAND - Unloading product from trucks to conveyor CV - REHAB - Dozers on rehab	6,408 200,117	640,800 936		0.01 213.8		10	silt content in %		moisture content in 9	,					_		1
CV: WE - Active Mining Area	10,582	6.0	ha.	0.4	kg/n kg/ha/h	8760	h/v	50%	control	ю							3
CV: WE - Dumps area	33,989	19.4	ha	0.4	kg/ha/h	8760	h/y		control								3
CV: WE - Main ROM and Product stockpiles	925	0.3		0.4	kg/ha/h	8760	h/y										3
CV: Grading roads	13,826	22,464	km	1	kg/ha/h EAS	8	speed of graders in km/h OPEN CUT OPERATIONS										1
ET: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/v	12.8	ka/h	R	silt content in %		moisture content in 9	6							1
ET: OB - Drilling Overburden	4,360		holes/y	0.59	ka/hole				moistare content in								1
ET: OB - Blasting Overburden	4,847	62	blasts/y	78.717	kg/blast	5,040	Area of blast in square metres		holes/blast								- 1
ET: OB - Loading Overburden	27,015	12,414,072		0.002		1.838	average of (wind speed/2.2)^1.3	2	moisture content in 9	6							2
ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump	156,945 27,015	12,414,072 12,414,072	t/y	0.01264 0.002	kg/t kg/t		t/load average of (wind speed/2.2)^1.3		Vehicle gross mass (moisture content in 9		km/return trip	4.74	kg/VK	5 % silt conte	n 75	% control	1 2
ET: OB - Dozers on o/b	31,329	1,872	h/v	16.735	kg/t	1.030	silt content in %	2	moisture content in 9	6							1
ET: CL - Dozers on coal	34,641	936	h/y	37.0	kg/h	10	silt content in %		moisture content in 9								1
ET: CL - Loading coal into trucks	74,945	1,334,850	t/y	0.056			moisture content in %										1
ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP ET: CL - Unloading coal to ROM coal stockpiles	29,551 13,349	1,334,850 1,334,850	t/y	0.02214 0.01	kg/t	90	t/load	110	Vehicle gross mass (2.2	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
ET: CL - Rehandle coal to hopper	503	1,334,850	t/y	0.0004	ka/t	1.838	average of (wind speed/2.2)^1.3	-	moisture content in	%							2
ET: CL - Crushing	801	1,334,850	t/y	0.0006	kg/t												1
ET: CL - Screening	1,468	1,334,850	t/y	0.0011	kg/t												1
ET: CL - Loading coal to product stockpiles	64,841 483	1,154,885	t/y	0.056 0.0004	kg/t	1 020	moisture content in %		moisture content in 9	,							1
ET: CL - Loading coal to trucks ET: CL - Hauling product coal from ET CHPP to S conveyor	72.751	1,154,885 821.551	t/y	0.08855			average of (wind speed/2.2)^1.3 t/load		Vehicle gross mass (km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
ET: CL - Unloading product coal from trucks to conveyor	8,216	821,551		0.01	kg/t		,				,	0.02					1
ET: CL - Hauling product coal from ET CHPP to rail load out	35,220	333,333	t/y	0.10566	kg/t	90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
ET: CL - Unloading product coal from trucks to stockpile	3,333	333,333	t/y	0.01	kg/t	1.000				,							1
ET: CL - FEL loading product coal to trains ET: CL - Hauling rejects to dump	139 1,433	333,333 89,000		0.0004 0.01610	kg/t ka/t	1.838	average of (wind speed/2.2)^1.3 t/load	110	moisture content in 9 Vehicle gross mass (1.6	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
ET - REHAB - Dozers on rehab	200,117	936	h/y	213.8	kg/h		silt content in %	2	moisture content in 9	6	.,	5.52	,,	Date contre			1
ET: WE - Active Mining Area	33,814	19.3 18.3	ha	0.4	kg/ha/h	8760		50%	control								3
ET: WE - Dumps area	32,062	18.3	ha		kg/ha/h	8760		50%	control								3
ET: WE - Main ROM and Product stockpiles ET: Grading roads	925 13,826	0.3 22.464			kg/ha/h kg/ha/h	8760 8	speed of graders in km/h										3
					11	NVINCIBLE C	OLLEIRY OPERATIONS										
IC: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/y	12.8	kg/h	8	silt content in %	2	moisture content in 9	6							1
IC: OB - Drilling Overburden	4,360	7,389	holes/y	0.59	kg/hole	5.0.1											1
IC: OB - Blasting Overburden IC: OB - Loading Overburden	4,847 27.015	62 12,414,072	plasts/y	78.717 0.002	kg/blast		Area of blast in square metres		holes/blast moisture content in 9	6							1
IC: OB - Loading Overburden IC: OB - Hauling from pit to IC dump	27,015 58.854	12,414,072	t/v	0.002		150	average of (wind speed/2.2)^1.3 t/load		Vehicle gross mass (0.6	km/return trip	4.74	kg/VK	5 % silt conte	n 75	% control	1
IC: OB - Unloading Overburden to dump	27,015	12,414,072	t/y	0.002	kg/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content in 9	6	.,	7.74				2 22.110.01	2
IC: OB - Dozers on o/b	31,329	1,872	h/y	16.735	kg/h	10	silt content in %	2	moisture content in 9	6							1
IC: CL - Dozers on coal	34,641 74,945	936	h/y	37.0	kg/h	10	silt content in %	7	moisture content in 9	6							1
IC: CL - Loading coal into trucks IC: CL - Hauling coal to ROM coal stockpiles at IC CHPP	74,945 55,073	1,334,850 1,334,850	t/v	0.056 0.04126	kg/t kg/t		moisture content in % t/load	110	Vehicle gross mass (4 1	km/return trip	3,62	kg/VK	5 % silt conte	n 75	% control	1
IC: CL - Unloading coal to ROM coal stockpiles at IC CITE	13,349	1,334,850	t/y	0.04120	kg/t	90	7.000	110		4.1	,recum anp	5.02	, ***	2 70 Site Conte	/3		1
IC: CL - Rehandle coal to hopper	503	1,334,850	t/y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%							2
IC: CL - Crushing	801	1,334,850	t/y	0.0006													1
IC: CL - Screening IC: CL - Loading coal to product stockpiles	1,468 64.841	1,334,850 1.154.885		0.0011 0.056	kg/t	7	moisture content in %										1
IC: CL - Loading coal to trucks	483	1,154,885		0.0004	ka/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in 9	6							2
IC: CL - Unloading product coal from trucks to conveyor	8,216	821,551	t/y	0.01	kg/t	2.000	2. 2. 2. 2. Ci (will appece, 2.2) 1.3			-							1
IC: CL - Hauling product coal from IC CHPP to rail load out	65,744	333.333	t/v	0.19723	kg/t	90	t/load	110	Vehicle gross mass (19.6	km/return trip	3.62	kg/VK	5 % silt conte	n 75	% control	1
IC: CL - Unloading product coal from trucks to stockpile	3,333	333,333	t/y	0.01	kg/t												1
IC: CL - FEL loading product coal to trains	139	333,333	t/y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in o	6	km (noti t	2.62	ka MC	E 04 cits		9/- co-t	2
IC: CL - Hauling rejects to dump IC - REHAB - Dozers on rehab	2,083	344,966 936		0.00604 213.8			t/load silt content in %		Vehicle gross mass (moisture content in 9		km/return trip	3.62	kg/VK	5 % silt conte	75	% control	1
IC: WE - Active Mining Area	10,687	6.1	ha	0.4	kg/ha/h	8760	h/y	50%	control								3
IC: WE - Dumps area	19,447	11.1	ha	0.4	kg/ha/h	8760	h/y	50%	control								3
IC: WE - Main ROM and Product stockpiles	2,467	0.7	ha	0.4	kg/ha/h	8760	h/y										3
IC: Grading roads	13,826	22,464	km	1	kg/ha/h	8	speed of graders in km/h										1

PAEHolmes Job 3351C

Table C.3: Emissions estimates for Year 14

ACTIVITY	TSP emission/year for Year 14 in(kg/y)	Intensity	Units	Emission factor	Units	Variable 1	Units	Variable 2	Units	Variable 3	Units	Variable 4	Units	Variable 5	Units	Variabl e 6	Units	Source type
CV: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26 h	/v	12.8	ka/h		silt content in %	2	moisture content in 9	V ₀			_					1
CV: OB - Drilling Overburden	5,056	8.570 h	oles/v	0.59	kg/hole													1
CV: OB - Blasting Overburden CV: OB - Loading Overburden	5,622 31,332	71 b 14,397,625 t	lasts/y	0.002	kg/blast kg/t		Area of blast in square metres average of (wind speed/2.2)^1.3		holes/blast moisture content in ^o	Yo.			-					1 2
CV: CL - Hauling to CV dump	238,903	14,397,625 t/	'y	0.0166	kg/t	150	t/load	200	Vehicle gross mass (2.1	km/return trip	4.74	kg/VK	5	% silt content	75	% control	1
CV: OB - Unloading Overburden to dump CV: OB - Dozers on o/b	31,332 31,329	14,397,625 t, 1,872 h	y /v	0.002 16.735	kg/t kg/h	1.838	average of (wind speed/2.2)^1.3 silt content in %	2	moisture content in 9 moisture content in 9	% %			-					2
CV: CL - Dozers on coal	34,641	936 h	/y	37.0	ka/h	10	silt content in %	7	moisture content in	%								1
CV: CL - Loading coal into trucks CV: CL - Hauling coal to ROM coal stockpiles at ET CHPP	74,945 102.087	1,334,850 t, 1,334,850 t	'y	0.056 0.07648	kg/t		moisture content in % t/load	110	Vehicle gross mass (7.6	km/return trip	2.62	ka/VK	-	% silt content	75	% control	1
CV: CL - Unloading coal to ROM coal stockpiles	13,349	1,334,850 t/	y y	0.01	ka/t			0.7	% control		KillyTetarii trip	3.02	. kg/ vik		70 SHC CONCERC	/3	70 COTICIOI	1
CV: CL - Rehandle coal to hopper	801 801	1,334,850 t,		0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%								2
CV: CL - Crushing CV: CL - Screening	1,468	1,334,850 t, 1,334,850 t,	'y	0.0006 0.0011	kg/t								_					1
CV: CL - Loading coal to product stockpiles	64,841	1,154,885 t/	v	0.056	kq/t		moisture content in %		% control									1
CV: CL - Loading coal to trucks CV: CL - Hauling product coal from ET CHPP to S conveyor	483 72,751	1,154,885 t, 821,551 t,	y v	0.0004	kg/t ka/t	1.838	average of (wind speed/2.2)^1.3 t/load		moisture content in ^o Vehicle gross mass (% 8.8	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
CV: CL - Unloading product coal from trucks to conveyor	8,216	821,551 t/	'y	0.01	kg/t													1
CV: CL - Hauling product coal from ET CHPP to rail load out CV: CL - Unloading product coal from trucks to stockpile	35,220 3,333	333,333 t, 333,333 t,	y	0.10566 0.01	kg/t kg/t	90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
CV: CL - FEL loading product coal to trains	139	333,333 t,	'y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in 9	%								2
CV: CL - Hauling rejects to dump CV - REHAB - Dozers on rehab	24,300 200,117	344,966 t/ 936 h	y	0.07044 213.8	kg/t	90	t/load silt content in %	110	Vehicle gross mass (moisture content in ^o	7	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
CV: WE - Active Mining Area	31,886 75,336	18.2 h	a a	0.4	kg/ha/h	8760			control	70								3
CV: WE - Dumps area		43.0 h		0.4	kg/ha/h	8760		50%	control									3
CV: WE - Main ROM and Product stockpiles CV: Grading roads	925 13,826	0.3 h 22,464 k	m .	1	kg/ha/h kg/ha/h	8760 8	speed of graders in km/h											3
				CU	LLEN VAL	LEY MINE OF	ERATIONS (Sand quarry opera	tions)										
CV: SAND - Dozer ripping/pushing sand CV: SAND - Excavation of sand by shovel/excavator/FEL	31,329 842	1,872 h/ 387,000 t/	У	16.74 0.002	kg/h ka/t	1.838	silt content in % average of (wind speed/2.2)^1.3		moisture content in 9 moisture content (%									1 2
CV: SAND - Rehandle sandstone to hopper	232	387,000 t/	/	0.0022	kg/t	1.838	average of (wind speed/2.2)^1.3 average of (wind speed/2.2)^1.3	2	moisture content in	%								2
CV: SAND - Crushing CV: SAND - Loading sand to product stockpiles	232 17.382	387,000 t/- 309,600 t/-		0.0006		7	moisture content in %						-					1
CV: SAND - Hauling sand to raw stockpiles to the ET CHPP	31,801	309,600 t,	'y	0.10272	kg/t	180	t/load	215	Vehicle gross mass (15.1	km/return trip	4.90	kg/VK	5	% silt content	75	% control	1
CV: SAND - Dumping sand to raw stockpile/or hopper from haul truck	674 674	309,600 t/ 309,600 t/		0.0022 0.0022	kg/t	1.838	average of (wind speed/2.2)^1.3	2	moisture content (% moisture content in)								2
CV: SAND - Loading sand to trucks CV: SAND - Hauling product to S conveyor	18,954	309,600 t		0.0022		1.030	average of (wind speed/2.2)^1.3 t/load		Vehicle gross mass (70 9	km/return trip	4.90	kg/VK	5	% silt content	75	% control	1
CV: SAND - Unloading product from trucks to conveyor	3,096	309,600 t/	'y	0.01	kg/t													1
CV - REHAB - Dozers on rehab CV: WE - Active Mining Area	200,117 19,272	936 h 5.5 h	/y	213.8	kg/h kg/ha/h	8760	silt content in %	2	moisture content in ^o	%			-					1 3
CV: WE - Dumps area	116,683	33.3 h	a	0.4	kg/ha/h	8760	h/y											3
CV: WE - Main ROM and Product stockpiles CV: Grading roads	925 13,826	0.3 h 22,464 k	a		kg/ha/h	8760	h/y speed of graders in km/h						-					3
					kg/ha/h E <i>l</i>	ST TYLDESLE	Y OPEN CUT OPERATIONS											
ET: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26 h	/y	12.8	kg/h	8	silt content in %	2	moisture content in 9	%								1
ET: OB - Drilling Overburden ET: OB - Blasting Overburden	5,056 5,622	8,570 h 71 b	lasts/v	78.717	kg/hole kg/blast	5,040	Area of blast in square metres	120	holes/blast				_					1
ET: OB - Loading Overburden	31,332	14,397,625 t	'y	0.002	kg/t	1.838	average of (wind speed/2.2)^1.3		moisture content in 9									2
ET: OB - Hauling to ET dump ET: OB - Unloading Overburden to dump	136,516 31,332	14,397,625 t, 14,397,625 t,		0.00948			t/load average of (wind speed/2.2)^1.3	200	Vehicle gross mass (moisture content in		km/return trip	4.74	kg/VK	5	% silt content	75	% control	1 2
ET: OB - Dozers on o/b	31,329	1,872 h	/y	16.735	kq/h	10	silt content in %	2	moisture content in 9	Vo								1
ET: CL - Dozers on coal ET: CL - Loading coal into trucks	34,641 74,945	936 h 1,334,850 t,	/y	37.0 0.056	kg/h kg/t		silt content in % moisture content in %	7	moisture content in 9	%			-					1
ET: CL - Hauling coal to ROM coal stockpiles at ET CHPP	77,908	1,334,850 t/	'y	0.05836	kg/t	90	t/load	110	Vehicle gross mass (5.8	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
ET: CL - Unloading coal to ROM coal stockpiles	13,349 503	1,334,850 t, 1,334,850 t,	'y	0.01 0.0004	kg/t	1 020	average of (wind speed/2.2)^1.3	-	moisture content in	0/								1
ET: CL - Rehandle coal to hopper ET: CL - Crushing	801	1,334,850 t, 1,334,850 t,	'y	0.0006	kg/t	1.050	average or (wind speed/2.2) 1		moistare content in	70								1
ET: CL - Screening	1,468	1,334,850 t,	'y	0.0011		_												1
ET: CL - Loading coal to product stockpiles ET: CL - Loading coal to trucks	64,841 483	1,154,885 t, 1,154,885 t,	y 'y	0.056 0.0004	kg/t kg/t	1.838	moisture content in % average of (wind speed/2.2)^1.3	6.5	moisture content in 9	%			_					2
ET: CL - Hauling product coal from ET CHPP to S conveyor	72,751	821,551 t/	'y	0.08855	kg/t	90	t/load	110	Vehicle gross mass (8.8	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
ET: CL - Unloading product coal from trucks to conveyor ET: CL - Hauling product coal from ET CHPP to rail load out	8,216 35,220	821,551 t, 333,333 t,	y 'v	0.01 0.10566	kg/t kn/t	90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
ET: CL - Unloading product coal from trucks to stockpile	3,333	333,333 t,	'y	0.01	kg/t						,		,					1
ET: CL - FEL loading product coal to trains ET: CL - Hauling rejects to dump	139 67,405	333,333 t, 1,154,885 t,		0.0004 0.05836	kg/t kg/t	1.838	average of (wind speed/2.2)^1.3 t/load		moisture content in 9 Vehicle gross mass (km/return trip	3.67	kg/VK	5	% silt content	75	% control	2
ET - REHAB - Dozers on rehab	200,117	936 h	/y	213.8	kg/h	10	silt content in %		moisture content in		.,	5.02	,			.,	, 22/10/01	1
ET: WE - Active Mining Area ET: WE - Dumps area	37,843 111,778	10.8 h 31.9 h	a	0.4	kg/ha/h kg/ha/h	8760 8760	h/y h/v											3
ET: WE - Main ROM and Product stockpiles	925	0.3 h	a	0.4	kg/ha/h	8760	h/y											3
ET: Grading roads	13,826	22,464 k	m	1	kg/ha/h	TNVINCIDI E	speed of graders in km/h COLLEIRY OPERATIONS											1
IC: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26 h	/у	12.8		8	silt content in %	2	moisture content in 9	V ₀								1
IC: OB - Drilling Overburden	5,056	8,570 h	oles/y	0.59	kg/hole	5.04-	Annual Municipal) holes/blast									1
IC: OB - Blasting Overburden IC: OB - Loading Overburden	5,622 31,332	71 b 14,397,625 t	y y	78.717 0.002	kg/blast kg/t	1.838	Area of blast in square metres average of (wind speed/2.2)^1.3	2	moisture content in 9	Vo								1 2
IC: OB - Hauling from pit to IC dump	204,774	14,397,625 t/	'y	0.01422	kg/t	150	t/load	200	Vehicle gross mass (1.8	km/return trip	4.74	kg/VK	5	% silt content	75	% control	1
IC: OB - Unloading Overburden to dump IC: OB - Dozers on o/b	31,332 31,329	14,397,625 t, 1,872 h	/v	0.002 16.735	ka/h	1.838	average of (wind speed/2.2)^1.3 silt content in %	2	moisture content in 9	Vo Vo								2
IC: CL - Dozers on coal	34,641	936 h	/y	37.0	kg/h	10	silt content in %		moisture content in									1
IC: CL - Loading coal into trucks IC: CL - Hauling coal to ROM coal stockpiles at IC CHPP	74,945 87.311	1,334,850 t, 1,334,850 t		0.056 0.06541	kg/t		moisture content in % t/load	110	Vehicle gross mass (6.5	km/return trip	2 62	kg/VK	-	% silt content	75	% control	1
IC: CL - Unloading coal to ROM coal stockpiles at IC CHPP IC: CL - Unloading coal to ROM coal stockpiles	13,349	1,334,850 t/		0.06541	kg/t kg/t	90	t/load	0.7	% control	6.5	kill/return trip	3.62	ky/VK	3	% Sit Content	/3	% CONTROL	1
IC: CL - Rehandle coal to hopper	503	1,334,850 t,	'y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	7	moisture content in	%								2
IC: CL - Crushing IC: CL - Screening	801 1,468	1,334,850 t, 1,334,850 t,	'y	0.0006 0.0011	kg/t													1
IC: CL - Loading coal to product stockpiles	64,841	1,154,885 t,	'y	0.056	kg/t	7	moisture content in %											1
IC: CL - Loading coal to trucks IC: CL - Unloading product coal from trucks to conveyor	483 8.216	1,154,885 t, 821,551 t,	'y	0.0004	kg/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in o	Vo								2
IC: CL - Hauling product coal from IC CHPP to rail load out	65,744	333,333 t/	'y	0.19723	kg/t	90	t/load	110	Vehicle gross mass (19.6	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
IC: CL - Unloading product coal from trucks to stockpile	3,333 139	333,333 t, 333,333 t,	y	0.01 0.0004	kg/t	1.020	average of (wind speed/2.2)^1.3		moisture content in 9	V-								1
IC: CL - FEL loading product coal to trains IC: CL - Hauling rejects to dump	22,564	344,966 t	'v	0.06541	kg/t	90	t/load	110	Vehicle gross mass (6.5	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1
IC - REHAB - Dozers on rehab	200,117	936 h 11.5 h	/у	213.8	kg/h kg/ha/h	10 8760	silt content in %	2	moisture content in o	%								1
IC: WE - Active Mining Area IC: WE - Dumps area	40,296 77,438	22.1 h	a		kg/ha/h kg/ha/h	8760 8760												3
IC: WE - Main ROM and Product stockpiles	2,467	0.7 h	a	0.4	kg/ha/h	8760	h/y											3
IC: Grading roads	13,826	22,464 k	m	1	kg/ha/h	8	speed of graders in km/h											1

Quality Impact

Assessment

Table C.4: Emissions estimates for Year 20

	TSP emission/year		Units	Emission .	Jnits Va	ariable 1	Units	Variable	Units	Variable	Units	Variable 4		Variable		Variabl		Source
ACTIVITY	for Year 20 in(kg/y)	Intensity								3	Units	Variable 4	Units	5	Units	e 6		type
	200	2.6	1.4	40.01.4			LEY MINE OPERATIONS			V			_					_
V: Topsoil Removal - Dozers/Excavators stripping topsoil V: OB - Drilling Overburden	333 5.151		h/y holes/v	12.8 kg/ 0.59 kg	n /hole	8	silt content in %		moisture content in 6	%								
V: OB - Blasting Overburden	5,151		blasts/y	78.717 kg/		5.040	Area of blast in square metres	120	holes/blast									
V: OB - Loading Overburden		14,666,667		0.002 kg/		1 838	average of (wind speed/2.2)^1.3		moisture content in o	1/4								1 1
V: CL - Hauling to CV dump	231,779			0.0158 kg/			t/load		Vehicle gross mass (km/return trip	4 74	kg/VK	- 5	% silt content	75	% control	1 1
V: OB - Unloading Overburden to dump	31,917	14,666,667		0.002 kg/			average of (wind speed/2.2)^1.3	2	moisture content in	%	Kinyretain trip		itg/ vit		70 SHE CONTECHE	,,,	70 CONCIO	1 1
V: OB - Dozers on o/b	31,329	1,872		16.735 kg/			silt content in %		moisture content in o									1 7
V: CL - Dozers on coal	34,641	936		37.0 kg/			silt content in %		moisture content in o									1 1
V: CL - Loading coal into trucks	74,945	1,334,850		0.056 kg/		7	moisture content in %											
V: CL - Hauling coal to ROM coal stockpiles at ET CHPP	99,400	1,334,850		0.07447 kg/	/t		t/load	110	Vehicle gross mass (7.4	km/return trip	3.62	kg/VK	5	% silt content	75	% control	1 1
V: CL - Unloading coal to ROM coal stockpiles	13,349	1,334,850	t/y	0.01 kg/					% control									1
V: CL - Rehandle coal to hopper	801	1,334,850	t/y	0.0004 kg	ı/t	1.838	average of (wind speed/2.2)^1.3		moisture content in	%								()
V: CL - Crushing	801	1,334,850		0.0006 kg														i .
V: CL - Screening	1,468	1,334,850		0.0011 kg									\Box					1
V: CL - Loading coal to product stockpiles	64,841	1,154,885		0.056 kg/			moisture content in %		% control									i .
V: CL - Loading coal to trucks	483	1,154,885		0.0004 kg/	/t		average of (wind speed/2.2) $^1.3$		moisture content in o									1
V: CL - Hauling product coal from ET CHPP to S conveyor	72,751	821,551		0.08855 kg/		90	t/load	110	Vehicle gross mass (8.8	km/return trip	3.62	kg/VK	5	% silt content	75	% control	()
V: CL - Unloading product coal from trucks to conveyor	8,216	821,551		0.01 kg/									-					1 3
V: CL - Hauling product coal from ET CHPP to rail load out	35,220	333,333		0.10566 kg/		90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.62	kg/VK	5	% silt content	75	% control	i .
V: CL - Unloading product coal from trucks to stockpile	3,333	333,333		0.01 kg/		1.022												
V: CL - FEL loading product coal to trains	139	333,333	t/y	0.0004 kg/			average of (wind speed/2.2)^1.3		moisture content in o		loss forther 1.1		lum O O O	_	0/ -!!		0/ :	
V: CL - Hauling rejects to dump	25,688	344,966	t/y	0.07447 kg/			t/load		Vehicle gross mass (km/return trip	3.62	kg/VK	5	% silt content	75	% control	
V - REHAB - Dozers on rehab V: WE - Active Mining Area	200,117 54,137	936 30.9		213.8 kg/ 0.4 kg/		9760	silt content in %		moisture content in control	70								
V: WE - Active Mining Area V: WE - Dumps area	63,422	30.9		0.4 kg/ 0.4 kg/		8760 8760	h/v		control									
V: WE - Main ROM and Product stockpiles	925	0.3		0.4 kg/		8760		30%	CONLIG									
V: Grading roads	13,826	22,464		1 kg/			speed of graders in km/h											
- Crowing round	13,820	22,704	KIII		EAST '	TYLDESLE	Y OPEN CUT OPERATIONS											
T: Topsoil Removal - Dozers/Excavators stripping topsoil	333	26	h/y	12.8 kg/			silt content in %	2	moisture content in ^o	%								
T: OB - Drilling Overburden	5,151		holes/y	0.59 kg														
T: OB - Blasting Overburden	5,727		blasts/y	78.717 kg/		5,040	Area of blast in square metres	120	holes/blast									(·
T: OB - Loading Overburden	31,917	14,666,667	t/v	0.002 kg/			average of (wind speed/2.2)^1.3		moisture content in o	%								(:
T: OB - Hauling to ET dump		14,666,667		0.01027 kg/			t/load	200	Vehicle gross mass (1.3	km/return trip	4.74	kg/VK	5	% silt content	75	% control	i .
T: OB - Unloading Overburden to dump	31,917	14,666,667		0.002 kg/			average of (wind speed/2.2)^1.3		moisture content in o									í .
T: OB - Dozers on o/b	31,329	1,872		16.735 kg/	/h		silt content in %		moisture content in o									í .
T: CL - Dozers on coal	34,641	936	h/y	37.0 kg/	/h		silt content in %	7	moisture content in ^o	%								
T: CL - Loading coal into trucks	74,945	1,334,850		0.056 kg/	/t		moisture content in %											i .
T: CL - Hauling coal to ROM coal stockpiles at ET CHPP	47,014	1,334,850	t/y	0.03522 kg/		90	t/load	110	Vehicle gross mass (3.5	km/return trip	3.62	kg/VK	5	% silt content	75	% control	i .
T: CL - Unloading coal to ROM coal stockpiles	13,349	1,334,850		0.01 kg/														i .
T: CL - Rehandle coal to hopper	503	1,334,850		0.0004 kg		1.838	average of (wind speed/2.2)^1.	3 7	moisture content in	%								i .
T: CL - Crushing	801	1,334,850		0.0006 kg														i .
T: CL - Screening	1,468	1,334,850		0.0011 kg		_												i .
T: CL - Loading coal to product stockpiles	64,841	1,154,885		0.056 kg/			moisture content in %						-					i .
T: CL - Loading coal to trucks	483	1,154,885	t/y	0.0004 kg/			average of (wind speed/2.2)^1.3		moisture content in o					_				1
T: CL - Hauling product coal from ET CHPP to S conveyor	72,751	821,551		0.08855 kg/		90	t/load	110	Vehicle gross mass (8.8	km/return trip	3.62	kg/VK	5	% silt content	75	% control	i .
T: CL - Unloading product coal from trucks to conveyor T: CL - Hauling product coal from ET CHPP to rail load out	8,216 35,220	821,551 333,333		0.01 kg/ 0.10566 kg/		00	t/load	110	V-bid /	10.5	km/return trip	2.62	kg/VK	-	% silt content	75	% control	i .
T: CL - Hading product coal from E1 CHPP to rail load out T: CL - Unloading product coal from trucks to stockpile	35,220	333,333		0.10566 kg/	/t	90	t/load	110	Vehicle gross mass (10.5	km/return trip	3.02	kg/vk	3	% SIIL CONTENL	/5	% CONTLOI	i .
T: CL - FEL loading product coal to trains	139	333,333		0.0004 kg/		1 838	average of (wind speed/2.2)^1.3	6.5	moisture content in o	V6								1
T: CL - Hauling rejects to dump	40,675	1,154,885		0.03522 kg/			t/load		Vehicle gross mass (km/return trip	3.62	kg/VK	5	% silt content	75	% control	i .
T - REHAB - Dozers on rehab	200.117	936		213.8 kg/			silt content in %	2	moisture content in	%	Kinyretain trip	5.02	itg/ vit		70 SHE CONTECHE	,,,	70 CONCIO	
T: WE - Active Mining Area	14,366	4.1		0.4 kg/		8760			moistare content in									
T: WE - Dumps area	78,840	22.5		0.4 kg/		8760												
T: WE - Main ROM and Product stockpiles	925	0.3		0.4 kg/		8760												
T: Grading roads	13,826	22,464	km	1 kg/	/ha/h	8	speed of graders in km/h											
					INV	VINCIBLE (COLLEIRY OPERATIONS											
C: Topsoil Removal - Dozers/Excavators stripping topsoil	333		h/y	12.8 kg/	/h	8	silt content in %	2	moisture content in o	%								
C: OB - Drilling Overburden	5,151		holes/y	0.59 kg	/hole													
C: OB - Blasting Overburden	5,727		blasts/y	78.717 kg/			Area of blast in square metres		holes/blast									
C: OB - Loading Overburden		14,666,667		0.002 kg/			average of (wind speed/2.2)^1.3		moisture content in o									
C: OB - Hauling from pit to IC dump		14,666,667		0.00869 kg/			t/load	200	Vehicle gross mass (km/return trip	4.74	kg/VK	5	% silt content	75	% control	
C: OB - Unloading Overburden to dump		14,666,667		0.002 kg/			average of (wind speed/2.2)^1.3		moisture content in o									
C: OB - Dozers on o/b	31,329	1,872		16.735 kg/			silt content in %		moisture content in o									
C: CL - Dozers on coal	34,641	936	n/y	37.0 kg/		10	silt content in %	7	moisture content in o	%								
C: CL - Loading coal into trucks	74,945	1,334,850		0.056 kg/			moisture content in %	110	Vohialo arc '	7.0	lens (notures to):	3.53	ka nac	-	04 cilt ct:	7-	0/ control	
C: CL - Hauling coal to ROM coal stockpiles at IC CHPP C: CL - Unloading coal to ROM coal stockpiles	98,057 13,349	1,334,850 1,334,850	t/y	0.07346 kg/ 0.01 kg/		90	t/load		Vehicle gross mass (% control	/.3	km/return trip	3.62	kg/VK	5	% silt content	/5	% control	
:: CL - Unloading coal to ROM coal stockpiles :: CL - Rehandle coal to hopper	13,349	1,334,850		0.001 kg/	1/1	1 920	average of (wind speed/2.2)^1.3		% control moisture content in	0/4								
C: CL - Renancie coai to nopper	801	1,334,850		0.0004 kg		1.038	average or (wind speed/2.2)^1		oracure concent III	, u								
C: CL - Crusning	1,468			0.0006 kg														
C: CL - Screening C: CL - Loading coal to product stockpiles	64.841	1,154,885		0.056 kg/		7	moisture content in %											
C: CL - Loading coal to broduct stockpiles	483	1,154,885	t/v	0.0004 kg/			average of (wind speed/2.2)^1.3	6.5	moisture content in o	%								
C: CL - Unloading product coal from trucks to conveyor	8,216	821,551		0.0004 kg/		2.030		0.5	Doncent III									
C: CL - Hauling product coal from IC CHPP to rail load out	65,744	333,333		0.19723 kg/		90	t/load	110	Vehicle gross mass (19.6	km/return trip	3.62	kg/VK	5	% silt content	75	% control	
: CL - Unloading product coal from trucks to stockpile	3,333	333,333		0.01 kg/													-	
C: CL - FEL loading product coal to trains	139	333,333	t/y	0.0004 kg/	/t	1.838	average of (wind speed/2.2)^1.3	6.5	moisture content in o	%								
C: CL - Hauling rejects to dump	25,341	344,966	t/y	0.07346 kg/	/t	90	t/load		Vehicle gross mass (7.3	km/return trip	3.62	kg/VK	5	% silt content	75	% control	
- REHAB - Dozers on rehab	200,117	936	h/y	213.8 kg/	/h	10	silt content in %		moisture content in o	%								
C: WE - Active Mining Area	18,221	5.2	ha	0.4 kg/		8760												
C: WE - Dumps area	52,560	15.0		0.4 kg/		8760												
C: WE - Main ROM and Product stockpiles	2,467	0.7		0.4 kg/		8760												
: Grading roads	13.826	22,464	Long	1 kg/			speed of graders in km/h											

Quality Impact Assessment

Appendix D: Predicted PM_{2.5} emissions from mining sources

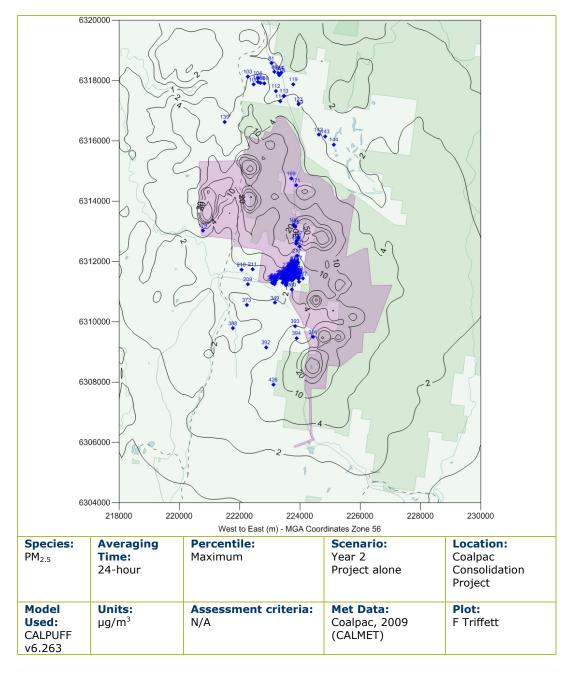


Figure D.1: Predicted 24-hour average $PM_{2.5}$ concentrations due to emissions from the Project and other sources in Year 2

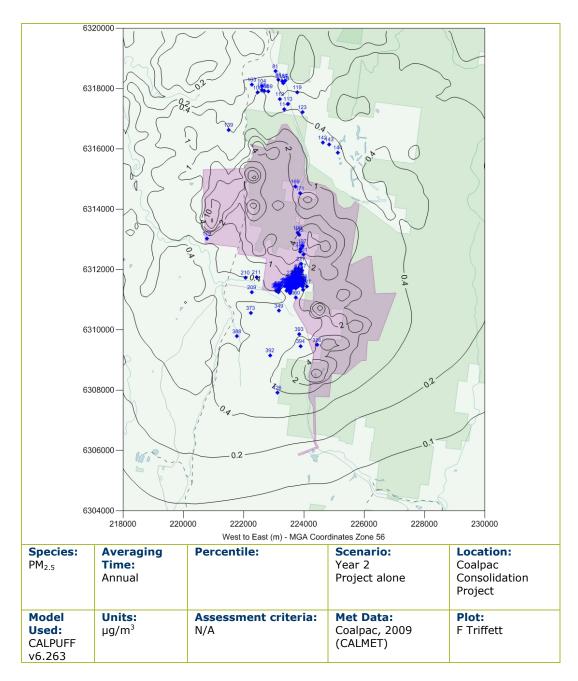


Figure D.2: Predicted annual average PM_{2.5} concentrations due to emissions from the Project and other sources in Year 2

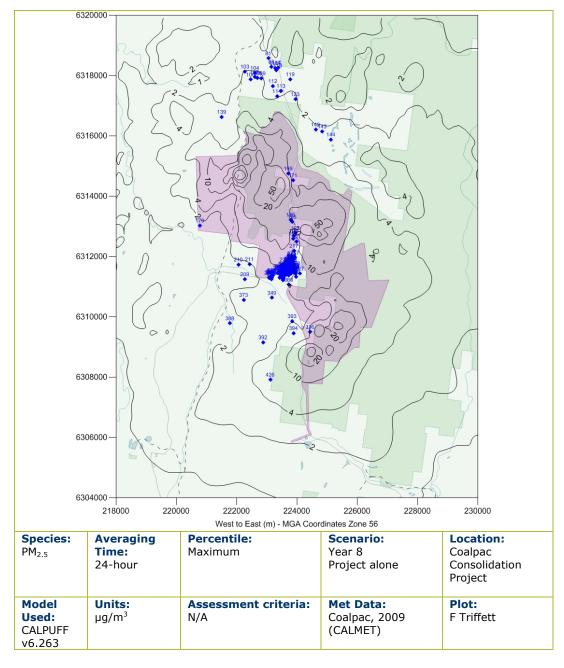


Figure D.3: Predicted 24-hour average $PM_{2.5}$ concentrations due to emissions from the Project and other sources in Year 8

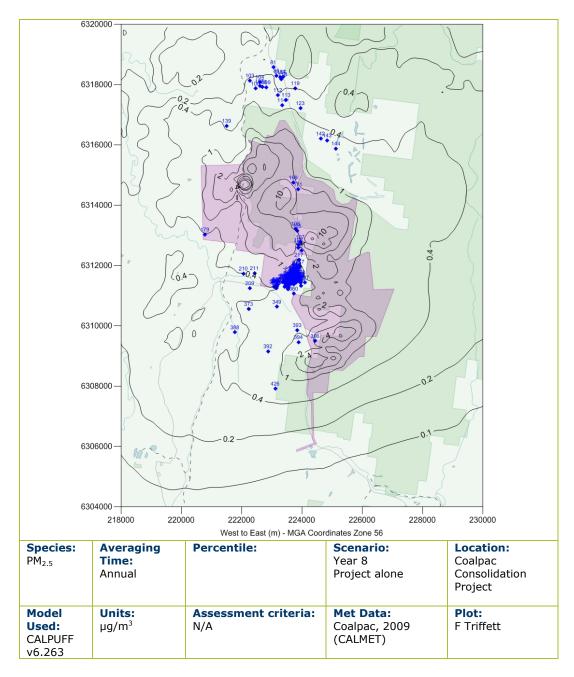


Figure D.4: Predicted annual average PM_{2.5} concentrations due to emissions from the Project and other sources in Year 8

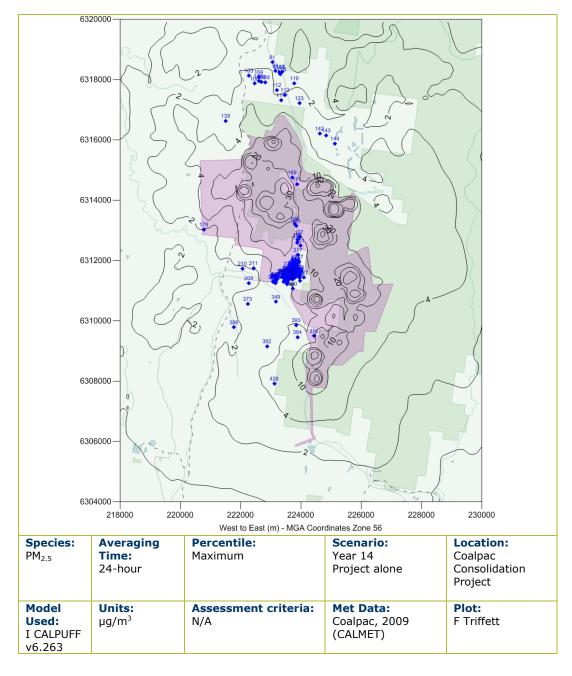


Figure D.5: Predicted 24-hour average PM_{2.5} concentrations due to emissions from the Project and other sources in Year 14

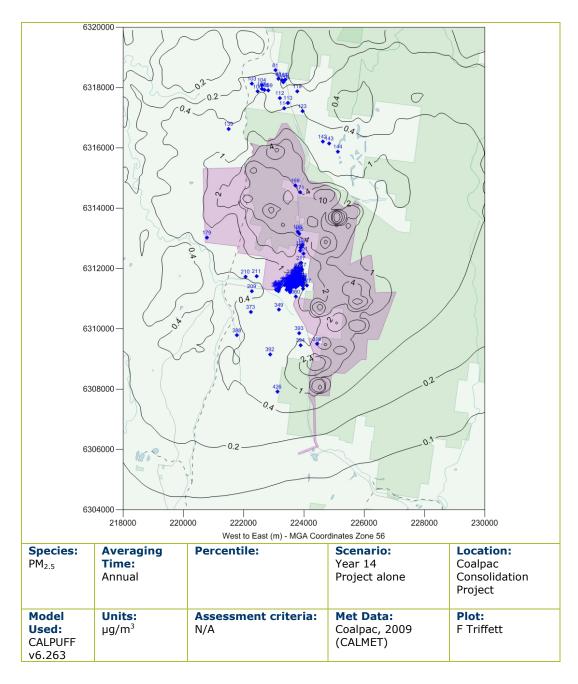


Figure D.6: Predicted annual average $PM_{2.5}$ concentrations due to emissions from the Project and other sources in Year 14

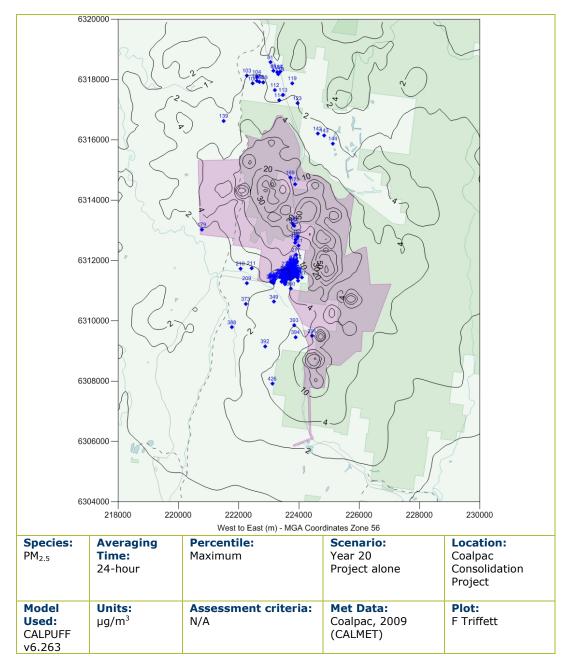


Figure D.7: Predicted 24-hour average $PM_{2.5}$ concentrations due to emissions from the Project and other sources in Year 20

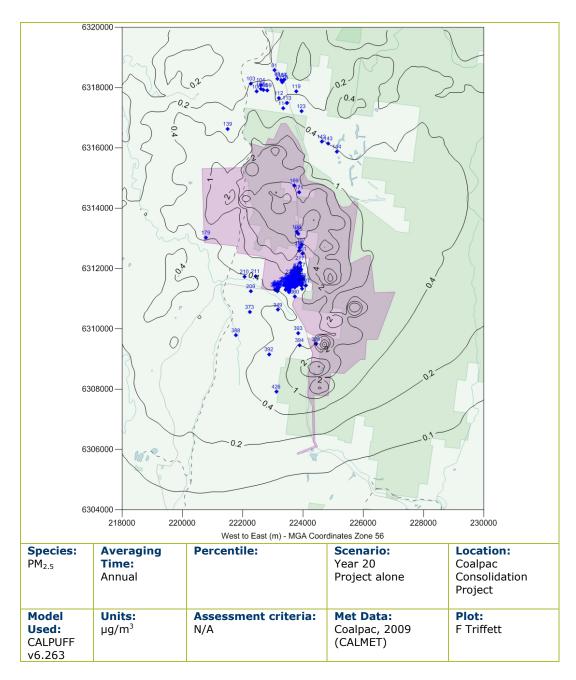


Figure D.8: Predicted annual average PM_{2.5} concentrations due to emissions from the Project and other sources in Year 20

Appendix E: Borehole Sample Data for Fugitive Emissions GHG calculations

Table E.1: Seam Gas Testing Results

Seam	Sample no.	Depth to Top of Sample (rounded)(m)	Sample thickness (m)	Measured gas content Qm (m3/t) on an as received (raw) basis	Average gas content gas content (m3/t)
Upper Irondale C - E	CP0001 (Geogas)	3	0.43	0.06	
	CP0002 (Geogas)	4	0.83	0.11	0.26
	CP0003 (Geogas)	5	0.79	0.52	
Irondale main	CP0004 (Geogas)	10	1.09	0.59	
	CP0005 (Geogas)	11	0.82	0.50	
	CP0006 (Geogas)	12	0.42	0.70	0.50
	Gas7 (CSGP)	11	0.54	0.3	
	Gas8 (CSGP)	12	0.42	0.34	
	Gas1 (CSGP)	53	0.78	0.14	
	Gas2 (CSGP)	54	0.49	0.21	0.19
	Gas3 (CSGP)	55	0.54	0.25	
Lithgow	CP0007 (Geogas)	27	0.69	0.58	
	CP0008 (Geogas)	28	0.76	0.72	
	CP0009 (Geogas)	29	0.77	0.71	
	CP0010 (Geogas)	29	0.31	0.59	0.52
	Gas9 (CSGP)	28	0.55	0.3	
	Gas10 (CSGP)	29	0.79	0.42	
	Gas11 (CSGP)	30	0.48	0.18	
	Gas4 (CSGP)	76	0.61	0.34	
	Gas5 (CSGP)	77	0.79	0.31	0.33
	Gas6 (CSGP)	78	0.74	0.33	

Source: GEOS Mining (2011)